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Summary

The survival analysis is a set of techniques whose aim is the study of the variable “time to
the ocurrence of a given event”. This event can be, for example, the development of a disease,
response to a treatment or the death. This random continuos variable is called Survival Time
and is denoted by T'.

Survival analysis is an essential tool to the study the evolution of diseases but also has great
influence in other areas of knowledge, for example, engineering.

Our work focuses on survival analysis applied to medicine. Firstly, we introduce the ba-
sic concepts of survival analysis (chapter 1); secondly, we explain the usual nonparametric
methods for estimating and comparating and semiparametric models of the survival analysis
(chapter 2 and chapter 3) for, finally, apply them to a particular group of individuals with
prostate cancer (chapter 4).

Introduction of survival analysis

One of the most important feature of survival data is the lack information of the data.
This occurs when some subjects in the study have not experienced the event of interest at
the end of the study. For example, some patients may still be alive or disease-free at the end
of the study period. This is because, in the practice, it is almost impossible to have lengthy
studies that allow collect full information on all patients. So, the exact survival times of these
subjects are unknown and these are called censored observations or censored times.

It is said that an individual survives if has not suffered yet to the event. In this case, it is said
that the individual is at risk. Furthermore, it is said that an individual has failed if he has
suffered the event ; consequently it is called failure time to time when the event occurred.

The distribution of survival times is usually described or characterized by three functions:
the survivorship function, the density function and the hazard function. These three functions
are mathematically equivalent.

The survivorship function, denoted by S(t), is defined as the probability that an individual
survives longer than t, that is,

S(t) =P(T>1t).
The hazard function, denoted by h(t), is defined as the probability of failure during a very

small time interval, assuming that the individual has survived to the beginning of the interval,
per unit time, that is,

Pl<T<t+At|T>t
W) = lim DUSTSIEALT>0)
At—0+ At



Furthermore, the cumulative hazard function is defined as:

The function of density of T is defined as usual.

In addition to the censoring problem, we do not usually know specific hypotheses about
the distribution of the random variable T, so we do not dispose of a parametric model for
the survival functions . For that reason, we need to incorporate nonparametric methods (not
assumed any particular form in the variable T') of estimating survival functions.

Nonparametric estimators

The Kaplan-Meier estimator is a nonparametric estimator of the survivorship function
S(t), introduced by Edward L.Kaplan and Paul Meier, and which includes information on all
data, censored and uncensored. In addition, Kaplan and Meier assume independence between
the time of entry into the study and the probability of failure.

Suppose a study of n individuals where their failure times or censorship ( uncensored and
censored times ) are known. We denoted t(1)s---»t(s) with s < n to the different ordered times
of failure. The Kaplan-Meier estimator S(t) is defined as

R _d. R
S(t) = H ba j=1...,s y Sit)=1 si t<ty).

n.:
; J

where n; is the number of individuals that are at risk at the time ¢(;) and d; the number of
individuals that fail at the time ;).

The Kaplan-Meier estimator can be derivated as a maximum likelihood estimator [8]. In this
way, confidence intervals for large samples for the function S(¢) can be obtained. The variance
of the Kaplan-Meier estimator can be obtained by applying the Delta method [7].

Nelson y Aalen propose a nonparametric estimator of the cumulative hazard function
given by J
H(t) = —
(1 (2): =3
where (;), d;,n; are defined as before.
As for the Kaplan-Meier estimator, the estimator can be derived also as a maximum likelihood

estimator [1].
Nonparametric test. Test de Logrank

The problem of comparing survival distributions arises often in medical research. Suppose,
for example, that we want to compare the tumor-free times for two groups of people, G1, Go,
that received treatments 1 and 2, respectively. To compare these groups, we explain and use
the Logrank test, a nonparametric test that can be used for data with and without censored
observations. The null hypothesis is Hp : S1(t) = S2(t), that is, treatments 1 and 2 are equally
effective.

In this situation, we know ([11]) that the statistical

2
B (0; — E;)?
Z= Z E; ’
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where O; is the observed number of patients who relapse and E; are the expected number of
patients who relapse in the group G; i = 1,2, follows, under the null hypothesis of equality
of the survival functions, a distribution x? (asymptotically).

Until now, we have only considered the estimate of the survival function as a function of
time. Now we propose a model that analyze the influence of other variables.

Cox model

Cox was the first to propose a semiparametric regression model, called Cox model or
proportional hazards model, that is represented as follows:

h(t> X, 5) = hU(t) eXp(Xﬂ),

where X is the covariate, 5 the unknown coefficient asociated to the covariate and hy(t) a
function called baseline hazard function. Note that the model is valid for several covariables.
Cox regression allows us to evaluate, from a set of independent variables, which of them have
a significant influence on the hazard function. To evaluate the influence of each variable, we
use the Wald test, whose null hypothesis is Hg : g = 0.

