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Aplicaciéon de modelos evolutivos para el analisis del
cambio social y cultural en redes de comunicacién de
gran escala

RESUMEN

La investigacién dentro del marco de las redes complejas supone actualmente una linea importante
en muchas disciplinas. Sus avances permiten abordar y comprender problemas que son inaccesibles
para otras metodologias, ya que revelan propiedades de caracter contraintuitivo (emergentes). Mas
alla del estudio aislado de los componentes de un sistema, existe una gran cantidad de informacion
que se puede extraer de la interaccién entre éstos, y a la que es preciso acceder para comprender su
funcionamiento. Para ello, la teoria de redes constituye una potente herramienta para el estudio de la
emergencia, organizacion... de procesos de esta naturaleza.

Desde esta perspectiva, los movimientos sociales son un objeto interesante de analisis. El rapido
desarrollo de las tecnologias de informaciéon estd marcando indudablemente su evolucién en los tltimos
anos: Internet y su creciente disponibilidad en los dispositivos méviles, junto con la popularidad de las
redes sociales online, aceleran y multiplican las posibilidades de comunicacion ciudadana y reconfiguran
constantemente sus modos de organizarse. Ademés, toda esta actividad genera una cantidad ingente
de datos que son de gran interés para la investigacion.

En mayo de 2011 se produjo una gran movilizaciéon ciudadana, conocida como “Movimiento 15M”.
La alta participacion dio lugar a una extensa red de comunicacién offline-online sin precedentes en este
pais. Las numerosas congregaciones y la aparicion de acampadas urbanas ponian de manifiesto una
organizacion proveniente de las redes y, aparentemente, distribuida y no centralizada.

El objetivo de este estudio es comprender aspectos del funcionamiento de una movilizacion de este
tipo, mediante el acceso a una de sus capas de interaccion digital (Twitter). Se parte de un extenso
dataset que abarca desde el 13 de mayo (dos dias antes de las principales manifestaciones) hasta el
final del mes, que recoge mensajes relativos al movimiento. Las fases del analisis son dos:

1. Se realiza una descripcion exhaustiva de la topologia de las redes interactivas formadas cada dia,
partiendo de la teoria de grafos. Al mismo tiempo, se presentan fendémenos comunes de redes
complejas reales y buscamos sus similitudes con nuestro caso de estudio.

2. Nos centramos en el analisis de los mecanismos de difusiéon de la informaciéon. Basandonos en
otras investigaciones y en lo observado en la fase descriptiva, planteamos una hipotesis sobre el
caricter evolutivo de estos procesos y construimos unos modelos que nos ayuden a corroborarla.

El anélisis nos muestra un sistema de gran tamano con propiedades topolégicas muy buenas desde el
punto de vista de la conectividad y la eficiencia, asi como otras caracteristicas poco evidentes, que
nos ayuda a entender la interaccién del proceso de comunicacién. Ademés, concluimos que nuestra
hipotesis evolutiva es adecuada ya que resulta tatil para explicar como se propaga la informacion.
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Capitulo 1

Introduccion

1.1 TIC y movimientos sociales. Caso de estudio.

La movilizacion social constituye una importante herramienta de la ciudadania para mostrar su descon-
tento y defender sus derechos. Estos procesos dindmicos, y en concreto sus formas de comunicacion,
han estado tradicionalmente limitadas por la tecnologia, que ha impuesto restricciones tanto en el
acceso a la informacion como en el modo de interactuar. El gran desarrollo de las tecnologias de la in-
formacion en los ultimos anos lleva a pensar que la forma en que se organizan, difunden y materializan
estos movimientos evolucione al mismo tiempo.

En efecto, con el derribo de estas barreras, se habilita la creaciéon de redes més horizontales, dis-
tribuidas, interactivas y accesibles, algo que modifica drasticamente el activismo popular. El ciudadano
puede obtener informacion de forma mas sencilla y selectiva, y puede intervenir activamente en el pro-
ceso gracias a una elevada (y creciente) conectividad.

Con el término “tecnopolitica” se ha definido el uso tactico y estratégico de las herramientas digitales
para la organizacion, comunicacion y accion colectiva [I]. Se han dado multitud de casos de auto-
organizacion en red combinados con acciones visibles. Entre los méas destacados se encuentran:

e Protestas anti-globalizacion en Seattle (noviembre, 1999): Internet y los medios digitales fa-
cilitaron la coordinacion y la cobertura de las protestas. Se articul6 una red compuesta por
ONGs locales, ciudadanos y activistas grass-roots que se tradujo en un entramado global que
proporcionaba canales de informacion, debate y, en tltima instancia, de accion [2].

e Reaccion ante la supuesta manipulacion mediatica del gobierno de Espana (13 de marzo de 2004):
tras los atentados del 11 de marzo en Madrid, se coordiné via SMS, una protesta frente a la sede
del partido gobernante. Se prob6 que esta movilizacion (y las posteriores) no fueron promovidas
por actores sociales vinculados a partidos politicos, sino que fueron de naturaleza ciudadana. La
repercusion de estas acciones supusieron importantes incrementos en las comunicaciones moviles,
con un aumento del 30% en el trafico de mensajes de texto respecto a otro sabado cualquiera [3].
Paralelamente, también la actividad en Internet se veia incrementada, especialmente en portales
activistas y con una amplia participacién de colectivos extranjeros.

e Wikileaks. Caso Cablegate (noviembre de 2010): una organizacion sin animo de lucro que,
manteniendo el anonimato de las fuentes, filtra informes y documentos de interés publico. Unas
250.000 comunicaciones del Departamento de Estado de Estados Unidos con sus embajadas
se publicaron y, ademaés, fueron enviadas a cinco importantes periddicos internacionales. La
persecucion que sufrié la organizacion por parte de gobiernos e instituciones privadas provoco
multitud de reacciones de apoyo y protesta en la red.



e Primavera Arabe (2010): una serie de alzamientos populares en paises del norte de Africa y
Oriente Proximo surgen para reclamar libertades y democracia. El uso de blogs en Egipto tuvo
un importante papel desde el 2004, y los enlaces en red se multiplicaron con las redes sociales
online. A finales de 2010, la multitudinaria revolucién en Ttnez contagié movilizaciones similares
en paifses vecinos.

e Anonymous: un pseudénimo bajo el que se agrupan activistas que realizan acciones a favor de
la libertad de expresion y la independencia de la red. No se conoce su estructura (si la hay) y, a
pesar de lo difuso de su organizacion, han realizado operaciones importantes. Un ejemplo es el
ataque a sitios web de instituciones que actuaron contra Wikileaks, como Paypal y Mastercard.

e NoLesVotes: es un movimiento surgido de la ley Sinde, aprobada en febrero de 2011. El objetivo
era desalentar el voto a todos aquellos partidos que apoyaron dicha aprobacién. Muchos ven en
este caso un precedente claro del movimiento 15M.

e Democracia Real Ya y 15M: este movimiento auto-organizado fue agrupando miles de personas en
las redes que, implicta o explicitamente, se identificaron con el nombre Democracia Real Ya. Este
colectivo proclamé su rechazo al bipartidismo y al dominio de las instituciones financieras, y a
favor de una democracia més participativa, manteniendose ajeno a partidos politicos y sindicatos.
El crecimiento en ciudadanos afines paso desapercibido para los medios, mientras se construia un
estado de d4nimo colectivo. Todo esto condujo a una serie de protestas multitudinarias y pacificas
en 70 localidades el dia 15 de mayo de 2011, lo que pasd a llamarse “Movimiento 15M”.

En este trabajo nos centramos en este ultimo. Su cardcter novedoso, su cercania geografica y la
relevancia de las TIC en su comunicacién lo convierten en una buena oportunidad de estudio. Se
dispone de un amplio dataset que recoge mensajes relacionados con el movimiento, desde el 13 hasta
el 31 de mayo de 2011.

1.2 Twitter y los movimientos sociales

La aparicion en 2006 de la red social Twitter supuso un gran impacto por su caracter novedoso. Ofrece
un servicio de microblogging, a través del cual se envian mensajes cortos que son recibidos por una
red de asociados. Los mensajes, llamados tweets, tienen una longitud maxima de 140 caracteres. Al
ser publicados, son recibidos instantaneamente por los seguidores del autor. Al contrario de lo que
sucede en otras plataformas, esas relaciones de seguimiento no son reciprocas ni impiden el acceso a la
informacion: cualquiera (incluidos los no usuarios) pueden ver lo publicado en Twitter.

Con el uso de ciertos caracteres especiales se ha modificado la forma de interaccion. Por ejemplo,
se puede especificar el receptor del mensaje incluyendo el caracter ’Q’ seguido del nombre del usuario
objetivo. Esta practica tiene tres posibles significados:

e Respuesta a un tweet (reply).
e Mencion a un usuario (mention)
e Reenvio de un mensaje (retweet), si antes de Q’ aparecen los caracteres 'RT’.

Otra modificacién del funcionamiento de este servicio surge de la aparacion de etiquetas, llamadas
hashtags, que tienen la funcién de reunir mensajes relativos a un tema con la intencién de facilitar
la basqueda y discusién sobre el mismo. Para etiquetar un tweet se antepone el caricter '#’ seguido
de una palabra o palabras sin espacios (por ejemplo, #15M). Cuando el uso de un hashtag se acelera
notablemente se convierte en lo que en Twitter se conoce como trending topic. Se mide a distintas
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Figura 1.1: Repercusion medidtica del Movimiento 15M, a través del andlisis de portadas de prensa.
Fuente: [4]

escalas: global, nacional y local. Llegar a ser trending topic implica haber logrado una enorme difusion
y es considerado un éxito por aquellos que lo adoptan.

El microblogging mantiene una estrecha relacién con los movimientos sociales: ofrece un medio de
comunicaciéon muy rapido y versatil, y con un potencial de propagaciéon extraordinario. La posibilidad
de englobar mensajes bajo un hashtag facilita el acceso directo a la informacién sobre un tema concreto.
Sumado a un seguimiento activo, se puede construir un conjunto de datos representativo de un proceso
de comunicacién con identidad propia.

1.3 Motivacion y objetivo

Las acciones ciudadanas surgidas en momentos de agitaciéon politica suponen un fenémeno interesante
para el estudio cientifico. La evolucion de las tecnologias de la informacion y su evidente influencia
en las formas de comunicacion sugieren un cambio de paradigma cientifico que analice eficientemente
estos procesos colectivos. Cuando la aproximacion a estos fenémenos se realiza dentro de un marco
més clasico es facil interpretar errénea o sesgadamente la realidad. Sirva como ejemplo la escasa y
desfasada repercusién en la prensa escrita de las movilizaciones multitudinarias del 15 de mayo de
2011 (Figura : hasta tres dias después no hubo una presencia predominante de estos hechos en las
portadas de prensa nacional [4].

