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RESUMEN 

El Disco Stirling es un sistema de concentración solar en fase de desarrollo, compuesto por un 

concentrador, un conjunto cavidad-absorbedor y un motor Stirling. El concentrador focaliza la 

energía solar en un punto, el cual es el foco caliente del motor Stirling; el papel de la cavidad en 

este sistema es el de hacer que el intercambio de energía entre el concentrador y el motor sea lo 

mejor posible. 

Hasta el momento, los estudios llevados a cabo no reportan resultados concluyentes en cuanto a 

una geometría óptima, existiendo multitud de variantes que influyen en el diseño de la misma 

(condiciones climáticas de operación, potencia del sistema, propiedades de los materiales…). 

Algunos de ellos proponen la inclusión de una cubierta transparente que cubra la cavidad, 

constituyendo ésta una alteración del funcionamiento de la cavidad, tanto a nivel de convección, 

como de conducción y radiación.  

Tras realizar una revisión de los conceptos que rigen la transferencia de calor en una cavidad y 

los estudios realizados hasta el momento, se parte de una geometría de cavidad con cubierta 

transparente para realizar un modelo térmico. Éste ha de permitir la variación geométrica de la 

misma, así como la variación de las propiedades de los materiales de los que está construida, 

con el objeto de poder realizar así un amplio análisis del comportamiento del sistema.   

La herramienta utilizada para desarrollar el modelo térmico es Matlab, la cual no presenta 

ningún tipo de limitación de variables y constituye un potente instrumento de simulación. Para 

el desarrollo del modelo se utiliza el método de las diferencias finitas, incluyendo intercambio 

de calor por conducción, convección y radiación. El intercambio de calor por radiación se 

evalúa utilizando el método de las radiosidades, y se contemplan dos espectros en su desarrollo, 

uno referente a la radiación de onda larga (radiación emitida por la cavidad y la cubierta) y otro 

referente a la radiación de onda corta (radiación emitida por el Sol). Para implementar el modelo 

de cubierta se ha utilizado el método de la radiación neta y los balances de energía que a partir 

de él se pueden plantear. La fuente solar, que incide sobre la cubierta transparente se divide en 

diferentes zonas con valores de irradiación distintos para que la situación se asemeje a la real en 

la medida de lo posible. 

Las principales dificultades que surgen al desarrollar el modelo están relacionadas con el hecho 

de que la geometría sea variable, teniendo que definir de forma “dinámica”, tanto los balances 

de energía, como la evaluación de radiosidades, como de factores de vista (calculados de 

manera exacta), ya que el número de superficies sobre las que éstos se evalúan dependen de la 

geometría y la precisión deseadas para resolver el problema (variables de entrada). 

La principal ventaja y resultado del trabajo es que se ha desarrollado una potente herramienta 

que evalúa de forma conjunta todas las pérdidas que tienen lugar en la cavidad, y que puede 

desempeñar un papel muy útil en el diseño de cavidades para disco Stirling (tanto con cubierta 

transparente como abiertas). Esta herramienta se ha utilizado para obtener unas pautas de diseño 

geométrico y de selección de materiales a utilizar, así como analizar los beneficios de inclusión 

de una cubierta transparente en el modelo.  
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NOMENCLATURA 

 

A Área  

a Absortividad superficial en desarrollo bibliográfico de cubierta 

C Concentración 

cp Calor específico a presión constante 

DA-B Coeficiente de difusión binaria en una mezcla A-B 

Fij Factor de vista entre superficies i-j 

G Irradiación 

h Coeficiente de convección 

J Radiosidad 

k Coeficiente de extinción 

L Longitud 

n Coeficiente de refracción 

NA Flujo másico de una especie A 

Nu Número de Nusselt 

Q, q Calor transferido 

   Calor generado 

RT Resistencia térmica 

r Coordenada cilíndrica (reflectividad superficial en desarrollo bibliográfico 

 cubierta) 

T Temperatura 

u Velocidad en dirección tangencial a la superficie 

v Velocidad en dirección normal a la superficie 

W Vatio 

x Coordenada cartesiana 

y Coordenada cartesiana 

z Coordenada cartesiana (espesor en modelo de cubierta) 
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Letras Griegas  

  Absortividad  

  Emisividad 

    Rendimiento 

θ Ángulo 

                    Conductividad térmica 

  Reflectividad (densidad en el desarrollo de convección) 

   Coeficiente de Stefan-Boltzmann 

  Transmisividad (tensor de esfuerzos viscosos en planteamiento convectivo) 

     Flujo solar 

    Paso en eje “r” en MDF 

    Paso en eje “z” en MDF 

Subíndices 

A Especie química 

cond Conductivo 

e Valor superficial 

f Fluido 

i Incidente 

k Cuerpo 

l Pérdida 

λ Longitud de onda 

max Máximo 

o Expulsado 

ol Espectro de emisión de onda larga 

oc Espectro de emisión de onda corta 

rad radiante 

s Sólido 

w Valor en la pared (dirección en desarrollo de modelo radiante) 

∞        En un intercambio fluido-sólido, valor donde no hay influencia del sólido  
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1. ESTRUCTURA, OBJETIVOS Y CONTEXTO 

1.1. Introducción 

El desarrollo de las tecnologías de aprovechamiento de energías renovables constituye 

actualmente uno de los principales motores de la actividad investigadora en todo el mundo. La 

mayoría de las empresas, ya sean de gran o pequeño tamaño, enfocan su actividad de I+D en 

este tipo de proyectos, y en aquello que queda dentro del marco de la eficiencia energética, 

estudiando alternativas de mejora en su producto, líneas de producción, o incluso realizando 

análisis de ciclo de vida. Este hecho hace que las energías renovables y la eficiencia energética 

sean buque insignia de la imagen de marketing, áreas de interés y crecimiento mostrada por las 

empresas. 

Las revistas de investigación especializadas en este tema crecen y crecen cada año, así como las 

publicaciones y la actividad de grupos investigadores en universidades de todo el mundo, 

existiendo dentro de la propia universidad de Zaragoza algunos importantes. 

Según datos de “Bloomberg New Energy Finance”, la inversión mundial en proyectos de 

biomasa, energía geotérmica, eólica de más de 1 MW, energía hidroeléctrica de entre 1 y 50 

MW, proyectos de energía solar, energía oceánica y biocombustibles creció de 227 billones de 

dólares americanos en el año 2010, a 279 billones en el año 2011, para reducirse en el año 2012 

a 250 y en el año 2013 a 214 por motivos económicos evidentes (Figura 1). En el año 2012 se 

estimó que el 19 % del consumo de energía final tuvo su origen en energías renovables. De 

todos los sistemas, el que experimenta un mayor crecimiento es del de concentración solar 

térmica (un 48% de crecimiento desde el año 2008 al 2013) y el de solar fotovoltaica (un 55 % 

de crecimiento desde el año 2008 al 2013). Aunque presenten crecimientos más moderados, su 

capacidad instalada y su fiabilidad hacen que los sistemas de generación eólica sean los más 

sólidos y prometedores [1]. 

 

Figura 1 Inversión global en energías renovables desde el año 2004 hasta el año 2012[1] 
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Esta explosión de los sistemas de aprovechamiento de energías renovables y eficiencia 

energética está íntimamente ligada a la más que necesaria intervención en la gestión de la 

energía con el fin de limitar las emisiones de gases contaminantes. Con este objetivo se han 

firmado diferentes tratados, entre los que destacan el por todos conocido Protocolo de Kioto del 

11 de diciembre de 1997, o el objetivo del 20-20-20 de la Unión Europea, por el cual los estados 

miembros se comprometían a reducir para el año 2020 el 20 % del consumo de energía 

primaria, el 20 % de las emisiones de gases de efecto invernadero, e incrementar la contribución 

de las energías renovables al 20 % del consumo final. 

Sin profundizar demasiado en el tema, se podría decir que el funcionamiento del mercado 

eléctrico exige el la existencia de diferentes sistemas de producción en paralelo para permitir 

cubrir la demanda en cualquier situación, y es por esto que es cada vez más interesante la 

combinación de diferentes tecnologías (producción eléctrica a partir de energía solar térmica, 

eólica, sistemas de captura de CO2…). Existen también situaciones en las que el acceso a red es 

imposible o muy complicado, pero existe una demanda eléctrica, lo cual modifica los valores de 

rentabilidad que se puedan establecer de forma tradicional. 

Así pues, en este contexto se puede valorar que los sistemas de concentración solar, y por tanto 

el Disco Stirling y el desarrollo del presente proyecto, entran con fuerza en el parqué de 

desarrollo de los sistemas de producción eléctrica a partir de energías renovables, pues la 

energía solar, al margen de sus problemas, es la fuente energética renovable más abundante en 

el planeta Tierra.  

1.2. Contexto 

El Disco Stirling es un sistema de concentración solar de producción eléctrica de poca potencia 

(entre 3 y 25 kW). Actualmente existen diferentes líneas de desarrollo de estos equipos en 

varios centros en el mundo, entre los que destacan las plataformas existentes en Odeillo [2], 

Würzburg [3], Milan [4], Sevilla [5] o Albuquerque [6], o empresas privadas como Cleanergy 

[7], o Abengoa Solar. Las partes principales del Disco Stirling son el receptor, el concentrador y 

el motor Stirling. Actualmente, la mayoría de los estudios están tratando de mejorar la eficiencia 

del sistema cavidad-receptor, incluyendo en determinados de ellos una cubierta transparente.  

Se podría decir que el Disco Stirling es un equipo en fase de desarrollo que en cuestión de no 

mucho tiempo ha de saltar de forma masiva al mercado. 

Este proyecto se centra en el estudio del conjunto cavidad-receptor, principal potencial de 

mejora en estos equipos, dentro de la línea de investigación que dirige Carlos Monné en el 

Departamento de Ingeniería Mecánica de la Universidad de Zaragoza. 
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1.3. Objetivos y Alcance 

Como ya se ha comentado, el Disco Stirling es un dispositivo en fase de desarrollo. El principal 

potencial de mejora de este sistema lo constituye la cavidad del mismo, elemento que se verá 

con mayor detalle en sucesivos apartados. La mayor parte de los diseños de cavidad que se han 

desarrollado son abiertos, incorporando en algunos casos una cubierta transparente que puede 

tener efectos, tanto positivos como negativos en función de las condiciones de trabajo o la 

geometría de este elemento. 

El principal objetivo de este proyecto es realizar un modelo térmico teórico en Matlab para una 

cavidad con cubierta transparente, que permita conocer el funcionamiento de este sistema, poder 

compararlo con un modelo sin cubierta y evaluar la idoneidad del mismo (valorando los 

intercambios de calor por conducción, convección y radiación). 

Para conseguir llevar a cabo el objetivo global del sistema se han definido varios objetivos 

intermedios respecto del modelo, en los cuales reside la mayor complejidad de desarrollo del 

mismo. Se trata de establecer un modelo en el que están conectados la fuente solar, la cubierta 

transparente, la cavidad y el receptor (modelado de forma aproximada), de forma que respondan 

de forma correcta a modificaciones de la geometría del modelo. Así pues, el objetivo es la 

obtención de un modelo teórico para una cavidad de geometría variable con cubierta 

transparente que incluya el intercambio de calor por radiación, convección y radiación. 

Como objetivo complementario, y con el fin de poder enmarcar este trabajo en las líneas de 

investigación abiertas en torno al Disco Stirling en la actualidad, se realiza una revisión 

bibliográfica de los estudios referentes a la cavidad o al conjunto cavidad-receptor del disco. 

1.4. Estructura 

La estructura del presente proyecto va a estar constituida por tres bloques principales, el primero 

servirá para introducir el Disco Stirling, realizando una descripción básica del sistema y 

describiendo las principales aportaciones al desarrollo del mismo que han tenido lugar hasta la 

actualidad, tanto a nivel de modelo térmico y de evaluación de pérdidas, como a nivel de 

modelos o dispositivos experimentales con cubierta transparente. 

El segundo bloque va a consistir en la descripción del modelo implementado en Matlab [8]. 

El tercer y último bloque va a consistir en el análisis de los resultados que se han podido obtener 

con la herramienta/modelo desarrollada en Matlab. 
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1.5. Contexto. Energía solar térmica. 

Dentro de los sistemas de aprovechamiento de energía solar, se puede establecer un grupo para 

los sistemas fotovoltaicos y otro para los térmicos, dentro de los cuales se pueden citar los 

sistemas pasivos y los activos de captación. En el grupo que comprende estos sistemas activos 

de captación es donde se podría situar el Disco Stirling, tal y como se muestra en la Tabla 1: 

 

Tabla 1 Clasificación de los sistemas de aprovechamiento de energía solar térmica 

El ritmo de crecimiento de la energía solar es importante, pero el rendimiento y/o la fiabilidad 

actual de los sistemas de concentración en los que mayores esperanzas se albergan (sistemas de 

concentración fotovoltaicos y sistemas de concentración de alta temperatura) no es todavía 

suficientemente elevado como para irrumpir de manera masiva en el mercado. Es de esperar que 

ligada a la recuperación económica se encuentren soluciones a los problemas que presentan 

estos sistemas, tal y como se han encontrado en años anteriores para los equipos de 

aprovechamiento de energía solar térmica de baja temperatura, los cuales presentan unos 

rendimientos elevados y los resultados se están viendo cada día en las muchas instalaciones en 

las que se cuenta con ellos. 
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Algunos datos de crecimiento de producción y demanda de energía son realmente ilustrativos 

sobre la evolución mundial de las tecnologías. Tal y como ilustra el informe de 2013 del boletín 

anual “Renewable Energy Policy Network for the 21st Century” [1], en la Unión Europea, el 

70% de la producción que se volcó a la red en el año 2012 fue de origen renovable (siendo la 

mayor parte solar fotovoltaica y eólica), y en países como Alemania, las energías renovables 

supusieron en este año una 22,9 % del consumo energético, un 10,4 % del uso de calor y un 

12,6 % del total de la demanda de energía final. 

En cuanto a la energía de concentración solar, del total de la potencia instalada de energías 

renovables en el mundo en el año 2012, que asciende a 560 GW (la mayor parte se encuentra en 

China con 118 GW, España se encuentra en el cuarto lugar con 32 GW instalados), solamente 

3,4 GW correspondían a esta tecnología, pero la tendencia es más que exponencial, creciendo 

respecto del año anterior (Figura 2), y siendo España el país en el que se instalaron la mayor 

parte de las plantas.  

 

Figura 2 Capacidad de producción mundial de energía solar térmica hasta el año 2012 [1] 
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1.5.1. Sistema de concentración de Disco Stirling 

El Disco Stirling (Figura 3), en pruebas realizadas hace ya más de 10 años podía alcanzar 

rendimientos superiores al 29 % de forma global. Cada uno de los sistemas produce electricidad 

por sí mismo, y las unidades actuales varían su potencia entre 3 kWe y 25 kWe, siendo el Disco 

Stirling de 10 kWe el estándar [9].  

 

Figura 3 Disco Stirling Cleanergy [7] 

El Disco Stirling consta de tres partes principales: 

- Espejo Parabólico – Concentrador Solar: Se encarga de concentrar la energía solar en 

un punto, alcanzando factores de concentración de alrededor de 13000 soles (en función 

de la potencia del equipo).  

- Cavidad – Receptor Solar: Esta parte del equipo se encarga de recibir la energía solar 

concentrada por el espejo parabólico y transformarla en energía térmica útil 

constituyendo el foco caliente del motor Stirling. Los niveles de energía que se manejan 

en esta parte del sistema son extremadamente elevados, constituyendo un elemento 

crítico del sistema. El absorbedor es la parte de este componente que actúa como un 

intercambiador que cede energía al fluido de trabajo, siendo un “heat pipe” en 

receptores volumétricos. La cavidad constituye el cuerpo que rodea al absorbedor y se 

encarga de que las pérdidas por radiación, convección y conducción sean lo menores 

posibles. 

- Motor Stirling: El motor Stirling es un motor de combustión externa que basa su 

funcionamiento en el ciclo del mismo nombre, siendo éste de una eficiencia bastante 

elevada y presentando una ventaja clara respecto de los motores de combustión interna, 

y es que la energía térmica puede aportarse mediante otro tipo de sistemas que no son 

necesariamente sistemas de combustión, y que en el caso del Disco Stirling es energía 

solar. 
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2. DESCRIPCIÓN Y PLANTEAMIENTO DEL PROBLEMA 

En este Trabajo Fin de Máster se pretende realizar un estudio de cavidades de disco Stirling. En 

el apartado 3 se plantean algunos conceptos básicos sobre cavidades y la transferencia de calor 

que tiene lugar en ellas, así como una revisión bibliográfica de las mismas y los modelos 

llevados a cabo para su solución. 

En  cuanto a las cavidades de disco Stirling existen diferentes opciones de desarrollo, entre las 

que se encuentran: 

- Cavidades abiertas 

- Cavidades cerradas con cubierta transparente 

En este trabajo se parte de una cavidad cuya geometría cilíndrica queda descrita en el apartado 5 

del trabajo (ya utilizada en trabajos previos en la línea de investigación en la que se enmarca el 

trabajo). Esta geometría tiene dos partes diferenciadas, las cuales se asemejan a dos troncos de 

cono invertidos unidos (tal y como muestra la Figura 4), siendo el más pequeño un 

reconcentrador para disminuir las pérdidas por desenfoque, y el mayor la zona principal de 

intercambio térmico de la cavidad. En esta cavidad, cuyo objetivo es hacer que el intercambio 

térmico entre disco solar parabólico y motor Stirling sea lo mejor posible, la energía solar incide 

por la zona del reconcentrador y llega hasta el absorbedor, donde se cede energía al fluido de 

trabajo del disco Stirling.    

 

Figura 4 Geometría problema.   

 

Figura 5 Geometría problema con cubierta transparente. 
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El hecho de introducir una cubierta (Figura 5) entre la zona principal de intercambio de la 

cavidad y la zona de reconcentrador (arista de unión de los dos troncos de cono) hace que se 

modifique la transferencia de calor, pudiendo ser beneficiosa o no en función de una serie de 

condiciones (se verá en el estudio de resultados de este trabajo). 

La forma de realizar un estudio del modo más amplio posible es la de desarrollar un modelo 

térmico que incluya transferencia de calor por conducción, convección y radiación, y que 

permita modificar las dimensiones de la cavidad para así poder estudiar los valores de pérdidas 

y rendimiento en función de variaciones geométricas de la cavidad (Figura 6).  