The main element in the Cox regression is the hazard ratio that allows us to compare
the hazard function between two groups of patients. Unlike Logrank test, the hazard ratio
provides us information about the magnitude of the differences between groups.

In the Cox model, the hazard ratio is expressed as:

h(taxia B)
h(t7xj7ﬁ)

where z; and z; indicate the value of the covariable of the two groups.

HR(zj,xj) = = exp(B(z; — x;)),

The above expression shows that the hazard ratio does not depend of the time; this is the
proportional hazards assumption .

The coefficients 8 are unknown coefficients that we must estimate. To estimate the coef-
ficients, Cox [4] proposed a partial likelihood function. Later, it was shown that the partial
likelihood function had the same properties as the maximum likelihood estimators [2]. This
fact allow to get confidence intervals for large samples for the coefficientes 5.

Application

In the last chapter, we apply all the previous concepts to a real problem.
We will do a survival analysis to a group of 359 individuals with prostate cancer. The da-
ta belong to the hospital “Miguel Servet”. The individuals are incorporated to the study
after surgery (radical prostatectomy). The event of interest occurs when the value of PSA
> 0,4ng/mL.

The aim of our analysis is to study the influence of some preoperative variables and the
age of the patient in the operation, on the survival time, this is, the free time of cancer. The
study will carry out, mainly, with the SSPS statistical program and the R program.

The results of this analysis are shown in the work (chapter 4).
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Capitulo 1

Introduccion al analisis de

supervivencia

El analisis de supervivencia es un conjunto de técnicas que tienen como objeto estudiar
la variable ‘tiempo hasta la ocurrencia de un suceso de interés’ y su dependencia con otras
posibles variables. A esta variable aleatoria se le conoce como tiempo de supervivencia y
se denota por T.

1.1. Introduccion histoérica

El andlisis de supervivencia tiene su origen en la construccién de tablas de mortalidad,
de donde proviene el término de ’supervivencia’ pues el suceso de interés alli era la muerte.
Las primeras tablas de mortalidad fueron construidas por el astrénomo inglés Edmond Halley
(1656-1742) a partir de los registros de nacimientos y funerales de la ciudad de Breslau (1693).

Posteriormente, el andlisis de supervivencia fue extendido al campo de la ingenieria para
analizar la fiabilidad de los diferentes elementos que forman una maquina. La Segunda Guerra
Mundial acelerd el desarrollo de estas técnicas para aplicarlas a la industria militar.

El auge del andlisis de supervivencia en medicina empezoé en la década de los 70 jugando
un papel muy importante en el estudio de la evolucién de enfermedades y mas tarde también

gracias al avance tecnolégico.

En las dltimas décadas, los modelos estadisticos para el andlisis de supervivencia han
continuado progresando extendiéndose su aplicacion a otras areas como son la economia,
criminologia o las ciencias sociales y del comportamiento. De esta manera, hoy en dia, el
suceso de interés para el estudio no es necesariamente la muerte como lo era en su origen si
no que puede ser la recaida o desarrollo de una cierta enfermedad, fallo en una pieza de un
maquina, una determinada subida en la prima de riesgo o la salida de la universidad, por
ejemplo.

Asi, el andlisis de supervivencia se extiende y se aplica a otras areas de conocimiento
ademaés del area de la medicina que es en la que nos centramos en nuestro trabajo.

9
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1.2. Conceptos basicos del andlisis de supervivencia

Con el fin de facilitar la visualizacién de los conceptos basicos que definiremos a continua-
cién vamos a considerar la siguiente situacion:

Supongamos que se realiza un estudio durante un anio observando cada mes a un grupo de
6 personas que padecieron un tipo de enfermedad y que, tras someterlas a una intervencion
quirirgica y quedar, aparentemente, libres de dicha enfermedad, se quiere estudiar la distri-
bucion de la variable aleatoria tiempo de supervivencia, siendo el evento la recaida en dicha
enfermedad, esto es, el tiempo libre de enfermedad.

En la préctica, suele ser imposible hacer un estudio que permita conocer los tiempos de
supervivencia exactos de los pacientes por lo que se consideran los tiempos de observacién en
el estudio como tiempos de supervivencia. De esta manera, en ocasiones, debido a la forma
en la que observamos a los pacientes, los tiempos de supervivencia se miden de forma discreta
como ocurre, por ejemplo, en la situacién anterior donde los tiempos de supervivencia podran
tomar el valor ¢ € N con t = 1,...,12. Notemos que es importante la unidad de tiempo que
se considera pues, dependiendo de ésta, la informacion puede ser mas o menos refinada.