Fenomenos como el 15M son de naturaleza muy llamativa. Originados por un estado de dnimo
colectivo, se materializan en masivas acciones coordinadas cuyos participantes utilizan diversas formas
de informarse y comunicarse. Nuestro objetivo global es conocer mas acerca de la organizaciéon y
el funcionamieto de estos movimientos auto-organizados en red. Como primer paso, pensamos que
es clave analizar la estructura de sus interacciones. Esto se puede llevar a cabo gracias a los datos
disponibles en las redes sociales online y con la teoria de grafos y redes complejas como principales




herramientas.

El segundo paso hacia nuestra meta es comprender los mecanismos de transmisioén de informacion.
Como todo proceso dinamico que tiene lugar en una red, esta condicionado en primera instancia por
la topologia. No obstante, pensamos que también entran en juego otros factores que los hacen mas
complejos. Muchos procesos de propagacion estan restringidos por la naturaleza del medio en el que se
encuentran: existen recursos limitados que son necesarios para que puedan desempenar sus funciones.
En el estudio de la transferencia de informacioén se tiene en cuenta esto y por ello se proponen estrategias
evolutivas para explicar el desarrollo cultural.

Creemos oportuno adoptar este enfoque para nuestro caso y pretendemos corroborar la hipotesis de
que es un comportamiento evolutivo el que experimentan los mecanismos de difusién. Nuestra idea es
identificar como las unidades de informacién se ven afectadas constantemente del entorno, por lo que su
capacidad de reproducirse (y por tanto su permanencia) varia con el tiempo. Para ello, construiremos
un modelo simple de tipo evolutivo cuyos mecanismos de reproduccién se ajusten a nuestra hipotesis.
Los datos simulados por este modelo se compararédn con los reales y con otros dos modelos bésicos
para analizar qué parte de esa realidad somos capaces de capturar.



Capitulo 2

Bases teo6ricas

En este capitulo se presentan las caracteristicas principales del enfoque adoptado para analizar un
sistema, donde la clave se haya en la interaccion entre sus partes. Consideramos que la primera etapa
de un anélisis de este tipo debe ser la explotacion de la informacion estructural de la red, es decir,
la disposicién de sus componentes y las conexiones que los unen. Por ello, se presentan las medidas
topologicas que se utilizaran para la descripcién de nuestro caso de estudio, junto con algunos indices
que sirvan para sustentar nuestra hipoétesis evolutiva del capitulo

2.1 Sistemas complejos: enfoque emergente

Frente a la perspectiva reduccionista de analizar un sistema a través de la suma de sus partes y sus
relaciones lineales, surge como alternativa la teoria de la complejidad. El enfoque clésico tiende a hacer
avanzar las disciplinas de forma independiente, provocando su divergencia y aislamiento progresivo [5].
No obstante, hay muchas caracteristicas compartidas entre ellas y la aproximacion cientifica a los
sistemas particulares se puede realizar dentro de un marco global.

Para modelar eficientemente un sistema debemos comprender la relacién del todo con sus partes,
a través de las interacciones entre ellas. Partiendo de estas bases, el reto consiste en identificar las
propiedades que emergen de la interaccion. El acceso a estas se realiza a través de la informacion que
contienen las uniones entre componentes, tanto desde un punto de vista estatico (la estructura de red)
como dinamico (la evoluciéon de sus propiedades).

2.2 Redes complejas y teoria de grafos.

Recientemente, se estan desarrollando multitud de técnicas y modelos que ayudan a entender e incluso
predecir el comportamiento de los sistemas complejos. Frecuentemente, estos avances se inspiran en
estudios empiricos de redes reales en distintos ambitos:

e Tecnologia: redes de suministro eléctricol6], conexiones entre aeropuertos [7].
e Biologia: redes de metabolismo [8], redes troficas [9].
e Redes de informacion: enlaces en World Wide Web [15], co-autoria de articulos cientificos [10].

e Redes sociales: red de intercambio de emails [I], relaciones de amistad [12].



Como herramienta de representacion de sistemas complejos se usa la teoria de grafos, que supone una
gran ayuda para detectar aquellas propiedades que emergen de las interacciones entre sus elementos.
Estudia las propiedades de los grafos, G, estructuras formadas por un conjunto de nodos (vértices) V,
unidos entre si por enlaces (aristas) E:

G=(V.E)

EC(VxV)
e12 = (v1,v2) e € E,v1,v0 €V

A continuacién se detallan una serie de propiedades topologicas basicas y fenémenos caracteristicos de
las redes complejas.

2.2.1 Topologia de redes. Definiciones
2.2.1.1 Direccionalidad y pesos

La presencia de atributos en nodos y enlaces aumentan la informacion del sistema y permite distinguir
entre tipos béasicos de redes. Tipicamente, se realizan dos clasificaciones en funcién de la naturaleza de
los enlaces. Si poseen una direccion, se distingue entre redes no dirigidas, cuyas aristas representan
una conexién reciproca, y redes dirigidas, con enlaces que parten de un nodo origen y llegan a un
nodo destino. Para estas tultimas,

€12 = (111,112) 75 (U2,Ul) = €21

Asimismo, si los enlaces llevan asociado un peso, estamos ante redes pesadas. Es de vital import-
ancia identificar la naturaleza de la red y valorar qué atributos debemos considerar, para estar seguros
de incluir toda la informacion necesaria en el analisis (Figura|2.1)).

Figura 2.1: Direccionalidad: (a) Red no dirigida, con pesos en nodos y enlaces. (b) Red dirigida.

2.2.1.2 Grado

La cantidad de enlaces adyacentes a un nodo se denomina grado y es denotado por k;. Si se trata de
una red dirigida, el grado es la suma de entrante y saliente:

ki =k 4k

El grado pesado anade el valor de los pesos de las aristas. Este valor puede tener multitud de signific-
ados:



Figura 2.2: Componente gigante.

e El nimero de veces que se repite una interaccion.
e La intensidad de la interaccion.
e La distancia fisica.

Es habitual calcular el grado medio de los grafos para tener una idea de la conectividad global:
k=1 > ki
= : ;

El caso de enlaces pesados se define andlogamente:
1
<y >=— Z Kuw.i
3

2.2.1.3 Componente conexo, débil y fuerte. Componente gigante

Los grafos pueden estar compuestos por subgrafos aislados unos de otros. Para grafos dirigidos, se
definen dos tipos basicos de componentes conexos:

e Componente fuertemente conexo: para cada par de vértices u y v pertenecientes a este subgrafo
existe un camino de u a v y viceversa.

e Componente débilmente conexo: la cohesion es independiente de la direcciéon de las aristas.

La existencia de un componente débilmente conexo que contenga una proporcion mayoritaria de los
vértices, denominado componente gigante, es comun en sistemas reales (Figurg2.2)). Constituye un
sintoma del funcionamiento eficiente y coherente de un sistema [13)].
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Figura 2.3: Coeficiente de clustering.

2.2.1.4 Coeficiente de clustering

Es una propiedad local de los nodos, que mide el nivel de conectividad entre sus vecinos directos. Para

un nodo i:
M,;

ki (ki — 1)
0<(C; <1

Ci =

con M; el ntimero de enlaces que se dan entre sus vecinos directos de ¢, y k; su grado (Figura[2.3) . A
nivel global, se mide el valor medio del clustering para todos los nodos:

1
C=- C;
Con este valor se tiene un indicador de la robustez local de la red.

2.2.1.5 Distancia promedio

La distancia entre dos nodos ¢ y j (también llamado camino corto, o geodésico), d (i, 7), es el minimo
namero de aristas que los separan. En un grafo G = (V, E), con n nodos, la distancia promedio L es
la media de longitud de todos los caminos existentes:

1
L=——"%"d(i,j) Vi,jeV

n(n—1) -

Un valor bajo de L es un signo de eficiencia de la red, puesto que sus componentes necesitan menos
pasos para llegar de uno a otro.

2.2.2 El fenébmeno del “mundo pequeno”

El origen de este concepto se encuentra en el experimento del psicologo americano Stanley Milgram
(1967). Se seleccionaron aleatoriamente habitantes del medio oeste americano y se les propuso hacer
llegar una carta a un extrano de la costa este del pais. Los tnicos datos proporcionados sobre el
destinatario eran el nombre, la ocupacién y su localizaciéon geografica aproximada. Cada persona
enviaba el mensaje a alguien en su red directa de contactos que pudiese estar cerca del objetivo,
basandose sélo en esos tres datos. El procedimiento continuaba hasta que el mensaje dejaba de viajar
o llegaba a su destino. A pesar de que unicamente 64 de 296 mensajes alcanzaron el objetivo, lo
hicieron en muy pocos pasos, concretamente, en una media de 5.2 conexiones.
Dos modelos clasicos de redes establecen las bases para la comprension de este fenémeno:

e Redes regulares (del tipo ring lattice), en las que tanto coeficiente de clustering alto como dis-
tancia promedio son valores altos.
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Figura 2.4: Aleatoriedad creciente: de red regular a red aleatoria.

e Redes aleatorias (modelo Erdos-Renyi), donde la distancia promedio es baja, pero la aleatoriedad
dificulta agrupamientos locales (C' |)

En muchas redes reales (como la de Milgram) se encuentran similitudes con ambos modelos. Con las
redes aleatorias se comparte en una distancia promedio corta, mientras que el agrupamiento local es
similar al de redes regulares.

Este fenémeno se conoce como mundo pequeno. Watts y Strogatz lo estudiaron y construyeron un
modelo que replicase estas caracteristicas [14]. Partiendo de la red regular, se recorren todas las aristas
y con una probabilidad p se cambia uno de sus extremos por otro individuo escogido aleatoriamente. Se
va aumentando la aleatoriedad a través de p, obteniendo redes que cubren todo el espectro desde p = 0
(regular) hasta la aleatoriedad total, p = 1 (Figura . En los sistemas obtenidos para p € (0,1)
existe un rango intermedio que contiene las buenas propiedades de estructuraciéon local del modelo
regular y la eficacia de comunicacion del modelo aleatorio. Matematicamente, el comportamiento de
Ly C en funciéon de p

n 3

—-0=>L~—,Cn~-

p 2k’ 4
1 k
p—>1 @L%Lrandomww,cmcrandomwf
In(k) n

Cuando p — 0 aparecen valores altos de L (que crece linealmente con n) y de C' (en torno a
%). Si p — 1 las dos variables parecen alcanzar valores bajos al mismo tiempo ya que L s6lo crece
logaritmicamente con n, y C' cae abruptamente. Sin embargo, la representacion de la variaciéon de los
coeficientes con p (normalizados por sus correspondientes valores en grafo regular, L(0) y C(0)) revela
un rango en el cual L presenta valores bajos y C' mantiene valores elevados (Figura .

