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RESUMEN 

Los consumidores son cada vez más conscientes de la importancia de la calidad de los 

alimentos que compran y de su relación con la salud, por lo que demandan más 

información tanto del valor nutricional como del sistema de producción en el que vive el 

animal. Obtener dicha información y garantizar los controles demandados sólo es 

posible con un sistema de trazabilidad de todo el proceso productivo.  

Este estudio se ha centrado en la relación de la presencia de determinados 

biomarcadores (carotenoides, retinol y tocoferoles) en los productos animales con el 

sistema de alimentación  (Pastoreo vs. Estabulado) y la inclusión de taninos 

condensados en el pienso (Con vs. Control). Se han utilizado 39 ovejas con sus corderos 

de raza Churra Tensina, distribuidos en 4 lotes equilibrados según el peso de la oveja y 

del cordero al parto, la condición corporal y el sexo del cordero. Las ovejas y corderos 

del tratamiento Pastoreo pastaron en praderas mientras que las ovejas y sus corderos del 

tratamiento Estabulado fueron alimentados con heno de pradera, todas ellas ad libitum. 

Dentro de cada tipo de forraje, a la mitad de las ovejas se les ofrecía 300 g de pienso 

comercial (Control) y a la otra mitad 300 g de pienso con taninos condensados (TC) 

(inclusión de 10 % de quebracho con un 75 % de TC). El ensayo se inició tras el parto y 

se prolongó hasta que los corderos alcanzaron el peso vivo de 10-12 kg. Semanalmente 

se tomaron muestras de alimentos y de leche y quincenalmente de la sangre de las 

ovejas y corderos para determinar las concentraciones de los biomarcadores a estudiar. 

Semanalmente, cuando los corderos alcanzaban el peso de sacrificio, se sacrificaban. 

Tras el faenado, las canales se mantuvieron a 4 ºC durante 24 h. Se tomaron muestras 

del músculo Longissimus thoracis y del Semitendinosus, que se congelaron, liofilizaron 

y picaron para la extracción del carotenoides y retinol y tocoferoles, determinándose por 

cromatografía líquida con HPLC. 

La concentración de carotenoides y tocoferoles fueron mayores en el pasto que en el 

heno y el pienso (P < 0,05). La concentración de retinol y α-tocoferol en el plasma de 

las ovejas durante la lactación estuvo afectada por la interacción entre el forraje recibido 

por la oveja y la fase de la lactación (P < 0,05). La concentración de retinol en las 

ovejas del lote Estabulado no se modificó durante la lactación mientras que en las 

ovejas del lote Pastoreo se incrementó al final de ésta. En relación al α-tocoferol, la 

concentración se modificó a partir de la segunda mitad de la lactación en las ovejas del 
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tratamiento Estabulado mientras que en las ovejas en pastoreo se incrementó a medida 

que avanzaba la lactación. De media, el tratamiento Estabulado presentó menor 

concentración de retinol (12,76 vs. 15,54 µg/ml, respectivamente) y α-tocoferol que el 

tratamiento Pastoreo (0,68 vs. 1,11 µg/ ml). La inclusión de taninos condensados no 

tuvo efecto sobre la concentración de vitaminas en el plasma de la oveja.  

La leche de las ovejas del tratamiento Pastoreo presentó mayor concentración de retinol 

y de α-tocoferol que la leche de las ovejas del tratamiento Estabulado. Además, la 

concentración de retinol y de α-tocoferol fue máxima al inicio de la lactación. En cuanto 

a la inclusión de taninos condensados en el pienso de la oveja, sólo se observó que 

incrementaban la concentración de retinol y α-tocoferol en la leche al inicio de la 

lactación (P< 0,05). 

Al igual que en el plasma de las ovejas, también se observaron diferencias en los 

contenidos de retinol y α-tocoferol en el plasma de los corderos según el tipo de forraje 

ingerido por la oveja, presentando los del tratamiento Pastoreo mayor concentración de 

retinol y α-tocoferol que los del lote Estabulado (P< 0,05). Ello indica que la 

alimentación de la madre durante la lactancia tiene efecto sobre la composición de 

retinol y α-tocoferol en el plasma de los corderos. Los taninos condensados no afectaron 

a la concentración de dichos compuestos en el plasma de los corderos. 

El retinol y α-tocoferol depositados en la carne se han visto fundamentalmente 

afectados por el tipo de forraje ingerido por la oveja y el tipo de músculo (P < 0,05). 

Los corderos del tratamiento Pastoreo presentaron mayor concentración de α-tocoferol y 

retinol que los del tratamiento Estabulado en el músculo Longissimus thoracis y 

Semitendinosus (P < 0,05). Además, la luteína, que se detectó únicamente en el músculo 

Semitendinosus, también fue mayor en los corderos del tratamiento Pastoreo que en el 

Estabulado. La inclusión de taninos condensados únicamente afectó a la concentración 

de α-tocoferol en el músculo Longissimus thoracis (1,44 vs. 1,27 mg/ kg MF para 

Taninos Condesados y Control, respectivamente). 

El uso de la concentración de retinol y α-tocoferol en un análisis discriminante permitió 

parcialmente distinguir la procedencia de los corderos lechales según el tipo de forraje 

ingerido por la madre. Sin embargo, para obtener un porcentaje de clasificación cercano 

al 100% se debe seguir estudiando otros posibles biomarcadores.   
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SUMMARY 

Consumers are becoming more aware of the importance of food quality in the products 

they purchase and their relation with health, demanding more information both on the 

nutritional value as well as on the animal production systems used to rear the animal. 

Obtaining this information and guaranteeing the necessary control, can only be possible 

when implementing a traceability system throughout the whole production process. 

This study has focused on the relation of the existence of certain biomarkers 

(carotenoids, retinol, tocopherols) in animal products with the feeding systems (Grazing 

vs. Housing) and the addition of condensed tannins in the feedstuff (Added vs. Control). 

Thirty-nine ewes of the Churra Tensina breed and their lambs we used, distributed into 

4 lots adjusted according to the weight of the ewe and the lamb at lambing, body 

condition and sex of the lamb. The sheep and lambs of the Grazing treatment grazed in 

pastures while those of the Housing treatment were fed with pasture hay, all of them ad 

libitum. Within each type of forage, half of the ewes were offered 300 g of commercial 

concentrate (Control) and the other half was fed 300 g of a concentrate with condensed 

tannins (CT) (adding 10% of quebracho with a 75% of CT). The assay started after 

lambing and continued until the lambs reached a live weight of 10- 12 kg. Weekly 

samples were taken of the feed and the milk, and every fortnight blood samples were 

collected from the sheep and lambs to determine the concentrations of the biomarkers 

that were to be studied. Lambs were slaughtered weekly when reaching the required 

slaughter weight. After dressing the carcasses, these were kept at 4ºC during 24h. 

Samples were taken from the Longissimus thoracis and Semitendinosus muscles, that 

were frozen, freeze-dried and grounded to extract the carotenoids, retinol and 

tocopherols, being these determined by using liquid chromatography with HPLC. 

The concentration of carotenoids and tocopherols was greater in the case of pasture than 

hay and concentrates (P < 0,05). The concentration of retinol and α-tocopherol in ewe 

plasma during lactation was affected by the interaction between the forage fed to the 

sheep and the lactation period (P < 0,05). Retinol concentration in sheep from the 

Housing lot was not modified during lactation though it increased at the end of the 

period in the sheep of the Grazing lot. In the case of α-tocopherol, the concentration was 

modified starting after the second half of lactation in the ewes of the Housing treatment, 

while in the case of the Grazing ewes it increased as lactation advanced. On average, the 

Housing treatment showed less concentration of retinol (12,76 vs. 15,54 µg/ml, 
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respectively) and α-tocopherol than the Grazing treatment (0,68 vs. 1,11 µg/ml). The 

addition of condensed tannins had no effect on the concentration of vitamins in lamb 

plasma. 

Milk from the Grazing treatment ewes presented a higher concentration of retinol and α-

tocopherol than the milk from the Housing treatment ewes. Furthermore, retinol and α-

tocopherol concentration was highest at the beginning of lactation. As for the addition 

of condensed tannins in ewe’s concentrate, an increase of retinol and α-tocopherol 

concentration was observed only at the beginning of lactation (P < 0.05). 

As in the case of sheep plasma, differences were also observed in the retinol and α-

tocopherol content in lamb plasma according to the type of forage eaten by their dams, 

presenting those of the Grazing treatment a greater concentration of retinol and α-

tocopherol than those of the Housing treatment (P < 0.05). This indicates that the 

feeding of the ewe during lactation has an effect on the composition of retinol and α-

tocopherol in lamb serum. Condensed tannins did not affect the concentration of the 

compound in lamb serum. 

Retinol and α-tocopherol deposited in the meat has been fundamentally affected by the 

type of forage eaten by the sheep and the type of muscle (P < 0,05). Lambs of the 

Grazing treatment exhibited a greater concentration of α-tocopherol and retinol in the 

Longissimus thoracis and Semitendinosus muscle (P < 0,05) than those of the Housing 

treatment.  Similarly, the lutein that was detected only in the Semitendinosus muscle 

was also greater in the case of lambs in the Grazing treatment than those of the Housing 

treatment. The addition of condensed tannins only affected the concentration of α-

tocopherol in the Longissimus thoracis muscle (1,44 vs. 1,27 mg/kg MF for Condensed 

Tannins and the Control respectively). 

The used of retinol and α-tocopherol in a discriminant analysis allowed to partially 

distinguish the origin of the suckling lambs according to the type of forage ingested by 

the ewe. However, in order to obtain a classification percentage close to 100 %, other 

possible biomarkers must be further studied 

.
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RÉSUMÉ 

Les consommateurs sont de plus en plus conscients de l'importance de la qualité des 

aliments qu'ils achètent et de leur relation avec la santé, raison pour laquelle ils 

demandent de plus en plus d'information aussi bien sur la valeur nutritive que sur les 

systèmes de production des animaux. Obtenir ce type d’information et garantir les 

contrôles nécessaires, ne peut être possible que si un système de traçabilité tout au long 

du processus de production a été implanté. 

Cette étude a mis l'accent sur la relation de l'existence de certains biomarqueurs 

(caroténoïdes, rétinol, tocophérols) dans les produits animaux avec les systèmes 

d'alimentation (Pâturage vs. Stabulation) et l'ajout de tanins condensés dans l'aliment 

(avec par rapport au témoin). On a utilisé 39 brebis de la race Churra Tensina et leurs 

agneaux, répartis en 4 lots ajustés en fonction du poids de la brebis et de l'agneau au 

l'agnelage, de l’état corporel et du sexe de l'agneau. Les brebis et les agneaux du 

traitement Pâturage ont pâturé sur prairie, tandis que les animaux du traitement 

Stabulation ont été nourris à base de foin de prairie, et tous ad libitum. Au sein de 

chaque type de fourrage, on distribuait à la moitié des brebis 300 g de concentré 

commercial (Témoin) et à l'autre moitié 300 g de concentré avec des tanins condensés 

(TC) (avec 10% de quebracho avec 75% de TC). Le test a commencé après l'agnelage et 

a continué jusqu'à ce que les agneaux aient atteint un poids vif de 10-12 kg. Des 

échantillons hebdomadaires d'aliments et de lait ont été prélevés et tous les quinze jours 

des prises de sang ont été faites, aussi bien chez les brebis que chez les agneaux. Toutes 

les semaines, les agneaux étaient abattus lorsque le poids à l’abattage était atteint. Après 

l’abattage, les carcasses ont été conservées à 4°C pendant 24h. Des échantillons ont été 

prélevés dans les muscles Longissimus thoracis et Semitendinosus et ils ont été ensuite 

congelés, lyophilisés et hachés. Les caroténoïdes, le rétinol et les tocophérols ont été 

déterminées par chromatographie liquide avec HPLC. 

La concentration des caroténoïdes et des tocophérols était plus élevée dans le cas des 

pâturages que du foin et concentré (P < 0.05). La concentration en rétinol et en α-

tocophérol dans le plasma des brebis pendant la lactation a été affectée par l'interaction 

entre le fourrage reçu par l’animal et la période de lactation (P < 0.05). La concentration 

en rétinol chez les brebis du lot Stabulé n'a pas été modifiée tandis que chez les brebis 

du lot Pâturage elle a augmenté à la fin de la période. Dans l'α-tocophérol, la 

concentration a été modifiée à partir de la deuxième moitié de la lactation chez la brebis 
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du traitement Stabulé, tandis que chez les brebis au Pâturage, elle a augmenté au fur et à 

mesure que la lactation avançait. En moyenne, le traitement Stabulé a montré moins de 

concentration en rétinol (12,76 vs. 15,54 µg/ml, respectivement) et d’α-tocophérol (0,68 

vs. 1,11 µg/ml) que le traitement Pâturage. L'addition de tanins condensés n'a eu aucun 

effet sur la concentration en vitamines dans le sérum de la brebis. 

Le lait des brebis du traitement Pâturage a présenté une concentration plus élevée en 

rétinol et en α-tocophérol que le lait des brebis du traitement Stabulé. En plus, la 

concentration en rétinol et en α-tocophérol a été maximale au début de la lactation. En 

ce qui concerne l'addition de tanins condensés dans l’aliment de la brebis, on a 

seulement observé qu’elle augmentait la concentration en rétinol et en α-tocophérol au 

début de la lactation (P < 0.05). 

Des différences ont également été observées dans le rétinol et dans l’α-tocophérol 

contenu dans le plasma des agneaux selon le type de fourrage ingéré par la brebis. Ceux 

qui ont eu le traitement Pâturage ont présenté une plus grande concentration en rétinol et 

en α-tocophérol que ceux du lot Stabulé (P < 0.05). Ceci indique que l'alimentation de la 

brebis pendant la lactation a un effet sur la composition en rétinol et en α-tocophérol 

dans le sérum des agneaux. Les tanins condensés n’ont pas affecté la concentration de 

ces composés dans le sérum des agneaux. 

Le rétinol et l’α-tocophérol déposés dans la viande ont été fondamentalement affectés 

par le type de fourrage ingéré par la brebis et le type de muscle (P <0,05). Les agneaux 

du traitement Pâturage ont présenté une plus grande concentration en α-tocophérol et en 

rétinol que ceux du traitement Stabulation dans le Longissimus thoracis et 

Semitendinosus (P <0,05). La lutéine, qui a été détectée seulement dans le muscle 

Semitendinosus, était plus importante dans les agneaux au Pâturage que chez ceux en 

Stabulation. L'addition de tanins condensés a seulement affecté la concentration en α-

tocophérol dans le muscle Longissimus thoracis (1,44 vs 1,27 mg/kg MF pour les 

Tanins Condensés et le témoin, respectivement). 

L'utilisation de la concentration en rétinol et en α-tocophérol dans une analyse 

discriminante a permis de faire la distinction partiellement de l'origine des agneaux de 

lait en fonction du type de fourrage ingéré par la brebis. Cependant, pour obtenir un 

pourcentage de classification proche de 100%, il faudra continuer à étudier d'autres 

biomarqueurs possibles. 
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1.1. El sector ovino en España 

El ganado ovino se ha considerado tradicionalmente una ganadería de menor 

importancia y en muchas ocasiones asociada a países o regiones de bajo desarrollo 

socioeconómico y cultural, con una diferencia notable respecto a otras especies de 

animales ganaderas. Este sector ganadero tiene un importante papel en la vertebración 

del territorio, aprovechamiento de los recursos naturales así como un papel esencial en 

asegurar la cohesión del tejido rural y el uso sostenible de hábitats en las zonas donde se 

asienta. 

La evolución de la cabaña ovina mundial ha sufrido importantes cambios a lo largo de 

las últimas décadas. En 2011, según datos de FAOSTAT, el censo mundial ascendió a 

1.043.712.633 animales, lo que supone un marcado descenso del 3,26% respecto al 

censo del año anterior y pone de manifiesto la tendencia a la baja en el censo mundial 

durante los últimos años (Buxadé Carbó, 2014). La producción total de carne de ovino 

en la UE en 2012 fue de 885.205 toneladas (de las que casi el 13,87% se produjeron en 

nuestro Estado). Aunque el descenso de la producción es general, se ve un tanto 

mitigado en aquellos años en los que ha habido incorporaciones de Estados Miembros 

con importantes efectivos ganaderos (2004 y 2007) (Buxadé Carbó, 2014). El ganado 

ovino español representó el 20% de la cabaña ovina de la Unión Europea siendo 

únicamente superado por el Reino Unido con un 27% en 2013 (MAGRAMA, 2013). 