1.2.1. Terminologia basica

Hoy en dia, se dice que un individuo sobrevive si no ha sufrido todavia el suceso. En este
caso, se dird que dicho individuo estd en riesgo. Por otro lado, se dice que un individuo ha
fallado si ha sufrido el suceso de interés; consecuentemente se denomina tiempo de fallo al
tiempo en el que ha ocurrido el suceso.

Datos censurados

En un estudio, como el de la situacién anterior, puede que todos los pacientes hayan fallado
y se conozcan sus tiempos de ocurrencia, es decir, contamos con la informacién completa
de todos sus tiempos de supervivencia. Los datos de supervivencia conocidos con exactitud
reciben el nombre de exactos o no censurados.
Sin embargo, la obtenciéon de muestras con informacion completa de todos los pacientes suele
requerir estudios demasiado largos que no se dan en la practica. De esta forma, habitualmente
no conocemos los tiempos de supervivencia exactos de todos los pacientes. En este caso,
algunos tiempos de supervivencia son conocidos parcialmente (no conocemos su tiempo de
fallo) y reciben el nombre de datos u observaciones censuradas. Por ejemplo, en el
caso de la situaciéon anterior, puede ocurrir que algunos pacientes puedan estar libres de la
enfermedad al final del periodo de estudio o incluso puede ocurrir que se pierda su seguimiento
(por abandono o muerte por otras causas, por ejemplo). En estos casos, se conoce solamente
una cota de sus tiempos de supervivencia. En este sentido, existen tres tipos de censura en
los datos que pueden darse en el andlisis de supervivencia:

= Censura por la derecha: Es la censura que tiene lugar cuando se desconoce el tiempo
exacto en el que se produce el suceso pero se sabe que ocurre después de un cierto
tiempo t. Es la censura méas habitual y es con la que trabajaremos.
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s Censura por la izquierda: Es la censura que tiene lugar cuando se desconoce el
tiempo exacto en el que se produce el suceso pero se sabe que ocurre antes de un cierto
tiempo t.

= Censura por intervalo: Es la censura que tiene lugar cuando se sabe que el ha ocurrido
entre los tiempos a y b.

Volviendo a la situacion descrita al inicio, supongamos que la informacion sobre los seis
individuos en los doce meses de estudio se recoge en el esquema siguiente:

Supongamos que el circulo rojo representa un dato censurado y el cuadrado gris un dato no
censurado, esto es, un tiempo de fallo. Bajo dicha suposicién, la interpretaciéon del esquema
seria la siguiente:

Los individuos A,B y C entran en el estudio (se les interviene quirurgicamente) al inicio
de éste mientras que los individuos D, E y F entran en el estudio después del primer, segundo
y sexto mes de estudio, respectivamente. Los individuos A, C, E y F proporcionan datos
censurados con censura a derecha. Sus tiempos de supervivencia son 3+, 124, 7+ y 12+
respectivamente, donde t+ denota un tiempo de censura. Los individuos A y E son individuos
a los que se les ha perdido su seguimiento en el estudio y los individuos C y F siguen libres de
enfermedad al final del estudio. Por otro lado, los individuos B y D presentan un tiempo de
supervivencia exacto de 3 y 9 meses respectivamente; esto es, permanecen, respectivamente,
3 v 9 meses libres de enfermedad.

1.2.2. Funciones de tiempos de supervivencia

El tiempo de supervivencia T es una variable aleatoria continua. La distribucién de super-
vivencia se describe generalmente por tres funciones que serdn equivalentes matematicamente;
si conocemos una de ellas, las otras dos se derivan de ésta. Asi, para conocer la distribucién
de la variable aleatoria T', que es en lo que estamos interesados, bastard con conocer o estimar
una de las funciones que se describen a continuacion.

La funcién de supervivencia

Definicién 1.1. La funcion de supervivencia, denotada por S(t), se define como la probabi-
lidad de que un individuo sobreviva mds de un cierto tiempo t, es decir:
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S(t) = P(T > t).

La gréfica de S(t) se denomina curva de supervivencia.

Observacién 1.2. Obsérvese, en primer lugar, que la funcion S(t) es complementaria a la
funcion de distribucion de T' pues, por definicion, F(t) = P(T <t) =1—S(t). Por otro lado,
notemos que S(t) es una funcion no creciente y verifica que S(0) =1 y th S(t) = 0.

— 00

En la préactica, si no hay observaciones censuradas, la funcién de supervivencia se estima
como la proporcién de pacientes que sobreviven mas de un cierto tiempo t. Esto es,

numero de individuos que sobreviven mas de un cierto tiempo t

1.1
numero total de individuos (1.1)

Kaplan y Meier ([8]) nos proporcionan un estimador para la funcién de supervivencia cuando

existen datos censurados que describiremos en el capitulo siguiente.