Para evaluar si se da este fendomeno, se comparan C'y L con sus valores analogos del caso aleatorio
y se comprueba si:

L z Lrandom

C > Crandom

En ocasiones se usa el indice o para contabilizar en qué medida la red presenta este fenémeno:

o C/Crand
7= L/Lrand

Una red con ¢ > 1 se considera de mundo pequeno.
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Figura 2.5: Evolucion de C' y L frente a p.Fuente:|[I4]

2.2.3 Distribucién de grado. Redes libres de escala y conexién preferencial

Otra de las caracteristicas presente asiduamente en sistemas reales deriva de la distribucién del grado
de sus nodos. La gran mayoria de los individuos presentan un grado bajo, mientras que s6lo unos pocos,
llamados hubs, estan muy conectados. Esta distribucion responde a una ley de potencias (power-law)
caracterizada por una larga cola (Figura. La probabilidad de que un nodo escogido aleatoriamente

k

Figura 2.6: Distribucion segun ley de potencias.

tenga grado k es:
p(k)=Ck™

Su representacion en escala logaritmica pone en evidencia este tipo de redes, conocido como redes
libres de escala:
logp (k) =logC — alogk

donde « es el exponente de la ley de potencias. En la realidad, los valores del exponente recaen
tipicamente en el rango « € (2,3) [15, [16]. La forma mas conveniente de representacion es su funciéon
de distribucién acumulada (complementaria), P (X > x), que también sigue una ley de potencias de
exponente 8 = a — 1.
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Figura 2.7: Red libre de escala.

Uno de los mecanismos clasicos que generan este tipo de redes es el denominado conexién prefer-
encial (o rich-get-richer). Fue introducido por Price [I0], y popularizado por Barabasi y Albert en un
modelo de generacion de redes de uso muy extendido [I7], que se basa en dos principios bésicos:

e Las redes crecen continuamente con la apariciéon de nuevas aristas.

e Las nuevas aristas se conectaran con mayor probabilidad a nodos que ya estén altamente con-

ectados (Figura [2.7).

2.2.3.1 Significado del exponente

Para evaluar el significado de « se utiliza el indice de Gini, usado tradicionalmente para medir la
desigualdad en términos de ingresos econdmicos. Se calcula como una proporciéon de las areas en el

diagrama de la curva de Lorenz (Figura :

- a
g_a—i-b
g €10,1]

a
b

Figura 2.8: Curva de Lorenz e indice de Gini.
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Figura 2.9: Curvas de Lorenz para ley de potencias. Fuente: [I§]

Para ver qué relacion guarda con las ley de potencias, se representa la curva de Lorenz para valores
de a € [2.1, 3.5] . Comprobamos que la distribucion se hace méas equitativa (el coeficiente de Gini
disminuye) conforme aumenta el valor del exponente (Figura [2.9).

2.2.3.2 Ajuste de power-law

A la hora de determinar si una serie de datos se ajusta a una distribucién power-law es muy comin
incurrir en una serie de errores tipicos. Con datos continuos, si se parte de un histograma, estamos
incluyendo variables propias de esta representacion que pueden influir en el ajuste obtenido (el namero
de bins y su anchura). Ademas, es habitual que los primeros puntos de la distribuciéon no respondan
bien al ajuste y que s6lo a partir de un umbral, > z,,;,, se siga esta ley. Por ello, para construir los
modelos de ajuste se sigue el siguiente proceso [19]:

e Estimar los parametros x,,;, v a por el método de maxima verosimilitud.

e Comprobar la hipotesis de ajuste al modelo power-law con los pardmetros anteriores a través de
test estadisticos con un nivel de significacion de 0.1.

2.2.4 Deteccion de comunidades

Ademas de los fenémenos presentados, otra propiedad tipica de las redes complejas es una estructura
dividida por comunidades [20]. Su presencia puede ayudar a identificar grupos mas amplios cuya
interaccion los ha diferenciado del resto del sistema.

En definitiva, se pretende detectar grupos de nodos densamente conectados entre si, en relaciéon a
lo conectados que estan con el resto de la red. Existe un amplio conjunto de algoritmos que realizan
esta tarea [2I]. Recientemente, se han desarrollado técnicas mas versatiles que mejoran los resultados
[22][23]. Para evaluar la calidad de las particiones, se calcula la modularidad @, que mide la densidad de
enlaces dentro de las comunidades en comparacion con los enlaces inter-comunitarios. En la practica,
se toma como valida una division con @ > 0.3 [24]. En el caso de aristas pesadas,

1 “_kik’j o
Q=% |4y - 55 s ey

%]
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Qel[-11]

donde A;; representa el peso del enlace entre los nodos i y j, ki = > j A;j es el grado pesado de ¢, ¢;
1 u=v
es la comunidad a la que pertenece i, la funcion § (u,v) = {O Wt ym=1 > Aij

2.2.4.1 FEl método de Louvain

Es un método basado en la optimizacion de la modularidad que admite redes dirigidas y pesadas [25].
El método despliega completamente las estructuras encontradas a distintos niveles de resolucion. Asi,
se pueden buscar comunidades de mayor o menor tamano. Se repiten iterativamente dos fases:

1. Se asigna a cada nodo su propia comunidad. Para cada nodo i y sus vecinos j, se evalia la
ganancia de ) que se obtiene situando a i en la comunidad C' a la que pertenece j:

S thiin (Zwt +ki)2 _ [%:mn — (%)2 - <2]jn>2]

2m 2m
con »_, la suma de pesos dentro de una comunidad C, >, , la suma de pesos de enlaces
adyacentes a los nodos en C' y k;;, la suma de pesos de enlaces entre ¢ y nodos de C. Se da
por concluida la fase cuando se obtiene un maximo local: ningin movimiento individual puede
mejorar la modularidad.

AQ =

2. Se construye una nueva red cuyos nodos son las comunidades encontradas en la fase 1, con enlaces
pesados entre ellas. El peso de un enlace de esta red entre ¢ y j, se corresponden con la suma
de los pesos de los componentes de ¢; que unidos a los de c;. Se repite la fase 1 con esta nueva
configuracion.

De todas las divisiones realizadas se puede extraer informacion valiosa, como cuél es la actividad entre
comunidades o comprobar si hay pequenos grupos dentro de otros mayores. El método proporciona
por defecto la division con modularidad mayor.

2.3 Indices de diversidad

Anadimos esta seccion que incluye medidas usadas tipicamente en ecologia para medir la diversidad de
los ecosistemas. Las emplearemos en el capitulo [f] siguiendo la linea de la analogia de los mecanismos
evolutivos presentada en la introduccién.

La diversidad de un ecosistema es una medida cuantitativa que refleja, por un lado, el ntimero
de especies presentes en un conjunto de datos, y, simultineamente, en qué medida estan repartidos
equitativamente. Existen varios indices de diversidad que permiten hacer ésto de forma sintética.
Entre los de uso frecuente estan el indice de diversidad de Simpson, el indice de Shannon-Wiener (o
entropia de Shannon) y la species evenness, una normalizacion de la entropia de Shannon.

2.3.1 Indice de diversidad de Simpson

Mide la probabilidad de que dos individuos escogidos al azar sean de la misma especie:

p_ Dy (ni—1)
N(N—1)
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con n; nimero de individuos de especie 7, R el ntmero total de especies y N el ntmero total de
individuos del sistema. En conjuntos de datos grandes se puede aproximar por

R
A=>p}
i=1

1
A> =
R

La caracteristica principal de A es la ponderaciéon mayor que asigna a las especies dominantes, puesto
que, comparativamente, los grupos poco numerosos apenas contribuyen a la suma. Para que el indice
sea creciente con la diversidad se suele emplear una transformacion de éste. Aqui se usara la inversa:

D=—
A

Notese que para poder comparar entre diferentes sistemas conviene dividir por D,, .., para que esté
expresado en términos relativos a su méaxima diversidad:

D
D' =
Drax
1 1
Dmaw = = T o
Amin  (1/R)

2.3.2 Entropia de Shannon y species evenness

Proviene del trabajo de Claude Shannon, y fue una de sus contribuciones a los origenes de la teoria de
la informacion. Aplicado a la ecologia, mide la incertidumbre al predecir la especie a la que pertenecera
un individuo escogido aleatoriamente:

R
H=-3% php
=1

Igual que en el indice de Simpson, se suele hacer una transformaciéon que permita la comparacion
entre sistemas de distintos tamanos. La denominada species evenness, J, es el indice H normalizado
por su valor maximo. FEs tutil cuando se quiere descartar la contribuciéon del numero de especies y
medir dnicamente el grado de similitud en la distribucién de las poblaciones:

2.4 Herramientas

Existen muchas alternativas en cuanto a software para el anéalisis de redes. De entre todas ellas, se
ha usado principalmente networkr, un paquete de software en lenguaje Python para el estudio de
estructura, dinamica y funciones de las redes complejas. También se han empleado otros paquetes,
siempre basados en Python, para la manipulacién de datos y algin otro punto del analisis. Los detalles
y el listado de paquetes usados se encuentra en el Apéndice [A]
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Adicionalmente, hemos usado Gephi, una plataforma interactiva de exploracion y visualizacion de
grafos de codigo abierto y gratuita. Con ella se han realizado calculos complementarios y algunas
visualizaciones.