El sector ovino-caprino en el Estado español representa el 8% de la producción final 

ganadera. En cuanto al número y estructura de explotaciones, los últimos datos apuntan 

a un notable descenso en las explotaciones de ovino en los últimos años (de las 122.694 

explotaciones registradas en 2007 se ha pasado a un total de 111.787 explotaciones en 

enero de 2013).  

La actualidad de este sector en España, viene marcada por: 

• La subida de los precios de los piensos y la falta de pastos 

• La reforma de la organización común de mercados de la carne de ovino, que regula 

su producción, precios y mercados, especialmente por la reforma de la Política 

Agrícola Común (PAC) actual 
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• La creciente profesionalización y aumento de la dimensión de las explotaciones, 

unido a la dificultad de renovación de la mano de obra y de rentabilidad  de las 

explotaciones 

• Finalmente por las distintas enfermedades que amén de reducir el estatus sanitario 

de la cabaña limitan su movimiento, sus rendimientos o el empleo para la 

alimentación de sus productos como recientemente han podido ser la brucelosis, la 

lengua azul o el scrapie (MAGRAMA, 2008) 

En España predomina el empleo de razas de elevada rusticidad, perfectamente 

adaptadas al medio rural, de pequeño formato y empleadas en sistemas extensivos con 

pastoreo. La producción de corderos se caracteriza por un sacrificio en edades 

tempranas, dando lugar a canales pequeñas con distinta conformación y menores 

rendimientos que los presentes en países nórdicos de la UE, lo que condiciona su 

exportación (MAGRAMA, 2008). Su consumo no es constante, con un incremento 

notable en determinadas épocas del año debido al carácter festivo y de celebración de su 

consumo, fuertemente arraigado en esta cultura.  

Para mejorar la situación actual, el sector tiene fundamentalmente ante sí tres grandes 

retos: 

• El mantener su función social en el medio rural, contribuyendo paralelamente a 

mantenimiento de los ecosistemas naturales y de formas tradicionales de vida 

íntimamente vinculadas a la cultura de numerosas regiones de España. Para ello, el 

sector ha de ofrecer nuevos y mayores atractivos económicos, sociales y culturales 

para frenar y contrarrestar el abandono por parte de los jóvenes vivido por este 

sector en las últimas décadas.  

• El fomento de la producción de carnes y productos cárnicos de calidad certificada, 

de mayor valor añadido y el aumento de las cuotas de mercado conseguidas por los 

mismos. 

• La conquista de nuevos mercados dentro y fuera de la Unión Europea y 

mantenimiento de los creados en los últimos años ya que las exportaciones se han 

duplicado desde 2003 a 2013 pasando de 22303 t a 45495 t (MAGRAMA, 2013) 
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1.2. Importancia del ovino de carne en Aragón  

En la comunidad autónoma de Aragón se encuentra el 11,3% del total nacional de 

cabezas de ovinos con un censo total de 1.877.551 cabezas en 2013 (MAGRAMA, 

2013). Actualmente, la carne de ovino sufre la retracción de un consumo que ya de por 

sí es bajo y estacional. Durante los últimos seis años, se ha pasado de un consumo per 

cápita de carne fresca de ovino y caprino en los hogares españoles de 2,7 kg en 2006 a 

1,9 kg (datos provisionales en 2013).  

El sistema de producción varía según la zona geográfica debido a los condicionantes de 

producción forrajera, ya que existen grandes diferencias entre las tres provincias 

(Zaragoza, Huesca y Teruel) en cuanto a disponibilidad de pasto natural y cultivos 

forrajeros, lo que a su vez condiciona el manejo reproductivo y la cría de los corderos. 

Los sistemas más comunes de producción se basan en el destete temprano de corderos 

(45 días) y el posterior cebo con pienso, para obtener canales ligeras tipo "Ternasco" 

(peso canal 8 – 12,5 kg, menor a 3 meses de edad). El manejo general es estabulación 

de ovejas 15 días antes del parto y mantenerlas así hasta el destete de los corderos. El 

sistema de reproducción que se lleva es el de 3 partos en dos años. Esta dinámica de 

intensificación se ha establecido también en la mayoría de explotaciones ovinas de 

Aragón, lo que ha supuesto en algunas explotaciones una drástica reducción en el 

aprovechamiento de los amplios recursos pastorales disponibles en las zonas de 

montaña (Choquecallata, 2000).  

Este manejo es contrario a las actuales directrices de la Política Agraria Común, que 

promueven un mayor uso de los recursos pastorales, así como el mantenimiento de 

razas autóctonas. Actualmente, y gracias a las ayudas para la conservación de razas, se 

realizan estudios para estudiar los parámetros productivos de dichas razas en 

condiciones extensivas así como la calidad de la carne como producto final. En relación 

a ello, se buscan posibles alternativas para reducir costes de alimentación y revalorizar 

el producto comercial final en razas autóctonas de baja productividad como es la raza 

Churra Tensina (Álvarez-Rodríguez et al., 2007, Sanz et al., 2008). En aquellas 

explotaciones con estacionalidad marcada de los recursos pastorales, la producción de 

cordero lechal de la raza Churra Tensina (9-12 kg, menor a 35 días de edad), aunque no 

es habitual, podría ser una alternativa interesante.   
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1.3. Sistemas de producción y su trazabilidad 

Los sistemas producción de corderos más extendidos actualmente en España se 

iniciaron en los años 60 y respondían a unas necesidades históricas muy concretas: 

producir alimentos de origen animal a precios asequibles. El cebo con concentrados y 

paja permitió, por su facilidad técnica y su escasa necesidad en mano de obra, 

generalizar el consumo de carne. Estos sistemas han ido evolucionando técnicamente, 

alcanzando altos niveles de eficiencia técnico-económica, pero desvinculando 

totalmente al rumiante de sus condiciones naturales de producción, el pastoreo, y dando 

como resultado final productos de alta calidad escasamente diferenciados, sin una 

alimentación ni un manejo de los animales transparente hacia el consumidor.  

Tras los últimos escándalos alimentarios relacionados con la ganadería en general, y 

especialmente en la producción de carne (encefalopatías dioxinas, promotores del 

crecimiento...) una parte importante de la población ha perdido la confianza tanto en la 

carne como en los productores o ganaderos. El consumidor, exige un producto sano y de 

calidad que debe ser ofrecido con un conocimiento científico que en algunos casos es 

escaso (Prache et al., 2009).  

Muchos son los factores que influyen en la calidad del producto (raza, estado 

fisiológico, edad, mercado, sanidad, bienestar animal), siendo la alimentación el más 

importante. En los productos animales con valor añadido, como puede ser la 

denominación de origen, la indicación geográfica protegida o producción ecológica, los 

consumidores exigen algún tipo de certificación, que le asegure que el producto en su 

origen haya respetado el pliego de condiciones por las que se vende con un valor 

añadido. La certificación de calidad asegura el valor añadido a un producto en beneficio 

de los productores y a los consumidores ya que proporciona la garantía de que el 

producto ofrecido cumple los requisitos exigidos por la marca. En los casos en que el 

valor añadido de un producto se deba al tipo de alimentación recibida se deben buscar 

posibles “marcadores” que puedan relacionar el tipo de alimentación del animal y el 

producto, es decir compuestos químicos que por algún motivo estén ligados a un tipo de 

alimento y que se acumulen o expresen en el producto final, como es la carne o la leche.  

La trazabilidad es un importante componente en la política de calidad en el sector 

agroalimentario. Está definida por el estándar internacional ISO 8402 como ‟la 

habilidad de rastrear la historia, aplicación, o localización de una entidad por medio de 
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identificaciones guardadas” (Charlier, 2003). La trazabilidad puede ser del origen o del 

sistema de producción o proceso. La primera se refiere a la identidad de los animales, 

raza, origen geográfico, lo que es muy importante para las marcas de calidad 

(Denominación de origen o Indicación geográfica protegida). La segunda trazabilidad es 

la del proceso y se refiere a los sistemas de producción, incluyendo tipos de dietas, 

procesos, conservación y adulteración de los alimentos ofrecidos al animal (producción 

ecológica, extensiva...).  

En los últimos años los consumidores tienen un mayor interés por la imagen "verde" de 

productos de origen animal, exigiendo productos alimenticios basados en forrajes que se 

consideran seguros, naturales y respetuosos con el medio ambiente y el bienestar animal 

(Prache et al., 2005). Además, hay cada vez más una demanda de información clara 

sobre la alimentación suministrada a los animales. La alimentación que reciben los 

animales destinados al consumo humano es uno de los factores extrínsecos de calidad 

considerados más importantes por los consumidores (Casasús et al., 2007). Sin 

embargo, no siempre se dispone de esta información, por lo que es necesario desarrollar 

sistemas de biodetección que garanticen una adecuada trazabilidad del sistema de 

producción seguido, en este caso de la composición de la dieta recibida. Se deben 

buscar compuestos químicos que por algún motivo estén ligados a un tipo de alimento y 

que se acumulen o expresen en el producto final, como es la carne o la leche.  

El sistema de alimentación a que se somete al animal (a base de leche, forraje, 

concentrado, o combinado) va a condicionar el éxito de discriminación de los distintos 

biomarcadores presentes en los alimentos y transmitidos al producto, que a su vez se 

encuentran afectados por complejidad de mecanismos que envuelven a la producción de 

forrajes, la producción de leche, así como a los cambios en la composición de los tejidos 

corporales a lo largo de las distintas fases de crecimiento. 
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2.1. Biomarcadores  

Tres grupos de compuestos pueden ser considerados como posibles indicadores de la 

alimentación recibida por el animal. Los biomarcadores pueden ser: 

1. Compuestos de origen vegetal, como son los carotenoides, vitamina A, vitamina E y 

los compuestos fenólicos. Su presencia en los tejidos animales indican su 

procedencia alimentaria, ya que el animal no es capaz de sintetizarlos 

2.  Marcadores metabólicos o metabolitos secundarios que son compuestos 

procedentes del metabolismo del animal que varían en proporción y tipo en función 

del tipo de alimento (composición en ácidos grasos) 

3.  Marcadores físicos los cuales utiliza la composición isotópica de la grasa y del 

agua de los tejidos y productos animales que depende del tipo de dieta y del área 

geográfica (Renou et al., 2004a, Renou et al., 2004b) (relaciones 18O/16º; 13C/14C; 
15N/14N).  

De todos estos posibles marcadores, lo primero que se debe estudiar es su capacidad de 

discriminar el producto, es decir clasificarlo según el régimen alimenticio recibido con 

un margen de error pequeño. Actualmente los estudios realizados muestran que los 

diversos marcadores analizados individualmente sólo permiten la clasificación del 

producto con un error grande, o al menos mayor que el deseado. Además se observa que 

existe una gran variabilidad individual en los contenidos de dichos compuestos (Prache 

et al., 2005). Por ello se debe buscar una combinación de dos o más marcadores que 

permitan clasificar con un margen de error pequeño la procedencia del producto según 

el sistema de alimentación.  

Es necesario buscar los marcadores que puedan indicar de manera más precisa la 

alimentación recibida por el animal, como pueden ser los pigmentos carotenoides y 

vitamina E. Los carotenoides y las vitaminas liposoluble (Vitamina A y E) junto con la 

composición de ácidos grasos han sido identificados en los últimos años como 

potenciales marcadores del sistema de alimentación dando unos resultados 

esperanzadores (Prache et al., 2005).  

Esta memoria se va a centrar en los pigmentos carotenoides y las vitaminas liposolubles 

A y E. 
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2.1.1. Los carotenoides  

Los pigmentos carotenoides son una familia de más de 600 moléculas sintetizadas por 

plantas y algas, relacionadas con el proceso de la fotosíntesis (Nozière et al., 2006a). 

Son los pigmentos responsables de la mayoría de los colores amarillos, anaranjados y 

rojos de las plantas, debido a la presencia en su molécula de un cromóforo consistente 

total o principalmente en una cadena de dobles enlaces conjugados. 

Químicamente los carotenoides son terpenoides, formados básicamente por ocho 

unidades de isopreno, de tal forma que la unión de cada unidad se invierte en el centro 

de la molécula. En los carotenoides naturales sólo se encuentran tres elementos: C, H y 

O. El oxígeno puede estar presente como grupo hidroxilo, metoxilo, epoxi, carboxilo o 

carbonilo. Dentro de los carotenoides podemos distinguir dos grupos: los carotenos, que 

son hidrocarburos, y las xantofilas, que poseen oxígeno en su molécula. 

 

Figura 1. Estructura química de los principales carotenoides encontrados en el forraje 

(adaptado de Nozière et al. (2006a).  

Los dobles enlaces conjugados presentes en los carotenoides son los responsables de la 

intensa coloración de los alimentos que contienen estos pigmentos, por ejemplo, los 

colores naranja de la zanahoria y rojo del tomate, se deben a la presencia de β-caroteno 

y licopeno, y el color amarillo se debe a la luteína respectivamente (Figura 1). Debido a 

su estructura, los carotenoides están sujetos a muchos cambios químicos inducidos por 
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las distintas condiciones de procesamiento que se emplean en la industria alimentaria 

(Meléndez-Martínez et al., 2004). 

Su síntesis sólo la pueden realizar las plantas y algunos microorganismos, por lo que su 

presencia en el tejido animal siempre procede de la ingestión de forraje. La ingestión, 

absorción, metabolismo y deposición de los carotenoides en el tejido animal varía en 

función del tipo de alimento ingerido (forrajes o pienso) y la especie animal. A su vez, 

numerosos factores afectan al contenido en carotenos de las plantas. En condiciones 

húmedas, el contenido en carotenos es más elevado que cuando la planta crece en 

condiciones de secano (Lindqvist et al., 2012), lo que es consecuencia de menor 

relación hoja:tallo (Ballet et al., 2001). También afecta el momento del día de la 

cosecha, la temperatura y la luz ambiental (Lindqvist et al., 2012); y el procesado de 

conservación (Nozière et al., 2006a). Por ello se debe considerar que las condiciones 

climáticas y el momento del muestreo puede afectar la cantidad de carotenos en el 

forraje (Ballet et al., 2001). 

Con respecto a la especie animal, dentro de los rumiantes hay diferencias en el 

metabolismo de los carotenoides. El vacuno transporta mayor cantidad de carotenoides 

totales en el plasma que el ovino, principalmente en forma de β-caroteno y una menor 

proporción de luteína, mientras que el ovino sólo los transporta en forma de luteína 

(Yang et al., 1992), por lo que el vacuno y el ovino no son comparables (Nozière et al., 

2006a).  

2.1.2. La vitamina A 

La vitamina A tiene una estructura compuesta por un anillo b-ionona hidrófobo y una 

cadena lateral isoprenoide conjugada que contiene un grupo polar en su extremo (Figura 

2). El término genérico "vitamina A" incluye cualquier compuesto que posee la 

actividad biológica de all-trans-retinol. El término "retinoides" incluye tanto las formas 

naturales de la vitamina A, como muchos análogos sintéticos de retinol, con o sin 

actividad biológica. Las diferentes formas de vitamina A (Figura 2) que se encuentran 

en tejidos animales son retinol, retinal, ácido retinoico y ésteres de retinilo (ER) (Debier 

et al., 2005). El contenido en retinol en los tejidos también depende de la especie de 

rumiante que se estudia. No hay diferencias en el contenido de retinol en el plasma pero 

si en la cantidad depositada en el hígado, siendo mayor en el ovino que en el vacuno 

(Yang et al., 1992). 
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               Retinol                              Retinal 

Figura 2. Estructura química de la vitamina A 

2.1.3. La vitamina E  

Es uno de los más abundantes agentes antioxidantes liposolubles que se encuentran en 

el plasma y las células de los mamíferos superiores. Esta vitamina existe como formas 

de tocoferoles y tocotrienoles, los tocoferoles tienen una cadena saturada y los 

tocotrienoles una insaturada con 3 dobles enlaces (Figura 3). 

 

Figura 3. Estructura química de los tocoferoles y tocotrienoles. 

Los tocoferoles están generalmente presentes en todas las plantas y en casi todas las 

partes de la planta, los tocotrienoles solo están presentes en un específico grupo de 

plantas y se encuentran exclusivamente en las semillas y frutas. La presencia y la 

distribución de tocotrienoles en las semillas sugieren que cumple funciones específicas 

que difieren de la función de los tocoferoles en las hojas (Falk y Munné-Bosch, 2010). 