 

Figura 6 Variaciones geométricas en la zona inferior de la cavidad (zona del absorbedor). 

Además de permitir realizar variaciones de geometría en la cavidad, el modelo térmico 

desarrollado ha de permitir modificar las propiedades de los materiales, para así poder valorar la 

construcción de la cavidad con unos materiales u otros. 

El método para realizar este modelo térmico es el de las diferencias finitas aplicando simetría 

cilíndrica y resolviendo en una sección de la cavidad, tal y como se verá en el apartado 6. La 

utilización del método de diferencias finitas ha sido seleccionado por sus ventajas, aunque 

también presenta ciertos inconvenientes. Las principales ventajas de este método consisten en la 

claridad para expresar el intercambio de calor por conducción y la facilidad para incluir el 

intercambio de calor por convección y radiación en los balances energéticos. Los principales 

inconvenientes están relacionados con desarrollar un mallado consistente que permita realizar 

variaciones geométricas en la cavidad, ya que exige la generación de variables y ecuaciones de 

forma “automática”, y siendo especialmente complejo el desarrollo de las mismas en las zonas 

con inclinación, tal y como se indicará en el apartado 6  y en el Anexo I. Estos inconvenientes 

dan lugar a la toma de una serie de aproximaciones que se ven reflejados en el apartado 6. 

La forma de incluir la transferencia de calor por convección es a partir de la Ley de 

Enfriamiento de Newton para poder contemplar las diferentes situaciones de convección que se 

pueden dar en función de las diferentes situaciones de trabajo del equipo con un único 

coeficiente, tal y como se indica en el apartado 6. 

La forma de incluir la transferencia de calor por radiación es la de trabajar en dos espectros, uno 

relacionado con la radiación solar (longitud de onda corta), y otro relacionado con la radiación 

emitida por la propia cavidad debida a su elevada temperatura (longitud de onda larga). Para 

implementarla en el modelo se utiliza el método de las radiosidades, el cual exige la definición 

de factores de vista, trabajados y obtenidos de forma exacta. Otro de los inconvenientes 

asociados a la posibilidad de modificar la geometría es el hecho de generar de forma 

“automática” un número de factores de vista acorde al número de divisiones contempladas en el 

mallado (que es variable por el usuario del programa que lo implementa). El intercambio de 
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calor por radiación se puede ver de forma detallada en el apartado 6, así como la definición de la 

incidencia solar, la cual se define de forma irregular asemejándose a la situación real (mancha 

solar). 

En resumen, partiendo de una geometría que puede ser variable, se desarrolla un modelo 

térmico que incluye conducción, convección y radiación, que permite la selección de los 

materiales, y siendo desarrollado a partir del método de las diferencias finitas.  

La herramienta que se ha escogido para desarrollar el trabajo descrito e implementar el modelo 

térmico es Matlab, y su funcionamiento se describe de forma breve en el apartado 7. 

Este método desarrolla sobre una geometría con o sin cubierta transparente: 

- Geometría abierta (Figura 4): El estudio descrito se realizó sobre esta tipología de 

geometría por el autor en un PFC [10]. La herramienta utilizada para este desarrollo fue 

EES (Engineering Equation Solver). Durante el desarrollo del trabajo se observaron 

ciertos problemas relacionados con las limitaciones del software; el número máximo de 

variables que permite EES es de 12000, siendo imposible en muchos casos resolver el 

modelo aplicando una precisión elevada. Debido a estas limitaciones se ha 

implementado el mismo modelo de nuevo utilizando la herramienta de programación 

Matlab, la cual no presenta problemas de límite de variables, aunque presenta otros de 

funcionalidad como el tiempo de simulación. 

 

La Figura 7 describe el comportamiento de la cavidad sin cubierta transparente. Como 

puede apreciarse, la radiación solar incide directamente sobre el absorbedor, debajo del 

cual se ha establecido un coeficiente y una temperatura de fluido equivalentes al 

funcionamiento del motor Stirling. En el interior de la cavidad, tanto en la zona superior 

como inferior se producen pérdidas por convección interior. Las pérdidas por 

conducción en estacionario son las mismas que las de convección exterior, ya que es el 

calor que través de la cavidad se cede al ambiente. 

 

El planteamiento de pérdidas en dos espectros permite distinguir entre pérdidas de calor 

por reflexión (espectro de onda corta donde las superficies no absorben energía) y por 

emisión (espectro de onda larga donde las superficies emiten energía). Las pérdidas por 

emisión se consideran en toda la superficie interior de la cavidad, mientras que las 

pérdidas por reflexión hacen referencia a la zona donde se ha modelado este espectro, es 

decir, la parte inferior de la cavidad (ya que debido a la dificultad de cuantificar el 

desenfoque no se ha incluido éste en el reconcentrador). 
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Figura 7 Comportamiento cavidad sin cubierta transparente. 

- Geometría con cubierta transparente (Figura 5): Este estudio es el objetivo principal de 

este trabajo. En base al modelo abierto se ha desarrollado el modelo térmico que incluye 

la cubierta transparente utilizando Matlab. El modelo de cubierta se ha implementado 

en base a las propiedades del cuarzo (como cubierta transparente) y utilizando el 

método de radiación neta, el cual aparece descrito con detalle en el apartado 5. 

 

La Figura 8 describe el comportamiento de la cavidad con cubierta transparente. Como 

se puede apreciar, la radiación solar incide directamente sobre la cubierta transparente, 

desde la cual se distribuye de forma difusa al resto de la cavidad en su parte inferior y al 

absorbedor, debajo del cual se ha establecido un coeficiente convectivo y una 

temperatura de fluido equivalentes al funcionamiento del motor Stirling. En el interior 

de la cavidad, la zona bajo la cubierta presenta una convección interior de un valor 

relativamente bajo, que será inexistente en el caso de que se haga vacío, y en la parte 

superior a la cubierta existirá una convección diferente de la exterior. 

 

El planteamiento de pérdidas en dos espectros, de nuevo permite distinguir entre 

pérdidas por reflexión y emisión. Las pérdidas por emisión de nuevo se corresponden 

con toda la cavidad y por reflexión únicamente a donde se ha modelado el espectro de 

onda corta (situación correcta despreciando las situaciones de desenfoque no 

cuantificables). 
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Figura 8 Comportamiento cavidad con cubierta transparente. 

La  estructura de este trabajo que detalla en cada uno de los siguientes puntos de la memoria: 

- Conceptos básicos y revisión bibliográfica de cavidades (apartado 3): Se presenta la 

cavidad frente a un modelo térmico y una serie de conceptos básicos sobre intercambio 

de calor por conducción convección y radiación, así como una revisión bibliográfica de 

los estudios llevados a cabo, tanto de cavidades abiertas como con cubierta transparente. 

 

- Descripción de cavidad con cubierta transparente en referencia a modelo térmico y 

materiales base (apartado 4): Se presenta la cavidad, sus características frente al 

modelo térmico y radiante, y los materiales base escogidos para su desarrollo 

(modificables en el modelo). 

 

- Modelado de una cubierta transparente-translúcida (apartado 5): Se presenta el 

modelo de cubierta, los balances energéticos que se implementan en el modelo térmico 

y las características de la fuente solar. 

  

- Modelo térmico (apartado 6): 

o Método de las diferencias finitas. Discretización y mallado. Hipótesis y 

aproximaciones 

o Transferencia de calor por radiación.  

o Condiciones de contorno y balances de energía. 

 

- Descripción de la herramienta programada en Matlab (apartado 7).      
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3. CONCEPTOS BÁSICOS Y REVISIÓN BIBLIOGRÁFICA 

3.1. Modelado térmico de la cavidad del Disco Stirling 

Como ya se ha comentado en apartados previos, el Disco Stirling consta de una cavidad que 

constituye el nexo de unión entre la energía incidente desde el concentrador solar y un 

intercambiador de calor, el cual ejerce de foco caliente de un motor Stirling. En esta parte del 

sistema existen pérdidas por conducción, convección y radiación, y su peso en el global de 

pérdidas del equipo puede llegar a ser realmente elevado (Figura 10). Las pérdidas por 

conducción dependen de la temperatura de la cavidad, la temperatura ambiente y las 

propiedades térmicas de los materiales; las pérdidas por radiación dependen de la geometría, 

factores de vista, emisividad, absortividad de las paredes y absorbedor y propiedades de la 

cubierta transparente (en caso de que exista); y las pérdidas por convección, además de las 

condiciones de diseño de la cavidad, dependen de las condiciones de trabajo de la misma, 

incluyendo el campo de temperaturas, dimensiones, inclinación… 

La Figura 9 muestra un esquema general de las pérdidas que tendrían lugar en una cavidad 

abierta. 

 

Figura 9 Esquema básico de pérdidas en una cavidad abierta 

El diseño de la cavidad puede llegar a ser realmente complejo, existiendo una fuerte influencia 

en el resultado final de rendimiento. La selección de una geometría para la cavidad y los 

materiales a utilizar son un tema complicado de resolver, actualmente se están llevando a cabo 

investigaciones importantes en este frente, y se estudian diferentes alternativas, entre las que se 

encuentra incorporar una cubierta transparente en la apertura de la cavidad hacia el ambiente. 
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Figura 10 Diagrama de pérdidas en un Disco Stirling [11] 

En el diagrama de pérdidas mostrado en la Figura 10, se pueden apreciar las pérdidas asociadas 

al conjunto de Disco Stirling. En cuanto a las pérdidas relativas al motor, las debidas a 

desenfoques y las inherentes al concentrador, las soluciones a aportar son reducidas, es por ello 

que las pérdidas en el receptor son un motivo interesante de estudio, y por ello se centra en la 

cavidad una de las partes fundamentales de la actividad investigadora. 
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3.2. Pérdidas en la cavidad del Disco Stirling 

A continuación se van a comentar las referencias conceptuales básicas y los resultados 

bibliográficos a los que se ha llegado respecto de las pérdidas de calor, tanto por conducción, 

como por convección, como por radiación. 

3.2.1. Pérdidas por conducción 

A través de las paredes de la cavidad se experimenta transferencia de calor por conducción, que 

se puede describir a partir de la ley de Fourier, la cual indica que la transferencia de calor en un 

sólido es directamente proporcional al gradiente de temperaturas al que está sometido [12]: 

            
  

  
  

  

  
  

  

  
  

Resolviendo la ecuación diferencial y aplicando como condiciones de contorno las temperaturas 

en la cara interior del volumen “T1” y en la cara exterior del mismo “T2”, se puede presentar la 

siguiente expresión: 

   
       

       
 

        
   

  
  
 

    
 

Así pues, se puede determinar que las pérdidas por conducción dependen, por un lado del área 

de transferencia, por otro lado del espesor y por último de la conductividad térmica. Se trata de 

un desarrollo matemático bastante bien definido, convergiendo la mayoría de los estudios hacia 

unos resultados similares a los presentados en la Figura 11. 

 

Figura 11 Pérdidas por conducción en la cavidad de un Disco Stirling en función de su espesor(Lins) para 

situación estacionaria interior de aire a 1023 K  [9] 
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El receptor SES para un motor de 24 kWe, de geometría cilíndrica presenta una conductividad 

de 0,06 W/mK, el cuál presenta unas pérdidas por convección que pueden variar desde unos 

valores prácticamente despreciables hasta más de 2 kWt [9]. Algunos estudios presentan que 

para determinadas condiciones geométricas, estas pérdidas pueden alcanzar valores del mismo 

orden de magnitud que las pérdidas por convección y radiación [13]. 
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3.2.2. Pérdidas por convección 

Las pérdidas por convección se pueden resolver de varias maneras, presentando todas ellas 

cierto grado de aproximación a la solución real.  

Aplicando una serie de consideraciones teóricas que parten de la definición de entropía, los 

teoremas de transporte de Reynolds, y la ley de Fick, y tras la aplicación de una serie de 

aproximaciones y el concepto de capa límite, se pueden obtener unas ecuaciones que permiten 

resolver de forma teórica el problema de la convección. Las suposiciones que aplican en el 

desarrollo matemático con las que siguen [14]: 

- Situación estacionaria. 

- Propiedades constantes con la temperatura 

- Ausencia de fuerzas volumétricas 

- Ausencia de generación de calor 

- Disipación viscosa despreciable 

Las ecuaciones que llevan a la solución teórica del problema son las siguientes [12]: 

- Ecuación de continuidad: 

  

  
 
  

  
   

- Ecuación de momento: 

  
  

  
   

  

  
  

 

 

  

  
   

   

   
  

- Energía térmica: 

  
  

  
  

  

  
   

   

   
 

 

  
 
  

  
 
 

 

- Especies químicas: 

 
   
  

  
   
  

    
    
   

 

A partir de estas expresiones se puede obtener la temperatura en la zona de contacto sólido-

líquido y por tanto poder aplicar la ecuación que permite obtener la transferencia de calor y 

masa (dada por la ley de Fick y existente en desequilibrios térmicos o químicos como fenómeno 

de difusión) por convección en la capa límite. 
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Históricamente se ha determinado de forma experimental el fenómeno de la convección, a partir 

de un coeficiente de convección que determina la transferencia de calor entre un sólido y un 
fluido en contacto a partir de la siguiente expresión: 

            

El estudio de la convección, siguiendo este procedimiento, puede exigir la creación de modelos 

demasiado caros y voluminosos, de modo que se suele recurrir al análisis dimensional, 
permitiendo el estudio a pequeña escala de prototipos y la obtención de la transferencia de calor 

para los elementos reales. La transferencia de calor por convección viene determinada por el 

número adimensional de Nusselt, el cual se obtiene a partir del coeficiente de convección “h”, la 
dimensión característica del alojamiento del fluido “L”, y la conductividad térmica del mismo: 

   
  

  
 

Además de lo ya comentado, se pueden utilizar métodos numéricos para resolver las complejas 

ecuaciones diferenciales que representan el problema de convección-difusión [15].  

En relación a los estudios llevados a cabo sobre la cavidad del Disco Stirling, existen trabajos 

realmente interesantes. Muchos autores han obtenido correlaciones para coeficientes de 

convección para sus geometrías en función de diferentes condiciones relativas al flujo de aire, 

su temperatura y su velocidad.  

La revisión llevada a cabo por Wu [16] en 2009 recoge gran parte de los resultados semi-

empíricos conseguidos hasta el momento. Los resultados obtenidos no son concluyentes, ya que 
es realmente complejo extrapolar una solución para geometrías diferentes, pero sí que se han 

concretado una serie de tendencias que se repiten en la práctica totalidad de los estudios. Para 

cavidades abiertas, tal y como muestra la Figura 12, se pueden distinguir dos zonas, una sería la 
zona convectiva, donde existe intercambio de calor aire-sólido, y la otra sería la zona de 

estancamiento, donde debido a la inclinación de la cavidad tiene lugar una estratificación estable 

de temperaturas que propicia que no exista intercambio de calor por convección. En la Figura 12 

se puede apreciar que cuando el Sol está en lo más alto es cuando las pérdidas por convección 
serán menores, ya que la zona de estancamiento copa el total de la cavidad. 
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Figura 12 Creación de zonas de estancamiento y convección en función de la orientación de una cavidad 

abierta [9] 

En la Figura 13 se pueden apreciar más detalles sobre el flujo en el interior de la cavidad, 

mostrando sus direcciones de desplazamiento, y los diferentes “remolinos” que tienen lugar en 

función de la posición del mismo. Como se puede apreciar, el diámetro de apertura va a 
propiciar que la distribución de flujo sea una u otra. 

 

Figura 13 Características de la circulación de flujo de aire en el interior de una cavidad inclinada [16] 
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Para intentar aprovechar esta situación de mínimas pérdidas por convección se llevan a cabo 

diseños alternativos [17], como el mostrado en la Figura 14, que comprendería un sistema de 
receptor fijo con una zona de estancamiento que siempre ocuparía la totalidad de la cavidad: 

 

 

Figura 14 Sistema de Disco Stirling con receptor fijo y concentrador móvil [17] 

Esta solución puede presentar problemas de estabilidad del Disco parabólico, e incluso 

problemas mecánicos de control. 

El viento también presenta una influencia en las pérdidas por convección en la cavidad. Como 

se ha podido apreciar en la Figura 13, existe una circulación de fluido en el interior de la 
cavidad, de modo que si el viento es tal que favorece esa circulación, éstas aumentarán, mientras 

que si no es así, disminuirán. Para inclinaciones pequeñas, con velocidades bajas se pueden 

reducir las pérdidas. Con la apertura de la cavidad hacia abajo, si el viento es perpendicular al 
plano de apertura, las pérdidas aumentan, mientras que si es paralelo, éstas pueden disminuir. 

Con la apertura de la cavidad mirando hacia arriba, con viento paralelo al plano de apertura se 

da la misma situación que con la inclinación opuesta, mientras que si la dirección del viento 

torna a perpendicular al plano de apertura, éste con velocidades bajas puede entorpecer la 
circulación natural y hacer que se reduzcan las pérdidas [16]. 

Leibfried y Ortjohann obtuvieron resultados en los que el viento podría reducir las pérdidas de 
cavidades abiertas en hasta un 11 %. Paitoonsurikarn y Lovergrove obtuvieron datos que 

indicaban que para viento paralelo al plano de apertura, si este es menor de 7 m/s existe 

reducción de pérdidas, y si es perpendicular y tiene un valor de 6 m/s se obtiene un mínimo de 
pérdidas para la cavidad analizada [16]. 

Unos de los últimos estudios publicados, por Xiao [18] indicaró que para cualquier velocidad 
del viento, inclinaciones menores a 30º-45º daban lugar a reducción de los valores de pérdidas. 

Las velocidades superiores a 8 m/s con viento horizontal dan lugar a un aumento de pérdidas 

para cualquier inclinación diferente de la horizontal y superior a 30º-45º. 