2.5 Conclusion

En este capitulo se recogen las definiciones de conceptos y técnicas que emplearemos a lo largo del
documento, agrupadas en dos bloques. En el primero (seccion explicamos el uso de la teoria
de grafos como herramienta para estudiar la topologia de las redes. Se comienza por presentar los
distintos tipos de sistemas que hay, atendiendo a la naturaleza de sus nodos y enlaces. Después se
definen las medidas para caracterizar la conectividad, tanto a nivel local como a nivel global. Con todo
esto, repasamos tres fenémenos interesantes que se dan con frecuencia en redes complejas. Queremos
comprobar si estan presentes en nuestro caso de estudio, y para ello se explica coémo se generan, cémo
se detectan y qué implicaciones tienen. Todo ello se aplicara en el Capitulo [3]

En el segundo bloque (secciéon se definen tres indices usados habitualmente para medir la
diversidad de especies en un ecosistema. El motivo de esto radica en la hipotesis propuesta en el
Capitulo [l que establece una analogia entre nuestros sistemas y un ecosistema. Creemos que una
forma adecuada de evaluar similitudes entre ellos es comparar sus diversidades.
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Capitulo 3

Analisis de topologia y conectividad
efectiva de la red de interaccion

Procedemos a aplicar a nuestro caso lo presentado en la seccion En primer lugar, realizamos una
descripcion a grandes rasgos, empezando por las caracteristicas de la base de datos y la extraccion de
la red de interaccién. A partir de ahi, caracterizamos de forma méas exhaustiva la topologia de la red
y evaluamos en qué medida el sistema contiene las propiedades de casos tipicos de redes complejas.
Es especialmente importante analizar la topologia del sistema por dos motivos. Por un lado, dado
que se trata de una red formada por la interaccion, el estudio de su estructura contiene la informaciéon
sobre como se han establecido estas relaciones. Pero ademaés, hay que tener en cuenta que es la topologia
de la red lo que sostiene los procesos dinamicos que se dan en ella, como los procesos de difusion de
informacion, que analizaremos en el Capitulo[d] Asi que las conclusiones que se obtengan aqui estaran
directamente vinculadas a la siguiente parte del anélisis y ayudaran a definir su planteamiento.

3.1 Descripcion del dataset

Partimos de un extenso conjunto de datos [26] recogido a lo largo de 19 dias, formado por 1438375
entradas que contienen en el cuerpo del mensaje alguna de estas palabras clave relacionadas con nuestro
caso de estudio. Entre ellos estan '#15M’, asi como otros hashtags relacionados con el movimiento:
#nolesvotes, #democraciarealya, #spanishrevolution, #acampadasol... Se contabiliza el namero de
interacciones, asi como su naturaleza (retweet, mencién-respuesta). En la Tabla y la Figura se
muestran los detalles por dia y el volumen total de actividad, asf como su divisién por categorias.

Mas de la mitad de los mensajes recogidos son retweets, lo que denota la importancia de los
procesos de difusion sobre el resto de interacciones. A pesar de que fue el dia 15 el de las primeras
manifestaciones, la actividad no explota hasta dos dias despues. Ese momento recoge el efecto de
la extensién del movimiento a gran parte del pais. Posteriormente decae de forma abrupta para
mantenerse en niveles bajos, similares a los iniciales. Como excepcion se encuentra el dia 27, en el que
se produjo el desalojo de Placa Catalunya, donde se encontraba la acampada de Barcelona.

3.2 Cohesion y conectividad

Construimos una red basada en la interaccion del modo siguiente: una menciéon dentro del texto
del mensaje se traduce en una pareja de nodos unida por un enlace dirigido, partiendo del autor y
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Figura 3.1: Actividad y tipologia de los datos.

| Dia ” Total tweets | Interacciones | % Retweets | % Menciones | % No interaccién

13 5770 4471 51,73 6,38 41,89
14 10598 8219 56,05 4,62 39,33
15 44555 40439 59,34 4,92 35,74
16 34036 27017 53,75 6,70 39,56
17 58635 43579 53,74 6,38 39,88
18 114254 87225 53,94 6,48 39,58
19 197847 155517 50,03 8,14 41,82
20 199317 163147 49,83 9,03 41,15
21 175828 138136 49,25 9,25 41,50
22 139067 101145 48,24 7,65 44,11
23 74710 57777 51,27 8,53 40,20
24 49969 40496 46,63 10,48 42,89
25 43107 33454 46,12 10,01 43,87
26 32859 28334 46,85 10,30 42,86
27 111396 100403 58,63 8,25 33,12
28 40846 35752 54,23 9,18 36,59
29 47351 40777 57,73 7,10 35,17
30 31230 28132 52,77 8,96 38,27
31 27000 20168 46,98 9,82 43,20

Table 3.1: Resumen del conjunto de datos.
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apuntando al usuario mencionado. El peso aumentara una unidad cada vez que se repita la interacci(’)rﬂ

Como primera medida de la cohesion de la actividad de la red, se extrae el componente gigante.
Casi la totalidad de enlaces (99.32%) y de los usuarios (95.27%) conforman el componente débilmente
conexo més grande, lo que demuestra la cohesion del proceso (Tabla .

Red global Componente gigante
Nodos 176480 Nodos 168137 (95.27%)
Enlaces 884977 Enlaces 879009 (99.32%)
Total interacciones | 1154188 | Total interacciones 1148122 (99.47%)
Grado medio 10.4559

Tabla 3.2: Resumen de la red global.

El anélisis a partir de este punto se realiza sobre las componentes gigantes, lo que resulta util por
dos razones:

1. Evita problemas a la hora de aplicar algoritmos. Por ejemplo, la distancia entre dos nodos de
distintos componentes conexos seria infinita, y esto afectaria al calculo de la distancia promedio.

2. Elimina ruido (mensajes que no pertenecen realmente al proceso). Por ejemplo, existen mensajes
que con "15M’ se refieran a otro asunto (15 millones, 15 minutos...), y por consiguiente, si en ellos
se da una interaccion dificilmente estard conectada a la componente gigante y seré descartada.

Con el fin de identificar distintas fases en el proceso, se divide la red final en 19 redes diarias (datos
detallados en el anexo . El tamano de la red diaria (Figura sigue un comportamiento muy
similar a la actividad total: comienza a crecer rapidamente a partir del dia 16, alcanzando sus valores
méximos en los dias 19, 20 y 21. El namero de participantes desciende hasta cerca de 10000 (dia 26)
para posteriormente mostrar otro pico de actividad el dia 27. A lo largo del tiempo considerado, el
componente gigante se mantiene siempre cerca del total.

Estudiamos ahora la conexién media de la red. En la Figura [3.3a] se muestra la evolucion del
grado medio y grado medio pesado, < k > y < k,, >. De forma promedio, se dan un minimo de 4
interacciones distintas por usuario. El maximo se alcanza el dia 15, momento en el que se materializan
las manifestaciones y las acampadas. A partir del dia 18 se aprecia otro aumento importante. Ademas,
si atendemos a la distancia entre grado y grado pesado, vemos que también desde el dia 18 aumenta
del 10% para situarse en torno al 20% (Figura. De estos datos interpretamos lo siguiente:

e El pico de conexiones el dia 15 es un sintoma de red muy conectada. Se interactué con una
media 6.5 usuarios (7 interacciones en total si contamos enlaces recurrentes). En ese momento el
sistema todavia no era muy grande (/ 11000 nodos, frente al maximo diario de casi 50000) pero
los que lo componian se conectaron de manera muy amplia.

e La siguiente fase de conectividad alta coincide con los momentos de mayor participaciéon, donde
la repeteciéon en las interacciones aumenta. Estos datos sugieren que la red se ha familiarizado
con las formas de comunicacion, puesto que difusiones y respuestas recurrentes son més comunes,
incluso en los momentos en los que < k > es bajo.

1 Nétese que un mensaje con varias menciones implica varias parejas de enlaces, mientras que uno sin menciones no
se representa.
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Figura 3.2: Tamano de la red.

3.3 Mundo pequeno

Vamos a evaluar en qué medida nuestro sistema presenta caracteristicas de mundo pequeno. Se calcula
el indice o para las redes diarias (detalles en anexo . La condicién de mundo pequeno, o > 1, se
cumple con creces en todos los casos (Figura. El valor de o crece con el tamano de las redes, debido
a que, al generar grafos aleatorios equivalentes, el clustering C4ndom cae mucho mas rapidamente que
sus correspondientes valores reales C. Los niveles de interacciéon local estructurada se conservan, a
pesar del aumento del tamano de red. Al mismo tiempo, los valores de L se mantienen por debajo de
sus homologos aleatorios, un indicador de la eficiencia en la transmision de la informacioén.

20/05
22/05 +

Se observan comportamientos interesantes:

e Del dia 16 al 17 se produce un incremento notable del indice de mundo pequeno, cuadruplicando

Esto sucede antes de la explosion de actividad a partir del dia 18. Se
podria pensar que cuando la red se convierte en un “mundo muy pequeno” se dan las condiciones

su valor (Figura [3.3).

necesarias para momentos de gran actividad.

23/05 -

’ Dia H e ‘ m/ni,1 ‘ g; ‘ 0’2'/0'7;71 ‘
16/05 9861 0.889 419.5724 1.042
17/05 || 18723 1.898 1659.4422 3.955
18/05 || 33721 1.801 2282.0021 1.375

Tabla 3.3: Incremento del indice o de mundo pequeno.

e El valor de o no vuelve a los bajos valores de los 4 primeros dias, a pesar de que el tamano si
lo haga. Cuando la red alcanza su madurez es més dificil que pierda las buenas propiedades de
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Figura 3.4: Indice o de mundo pequefo. Los puntos se representan con tamafo proporcional al ntimero
de nodos de su red.

3.4 Distribucién de grados

Para obtener més detalles de la interaccion, se estudia la distribucién de grados entrantes y salientes
de cada grafo diario. Como sucede habitualmente en sistemas de este tipo, las distribuciones parecen
responder a leyes de potencia, presumiblemente alcanzadas a través de conexion preferencial. Como
comprobacion, se realiza un ajuste para cada serie de datos utilizando el método descrito en[2.2.3.2]y se
comentan los resultados basandonos en los exponentes de las distribuciones power-law que se obtienen

(Figura [3.5):

e Todos los exponentes (de entrada y salida, con y sin pesos) recaen dentro del rango tipico de las
redes libres de escala reales:
a € [2,3]

e A partir del dia 15, los exponentes de grados de salida son mayores que para los grados de
entrada, para después estabilizarse ambos en torno a ciertos valores. La red experimenta un
periodo de transicion o aprendizaje en los primeros dias, pero normaliza su funcionamiento.

e La distribucion de los grados de salida es méas equitativa (o mayor), segin lo explicado en la
seccion[2.2.3.11 La razon de esta diferencia radica en la distinta naturaleza de los enlaces salientes
y entrantes. Los salientes se hacen de forma intencionada, y estan en cierto modo restringidos
por la dedicacién que un usuario puede dedicar a su actividad. En cambio, la entrada no supone
ningun esfuerzo para el receptor. Por ello, el grado entrante estd menos limitado y presenta una
distribucién mas desigual.

Se muestra un ejemplo en la Figura[3.6] Para el mismo dia, se ve como la pendiente de la recta es mas
elevada la distribucién del grado de salida, oy, < aoue, lo que denota menos desigualdad.
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3.5 Deteccion de comunidades

Se aplica el método descrito en [2:2.4] para detectar si en la red interactiva se forman comunidades de
usuarios. El resultado es una divisién en 95 comunidades, con un valor de modularidad @ = 0.361745,
que cumple la condicion de validacion tipica @ > 0.3 [24]. La red resultante se puede ver en la Figura
[B7 en la que el tamanio de un nodo es proporcional al nimero de miembros de la comunidad, y su
nombre pertenece al nodo de mayor grado.