La funcion de densidad

Definicién 1.3. La funcion de densidad, denotada por f(t), se define de manera usual como
el limite de la probabilidad de que un individuo falle en un corto intervalo de tiempo, de t a
t + At, por unidad de tiempo; es decir:

) = 1im P(t<T<t+At)
At—0+ At
En la préctica, si no hay observaciones censuradas, la funcién de densidad f(¢) se estima
como la proporcion de pacientes en riesgo en un intervalo de tiempo por unidad de tiempo.
En el caso de observaciones censuradas, a partir del estimador de Kaplan-Meier para la funcién
de supervivencia se puede obtener una estimacién para f(¢).

Funciéon de riesgo

Definicién 1.4. La funcion de riesgo, denotada por h(t), se define como la probabilidad de
fallo durante un intervalo pequerio de tiempo, de t a t+ /At, asumiendo que el individuo estd en
riesgo en el tiempo t, por unidad de tiempo; es decir:

P T < ANANA
h(t) = lim t<T<t+At|T>t)
At—0t At

Por otro lado, se define la funcion de riesgo acumulada como:
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En este caso, la funcién h(t) puede decrecer, crecer 6 ser constante. Ejemplos de los diversos

tipos de comportamiento y su interpretaciéon puede verse en [10].

De manera similar a la estimacion de f(t), la funcién h(t) se estima, cuando no hay datos

censurados, como la proporcion de pacientes que fallan en un intervalo de tiempo, dado que

habian sobrevivido al comienzo del intervalo, por unidad de tiempo.

Nelson y Aalen ([1] y [3]) nos proporcionan un estimador de la funcién de riesgo acumulada

cuando hay datos censurados que describiremos en el capitulo siguiente.

Relaciones entre las funciones de supervivencia

Proposicién 1.5. La funcion de riesgo, de densidad y de supervivencia definidas anterior-

mente son matemdticamente equivalentes.

Demostracion. En efecto, en primer lugar, es obvio que

"= f(l?(t) - ﬁig
Por otro lado,
£ = S0 = S0 - s0),
es decir,
£(1) = ~8'(1).

Sustituyendo ahora (1.3) en (1.2) e integrando de 0 a t obtenemos

H{(t) = —1og(5(1)),

puesto que S(0)=1, y tomando exponenciales a ambos lados de la igualdad resulta

S(t) = exp (—H(L)) = exp <— /0 t h(t)dt>.

Por dltimo, sustituyendo (1.5) en (1.2) obtenemos

f(t) = h(t)exp (—H(t)) = h(t) exp (_/0 h(t)dt).

(1.2)
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Capitulo 2

Métodos no paramétricos

Generalmente, en la practica, no se conocen hipétesis concretas acerca de la distribucion
de la variable T'. Por tanto, no se dispone de un modelo paramétrico para las funciones de

supervivencia. En estos casos, empleamos métodos no paramétricos para su estimacion.

En nuestro trabajo nos cenimos al estudio de métodos no paramétricos de estimacion
y comparacién de funciones de supervivencia (Capitulo 2) y de modelos semiparamétricos,
donde se asume una forma paramétrica en parte del modelo (Capitulo 3). En [9] y [7] se

pueden consultar algunos modelos paramétricos y su estimacion.

2.1. Estimador para la funcion de supervivencia

En el capitulo anterior se daba una estimacién de la funcién de supervivencia S(¢) cuando
no existen datos censurados (1.1). Sin embargo, cuando existen observaciones censuradas el
estimador (1.1) no es el adecuado. En efecto, si consideramos los tiempos de censura como
tiempos de fallo en ese instante tendemos a subestimar la funcién de supervivencia y si
ignoramos los datos censurados y trabajamos con los demds, estamos prescindiendo de parte
de la informacion que nos proporcionan los datos. De esta manera, existe una necesidad de
introducir un nuevo estimador de la funcién de supervivencia que incluya la informacién de

los datos censurados y evite ese sesgo.

Existen dos procedimientos no paramétricos para estimar S(t¢): la estimacién actuarial
mediante tablas de vida, en la que los datos vienen agrupados en intervalos, y el estimador
de Kaplan-Meier o estimador producto-limite basado en observaciones individuales. Nosotros
trabajaremos con datos obtenidos de forma individual por lo que describiremos a continuacion
el estimador de Kaplan-Meier, que a su vez puede verse como un caso particular del anterior.
Si se desea mas detalle sobre el andlisis de tablas de vida puede consultarse [10].

2.1.1. Estimador de Kaplan-Meier

El estimador de Kaplan-Meier es el estimador no paramétrico de la funcion de superviven-
cia S(t) cuando disponemos de tiempos de supervivencia individuales, y fue introducido por

15
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Edward L.Kaplan y Paul Meier. Incluye la informacién de todos los datos, censurados y no
censurados y ademds tiene buenas propiedades como se vera en la siguiente seccién (Teorema
2.2). Por otro lado, Kaplan y Meier asumen independencia entre el tiempo de entrada en el
estudio y la probabilidad de fallo.