Hasta el momento, diferentes autores han presentado correlaciones semi-empíricas, entre las que 

destacan las de Le Quere, Siebers y Kraabek, y Clausing para geometrías rectangulares; las de 

Stine y McDonald, Lovergrove y Pitoonsurikarn para geometrías cilíndricas; y las de Yasuaki, 
Khubeiz, Sendhil Kumar y Reddy para geometrías semiesféricas [16].  
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En el caso de la existencia de una cubierta transparente, las pérdidas por convección se ven 

disminuidas, en primer lugar por el aumento de la temperatura del aire, y en segundo lugar por 
la disminución del coeficiente de convección debido a la disminución de la circulación de fluido 

interior y la situación favorable para crear una situación de estancamiento. En  caso de existir 

una cubierta, también es importante anotar la posibilidad de crear el vacío en el interior de la 

cavidad, eliminando de forma total las pérdidas por convección. Dependiendo de las 
condiciones de operación del sistema, esta situación puede llegar a ser rentable o no. Con el 

modelo realizado en Matlab se podrán valorar las diferentes alternativas pudiendo variar el 

coeficiente de convección utilizado en las diferentes zonas de la cavidad modelada. 
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3.2.3. Pérdidas por radiación 

Las propiedades de un cuerpo que definen su intercambio radiante son las que se presentan a 

continuación, junto con unos conceptos básicos de radiación que permiten definirlas [12]: 

- Cuerpo negro: Es aquel que absorbe toda la radiación incidente. Un cuerpo negro es un 

emisor y receptor perfecto. Su emisividad vale 1. 

- Radiación difusa: Radiación emitida en todas las direcciones. 
- Radiación emitida por un cuerpo negro:  

 

                                      
  

 

es decir el área de emisión por la constante de Stefan-Boltzmann por la temperatura del 
cuerpo elevada a la cuarta. Esta es la llamada Ley de Stefan Boltzmann. 

- Cuerpo gris: Es aquel cuya emisividad es independiente de la longitud de onda de la 

radiación con la que interacciona. 

- Emisividad ( ): Propiedad, que salvo para un cuerpo gris, depende de la longitud de 

onda y que representa la radiación emitida por un cuerpo, entre la radiación que emitiría 
si fuese un cuerpo negro (por tanto la emisividad de un cuerpo negro es 1). El calor 

emitido por un cuerpo que no sea cuerpo negro es: 

 

                            
  

 

- Absortividad ( ): Propiedad que representa el valor de radiación que absorbe un cuerpo 

respecto del total de la radiación incidente. 

- Transmisividad ( ): Propiedad que representa el valor de radiación que atraviesa un 
cuerpo respecto del total de la radiación incidente. 

- Reflectividad ( ): Propiedad que representa el valor de radiación que se refleja en un 

cuerpo respecto del total de radiación incidente. 
- Radiosidad (J): Flujo de calor radiante que abandona una superficie. Comprende la 

radiación emitida por encontrarse a una temperatura mayor que 0 K, la radiación 

reflejada y la transmitida. Se puede definir de forma espectral (para una determinada 

longitud de onda), o de forma total. 

- Se pueden establecen unas relaciones algebraicas en las que   representa la longitud de 

onda para la que se define la propiedad, y   la dirección de la radiación: 

 

              

           

           

        
 

Es decir, toda la radiación que se absorbe, más toda la radiación que se refleja, más toda la 

radiación que se transmite es la radiación incidente. 

 
Además, en una situación estacionaria para un cuerpo, se puede escribir la siguiente relación: 
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Figura 15 Intercambio de calor por radiación entre dos superficies [12] 

 
A partir de la Figura 15 se puede definir el intercambio neto de calor entre dos superficies “1” y 

“2” de la siguiente manera, siendo q12 el calor cedido de la superficie “1” a la superficie “2”: 

 

                    

 

El factor de vista     se define como la fracción de radiación que abandona la superficie “1” y 

llega a la superficie “2”. 
 

    
 

  
   

           
    

       
    

 

 

Como en el caso de este trabajo, cuando las superficies son más de dos (pueden llegar hasta 
alrededor 200 en este proyecto dependiendo de la precisión de la solución), la expresión que 

evalúa el intercambio de calor entre una superficie “i” y todas las demás (siendo un total de “n”) 

viene dado por la siguiente expresión: 

 

                   

 

 

 

Tal y como se ha indicado previamente, las propiedades de los materiales tienen una 

dependencia con la longitud de onda de la radiación con la que interaccionan, es por esto que en 

el presente proyecto, así como en otros como el de Nepveu [11], se utiliza un planteamiento en 
el cual se estudian por separado dos intercambios radiantes: 

 

- Intercambio en espectro de onda corta (radiación solar). Espectro OC. 
- Intercambio en espectro de emisión de onda larga (radiación a temperatura de la 

cavidad). Espectro OL. 

En la explicación del modelo se tratará este tema con mayor detalle y se comentarán las 

relaciones a aplicar. En el Disco Stirling, de todo el flujo de calor que parte del espejo 

concentrador, datos experimentales demuestran que aproximadamente el 80 % es el que llega de 

forma directa sobre el absorbedor, siendo una parte del restante desenfocado y otra dirigido 
hacia las paredes de la cavidad [11].  
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Así pues, a la hora de desarrollar el trabajo existen varias formas de llevarlo a cabo. En primer 

lugar se ha de tener en cuenta el planteamiento que se puede realizar modelando la cavidad con 
y sin cristal. Si no se incluye una cubierta, la radiación se puede dirigir hacia el absorbedor y la 

cavidad, o únicamente hacia el absorbedor, mientras que si se incluye cubierta, la aproximación 

más correcta es la de modelar la radiación como difusa a partir de la misma [19]. 

Para modelar cavidades sin cristal, lo más habitual en las investigaciones desarrolladas hasta el 

momento ha sido realizar estudios a partir de la teoría del trazado de rayos, basado en el método 

estadístico de Montecarlo [20]. Shuai [21] realizó una predicción del rendimiento radiante del 
receptor de un Disco Stirling usando el método de trazado de rayos de Montecarlo. Li [22] 

estudió la distribución de flujo solar en el receptor del Disco Stirling. Müller [23] modeló un 

reactor químico para disociación de ZnO aplicando este método. Las principales desventajas de 
este método de trazado de rayos son, el tiempo de computación necesario para obtener 

resultados con un nivel de precisión adecuado y la imposibilidad de realizar un modelo donde 

sean variables las dimensiones y la precisión en la simulación de la cavidad. Existen otro tipo de 

métodos numéricos también basados en geometrías fijas, como los desarrollados por Hogan [24] 
o Diver [25], con los que se llegaron a predecir los rendimientos térmicos con un error inferior 

al 4,1%. 

La aplicación del método de las radiosidades parece una alternativa válida al método de trazado 

de rayos, ya que ajusta bien a la realidad los sistemas cavidades compuestas por superficies 

semi-grises. Este método fue aplicado por Nepveu [11] para obtener un modelo térmico de un 
Disco Stirling, realizando una división de la cavidad en 11 volúmenes de control. Montiel 

González [26] aplicó también el modelo en un estudio sobre convección natural y radiación en 

una cavidad abierta. Natarajan [27] realizó un estudio en una cavidad trapezoidal usando 

también el método de las radiosidades. Teichel [28] mostró una alternativa a este método con 
una serie de variantes a la hora de evaluar el intercambio radiante en una cavidad formada por 

superficies que se comportan como superficies grises y difusas; éste consistió en expresar un 

método más sencillo para reducir el tiempo de computación necesario para resolver el sistema 
de ecuaciones. Martinek [29] utilizó el método de las diferencias finitas combinando el método 

de las radiosidades con el trazado de rayos para reducir el tiempo de computación necesario.  
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En aquellos modelos en los que se incluye una cubierta transparente, la suposición de la misma 

como una conversión a difusa de la radiación directa fue probada y publicada por Siegel [19]. 
No obstante, existen modelos recientes en los que igualmente se utiliza el trazado de rayos para 

modelar estos sistemas. Dai [30] realizó una comparación de transmisividad de cubiertas 

transparentes utilizadas en sistemas de concentración solar utilizando el método de trazado de 

rayos de Montecarlo. Shuai [31] realizó un estudio de la distribución de flujo sobre la cavidad 
utilizando una ventana de cuarzo plano convexa, aplicando unas relaciones que permiten hallar 

la reflectividad, transmisividad y absortividad equivalentes de una superficie con un 

determinado índice de refracción y las propiedades superficiales (Figura 16): 

 

Figura 16 Diagrama de evaluación de propiedades radiantes globales en aplicación del método de 

Montecarlo [32] 

       
      

   
       

  
   

     
    

                       
        

       
    

      
  

     
    

   
    

   
    

   
      

       
    

     
  

 

       
   

     
  

   
       
   

   

   
 
 

 

Estas mismas ecuaciones fueron utilizadas posteriormente por Wang [32] en su trabajo de 

análisis de un reactor con una ventana de cuarzo para concentración, también utilizando el 
método de Montecarlo.  

En el ya comentado trabajo de Siegel [19] se dan una serie de nociones a serie de cómo evaluar 
el intercambio radiante en una cavidad de superficies opacas y cubierta transparente a partir de 

unos valores de reflectividad, emisividad y transmisividad. Mediante el método de radiación 

neta, una técnica que es más conveniente que el método de trazado de rayos para evaluar este 
tipo de sistemas (consiste en la resolución simultánea de un sistema de ecuaciones que modelan 

el intercambio de calor en una capa de la cubierta transparente), se obtienen unas relaciones para 

obtener los valores globales de absortividad, reflectividad y transmisividad del sistema a partir 

de los superficiales: 
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En estas relaciones, “r” y “a” son la reflectividad superficial y la absortividad del material. Por 

tratarse de un método especialmente adecuado para este tipo de sistemas, se utilizan estas 
relaciones en el desarrollo del presente proyecto, con una ligera modificación respecto de la 

situación planteada en la publicación de Siegel, y es que se aplican una temperatura diferente a 

la zona superior y a la zona inferior de la cavidad, modificando así su emisión de energía en 

espectro de onda larga por zonas (no dejando de ser las temperaturas muy similares en todo el 
campo de aplicación por tener la cubierta una conductividad muy elevada). 
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4. CARACTERÍSTICAS DE LA CAVIDAD EN RELACIÓN AL 

MODELO TÉRMICO 

Como ya se ha comentado en el apartado 2, para desarrollar el presente trabajo se ha escogido 

una tipología de cavidad perteneciente a un estudio previo de la línea de investigación en la que 

se enmarca este proyecto. La cavidad modelada, y de la cual la Figura 17 muestra una sección, 

tiene una estructura troncocónica entre cristal y absorbedor, presentando en su zona superior un 

pequeño reconcentrador para que disminuyan las pérdidas por posibles desenfoques o 

irregularidades en el espejo concentrador (tal y como se ha comentado en el apartado 2). 

 

Figura 17 Cavidad modelada con cubierta transparente y absorbedor. 

El objetivo del modelo es, por un lado trabajar la optimización de la cavidad, incorporando una 

cubierta transparente en sistema, la cual disminuirá las pérdidas por convección, y tendrá un 

efecto a estudiar sobre la radiación. Considerando la cavidad como abierta, el hecho de que la 

estructura sea troncocónica favorece la creación de una zona de estancamiento respecto de una 

estructura cilíndrica (ver Figura 12), siendo ésta una de las razones de que ésta sea su forma. 

En cuanto a los materiales utilizados, el modelo implementado permite variar las propiedades de 

los mismos, de forma que pueden ser unos u otros e incluirlos en el modelo (el cual, además de 

esto permite definir la precisión de cálculo y variar las dimensiones de todos y cada uno de los 

parámetros geométricos que definen el diseño, y así poder optimizar). El hecho de que el 

modelo presente una posibilidad de variación de precisión y dimensiones, y la evaluación de 

temperaturas por diferencias finitas en cada una de las zonas de la cavidad, exige realizar 

múltiples divisiones en la cavidad, absorbedor y cubierta (las cuales se modifican en número al 

variar la precisión, y en tamaño al variar la geometría) en base a simetría cilíndrica, estando 

todas ellas conectadas y programadas de forma “dinámica”, es decir, generándose un mayor o 

menor número de ecuaciones a resolver en base a parámetros de entrada de geometría y 

precisión. 
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En principio, la cavidad será un material aislante (un compuesto de alúmina), el absorbedor será 

de inconel, y la cubierta transparente será de cuarzo (SiO2). 

En el interior de la cavidad se produce intercambio radiante, además de intercambio convectivo 

con el fluido interior (en este modelo también se analizará la posibilidad crear vacío en el 

interior de la cavidad). En la parte exterior de la cavidad se produce intercambio de calor por 

convección con el ambiente. 

El intercambio de calor por radiación, al igual que en trabajos previos como el de Nepveu [11], 

se lleva a cabo en dos espectros diferentes, cuyos efectos se suman a la hora de plantear los 

balances de energía. La razón, como se verá a lo largo de los siguientes apartados está en el 

comportamiento radiante que experimentan los materiales ante longitudes de onda emitidas a 

temperatura solar y a temperatura alrededor de 1000-1500 K. El espectro que comprende la 

longitud de onda corta (emisión solar) se plantea desde la cubierta hasta el absorbedor, mientras 

que el espectro de onda larga (emisión cavidad) se plantea en todo el conjunto, incluyendo el 

reconcentrador superior. Esto es así debido a la simplificación del modelo y a la dificultad de 

cuantificar la dispersión de la radiación por desenfoque. Cada zona de la cavidad presenta un 

comportamiento relativo al intercambio radiante: 

- Superficies que forman la cavidad: Cuerpo gris en dos espectros diferentes (onda corta 

y onda larga, donde en el primer únicamente absorben energía y en el segundo absorben 

y emiten energía). Superficies difusas. Superficies opacas. 

- Superficies que forman el absorbedor: Cuerpo gris en dos espectros diferentes de forma 

similar a las paredes de la cavidad pero con diferentes propiedades. Superficies difusas. 

Superficies opacas. Se ha simulado como cinco capas del mismo material en las que se 

intercambia calor por conducción desde el proveniente de la cavidad hasta el que se 

cede al motor Stirling según un coeficiente de convección y temperaturas equivalentes 

(dato de la investigación previa). 

- Ambiente: Cuerpo negro a temperatura ambiente cuya radiosidad viene dada por la Ley 

de Stefan-Boltzmann. Radiación difusa. 

- Cubierta transparente: Cuerpo gris en dos espectros diferentes de forma similar al resto 

de la cavidad. Superficies difusas. Superficies parcialmente transparentes. 

- Fuente de radiación solar: Como se verá más adelante, las dos etapas de desarrollo del 

proyecto se pueden definir como dos herramientas, una como cavidad sin cubierta y otra 

con cubierta. En cuanto a la cavidad sin cubierta, la fuente solar se sitúa sobre el 

absorbedor de forma directa, despreciando la dispersión de la radiación proveniente del 

concentrador (aproximadamente un 10 % de la radiación llega a las paredes de la 

cavidad en una situación real [11]). En cuanto a la cavidad con cubierta, como se verá 

también posteriormente, la fuente solar se sitúa sobre la cubierta transparente, 

convirtiéndose en radiación difusa más allá de ella y existiendo por tanto una dispersión 

importante de la radiación hacia las paredes de la cavidad respecto del caso sin cubierta. 
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5. MODELADO DE UNA CUBIERTA TRANSPARENTE-

TRANSLÚCIDA 

5.1. Método de la radiación neta para evaluación de propiedades 

radiantes 

Cuando una radiación incide sobre la superficie de la cubierta, ésta sufre reflexión y refracción, 

tal y como muestra la Figura 18. 

 

 

 

 

 

 

 

 

Figura 18 Reflexión y transmisión de radiación sobre una superficie 

 

En el caso que se está analizando, el espesor de la cubierta es superior a la longitud de onda de 

la radiación incidente, de manera que no hay efectos importantes de interferencia que anulen la 

situación que se presenta. Respecto a las posibles formas de analizar el paso de la radiación a 

través de una cubierta, ya se ha comentado que se puede considerar el método de trazado de 

rayos o el método de la radiación neta. Algunos estudios, como el ya visto por Shuai [31], 

presentan las ecuaciones aplicar según su desarrollo teórico; en cambio existen en la bibliografía 

otras maneras de analizar este tipo de situaciones, como la expuesta por el propio Siegel [33], 

obteniendo las siguientes expresiones a aplicar según trazado de rayos:  

 

              
   

      
   

    
   

           
      

   
 

         
  

           
       

   
    

   
       

    
    

    
 

        
 

                        
   

    
   

     
            

      
 

 

Radiación Incidente Radiación Reflejada 

Radiación transmitida 
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 El método de la radiación neta es un modelo muy potente, que en muchas situaciones puede 

presentar mucha menos dificultad de aplicación que el método de trazado de rayos. En una 

ventana se pueden escribir una serie de ecuaciones que relacionan los flujos de entrada y salida, 

como muestran las siguientes ecuaciones: 

 

 

 

 

 

 

 

 

 

Figura 19 Método de aplicación de radiación neta. 

 

Los balances energéticos que se aplican son los siguientes [33]: 

                        

                        

                        

                        

Además de estos balances, la transmisividad de la capa permite hallar una relación más [33]: 

             

Con estas expresiones se pueden obtener las siguientes relaciones para absortividad, 

transmisividad y reflectividad para cada flujo de incidencia de radiación sobre cubierta: 

              

    
    
    

    
 

        
 

  
            

      
 

  

qi,1 qo,1 

qi,2 qo,2 
qi,3 qo,3 

qi,4 qo,4 
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En relación a cada uno de los parámetros, para una radiación incidente normal (como sería el 

caso de un Disco Stirling, en el que la radiación proviene del concentrador solar), a partir del 

índice de refracción y el coeficiente de extinción del material se puede obtener el valor de 

reflectividad y de transmisividad [33][34]: 

   
         

         
 

         

   
     

 
 

Siendo “z” el espesor de la capa y “λ” la longitud de onda. 

Como se ha podido comprobar, existe una fuerte dependencia entre las propiedades que 

determinan la transferencia de radiación a través del cristal, y la longitud de onda de la radiación 

con la que interaccionan. Un estudio de Kitamura [35] muestra un resumen de toda la 

información sobre los coeficientes de refracción y el coeficiente de extinción del material para 

diferentes longitudes de onda. En el rango de longitudes de onda en el que se está trabajando en 

la cavidad, los coeficientes “n” y “α” varían de la manera que muestran la Figura 20 y la Figura 

21: 
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Figura 20 Coeficientes de refracción y absorción para el SiO2 en función de longitud de onda de radiación 

(rango de variación desde 0 µm hasta 1 µm) [35]  
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Figura 21 Coeficientes de refracción y absorción para el SiO2 en función de longitud de onda de radiación 

(rango de variación desde 1 µm hasta 15 µm) [35] 
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A partir de la ley de desplazamiento de Wien [33] se puede establecer dónde se encuentra el 

pico máximo de emisión para diferentes temperaturas de los cuerpos, y así hallar cuáles son las 

propiedades que definen el comportamiento del cristal de cuarzo. 