A simple vista, se percibe una gran diferencia entre el tamafio relativo de cada comunidad. Rep-
resentamos la proporcion de nodos acumulada en funcién del nimero de comunidades, empezando por
las de mayor tamario (Figura . Los 13 grupos méas numerosos ocupan méas del 84% del tamaino
total de la red E| . Esto nos lleva a formular dos preguntas:

e ;Se mantiene el protagonismo de las comunidades grandes a lo largo del proceso? Para responder
a esto, se visualiza la proporcién de interacciéon que llevan a cabo las comunidades en el apartado

B.5T

e Nos preguntamos como es el papel que juegan estas grandes comunidades, a pesar de su evidente
superioridad en tamano. Analizamos su forma de interactuar en el apartado [3.5.2

3.5.1 Volumen de interacciéon por comunidades

Queremos evaluar el protagonismo de las comunidades en cada momento. Para ello, representamos la
proporcion de la interaccion total para las 13 mayores comunidades en un stream graph (Figura[3.9) .
Debajo, la evolucion de dos indices que ayudan a explicar la primera grafica:

e La diversidad de la interaccion entre los grupos considerados, mediante el indice J definido
en 2.3:2] De esta forma, tenemos un valor que mide de forma global si la aportaciéon de las
comunidades consideradas es més o menos equitativa. Cuando la diversidad es maxima, J,,q: =

1.
e La variacion media de la actividad de las N = 13 comunidades consideradas:

Vst — Vi t—
V;S:Zl‘ z,tN 7,t 1|

siendo v; ; la proporcion de actividad de la comunidad ¢ en el dia ¢.
Los resultados muestran las siguientes caracteristicas:

e En los dos primeros dias (en los que el nimero de usuarios todavia es reducido), gran parte del
volumen de la actividad recae en dos comunidades, cuyos nodos representativos provienen de
procesos previos afines al 15Mﬂ De ahi que el dia 15 se produzca un pico en la variacién del
volumen de actividad, puesto que una de las comunidades reduce drasticamente su peso y la otra
lo incrementa.

e Posteriormente, el peso de cada grupo comienza a estabilizarse (la variacién disminuye) y a
repartirse de forma maés equitativa (valores de J altos, proximos a Jyaz = 1).

e Destacan otros dos picos en la variacion:

— Dia 17 y 18, cuando la comunidad més grande se consolidaﬁ y empieza a generar actividad.

2Los datos detallados se encuentran en el Anexo (Tabla .
3Los usuarios @democraciareal y @bufetalmeida fueron muy activos en la campafia NoLesVotes, mencionada en
4La cuenta @acampadasol nace el dia 16 alrededor de las 4:00.
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— Dia 27: la comunidad centrada en ’acampadabcn’ eleva su volumen de actividad nota-

blemente. Corresponde con el dia en el que fue desalojada la acampada de la ciudad de
Barcelona.

3.5.2 El rol de las comunidades

Tras lo obtenido en el apartado anterior, pensamos en el papel que ha jugado cada comunidad en cada
momento. Por ello, se proponen dos medidas:

e La relacién entre el ntumero de interacciones intra-comunidad e inter-comunidad:
M = mintra/minter

— M > 1 indica una presencia predominante de contactos dentro del grupo, mostrando un
caracter mas cerrado.

— M < 1 caracteriza grupos de mayor apertura al resto de la red, no tan centrados en la
actividad interna.

e La relacion entre enlaces entrantes y salientes:

KIO = kw,in/kw,out

— Kjo > 1: la comunidad recibe mas enlaces que los que salen de ella. En cierto modo, juega
un papel de “referencia” mayor cuanto mas se aleje de 1.

— Ko < 1: implica un rol mas participativo. Sus usuarios realizan més contactos hacia otras
comunidades que los que reciben.

Calculamos el indice M para el total de la actividad por dias (Figura. La actividad intracomunit-
aria destaca sobre la intercomunitaria (M 1) en la primera etapa. Los usuarios son pocos y su interac-
cion esta mas localizada dentro de sus comunidades. Posteriormente (dias 16, 17 y 18), se detecta un
periodo de apertura (M ) que coincide con incremento subito de participantes. M permanece en el
intervalo [0.9, 1] hasta el final del proceso. A la vista de estos resultados, no se puede decir que haya
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Figura 3.11: Evolucion de Kjo y M en 3 comunidades.

momentos de actividad aislada por comunidades de forma generalizada. En gran parte del proceso,
en concreto desde que alcanza cotas importantes de popularidad (dia 18), las conexiones entre grupos
superan las internas.

Para definir mejor el comportamiento de las redes, se ilustra la evolucién de estas medidas en
tres comunidades con diversas caracteristicas (Figura . Los momentos en los que las conexiones
entrantes superan a las salientes (K;o > 1) se dan en puntos distintos para los tres ejemplos. Lo mismo
sucede para Kjo < 1. Se puede decir que el papel de las grandes comunidades no es constante, sino
que hay momentos en los que son una referencia en el proceso y en otros experimentan una apertura
mayor en sus interacciones. El indice M indica que estos grupos de interacciéon no son especialmente
cerrados, sino que la actividad intra e inter-comunidad es bastante equilibrada. En el anexo [B] se
muestran datos sobre el tamano, los grados y los ratios comentados que describen la actividad de las
comunidades mas grandes (n; > 2000).

3.6 Conclusiones

En términos generales, la estructura de la red presenta buenas propiedades en términos de conectividad,
dando lugar a un proceso cohesionado en todo momento. La cercania promedio entre los individuos
es alta, algo importante tratandose de un sistema de este tamano. Al mismo tiempo, el agrupamiento
local y la estructura en comunidades identifica interaccion a distintos niveles.

Encontramos ciertos aspectos relevantes que preceden la explosion de la actividad, como un aumento
importante de la conectividad media y incremento destacado de propiedades de mundo pequefio. A
pesar de identificar comunidades con un tamano relativo muy grande, el papel que juegan no es fijo.
El protagonismo se sucede a lo largo del proceso, y los distintos grupos pasan tanto por fases mas
participativas y abiertas como por otras en las que su actividad atrae una mayor actividad y son
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consideradas una referencia.

La informacion obtenida de esta descripcién topologica es interesante. Los resultados de todos
los apartados muestran un periodo inicial de ajuste, en el que el proceso de comunicaciéon va ad-
quiriendo mayor protagonismo, aumentando el nimero de participantes, y ve como sus propiedades
varian sustancialmente hasta que comienzan a ser mas o menos estables. Esta estabilidad se mantiene
independientemente de que el nimero de participantes se reduzca. Los usuarios de nueva incorporacién
se familiarizan con el proceso, presumiblemente porque se identifican con el movimiento, con cuentas
colectivas, etc. y, en definitiva, porque comparten intereses comunes en la red y en el espacio fisico.
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Capitulo 4

Mecanismos de difusion

Una vez descrita la topologia de una red, queremos centrar nuestra atencién en los procesos que tienen
lugar en ella. La propagacion (también denominada difusion, transmision, contagio) fue uno de los
motivos originales por los que se empezd a estudiar las redes. La naturaleza del sistema especifica el
tipo de propagacién: transmision de enfermedades, virus informaéticos, rumores, etc. Constituye una
extensa linea de investigacion dentro de las redes complejas [27), [28].

En el presente capitulo se analizan aspectos de la difusion de informacion. Con lo estudiado hasta
ahora e inspirandonos en otros trabajos, formulamos una hipotesis sobre el caracter evolutivo de estos
mecanismos en nuestro caso de estudio. Tenemos como punto de partida el nimero de difusiones que
se dan en el sistema real. Haremos uso de unos modelos que nos ayuden a entender porqué se alcanzan
esos niveles de difusion y de qué forma se comporta este proceso.

4.1 Hipébtesis: la difusién como proceso evolutivo

Un sistema puede experimentar procesos de contagio simultdneos que establezcan relaciones entre
si, determinadas por el medio en el que se encuentran. En este caso es importante estudiar las
implicaciones que esto conlleva, y no tratar las propagaciones de manera independiente [29]. El origen
de estas relaciones proviene a menudo de la presencia de recursos limitados en el medio, necesarios
para que la propagacion tenga éxito [30].

Las caracteristicas descritas son similares a las percibidas en un ecosistema: un medio donde
las especies persiguen la supervivencia a través de la reproduccién. De ahi que la analogia con el
ecosistema y el concepto de evolucion darwiniana haya sido util para entender el fenémeno de difusion.
En concreto, fue propuesta como idea central del estudio de la transferencia de informacién cultural,
en la denominada teoria memética [31].

Afnadimos como ejemplo un estudio de la evolucion de la tecnologia a través de sus patentes [32].
En él, si una patente aparece como referencia en otra posterior se interpreta como una reproduccién
de la primera, ya que transmite parte de su naturaleza a un “descendiente”. Una especie (patente)
tiene mayor probabilidad de reproducirse cuanto mejor se adapte al medio. Esta capacidad de ad-
aptacion, denominada fitness, puede depender de multitutd de factores. Para las patentes, resulto
ser muy importante para su prevalencia el hecho de abrir nuevos caminos tecnolégicos (door-opening
innovations).

Nuestro caso de estudio encaja dentro de estas caracteristicas: en un ecosistema (una red social)
conviven especies (mensajes) que si son capaces de adquirir recursos del medio (la atencion de los
usuarios y su voluntad de difundir ese contenido) se reproduciran. Por ello vemos adecuado formular
la hipotesis de que la difusion de la informacion sigue un proceso evolutivo. Pensamos que:
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e Los mensajes que van entrando en el proceso pueden propagarse simultaneamente y su capacidad
de hacerlo se veréa afectada por el resto de actividad.

e Existen recursos limitados en el medio. El tiempo y las caracteristicas de cada usuario limitan
la cantidad de informacion que pueden recibir y, mas atn, qué parte de esta estan dispuestos a
difundir.

e Del mismo modo que las innovaciones tecnolégicas, la aparicién de mensajes innovadores, nuevos
usuarios también puede implicar la apertura de nuevos nichos de interacciéon que atraigan la
atencion de la red.

e Hay ciertos indicios hallados en el capitulo 3 que encajan con este modelo. Por ejemplo, hemos
visto en la seccion [3.5] como puede haber distintas relaciones entre comunidades. Hay momentos
en los que un grupo grande recibe mucha atencién del exterior y otros en los que predominan
enlaces salientes que salen de él. Pensamos que esto se puede percibir en la difusién: los usuarios
que dediquen su atencién a contenidos generados en su circulo pueden desviarla con facilidad a
otros contenidos, internos o externos.

e A pesar de haber obtenido redes libres de escala (apartado , creemos que la conexion prefer-
encial no es capaz de reproducir fielmente la naturaleza del proceso. Es cierto que puede jugar
un papel relevante, pues un mensaje de amplio alcance multiplica sus posibilidades de repeticion.
Pero pensamos que la popularidad se vera continuamente influida por la apariciéon de nuevos
individuos en el sistema.