Los tocoferoles son antioxidantes lipofílicos que se sintetizan exclusivamente en los 

organismos fotosintéticos. En la mayoría de las plantas superiores la α- y γ-tocoferol 

son predominantes y representa unas de las formas más activas de la vitamina E 

(aproximadamente 90%), encontrada en los tejido animales (Zingg, 2007). 
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En las plantas la concentración de vitamina E dependen de factores tales como: el 

estado de madurez de la planta, la temperatura, tiempo de conservación y la proporción 

de hoja en el forraje y cosechado (Nozière et al., 2006a). Se encuentra principalmente 

en forma natural en los aceites vegetales (soja, maíz, girasol, algodón…), semillas y 

hojas y partes verdes de las plantas (Sayago et al., 2007), pero también la podemos 

encontrar como suplemento dietético.  

2.2. Metabolismo de los biomarcadores 

2.2.1. Absorción. 

La vitamina A en la dieta se origina como retinol a partir de tejidos animales o como 

pro-vitamina A (principalmente β-caroteno) a partir de tejidos vegetales. La conversión 

de β-caroteno en vitamina A implica la acción de dos enzimas la β-caroteno-15,15’-

dioxigenasa, que cataliza la escisión de β-caroteno en el centro del doble enlace para 

producir dos moléculas de retinal y la enzima reductasa de retinoaldehido para reducir 

el retinal en retinol, donde es absorbido por difusión facilitada por los enterocitos de la 

mucosa intestinal (Blomhoff y Kiil, 2006).  

La capacidad de absorción de los carotenoides de la dieta varía mucho entre especies. 

En algunas especies tales como rata, cerdo, cabra, oveja, conejo y búfalo, los 

carotenoides de la dieta son absorbidos por los quilomicrones de la mucosa intestinal, 

donde la mayor parte se convierte en retinol. En los seres humanos, vacas, caballos 

cantidades significativas pasan en la sangre vía linfa y por lo tanto a los tejidos extra-

hepáticos y tejidos adiposos, donde están almacenados (Olson, 1989). Además hay otros 

factores que afectan la eficacia de la absorción de retinol y β-caroteno, como es el tipo 

de enlace, siendo la forma trans mejor absorbido que la forma cis (Stahl et al., 1995), o 

la cantidad y la calidad de la grasa presente en la dieta (Blomhoff et al., 1991).  

La absorción de vitamina E está relacionada con la digestión de la grasa y se ve 

facilitada por la bilis y la lipasa pancreática (McDowell, 2000). El sitio principal de 

absorción parece ser el intestino delgado donde se absorbe principalmente en forma de 

alcohol. Los ésteres son hidrolizados en gran medida en la pared intestinal, mientras que 

el alcohol entra en los quilíferos intestinales y se transporta a través de la linfa a la 

circulación general (Traber y Arai, 1999). La absorción de vitamina E por los 

enterocitos parece ocurrir por difusión pasiva (Bjørneboe et al., 1990), que depende en 

gran parte por la cantidad y la calidad de la grasa en la dieta (Bjørneboe et al., 1990, 
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Bramley et al., 2000) . Los triglicéridos de cadena media particularmente aumentan la 

absorción, mientras que los ácidos grasos poliinsaturados son inhibidores. Solo tras el 

paso por el hígado, el α-tocoferol aparece preferentemente en el plasma (Traber, 1996), 

mientras que las demás formas se secretan en la bilis o bien se excreta en la heces 

(Drevon, 1991). La absorción varía considerablemente entre los tejidos, siendo muy 

rápida en el hígado, pulmón, bazo, riñón y eritrocitos, mientras que se produce a 

velocidades muy lentas en el tejido cerebral y adiposo 

2.2.2. Transporte. 

La vitamina A se transporta a través del sistema linfático con la ayuda de una 

lipoproteína de baja densidad al hígado, donde se deposita principalmente en los 

hepatocitos y en las células estrelladas y parenquimatosas (Debier et al., 2005). Durante 

este proceso una parte puede ser tomada por los tejidos extra-hepáticos tales como los 

pulmones, los riñones, el bazo, músculo esquelético, adiposo y la médula ósea, y la otra 

parte se almacena en el hígado donde seguirá el metabolismo del retinol (Blomhoff et 

al., 1991, Blaner, 1994, Blomhoff y Kiil, 2006). El éster de retinol almacenado en las 

células estrelladas del hígado, es convertido el retinol por la enzima retinil éster 

hidrolasa y liberado en la circulación. La movilización de la vitamina A en el hígado es 

un proceso altamente regulado. Más del 90% de retinol plasmático total es transportado 

en la circulación sanguínea unido a proteínas de transporte del retinol (Olson, 1989, 

Blomhoff et al., 1991). 

En el caso de los carotenoides no existe una proteína especifica de transporte en el 

plasma, van al torrente sanguíneo asociados a la lipoproteína de muy baja densidad, ya 

que son liposolubles (Blomhoff y Kiil, 2006). Las concentraciones plasmáticas de 

retinol por lo general se mantienen relativamente constantes independientemente del 

tipo de dieta, siempre que existan reservas en hígado, siendo similares y extrapolables 

entre ovino y vacuno (Yang et al., 1992). Sin embargo en los tejidos corporales, los 

depósitos en el ovino y en el vacuno son distintos, depositando el ovino mayor cantidad 

de retinol en hígado. Un exceso de vitamina A o de carotenoides en la dieta puede tener 

efectos negativos principalmente sobre el hígado, piel, huesos y sistema nervioso central 

(Hathcock et al., 1990).  

Al igual que los carotenoides, la vitamina E no tiene una proteína especifica de 

transporte, circulando en forma de alcohol (tocoferol) en las lipoproteínas del plasma, 



 Revisión bibliográfica 

 

17 

 

junto con otros lípidos, y los eritrocitos. El α-tocoferol del hígado es secretado al 

torrente sanguíneo y transportado por lipoproteínas de muy baja densidad y absorbido a 

través de receptores LDL (lipoproteína de baja densidad) a los otros tejidos (Debier et 

al., 2005). El α-tocoferol se almacena principalmente en el tejido hepático que junto con 

el tejido adiposo y con el músculo esquelético suman aproximadamente el 90% del total 

de α-tocoferol almacenado (Bjørneboe et al., 1990).  

2.2.3. Funciones 

En la nutrición humana y animal, la vitamina A desempeña un papel importante en 

muchos procesos biológicos esenciales tales como la visión, la inmunidad, la 

reproducción y como antioxidante. McDowell (2000) sostiene que la deficiencia de 

vitamina A, causa pérdida de la visión, debido a un fallo de la formación de la rodopsina 

en la retina; defectos en el crecimiento del hueso, defectos en la reproducción y defectos 

en el crecimiento y la diferenciación de los tejidos epiteliales, que con frecuencia 

conlleva la queratinización de los tejidos. La queratinización de estos tejidos provoca 

una pérdida de la función en los aparatos digestivo, genital, reproductivo, respiratorio y 

urinario. Recientemente se ha relacionado la función antioxidante de los carotenoides 

con varios tipos de cáncer (por ejemplo cáncer de pulmón y de piel) (Stahl et al., 1994). 

La actividad antioxidante de la vitamina A y carotenoides es conferida por la cadena 

poliénica hidrófoba que puede apagar el oxígeno y nitrógeno reactivo (Palace et al., 

1999, Stahl y Sies, 2005) que se genera durante el metabolismo aeróbico y procesos 

patológicos evitando de esta forma el daño de moléculas biológicamente importantes, 

como lípidos, ADN o proteínas y están implicados en muchas enfermedades 

degenerativas (Sies, 1986, Halliwell, 1996). 

La vitamina E también tiene muchas funciones biológicas como por ejemplo: actividad 

enzimática, función en la expresión génica, la función neurológica y la más importante 

la función antioxidante. La forma principal de la vitamina E, α-tocoferol, representa la 

mayor parte de la actividad antioxidante, que rompe la cadena soluble en grasa en los 

tejidos y plasma de los mamíferos (Bramley et al., 2000) y protege a los ácidos grasos 

poli-insaturados de las membranas celulares y lipoproteínas de la oxidación en 

hidroperóxidos (Packer, 1991). La actividad antioxidante de α-tocoferol ocurre cuando 

éste dona su átomo de hidrógeno fenólico a un radical lipídico peroxil para formar un 

hidroperóxido que se convierte en un radical tocoferoxilo. La relativa estabilidad de esta 

molécula previene la propagación de reacciones con radicales libres. Esta forma de 
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donación de electrones parece ser el principal factor que determina la eficiencia 

antioxidante relativa, con α-tocoferol como el más potente donador de hidrógeno 

seguido por γ-, β- y δ- (Falk y Munné-Bosch, 2010). 

2.3. Presencia de carotenoides, retinol y tocoferol en los alimentos   

2.3.1. Forrajes 

A pesar de la gran variedad de carotenoides en las plantas, no más de 10 se encuentran 

en los alimentos de los rumiantes, donde los más importantes cuantitativamente son el 

β-caroteno, luteína, zeaxantina y epiluteina. Por otro lado, la mayor parte del α-tocoferol 

y β-caroteno en el forraje se encuentra en las hojas (Brown, 1953), y las especies de 

plantas con el ratio hoja/tallo alto por lo general tienen un mayor contenido α-tocoferol 

y β-caroteno (Thafvelin y Oksanen, 1966, Livingston et al., 1968b). 

El β-caroteno se oxida fácilmente una vez que se cortan las plantas, resultando en 

concentraciones menores de β-caroteno en el forraje almacenado que en forraje fresco 

(Bruhn y Oliver, 1978, Kalač y McDonald, 1981, Park et al., 1983). Dian et al. (2007) 

demuestra en sus estudios que la deshidratación también puede provocar pérdidas en 

carotenoides, llegándose a producir un 30% de pérdidas de β-caroteno y tocoferol en el 

proceso de deshidratación de la alfalfa, estando ello de acuerdo con Livingston et al. 

(1968a). En misma línea, Lindqvist et al. (2012) observaron, en un trabajo donde se 

compara el efecto del secado y del ensilado sobre el contenido de α-tocoferol y β-

caroteno de varias especies forrajeras, que las plantas secadas al sol tenían pérdidas de 

hasta 80-90% y que el proceso del ensilar supuso unas pérdidas de hasta 40-50%. 

Nozière et al. (2006a), señalaron que los ensilados bien fermentados tienen perdidas de 

β-caroteno inferiores al 20%, sin embargo Kalač (1983), sostiene que las pérdidas de 

carotenoides y tocoferoles varían más en función de la especie forrajera y menos en 

función del tratamiento aplicado.  

2.3.2. Piensos 

La mayoría de los piensos de los rumiantes presentan un bajo contenido en 

carotenoides. El maíz contiene luteína y zeaxantina, y cantidades menores de otras 

xantofilas, como criptoxantina, zeinoxantina, que se concentran en la harina de gluten 

de maíz. La vitamina E se encuentra principalmente en algunos aceites, como por 

ejemplo el aceite de germen de trigo que contiene cantidades muy elevadas, más de 100 

mg/100 g, el aceite de girasol que contiene entre 50 y 60 mg/100 g de semilla cruda o el 
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aceite de oliva que contiene entre 10 y 15 mg/100 g. Sin embargo, los piensos con 

granos de cereales y las oleaginosas no suele contener carotenoides ni vitamina E dado 

que se ha sometido a calor, destruyendo la vitamina E inicialmente presente en el grano. 

Se fabrican piensos enriquecidos con vitamina E, normalmente contienen acetato dl-α-

tocoferil, que es más estable que los compuestos de alcohol y por consiguiente las 

pérdidas en la actividad biológica por el proceso de fabricación y de almacenamiento 

son más bajas. Se emplean estos piensos enriquecidos durante el periodo de acabado de 

los corderos y terneros para aumentar las concentraciones de α-tocoferol en músculo, 

con el fin retrasar el deterioro de la carne y la oxidación de las grasas (Lopez-Bote et 

al., 2001, Lauzurica et al., 2005, Ripoll et al., 2007, González-Calvo et al., 2014). A 

pesar de los resultados beneficios obtenidos en estos estudios, el enriquecimiento de los 

piensos con vitamina E aumenta los costes de producción. Una alternativa más 

económica y viable para aumentar la vida útil de la carne es el pastoreo con alfalfa, a 

través de una mayor deposición de tocoferol de manera natural (Ripoll et al., 2013).  

Recientemente se está estudiando la incorporación de taninos condensados a los piensos 

del ovino. Los taninos son compuestos químicos sintetizados por las plantas que 

cumplen funciones no esenciales en ellas, por lo que se les incluye dentro de los 

metabolitos secundarios (Launchbaugh et al., 2001). Con la incorporación de los 

taninos condensados al pienso se busca modificar la fermentación ruminal porque 

pueden inhibir el crecimiento de varias bacterias ruminales, incluyendo las asociadas 

con el proceso de biohidrogenación ruminal, para reducir las emisiones de efecto 

invernadero (Toral et al., 2013). En el rumen, los taninos condensados eliminan las 

propiedades espumantes de las proteínas de leguminosas forrajeras y reduce la tasa de 

gas producido durante la fermentación (Launchbaugh et al., 2001). La actividad 

antimetanogénica de los taninos condensados se atribuye que disminuyen la producción 

de metano a través de una reducción en la digestión de la fibra. Sin embargo, los efectos 

no están claros ya que dependen de la cantidad y tipo de taninos condensados 

incorporados a la dieta Concentraciones entre 2–4% MS afectan positivamente al 

metabolismo proteico, al reducir la degradación a nivel ruminal y aumentar el flujo de 

aminoácidos que pueden ser absorbidos en el intestino delgado y mejorando el 

crecimiento animal sin afectar el consumo de alimento. Sin embargo, una inclusión en 

la dieta superior al 6% reduce el consumo de alimento, la tasa de digestión ruminal y 

productividad (Frutos et al., 2004).  
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Dada la capacidad de modificación de la fermentación ruminal, se está estudiando su 

uso para modificar el perfil de ácidos grasos de la leche (Cabiddu et al., 2009) y la carne 

(Priolo et al., 2005). El efecto de los taninos condensados sobre el perfil de ácidos 

grasos es diferente según si se incorporan a la dieta a través de forrajes que contienen 

taninos condensados (Addis et al., 2005, Cabiddu et al., 2009) o con quebracho (Toral 

et al., 2011, Toral et al., 2013). En cuanto al efecto de los taninos condensados sobre el 

perfil de ácidos grasos de la carne, la magnitud del efecto depende del forraje dado a los 

corderos (Priolo et al., 2005, Vasta et al., 2007). A su vez, parece ser que la capacidad 

antioxidante de los taninos condensados permite alargar la vida útil de la carne (Luciano 

et al., 2009, Luciano et al., 2011). 

2.4. Presencia de carotenoides, retinol, α-tocoferol en los productos animales  

2.4.1. Según la especie animal 

Existen diferencias entre especies de rumiantes con respeto al contenido de carotenoides 

en los productos animal (Yang et al., 1992, Nozière et al., 2006a). Los carotenoides, 

principalmente β-caroteno, en vacuno la conversión del β-caroteno en retinal se hace 

principalmente en el hígado lo que permite a que una gran parte pase directamente a los 

tejidos extra hepáticos mientras que en ovina la conversión del β-caroteno en retinal se 

hace en el intestino delgado lo que hace llegar menos β-caroteno al hígado y por lo tanto 

a los tejidos extrahepáticos (Debier y Larondelle, 2005). 

En general, la grasa corporal de las ovejas y las cabras se mantiene blanca, 

independientemente de la dieta, mientras que la grasa corporal del ganado vacuno puede 

variar de color blanco cremoso a amarillo-naranja brillante, dependiendo de la dieta y su 

contenido en carotenoides. Esta diferencia en el color de la grasa entre especies se debe 

a que el vacuno deposita en la grasa mayor cantidad de carotenoides que el ovino y 

caprino (Yang et al., 1992). Además, existen diferencias en el tipo de carotenoide 

depositado, el vacuno deposita principalmente β-caroteno y en menor cantidad luteína, 

mientras que el ovino y caprino únicamente depositan pequeñas cantidades de luteína. 