Definicion

Consideremos un estudio en el que se observa a n individuos y de los que se conoce
sus tiempos de fallo o el instante de censura (tiempos no censurados y censurados). Sean
t(1)s---»t(s) con s < n los tiempos de fallo distintos ordenados. Notar que es posible que en la
muestra se produzcan empates en los tiempos de fallo debido a la forma en la que se observan
los datos. Sean:

» n;: numero de individuos en riesgo en el instante ;).

» d;: nimero de individuos que fallan en el tiempo ;).

El estimador de Kaplan-Meier de S(t) se define como

. —d .
st = I] % G=1,..s y S =1 si t<tq (2.1)
Jtg) <t /

Notar que el estimador estd bien definido pues n; > 1y n; > d;.
Observaciones

» La idea de empate estd incluida en la definicién de d;.

» Kaplan-Meier incluye la informacién de los datos censurados a través de la definicion
de n;. En efecto, por definicién, n; es el niimero de individuos en riesgo en el tiempo
L) donde
se incluyen también los individuos con instante de censura ;).

esto es, nimero de individuos con tiempo de supervivencia de al menos ?(;),

» La funcién S(t) permanece constante entre los tiempos entre sucesos. Asi, la funcién
S(t) serd una funcién escalonada.

» Cuando el ultimo tiempo observado de la muestra ordenada t(,) es un tiempo de fallo, el
estimador toma el valor cero a partir de ese instante de tiempo. Sin embargo, si el dltimo
corresponde a un dato censurado, S (t) no toma valor cero a partir de ese instante. En
esta situacién, es habitual considerar que S (t) no estd definido para t > t(,).

nj—dj

= Denotemos por p; = a la probabilidad estimada de sobrevivir en un tiempo ;).

j
De esta forma, el estimador de Kaplan-Meier puede escribirse como S(t;)) = p1x- - - xp;,

y de forma recursiva S(t(j)) = S’(t(j_l))ﬁj.

Nota 2.1. Desde un punto de wvista tedrico, si asumimos que el tiempo de supervivencia
es continuo, no es posible que, con probabilidad positiva, se produzcan empates en tiempos
de fallo. Sin embargo, en la prdctica este hecho se puede dar debido a la forma en la que
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tomamos las observaciones. Fsto es, tomar los tiempos de supervivencia como tiempos de
observacion. Una forma de romper esos empates podria consistir en considerar que realmente
no han ocurrido en un tiempo t sino que han ocurrido de manera secuencial en instantes
de tiempo muy proximos (infinitesimalmente) al tiempo t. Este esquema evita los empates
pero es inmediato comprobar que el factor que contribuye a la estimacion de la funcion de
supervivencia en el tiempo t es el mismo que el dado por Kaplan-Meier. En consecuencia es
innecesario hacer ajustes del tipo romper los empates considerdndolos consecutivos en tiempos
muy prozimos en el estimador de Kaplan-Meier.

El estimador de Kaplan-Meier admite una expresion alternativa, menos intuitiva pero mas

sencilla de calcular, como es:

A n—r
S(t) = H n—r+1
T,t(r)gt

donde 7 € N es el lugar que ocupa el tiempo de fallo observado t(,) con t(yy,..., %) los n
tiempos de supervivencia ordenados (censurados y no censurados). Una aplicacién practica
con esta expresiéon puede verse en [10].

Veamos ahora un ejemplo que ilustra la idea del estimador de Kaplan Meier.

Ejemplo

Supongamos que 10 pacientes se unen a un estudio clinico al principio del ano 2000.
Durante el ano, 6 pacientes mueren y 4 sobreviven. Al final de ese ano, 20 pacientes mas se
unen al estudio. En el 2001, 3 pacientes de los que entraron al principio del 2000 y 15 de los
que entraron al final del ano mueren quedando 1 y 5 superviventes respectivamente.
Supongamos que el estudio termina al final del 2001 y queremos estimar S(2), esto es, la
proporcién de pacientes que sobreviven a la muerte 2 o més anos.

De los 10 pacientes que comienzan en el estudio a principios del ano 2000, 6 tienen tiem-
po de supervivencia 1 (mueren a final de ano) y 4 de al menos 1 (tiempo de supervivencia
censurado que se denota por 14). De los 20 individuos que se unen al final de este ano, 15
tienen tiempo de supervivencia 1 y 5 tienen tiempo de supervivencia 1+. De los 4 individuos
que sobreviven el primer ano, 3 mueren en el segundo ano.