La idea principal de este capitulo es construir un modelo con las caracteristicas de un proceso evolutivo
que nos ayude a confirmar esta hipétesis. Usaremos a modo de comparacion otros dos modelos, cada
uno con un objetivo distinto. Para ello, se analizaran las poblaciones reales y simuladas a través de
las medidas propuestas en [2.3]

4.2 Modelos

Proponemos una serie de modelos que simulen procesos de propagacién equivalentes a los reales. De
acuerdo con la hipdtesis evolutiva, el escenario se compone de una serie de especies que compiten por
reproducirse y que, en caso de tener éxito, incrementan su poblacion.

En consecuencia, trataremos cada tweet original ¢ como una especie susceptible de reproducirse
a través de la difusion (retweet). Esas difusiones implican un aumento en su poblacion asociada, n;,
cada vez que otro usuario difunda ese mensaje. En conjunto, habra R especies y la cantidad total de
individuos sera .

Especies i=1,2..R
Poblaciones n=(ny,na...NR)
R
Poblacién total N=>n;
i=1

Tabla 4.1: Definicién basica del sistema.
4.2.1 Caracteristicas comunes: modelos sombra

La actividad en Twitter esta fuertemente influida por las dindmicas propias de esta red social. Se
ha demostrado que sigue ciertos patrones temporales de uso en funciéon del momento del dia [33].
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Por otro lado, esta la innegable influencia de factores externos. Se han realizado modelos dedicados
exclusivamente a estudiar como repercute el exterior en la actividad interna de la red social [34].

El caso estudiado aqui esta afectado por ambos factores. Mientras el primero es omnipresente en
esta red social, la influencia externa es particular de cada proceso. Sirva como ejemplo el pico de
actividad detectado en el capitulo [} cuyo origen se localiza en un evento producido fuera de la propia
red de comunicacionl]

Modelar estas influencias se escapa de nuestro objetivo. Necesitamos que los modelos no determinen
por si mismos los tiempos en los que nacen y se reproducen las especies, sino que lo hagan a modo
de reflejo del caso real. Asi, un periodo de alta actividad real, sea cual sea su origen, implicara alta
actividad también en las simulaciones.

Planteamos un tipo de modelo que incorpore los datos temporales de la realidad. Se aplica un
sistema de difusion “sombra” [32] que, por construccion, presenta las siguientes caracteristicas de los
sistemas reales:

. . . . n . .

e El momento del nacimiento real de una especie i, tg )7 corresponde con un nacimiento de otra
especie j en el modelo. Hay un nacimiento sombra en el modelo por cada uno real. De esta
forma, el nimero de mensajes R (t) disponibles para la difusion en los modelos es el mismo que

en la situacion real.

e La reproduccion real también implica una reproducciéon sombra. La unién de los tiempos de
difusién reales T; = [t;1,ti2,...,tin,] Vi marcan el tiempo de reproduccion en los modelos, de
modo que el tamano total N (¢) sea el mismo.

e Los modelos tomaran como input ambos conjuntos de datos temporales y la elecciéon de la especie
que se reproduce dependeré de las caracteristicas de cada uno.

Los resultados de las simulaciones de cada modelo con estas caracteristicas comunes nos servira para
comparar y decidir sobre la validez de éstos.

4.2.2 Modelo aleatorio

Utilizaremos en primer lugar un modelo que escoja aleatoriamente la especie que se va a reproducir.
El motivo de este modelo “nulo” es establecer un punto de partida para la comparacién con los datos
reales y evidenciar, llegado el caso, la distancia entre estos y un comportamiento aleatorio.

La probabilidad de que el mensaje ¢ se difunda es

4.2.3 Preferential attachment

En el apartado[3.4]se ha probado como estos sistemas muestran las caracteristicas de las redes libres de
escala. Como se explica en[2.2.3] uno de los mecanismos tipicos que proporcionan redes libres de escala
es la conexion preferencial (rich-gets-richer). Por tanto, se puede pensar que un comportamiento de
este estilo guie la transmision de la informaciéon. La presencia de comunidades grandes, cuyos usuarios
mas conectados generan mucha actividad en su entorno, es otra de las razones para pensar en este
mecanismo.

1E] incremento mencionado corresponde al dia 27 (Figura|3.2)), desencadenado por el desalojo de Plaza Catalunya la
manana de ese mismo dia.
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Utilizaremos un modelo determinado por la conexion preferencial que nos permita evaluar si es un
mecanismo vélido o no. La probabilidad de reproduccién de una especie es proporcional a su poblacion:

n;
Pi:N

con N = ). n; el nimero total de individuos.

4.2.4 Modelo evolutivo
Se propone un modelo simple de naturaleza evolutiva. Las caracteristicas principales son:

e Aparicion de una especie: en el momento en el que se reproduce por primera vez el mensaje i se
inicializa su poblacion, n; = 1, y se le asigna un valor de fitness f; aleatorio.

e Modificacion del entorno: la inclusion de una nueva especie supone la modificacion de dos especies
existentes. Se seleccionan dos poblaciones j, k # i y se altera aleatoriamente su fitness.

e Seleccion: la probabilidad de reproduccion es proporcional al fitness y a la poblacién:
pi X fini

e Muerte: se establece un nimero méaximo de inviduos que pueden coexistir. Si con un nuevo
nacimiento o reproduccién se alcanza ese limite, el ecosistema se satura y un individuo desaparece
por falta de recursosﬂ La probabilidad de muerte de la especie i es funcién de su poblacion y
del fitness:

Pmuerte,i X T (1 - fl)

4.3 Distribuciéon de poblaciones

En este apartado, queremos analizar si las poblaciones de las especies al final de cada dia se distribuyen
de manera similar en el caso real y en las simulaciones. De esta forma podemos tener las primeras
evidencias sobre lo adecuado de los modelos.

4.3.1 Poblaciones reales y simuladas

Al visualizar las poblaciones (mismo procedimiento que en se intuye una ley de potencias (ejemplo
en la Figura|4.1). Hay gran cantidad de especies que se reproducen muy poco, mientras que en la cola
se encuentran unas pocas especies que han logrado acumular un ntimero elevado de individuos.

En la tabla [£.2] se muestran los exponentes obtenidos en los ajustes a distribuciones power-law de
los datos reales, de una simulaciéon del preferential attachment y de una del evolutivo. El modelo
aleatorio queda descartado porque no se puede ajustar de forma correctaﬂ Lo importante de esta
seccién es comprobar que ambos modelos dan el tipo adecuado de distribucién, puesto que los tres
sistemas tienen ajustes validos en todo momento. Atun asi, el preferential attachment presenta con
frecuencia exponentes mas cercanos al real que el evolutivo.

Hay que recalcar que, a pesar de que incluimos una tnica realizacion de los modelos, se ha probado
previamente que éstos proporcionan valores con varianzas reducidas (Anexo. Decidimos, para mayor
claridad, considerar tinicamente una simulacién que tenga unos valores proximos a su media corres-
pondiente.

2E] efecto de la muerte tiene su efecto en n;, y por tanto afecta a la probabilidad de selecciéon y de muerte, pero no
se ve reflejado a la hora de contar las poblaciones.
3Se incluiran sus resultados igualmente en el anlisis mas exhaustivo de las poblaciones (apartado )
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Datos reales || Pref. attachment Evolutivo
Dia « Tomin « Tomin « Tmin

13/05 || 2.31 2 2.92 6 2.02 2
14/05 || 2.48 4 2.59 5 1.96 2
15/05 || 2.19 8 2.50 9 1.94 2
16/05 || 2.42 5 2.32 5 1.99 2
17/05 || 2.25 3 2.01 2 1.94 2
18/05 || 2.22 3 2.18 3 1.94 2
19/05 || 2.21 7 2.23 3 2.00 2
20/05 || 2.24 3 2.10 2 1.97 2
21/05 || 2.25 6 2.56 8 2.00 2
22/05 || 2.26 3 2.09 2 1.98 2
23/05 || 2.09 12 2.23 3 2.02 3
24/05 || 2.26 4 2.35 3 2.05 2
25/05 || 2.26 7 2.46 4 2.05 2
26/05 || 2.22 5 2.33 3 2.13 3
27/05 || 2.19 6 2.09 5 1.93 2
28/05 || 2.32 4 2.24 3 1.99 2
29/05 | 2.17 3 2.60 11 1.93 2
30/05 || 2.21 5 2.37 5 1.97 2
31/05 || 2.32 3 2.33 3 2.05 2

=x)

Pr(X >

Tabla 4.2: Ajustes power-law: poblaciones reales.

20/05/2011

10°

10-4 L

10°

10° 10? 10? 10°
X

Figura 4.1: Distribucién de poblaciones. Ejemplo: dia 20.
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Figura 4.2: Reproducciones top20 RT (dia 20)

4.3.2 Top 20

Nos centramos en el comportamiento de los 20 mensajes con mas reproducciones, agrupado por horas.
Esta actividad se puede visualizar en forma de stream graph (Figura . Se puede ver cémo crecen
durante periodos de tiempo relativamente cortos, tras los cuales empiezan a disminuir el ratio de
reproduccién y son otros individuos los que se abren camino.

Se intuye que las aparaciones de nuevas especies influyen en el desarrollo de las demas. En este
sentido, el modelo evolutivo podria ser una eleccion mas acertada que el preferential attachment, ya
que incluye la modificacion del entorno. Esta caracteristica tiene el potencial de modelar la generacion
de nuevos contenidos que atraigan sibitamente la atenciéon de los usuarios.

4.4 Andlisis de la diversidad

En el apartado anterior no se llega a ninguna conclusion sobre los modelos. Es necesario profundizar
mas en la descripcién de las poblaciones para validar de forma clara un modelo u otro. Para ello
se hace uso de las medidas de diversidad presentadas en [2.3] Los sistemas se caracterizan mediante
unos indices que reflejan el nimero de especies y, al mismo tiempo, si el reparto de las poblaciones
es equitativo. Para facilitar el analisis, se utilizan las versiones normalizadas por el valor méximo de
ambos indices. De esta forma, se pueden comparar las diversidades de sistemas con tamano distinto
(los diferentes dias considerados) y las diferencias entre las dos medidas empleadas.