          

                

La temperatura superficial del Sol es de 5778 K, de modo que el pico máximo de emisión se 

encuentra en una longitud de onda de 0,50 µm. La temperatura de la cavidad (tras la realización 

de diferentes simulaciones) se encuentra entre 1000 K y 1600 K (teniendo en cuenta todas las 

partes de la misma, siendo éstas absorbedor, cavidad y cubierta), de modo que el pico máximo 

de emisión se encuentra en una longitud de onda entre 2,90 µm y 1,81 µm. 

Los valores de índice de refracción y coeficiente de extinción, que en la Figura 20 y la Figura 21 

vienen representados por “nλ” y “kλ”, son los siguientes: 

- Espectro de emisión a temperatura del Sol: 

      

       

- Espectro de emisión a temperatura de cavidad, absorbedor y cubierta (λ=1,81 µm):  

       

         

- Espectro de emisión a temperatura de cavidad, absorbedor y cubierta (λ=2,90 µm):  
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En el modelo programado en Matlab, estos valores toman función del espesor de la cubierta 

introducido. A modo de ejemplo y como interpretación de la solución, se toma un espesor de 5 

cm para analizar los resultados. 

- Espectro de emisión a temperatura del Sol: 

      

       

         

   
                

                
      

         

         

          

- Espectro de emisión a temperatura de cavidad, absorbedor y cubierta (λ=1,81 µm): 

       

         

         

           

         

        

          

- Espectro de emisión a temperatura de cavidad, absorbedor y cubierta (λ=2,9 µm): 
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Como se puede apreciar, las propiedades no varían en exceso, encontrándose la principal 

utilidad del cuarzo en realizar “efecto invernadero” sobre radiación a temperaturas ambiente, 

donde alrededor de 322 K el pico de máxima emisión de temperatura se da a una longitud de 

onda de 9 µm: 

  

      

    

           

          

         

    

         

Así pues, y teniendo en cuenta que la parte de la cavidad (en función de pequeñas variaciones de 

temperatura por cambios en la geometría del modelo) se encuentra, como se ha indicado entre 

1000 K y 1600 K, y que la variación de propiedades en este rango es mínima, se plantea un 

único espectro de radiación, es decir, un único comportamiento de la cubierta para este rango de 

temperaturas. El hecho de incluir un espectro para cada nodo es prácticamente imposible de 

resolver y la mejora alcanzada es mínima.  

En el modelo de la cavidad, como se indicará en el posterior apartado y se ha comentado en la 

parte introductoria de revisión bibliográfica, se trabaja con dos espectros, espectro de onda larga 

y de onda corta, siendo la razón de esta división las diferentes propiedades de los materiales de 

la cavidad hacia la radiación emitida por el Sol a más de 5000 K y la radiación emitida por la 

cavidad a aproximadamente 1000 K – 1600 K. Según razonamiento previo, es lógico extender el 

análisis de esta manera y el planteamiento del modelo según dos espectros: 

- Espectro de onda corta: 

         

         

          

- Espectro de onda larga (promedio de las propiedades de las dos longitudes de onda 

límite): 
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Como anotación al respecto del análisis en dos únicos espectros, el hecho de que la cubierta, a 

pesar de tener una absortividad baja y estar en contacto con el ambiente tenga una temperatura 

elevada, es debido a su conductividad elevada y encontrarse en contacto directo con la cavidad, 

transfiriendo calor por conducción con ésta. 

Por último, en la Figura 22 y la Figura 23 se presentan como resultados las propiedades 

radiantes que se han obtenido mediante simulación con tablas paramétricas en EES [36] para 

espectro de onda corta y onda larga en función de diferentes espesores de cubierta (desde 1 mm 

hasta 10 cm). 

 

Figura 22 Propiedades de intercambio radiante en el cristal de cuarzo para longitud de onda larga. 

 

Figura 23 Propiedades de intercambio radiante en el cristal de cuarzo para longitud de onda corta. 

La variación de estas propiedades con el espesor de la cubierta está implementada en el modelo 

programado en Matlab. 
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5.2. Balance energético sobre cubierta transparente-translúcida y 

fuente solar 

Una vez halladas las propiedades radiantes globales, se sigue el procedimiento indicado por 

Siegel [33] para evaluar el intercambio energético radiante en una cavidad con superficies 

trasparentes y translúcidas: 

 

 

 

 

 

 

 

 

 

Figura 24 Esquema de cavidad con superficies parcialmente transparentes. 

 

El modelo, al cual hace referencia la Figura 24 es válido para cubiertas con una temperatura 

suficiente como para emitir energía, las cuales se encuentran a una temperatura uniforme (una 

buena aproximación para este trabajo). En una ventana del tipo de la que se está trabajando, la 

reflexión se da de forma especular, de modo que la radiación no saldría de la cavidad de forma 

difusa. Sin embargo, dentro de una cavidad hay múltiples reflexiones y la direccionalidad de 

cada reflexión pierde importancia en la contribución a los flujos de energía en las fronteras. Por 

tanto, la suposición de reflexión y transmisión difusa es satisfactoria en cavidades con múltiples 

superficies que incluyen cubiertas transparentes. Considerando propiedades similares a ambos 

lados de la cubierta, las relaciones matemáticas a aplicar son las siguientes: 

              
                      

              
                      

En el modelo desarrollado, estas ecuaciones se aplican de forma doble, una para el espectro de 

onda larga y otra para el espectro de onda corta, siendo los calores de una y otra incluidos en los 

correspondientes balances de energía. Así mismo, se aplican a cada una de las divisiones 

establecidas en la cubierta, las cuales consisten en un círculo central y diferentes coronas 

circulares concéntricas a su alrededor.  

  

qe,k 

ql,k 

qo,k 

qi,k 

Tk 

Superficie Parcialmente Transparente 

Superficies Opacas 
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- En el caso del espectro de onda larga: 

                 

         

   

 

                 

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda larga. 

- En el caso del espectro de onda corta:  

                 

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda corta.      en 

este caso es la energía que llega desde el concentrador, la cual se ha aproximado a simetría 

cilíndrica según valores de un estudio de Nepveu [11] (la Figura 25 muestra la distribución de 

temperaturas sobre el absorbedor de este estudio): 

 

 

Figura 25 Distribución de temperaturas sobre un absorbedor hexagonal [11]. 

La “fuente solar” queda dividida en un círculo y varias coronas circulares a su alrededor, y se ha 

considerado una energía térmica que ronda los 30 kWt en todas las simulaciones, valor estándar 

que permite obtener una energía eléctrica final de alrededor de 10 kWe con un rendimiento 

aproximado de un 30 %. 
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Así mismo, para trabajar con el método de las radiosidades, se definen en el modelo 

programado en Matlab, para cada una de las superficies, los calores de la siguiente manera: 

            

            

De forma que el calor absorbido por la propia superficie será (a aplicar en cada una de las 

divisiones): 

- En la parte exterior de la cavidad: 

o Espectro de onda corta: 

            

o Espectro de onda larga: 

                   

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda larga, y      la 

radiación solar incidente. 

- En la parte interior de la cavidad: 

o Espectro de onda corta: 

                   

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda corta. 

 

o Espectro de onda larga: 

                   

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda larga. 

Y el balance de calor por radiación será el siguiente (a aplicar en cada una de las divisiones): 

- En la parte exterior de la cavidad: 

o Espectro de onda corta: 
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o Espectro de onda larga: 

                    

         

   

           
 
 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda larga, y      la 

radiación solar incidente. 

- En la parte interior de la cavidad: 

o Espectro de onda corta: 

                   

         

   

 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda corta. 

 

o Espectro de onda larga: 

                    

         

   

           
 
 

Siendo    las radiosidades de cada una de las superficies en el espectro de onda larga. 

Como se puede observar en estos dos espectros, desacoplados en cuanto a propiedades térmicas, 

en cuanto al espectro de emisión de onda corta, las superficies no emiten energía, sino que 

únicamente reflejan y absorben (y transmiten en caso no opacidad). En el espectro de emisión 

en onda larga, las superficies también emiten energía, de ahí que se incluya como una pérdida 

energética el término de emisividad por constante de Stefan-Boltzmann por el factor de 

temperatura en Kelvin elevado a la cuarta potencia. 
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6.  MODELO TÉRMICO 

El presente modelo se ha programado en dos etapas, pudiendo considerar cada una de ellas una 

herramienta por separado: 

- Modelo de cavidad sin cubierta transparente. 

- Modelo de cavidad con cubierta transparente. 

Esta forma de desarrollar el código permite poder comparar las dos situaciones, entre otros tipos 

de análisis posibles. Previamente a las consideraciones tomadas para desarrollar el modelo, se 

estima conveniente anotar una pequeña introducción al método de las diferencias finitas y la 

discretización del cuerpo analizado, ya que será la herramienta utilizada para implementar el 

modelo. 

6.1. Método de las diferencias finitas, discretización y mallado 

Una ecuación diferencial tiene un dominio continuo (con posibilidad de obtener una solución en 

cualquier punto de éste); con un método de aproximación numérica, ese dominio continuo se 

discretiza. En la Figura 26, la forma azul representa el contorno del dominio bidimensional en el 

que habría que resolver una determinada ecuación diferencial, y como discretización se ha 

propuesto la red que se observa tras ella. En cada intersección de rectas que hay en el interior 

del dominio se encuentra un nodo (ver Figura 27 y Figura 28), y es en todos y cada uno de esos 

nodos donde que se da solución a la ecuación diferencial (de forma aproximada). 

 

Figura 26 Discretización de un dominio para aplicación del método de las diferencias finitas 

En este trabajo se resuelve un problema de transmisión de calor, por lo que en cada uno de los 

nodos internos se obtiene una temperatura, a partir de diferencias de temperaturas se puede 

obtener una transferencia de calor entre diferentes nodos, y en los nodos que limitan el 

contorno, el intercambio de calor con el exterior. 

∆y

∆x

y, n

x, m
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Figura 27 Detalle de nodo en discretización para aplicación del método de las diferencias finitas 

 

Figura 28 Detalle de volúmenes de control para aplicación del método de las diferencias finitas 

Para obtener la ecuación diferencial a resolver se aplica un balance de energía en cada nodo, el 

cual se puede analizar de forma muy clara en el Anexo I de este proyecto. 

Para analizar la cavidad, por existir simetría cilíndrica, los flujos de calor en la coordenada 

angular (θ en Figura 29) se compensan y son nulos.  

 

Figura 29 Coordenadas cilíndricas 
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Así pues, siguiendo este modelo, la discretización de nodos y fronteras utilizada es la que 

muestra la Figura 30. De los nodos frontera y esquina, la parte que representa el volumen de 

control del nodo (volumen finito) es la que queda en el interior del contorno rojo, que es el que 

define la cavidad. 

 

Figura 30 Discretización aplicada en el método de las diferencias finitas para la cavidad. 

La cantidad de nodos y sus dimensiones cambian en función de las variables de geometría y 

precisión introducidas por el usuario. 

En cuanto a la discretización de la cubierta, esta consta de dos alturas, como muestran los 

volúmenes de control de la Figura 31. 

 

 

Figura 31 Detalle de unión de cavidad y cubierta transparente. 
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6.1.1. Hipótesis y aproximaciones 

Además de las suposiciones ya indicadas a lo largo de la memoria, referentes a: 

- Colocación y simetría cilíndrica de fuente solar: La fuente solar se dirigía de forma 

directa al absorbedor en el caso sin cubierta transparente, y se sitúa en la cubierta 

transparente cuando ésta se implemente. 

- Superficies difusas 

- Superficies grises 

- Análisis en diferentes espectros 

- Intercambio de calor por convección ambientes interior, exterior y motor Stirling 

Se han tomado en consideración dos aproximaciones a la hora de aplicar el modelo de 

diferencias finitas que permiten simplificar su desarrollo y suponen un error global inferior al 

0,5 %: 

- Como es conocido y se indicará en la descripción de la herramienta, el espesor de la 

cubierta transparente es variable, de modo que ésta puede cubrir nodos completos o 

dejar parte de algunos de los nodos (volúmenes de control) sin cubrir. Sobre esta parte 

de los nodos sin cubrir, se ha supuesto que el factor de vista del resto de superficies es 

0, de modo que el intercambio radiante en onda larga en la parte superior de la cavidad 

no contempla los nodos “semicubiertos” por la cubierta transparente. Esta suposición se 

ha tomado por la dificultad de programar de forma dinámica un factor de vista 

dependiente no solo de las dimensiones de cada uno de los nodos y el número de los 

mismos, sino también por la dificultad de fijar su localización (dependiente del espesor 

de cubierta) para evaluarlo con la función de cálculo de factor de vista adecuado. El 

error cometido está por debajo del 0,5 %. 

 

- A la hora de desarrollar el modelo de diferencias finitas, se encuentran en la posición de 

nodo N5 (Figura 30 y Figura 31) dos nodos diferentes sobre la misma posición, uno 

perteneciente a la cubierta, y otro perteneciente a la cavidad, ya que la cubierta se ha 

discretizado según la Figura 32. 

 

Figura 32 Discretización de la cubierta transparente. 

Para poder aplicar el método se ha forzado una distancia Delta_R para que el 

intercambio de calor no sea infinito en esta zona de contacto, y el nodo de la zona 

superior de la cubierta en contacto con la cavidad no presenta un patrón geométrico 

similar al resto. Esta aproximación se ha tomado para poder implementar siguiendo el 

mismo patrón de mallado que el modelo sin cubierta, definiendo dos alturas en cubierta 

para aplicar de forma correcta las condiciones de contorno de convección y radiación. 
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6.2. Condiciones de contorno y balances de energía 

Como se puede apreciar en la Figura 31, el intercambio de calor entre nodos de cubierta y nodos 

de cavidad dependerá de la geometría, pudiendo intercambiar calor un nodo de cubierta con 

varios de cavidad, o dos nodos de cubierta con uno solo de cavidad entre otras muchas 

opciones. Este hecho se contempla en el programa realizado en Matlab, generando en cada caso 

las ecuaciones necesarias de forma automática. En la Figura 30, la zona verde corresponderá 

con la zona inferior de la cavidad (cercana al absorbedor cuya altura de nodos es, según indica 

la propia figura “∆h1”), y la zona amarilla con la zona superior (cercana al ambiente cuya altura 

de nodos es, según indica la propia figura “∆h2”), así mismo aparecen los diferentes nodos y las 

fronteras que definen la geometría de la cavidad. 

Es igualmente importante asociar cada uno de estos códigos a las condiciones de contorno que 

sobre él se van a aplicar: 

 

Figura 33 Condiciones de contorno en cada zona del modelo. 

La Figura 33 muestra las diferentes zonas donde aplicar las correspondientes condiciones de 

contorno: 

- Zona 1: 

o Transferencia de calor por convección con el ambiente cercano a la cavidad. 
o Transferencia de calor por radiación en el espectro de onda larga: 

 Con la propia parte superior de la cavidad. 

 Con la parte cubierta transparente. 
 Con el ambiente. 

o Transferencia de calor por conducción con la cavidad. 

- Zona 2: 

o Transferencia de calor por convección con el ambiente interior (en caso de no 

haber vacío). 

o Transferencia de calor por radiación en el espectro de onda larga: 

 Con la propia parte inferior de la cavidad. 
 Con la cubierta transparente. 

 Con el absorbedor. 
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o Transferencia de calor por radiación en el espectro de onda larga: 

 Con la propia parte inferior de la cavidad. 
 Con la cubierta transparente. 

 Con el absorbedor. 

o Transferencia de calor por conducción con la cavidad. 

- Zona 3: 
o Transferencia de calor por convección con el ambiente exterior. 

o Transferencia de calor por conducción con la cavidad. 

- Zona 4: 
o Transferencia de calor por conducción con la cavidad. 

- Zona 5: 

o Transferencia de calor por convección con el ambiente interior. 

o Transferencia de calor por radiación en el espectro de onda larga: 
 Con la parte inferior de la cavidad. 

 Con la cubierta transparente. 

o Transferencia de calor por radiación en el espectro de onda corta: 
 Con la parte inferior de la cavidad. 

 Con la cubierta transparente. 

o Transferencia de calor por conducción en el absorbedor. 
- Zona 6: 

o Transferencia de calor por convección equivalente a la cesión de energía al 

motor Stirling. 

o Transferencia de calor por conducción en el absorbedor. 
- Zona 7: 

o Transferencia de calor por convección con el ambiente cercano a la cavidad. 

o Transferencia de calor por conducción en la cubierta. 
o Transferencia de calor por radiación en el espectro de onda larga: 

 Con la parte superior de la cavidad 

 Con el ambiente 
o Incidencia de la fuente solar (espectro de onda corta) 

- Zona 8: 

o Transferencia de calor por convección con el ambiente interior. 

o Transferencia de calor por conducción en la cubierta. 
o Transferencia de calor por radiación en el espectro de onda larga: 

 Con la parte inferior de la cavidad 

 Con el absorbedor 
o Transferencia de calor por radiación en el espectro de onda corta: 

 Con la parte inferior de la cavidad 

 Con el absorbedor 

 
- Nodos interiores de cavidad y absorbedor: 

o Transferencia de calor por conducción. 

Las divisiones que se vienen comentando hasta el momento se pueden apreciar (no las 

verticales, que se aprecian en la Figura 30 claramente) en la Figura 34 y la Figura 35. 

En el caso en el que no hay cubierta transparente, la zona 8 se convierte en el espectro de onda 

larga en una superficie ficticia que conecta las dos zonas de la cavidad térmicamente, la 

convección en la zona superior se unifica con la de la zona inferior, y la fuente solar se sitúa 

sobre la el absorbedor de forma directa (Zona 5). 
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Figura 34 Divisiones en superficie lateral y superficies planas en modelo térmico. 

 

 

Figura 35 Divisiones en superficies planas en modelo térmico. 
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Los balances energéticos se calculan en base a las ya comentadas condiciones de contorno y se 

plantean en el Anexo I. El número de balances energéticos vuelve a ser función del número de 

nodos y de sus dimensiones, que son definidos como variables de entrada, siendo así necesaria 

una programación dinámica de los mismos. En los balances energéticos tendrá lugar 

intercambio de calor por conducción, y según sea el caso, por cada uno de los siguientes o 

combinación de los mismos: 

- Convección interior 

- Convección ambiente 

- Convección ambiente cercano a cavidad 

- Radiación en espectro de onda larga 

- Radiación en espectro de onda corta 

- Incidencia solar 

- Cesión energética al motor Stirling 
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6.3. Transferencia de calor por radiación 

6.3.1. Método de las radiosidades 

El intercambio radiante entre dos superficies se calcula a partir de la siguiente expresión: 

                    

Si se plantea este fenómeno para más de dos superficies, en este trabajo se resuelve mediante el 

cálculo de radiosidades. Desde cada superficie se introducen 3N incógnitas (el calor cedido a 
cada una de las superficies, el calor total, y la radiosidad), y 3N ecuaciones (que son relaciones 

matemáticas que se resumen en el circuito térmico de la Figura 36): 

 

Figura 36 Intercambio térmico por radiación entre diferentes superficies. 