Asi,n; =104+20=30,d1 =6+15=21, ng =4y ds = 3.
Los pacientes que sobreviven dos anos pueden ser considerados como los que sobreviven el

primer ano y de éstos los que sobreviven un afio mas. Esto es,

~

S(2) = P(sobreviven el primer afio y entonces sobreviven un afio més)

= P(sobreviven 2 afos | sobreviven el primer afno) x P(sobreviven el primer afo).
Luego,
S(2) = (proporcién de pacientes sobrevivendo dos anos dado que sobreviven el primer ano) x
1 445 ng — do ny—dp
= — X = X s
4 10 + 20 no ni

x (proporcién de pacientes que sobreviven un ano)

que es el estimador de Kaplan-Meier (2.1) para t = 2.
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Intervalos de confianza para S(t)

Una vez construido el estimador de Kaplan-Meier de S(t) es necesario tener una medida
de su precisién. Para ello, se requiere una estimacién de su varianza que nos permitira obtener
intervalos de confianza para S(t).

Teorema 2.2. Un intervalo de confianza de S(t) para un tiempo fijo t, para muestras grandes,
a un nivel del 100(1 — «) % wviene dado por

— —

(g(t)—zl_g Var(S(1)), 3(t) + 21— Var(S’(t))) (2.2)

donde Z1-g es el cuantil correspondiente a la distribucion normal estdandar y

Var(S(®) = S0P Y s

t; <t

conocida como la férmula de Greenwood y que resulta de aplicar el Método Delta.

Demostracion. El estimador no paramétrico de Kaplan-Meier de la funciéon de supervivencia
se puede deducir también como un estimador méximo verosimil [8]. De esta manera, el esti-
mador de Kaplan-Meier posee buenas propiedades respecto a los conceptos de consistencia,
sesgo, eficiencia y suficiencia, entre otros. Ademads, por otro lado, las propiedades asintéticas
de los estimadores de maxima verosimilitud garantizan la normalidad asintética del estimador
de Kaplan-Meier. Luego, podemos construir el intervalo de confianza para S(t) como en (2.2).

Demostremos ahora la férmula de Greenwood (2.3). El Método Delta [7] esté basado en la
aproximacion de primer orden por el desarrollo en serie de Taylor. Consideremos la funcién
de la variable aleatoria X denotada por f(X). Usando los dos primeros términos de la serie
de Taylor, en torno a la media de la variable, para aproximar el valor de la funcién tenemos

FOX) = 70) + (X =) < 1

Asi, se sigue que la varianza de la funcién es aproximadamente

Var(f(X)) ~ Var(X — u) x [f ()2 ~ 0 x [ ()]

El estimador del Método Delta se obtiene cuando usamos las estimaciones de o2 y p en la
ecuacién anterior. Esto es,

Var(f(X)) = o x [f'(@)]*.
Como ya se ha visto, S (t) puede verse como producto de proporciones, asi por comodidad
estimaremos primero la varianza del logaritmo del estimador Kaplan-Meier.
Considerando f(X) = In(X) tenemos que

—— —~ 1
Var(In(X)) ~ 0% x =;.
I

Suponiendo primero que las observaciones de supervivencia entre los n; sujetos en riesgo son
independientes Bernoulli con probabilidad constante p; queda:
T pi(l—pi) 1 di
Var(ln(p;)) 8 ————= X — _—
(n(p2)) n; p; mi(ni —ds)
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La segunda suposicion es que las observaciones en diferentes conjuntos de riesgo son inde-
pendientes, esto es, que un individuo sobreviva 1 ano es independiente a que otro individuo

~

distinto sobreviva 2 anos. Luego tomando X = In(S(¢)),

—_— dZ

Var(In(S(t)) = > Var(in(p) ~ > m

1<t t<t

Por tiltimo, aplicando otra vez lo mismo para f(X) = exp(X) siendo X = In(5(t)) obtenemos
la férmula de Greenwood (2.3). O

Nota 2.3. Notemos que el intervalo de confianza (2.2) para valores extremos de t puede
incluir valores fuera del rango (0,1). Ademds, debido a la hipdtesis asintética de normalidad,
el intervalo de confianza no serd demasiado satisfactorio para muestras pequenas. Una manera
de corregir estos problemas consiste en considerar una transformacion biyectiva, g, que evite
las restricciones en el rango y que mejore la aproximacion normal en muestras pequernias. Se
calcularia el intervalo de confianza para g(S(t)) (calculando la estimacion de la varianza de
g(S(t)) por el Método Delta) y, tras aplicar la transformacion inversa, g=1, a los extremos del
intervalo de confianza obtenido, obtendriamos el intervalo de confianza para S(t). Un ejemplo
de estas tranformaciones es g(S(t)) = log (—1log(S(t))) (pdgina 43 de [7]).