La leche de cabra y de oveja contiene retinol y luteína y generalmente no contiene β-

caroteno mientras que la de vaca presenta retinol, luteína y β-caroteno (Gentili et al., 

2012). Las diferencias entre ovino y vacuno encontradas en la leche, también aparecen 

en el plasma, únicamente se encuentra luteína en el plasma ovino mientras que en el de 

vacuno se encuentra luteína y β-caroteno (Yang et al., 1992). Sin embargo, en un 
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estudio reciente, Álvarez et al. (2014) ha encontrado tanto luteína como β-caroteno en el 

plasma de los corderos. 

En relación con la vitamina E, hay varios estudios (McDowell, 2000, Gentili et al., 

2012) que indican que los subproductos animales, en general contienen solo pocas 

cantidades de vitamina E y que la leche y los productos lácteos son a menudo fuentes 

pobres de esta vitamina. Esto siendo resultado de la mala absorción o retención en el 

cuerpo, siendo siempre relacionado con las necesidades de cada animal. A medida que 

la ingestión de vitamina E aumenta por causa de una suplementación, baja la absorción 

de α-tocoferol lo que sugiere un proceso de saturación (McDowell, 2000).  

2.4.2 Según la alimentación recibida 

2.4.2.1. En el suero o plasma  

Las concentraciones plasmáticas maternas de retinol y α-tocoferol por lo general 

disminuyen desde finales de la gestación hasta el parto, alcanzando su nivel mínimo 

alrededor del nacimiento y volviendo hacia los valores basales a las pocas semanas de la 

lactación (Goff y Stabel, 1990, LeBlanc et al., 2004, Debier et al., 2005), el fenómeno 

está al menos en parte atribuido a la alta acumulación de estos nutrientes en el calostro.  

Los estudios de Kumagai (1995), nos indica que la suplementación vitamina A y E en 

ovejas durante el periodo de gestación, hace aumentar las concentraciones de retinol y 

α-tocoferol en el hígado mientras que en el plasma las concentraciones se mantienen 

constantes. Bates (1983) y Peirce (1945), a pesar de encontrar diferencias entre los 

animales que recibían suplementación con Vitamina A de los que no recibían, 

concluyeron que las concentraciones de retinol en el plasma no refleja una baja ingesta 

de vitamina A excepto cuando las reservas hepáticas se han agotado.  

En corderos, González-Calvo et al. (2014), estudiaron el efecto del periodo de 

alimentación con pienso enriquecido con 500UI de α-tocoferol sobre la concentración 

de vitamina E en plasma y observaron que las concentraciones de α-tocoferol en el 

plasma de los corderos variaba al inicio de la suplementación alcanzando un punto de 

saturación a partir del cual la concentración se estabilizaba. 

En relación a la vitamina A, por el contrario, (Arnett et al., 2007) observaron en un 

estudio de  suplementacion con vitamina A en dietas de corderos que la inclusión de 

esta vitamina no afectó su contenido en plasma durante los primeros 28 días, momento a 

partir del cual se inició un incremento de dicho contenido, observándose diferencias 
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significativas a partir del día 56, y manteniéndose hasta el día 112 del experimento. 

Cuando se producía una reducción del retinol aportado en la dieta la reducción en el 

retinol en plasma se observó 26 días después. Según los mismos autores, la respuesta a 

dicho comportamiento puede ser debida a la movilización de las reservas hepáticas de 

retinol (Arnett et al., 2007).  

En la misma línea (Yang et al., 2002) encontraron que la suplementación con 2500 UI  

tocoferol en terneros, incrementó de manera acusada el contenido en α-tocoferol en el 

plasma de los terneros alimentados con pienso mientras que durante la mayor parte del 

ensayo la suplementación no afectó la concentración de α-tocoferol en los terneros en 

pastoreo y tampoco se vio afectada la concentración de β-caroteno. Únicamente 

incrementó ligeramente la concentración de α-tocoferol en el plasma al final del ensayo 

en los terneros en pastoreo. En un estudio similar, Descalzo et al. (2005) estudiaron la 

suplementación con 500 UI de tocoferol a terneros en pastoreo y en terneros 

alimentados con pienso. Los resultados mostraron que la suplementación con tocoferol 

modificó la concentración de α-tocoferol en el plasma de los terneros alimentados con 

pienso pero no afectó la concentración de β-caroteno en el plasma de los terneros 

independientemente del tipo tratamiento. 

Comparando dos tipos de alimento (ensilado de hierba vs. heno de pasto), con distintos 

grupos de vacas, Nozière et al. (2006b) observaron que los valores plasmáticos tanto de 

retinol y carotenoides como de α-tocoferol manifestaron concentraciones mayores en 

los animales alimentos con ensilado que en los de heno, lo que es una respuesta directa 

a la mayor ingestión de dichos compuestos en el ensilado de hierba.  

2.4.2.2. En la leche 

La vitamina A y E  a pesar de su vital importancia para el recién nacido, poco se sabe 

sobre la transferencia de estos compuestos a la gandula mamaria (Debier y Larondelle, 

2005) . 

Los recién nacidos contienen niveles bajas de β-caroteno, retinol y α-tocoferol en sus 

tejidos y el plasma sanguíneo debido a una transferencia placentaria muy limitada de la 

madre al feto. Por eso la ingestión de vitaminas A y E a través de calostro pude 

contribuir a una mejora de las defensas de los recién nacidos y para unas funciones 

metabólicas adecuadas (Blum et al., 1997).  
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Sobre el efecto de la alimentación sobre la concentración de retinol y α-tocoferol en la 

leche de oveja Álvarez et al. (2014), encontró que las ovejas de pasto presentaron más 

retinol y α-tocoferol en la leche comparando con la leche de las ovejas que consumían 

concentrado donde no se han encontrado vitaminas, lo que es resultado de la ausencia 

de esto compuesto en los concentrados como consecuencia de los procesos de 

fabricación. 

Weir et al. (1949), estudiando el efecto del contenido en carotenos de la dieta sobre la 

concentración de retinol en sangre, leche e hígado de las ovejas y corderos, concluyeron 

que con las dietas constituidas por heno de alfalfa los animales presentaban mayor 

contenido en retinol en plasma que con las dietas de paja pobre en carotenos. Sin 

embargo, el contenido en retinol en el calostro (durante la primera semana post parto) 

fue siempre alto, independientemente de la dieta que recibían las ovejas.  

Comparando la composición de vitamina A y E en la leche y en los productos lácteos en 

función del sistema de alimentación de los animales Martin et al. (2004), encontró que 

en vaca y cabras alimentadas con pasto o con ensilado de raigrás la leche presentaba 

mayor contenido en retinol y α-tocoferol en comparación con la leche de los animales 

alimentados a base de concentrado o ensilado de maíz. En general el ensilado de maíz 

ha sido considerado una fuente pobre de carotenoides si lo comparamos con ensilado de 

otros cultivos, especialmente si se produce a partir del maíz dañado por las heladas 

(Pavel, 2013).  

Además de la alimentación existen varios factores que influyen en la  composición de 

vitaminas liposolubles en la leche como por ejemplo: la raza, la estación del año, en 

número de partos y el propio individuo (Nozière et al., 2006a) 

2.4.2.3. En el músculo 

Molino et al. (2014) encontraron que los corderos lechales alimentados juntos con sus 

madres en pasto de alfalfa, presentaron mayor contenido en α-tocoferol en el musculo 

que los corderos lechales cuyas madres fueron estabuladas y alimentadas con heno. En 

el mismo estudio se observó que el pastoreo en alfalfa tuvo mejor impacto sobre las 

concentraciones de α-tocoferol en el músculo Semitendinosus que en el músculo 

Longissimus Dorsi. 

Yang et al. (2002) estudiando en vacuno los niveles de α-tocoferol y β-caroteno en tres 

músculos, Longissimus dorsi, Semimembranosus y Gluteus medius, observaron que el 
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Gluteus medius tendía a presentar mayores contenidos que los restantes, aunque las 

diferencias no fueron muy significativas.  

Según los mismos autores, la suplementación con tocoferol redujo la deposición del β-

caroteno en los músculos en los animales en pastoreo pero no modifica la deposición de 

β-caroteno en los animales de pienso, aun así las cantidades depositadas fueron siempre 

superiores en los animales de pastoreo que en los de pienso.  

En la misma línea Descalzo et al. (2005), observaron que la suplementación con 500 UI 

de tocoferol en los animales en pastoreo no afectó a la concentración de β-caroteno y α-

tocoferol en el músculo Psoas major.  

La incorporación de taninos condensados en el pienso podría afectar a los contenidos en 

carotenoides, tocoferol y retinol en los distintos productos animales por su capacidad 

antioxidante. Sin embargo, no hay estudios que se centren en este tipo de relaciones. En 

carne se ha encontrado que la incorporación de taninos condensados del quebracho 

incrementó los fenoles en el músculo y se alargó la vida útil de la carne (Luciano et al., 

2011), pero no aportan datos de tocoferol y/o carotenoides. La inclusión de taninos 

condensados en la dieta de corderos mediante la incorporación de extracto de uva no 

modificó la deposición de α-tocoferol en el músculo (Muíño et al., 2014). La falta de 

respuesta a dicha inclusión pudo ser debido a la baja dosis de extracto de uva, la cual no 

fue suficiente para incrementar el depósito de polifenoles en la carne. 
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Este trabajo tiene como principal objetivo el estudio de determinados componentes 

(carotenoides y vitamina E) que pueden actuar como biomarcadores del tipo de 

alimentación recibida. Se pretende buscar vías de control que permitan por un lado 

clasificar el producto animal según la alimentación recibida y por otro lado ofrecer al 

consumidor la información que están exigiendo. 

Los objetivos concretos del proyecto son los siguientes: 

1. Análisis de la presencia de carotenoides y tocoferoles como biomarcadores de los 

alimentos de las ovejas  

2. Estudiar el efecto del tipo de forraje de la dieta (pasto vs. heno) y de la adición de 

taninos condensados al pienso de la oveja sobre la presencia de carotenoides, retinol y 

α-tocoferol en la leche y en el plasma de la oveja y del plasma y de la carne de sus 

lechales 
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4.1. Localización 

El ensayo con los animales se realizó en la finca experimental de “La Garcipollera” 

propiedad del Centro de Investigación y Tecnología Agroalimentaria (CITA). El 

sacrificio de los corderos, el estudio de la canal y la carne y los análisis químicos se 

realizaron en el matadero experimental y en el laboratorio de valoración nutritiva que el 

CITA tiene en Montañana (Zaragoza).  

La finca experimental “La Garcipollera” está situada en Bescós de la Garcipollera (Jaca) 

(42º37’N, 0º30’O), en el Pirineo oscense (Figura 4). Las instalaciones permanentes se 

encuentran a 945 m de altitud, se encuentra en la parte baja del valle del río Ijuez 

(afluente del río Aragón), a una distancia de 180 km de las instalaciones que tiene el 

CITA en Montañana (Zaragoza) 

 

Figura 4. Localización geográfica de la estación experimental de “La Garcipollera”.  

El clima es de montaña mediterránea, con inviernos fríos y prolongados y veranos secos 

y cálidos (Creus Novau, 1983) (Figura 5). La precipitación anual media del año 2014 

fue de 1059 ± 192 mm con máximos en primavera y otoño - principio de invierno, 

pudiendo ser durante el invierno en forma de nieve, mientras que en verano suelen 

presentarse en forma de tormentas, describiéndose épocas de subaridez (Creus Novau, 

1983).  

 

 

 

 

Finca “La Garcipollera” 
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Figura 5. Pluviometría y temperaturas máxima y mínima registrados el año 2014.  

4.2. Superficies forrajeras 

El estudio se realizó en prados de fondo de valle, en los que predominan Festuca 

arundinacea, Poa pratensis, Trifolium repens y Dactylis glomerata. Dichos prados se 

utilizan tradicionalmente para la producción de heno para el invierno y en momentos 

puntuales se aprovechan a diente antes de la subida o después de la bajada de puerto 

(Casasús, 1998). 

4.3. Manejo del rebaño experimental 

El rebaño experimental constaba de 250 ovejas de raza Churra Tensina. El CITA inició 

el estudio de dicha raza en los años 90 por ser considerada una raza rústica de las más 

primitivas de la península. Forma parte del grupo de razas autóctonas más importantes 

de España, por su alta especialización en la producción de leche y por la calidad de su 

lechazo (MAGRAMA, 2009) 

El sistema de explotación de la finca es el siguiente: de octubre a junio las ovejas 

permanecen en pastoreo permanente en praderas de fondo de valle y zonas boscosas 

adyacentes, teniendo acceso libre al cobertizo (Álvarez-Rodriguez, 2005). Cuando 

decrece la producción forrajera y/o aumentan las necesidades de los animales (épocas de 

partos), las ovejas son suplementadas con alfalfa deshidratada en aprisco (Casasús et al., 

1996). A principios de julio, tanto ovejas adultas como corderas de reposición se 

trasladan a los puertos, donde permanecen hasta octubre, mes en el que vuelven a las 

praderas de valle. La estabulación permanente únicamente se realiza en la época de 

partos de las ovejas (Casasús et al., 1994). 
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El objetivo del manejo reproductivo es la obtención de un parto y repesca por oveja y 

año. Para ello se tiene un período de cubriciones de aproximadamente 45 días desde la 

bajada de puerto (fin de octubre) hasta diciembre, consecuentemente los partos se dan a 

inicios de primavera (marzo-abril). Los corderos pastan con las madres y disponen de 

acceso libre a una tolva con pienso situado en la pradera. Los corderos no destinados a 

reposición se venden en el mes de junio. Las corderas de reposición suben a puerto con 

sus madres, destetándose en octubre (Casasús et al., 1994). 

4.4. Animales y dietas experimentales 

Se han utilizado ovejas de la raza Churra-Tensina, raza originariamente lechera, bien 

adaptada al Pirineo y que actualmente tiene un gran interés para la producción de 

corderos tipo lechal en zona montañosa como es el Pirineo oscense. 

En el ensayo se utilizaron 39 ovejas y sus corderos desde el nacimiento hasta el 

sacrificio de estos con un peso vivo de 10-12 kg. Se ha utilizado un diseño 2 x 2 con el 

manejo de la oveja (pastoreo vs. estabulado) y la adición de taninos condensados al 

pienso de la oveja (control vs. con taninos condensados). Las ovejas y corderos se 

distribuyeron en lotes equilibrados según el peso y condición corporal de las ovejas en 

el momento del parto y el peso y fecha de nacimiento de los corderos. 

 

Figura 6. Esquema del diseño experimental 

La mitad de las ovejas y sus corderos se asignaron al pastoreo. Se dividieron los 

animales en dos lotes, que fueron alojados en dos praderas adyacentes. Los animales 

tuvieron acceso durante todo el día al pasto. La pradera estaba compuesta 

principalmente por 67-95% de gramíneas (Festuca arundinacea, Festuca pratensis y 

con taninos condensados (10% quebracho)
(n=10)

control
(n=10)

con taninos condensados (10% quebracho)
(n=10)

control
(n=9)

Pasto en pradera
polifita

Heno en 
estabulación

Forraje a voluntad Pienso para oveja (300 g/d)
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Dactylis glomerata), 30-4,4% de leguminosas (principalmente Trifolium repens) y 2-

29% de otras especies (Rumex acetosa y Ranunculus bulbosus) (Joy et al., 2008). El 

resto de ovejas y sus corderos fueron estabulados en 2 corrales adyacentes. Las ovejas 

recibieron heno de pradera y agua a voluntad.  

Un lote de ovejas en pastoreo y otro lote de las estabuladas recibieron pienso control 

(sin taninos condensados) mientras que los otros lotes de ovejas en pastoreo y 

estabuladas recibieron pienso con 10% de quebracho (75% taninos condensados). Los 

piensos se formularon para ser isoenergéticos e isoproteicos. Los ingredientes de los 

piensos y la composición de los alimentos están detallados en la Tabla 1. Todas las 

ovejas recibieron diariamente 300 g de pienso por cabeza. 