                   

… 

                   

Con la relación matemática anterior, y conocidos los factores de vista (cálculo en Anexo II), se 
tienen N ecuaciones y 2N incógnitas, ya que no se conocen, ni el calor cedido (término a la 

izquierda de la igualdad), ni la radiosidad de cada uno de los nodos (  ). 

       

 

       

 

… 

        
        

    
    

 

… 

Aplicando la primera de estas dos ecuaciones a todas y cada una de las superficies, se 

introducen N ecuaciones y N incógnitas (  ), de modo que se tienen 2N ecuaciones y 3N 

incógnitas. En la segunda ecuación (válida en el espectro de emisión de la cavidad), todo lo no 
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conocido ya se ha contabilizado como incógnita, de manera que se están añadiendo N 

ecuaciones al ser ésta aplicada en todas las superficies, y ninguna incógnita (emisividades y 
áreas son conocidas, radiosidad y calor ya se han contabilizado como incógnitas, y la 

temperatura es precisamente lo que se quiere despejar, quedando el balance de energía en un 

nodo únicamente en función suyo). Así pues, queda un problema planteado con 3N ecuaciones 

y 3N incógnitas. 

En este trabajo, el intercambio radiante se calcula entre N superficies, siendo N un valor que 

depende de la geometría y de la precisión que se ha introducido como variable de entrada, y por 
tanto se modifica con cada variación de esto. Entre estas superficies existen cuerpos negros 

(   ), superficies grises, y fuentes de radiación. 

Este planteamiento se ha de resolver en los dos espectros comentados, con todas y cada una de 

las superficies que participan en cada uno de los intercambios: 

- Superficies que intervienen en el espectro de emisión de onda corta (según Figura 33): 
o Zona 7 

o Zona 8 

o Zona 2 
o Zona 5 

- Superficies que intervienen en el espectro de emisión de onda larga (según Figura 33): 

o Zona 7 
o Zona 8 

o Zona 2 

o Zona 5 

o Zona 1 
o Ambiente 

Se ha comentado que en la primera etapa de desarrollo del modelo, éste se realizó sin cubierta 
transparente, y se puede utilizar para realizar comparaciones. Este modelo consistía en un 

espectro de emisión de onda corta afectado por las mismas superficies que en el caso de 

existencia de cubierta, salvo la zona 7 y la zona 8 (evidentemente no existen). El intercambio de 
emisión de onda larga consistía en las mismas superficies que en el caso con cubierta, pero 

sustituyendo la zona 7 y la zona 8 por una única superficie ficticia que unía los dos recintos 

inferior o superior. 

El número de ecuaciones se incrementa en el sistema con cubierta, ya que además de los 

diferentes balances que se han de establecer en cada uno de los nodos (coronas circulares en 

cubierta), por cada uno de estos nodos se añaden tantas ecuaciones como superficies existen en 
la zona inferior de la cavidad, y sobre cada una de las superficies de la cavidad se incluyen 

tantas ecuaciones como nodos existen en la cubierta para que el sistema sea de nuevo coherente. 

El cálculo de las radiosidades depende de cada una de las zonas [11]: 

- Radiosidad en espectro de longitud de onda corta: 

o Superficie con incidencia directa de radiación solar: 
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o Superficie sin incidencia directa de radiación solar: 

 

                
 

 

 
- Radiosidad en espectro de longitud de onda larga (se aplica el método de las 

radiosidades): 
 

         
            

 

 

- Radiosidad total para una superficie: 

 

             

 

Estas expresiones se pueden ver en el Anexo I tal y como han sido aplicadas con mayor detalle. 

El cálculo de la radiosidad en las superficies de la cubierta transparente ya se ha comentado en 

su correspondiente apartado, y no sigue el patrón de las superficies anteriores. 
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6.4. Cálculo de factores de vista 

Evaluar el intercambio radiante entre diferentes superficies exige conocer los factores de vista, 

tal y como se ha comentado en apartados previos. El cálculo de factores de vista en este modelo 

se hace especialmente complejo, ya que ha de ser un cálculo dinámico. El número de superficies 

y sus dimensiones cambian en función de una geometría y una precisión introducidas por el 

usuario, de manera que la programación de factores de vista ha de ser tal que genere tantos 

como sea necesario en cada una de las simulaciones. En el Anexo II se explica el cálculo de los 

factores de vista. 

Todos los complejos cálculos y la programación que aparecen introducidos en el susodicho 

Anexo parten de tres reglas fundamentales: 

- Regla de la suma. Donde “i” es una superficie de un hipotético recinto cerrado y “j” 

representa al resto de superficies: 

 

    
 

   

- Relación de reciprocidad: 

 

            

- Factor de vista entre dos discos coaxiales y paralelos [37]. Ver en Anexo II. 

En el código programado se han incluido varias funciones para comprobar la regla de la suma 

en todos y cada uno de los casos, siendo satisfactoria esta revisión. 
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7. DESCRIPCIÓN DE LA HERRAMIENTA EN MATLAB 

La herramienta implementada en Matlab no se ha habilitado con una interfaz “comercial”, sino 

que, como herramienta teórica de estudio (lo que de momento es), presenta una estructura en 

diferentes “scripts”, los cuales cumplen distintas funciones. 

El script principal se denomina “Simulación_cavidad”, y en él es donde se introducen los 

valores de dimensiones (Figura 37)  para simular (en centímetros): 

- Radio de reconcentrador (R1) 

- Radio de apertura de la cavidad (R2) 

- Radio de absorbedor (R3) 

- Radio exterior de la cavidad (R4) 

- Altura de la cavidad (h1) 

- Altura de cavidad más reconcentrador (h2) 

- Espesor de cubierta (e_cub) 

 

Figura 37 Nomenclatura de introducción de datos geométricos de cavidad. 

Posteriormente a los valores dimensionales se han de introducir las propiedades de los 

materiales: 

- Propiedades radiantes en espectro de onda corta (adimensionales) 

o Cubierta 

o Cavidad 

o Absorbedor 

- Propiedades radiantes en espectro de onda larga (adimensionales) 

o Cubierta 

o Cavidad 

o Absorbedor 

- Propiedades térmicas de conductividad de materiales (W/mK) y coeficientes de 

convección (W/m
2
K). 
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Finalmente se ha de introducir la precisión de la resolución, cuyo valor representa el número de 

nodos que se quieren establecer entre el radio del absorbedor y el radio exterior de la cavidad. 

Con este valor de precisión y los valores de geometría introducida, la cantidad de nodos a 

establecer en el resto de la cavidad se autodimensiona, ajustando los nodos esquina a la malla 

creada en caso necesario y mostrando en variables los resultados de variación de dimensión real 

y dimensión ajustada. 

Una vez introducidos estos datos, el script principal hace llamada al script mallado, que como su 

nombre indica establece la malla donde se va a resolver el sistema en base a los parámetros 

geométricos. Tras mallar el sistema se introducen los valores de incidencia solar, los cuales han 

sido distribuidos en diferentes zonas para poder establecer una mancha solar no uniforme. 

El siguiente paso consiste en, ya conocidas áreas y número de nodos, y situados en la malla, 

calcular todas las combinaciones de factores de vista necesarios para establecer el intercambio 

radiante (cuyo número, para un valor de precisión razonable de 10, puede ascender a 650 

incógnitas, y para un valor de precisión de 20, puede alcanzar las 3000 combinaciones). Para 

definir todas las combinaciones son necesarios varios scripts.  

El vector de incógnitas se introduce como de una única dimensión, conteniendo éste diferentes 

temperaturas, radiosidades y calores, lo que permite plantear un sistema de ecuaciones 

ordenado, pero obliga a desfragmentarlo para obtener unos resultados al final. Por último se 

utiliza la función “fsolve” para resolver el sistema de ecuaciones que permite obtener como 

resultados los diferentes valores de pérdidas, temperaturas, potencias, rendimientos… (llamados 

por diferentes scripts), los cuales se anotarán en el apartado de resultados y se indicarán en el 

Anexo I. 

La forma de obtener resultados sobre la herramienta simulada consiste en, una vez llamada a la 

función principal “Simulacion_cavidad”, llamar a la incógnita deseada (ya sea temperatura, 

valor de pérdidas, etc). 

Así mismo, como resultados automáticos se han incluido los valores de rendimiento y los 

resultados de los balances globales (del orden de 10
-10

 W para una entrada de 30 kWt como 

energía solar). 
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8. PRESENTACIÓN DE RESULTADOS 

Para satisfacer de forma completa los objetivos del modelo, el análisis de resultados se divide en 

cuatro bloques: 

- Análisis geométrico 

- Análisis de propiedades de materiales 

- Creación del vacío en la cavidad 

- Comparación entre geometría abierta y geometría con cubierta transparente 

En la presentación de resultados se va a hablar de una serie de valores de pérdidas y de un 

rendimiento. Las pérdidas ya han sido definidas en los apartados previos y en el Anexo I. El 

rendimiento se define como la energía que es cedida al motor Stirling entre la energía incidente 

a la cavidad desde el concentrador: 

  
                                

                 
 

8.1. Análisis geométrico 

El análisis geométrico de la cavidad con cubierta transparente, a través del modelo programado 

en Matlab, se lleva a cabo sobre las dimensiones de la zona inferior de la cavidad (R2, R3, R4 y 

h1), ya que el reconcentrador ha de ser dimensionado en base a las propiedades ópticas del 

concentrador solar.  

 

Figura 38 Nomenclatura de dimensiones de cavidad para análisis geométrico. 

Para realizar los estudios se mantiene fijo el radio “R2”, ya que sobre él se define la fuente de 

energía solar, y así se analiza el comportamiento en función de diferentes dimensiones de la 

cavidad para una misma entrada de energía (asociada al radio “R2”). De esta forma se va a 

buscar una relación que de un óptimo entre radio “R3” y altura “h1”, estudiando en primer lugar 

el comportamiento de la cavidad en función del radio, y en segundo lugar el comportamiento de 
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la cavidad en función de diferentes alturas. Por último se analizará la influencia del espesor de 

la cubierta. 

La Tabla 2 muestra los valores de las variables utilizadas en la simulación referente a estudio 

geométrico, las cuales se conservarán a no ser que sean la variable a estudiar. 

VARIABLES FIJAS EN ESTUDIO GEOMÉTRICO 

Convección ext. [W/m
2
K] 14 Espesor cubierta [cm]  0,5 

Temp. ext. [K] 298 K_cavidad [W/mK] 0,005 

Convección int. [W/m
2
K] 1 T_Stirling [K] 823 

Temp. int. [K] 1200 h_Stirling [W/m
2
K] 1000 

Convección amb. 

cav. 

[W/m
2
K] 10 Altura Absorbedor [cm] 1 

Temp. amb. cav. [K] 350 k_Inconel [W/mK] 22 

Absort. cavidad 

Solar 

  0,965 R1 [cm]  14 

Absort. 

absorbedor 

Solar 

  0,834 R2 [cm]  10 

Emisiv. cavidad   0,917 R3 [cm]  18 

Emisiv. 

absorbedor 

  0,73 R4  [cm]  25 

Conductividad 

cubierta 

[W/mK] 1,89 h1 [cm]  15 

Incidencia solar [kWt] ≈ 28,5 h2 [cm]  h1+4 

Tabla 2 Variables de simulación en estudio geométrico 

8.1.1. Relación entre radios 

Debido a la discretización llevada a cabo, el estudio de alturas es más claro que el estudio de 

radios, ya que la malla se puede ajustar de forma exacta a cualquier altura, mientras que la 

modificación de radios exige la modificación del número de nodos y el ajuste final a la malla de 

los mismos, es por eso que los resultados expuestos no muestran una tendencia demasiado 

“limpia”, siendo esto debido a que el radio real no se corresponde con el teórico, y por tanto la 

fuente solar no es exactamente la misma de una simulación a otra (un valor apenas influyente, 

ya que se trata de evaluar tendencias sobre rendimientos, no pérdidas en este apartado, no 

siendo necesario un mayor ajuste de radios). La Figura 39 muestra el estudio llevado a cabo en 

este apartado. 

 

Figura 39 Variación de la relación entre radios 

La Figura 40 muestra los resultados, los cuales indican que conforme mayor es el radio del 

absorbedor, mayor es el rendimiento. 
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Figura 40 Rendimiento en función del radio del absorbedor. 

Este comportamiento es debido a que al aumentar el radio del absorbedor, la energía que parte 

como difusa desde la cubierta transparente se distribuye en mayor cantidad sobre el absorbedor, 

ya que un hipotético factor de vista cubierta-absorbedor aumentaría con el radio de éste último 

manteniendo fijo el primero. Como es lógico, a partir de un determinado radio, el aumento de la 

energía que se cede al absorbedor va tomando un valor más bajo, y por tanto el incremento de 

rendimiento disminuye su valor, obteniendo una tendencia rendimiento-radio prácticamente 

logarítmica. 

Así pues, el radio del absorbedor será tan grande como permita el motor. En cualquier caso, una 

la relación “R2/R3” por debajo de 0,55 no va a mejorar en exceso el rendimiento (debido a la 

tendencia logarítmica observada en la Figura 40). 

8.1.2. Relación altura-radio 

Para diferentes radios de absorbedor se ha variado la altura “h1”, obteniendo en todos los casos 

un óptimo claro. La Figura 42 muestra el estudio llevado a cabo en este apartado.  

 

Figura 41 Variación de altura de la cavidad 

La Figura 42 muestra que este óptimo se va desplazando. Para radios “R3” mayores, el óptimo 

se encuentra a una altura de cavidad “h1” mayor. El ángulo óptimo que forman cavidad y 

absorbedor ronda los 30 º (disminuyendo ligeramente para radios pequeños y aumentando para 

radios elevados).  
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Figura 42 Rendimiento en función de la altura “h1” para diferentes radios de absorbedor. 

Con intención de analizar cuál es la razón de este óptimo se estudia el valor de las pérdidas por 

emisión (espectro de onda larga) y por reflexión (espectro de onda larga). Estos resultados los 

muestran la Figura 43, la Figura 44 y la Figura 45. 

 

Figura 43 Pérdidas radiantes en función de la altura “h1” para radio de absorbedor 24 cm. 
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Figura 44 Pérdidas radiantes en función de la altura “h1” para radio de absorbedor 20 cm. 

 

Figura 45 Pérdidas radiantes en función de la altura “h1” para radio de absorbedor 16 cm. 

Como se puede apreciar, las pérdidas por reflexión disminuyen al aumentar el radio del 

absorbedor, ya que al aumentar el tamaño de la cavidad aumenta el número de reflexiones y 

disminuye la energía que acaba siendo cedida al ambiente. Para alturas pequeñas ocurre lo 

mismo con las pérdidas por emisión, hasta que la superficie de cavidad es tan elevada que ni las 

múltiples reflexiones son suficientes para disminuir la energía que ésta emite, aumentando así 

las pérdidas y compensando la disminución de las pérdidas por reflexión. Las pérdidas por 

convección también aumentan conforme lo hace la altura (mayor superficie), pero son un 

término con menor influencia. 

Así pues, se entiende la optimización de la cavidad como un compromiso entre altura y radio, 

siendo más influyente el radio. La dimensión de la apertura “R2” la determina la óptica del 

concentrador solar, así como la diferencia de alturas “h2-h1” y el radio “R1”. En cuanto al radio 

del absorbedor, será lo mayor posible, no encontrándose un especial aumento de rendimiento 

para ratios de apertura menores a 0,55. La altura “h1” será tal que la inclinación entre 

absorbedor y cavidad se acerque a los 30 º (Figura 46), un valor que se puede precisar con 

mayor detalle simulando ya conocidas el resto de las dimensiones de la cavidad. 
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Figura 46 Posición del ángulo óptimo. 

 

  



Modelado térmico de cavidades para Disco Stirling  

con cubierta transparente.    

Rubén Gil Gil – Trabajo Fin de Máster - Junio 2014 

 

 

79 
 

8.1.3. Espesor de la cubierta 

Como se ha explicado a lo largo del apartado 5 del trabajo, el espesor de la cubierta tiene 

influencia en su valor de absorción de energía, así como también lo tiene en el intercambio de 

calor con la cavidad, su temperatura y en consecuencia sobre las pérdidas por convección. 

La Tabla 3 muestra los valores de las variables utilizadas en la simulación referente a estudio de 

cubierta, las cuales se conservarán a no ser que sean la variable a estudio. 

VARIABLES FIJAS EN ESTUDIO DE ESPESOR DE CUBIERTA 

Convección ext. [W/m
2
K] 14 Espesor cubierta [cm]  0,5 

Temp. ext. [K] 298 K_cavidad [W/mK] 0,005 

Convección int. [W/m
2
K] 1 T_Stirling [K] 823 

Temp. int. [K] 1200 h_Stirling [W/m
2
K] 1000 

Convección amb. 

cav. 

[W/m
2
K] 10 Altura Absorbedor [cm] 1 

Temp. amb. cav. [K] 350 k_Inconel [W/mK] 22 

Absort. cavidad 

Solar 

  0,965 R1 [cm]  14 

Absort. 

absorbedor 

Solar 

  0,834 R2 [cm]  10 

Emisiv. cavidad   0,917 R3 [cm]  16 

Emisiv. 

absorbedor 

  0,73 R4  [cm]  25 

Conductividad 

cubierta 

[W/mK] 1,89 h1 [cm]  13 

Incidencia solar [kWt] 28,12 h2 [cm]  h1+4 

Tabla 3 Variables de simulación en estudio de cubierta. 

La Figura 47 muestra que una cubierta con menor espesor presenta un mejor comportamiento 

térmico (ya que la transmisividad es mayor y la absortividad menor). 