Utilizaremos la distancia entre los indices del sistema real y los simulados para validar o rechazar
los modelos. Se calcula de tres formas distintas:

e Comparando los indices cada jornada. Al final de cada dia se tiene una distribuciéon de poblaciones
con toda la actividad acumulada en ese periodo. Se estudia en el apartado {£.4.1]

e Dentro de cada dia, la diversidad va evolucionando hasta que llega a los valores finales, que son
los calculados en el punto anterior. Asi se puede identificar el comportamiento de los modelos
de una forma mas precisa (apartado [4.4.2)).
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e Por 1ltimo, establecemos una ventana temporal que va recogiendo las poblaciones acumuladas
dentro de su dominio. Poco a poco, se va desplazando la ventana, produciendo una senal por
indice. Analizaremos la correlacion de estas senales correspondientes al sistema real y a las

simulaciones (apartado [4.4.3).

4.4.1 Diversidad total por dia

El primer paso consiste en calcular los indices de diversidad totales para cada dia en sistema real y
simulaciones. Se representa la evolucion de cada indice por separado (Figura . Se aprecian las
distintas formas de evaluar la diversidad segin el indice: mientras el valor méas alto del indice D
ronda el 10% de su valor méaximo (alcanzado por el modelo aleatorio), el indice J alcanza el 96%. La
mayor ponderacién que otorga el indice de Simpson D a las especies mas numerosas tiene un efecto
especialmente importante en distribuciones de ley de potencias. Mientras, el indice J incorpora las
contribuciones de muchas especies de poblaciones muy pequenas, dando lugar a diversidades mucho
mas altas. En cualquier caso, comentamos los resultados centrandonos en el comportamiento de los
modelos:

e El modelo aleatorio se mantiene alejado siempre de los valores objetivo, especialmente en el indice
J, donde alcanza valores muy proximos a la diversidad maxima. Apenas se aprecian cambios
relevantes cuando la variaciéon de la diversidad real es mayor.

e El modelo de preferential attachment presenta diversidades mas cercanas a las reales. Segun el
indice D, tiene la diversidad mas cercana a la real en dos ocasiones (dias 16/05 y 21/05). El
indice J coincide con el primero de los resultados, y ademaés lo sitia como més cercano en una
tercera ocasion, el dia 14,/05.

e En la mayoria de casos, es el evolutivo el que mejor reproduce las condiciones de diversidad
diaria.

Las medidas comparadas aqui no nos indican si los modelos se comportan de forma similar al sistema
real. Para determinarlo, investigamos lo que sucede dentro de cada periodo en el que dividimos el
proceso global.

4.4.2 FEvoluciéon de la diversidad acumulada

Queremos explorar la evolucién que sufre la diversidad dentro de cada dia y qué tipo de respuesta
ofrecen los modelos. En primer lugar, medimos la diversidad total cada hora, teniendo en cuenta toda
la actividad anterior. En la Tabla[B.5] del Anexo se muestran los errores cuadréticos medios obtenidos
entre la diversidad real y los tres modelos.

Observamos un ejemplo en la Figura [f.4 El indice D expone comportamientos similares en la
forma al real para los tres modelos, aunque el aleatorio aparece claramente distanciado. El preferential
attachment se acerca cada vez mas al real, mientras que el evolutivo apenas comete errores.

El indice J resulta ser mas exigente, pues muestra diferencias de mayor tamafno. El modelo evolutivo
responde bien a las variaciones experimentadas por el sistema real, a lo que la conexién preferencial
solo reacciona de forma leve.

4.4.3 Diversidad: ventana movil

El indice J ha resultado ser el més ttil a la hora de resaltar la precisiéon de los modelos. Por ello,
estudiamos qué sucede cuando calculamos este indice a las poblaciones obtenidas dentro de una ventana
movil de longitud fija (3 horas), desplazandola cada 300 segundos. En la Figuravemos dos ejemplos,
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Figura 4.5: J en ventana de 3 horas.

que contienen una ejecucion del modelo aleatorio y del preferential attachment y dos del evolutivo. En
el primero de ellos, el resultado obtenido en el apartado nos decia que el preferential attachment
tenia una diversidad més cercana a la real. Se aprecia coémo el modelo evolutivo es capaz de reaccionar
del mismo modo que los datos reales en ambos casos, aunque en el primero se mantiene distanciado
del real. La conexion preferencial, por el contrario, no reproduce ni siquiera el cambio que se produce
en z = [150,200].

Para obtener una medida de la proximidad entre modelo y datos reales calculamos la correlacion
entre las senales. Obtendremos un coeficiente de correlacion para cada par de sefiales real-simulacion y
un conjunto de estos valores para cada uno de los 19 dfas. En la Figura [£.6] vemos como la correlacion
con los modelos evolutivos es mas fuerte y menos variable que para el preferential attachment, y como
el modelo aleatorio presenta de forma promedio una correlacion casi nula.

4.5 Conclusiones

A pesar de que el modelo evolutivo y la conexiéon preferencial dan distribuciones de poblaciones hasta
cierto punto similares a las reales, el analisis méas exhaustivo a través de la diversidad muestra difer-
encias relevantes entre uno y otro. El modelo evolutivo es capaz de reaccionar a cambios tanto en las
diversidades acumuladas como en el intervalo movil, y proporciona al final de los periodos considerados
valores més cercanos a los reales.

En este capitulo mostramos como la hipétesis evolutiva del comportamiento en los fenémenos de
propagacion es acertada. Las distintas unidades de informacion (tweets) entran en un escenario que
se ve continuamente afectado por la aparicién de nuevos contenidos. Su capacidad para reproducirse
dependera en cada momento del ntiimero de recursos disponibles en el medio.
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Capitulo 5

Conclusiones

Hemos presentado un anélisis de un proceso de comunicacién a gran escala asociado con un movimiento
social. El estudio de la interaccién se afronta con la teoria de grafos como herramienta principal, y revela
a través de la topologia propiedades a las que seria complicado acceder por otro camino. Los resultados
muestran como la participacion sigue una cierta estructura a distintos niveles y presenta caracteristicas
tipicas de las redes complejas. A pesar del tamano del sistema, las capacidades estructurales de las
redes en lo que respecta a eficiencia son buenas. También es interesante como, a pesar de intuir un
cierto nivel de jerarquia en las comunidades, el papel que juegan cambia constantemente. Es un proceso
abierto que permite el cambio de protagonismo y de nucleos de generaciéon de contenidos.

Por otro lado, hemos logrado identificar la forma en que se transmite la informaciéon. El anélisis
de la propagacion presenta indicios evidentes de comportamiento evolutivo, tal y como sugeria nuestra
hipétesis. La atencion de los usuarios que toman parte en el proceso es limitada y cambiante, y eso
se traduce en un ecosistema que ofrece oportunidades de desarrollo a individuos nuevos. Por ello, el
crecimiento total esta restringido y su extension en el tiempo es bastante reducida.

El caso de estudio proviene de un proceso complejo, que consta de muchas capas de interaccion.
Mediante el analisis realizado en una de ellas, y en concreto, de su estructura y de los procesos
dinamicos que sustenta, obtenemos una vision completa del sistema y aplicable a lo que sucede en las
demaés capas. Se perciben constantes relaciones entre los hechos acontecidos y los datos observados,
algo que favorece una aplicacion directa del estudio.

El trabajo abre algunas lineas de investigacion futuras que permitirian profundizar en este u otro
proceso de comunicacién. Entre ellas, las més interesantes se derivan del estudio de la transmisién de
informacion. Es posible crear modelos que incluyan aspectos no recogidos aqui y que reflejen de una
manera més eficiente y completa el comportamiento real. Se puede pensar en asignar el fitness de una
manera mas precisa teniendo en cuenta qué posicion tiene en la red el nodo emisor o qué caracteristicas
tiene la informacion que genera. También es atractiva la idea de probar estos modelos sobre redes con
estructuras conocidas y estudiar su relaciéon con las redes reales.
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Anexo A

Software

Este es el listado de todos los paquetes de Python que se han utilizado en el trabajo.

networkx: creado para la generacion, manipulacion y el estudio de redes complejas. Se ha
utilizado en primer lugar para generar los grafos a partir de la base de datos. Posteriormente,
para el calculo de propiedades topologicas y para la generaciéon de grafos aleatorios con los que
comparar los reales.

https://networkx.github.io/

community: es un moédulo basado en NetworkX utilizado para la deteccién de comunidades. Usa
el método de Louvain [25].

http://perso.crans.org/aynaud/communities,/

powerlaw: un paquete de herramientas estadisticas para el manejo de distribuciones de ley de
potencias con modelos de ajuste, tests de bondad de ajuste, visualizacién y validacion.

https://pypi.python.org/pypi/powerlaw

numpy: paquete fundamental para la computacion cientifica en Python.

http://www.numpy.org/

matplotlib.pyplot: herramientas para la respresentacion de graficas al estilo de Matlab.

http://matplotlib.org/api/pyplot _api.html

collections: un paquete de ayuda para el manejo de diccionarios de Python.

https://docs.python.org/2/library /collections.html#module-collections

stacked graph: librerfa para realizar stream plots

http://code.activestate.com /recipes/576633-stacked-graphs-using-matplotlib/
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Anexo B

Tablas de datos

B.1 Anailisis de la topologia

En esta seccién se recogen los datos de todas las medidas realizadas en el Capitulo

e En la Tabla se recogen, por dias, los datos relativos al nihero de nodos de la red global y
cuantos de ellos pertenecen al componente gigante.

e La Tabla recoge las propiedades de mundo pequeno de cada sistema. Los valores Crqndom ¥
Ly andom son valores medios de C'y L que presentan 100 redes aleatorias equivalentes al sistema
real.

e En la Tabla[B.3]se listan los datos del ajuste a modelos de ley de potencias para las distribuciones
de grado. Se incluyen los valores de los exponentes y el valor de x minimo desde el cual se realiza
el mejor ajuste posible.

e Por ultimo, la Tabla [B.4] incluye los indices que describen de forma general la interaccion de las
20 comunidades mas grandes.