Tabla 1. Composición de los alimentos ingeridos por las ovejas 

 Pradera Heno 
Pienso 
 Control 

Pienso con 
taninos 

condensados 
Ingredientes     
Cebada - - 33,53 48,72 
Salvado de trigo (20% almidón) - - 20 5,98 
Gluten feed de maíz (19% PB) - - 18 15 
Harina de soja - - - 12,08 
Harina de girasol (28% PB) - - 10 - 
Maíz nacional - - 10 5 
Extracto de quebracho  - - - 10 
Harina de girasol (34% PB) - - 2,35 - 
Alfalfa granulada (15,2% PB) - - 2 - 
Melaza de caña - - 1 - 
Sal - - 0,5 0,5 
Grasa mezcla - - 0,2 0,54 
Corrector - - 0,2 0,2 
Surfactante (Maxi_Mill) - - 0,05 0,05 

Composición química, g/kg MS     
Humedad 828,13 110,55 110,08 113,63 
Cenizas 118,61 78,02 62,21 62,57 
Proteína bruta 239,27 69,25 140,61 140,05 
Fibra neutro detergente 446,30 632,84 175,27 248,8 
Fibra ácido detergente 185,37 338,5 59,8 69,43 
Lignina ácido detergente 39,47 40,05 10,89 20,83 

La experiencia duró desde el nacimiento de los corderos hasta su sacrificio con 10-12 kg 

de peso vivo. Una vez los corderos alcanzaron el peso objetivo, se trasladaron a las 

instalaciones del CITA en Montañana (Zaragoza) para ser sacrificados en el matadero 
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experimental, siguiendo la normativa sobre protección de animales de la UE (Directiva 

93/119/CE, RD 54/1995). Tras el sacrificio, las canales permanecieron en una cámara 

de refrigeración a 4º C durante 24 horas. 

4.5. Medidas realizadas 

Alimentos. Semanalmente se tomaron 3 muestras de la pradera por tratamiento, 3 

muestras del heno de pradera por tratamiento y dos del pienso de las ovejas para los 

posteriores análisis químicos. Parte de las muestras se desecaron a 60ºC en estufa de 

ventilación forzada hasta alcanzar el peso constante. Seguidamente se molieron a través 

de un molino de cuchillas provisto de una malla de 1 mm de diámetro y se almacenaron 

identificadas hasta posterior análisis. Una segunda parte de la muestra fue almacenada a 

4 ºC hasta el día siguiente del muestreo. Se realizó el análisis de los carotenoides, y 

tocoferoles de los alimentos en fresco.  

Plasma. Se tomaron muestras de sangre de la vena yugular de las ovejas y de los 

corderos en la fase inicial de la lactación (día 6 ± 0,3), media (día 20 ± 0,4) y final (día 

31 ± 0,5). Se utilizaron tubos de vacío con Litio-heparina de 9 ml (Vacuette). Una vez 

extraídas, las muestras se protegieron de la luz para evitar una posible oxidación de los 

carotenoides. Las muestras se centrifugaron durante 20 minutos a 3500 r.p.m. y se 

tomaron alícuotas del plasma, que se congelaron a -20ºC hasta posteriores análisis. 

Leche. La producción de leche se estimó semanalmente mediante la técnica de la 

oxitocina propuesta por Doney et al. (1979) con ordeño mecánico y apurado a mano, 

con un intervalo entre ordeños de 4 h. Las ovejas recibieron 5 UI de oxitocina en la vena 

yugular antes del primer (8:00 h) y segundo ordeño (12:00 h). Entre ambos ordeños, los 

corderos fueron separados de sus madres y éstas dispusieron libremente de su dieta. La 

producción de leche obtenida en el segundo ordeño se pesó y su producción fue 

extrapolada al día completo. Se tomó una muestra individual de leche (50 ml) para ser 

almacenada en refrigeración hasta los futuros análisis químicos. Las muestras se 

conservaron en refrigeración (4ºC) hasta su traslado al CITA de Montañana donde se 

congelaron a -20ºC hasta el análisis. 

Músculo. Tras el sacrificio y faenado de los corderos se registró el peso de la canal 

caliente (PCC), que incluía la cabeza, el epiplón, los riñones y el hígado, y que no 

incluía pulmones, corazón, diafragma y bazo. Seguidamente, almaceno durante 24h en 

cámara de refrigeración a 4º C y se dividió longitudinalmente la canal en dos. De la 
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media canal izquierda se extrajeron los músculos Longissimus thoracis y 

Semitendinoso, y posteriormente fueron divididos en muestras.  Una de las muestras de 

ambos músculos se envasaron al vacío, se congelaron a -80º C y se liofilizaron (VirTis, 

Germany). Las muestras se pesaron antes y después de la liofilización para obtener el 

contenido en materia fresca de la carne. Tras la liofilización se mantuvieron congeladas, 

protegidas de la luz hasta los futuros análisis.  

4.6. Métodos de análisis de los carotenoides, retinol y tocoferoles  

Patrones, reactivos y soluciones utilizadas 

- Patrones 

• α-tocoferol  

•  γ-tocoferol  

•  δ-tocoferol  

• β-caroteno  

• Luteína  

• Retinol  

- Reactivos y soluciones 

• Acetona 

• Ascorbato de sodio 

•  Sodio sulfato anhidro 

• Ácido ascórbico 

•  Hexano 

•  Solución de BHT de 25µg/ml en hexano. Se prepara semanalmente 

- Se pesan en una bandeja de plástico 0,01gr de BHT. 

- Se mide en un matraz aforado 400 ml de hexano. 

- Se introduce el BHT y el hexano en una botella con dosificador. Para evitar 

pérdidas de BHT se lava la bandeja con parte del hexano del matraz dejando caer la 

solución dentro de la botella. 
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• Etanol 

• KOH 

•  Solución saponificante: 11% KOH (wt/v) en solución de 55% ETOH (v/v) y 45% 

de agua destilada deionizada. Esta solución se prepara semanalmente de la siguiente 

manera: 

- Se prepara la solución 55:45 ETOH: H2O deionizada (220 ml de etanol y 180 ml 

de agua) 

- Se pesan en un vaso de precipitado 44 gr de KOH en pellets 

- Se añade parte de los 180 ml de agua destilada deionizada y se agita hasta la 

completa disolución del KOH. 

- Se añade el resto del agua y los 220 ml de etanol 

- Se trasvasa a un dosificador. 

4.6.1. Métodos de extracción 

En todos los métodos de extracción se intentaron proteger al máximo de la luz directa a 

los alimentos, leche, plasma y carne. 

4.6.1.1. Alimento 

Para la extracción de los carotenoides y tocoferoles de los alimentos se realizó la 

extracción liquida con solventes, siguiendo la metodología de Val et al. (1994) con las 

modificaciones que se describen a continuación. Las muestras se analizaron por 

triplicado. 

Se pesaron 0,2 g de alimento con una balanza de precisión y se introdujeron en un tubo 

falcón de 15 ml protegido de la luz. Posteriormente, se añadieron 0,03 g de ascorbato de 

sodio y 5 ml de acetona. Seguidamente los tubos se taparon y se homogenizaron con un 

ultraturax (ART-MICCRAD-8) durante 30 segundos. Para una extracción mejor de los 

carotenoides y tocoferoles, los tubos se pasaron a un homogeneizador vertical donde 

permanecieron durante 20 minutos. Una vez transcurrido este tiempo, se extrajo el 

sobrenadante del tubo con una pipeta Pasteur de 1 ml y se trasvasó a un vial ámbar tras 

su filtrado a través de una membrana de 0,45 micras.  
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4.6.1.2. Leche 

Se llevó a cabo una extracción para la cuantificación de la concentración de 

carotenoides y α-tocoferol y otra extracción para la cuantificación de la concentración 

de retinol. Todas las muestras se analizaron por duplicado. Para las extracciones, 

siempre la tarde anterior se sacaban las muestras de leche del congelador y se mantenían 

en la nevera para que se produjera una descongelación lenta. 

Extracción de carotenoides y tocoferoles 

Se realizó en fase líquida de acuerdo con la metodología Lyan et al. (2001) con 

modificaciones, como se describe a continuación.  

El día del análisis, las muestras se introdujeron en un baño de agua (40 ºC) durante 30 

minutos. Posteriormente se homogenizaron con el homogeneizador vertical durante 5 

minutos. En un tubo eppendorf se añadieron 200 µl de leche y 200 µl de etanol con 5% 

BHT y se homogenizaron durante 5 minutos en el rotatubos. Para extraer la grasa de la 

leche, se le añadió 1 ml de hexano y se homogenizó durante 20 minutos en el rotatubos 

automático. Seguidamente los tubos se centrifugaron en la microcentrífuga con pulso 

(SORVALL® MC12V, modelo DU PONT), durante 30 segundos a 3000 r.p.m. La parte 

superior (hexano) se extrajo con una pipeta Pasteur de 1 ml y se depositó en un tubo 

eppendorf de 2 ml. Para estar seguros que toda la grasa ha pasado a la parte hexánica se 

realizó una segunda extracción añadiendo 1 ml de hexano. Se homogenizó durante otros 

20 minutos y se centrifugó otros 30 segundos en la microcentrífuga. Se extrajo con la 

pipeta Pasteur de 1 ml la parte superior y se depositó en el eppendorf junto con la 

anterior extracción. Posteriormente se procedió a la eliminación del hexano con la 

centrifuga de evaporación a sequedad mediante vacío (CHRIST®, modelo RUC 2/25 

SPEED VAC), a 35 ºC durante15 minutos. 

El residuo se reconstituyó con 1 ml de metanol y se homogenizó en el rotatubos durante 

10 minutos. El líquido se transvasó mediante una pipeta Pasteur a un vial opaco de 

ámbar para su posterior determinación por HPLC. 

Extracción del retinol 

La extracción de retinol se realizó con la metodología de Gentili et al. (2012) según se 

describe a continuación. El día del análisis se atemperó la leche y homogenizó durante 

30 minutos en un baño de agua con agitación y seguidamente se procedió a su análisis. 
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En un tubo de vidrio se añadieron 1 ml de leche y 3 ml de etanol (BHT 0,1%) y se 

homogenizaron durante 5 minutos en el rotatubos automático. Después la 

homogeneización, se añadieron 0,5 ml de KOH (50% w/v). Para evitar la oxidación de 

las vitaminas se llenó el tubo con corriente de nitrógeno y se dejó a 25 ºC en un baño de 

agitación aproximadamente 15 horas. Tras transcurrir este tiempo, para parar la reacción 

se le añadieron 1,4 ml agua mili Q y 2 ml de hexano y se homogenizó durante 5 

minutos. Después de centrifugar a 4 ºC durante 10 minutos a 4500 r.p.m., se extrajo el 

sobrenadante, la parte hexánica, con una pipeta pasteur y se recogió en un tubo falcon 

de 15 ml. Dicha extracción se repitió 3 veces más (total 4 extracciones). 

Una vez realizadas las cuatro extracciones, se añadieron 2 ml de agua al tubo falcon, 

para eliminar los álcalis, y seguidamente se homogenizó durante 5 minutos en el 

rotatubos automático. Tras la homogenización, se depositó la parte hexánica en un tubo 

de vidrio de 10 ml de fondo cónico y se evaporó casi a sequedad (100µl) mediante vacío 

y se centrifugó a 35 ºC durante 25 minutos. Posteriormente, se reconstituyó el residuo 

con 1 ml metanol (BHT 0,1%) y homogenizó durante 10 minutos. Se traspasó el 

contenido mediante pipeta Pasteur a un vial ámbar para su determinación por HPLC. 

4.6.1.3. Plasma 

La extracción de carotenoides y tocoferoles en el plasma se hizo en fase líquida 

siguiendo la metodología Lyan et al. (2001) con algunas modificaciones. La mañana del 

análisis se extrajeron los tubos con el plasma del congelador para que se descongelaran. 

Una vez descongelados se homogeneizaron en el rotatubos automático. En un tubo 

eppendorf se añadieron 200 µl de plasma y 200 µl de etanol con 5% BHT (2,6 Di-ter-

Butil-4-Metilfenol, 98%PS) y se homogenizaron durante 5 minutos. Seguidamente se le 

añadió 1 ml de hexano y se homogenizó durante 20 minutos en el rotatubos automático. 

Los tubos se centrifugaron durante 30 segundos a 3000 r.p.m. en la microcentrífuga.  

La parte superior líquida (hexano) se extrajo con una pipeta pasteur y se depositó en un 

tubo eppendorf de 2 ml. Se realizó una segunda extracción añadiendo 1 ml de hexano y 

centrifugando otros 30 segundos en la microcentrífuga. La parte superior extraída se 

depositó junto con la primera extracción en el tubo eppendorf y se llevaron a evaporar a 

sequedad mediante vacío y centrifugación a 35 ºC durante 20 minutos. La muestra se 

reconstituyó con 1 ml de metanol, se homogenizó durante 10 minutos y se transvasó a 
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un vial opaco. Por último, se congeló (-18ºC) hasta su posterior determinación 

cromatográfica 

4.6.1.4. Músculos Longissimus thoracis y Semitendinosus  

Se llevó a cabo una extracción para la determinación de la concentración de 

carotenoides y α-tocoferol y otra para la determinación de la concentración de retinol en 

ambos músculos. Todas las muestras se analizaron por duplicado. 

- Extracción para la determinación de carotenoides y tocoferoles 

La extracción líquida de carotenoides y tocoferol de ambos músculos se realizó según el 

método propuesto por Lyan et al. (2001) con algunas modificaciones. La carne 

liofilizada se picó en una picadora el mismo día del análisis. En los tubos eppendorf de 

2 ml se añadieron 100 mg de carne liofilizada picada y 400 µl de etanol con 5% BHT. 

Los tubos se homogenizaron durante 2 minutos en el rotatubos y se les añadió 1 ml de 

hexano y se volvieron a homogenizar durante 20 minutos. Tras la homogeneización, los 

tubos se centrifugaron con la microcentrifuga durante 30 segundos a 3000 r.p.m.. La 

parte superior líquida hexánica se extrajo con una pipeta pasteur y se depositó en un 

tubo eppendorf de 2 ml. Dicho proceso se repitió una segunda vez. La parte superior 

líquida hexánica de la segunda extracción se añadió al tubo eppendorf donde estaba 

almacenada la primera extracción. Dicho tubo se evaporó a sequedad mediante vacío y 

se centrifugó a 35 ºC durante 20 minutos. Se reconstituyó el residuo seco con 1 ml de 

metanol y se homogenizó durante 10 minutos en el rotatubos. El líquido resultante se 

traspasó con una pipeta Pasteur a un vial opaco ámbar para su posterior determinación 

por HPLC.  

- Extracción para la determinación de retinol 

El método de extracción empleado se realizó en dos fases, según la técnica de Osorio et 

al. (2008) que a su vez modifica la técnica de (Yang et al., 1992): 

Fase 1. Extracción en frío de la grasa de carne liofilizada. En un tubo falcon de 50 ml 

se añadieron 2,5 g de muestra liofilizada, 5 ml de cloroformo y 10 ml de metanol. La 

mezcla se homogeneizó durante 2 minutos en el rotatubos automático. Se añadieron 5 

ml de cloroformo y 10 ml de cloruro de potasio (KCl) al 0,88 % en agua. La mezcla se 

homogenizó durante 15 minutos en el rotatubos automático y se centrifugó a 4000 

r.p.m. durante 10 minutos. La parte superior de la mezcla (cloroformo) se extrajo con la 

pipeta Pasteur y se depositó en un tubo de vidrio de tapa de rosca de 12 ml, se le 
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añadieron 10 µl metanol con antioxidante BHT (5%) y se evaporó a sequedad durante 1 

hora a 45 ºC en una centrífuga de vacío.  

Fase 2. Extracción de retinol. Al extracto graso de la fase anterior se le añadió 1 ml de 

metanol con 20% de hidróxido de potasio (KOH). La mezcla se mantuvo en un baño de 

agua a 68 ºC durante 45 minutos. Posteriormente, se añadieron a la mezcla 3 ml de éter 

dietílico y se homogeneizó durante 15 minutos. La parte superior de la mezcla se extrajo 

con una pipeta Pasteur y se depositó en un tubo de vidrio de 12 ml. Este proceso se 

repitió y la segunda fase lipofílica se añadió a la obtenida en la primera extracción. El 

éter dietílico se eliminó evaporando a sequedad durante 2 horas a 45 ºC en una 

centrífuga de vacío. El residuo se reconstituyó con 1 ml de metanol con 5% de BHT y 

se homogenizó durante 10 minutos. El residuo se trasvaso a un vial opaco y se congeló 

hasta su posterior determinación por HPLC. 