 

Figura 47 Rendimiento en función del espesor de la cubierta. 
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De cualquier modo, el espesor de la cubierta no se considera un parámetro relevante por tener 

una influencia reducida, habiéndose de determinar su espesor en función la seguridad estructural 

del mismo. 
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8.2. Análisis de propiedades de los materiales 

Las propiedades base de los materiales se han incluido según las indicaciones del apartado 4, 

pero el modelo térmico permite variarlas, de forma que se puede analizar la influencia de las 

mismas en el resultado final de rendimiento y los valores de pérdidas. El análisis de propiedades 

de los materiales se puede llevar a cabo en base a los siguientes parámetros: 

- Propiedades radiantes de absorbedor 

- Propiedades radiantes de cavidad 

- Propiedades radiantes de cubierta 

- Conductividad de la cavidad 

La Tabla 4 muestra los valores de las variables utilizadas en la simulación referentes a estudio 

de materiales, las cuales se conservarán a no ser que sean la variable a estudio. 

VARIABLES FIJAS EN ESTUDIO DE MATERIALES 

Convección ext. [W/m
2
K] 14 Espesor cubierta [cm]  0,5 

Temp. ext. [K] 298 K_cavidad [W/mK] 0,005 

Convección int. [W/m
2
K] 1 T_Stirling [K] 823 

Temp. int. [K] 1200 h_Stirling [W/m
2
K] 1000 

Convección amb. 

cav. 

[W/m
2
K] 10 Altura Absorbedor [cm] 1 

Temp. amb. cav. [K] 350 k_Inconel [W/mK] 22 

Absort. cavidad 

Solar 

  0,965 R1 [cm]  14 

Absort. 

absorbedor 

Solar 

  0,834 R2 [cm]  10 

Emisiv. cavidad   0,917 R3 [cm]  16 

Emisiv. 

absorbedor 

  0,73 R4  [cm]  25 

Conductividad 

cubierta 

[W/mK] 1,89 h1 [cm]  13 

Incidencia solar [kWt] 28,12 h2 [cm]  h1+4 

Tabla 4 Variables de simulación en estudio de materiales 

8.2.1. Propiedades radiantes del absorbedor 

Las propiedades que definen el comportamiento radiante del absorbedor son, su emisividad 

(definida en espectro de onda larga) y su absortividad (definida en espectro de onda corta), 

pudiendo variar estas entre 0 y 1. 

La Figura 48 y la Figura 49 muestran el comportamiento de la cavidad en cuanto a pérdidas 

radiantes y rendimiento para los diferentes valores que pueden tomar las propiedades a estudio 

en este apartado. 



Modelado térmico de cavidades para Disco Stirling  

con cubierta transparente.    

Rubén Gil Gil – Trabajo Fin de Máster - Junio 2014 

 

 

82 
 

 

Figura 48 Pérdidas radiantes y rendimiento en función de la absortividad del absorbedor. 

 

Figura 49 Pérdidas radiantes y rendimiento en función de la emisividad del absorbedor. 

El rendimiento aumenta conforme aumenta la absortividad del absorbedor debido a que las 

pérdidas por reflexión disminuyen, y las pérdidas por emisión también lo hacen dado que hay 

menos energía que se refleja hacia las paredes de la cavidad.  

Al disminuir la emisividad del absorbedor se refleja más energía a las paredes de la cavidad y la 

cubierta, las cuales absorben y emiten energía, de modo que las pérdidas por emisión aumentan. 

La cubierta es la principal causante de estas pérdidas por emisión en este estudio. Las pérdidas 

por reflexión en este caso apenas varían, ya que el absorbedor sí es el principal causante de las 

mismas (recibe y refleja la mayor parte de la radiación de onda larga). 
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8.2.2. Propiedades radiantes de la cavidad 

Las propiedades que definen el comportamiento radiante del absorbedor son, su emisividad 

(espectro de onda larga) y su absortividad (espectro de onda corta), pudiendo variar estas entre 0 

y 1. 

La Figura 50 y la Figura 51 muestran el comportamiento de la cavidad, representando las 

pérdidas radiantes y el rendimiento para los diferentes valores que pueden tomar absortividad y 

emisividad. 

 

Figura 50 Pérdidas y rendimiento en función de la absortividad de la cavidad 

 

Figura 51 Pérdidas y rendimiento en función de la emisividad de la cavidad 

La absortividad de la cavidad está relacionada con las pérdidas por reflexión. Conforme 

aumenta la absortividad disminuyen las pérdidas por reflexión y aumentan las pérdidas por 

emisión por el aumento de temperatura de la cavidad y la cubierta. En cuanto a la emisividad, 

apenas cambian los valores de pérdidas, siendo la principal causante de estas pérdidas la 

cubierta, donde toda la energía es cedida al ambiente por su zona superior. 
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8.2.3. Propiedades radiantes de cubierta 

Las propiedades radiantes de la cubierta transparente son francamente importantes, ya que es el 

primer elemento de contacto con la radiación incidente desde el concentrador solar. En este 

caso, las propiedades que definen su comportamiento son, su transmisividad, su reflectividad y 

su absortividad. Considerando una absortividad fija (dada por el espesor de la misma), y 

variando transmisividad y reflectividad hasta hacer sumar 1 estas tres variables, se analiza el 

comportamiento de la cavidad tal y como muestran la Figura 52 y la Figura 53.  

 

Figura 52 Pérdidas y rendimiento en función de la reflectividad de cubierta en espectro de onda corta.   

 

Figura 53 Pérdidas y rendimiento en función de la reflectividad de cubierta en espectro de onda larga. 

El aumento de la reflexión en el espectro de onda larga da lugar a un aumento muy elevado de 

las pérdidas por reflexión, hasta el punto de disminuir el rendimiento a valores cercanos a 0 %, 

ya que apenas entra energía a la cavidad para reflectividad cercana a 0,9. En cuanto al aumento 

de reflexión en el espectro de onda corta, este da lugar a un aumento del rendimiento, ya que la 

energía emitida por la cavidad no sale a través de la cubierta, y la propia cubierta apenas emite 

energía. 
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8.2.4. Conductividad de la cavidad 

La conductividad de la cubierta, determina la transferencia de calor entre el interior y el exterior 

de la misma. La Figura 54 muestra el resultado de este estudio.  

 

Figura 54 Pérdidas y rendimiento en función del coeficiente de conductividad de la cavidad. 

Modificar la conductividad a través de la cubierta apenas supone una variación del rendimiento 

tratándose de materiales aislantes (entre 0 y 0,5 W/mK el rendimiento varía alrededor de un 

1%).    
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8.3. Creación de vacío en la cavidad 

Crear vacío en el interior de la cavidad supone disminuir el coeficiente de convección interior a 

un valor 0, de manera que las pérdidas desaparecen en esta zona.  

Las variables de simulación son similares a las del estudio de materiales. Simulando para 

diferentes valores de altura y unos radios fijos, se han obtenido los resultados que muestra la 

Figura 55, donde el radio óptimo no cambia. 

 

Figura 55 Rendimiento en función de la altura para diferentes valores de convección interior y situación de 

vacío. 

 

Al disminuir el coeficiente de convección hasta la situación de vacío se observa un aumento del 

rendimiento de la cavidad, el cual tiene un valor muy bajo, ya que la temperatura del aire 

interior está a una temperatura muy cercana a la de las paredes, y por tanto los valores de 

pérdidas por convección interior son inicialmente ya muy bajos. Mostrando estos mismos 

resultados según la escala del eje de rendimiento que se viene utilizando hasta aquí se puede 

observar la ínfima mejora que se consigue modificando la convección interior hasta el vacío 

(Figura 56). 
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Figura 56 Rendimiento en función de la altura para diferentes valores de convección interior y situación de 

vacío. 
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8.4. Comparación entre geometría abierta y geometría con cubierta 

transparente 

Las propiedades ópticas del cuarzo no provocan un “efecto invernadero” en la cavidad, 

presentando propiedades parecidas para los dos espectros analizados (longitud de onda larga y 

longitud de onda corta). Dentro de las posibles líneas de futuro de este trabajo se puede incluir 

la búsqueda de materiales que favorezcan este “efecto invernadero”, presentando una baja 

reflectividad a la longitud de onda emitida a aproximadamente 5500 K y una alta reflectividad a 

la longitud de onda emitida a aproximadamente 1000 K, lo que llevaría a aumentar el 

rendimiento de forma drástica (como muestran la Figura 52 y la Figura 53). 

Además, la inclusión de la cavidad provoca la creación de una fuente de emisión directa de 

radiación hacia el ambiente debido a su elevada temperatura y su factor de vista elevado 

respecto al ambiente. Ante esta situación, el principal motivo por el que merece la pena instalar 

una cubierta en la cavidad es la reducción de las pérdidas por convección interior. 

Como ya se ha visto en el apartado 3 de este trabajo, existen múltiples estudios sobre 

convección, y en función de las condiciones de operación y de viento sobre el sistema, los 

valores del coeficiente de convección dependen de la geometría en concreto, siendo necesario 

llevar a cabo un estudio experimental y establecer una correlación para la geometría concreta. 

Por esta razón, se ha decidido comparar un estudio de rendimiento de cavidad con cubierta 

transparente en función de diferentes alturas para unos determinados radios “R2”, “R3” y “R4”, 

con el estudio de esa misma geometría y en una cavidad abierta. 

Si se comparan los resultados directamente se puede llegar a obtener una solución engañosa, ya 

que en el modelo sin cubierta transparente toda la energía se suponía que llegaba directamente 

al absorbedor, algo diferente con algunos de los valores que se indican en bibliografía (un 7 % 

de dispersión a las paredes de la cavidad para una altura “h1” de 9 cm) [11]. Así pues, 

estableciendo una relación lineal entre altura y dispersión, la Figura 57 muestra el tanto por 

ciento de energía que realmente está llegando al absorbedor respecto del que llega a la cavidad.  

 

Figura 57 Radiación incidente sobre el absorbedor respecto de la incidente sobre la cavidad en el modelo 

sin cubierta.  
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Esta aproximación tomada no se puede validar a no ser que se realice otro tipo de estudio o se 

tomen datos experimentales, ya que existe una gran dificultad para conocer la dispersión en la 

cavidad. Ante esta situación, se considera que se trata de una aproximación razonable, variando 

los valores de dispersión en radiación entre un 20 % y un 4 % para una diferencia de altura de 

25 cm. 

Modificando pues los valores de rendimiento en el modelo sin cubierta transparente en base a 

esta dispersión, la Figura 58 muestra una comparación entre modelo con cubierta y modelo sin 

cubierta para diferentes valores de coeficiente de convección (las variables de simulación son 

similares a las del estudio geométrico de radios y altura). 

 

Figura 58 Comparación entre cavidad con cubierta transparente y cavidad abierta con diferentes valores 

de convección interior. 

Analizando la Figura 58 se puede establecer la conclusión, y es que para valores de coeficiente 

de convección por encima de 7 W/m
2
K, el rendimiento se reduce notablemente con una cubierta 

transparente (la cual supone un coste añadido reducido). Estos valores de convección superiores 

a 7 W/m
2
K, tal como indican los estudios comentados en el apartado 3, se pueden alcanzar para 

determinadas situaciones de viento o situaciones sin viento con la cavidad inclinada (situación 

que se da lejos del mediodía solar).  

En esta Figura 58, los valores de rendimiento para “h1” pueden no ser del todo fieles engañosos, 

ya que en el modelo abierto, la temperatura interior se simulaba a 600 K para hallar la 

convección interior, pero cuando la altura es baja, éste temperatura se reduciría (mayor mezcla 

con el ambiente). Esta reducción de temperatura supondría un mayor peso de la convección en 

el cómputo de pérdidas y por tanto una reducción de rendimiento que no refleja la Figura 58 

(esto haría que las curvas de cavidad abierta no estuviesen por encima de la curva de la cavidad 

para todos los coeficientes de convección representados).  
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9. CONCLUSIONES 

El Disco Stirling es un sistema de concentración solar que consta de un disco reflector, un 

sistema cavidad-absorbedor y un motor Stirling. El papel de la cavidad en este sistema es el de 

hacer que el intercambio de energía entre el concentrador y el motor sea lo mejor posible. Los 

estudios previos realizados en cuanto a geometrías no son concluyentes, y algunos de ellos 

proponen la inclusión de una cubierta transparente a la entrada del receptor, siendo esta la razón 

de que se haya realizado un análisis de cavidades para Disco Stirling. 

El estudio realizado ha partido de una geometría cilíndrica para la cavidad, y como principal 

resultado se ha desarrollado una herramienta en Matlab que implementa un complejo modelo 

térmico que puede ser utilizado como guía del diseño de cavidades para Disco Stirling, tanto 

con, como sin cubierta transparente. 

Esta herramienta desarrolla un modelo en diferencias finitas que evalúa pérdidas por 

convección, conducción y radiación del sistema, así como contempla una incidencia de energía 

a la cavidad no uniforme. Las pérdidas por radiación han sido desarrolladas en dos espectros, ya 

que las propiedades de los materiales son diferentes ante un espectro de onda larga (radiación 

emitida por cavidad y cubierta) y un espectro de onda corta (radiación emitida por el Sol); y 

para su evaluación se han calculado de forma exacta todos los factores de vista necesarios.  

Una de las mayores dificultades del proceso ha sido el hecho de crear un modelo que genere un 

número de nodos, balances, factores de vista… variables con la geometría introducida por el 

usuario y la precisión de resolución, pero precisamente eso y la posibilidad de modificación de 

los materiales de la cavidad permite con la herramienta realizada obtener las pautas de diseño 

geométrico de la cavidad.  

En cuanto a nivel de diseño geométrico de la cavidad, se ha observado que el radio del 

absorbedor es la variable más determinante, interesando que sea lo mayor posible. En cuanto a 

la altura de la cavidad, su estudio ha dado lugar a observar una inclinación óptima absorbedor-

cavidad en torno a los 30˚ (Figura 46). Respecto a las propiedades de los materiales, se han 

obtenido aquellas tendencias más beneficiosas, siendo las más influyentes las propiedades 

radiantes del absorbedor y la cubierta. Por último, se ha comparado una cavidad abierta y una 

cubierta, llegando a la conclusión de que será beneficiosa la inclusión de la cubierta en aquellas 

situaciones en las que el viento sea notable, o el tiempo durante el que el sistema esté inclinado 

sea elevado, lo cual es función principalmente de la latitud de la localización del equipo. 

Así pues, se cuenta que una potente herramienta que puede desempeñar un papel francamente 

útil en el desarrollo de cavidades para disco Stirling (tanto con cubierta como abiertas).     
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ANEXO I. DISCRETIZACIÓN Y BALANCES DE ENERGÍA 

I. Método de diferencias finitas 

Las ecuaciones para utilizar en la resolución de un problema por diferencias finitas se obtienen 

realizando balances de energía en cada nodo de la malla planteada aplicando las condiciones de 

contorno correspondientes: 

- Nodo en el que existe intercambio de calor por conducción con sus cuatro nodos 

adyacentes: 

 

Figura 59 Transferencia de calor por conducción en un nodo interior. 

 

La energía generada más la energía incidente han de sumar 0 (la energía, si es generada, sale del 
nodo y tiene signo negativo). En caso de que la energía generada sea 0, la suma de todas las 

energías incidentes (cada una tendrá el signo correspondiente) es 0: 

           

 

   

                

Este es el balance de energía global para el nodo “m,n” de la Figura 59, el cual es bidimensional 

con profundidad 1. Los calores incidentes de cada nodo adyacente son los siguientes: 

                        
           

  
 

El término        representa el área de transferencia de calor, mientras que el 

término 
           

  
, representa la aproximación al gradiente de temperaturas del método de las 

diferencias finitas, y   es la conductividad térmica del material. 
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Si se suman todos los calores incidentes, y se considera que la energía generada en el nodo es 0, 

se obtiene la siguiente expresión: 

                                    

- Nodo en el que existe intercambio de calor por convección y conducción (Figura 60): 

 

 

Figura 60 Transferencia de calor por conducción y convección en un nodo frontera. 

 

                        
           

  
 

                  
  

 
    

           

  
 

                  
  

 
    

           

  
 

                              

 

El balance en este nodo, suponiendo que no hay energía generada en su interior, queda de la 

siguiente manera: 

                        
    

 
     

   

 
          

De igual manera se procede si existe además de un aporte de calor por convección, un aporte de 
calor por radiación. 
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II. Ecuaciones del método de diferencias finitas 

Cada uno de los nodos presenta diferentes áreas sobre las que se establecen los balances 

energéticos. Además de cambiar el número de nodo, y tener las áreas diferente valor, la forma 

de calcular las áreas no puede seguir el mismo patrón, ya que existen diferentes tipos de nodos, 
como los que muestran la Figura 61, la Figura 62 y la Figura 63. 

 

Figura 61 Nodo ejemplo tipología interior o frontera F1, F2, F3. 

 

Figura 62 Nodo ejemplo tipología frontera F5. 

 

Figura 63 Nodo ejemplo tipología N1. 

En cada nodo el balance de energía se calcula de una manera diferente. Según el esquema de la 
Figura 30, y llamando “A1” al área interior, “A2” al área exterior, “A3” al área superior y “A4” 

al área inferior se pueden establecer los balances de energía pertinentes. Es importante anotar 

que las alturas que toman cada uno de los nodos no es la misma, siendo una la de aquellos 

pertenecientes a la parte inferior, otra la de los nodos pertenecientes a la parte superior y otra 
diferente la de la fila de nodos que contiene el nodo esquina “N5”. La Figura 64 muestra esta 

explicación de manera gráfica. 
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Figura 64 Volúmenes de control de cada nodo con diferentes alturas. 

 

Los balances de energía a aplicar serían los siguientes: 

 
- Nodo esquina N1: 

                              
                               

             

  
   

                                     
             

   
           

 

Donde         representa el calor recibido por el intercambio en el espectro de emisión de la 

cavidad. En el código, en cada balance se incluye el cálculo de las áreas. Los calores que se 

reciben por radiación, de modo que se han calculado a partir de áreas, y si todas ellas están 

seccionadas en  , se puede eliminar de todos los términos el término que habilita la sección 

(
 

   
), de modo que los valores de calor que se obtienen son asociables a la geometría completa. 

Esto mismo ocurre en el resto de balances de la cavidad. 

- Nodo esquina N2: 
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- Nodo esquina N3: 

 

     
             

  
                                        

             

  
   

 

- Nodo esquina N4: 

 

                                       
             

  
      

             

  
                   

 

        representa el calor recibido por el intercambio en el espectro solar. 