2.2. Estimador para la funcién de riesgo acumulada

A partir de la estimacion de Kaplan-Meier pueden derivarse estimaciones para otras fun-
ciones de interés, por ejemplo, para la funcién de riesgo acumulado. Recuérdese que (1.4)
relaciona la funcién de riesgo acumulado H(t) y la funcién de supervivencia S(t); en conse-
cuencia, un estimador de la funcién de riesgo acumulado es

H(t) = —log 5(t), (2.4)

siendo S(t) el estimador de Kaplan-Meier dado en (2.1).

2.2.1. Estimador de Nelson Aalen

Nelson y Aalen ([1] y [3]) propusieron otro estimador cuya expresién es

Hit)= > ﬁ (2.5)

Jit) <t

con t(jy,d;,n; definidos como en (2.1). Es un estimador no paramétrico de H(t) y se puede
presentar una derivacion formal de este estimador en términos de la teoria de procesos de
conteo y Martigalas [1], pero queda fuera del alcance de este trabajo.

Desde el punto de vista tedrico, no hay argumentos para preferir un estimador al otro si
bien el estimador de Nelson-Aalen tiene la ventaja de la sencillez de célculo.

A partir del estimador de Kaplan-Meier hemos obtenido un estimador para la funcién de
supervivencia. Sin embargo, se puede invertir el esquema, esto es, derivar un estimador para
la funcién de supervivencia a partir del estimador de Nelson-Aalen. De esta manera, Nelson y
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Aalen proponen un estimador para la funcién de supervivencia usando la relacién (1.5), esto
es,

S(t) = exp (—H(t)), (2.6)
Teorema 2.4. Sea T wvariable continua. Los estimadores (2.4) y (2.5) son asintdticamente
equivalentes, siendo el estimador de Nelson-Aalen, ﬁ(t), la aproximacion lineal de primer
orden de la funcién H(t). Por otro lado, los estimadores (2.1) y (2.6) son también asintdti-
camente equivalentes, siendo el estimador de Kaplan-Meier, S(t), la aproximacion lineal de
primer orden de la funcién S(t).

Demostracion. Usando Taylor y por la definicién del estimador de Kaplan-Meier (2.1),

H(t)=—logS(t)=— Y _ log (1-2{) ~ Yy <d]> con dj << nj.

) ) n
Tt <t J Tt <t J

Por un procedimiento andlogo se tiene la equivalencia para los estimadores de la funcién de
supervivencia.

Salvo para valores altos de t, la diferencia entre ambos estimadores es pequena por lo general.
O

Intervalos de confianza para H (t)

El estimador de Nelson-Aalen puede deducirse como un estimador de méaxima verosimi-
litud ([1]). De esta manera, podemos construir un intervalo de confianza de para la funcién
de riesgo acumulado, en un tiempo fijo ¢ para muestras grandes, a un nivel del 100(1 — o) %.
Dicho intervalo viene dado por:

— —

(f[(t) —21-2 Var(H(t)), H(t) + Z1-g Var(ﬁ(t))) ,

donde una estimacion de la varianza viene dada por
Ty dj(nj — dj)
Vard(t) = Y (ng ,
Jitj st J

expresion que se obtiene de forma andloga al Teorema 2.2 (Método Delta).
Otra estimacién de la varianza puede verse en [1]:

— d;
VarH(t) = Z 2.
gyt

2.3. Comparacion de funciones de supervivencia

A menudo estamos interesados en comparar distribuciones de supervivencia de dos o més
grupos de pacientes. Entre los distintos tests no paramétricos para comparar distribuciones
de supervivencia (ver en [10]), describiremos el test de Logrank (introducido originalmente
por Mantel en 1966) pues es apropiado cuando disponemos de datos censurados con censura
a derecha.
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2.3.1. Test de Logrank

El test de Log-rank es un método no paramétrico que compara las funciones de supervi-
vencia de dos grupos de individuos y el marco de trabajo es el mismo que cuando calculamos el
estimador Kaplan Meier. No ofrece ninguna informacién sobre la magnitud de las diferencias
entre los grupos o un intervalo de confianza. Para conocer este tipo de informacién se utiliza
el cociente de riesgos que se explica en el siguiente capitulo (Capitulo 3).