4.7. Condiciones cromatográficas 

El retinol, la luteína, el β-caroteno, α-tocoferol y γ-tocoferol se determinan por UHPLC 

(Acquity H-Class, Water; Milford, Massachusetts. USA). La separación de los 

compuestos se realizó con una columna Kinetex RP C18, de 100×4,6 mm y 2,1 micras, 

dicha columna está en línea con un filtro precolumna krudKatcher ultra HPLC. El 

equipo de cromatografía líquida estaba equipado con dos detectores, un detector de red 

de fotodiodos que tiene un barrido de 210 a 600 nm y otro de fluorescencia. La luteína y 

el β-caroteno se detectaron con el detector de red de fotodiodos a 450 nm, retinol con el 

detector de fluorescencia a una longitud de onda de excitación (λex) de 317 nm y de 

emision (λem) de 468 nm, y finalmente, los tocoferoles con el detector de fluorescencia a 

λex 293 nm y λem 322. La fase móvil era metanol (con 0,05% de trietanolamina) con un 

flujo de 1,5 ml/min en isocratico. El análisis se llevó a cabo a una temperatura 

controlada, usando un horno de columna a 35ºC y una cámara de muestras preinyección 

a 15ºC en el automuestrador. El tiempo de análisis fue de 6 minutos. 

Los compuestos se identificaron mediante la comparación con los tiempos de retención 

y espectro de sus respectivos estándares (>95%). La disolución de los respectivos 

estándares (Sigma Aldrich) se realizó en metanol evitando el contacto con la luz y se 

guardaron a -80ºC. La concentración exacta se determinó por espectrofotometría. Se 

realizaron hasta siete disoluciones por cada estándar (500 a 0,1µg ml-1) para elaborar 

una curva de calibración con siete puntos. También, se efectuó una evaluación 
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preliminar de la metodología analítica empleada que incluyó estudios de especificidad, 

sensibilidad recuperación y precisión. 

4.8. Análisis estadísticos 

Los análisis estadísticos se han realizado con la versión 9.3 del programa estadístico 

SAS. En primer lugar se comprobó la distribución normal de los residuos de las 

variables con el test Shapiro-Wilk. Todos los parámetros tuvieron distribución normal 

de los residuos. 

El contenido en carotenoides y tocoferoles de cada alimento se determinó para cada 

tratamiento utilizando el procedimiento Proc means. La concentración de retinol y α-

tocoferol de la leche de las ovejas y del plasma de las oveja y de los corderos se analizó 

mediante modelos mixtos con el Proc mixed. Para la concentración en la leche se 

realizó un análisis de medidas repetidas con el tipo de forraje, la inclusión de taninos 

condensados en el pienso, la semana de lactación y sus interacciones como efectos fijos 

y la oveja como efecto aleatorio. Para la concentración en el plasma de las ovejas y los 

corderos se realizó un análisis de medidas repetidas con el tipo de forraje, la inclusión 

de taninos condensados en el pienso, fase de lactación y sus interacciones como efectos 

fijos y la oveja o cordero como efecto aleatorio. Se ajustó el grado de libertad con la 

corrección de Kendward-Rodgers para tener en cuenta que el número total de 

observaciones pudo ser desigual en los lotes. Se utilizaron diferentes matrices de 

varianza-covarianza y se eligieron las que presentaron los menores valores del criterio 

de información de Akaike y criterio de información Bayesiano. 

La concentración de α-tocoferol, retinol y luteína del músculo de los corderos se analizó 

con un modelo mixto con el Proc mixed. Los efectos fijos considerados fueron: el tipo 

de forraje, la inclusión de taninos condensados en el pienso, el músculo y sus 

interacciones y el efecto aleatorio el cordero. Para todos los análisis se obtuvieron las 

Lsmeans y se compararon mediante el t-test.  

Se hicieron análisis discriminantes con el Proc discrim para estudiar el porcentaje de 

animales clasificados correctamente según su alimentación en función de la 

concentración de carotenoides, retinol y α-tocoferol en el plasma, la leche y ambos 

músculos.
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Los resultados de los contenidos de carotenoides, retinol y tocoferoles en el plasma, 

leche y carne se presentan según el efecto del forraje recibido por la oveja y según la 

inclusión de taninos condensados en el pienso por separado porque no ha habido 

interacción entre estos dos efectos en ninguna de las variables estudiadas.  

5.1. Contenido en carotenoides y tocoferoles de los alimentos 

Los contenidos de luteína, β-caroteno, γ-tocoferol y α-tocoferol de cada uno de los 

alimentos utilizados en el ensayo se muestran en la Tabla 2. La pradera presentó unos 

contenidos en carotenoides y α-tocoferol notablemente superiores al heno de pradera y 

al pienso. Los presentes resultados están de acuerdo con diversos trabajos presentes en 

la bibliografía (ver Tabla 3).  

El menor contenido en luteína y β-caroteno en el heno y en el pienso se debe en gran 

parte a los procesos de conservación (exposición al sol, temperaturas y humedad), 

henificación y a los procesos de fabricación del pienso que implica varios procesos de 

molienda, higienización del pienso y granulación, lo que implica calor y humedad.  

Tabla 2. Contenido en carotenoides y tocoferoles del heno, pradera y pienso control y 

pienso con taninos condensados (TC) 

  Heno Pradera Pienso con TC1 Pienso control 

Luteína, µg/g MS 100 (4,7) 582 (29,5) 1 (0,3) 1 (0,6) 

β-caroteno, µg/g MS 23,7 (2,7) 740 (29,5) 0 (0,0) 0,1 (0,1) 
α-tocoferol, µg/g MS 10,9 (0,9) 148 (11,9) 5 (0,8) 14 (1,5) 
γ-tocoferol, µg/g MS 1,7 (0,2) 6,2 (0,7) 6 (0,6) 7 (0,7) 
1Pienso con 10% de quebracho con 75% de taninos condensados; Entre paréntesis, error 

estándar 

En la pradera el carotenoide más abundante fue el β-caroteno seguido por la luteína 

mientras que en el heno, el más importante fue la luteína. La concentración de luteína en 

el heno comparado con el forraje fresco fue del 15% y la del β-caroteno del 2,9%. 

Similares diferencias encontró Barron et al. (2012) en forrajes tropicales en los cuales la 

concentración de luteína fue inferior, alrededor del 20% y el β-caroteno alrededor del 

2% del heno frente al fresco.  

En el pienso, hubo una baja presencia de carotenoides y tocoferoles, siendo éstos 

últimos más abundantes que los primeros. La presencia de γ-tocoferol en el pienso 

podría estar relacionada con la presencia de soja y maíz presentes en la composición del 

pienso (Slover, 1971, Kurilich y Juvik, 1999, Rani et al., 2007). 



Resultados y discusión  

46 

Tabla 3. Contenido de carotenoides y tocoferoles en heno, pradera y pienso encontrados 

en la bibliografía 

  Alimento  

 heno pradera pienso 

Luteína, µg/g MS 1066; 187 48,52; 4374 2,11 

β-caroteno, µg/g MS 365,156; 07 ; 74,12;1234;1965 06;7 

γ-tocoferol, µg/g MS 9,43 * * 

α-tocoferol, µg/g MS 22,33; 615 15,62; 1615 * 
1Dian et al., 2007; 2Alvarez et al., 2014; 3Pavel, 2013; 4Prache et al., 2009; 5Ballet, 
2001; 6Calderon et al., 2007; 7Calderon et al., 2006, *No se han encontrado datos 

El retinol no fue detectado en ninguno de los alimentos estudiados porque tal y como se 

ha explicado en la revisión bibliográfica la vitamina no se encuentra en las plantas sino 

que se forma en los animales a partir del β-caroteno y otras provitaminas con la ayuda 

de una enzima específica situada en las paredes intestinales de los animales (Blomhoff y 

Kiil, 2006). 

5.2. Concentración de vitaminas liposolubles según el forraje recibido por la oveja 

5.2.1. En el plasma de la oveja  

En el plasma de las ovejas se detectó retinol pero no se detectó ni luteína ni β-caroteno. 

(Yang et al., 1992) encontraron tanto retinol como luteína pero la cantidad detectada de 

luteína fue solo el 1,7 % de la cantidad de retinol encontrada. Además se detectó α-

tocoferol, que es la principal forma en la cual se transporta el tocoferol y no fue posible 

detectar γ-tocoferol, cuya concentración es inferior a la de α-tocoferol en 1,5 veces 

(AlSenaidy, 1996). 

La concentración de retinol en el plasma de las ovejas durante la lactación se vio 

afectado por la interacción entre el forraje recibido por la oveja y la fase de la lactación 

(P = 0,02) (Figura 7). En el tratamiento Estabulado dicha concentración no se modificó 

durante la lactación. Sin embargo, la concentración de retinol de las ovejas del lote 

Pastoreo permaneció estable en la primera mitad de la lactación (P = 0,53) y se 

incrementó en segunda mitad de la lactación (P < 0,001). Esto supuso que la 

concentración de retinol fuera similar entre los dos tratamientos al inicio de la lactación 

(P = 0,20) y en la mitad de la lactación (P = 0,44) pero un 37% superior en las ovejas de 
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lote de Pastoreo que las del lote Estabulación en la fase final de la lactación (P = 

0,0007). 

   

Figura 7. Concentración de retinol en el plasma de la oveja según el forraje recibido por 
la oveja durante la lactación. 
En una fase de la lactación, letras diferentes (a,b) indican diferencias al P < 0,05 

Una respuesta positiva de la concentración de retinol en el plasma debido a un 

incremento en los carotenoides ingeridos con la dieta fue encontrado tanto en ovejas 

(Weir et al., 1949) como en vacas (Chawla y Kaur, 2004). En general, parece que una 

baja ingestión de vitamina A en la dieta no se traduce en bajadas en la concentración de 

retinol en la sangre porque las ovejas movilizan retinol del hígado (Debier y Larondelle, 

2005). Al suplementar las ovejas con altas dosis de vitamina A (12000 UI), hace 

incrementar (x 6) la concentración de retinol en el plasma (Donoghue et al., 1984). En 

vacas en lactación, cuando se compararon dietas con diferentes concentraciones de 

carotenoides (ensilado rico en carotenoides vs. heno pobre en carotenoides), la 

concentración de retinol en el plasma fue mayor en las vacas alimentadas con ensilado 

que con heno (Calderón et al., 2007). La baja concentración de retinol en el plasma de 

las ovejas en las primeras fases de la lactación pueden deberse a que gran cantidad de 

retinol pasa al calostro y leche en las primeras fases de la lactación (Debier et al., 2005) 

por lo que bajan las concentración del retinol en el plasma a pesar de ingerir dietas ricas 

en carotenoides. 

La concentración de α-tocoferol en el plasma de las ovejas también presentó una 

interacción entre el forraje ingerido por la oveja y la fase de la lactación (P = 0,003) 
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(Figura 8). En las ovejas del tratamiento Estabulado, la concentración de α-tocoferol no 

se modificó al inicio y mitad de la lactación (P = 0,23) pero se incrementó en un 33,5% 

a en la segunda mitad de la lactación (P = 0,05). En las ovejas en Pastoreo, la 

concentración de α-tocoferol se incrementó en un 39% entre la primera mitad (P = 0,01) 

y un 47% en la segunda mitad de lactación (P = 0,001). La elevada concentración de α-

tocoferol en el calostro puede ser la causa de que las las concentraciones de α-tocoferol 

en la sangre de los rumiantes entorno al parto sea baja y se incremente llegando a los 

valores basales a las pocas semanas de la lactación (Debier et al., 2005).  

 

Figura 8.  Concentración de α-tocoferol en el plasma de la oveja según el forraje 
recibido durante la lactación.  
En una fase de la lactación, letras diferentes (a,b) indican diferencias al P < 0,05 y 

(x,y) indican diferencias al P < 0,10.  

La concentración de α-tocoferol fue similar entre tratamientos al inicio de la lactación 

pero fue superior en las ovejas del lote Pastoreo que en del Estabulado entre la fase 

media (P = 0,06) y fase final (47%; P = 0,001) de la lactación, momento en el cual fue 

más notable la diferencia entre los dos lotes. Un incremento en la ingestión de vitamina 

E a través de suplementación de las ovejas durante la gestación y lactación supuso un 

incrementó de α-tocoferol en el plasma de las ovejas durante la lactación (Njeru et al., 

1994, McDowell et al., 1996). Los presentes resultados muestran que las 

concentraciones de α-tocoferol en el plasma de la oveja parece estar ligada a la 

composición de dicho compuesto en la dieta, lo que esta de acuerdo con lo observado 

por Calderón et al. (2007) en vacas en lactación.  
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5.2.2. En la leche de la oveja 

En la leche se detectó retinol y α-tocoferol pero no β-caroteno, luteína y γ-tocoferol. 

Con este mismo método, pero distinta columna, Gentili et al. (2012) fueron capaces de 

detectar en leche de oveja además de estos compuestos, luteína (en cantidad muy baja) y 

γ-tocoferol. El motivo por el cual no fuimos capaces de detectarlo es desconocido ya 

que el equipo de Gentili no expone la alimentación recibida por las ovejas, lo que puede 

ser determinante en la detección de estos compuestos en leche. 

En la Figura 9 se muestra la evolución de la concentración de retinol en la leche de las 

ovejas según el forraje que han recibido a lo largo de la lactación. Las ovejas del lote 

Pastoreo muestran concentración de retinol en la leche más alta que las ovejas del lote 

Estabulado, que recibieron una dieta de heno a lo largo de toda la lactación (P < 0,001).  
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Figura 9. Concentración de retinol en la leche según el forraje recibido por la oveja 
durante la lactación.  
En una semana de lactación, diferente letra (a,b) indica diferencias al P < 0,05 

El retinol presente en los productos animales proviene de la conversión de los 

carotenoides presentes en los forrajes, principalmente del β-caroteno, como ya se ha 

comentado anteriormente. En un estudio que evaluaba el efecto de la utilización de 

raciones invernales con bajo contenido en caroteno (paja frente vs. heno de alfalfa) se 

encontró que la leche de las ovejas presentó similar concentración de retinol en las 

primeras semanas de lactación, pero posteriormente la leche de las ovejas con heno de 

alfalfa presentó más retinol que las que recibieron paja (Weir et al., 1949).  
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Las mayores concentraciones de retinol en la leche observadas en la primera semana de 

lactación están de acuerdo con los resultados observados en varios estudios (Batra y 

Hidiroglou, 1995, Asadian et al., 1996, Koutsoumpas et al., 2013), los cuales 

concluyeron que los contenidos en retinol son muy elevados en el calostro y al inicio de 

la lactación. Un efecto parecido se ha visto en cabras, que tienen el metabolismo de 

carotenoides similar a la oveja, donde la concentración de retinol en la leche disminuyó 

al disminuir la ingestión de forraje fresco (Martin et al. (2004). Sin embargo cuando las 

diferencias de ingestión de carotenoides entre dietas ricas y pobres en dichos 

compuestos en vacas de leche son elevadas, la concentración de retinol y β-caroteno es 

superior en los animales que reciben alimento rico en carotenoides (Calderón et al., 

2007).  

La semana de la lactación tuvo efecto sobre la concentración de retinol en la leche (P < 

0,001), siendo superior la concentración en la semana 1 al resto de semanas (P < 0,005). 

Estos resultados concuerdan con los resultados de varios estudios en ovejas (Weir et al., 

1949) y en vacas (Calderón et al., 2006), que demuestran que el calostro presenta una 

gran concentración de retinol, la cual va descendiendo, rápidamente durante la primera 

semana de la lactación y más lentamente en las semanas posteriores. Las mayores 

concentraciones de retinol en la leche observadas en la primera semana de lactación 

están de acuerdo con los resultados observados en distintos estudios en los que se 

suplementaba a las ovejas con vitamina A (Batra y Hidiroglou, 1995, Asadian et al., 

1996, Koutsoumpas et al., 2013), los cuales concluyeron que la suplementación con 

vitamina A en la dieta materna durante la gestación, aumenta significativamente su 

concentración en el calostro y la leche de la madre alrededor del parto y durante los 

primeros días de la lactación. Esto se debe principalmente a que la vitamina A se 

transporta como retinol unido a sus proteínas de transporte RBP, y alrededor del parto 

aumenta notablemente en la glándula mamaria los receptores implicados en la captación 

de RBP-retinol, lo que permite mayor absorción de la vitamina A y mayor transferencia 

en el calostro (Debier et al., 2005). 