- Nodo esquina N5: 

 

                                          
             

  
                

                                      
                         

             
           

  
   

 

Este nodo N5 tiene una parte inferior que participa en el intercambio radiante en espectro solar y 

espectro de emisión de la cavidad. También tiene parte superior que por estar semi tapada por la 
cubierta (aproximación ya comentada en el apartado de hipótesis) o completamente tapada por 

la cubierta, no participa en el intercambio radiante, en cambio si lo hace (en caso de estar 

únicamente semi tapada) como intercambio convectivo.           representa la parte de área 

interior del nodo no tapada por la cubierta transparente (ver Figura 31). El nodo N5, a través del 

área cubierta por la cubierta transparente           intercambia calor por conducción con la 

cubierta mediante un coeficiente de conducción equivalente de los dos materiales. La cubierta 

presenta una estructura de nodos en dos alturas, en función de su espesor, este último término 
puede duplicarse para evaluar el intercambio existente entre el nodo N5 y cada uno de los dos 

nodos de cubierta. 

 
- Nodos interiores:  
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- Nodos frontera F1: 

     
             

  
      

             

  
                                  

      
             

  
   

- Nodos frontera F2: 

     
             

  
                                        

             

  

      
             

  
   

- Nodos frontera F3: 

     
             

  
      

             

  
      

             

  
   

- Nodos frontera F4: 

                                       
             

  
      

             

  
                   

- Nodos frontera F5: 

                                 
                               

             

  
  

    
             

  
                         

           

  
   

       representa el área interior de cada nodo que no está tapada por la cubierta, 

siendo de esperar que para elevados valores de precisión, los nodos cercanos al nodo N5 

estén total o parcialmente cubiertos, mientras que el resto estén totalmente 

descubiertos.       intercambia calor por conducción con la cubierta mediante un 

coeficiente de conducción equivalente de los dos materiales. La cubierta presenta una 

estructura de nodos en dos alturas, en función de su espesor, este último término puede 

duplicarse para evaluar el intercambio existente entre el nodo correspondiente de la 
frontera F5 y cada uno de los dos nodos de cubierta. 

 

- Nodos interiores del absorbedor (capa en contacto con la cavidad): 

     
             

  
      

             

  
                                  

      
             

  
                   

En el modelo sin cubierta, en este balance se ha de incluir el calor aportado por la fuente 

solar. 
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- Nodo límite interior del absorbedor (capa en contacto con la cavidad): 

 

     
             

  
                                        

             

  
                   

 

En el modelo sin cubierta, en este balance se ha de incluir el calor aportado por la fuente 

solar. 

 

- Nodo límite exterior del absorbedor (capa en contacto con la cavidad): 

 

     
             

  
                                        

             

  
                   

 

En el modelo sin cubierta, en este balance se incluiría el calor aportado por la fuente 

solar. 

 

- Nodos interiores del absorbedor (capa intermedia): 

 

     
             

  
      

             

  
      

             

  
     

 
             

  
   

 
- Nodo límite interior del absorbedor (capa intermedia): 

 

     
             

  
      

             

  
      

             

  
   

 
- Nodo límite exterior del absorbedor (capa intermedia): 

 

     
             

  
      

             

  
      

             

  
   

 

- Nodos interiores del absorbedor (capa contacto con motor Stirling): 

 

     
             

  
      

             

  
      

             

  
   

                                              

 

Donde el coeficiente y la temperatura de convección son los equivalentes al 

intercambio, obtenidos como dato de otra línea de la investigación. 
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- Nodo límite interior del absorbedor (capa contacto con motor Stirling): 

 

     
             

  
      

             

  
      

             

  
   

 
- Nodo límite exterior del absorbedor (capa contacto con motor Stirling): 

 

     
             

  
      

             

  
      

             

  
   

 

- Nodos interiores de capa superior de cubierta transparente: 

 

     
             

  
      

             

  
                               

                               
             

  
                

   

        en este caso incluye la energía proveniente de la fuente solar. 

 

- Nodo límite interior de capa superior de cubierta transparente: 

     
             

  
                               

                              

 
             

  
                   

- Nodo límite exterior de capa superior de cubierta transparente: 

 

     
             

  
      

           

  
                               

                               
             

  
                

   

Siendo el intercambio con cavidad según coeficiente de conducción equivalente de 

ambas superficies (tomado como media aritmética). 

 

- Nodos interiores de capa inferior de cubierta transparente: 
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- Nodo límite interior de capa inferior de cubierta transparente: 

     
             

  
                               

                              

 
             

  
                   

- Nodo límite exterior de capa inferior de cubierta transparente: 

 

     
             

  
      

           

  
                               

                               
             

  
                 

 

Siendo el intercambio con cavidad según coeficiente de conducción equivalente de 

ambas superficies (tomado como media aritmética). 

Las unidades de estos balances de energía son  
   

  , de manera que para obtener valores de 

potencia en kW, se observa en las expresiones programadas para pérdidas que se divide entre 

   , ya que     
   

   
    

          
    

      
. 
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III. Intercambio radiante y balances de energía 

El intercambio entre superficies se realiza mediante el método de las radiosidades (figura 74). 

Se analizan dos espectros, uno para la radiación que proviene del Sol (emisión a más de 5000 K, 

espectro “es”), y otro para la radiación emitida por la cavidad a su temperatura (alrededor de los 

1000 K, espectro “ec”). 

De manera genérica, sabiendo que la radiación recibida (energía recibida) es   , y que la 

radiosidad (energía emitida) es   , para una superficie “i”, se cumple que el calor neto emitido 

por la misma es: 

             

Si esta superficie está en un recinto cerrado intercambiando energía con el resto de superficies, 

se cumple, mediante una relación a través de los factores de vista, que toda la energía que 

incide, es la que emiten las demás hacia ella: 

             
 

 

La relación de reciprocidad de los factores de vista permite establecer la relación:            , 

de manera que se puede reescribir la ecuación como: 

             
 

 

Eliminando las áreas de los dos lados de la igualdad, e introduciendo la expresión que queda 

para    en la primera ecuación que da el calor emitido por una superficie, queda: 

               
 

  

Teniendo en cuenta que la energía que se emite, se puede expresar como la energía que se emite 

a todas las superficies: 

         
 

 

Se puede escribir la siguiente expresión: 
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Si se resuelve el problema con esta relación, es necesario conocer las radiosidades, pero como 

no se conocen, hay que calcularlas y por ello es necesario conocer cuál es la energía que se 

emite en cada superficie (que es diferente dependiendo del espectro en el que se trabaje): 

- Espectro “oc” (emisión solar). En este espectro las superficies no emiten (lo hacen en el 

espectro de emisión asociado a su temperatura), de modo que de la radiación que incide, 

se refleja la que corresponde por la reflexión de la superficie, como refleja la tercera de 

las siguientes expresiones [11]: 

 

                        

 

 

 

                       
 

 

                 
 

 

La tercera de las expresiones anteriores es válida para todas las superficies, pero en el 

caso en el que no hay cubierta, hay una incidencia de radiación solar de forma directa 
sobre el absorbedor, añadiéndose este término a la ecuación: 

 

                    
 

 

- Espectro “ol” (emisión de la cavidad). En este espectro las superficies absorben, emiten 

y reflejan energía, pudiéndose aplicar una ecuación que hallada mediante el método de 

las radiosidades relaciona radiosidad y flujo de calor [37]:  

 

    
    

      
    
 

                    

 

 

En el caso de este trabajo, para la zona superior de la cavidad (desde la horizontal del nodo 5 

hacia el ambiente), se trabaja únicamente en un espectro, y para cada superficie se obtiene una 

radiosidad. Para la zona inferior de la cavidad se trabaja en dos espectros por separado, y de 

cada uno se obtiene una radiosidad diferente, de modo que la radiosidad total para esta zona es 

la suma de ambas [11]: 

               

En esta zona inferior de la cavidad, el calor total que se cede en el nodo es el resultante de la 

suma de los calores que se ceden en cada uno de los espectros, definido según las ecuaciones 

anteriores. La Figura 65 muestra un esquema simplificado de lo que sería el intercambio 

radiante en el espectro de onda larga, intentando mostrar la posibilidad de combinaciones donde 

cada círculo sería una superficie y cada flecha indicaría el intercambio de calor… Cada 
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superficie intercambia calor con todas las de su grupo y las de aquellos grupos con los que están 

conectados. 

 

 

Figura 65 Esquema radiante simplificado en espectro de onda larga (tanto zona superior como inferior de 

la cavidad) 

A continuación se comentan las pérdidas y ganancias de energía a contemplar en la cavidad (ver 

Figura 7 y Figura 8). Todas las superficies que aparecen en balances hacen referencias a 

fronteras, nodos, cubierta y/o absorbedor, no a nodos interiores: 

- Fuente de energía entrante al sistema: Es la fuente solar (ya se sitúe sobre el absorbedor 

o a sobre la cubierta transparente). En caso de que el aire interior esté a una temperatura 

elevada y  el cielo esté nublado anulando la fuente solar, la convección interior podría 

ser otra fuente solar, algo también contemplado en el código programado. 

 

- Energía útil que se extrae del sistema: Este es el calor transmitido al motor mediante el 

absorbedor, el cual se ha modelado a partir de un intercambio convectivo equivalente. 
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- Pérdidas por reflexión (relativas al espectro de onda corta):  

 

o Caso modelo con cubierta transparente:  

 

En este espectro se produce una reflexión directamente sobre la energía solar 

incidente en cada uno de los nodos que forman la parte superior de la cubierta 

transparente (esta reflectividad utilizada para hallarla contempla todas las 

reflexiones internas como se ha podido ver en la memoria de este trabajo).  

 

                               

                                   

              

 

 

 

Además, tras las múltiples reflexiones internas en la cubierta, existe una 

cantidad de energía que vuelve a la cubierta transparente, y debida a su 

transmisividad es cedida hacia el ambiente. 

 

                                   

                      

 

              

 

 

 

 

La suma de estos dos términos permite obtener las pérdidas por reflexión. 
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o Caso modelo sin cubierta transparente: 

 

Para evaluar las pérdidas por reflexión se suma el calor emitido desde cada 

superficie hacia la superficie intermedia de la cavidad (la cual no emite ni 

intercambia, siendo el límite de este espectro). Esto es lo mismo que evaluar el 

calor recibido por esta superficie intermedia, de todas las demás, teniendo ella 

una radiosidad 0: 

 

                      

                  

                      

 

                     

 

              

                      

 

                     

 

 

 

Donde “i” representa cada uno de los nodos de una superficie intermedia 

hipotética sin cubierta, y “j” el resto de superficies de la parte inferior de la 

cavidad.  

 

- Pérdidas por emisión de la cavidad: En el espectro de emisión de la cavidad se tienen en 

cuenta dos fenómenos: uno es la emisión de cada superficie debida a su energía 

(temperatura absoluta mayor que 0), y el otro es la reflexión que se produce en cada una 

de estas superficies de su energía incidente (la que proviene de todas las demás). En  

este espectro, toda la energía circulante es debida a emisión (ya que la reflejada viene de 

ser emitida en otras superficies, no en una fuente de energía), así pues las pérdidas 

debidas a emisión de la cavidad son las que, en este espectro, se transmiten a la 

superficie cuerpo negro que se coloca en la apertura de la cavidad simulando el 

ambiente. 

                             

                                   

                               

 

  

En esta expresión anterior, las radiosidades son las del espectro de emisión de la 

cavidad, y de nuevo se evalúa en suma de todas las radiosidades que participan en este 

espectro, asociadas a superficies que cambian en número y dimensiones en función de 

las variables de entrada; así se ha introducido en el código programado. 
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- Pérdidas por convección (interior): En este modelo se contemplan diferentes pérdidas 

por convección interior: 

o Pérdidas por convección interior: 

                                

                                   

                               

 

 

o Pérdidas por convección ambiente cavidad: 

                                        

                                            

                               

 

     

En el modelo sin cubierta transparente, estas dos pérdidas se consideran en el mismo 

término, existiendo una única temperatura y coeficientes de convección interior. 

 

Las pérdidas por convección interior se evalúan en la cavidad a partir de un coeficiente 

de convección y una temperatura interior. Como se comentaba en el planteamiento de 

los balances, todos los calores se toman como entrantes al nodo, de manera que al 

evaluar las pérdidas, si se extrae del balance de cada nodo la parte que representa la  

convección, cuando éste sea negativo serán pérdidas, y cuando sea positivo serán 

ganancias (esta es la situación particular que se puede dar comentada en la introducción 

del apartado por una transición despejado-nublado comentada al inicio de la exposición 

de pérdidas y ganancias). Las pérdidas por convección pues, se han de evaluar en todas 

las superficies, función de las variables de entrada en número y dimensión. 

 

- Pérdidas por conducción: Si se contempla el significado de un balance en la cavidad en 

su superficie exterior, todo el calor que circula desde el interior de la cavidad hacia el 

exterior de la misma por conducción, es el que se transmite al ambiente exterior por 

convección exterior. En el código programado se han evaluado las pérdidas por 

convección exterior, las cuales se calculan de la misma manera que las pérdidas por 

convección interior, pero en este caso las superficies en las que se realiza el sumatorio 

de calor cedido es en las que forman la parte externa de la cavidad: 

 

                             
 

                                

                      

 

 

  



Modelado térmico de cavidades para Disco Stirling  

con cubierta transparente.    

Rubén Gil Gil – Trabajo Fin de Máster - Junio 2014 

 

 

111 
 

Las pérdidas en la cavidad están conectadas, en la parte interior de la cavidad el balance de cada 

nodo depende de las pérdidas por reflexión, emisión radiante, convección interior y la 

transferencia de calor por conducción, la cual a su vez también está conectada con las pérdidas 

por convección exterior. Existe una dependencia ligada y total entre la fuente de radiación. 

                                                                                

          

La ecuación anterior presenta un balance de conjunto cavidad absorbedor en el caso en el que no 

hay ganancia de calor por convección. Se ha programado y se ha comprobado que es nulo en el 

modelo sin cubierta y presenta un error por debajo del 0,5 % en el modelo con cubierta (debido 

a las aproximaciones ya comentadas en la memoria). 
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IV. Variables de resultados de la herramienta programada 

En cada uno de los scripts programados se incluye como comentario la razón y el significado de 

cada una de las variables (así como de cada una de las variables genéricas que reportan un 

determinado vector de factores de vista, radiosidades…). En cualquier caso, quedando 

comentado el funcionamiento del programa en el apartado 7, es estima oportuno incluir una 

breve lista con las variables principales que reportan valores de resultados (Tabla 5). 

NOMBRE VARIABLE SIGNIFICADO 

ENTRADA Energía térmica que llega a la cavidad en forma de radiación solar [kWt] 

GAN_CONV_AMB_INT Energía térmica que la cavidad gana por convección en su zona interior en 

contacto con el ambiente [kWt] 

GAN_CONV_INT Energía térmica que la cavidad gana por convección en su zona interior [kWt] 

PERD_CONV_AMB_INT Energía térmica que la cavidad pierde por convección en su zona interior en 

contacto con el ambiente [kWt] 

PERD_CONV_AMBIENTE Energía térmica que la cavidad pierde por convección con el ambiente exterior 
[kWt] 

PERD_CONV_INT Energía térmica que la cavidad pierde por convección interior [kWt] 

PERD_RAD_AMBIENTE Energía térmica que la cavidad pierde por radiación en el espectro de onda 

larga (emisión) [kWt] 

PERD_RAD_SOL Energía térmica que la cavidad pierde por radiación en el espectro de onda 

corta (reflexión) [kWt] 

Q_SALIENTE Energía térmica que la cavidad cede al motor Stirling [kWt] 

RENDIMIENTO Rendimiento de la cavidad 

T_abs Matriz de temperaturas del absorbedor [K] 

T_cav Matriz de temperaturas de la cavidad [K] 

T_cub Matriz de temperaturas de la cubierta [K] 

Tabla 5 Variables de resultados de la herramienta programada en Matlab. 

Además, a continuación se indica de forma muy breve la función de cada uno de los scripts 

programados: 

A_lat: Definición de áreas laterales de nodos. 

Balance_cav: Balance energético en cavidad. 

Balance_conjunto_cavidad: Balance energético auxiliar para balance global. 

Balance_cub: Balance energético en cubierta. 

Balance_global: Balance energético global. 

Comprobar_factores_vista: Comprobación de suma 1 de los factores de vista de todas las 

superficies generadas. 

F_corona_corona: Factores de vista entre coronas circulares. 

F_corona_lateral: Factores de vista entre coronas circulares y anillos laterales. 

F_inf_hueco_sup: Factores de vista entre coronas circulares y círculos. 
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F_inf_lat: Factores de vista entre círculos y anillos laterales. 

F_inf_lat_s: Factores de vista entre círculos y anillos laterales separados. 

F_inf_sup: Factores de vista entre círculos. 

F_inferior_lateral: Función de asignación de factores de visa zona inferior hacia zona lateral. 

F_inferior_superior: Función de asignación de factores de vista zona inferior hacia zona 

superior. 

F_lat_lat: Factor de vista de anillo lateral sobre sí mismo. 

F_lat_lat_is: Factor de vista de anillo lateral sobre otros inmediatamente superiores. 

F_lat_lat_s: Factor de vista entre anillos laterales separados. 

F_lateral_lateral: Función de asignación de factores de vista de zona lateral sobre zona lateral 

(zona inferior). 

F_lateral_lateral_1: Función de asignación de factores de vista de zona lateral sobre zona lateral 

(zona superior). 

F_sup_inf: Factores de vista entre círculos. 

F_sup_lat: Factores de vista entre círculos y anillos laterales. 

F_sup_lat_i: Factores de vista entre círculos y anillos laterales separados. 

F_superior_lateral: Factores de vista entre círculo y anillo lateral. 

Factores_vista_absorbedor: Función de asignación de factores de vista de absorbedor. 

Factores_vista_cristal: Función de creación y asignación de factores de vista sobre cubierta 

transparente. 

Factores_vista_F4: Factores de vista sobre frontera F4. 

Factores_vista_F5: Factores de vista sobre frontera F5. 

Factores_vista_nodoN1: Factores de vista sobre nodo N1. 

Factores_vista_nodoN4: Factores de vista sobre nodo N4. 

Factores_vista_nodoN5: Factores de vista sobre nodo N5. 

Ganancia: Función para determinar si un intercambio es ganancia o pérdida de calor. 

Mallado: Script que define la malla en función de los parámetros geométricos y de precisión 

leídos del script Simulación cavidad. 