’ Dia ‘ Nodos ‘ Nodos en CG ‘ % Conexion H Dia ‘ Nodos ‘ Nodos en CG ‘ % Conexion ‘
13/05/11 | 2071 1377 0.664896 23/05/11 | 25796 22900 0.887735
14/05/11 | 3356 2797 0.833433 24/05/11 | 17506 15037 0.858963
15/05/11 | 11970 11095 0.926901 25/05/11 | 14911 12765 0.856079
16/05/11 | 11055 9861 0.891995 26/05/11 | 12604 10649 0.844891
17/05/11 | 20430 18723 0.916446 27/05/11 | 35480 33159 0.934583
18/05/11 | 36546 33721 0.922700 28/05/11 | 16467 14400 0.874476
19/05/11 | 52427 49216 0.938753 29/05/11 | 15697 14220 0.905906
20/05/11 | 52230 48898 0.936205 30/05/11 | 12959 11024 0.850683
21/05/11 | 51015 47239 0.925983 31/05/11 | 10098 8260 0.817984
22/05/11 | 40493 36155 0.892870

Tabla B.1: Tamano del componente gigante
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Dia [ o C Crandom | C/Crandom | L Lrandom | L/Lrandom
13/05/11 | 207.8947 0.2178 | 2.05E-03 | 106.0873 4.3883 | 8.5995 0.5103
14/05/11 | 239.3949 0.1681 | 1.44E-03 | 116.7638 4.3771 | 8.9741 0.4877
15/05/11 | 402.4974 0.1796 | 6.52E-04 | 275.7004 5.4313 | 7.9292 0.6850
16/05/11 | 419.5724 0.1640 | 6.54E-04 | 250.8019 6.0424 | 10.1085 | 0.5978
17/05/11 | 1659.4422 | 0.1309 | 1.32E-04 | 989.1556 7.4841 | 12.5556 | 0.5961
18/05/11 | 2282.0021 | 0.1441 | 1.01E-04 | 1420.0197 7.4216 | 11.9267 | 0.6223
19/05/11 | 2519.5050 | 0.1585 | 9.26E-05 | 1712.8660 7.1730 | 10.5509 | 0.6798
20/05/11 | 2301.0859 | 0.1918 | 1.31E-04 | 1469.5587 6.5325 | 10.2335 | 0.6386
21/05/11 | 2834.2016 | 0.1618 | 9.08E-05 | 1783.1936 7.2824 | 11.5747 | 0.6292
22/05/11 | 1524.9384 | 0.1571 | 1.59E-04 | 987.3332 7.7467 | 11.9649 | 0.6475
23/05/11 | 1686.3554 | 0.1641 | 1.45E-04 | 1134.6066 8.7866 | 13.0595 | 0.6728
24/05/11 | 855.516 0.1946 | 3.82E-04 | 509.3862 7.1035 | 11.9304 | 0.5954
25/05/11 | 1624.0139 | 0.1895 | 1.92E-04 | 987.4066 7.4247 | 12.2117 | 0.6080
26/05/11 | 988.1884 0.2141 | 3.63E-04 | 590.5037 6.9816 | 11.6834 | 0.5976
27/05/11 | 1966.8862 | 0.2056 | 1.75E-04 | 1177.3528 6.6388 | 11.0908 | 0.5986
28/05/11 | 1384.6093 | 0.1864 | 2.57TE-04 | 725.9667 6.5452 | 12.4835 | 0.5243
29/05/11 | 991.4701 0.1852 | 2.71E-04 | 682.4866 7.6394 | 11.0980 | 0.6884
30/05/11 | 651.8203 0.1941 | 3.69E-04 | 526.5096 9.4626 | 11.7147 | 0.8078
31/05/11 | 532.8078 0.1788 | 4.73E-04 | 377.7278 8.9240 | 12.5878 | 0.7089

Tabla B.2: Coeficientes de clustering y distancias promedio.

Grado entrada || Entrada (pesado) || Grado salida || Salida (pesado)
Dia o Tmin o Tmin o Tmin o Tmin
13 | 2.391 5 2.239 5 2.212 3 2.083 2
14 2.188 6 2.085 6 2.154 2 2.082 2
15 | 1.998 6 1.97 6 2.602 7 2.498 7
16 2.041 5 2.013 5 2.535 5 2.404 4
17 2.148 6 2.122 6 2.624 4 2.518 4
18 | 2.046 4 2.03 4 3.168 | 13 2.648 6
19 | 2.069 4 2.08 6 2.559 4 2.425 4
20 | 2.056 7 2.032 7 2817 | 10 2.64 12
21 | 2.063 5 2.038 5 2.896 | 11 2.545 7
22. | 2.109 4 2.071 4 2.825 8 2.569 8
23 | 2.141 4 2.128 5 2.748 5 2.709 9
24 | 2.105 4 2.013 3 2.845 5 2.555 5
25 | 2.161 4 2.134 5 2.721 4 2.455 4
26 | 2.087 3 2.081 4 2.948 7 2.776 10
27 2.112 9 2.082 10 2.61 4 2.387 4
28 | 2.162 8 2.137 9 2.934 6 2.48 3
29 | 2.128 6 2.025 4 2903 | 13 2.611 9
30 | 2.104 4 2.057 4 2.945 5 2.637 5
31 | 2.268 7 2.171 6 2.571 3 2.374 3

Tabla B.3: Exponentes de power-law
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Comunidades detectadas 95
Modularidad 0.361745

Comunidad ‘ n; ‘ kin ‘ kout ‘ kw,in kw,out Kio M
acampadasol 19674 | 56 51 109324 | 110616 | 0.9883 1.0077
bufetalmeida 18543 | 45 47 98376 93251 1.0550 0.9076
anon_ leakspin 14592 | 39 37 25185 25790 0.9765

iescolar 14069 | 38 39 63107 50448 0.7693
acampadabcn 12919 | 37 36 43073 50297 0.8564 | 0.9355
democraciareal 10173 | 36 41 54127 58994 0.9175 0.8421
elmundoes 9388 33 32 22132 22501 0.9836 1.0749
yoriento 8514 36 35 26783 29965 0.8938 0.9189
psoe 7888 33 36 27886 33251 0.8387 | 0.9547
twitpic 7866 35 31 17073 12413 0.8380
perezreverte 6571 32 31 17173 11379 0.7882
el pais 5935 31 32 13659 10876 0.9172
phumano 5752 31 32 27544 21824 0.7283
acampadavlc 3729 31 33 13789 20705 | 0.6660 | 0.9309
telesurtv 3366 31 30 3730 4900 0.7612
spanishrevolution | 3040 30 31 9839 11049 0.8905 0.8549
alex riveiro 2870 32 32 14621 16788 0.8709 | 0.7726
20m 2424 31 33 12660 12049 1.0507 | 0.7142
tedieris 2050 29 31 6976 10784 | 0.6469 | 0.8562

Tabla B.4: .
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B.2 Analisis de la difusiéon

Incluimos la tabla de errores cuadraticos medios obtenidos entre diversidades reales y las de los modelos.

Dia Random | Pref. Attach. | Evolutivo || Random | Pref. Attach. | Evolutivo
13/05 | 0.05841 | 0.02097 0.01177 0.03681 | 0.01508 0.00999
14/05 | 0.10534 | 0.045 0.04899 0.07048 | 0.03504 0.05
15/05 | 0.08648 | 0.03475 0.018 0.17402 | 0.13181 0.10368
16/05 | 0.05263 | 0.00586 0.02138 0.05642 | 0.00744 0.03905
17/05 | 0.06229 | 0.01467 0.00985 0.10429 | 0.05249 0.02028
18/05 | 0.08048 | 0.02759 0.01552 0.10045 | 0.04767 0.01966
19/05 | 0.08399 | 0.02042 0.0072 0.07558 | 0.02894 0.00694
20/05 | 0.09481 | 0.02804 0.0034 0.06257 | 0.02506 0.00614
21/05 | 0.08179 | 0.00207 0.0116 0.10073 | 0.03028 0.02763
22/05 | 0.11107 | 0.04964 0.01015 0.08088 | 0.04869 0.01617
23/05 | 0.11209 | 0.04959 0.01723 0.09013 | 0.05259 0.01429
24/05 | 0.1041 0.04113 0.00496 0.06229 | 0.02767 0.00548
25/05 | 0.10356 | 0.04172 0.01956 0.06516 | 0.03291 0.00641
26/05 | 0.10385 | 0.04218 0.01383 0.08462 | 0.0499 0.01458
27/05 | 0.06993 | 0.03441 0.01462 0.11399 | 0.05017 0.01585
28/05 | 0.09183 | 0.03988 0.01054 0.08573 | 0.04547 0.01241
29/05 | 0.06965 | 0.00518 0.00609 0.07784 | 0.02109 0.01091
30/05 | 0.07788 | 0.02368 0.01007 0.12411 | 0.06219 0.02997
31/05 | 0.11827 | 0.05112 0.03075 0.07151 | 0.03163 0.01372

Table B.5: Error cuadratico medio.

48



Anexo C

Variabilidad en los datos simulados

Realizamos una serie de simulaciones (50) para los tres modelos para comprobar la variabilidad de las
medidas que se utilizan en el analisis. Para mayor claridad, se muestra el estudio realizado en uno de
los dias.

C.1 Ajustes power-law

Recogemos en la Tabla los valores medios y la desviaciéon estandar de las variables obtenidas en
los ajustes para los tres modelos. Se incluyen el exponente de la ley de potencias «, el valor de T,
y el error estandar SE. Se puede ver cémo el exponente varia muy poco en los dos segundos casos
(Figura y como el ajuste es bastante preciso, dados los valores encontrados en el error. El valor de
Tmin confirma que el modelo evolutivo proporciona una distribucién de poblaciones power-law desde
un valor mas bajo de x. Eso quiere decir que la ley de potencias recoge las especies menos frecuentes
en mayor medida que el preferential attachment. Los ajustes del modelo aleatorio son bastante pobres
y presentan errores muy altos.

C.2 Diversidad

Procedemos de forma analoga con los indices de diversidad. Se muestra el comportamiento de las
diversidades al final de cada dia (apartado en la Figura y el resumen en la Tabla

Los indices son bastante consistentes y podemos permitirnos el hacer las comparaciones en el
apartado [£.4] con un caso tipico o con los valores medios.

« Tonin SE
I o In o m o
Modelo aleatorio 7.186 | 1.663 || 10.0 | 1.743 || 0.693 | 0.569
Preferential attachment | 2.298 | 0.071 || 4.18 | 1.244 || 0.043 | 0.011
Evolutivo 2.001 | 0.030 || 2.18 | 0.384 || 0.024 | 0.003

Tabla C.1: Variacién exponente «
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Figura C.1: Variacion del exponente a.
D J
1 o n o
Modelo aleatorio 0.0718 | 4E-4 0.971 | 3E-4
Preferential attachment | 0.0142 | 1.6E-3 || 0.902 | 2.2E-3
Evolutivo 0.0121 | 1.7E-3 || 0.883 | 4.3E-3
Tabla C.2: Variacién indices de diversidad.
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Figura C.2: Variacion de indices D y J de diversidad.
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