En la Figura 10 se muestra la evolución de la concentración de α-tocoferol en la leche 

de las ovejas según el forraje recibido. Dicha concentración en la leche dependió del 

tipo de forraje (pradera vs. heno) ingerido por la oveja (P< 0,001) y de la semana de la 

lactación (P < 0,001). A lo largo de toda la lactación, la concentración de α-tocoferol en 

la leche fue mayor, un 50% de media, en las ovejas del lote Pastoreo que en las de lote 
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Estabulado (P < 0,001), debido principalmente al mayor contenido de α-tocoferol en el 

pasto que en el heno (Tabla 2). No se han encontrado resultados comparables en ovino 

según la alimentación forrajera ya que la mayoría de los estudios se han centrado en el 

estudio del efecto de α-tocoferol administrado en forma oral o inyectada. Hay una 

relación directa y positiva entre la ingestión de α-tocoferol y su concentraron en leche 

tanto en vacas (Calderón et al., 2006, Butler et al., 2008) como en cabras (Delgado-

Pertíñez et al., 2013). La suplementación con acetato de tocoferol en la dieta de ovejas 

provocó un incremento de la concentración de α-tocoferol en la leche (Njeru et al., 

1994, Guidera et al., 1997, Capper et al., 2005, Lee et al., 2005) de igual forma que 

cuando el α-tocoferol era administrado vía intravenosa (Meneses et al., 1994). 
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Figura 10. Concentración de α-tocoferol en la leche según el forraje ingerido por las 
ovejas.  
En una semana, letras diferentes (a,b) indican diferencias al P < 0,05 

En la leche hubo una disminución de la concentración de α-tocoferol entre la semana 1 

y 2 de lactación (P < 0,001) permaneciendo sin cambios hasta la quinta semana de la 

lactación. La disminución entre la primera y segunda semana se debe a que la 

concentración de α-tocoferol es mayor en el calostro que en la leche de oveja 

(Loudenslager et al., 1986, Njeru et al., 1994)  

5.2.3. En el plasma de los corderos  

En el plasma de los corderos, al igual que en el plasma de sus madres, se han detectado 

retinol y α-tocoferol lo que concuerda con los resultados observados por Álvarez et al. 

(2014) en corderos lechales. En corderos en pastoreo además se ha detectado luteína y 
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β-caroteno en el plasma (Álvarez et al., 2014) y luteína, zeaxantina y β-caroteno y 

(Prache et al., 2003) pero no determinaron retinol. La ingestión de carotenoides y 

tocoferol por parte de corderos destetados es mayor que en corderos lechales, que los 

ingieren a través de la leche materna, por lo que la cantidad de luteína y β-caroteno 

presente en el plasma de los lechales sea muy baja y por tanto difícil de detectar.  

La concentración de retinol de los corderos también presentó una interacción entre el 

forraje recibido por la oveja y la fase de la lactación (P = 0,001) (Figura 11). Al inicio 

de la lactación, la concentración de retinol fue similar entre tratamientos (P = 0,13), 

aunque los corderos del lote Pastoreo presentaron siempre una mayor concentración de 

retinol en el plasma que los corderos del lote Estabulado, siendo las diferencias 

significativas en la mitad  (P = 0,007) y final de la lactación (P =  0,001). 

 

Figura 11. Concentración de retinol en el plasma de los corderos según el forraje 
ingerido por la madre.  
En una fase de la lactación, diferentes letras (a,b) indican diferencias al P < 0,05 

Estos resultados contradicen los resultados encontrados por Álvarez et al. (2014), en 

corderos destetados y sacrificados con 90 días, en los cuales la concentración de retinol 

fue superior para los corderos alimentados con pienso que los alimentados en pastoreo. 

Estos mismos autores detectaron, sin embargo, en los corderos en pastoreo luteína y β-

caroteno en el plasma por lo que el metabolismo de los carotenoides puede ser diferente 

y parte del β-caroteno en estos corderos se transporta como tal, mientras que parece que 

en los corderos más jóvenes se transforma mayoritariamente en retinol. Álvarez et al. 

(2015), en una revisión sobre los carotenoides y vitamina A, expusieron que en ovino se 

asume que todo el β-caroteno se transforma en retinol, lo que no es totalmente cierto, ya 
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que se encuentran pequeñas cantidades en plasma. Parece que las fracciones 

lipoproteicas del plasma están implicadas en el transporte de los carotenoides y retinol, 

lo que puede influir en sus concentraciones de tocoferoles y carotenoides en el plasma 

(Yang et al., 1992). 

En los corderos del lote Pastoreo, la concentración de retinol se incrementó en la 

primera mitad de lactación (P = 0,001) y se mantuvo en el final de la lactación (P = 

0,68). Sin embargo, en los corderos del tratamiento Estabulado, la concentración de 

retinol se mantuvo en sus niveles basales durante toda la lactación  (P > 0,05). Parece 

ser que la dieta pobre en carotenoides no afectó a la concentración de retinol en el 

plasma porque los corderos movilizan sus reservas en el hígado para que la 

concentración en el plasma se mantenga estable (Debier y Larondelle, 2005). 

La concentración de α-tocoferol en el plasma de los corderos durante la lactación 

dependió del forraje recibido por la oveja (P = 0,01) y de la fase de la lactación (P = 

0,006) (Figura 12).  
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Figura 12. Concentración de α-tocoferol en el plasma de los corderos durante la 
lactación según el forraje ingerido por la madre. 
En una fase de la lactación, letras diferentes (a,b) indican diferencias al P < 0,05 y 

(x,y) indican diferencias al P < 0,10. 

De media, los corderos del tratamiento Pastoreo presentaron mayor concentración de α-

tocoferol en el plasma que los Estabulado (1,26 vs. 1,06; P = 0,01). La concentracion de 

α-tocoferol siguió el mismo comportamiento en ambos tratamientos. 

Cuando se determinó la concentración a lo largo de la lactación se pudo observar que al 

incio los dos tratamientos presentaron una concentración similar, sin diferencias 
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sgnificativas, sin embargo los corderos del lote Pastoreo presentaron un contenido en α-

tocoferol 20% y 31% mayor en la mitad (P = 0,08) y final (P = 0,02) de la lactación que 

los corderos Estabulados, respectivamente. Los resultados obtenidos son similares a los 

resultados obtenidos por Álvarez et al. (2014), en los cuales los corderos alimentados 

con pasto presentaron más concentración de α-tocoferol que los corderos alimentados 

con pienso (P < 0,001). De manera similar, los corderos en pastoreo de alfalfa con sus 

madres presentaron mayor concentracion de α-tocoferol que los destetados que 

recibieron pienso sin suplementación de acetato de tocoferol . El α-tocoferol en el 

plasma de los corderos tuvo una concentración promedio de 1,27 µg/ml al inicio de la 

lactación debido principalmente a la toma de calostro, posteriormente descendió a 0,99 

µg/ml por la bajada de α-tocoferol en la leche. Posteriormente, en los corderos del lote 

Pastoreo se volvió a incrementar el α-tocoferol del plasma (P = 0,02) mientras que se 

mantuvo constante en los corderos Estabulado (P = 0,15). En los corderos lactantes la 

ingestión de α-tocoferol proviene de la leche de las madres, la cual va descendiendo a lo 

largo de la lactación (González-Calvo et al., 2014), y de la ingestión de forraje fresco. 

(González-Calvo et al., 2014), en un estudio en el que comparaban los corderos 

lactantes en pastoreo de alfalfa con corderos destetados que recibían concentrado 

comercial, observaron que la concentración de α-tocoferol en el plasma de las ovejas en 

pastoreo permanenció estable en las últimas fases de la lactación, por lo que no parece 

que la ingestión de tocoferol de la leche sea la causante del incremento de la 

concentración de tocoferol en el plasma de los corderos de pastoreo. Podría ser que los 

corderos hubieran comenzado a ingerir algo de pasto (Álvarez-Rodríguez et al., 2007), 

ingiriendo un alimento rico en α-tocoferol y por tanto incrementando la concentración 

de α-tocoferol en el plasma. Según Lee et al. (2007), la concentración de α-tocoferol en 

el plasma de corderos se saturó a las 2 semanas de la inclusión de vitamina E en la dieta, 

momento en el cual se inicia su deposición en los tejidos, mientras que según Gonzalez-

Calvo et al. (2015), la saturacion se alcanzó a partir del 7 día de ingestión 

5.2.4. En el músculo de los corderos  

En los músculos Longissimus thoracis y Semitendinosus, se detectó retinol y α-tocoferol 

y luteína únicamente en el músculo Semitendinosus. No se detectó β-caroteno en 

ninguno de los músculos estudiados. De manera similar, Osorio et al. (2008) 

determinaron retinol, α- y γ-tocoferol en corderos lechales. La mayoría de los estudios 

se centran en el estudio del α-tocoferol en el músculo (Kasapidou et al., 2009, 
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D'Alessandro et al., 2012, González-Calvo et al., 2014) , habiendo escasos estudios del 

γ-tocoferol (Quaresma et al., 2012).  

La concentración de retinol en el músculo estuvo afectada por la interacción entre el 

forraje ingerido por la madre y el músculo estudiado (Figura 13) (P < 0,03). La 

concentración de retinol en el músculo Longissimus thoracis fue similar entre 

tratamientos (P = 0,72), mientras que dicha concentración en el músculo Semitendinosus 

fue un 30% superior en el tratamiento Pastoreo respecto al Estabulado (P = 0,05).  

 

Figura 13. Concentración de luteína, retinol y α-tocoferol en el músculo Longissimus 
thoracis y Semitendinosus de los corderos según el forraje ingerido por la madre. 
Dentro de un parámetro y músculo, medias con diferente letra (a,b) indican diferencias 

entre la alimentación recibida por la madre al P < 0,05 y medias con diferente letra 

(x,y) indican diferencias al P < 0,10. 

Osorio et al. (2008), encontraron que los corderos alimentados con leche reemplazante 

enriquecida en retinol y tocoferoles presentaron una concentración un 41% y 24% 

superior a los corderos alimentados con leche materna en el músculo Longissimus dorsi 

y en el músculo de la pierna (no especifica el tipo de músculo). Lo que coincide en parte 

con los resultados de nuestro estudio donde se encontró más retinol en el músculo 

Semitendinosus que en el músculo Longissimus thoracis (0,74 vs 0,40 mg/kg MF, 

respectivamente; P = 0,001). 

La concentración de α-tocoferol dependió del alimento ofrecido a la madre (P < 0,001) 

y del tipo de músculo (P < 0,001). Los corderos de lote Pastoreo presentaron mayor 

concentración de α-tocoferol que los corderos del lote Estabulado tanto en el músculo 
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Longissimus thoracis (37%) como en el Semitendinosus (39%) (P < 0,001). Resultados 

similares encontraron y observaron que el contenido en α-tocoferol en el músculo 

Semimembranosus fue un 56% superior en el de los corderos cuyas madres pastaban 

frente a aquellos cuyas madres estaban estabuladas. Así mismo, corderos lactantes en 

pastoreo de alfalfa presentaron una concentración de α-tocoferol superior que los 

estabulados alimentados con concentrado (González-Calvo et al., 2014). Las diferencias 

entre estudios se deben a que otros factores influyen en la deposición del α-tocoferol 

como son la alimentación (Descalzo et al., 2005), el tipo de músculo (González-Calvo 

et al., 2014) y la edad de los corderos al sacrificio (Turner et al., 2002, Santé-

Lhoutellier et al., 2008). En cuanto al músculo, se encontró en el presente estudio 

mayor concentración de α-tocoferol en el músculo Longissimus thoracis que en el 

Semitendinosus (ver discusión en el punto 5.3.4.)  

La concentración de luteína, detectada únicamente en el músculo Semitendinosus, 

dependió de la alimentación (D'Alessandro et al., 2012) ingerida por la madre (Figura 

9). Los corderos del lote Pastoreo presentaron mayor concentración de luteína en el 

músculo que los del lote Estabulado (P < 0,001), reflejando las diferencias en la 

ingestión de luteína de la pradera y del heno (582 µg/g MS vs. 100 µg/g MS). No ha 

sido posible encontrar referencias en la bibliografía sobre el contenido de luteína en el 

músculo de rumiantes. Según Yang et al. (1992), el único carotenoide que se deposita 

en ovino es la luteína y en cantidades mínimas, especialmente si se compara con el 

vacuno (Álvarez et al., 2015). La detección de luteína en el músculo Semitendinosus y 

no en el Longissimus dorsi puede estar relacionado con un menor contenido en grasa 

intramuscular en el L. dorsi, aunque ello no se puede comprobar por la falta de muestra 

del músculo Semitendinosus para la determinación de la grasa intramuscular.  

5.3 Concentración de vitaminas liposolubles según la inclusión de taninos 

condensados en el pienso de la oveja 

Los estudios sobre la inclusión de taninos condensados en la dieta de rumiantes se han 

centrado en el metabolismo ruminal y los efectos sobre el perfil de ácidos grasos en la 

leche y carne derivados de los cambios producidos en el rumen. En humana se ha 

estudiado el efecto de los taninos condensados por su alta actividad antioxidante 

(Santos-Buelga y Scalbert, 2000, Acamovic y Brooker, 2005).  
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5.3.1. En el plasma de la oveja 

La concentración de retinol en el plasma de las ovejas no se vio afectado por la 

inclusión de taninos condensados en el pienso (P = 0,82) (Figura 14).  
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Figura 14. Concentración de retinol en el plasma de la oveja en las fases de la lactación 
según la inclusión de taninos condensados en el pienso. 
Control: pienso control; con TC: pienso con 10% de quebracho (75% de TC) 

El efecto de la inclusion de taninos de taninos condensados sobre la concentración de 

retinol en el plasma podría ser debida a la protección de los polifenoles frente a la 

oxidación de las lipoproteínas de baja densidad que transportan el retinol. Sin embargo, 

estudios en humana no han encontrado efecto de la ingestión de polifenoles del vino o 

del té en la oxidación de las lipoproteínas del plasma y por lo tanto sería esperable que 

tampoco lo tuvieran sobre la concentración del retinol que se transportan dichas 

lipoproteínas (Santos-Buelga y Scalbert, 2000). En otro estudio en humana, la adición 

de catequina, (componente del quebracho), si que tuvo efectó sobre la concentración de 

β-caroteno y α-tocoferol en el plasma, pero no se estudio efecto sobre la concentracion 

de retinol (Lotito y Fraga, 2000). En el presente estudio, la incorporación de quebracho 

a la dieta fue propablemente insuficiente como para ver los efectos en el plasma. 

Con respecto al incremento de concentración de retinol en las ovejas de pastoreo se 

puede deber, tal y como se ha explicado anteriormente, a que en la fase inicial de la 

lactación, los rumiantes excretan retinol en la leche por lo que desciende con respecto a 

la fase final de la gestación el retinol en el plasma pero conforme avanza la lactación, 

las concentraciones de retinol se recuperan a las concentraciones previas al parto 

(Debier et al., 2005) 
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Las concentración de α-tocoferol en el plasma de las ovejas tampoco se vio afectado por 

la inclusion de taninos en el pienso de la oveja (P = 0,66) pero si por la fase de la 

lactación (P < 0,001) (Figura 15).  

 

Figura 15. Concentración de α-tocoferol e el plasma de la oveja según la inclusión de 
taninos condensados en el pienso durante la lactación 
Control: pienso control; con TC: pienso con 10% de quebracho ( 75% de TC). 

Al igual que el retinol, el α-tocoferol se transporta en el plasma ligado a las 

lipoproteinas de baja densidad, y la ingestion de polifenoles no parece afectar a las 

dichas lipoproteinas en el plasma (Santos-Buelga y Scalbert, 2000). En un estudio en 

humanos se ha comprobado que los taninos condensados y parte del α-tocoferol se 

transporta en las albuminas en el plasma (Li et al., 2013), lo que por su efecto 

antioxidante los taninos protegerian el tocoferol circulante. En este sentido, en un 

estudio en humanos se observa que la adición de catequina, modificó la concentración 

de α-tocoferol en el plasma (Lotito y Fraga, 2000). El escaso efecto que tuvo la 

inclusion de quebracho en el pienso puede ser debido a la baja concentracion de taninos 

condensados así como la escasa eficacia que presentan la adición de quebracho sobre la 

producción animal (Carreño et al., 2015). 