Mysist_correcciones_cubierta: Script de resolución del sistema de ecuaciones global. 

Perdida: Función para determinar si un intercambio es ganancia o pérdida de calor. 
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Radiosidad_abs: Asignación de radiosidades de absorbedor. 

Radiosidad_cav: Asignación de radiosidades de cavidad. 

Simulación_cavidad: Script de introducción de datos. 

Temperaturas_abs: Asignación de temperaturas de absorbedor a matriz. 

Temperaturas_cav: Asignación de temperaturas de cavidad a matriz. 

Temperaturas_cub: Asignación de temperaturas de cubierta a matriz. 

 

Dentro de estos scripts se generan una serie de variables vectoriales cuya dimensión está 

asociada a las variables de geometría y precisión introducidas por el usuario (como factores de 

vista, áreas…). Dentro del vector principal de soluciones se almacenan calores, temperaturas y 

radiosidades, marcando su dimensión por los siguientes contadores, los cuales dividen un vector 

que va desde valor 1 hasta el número de incógnitas (se sigue la nomenclatura del propio código, 

incluyendo variables de nodos y capas definidas en el mismo): 

x(1)…x(capas_abs*N4_n): Temperaturas del absorbedor. 

x(capas_abs*N4_n+1)… x((capas_abs+1)*N4_n): Calor por radiación espectro “oc” 

absorbedor. 

x((capas_abs+1)*N4_n)… x((capas_abs+2)*N4_n): Calor por radiación espectro “ol” 

absorbedor. 

x(contador1+1)…x(contador4): Temperaturas de la cavidad. 

x(contador4+1)… x(contador4+N1_m): Calor por radiación espectro “ol” cavidad. 

x(contador5+1) … x(contador5+N5_m): Calor por radiación espectro “oc” cavidad. 

x(contador6+1) … x(contador6+N4_n): Radiosidad espectro “ol” absorbedor. 

x(contador7+1) … x(contador7+N4_n): Radiosidad espectro “oc” absorbedor. 

x(contador8+1) … x(contador8+N1_m): Radiosidad espectro “ol” cavidad. 

x(contador9+1) … x(contador9+N5_m): Radiosidad espectro “oc” cavidad. 

x(contador9+N5_m+1): Radiosidad del ambiente. 

x(contador10+1) … x(contador10+N5_n): Radiosidad inferior cubierta espectro “ol”. 

x(contador11+1) … x(contador11+N5_n): Calor inferior cubierta espectro “ol”. 

x(contador12+1) … x(contador12+N5_n): Temperaturas inferior cubierta. 

x(contador13+1) … x(contador13+N5_n): Temperaturas superior cubierta. 
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x(contador14+1) … x(contador14+N5_n): Calor superior cubierta espectro “ol”. 

x(contador15+1) … x(contador15+N5_n): Radiosidad superior cubierta espectro “ol”. 

x(contador16+1) … x(contador16+N5_n): Radiosidad inferior cubierta espectro “oc”. 

x(contador17+1) … x(contador17+N5_n): Calor inferior cubierta espectro “oc”.  
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CÁLCULO DE FACTORES DE VISTA 
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ANEXO II. CÁLCULO DE FACTORES DE VISTA 

I. Planteamiento 

Como se ha visto a lo largo de la memoria, el cálculo de factores de vista es imprescindible para 

evaluar el intercambio de calor por radiación entre dos superficies. 

 

Figura 66 Intercambio radiante entre dos superficies. 

Los factores de vista tienen un significado geométrico, que de forma terrenal se podría 

denominar para dos superficies como: “la porción que supone una superficie del total que ve la 

otra”. Según la nomenclatura de la Figura 66, la forma exacta de evaluar el factor de vista entre 

las superficies 1 y 2 es la siguiente: 

    
 

  
   

           
    

       
    

 

El número de superficies que aparecen en el modelo, tanto en cubierta como en cavidad depende 

de la geometría y la precisión introducida al inicio de la simulación. De igual forma cambia la 

superficie de cada uno de los nodos, siendo prácticamente imposible simular a partir de la 

relación integral anterior. La alternativa que se ha seguido ha sido la de realizar un cálculo 

dinámico de los factores de vista, es decir, generar un sistema que sea capaz de autogenerar el 

número de ecuaciones necesarias a partir de unas condiciones de entrada (geometría y 

precisión). 

Este cálculo dinámico se basa en tres reglas principales, la regla de la suma, la regla de 

reciprocidad y el factor de vista de dos discos coaxiales y paralelos. 

- Regla de reciprocidad: 

            

- Regla de la suma: En un recinto cerrado, los factores de vista de una superficie sobre 

todas las demás suman 1.  
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- Factor de vista de dos discos coaxiales y paralelos (Figura 67) [37]: 

 

Figura 67 Discos coaxiales y paralelos. 

    
 

 
         

  
  
 
 

 

 
  

  

   
  
 

 

   
  
 

 

    
    

 

  
 

 

Además, el factor de vista de una superficie sobre sí misma puede ser 0 o diferente de 0 según 

sea planta, cóncava o convexa: 

- Superficie plana (Figura 68): No recibe su propia emisión. 

      

 

Figura 68 Emisión difusa en superficie plana. 
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- Superficie cóncava (Figura 69): Recibe parte de su propia emisión. 

 

      

 

Figura 69 Emisión difusa en superficie cóncava. 
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II. Situaciones a considerar en el cálculo de factores de vista 

Existen diferentes particularidades a contemplar en el cálculo de factores de vista. No se puede 

establecer un patrón de cálculo para todas las superficies de una zona y “barrerla”, ya que 

existen diferentes situaciones con las que se ha de tener especial cuidado. Siguiendo la 

nomenclatura de la Figura 30 y denominando parte superior a la más cercana al ambiente, las 

diferentes particularidades se presentan a continuación: 

- Parte superior de la cavidad:  

o Ambiente: Superficie circular. Su factor de vista sobre la superficie lateral del 

nodo “N1” se calcula de diferente manera que sobre cada uno de los nodos de la 

frontera “F5”, y sobre el nodo “N5”. Así mismo se ha de detectar cuales de 

estos nodos están ocultos por la cubierta, haciendo que el factor de vista en 

estos casos (y los parcialmente cubiertos) valga 0. 

o Superficie lateral de la cavidad: Superficies laterales de troncos de cono. 

Cambian sus áreas y su situación geométrica, pero lo hacen siguiendo un 

patrón, de forma que se puede seguir una misma ecuación de cálculo en algunos 

de los casos. Los siguientes particularidades se han de contemplar tanto como 

cálculo desde ellas mismas, como cálculo hacia ellas mismas desde el resto de 

nodos de la parte superior de la cavidad. 

 Nodo “N1” sigue un patrón de cálculo diferente. 

 Parte superior de “N5” o siguiente nodo de frontera “F5” no oculto por 

la cubierta transparente sigue un patrón de cálculo diferente. 

 El factor de vista sobre la propia superficie es diferente de 0. 

 Factor de vista sobre nodo inmediatamente inferior sigue un patrón de 

cálculo diferente. 

 Factor de vista sobre un nodo inmediatamente superior sigue un patrón 

de cálculo diferente. 

o Superficie superior de cubierta: Círculo interior y coronas circulares 

concéntricas. El patrón de cálculo es diferente desde el círculo interior, desde 

las coronas circulares intermedias y desde la corona circular exterior. Además, 

desde cada una de estas situaciones particulares se ha de seguir un patrón de 

cálculo diferente sobre: 

 Primer nodo descubierto de superficie lateral o nodo “N5” 

 Nodo “N1” 

 Ambiente 

 Resto de nodos de la frontera “F5” 

- Parte inferior de la cavidad: Las situaciones particulares que se dan son equivalentes, 

aunque no los patrones de cálculo. Para establecer equivalencias de particularidades 

respecto de la zona superior se podrían asemejar la frontera “F4” a la frontera “F5”, el 

nodo “N4” al nodo “N5” o último nodo descubierto, la parte inferior del nodo “N5” al 

nodo “N1”, y el absorbedor a la parte superior de la cubierta. 

 

Además, se han de contemplar las peculiaridades añadidas que supone el hecho de que 

la parte inferior de la cubierta está compuesta por un círculo y coronas circulares 

concéntricas (no como el ambiente que era una superficie circular). Los patrones de 

cálculo desde todas y cada una de las superficies serán diferentes hacia el círculo 
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central, las coronas circulares intermedias y la corona circular exterior. Una ventaja que 

presenta la zona inferior respecto a la superior es que la cubierta transparente no cubre 

ninguno de sus nodos, ya que parte del vértice del nodo “N5” hacia el ambiente, y por 

tanto no se han de detectar nodos cubiertos o semicubiertos en la frontera “F4”. 
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III. Cálculo de factores de vista 

Todas las particularidades han de ser contempladas a la hora de programar las funciones de 

cálculo de factores de vista. El procedimiento de programación consiste en realizar unas 

funciones globales que vayan “llamando” a funciones más particulares de cálculos concretos. 

Estas funciones globales son las que se encargan, en función de las condiciones de entrada, de 

ordenar todos los cálculos de las funciones particulares para obtener un número de factores de 

vista diferentes en cada simulación, así como enviar a las funciones particulares las dimensiones 

exactas con las que han de realizar los cálculos (que de nuevo variarán en función de las 

condiciones de entrada). Las situaciones particulares de cálculo son las que se incluyen a 

continuación, y de forma secuencial se pueden calcular todas ellas. 

- Factor de vista de dos discos paralelos coaxiales [37]: A partir de las dimensiones de los 

discos y su separación se puede obtener este valor, como se ha explicado al principio 

del anexo. 

    
 

 
         

  
  
 
 

 

 
  

  

   
  
 

 

   
  
 

 

    
    

 

  
 

 

 

- Factor de vista de la superficie lateral de un tronco de cono sobre sí misma (Figura 70): 

 

Figura 70 Superficie lateral tronco de cono sobre sí misma. 
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En la Tabla 6 se representan las superficies y los factores de vista que se han de calcular por 

pasos para obtener el deseado. La regla de la suma se cumple en dirección horizontal, ya que 

suman cero los factores de vista desde una misma superficie: 

  1 2 3 

1 0 F_12 F_13 

2 F_21 0 F_23 

3 F_31 F_32 F_33 

      1º PASO 
  

      2º PASO 
        3º PASO 
   

Tabla 6 Cálculo de factores de vista en una estructura troncocónica. 

En un primer paso, se conoce el factor de vista ya calculado    . A partir de la relación de 

reciprocidad            , se obtiene    . El factor de vista de una superficie plana sobre sí 

misma es 0. Hasta aquí se ha seguido el primer paso de la tabla anterior. 

A partir de la regla de la suma se obtiene          , y aplicando sobre este la regla de 

reciprocidad            , se obtiene    . Hasta aquí se ha cumplido el segundo paso de la 

tabla. 

Por último, se puede obtener, a partir de la regla de la suma sobre la superficie 2,       

   , y aplicando sobre éste la regla de reciprocidad            , solamente queda por 

obtener a partir de la regla de la suma sobre la superficie 3, el factor de vista en cuestión: 
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- Factor de vista de la superficie lateral de un tronco de cono sobre la superficie lateral de 

un tronco de cono adyacente superior (secciones adyacentes laterales) y factor de vista 

de la superficie lateral de la sección inferior de un tronco de cono sobre su base superior 

(Figura 71): 

 

Figura 71 Superficie lateral de un tronco de cono en dos secciones horizontales. 

                  

Aplicando la regla de la suma desde la superficie 3, únicamente son incógnitas los factores de 

vista     y    . Se puede escribir lo siguiente: 

              

              

                

Donde         y     son conocidas. 

Aplicando la regla de reciprocidad sobre    , se puede conocer    , e introduciéndolo en la 

ecuación inicial, obtener    . 

- Factor de vista entre dos secciones laterales de un tronco de cono separadas (Figura 72): 

 

Figura 72 Superficie lateral de un tronco de cono en tres secciones horizontales. 
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Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

Donde son conocidos todos los términos menos el que se quiere calcular    . 

- Factor de vista de la base inferior de un tronco de cono sobre la superficie lateral de una 

sección no adyacente a la misma (Figura 73): 

 

Figura 73 Base inferior sobre superficie lateral de un tronco de cono en dos secciones. 

                  

                  

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

Donde son conocidos todos los términos menos el que se quiere calcular    . 

- Factor de vista de la base superior de un tronco de cono sobre la superficie lateral de 

una sección del mismo no adyacente a la susodicha base (Figura 74): 

 

Figura 74 Base superior sobre superficie lateral de un tronco de cono en dos secciones. 
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Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

Donde son conocidos todos los términos menos el que se quiere calcular    . 

- Factor de vista de una corona circular límite exterior de la base inferior de un tronco de 

cono sobre la base superior del susodicho tronco (Figura 75): 

 

Figura 75 Divisiones sobre base inferior de un tronco de cono. 

                  

                  

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

Donde son conocidos todos los términos menos el que se quiere obtener    , al cual se le aplica 

la regla de reciprocidad y se obtiene    . 

- Factor de vista de una corona circular límite exterior de la base inferior de un tronco de 

cono sobre la superficie lateral del mismo (Figura 76): 

 

Figura 76 Divisiones sobre base inferior de un tronco de cono. 

                  

Tratándose de una superficie plana          , y por tanto: 

          

Relación de la que se conoce     y de la que se puede obtener    . 
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- Factor de vista de una corona circular límite exterior de la base inferior de un tronco de 

cono sobre la superficie lateral de una sección del mismo no adyacente (Figura 77): 

 

Figura 77 Divisiones sobre base inferior de un tronco de cono dividido en dos secciones horizontales. 

                      

                      

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

De donde se conocen todos los términos salvo el que se busca    . 

- Factor de vista de un circulo coaxial y coplanario con la base de un tronco de cono, y de 

radio menor que ésta, sobre la base superior del tronco de cono (Figura 78): 

 

Figura 78 Divisiones sobre base inferior de un tronco de cono. 

 

Se trata de dos discos coaxiales coplanarios, de modo que su factor de vista se obtiene a partir 

de la expresión: 

    
 

 
         

  
  
 
 

 

 
  

  

Donde,    
  

 
,    

  

 
, y     

    
 

  
 . 
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- Factor de vista de un círculo coaxial y coplanario con la base de un tronco de cono, y de 

radio menor que ésta, sobre la superficie lateral del susodicho tronco (Figura 79): 

 

Figura 79 Divisiones sobre base inferior de un tronco de cono. 

 

                  

Donde          , y     es conocido, de modo que se puede obtener    . 

 

- Factor de vista de un círculo coaxial y coplanario con la base de un tronco de cono, y de 

radio menor que esta, sobre la superficie lateral de una sección de este cono, no 

adyacente a la base inferior (Figura 80): 

 

Figura 80 Divisiones sobre base inferior de un tronco de cono dividido en dos secciones horizontales. 

 

                      

                      

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

De donde se conocen todos los términos salvo el que se busca    . 
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- Factor de vista de una corona circular coaxial y coplanaria con la base de un tronco de 

cono, y de radio exterior menor que ésta, sobre la base superior del tronco de cono 

(Figura 81): 

 

Figura 81 Divisiones sobre base inferior de un tronco de cono. 

 

                      

                      

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

De donde se conocen todos los términos salvo    , y por reciprocidad    . 

- Factor de vista de una corona circular coaxial y coplanaria con la base de un tronco de 

cono, y de radio exterior menor que ésta , sobre superficie lateral del susodicho tronco 

de cono (Figura 82): 

 

Figura 82 Divisiones sobre base inferior de un tronco de cono. 

 

                      

Sabiendo que              , y siendo     conocida, se puede obtener    . 
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- Factor de vista de una corona circular coaxial y coplanaria con la base de un tronco de 

cono, y de radio exterior menor que ésta, sobre la superficie lateral de una sección de 

este cono, no adyacente a la base inferior (Figura 83): 

 

Figura 83 Divisiones sobre base inferior de un tronco de cono dividido en dos secciones horizontales. 

 

                          

                          

Por diferencia de las dos ecuaciones anteriores se obtiene la siguiente: 

                

De donde se conocen todos los términos salvo el que se busca    . 
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A continuación se indican las situaciones a valorar ante el cálculo de factores de vista sobre 

cubierta: 

- Desde la superficie central de la base inferior, con los factores de vista ya calculados en 

los casos analizados, no hay incógnitas; a partir de la relación de reciprocidad, los 

factores de vista entre base superior e inferior dividida en diferentes partes sirven para 

obtener éstos. Esta relación se muestra en la Figura 84. 

 

Figura 84 Divisiones en base superior e inferior de un tronco de cono. 

 

- De la misma manera, y aprendiendo de la experiencia cálculos que permiten programar 

el intercambio en el espectro de emisión de la cavidad, se pueden aprovechar los 

métodos que se utilizan para realizar el cálculo desde una corona exterior para una 

corona intermedia. Esta relación se muestra en la Figura 85. 

 

Figura 85 Divisiones en base superior e inferior de un tronco de cono. 
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- Factor de vista de una corona circular límite exterior de la base inferior de un tronco de 

cono sobre una corona circular límite exterior de la base superior de éste tronco de cono 

(Figura 86): 

 

Figura 86 Divisiones en base superior e inferior de un tronco de cono. 

 

                              

 

                              

                            

Por diferencia de las dos últimas ecuaciones:  

                      

 

Donde son conocidos todos los términos salvo    . 
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- Factor de vista de una corona circular límite exterior de la base inferior de un tronco de 

cono sobre una corona circular (no es la del límite exterior) de la base superior de éste 

tronco de cono (Figura 87): 

 

Figura 87 Divisiones en base superior e inferior de un tronco de cono. 

 

                              

                              

Por diferencia de las dos últimas ecuaciones:  

                

Donde son conocidos todos los términos salvo    . 

De estos factores de vista se pueden obtener sus recíprocos mediante la regla de la reciprocidad. 

Así mismo, y utilizando estos mismos conceptos se pueden calcular los factores de vista de la 

cubierta sobre la zona superior de la cavidad, ya que se la inclinación de la cavidad no afecta a 

los conceptos ya presentados.  

Una vez que se conoce cómo calcular todos los factores de vista. Dada la facilidad existente 

para cometer errores en la programación se han incluido una serie de funciones que permiten 

obtener la suma de los factores de vista de cada una de las superficies del modelo sobre todas las 

demás, obteniéndose un valor igual a 1 para cualquier situación de simulación. 
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