La concentración de α-tocoferol se incrementó un 35% la primera mitad (P=0,01) y un 

42% en la segunda mitad de la lactación (P = 0,001). Tal y como se ha explicado con 

anterioridad, la concentración baja de α-tocoferol en el plasma de las ovejas en las 

primeras fases de la lactación se debe a la mayor acumulacion de α-tocoferol en el 

calostro alrededor del parto (Debier et al., 2005).  

0,0

0,5

1,0

1,5

2,0

inicial media final

α
-t
oc

of
er

ol
, µ

g/
m

l s
u
er

o 

etapa de la lactación

 con TC control



 Resultados y discusión 

 

59 

 

5.3.2. En la leche en la oveja 

La concentración de retinol en la leche se vio afectada por la interacción entre la adición 

de taninos condensados en el pienso y la semana de lactación (P < 0,01) (Figura 16). La 

concentración de retinol en la leche de las ovejas que recibieron el pienso control se 

redujo paulatinamente desde la primera a la cuarta semana, no modificándose entre la 

cuarta y la quinta semana (P = 0,19). En cambio, en las ovejas que recibieron el pienso 

con el 10% de taninos condensados, el retinol de la leche se redujo rápidamente entre la 

primera y tercera semana (P < 0,001), permaneciendo estable hasta la quinta semana (P 

= 0,57).  
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Figura 16. Concentración de retinol en la leche según la inclusión de taninos 
condensados en el pienso de la oveja durante la lactación. 
Control: pienso control; con TC: pienso con 10% de quebracho ( 75% de TC) 

Las diferentes pautas supusieron que la inclusión de taninos condensados en la dieta 

incrementó la concentración de retinol en la leche comparada con el control en la 

primera semana (25,9 vs. 17,1 µg/ml para 10%TC y control respectivamente; P = 0.04) 

mientras que la redujo en la tercera semana (7,4 vs. 10,2 µg/ml para 10%TC y control 

respectivamente; P = 0,05). 

No está claro el motivo del incremento del retinol en la primera semana de la lactación 

con la inclusión de taninos condensados en el pienso de la oveja. Según Craig (1997), 

los flavonoides tienen un efecto sobre las vitaminas con poder antioxidante, 

potenciando su actividad. Los polifenoles son capaces de proteger las lipoproteínas de 

baja densidad de la oxidación (Santos-Buelga y Scalbert, 2000). La protección de las 

catequinas frente a la oxidación del β-caroteno en el plasma podría pensarse que 
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también tiene lugar frente a la oxidación del retinol de la leche. Al tener mayor 

concentración de retinol en el calostro y en el inicio de la lactación podría ser que el 

efecto de la protección fuera más evidente, incrementándose por tanto la concentración 

de retinol en la leche de los animales que ingirieron pienso con taninos condensados 

comparados con los del pienso Control.  

La concentración de α-tocoferol tendió a ser diferente según la inclusión de taninos 

condesados en el pienso según la semana de la lactación (P = 0,08) (Figura 17). En la 

primera semana de la lactación, la concentración de α-tocoferol en la leche fue superior 

en las ovejas del pienso con taninos condensados que en las del pienso control (P = 

0,03), pero no aparecieron diferencias en el resto de semanas (P > 0,05). En promedio, 

la inclusión de taninos condensados en la dieta incrementó la concentración de α-

tocoferol en la leche (0,66 vs. 0,48 µg/ml, P = 0,02).  

 

Figura 17. Concentración de α-tocoferol en la leche según la inclusión de taninos 

condensados en la dieta durante la lactación. 

Al igual que en el retinol, no existen estudios que relacionen la incorporación de taninos 

condensados con la concentración de α-tocoferol en la leche. Podemos suponer que se 

los taninos condensados potencian el efecto del α-tocoferol al ser una vitamina 

antioxidante (Craig, 1997).  

Se ha visto que cuando se añade catequina a la leche se reduce la degradación del retinol 

y α-tocoferol de la leche por parte de la luz (Jung, 2011). Podría ser que la catequina 

aportada por el quebracho ingerido por la oveja protegiera de la degradación al α-

tocoferol de la leche y por eso la concentración en las ovejas que recibieron el pienso 
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con taninos condensados tuviera mayor concentración de éste. Según un estudio de 

Pazos et al. (2009), la reducción de los radicales de α-tocoferil en la presencia de 

proantocianidinas y otros compuestos fenólicos se atribuye a que los compuestos 

fenólicos donan electrones o átomos de hidrógeno al radical de α-tocoferil y por tanto 

recuperan la actividad antioxidante del α-tocoferol. 

5.3.3. En el plasma del cordero 

La inclusión de taninos en el pienso de la madre tampoco tuvo efecto sobre la 

concentración de retinol en el plasma de los corderos en ninguna de las fases de la 

lactación (P = 0.50) (Figura 18). La escasa cantidad de taninos condesados que 

ingirieron los corderos a través de la leche de su madre no fue suficiente para afectar a 

la concentración del retinol del plasma de los corderos. 

 

Figura 18. Concentración de retinol en el plasma de los corderos según la inclusion de 

taninos en el pienso de la madre. 

La inclusión de taninos condensados en el pienso de la oveja afectó al contenido de α-

tocoferol en el plasma de los corderos en la mitad de la lactación (P = 0,03) (Figura 19), 

presentando los corderos cuyas madres recibieron la suplementación de taninos 

condensados mayor concentración que aquellos cuyas madres recibieron el pienso 

control. En global, durante toda la lactacion, los corderos del tratamiento Con Taninos 

Condensados presentaron una concentracion ligeramente más elevada que los corderos 

del tratamiento Control (1,22 vs. 1,10 µg/ml; P = 0,08). Las pequeñas diferencias 

anteriormente anotadas sobre el contenido en α-tocoferol en la leche de la madre, son 

0

4

8

12

16

inicial media final

re
ti
n
ol

, µ
g/

m
l s

u
er

o

etapa de lactación

con TC control



Resultados y discusión  

62 

responsables de una ligera mayor ingestión de α-tocoferol por parte de los corderos del 

tratamiento taninos condensados, lo que se ha reflejado en el plasma de los corderos.  
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Figura 19. Concentración de α-tocoferol en el plasma de los corderos según la inclusion 

de taninos en el pienso de la madre. 

5.3.4. En el músculo del cordero 

La concentración de retinol en el músculo se vio afectada por el tipo de músculo  (P < 

0,001) pero no por la inclusión de taninos condensados en el pienso (P = 0,85). Dado 

que en el plasma de los corderos no se encontraron diferencias en la concentración de 

retinol debidas a la inclusión de taninos condensados en el pienso de las madres era 

esperable que tampoco las hubiera en el músculo. De media, la concentración de retinol 

fue superior en el músculo Semitendinosus  que en el Longissimus thoracis (0,74 vs. 

0,42 µg/kg MF, respectivamente; P < 0,001). En corderos lechales, Osorio et al. (2008), 

encontraron más retinol en el músculo de la pierna que en músculo Longissimus 

thoracis, en vacuno Gobert et al. (2010) encontraron más retinol en el músculo 

Longissimus thoracis que en el músculo Semitendinosus  a diferencia del porcino donde 

se ha visto más α-tocoferol en el músculo Semitendinosus que Longissimus thoracis 

(Realini et al., 2013). 

La concentración de α-tocoferol en el músculo se vio afectada por la inclusión de 

taninos condensados en el pienso de las ovejas de manera diferente en los dos músculos 

estudiados (Figura 20). La inclusión de taninos condensados en el pienso de las ovejas 

afectó a la concentración de α-tocoferol en el músculo Longissimus thoracis (P = 0,04) 
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pero no en el Semitendinosus. Además la concentración fue mayor en el músculo 

Longissimus thoracis que en el Semitendinosus (1,36 vs. 1,09 mg/kg MF; P < 0,001). 

 

 

Figura 20. Contenido de luteína, retinol y α-tocoferol en el músculo Longissimus 
thoracis y Semitendinosus de los corderos según la inclusión de taninos condensados en 
el pienso de la oveja.  
Dentro de un parámetro y músculo, letras diferentes (a,b) indican diferencias al P < 

0,05 

La concentración de α-tocoferol se incrementó un 14% con la inclusión de taninos 

condensados en el pienso en el músculo Longissimus thoracis (P = 0,04) pero no se 

incrementó en el músculo Semitendinosus (P = 0,16) (Figura 20). Un posible efecto 

indirecto de los taninos como antioxidantes podría implicar la modificación de la 

absorción y deposición de la vitamina E en el músculo. Una dieta con extracto de uva, 

que contiene taninos condensados, no modificó la concentración de α-tocoferol en el 

músculo Longissimus dorsi de corderos comparado con la dieta control (Muíño et al., 

2014). Sin embargo, la dosis empleada en dicho estudio no modificó los polifenoles en 

el músculo ni la oxidación lipídica. Sin embargo, en otro estudio de corderos la 

inclusión de taninos del sorgo tuvo efecto antioxidante en la carne, aunque no evaluaron 

la concentración de α-tocoferol (Luciano et al., 2011). En terneros, la inclusión de 

taninos condensados con el sorgo no modificó la cantidad de α-tocoferol el músculo 

Longissimus lumborum de terneros, pero redujo la concentración de γ-tocoferol (Larraín 

et al., 2008).  
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Con respecto a la distinta deposición de α-tocoferol en los músculos estudiados, los 

resultados obtenidos muestran que el α-tocoferol se acumula menos en Semitendinosus 

que en Longissimus thoracis (1,09 vs. 1,35 mg/kg FM), al revés que el retinol. Osorio et 

al. (2008) encontraron también diferencias entre músculos en corderos lechales. Existe 

una interacción entre la deposición de carotenoides y tocoferoles en el músculo en 

vacuno (Yang et al., 2002, Descalzo et al., 2005) por lo que se podría suponer que 

también podría existir entre el retinol y α-tocoferol en corderos lechales. Según den 

Hertog-Meischke et al. (1997), las diferencias en α-tocoferol entre músculos se deben a 

diferencias en el número de mitocondrias entre músculos, que es donde se almacena el 

α-tocoferol.  

5.4. Análisis discriminantes 

Se ha realizado un análisis discriminante con las concentraciones de retinol y α-

tocoferol para el plasma y leche de las ovejas, plasma y músculos de los corderos. En 

las siguientes figuras se presenta el porcentaje de animales clasificados correctamente 

según el forraje ingerido por la oveja y según la inclusión de los taninos condensados en 

el pienso de la oveja.  

- Análisis discriminante del plasma de las ovejas. 

El análisis discriminante utilizando el retinol y α-tocoferol determinado en el plasma en 

las tres fases de la lactación fue más preciso según el forraje ingerido por la oveja que 

según la inclusión de taninos condensados en el pienso de la oveja (Figura 21). Dicho 

análisis llega a clasificar correctamente más de 70 % de los animales alimentados con 

heno y más del 65% de los animales alimentados con pasto. La mayor precisión en el 

pastoreo se da en el último muestreo, momento en el cual presentaron la mayor 

concentración de dichas vitaminas. El análisis discriminante del plasma con respecto a 

la inclusión de taninos condensados en el pienso no dio buenos resultados. Podría ser 

que la menor variabilidad entre las ovejas que ingerían heno (tratamientos Estabulado) 

haga más fácil su clasificación. 
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Figura 21. Porcentaje de ovejas clasificadas en su tratamiento según la concentración de retinol 

y α-tocoferol en el plasma en las tres fases de la lactación. 

- Análisis discriminante de la leche de las ovejas. 

Las ovejas del lote Estabulado se clasificaron correctamente por encima del 70% en 

todas las semanas de lactación, mientras que las del lote Pastoreo se clasificaron peor, 

especialmente en la última semana de la lactación, momento en el cual había 

únicamente 6 ovejas y 4 presentaron menor concentración de la esperable en 

condiciones de pastoreo. 

 

Figura 22. Porcentaje de ovejas clasificadas en su tratamiento según la concentración de 

retinol y α-tocoferol en la leche según la semana de la lactación. 
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Al igual que en el plasma de las ovejas, dado que sólo se vieron efectos puntuales de los 

taninos condensados en el pienso de las ovejas sobre la concentración de las vitaminas, 

tampoco el análisis discriminante fue capaz de diferenciar correctamente entre lotes. 

- Análisis discriminante del plasma de los corderos 

El análisis discriminante del plasma de los corderos clasificó correctamente más del 

70% de los corderos del lote Estabulado mientras que la clasificación en los corderos 

del lote Pastoreo no fue buena en los primeros muestreos pero fue del 80% en el 

muestreo previo al sacrificio (Figura 23). El porcentaje de acierto es superior al 

encontrado por Álvarez et al. (2014) en corderos ligeros utilizando el retinol y α-

tocoferol en el plasma de los corderos en el momento del sacrificio. La clasificación 

según la inclusión de taninos condensados en el pienso no fue buena. 

 

Figura 23. Porcentaje de corderos clasificados en su tratamiento según la concentración 

de retinol y α-tocoferol en el plasma según la fase de la lactación. 

- Análisis discriminante de los músculos de los corderos 

La clasificación de los corderos según la concentración de retinol, tocoferol en el 

Longissimus thoracis y el Semitendinosus en los corderos del lote Estabulado fue 

correcta en más del 87% de los corderos y en los del lote Pastoreo del 75% (Figura 24). 

No se consigue una buena clasificación de los corderos según la inclusión de taninos 

condensados en el pienso de las ovejas. 
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Figura 24. Porcentaje de corderos clasificados en su tratamiento según la concentración 

de retinol y α-tocoferol en el músculo. 

En resumen, se puede observar que la utilización del retinol y α-tocoferol en los 

distintos productos animales utilizados no clasifica al 100% a los animales según el 

forraje ingerido por lo que se debería complementar con otros biomarcadores, como 

podrían ser los ácidos grasos de cadena larga o los ácidos grasos omega 3.

87
77

94

75

0
10
20
30
40
50
60
70
80
90

100

heno pasto heno pasto

Longissimus
thoracis

Semitendinosus

cl
as

if
ic
ad

o 
co

rr
ec

ta
m

en
te
, %

50 50

59

52

con_TC control con_TC control

Longissimus
thoracis

Semitendinosus





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSIONES 

 





 Conclusiones 

71 

Como conclusiones generales del presente trabajo se puede decir: 

1. La pradera presentó mayor concentración en carotenoides y tocoferoles que el 

heno de pradera y el pienso. 

2. La concentración de retinol y de α-tocoferol en el plasma de la oveja se ha visto 

afectada por la interacción entre el forraje recibido y la fase de la lactación. Las 

ovejas del tratamiento Estabulado presentaron menores concentraciones de retinol 

y α-tocoferol que las de Pastoreo. En el grupo Pastoreo dichas concentraciones 

incrementaron a medida que avanzaba la lactación. La inclusión de taninos 

condensados no tuvo efecto.  

3. La concentración de retinol y de α-tocoferol en la leche dependieron tanto del 

forraje recibido como de la semana de la lactación (la primera semana presentó 

mayor concentración de retinol y α-tocoferol que las otras semanas). La inclusión 

de taninos condensados tuvo efecto en la primera sobre la concentración del retinol 

y de α-tocoferol. En promedio, la inclusión de taninos condensados incrementó la 

concentración de α-tocoferol de la leche.  

4. Los corderos lactantes en pastoreo cuyas madres fueron alimentadas con hierba 

fresca presentaron mayor concentración de retinol y de α-tocoferol en el plasma 

que los corderos estabulados cuyas madres fueron alimentadas con heno. 

5. Los corderos del tratamiento Pastoreo presentaron mayor concentración de α-

tocoferol en el músculo Longuissimus thoracis y Semitendinous que los corderos 

estabulados y mayor concentración de retinol en el Semitendinosus. La luteína sólo 

se acumuló en el músculo Semitendinous, siendo mayor en los corderos del 

tratamiento Pastoreo que en los del Estabulado. La inclusión de taninos 

condensados incrementó el contenido de α-tocoferol en el músculo Longissimus 

thoracis. 

6. Finalmente, la fiabilidad de la discriminación de los corderos debe mejorarse con 

la ayuda de otros biomarcadores. De acuerdo con su sistema de alimentación 

(pastoreo vs. estabulado), el porcentaje de clasificación correcta de la carne de 

cordero fue superior al 75%, estando mejor clasificados los corderos que procedían 

del tratamiento Estabulado. La clasificación según la inclusión o no de taninos fue 

imprecisa, por lo que se debe seguir estudiando. 
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