La idea en la que se basa este test es la misma que cuando en Estadistica se intenta com-
parar dos distribuciones a través del test y2. Ahora sélo se considera dos clases: individuos
que han sufrido el suceso y los que no. Asi, si representamos en una tabla de contingencia
esta situacién tendriamos:

Poblaciéon SI NO Total
P1 01 ny — 01 niy
Py Oz |n2—02 |no

donde n1 y no representan el tamano de cada una de las poblaciones, O1 y O2 el nimero de
sucesos observados en las poblaciones P; y P» respectivamente.
En esta situacidn, se sabe ([11]), que el estadistico

z=%" ©i-B)

donde E; es el niimero esperado de sucesos en la poblacion FP;, sigue, bajo la hipdtesis nula de
igualdad de las funciones de supervivencia de cada poblacién, esto es, Hy : S1(t) = Sa(t), una
distribucién X%, asintoticamente. Asi, cuando calculemos el valor del estadistico Z anterior,
si el p-valor correspondiente es suficientemente pequeno asumiremos que las funciones de
supervivencia son distintas.
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Capitulo 3
Modelos semiparamétricos

Hasta ahora solo se ha considerado la estimacién de la supervivencia (funciones de super-

vivencia) en funcién del tiempo. Ahora nos planteamos cémo pueden estar influyendo otras
variables. En otras palabras, ;cémo incluir covariables en la estimacion de las funciones de
supervivencia?.
Por otra parte, el proceso de envejecimiento que estd presente cuando los individuos se siguen
en el tiempo es lo que distingue el tiempo de supervivencia de otras variables aleatorias. De
las funciones que manejamos que describen la distribucion del tiempo de supervivencia, la
funcién de riesgo es la que mejor captura la esencia de este proceso de envejecimiento.

Modelos semiparamétricos

Consideramos un modelo de regresién en el que la funcién de riesgo depende del tiempo y
de otras covariables que describen los sujetos. Para facilitar la notacion, consideraremos, en
primer lugar, que solo hay una covariable que denotaremos por X y siendo (3 el coeficiente de
regresion desconocido asociado a la covariable.

El modelo de regresién se representa como sigue:

h(t7X76) :ho(t)T(X,ﬁ), (31)

La funcién de riesgo, tal como se expresa en la férmula anterior, es el producto de dos funciones
elegidas de forma que h(t, X, 3) > 0.

La funcién hg(t) no toma ninguna forma paramétrica en particular, es la unica parte del
modelo que depende del tiempo y caracteriza pues el cambio en la funcién de riesgo en
funcién del tiempo. La funcién ho(t) sélo depende del tiempo, es decir, toma el mismo valor
en un tiempo t para todos los pacientes. Notemos que la funcién ho(t) es la funcién de riesgo
cuando 7(X, ) = 1. Cuando la funcién r(X, ) es tal que r(X = 0,5) = 1, a ho(t) se le
denomina funcion de riesgo base.

Por otra parte, la otra funcién, (X, ), caracteriza el cambio en la funcién de riesgo en funcién
de las covariables. En este modelo no se hace ningin supuesto sobre la forma especifica de
la funcién hy(t), por lo que este es un modelo semiparamétrico en el sentido de que sélo se
asume una forma paramétrica para el efecto de las covariables.

A menudo estamos interesados en comparar la funcién de riesgo entre dos grupos de
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pacientes. En este contexto juega un papel importante el cociente de riesgos definido como:

h‘(tamiv ﬁ)
h(t7$j7 6)’

para dos grupos de individuos con valores de la covariable denotados por z; y x;, respectiva-

HR(t, Xy, ﬂjj) =

mente, en un tiempo ¢. Ademas, por (3.1),

(s, B)
T(xja B) ‘

Asi, la razén de riesgo (HR) no depende del tiempo; depende solo de la funcién r(X, ).

HR(QZi,SCj) =

En el caso de que se dispone de més covariables, el modelo (3.1) se representa de la misma
manera sélo que ahora X representa un vector de covariables y 3 el correspondiente vector
de parametros asociados a ellos.

3.1. Modelo de Cox

Cox fue el primero en proponer el modelo en (3.1) tomando r(X, 8) = exp(X /), modelo
que se denomina modelo de Coxr o modelo de riesgos proporcionales y que, si tenemos p
covariables, se representa por:

h(t,X,5) = ho(t) exp(X ) = ho(t) exp(S1X1 + - - + 5pXp), (3.2)

Nétese que, en este modelo, ho(t) es lo que hemos denominado como funcién de riesgo base.

Por otro lado, podemos también dar una expresiéon para la funciéon de supervivencia a
través del modelo de Cox. Por (1.5) tenemos que

S(t’X) ﬁ) = eXp(—H(t, Xv/B))

¥y, por (3.2), t
H(t, X, ) = /0 h(u, X, B)du = exp(X 8)Ho(t),

donde Hy(t) = fot ho(u) se define como la funcién de riesgo base acumulada.
De esta forma, la funcién de supervivencia para el modelo de Cox queda representada como
sigue:

S(t, X, B) = [So(t)]"PXP),

donde Sy(t) se define como la funcidn base de supervivencia.
Cociente de riesgos

El elemento principal en la regresion de Cox es el cociente de riesgos pues relaciona las dos
funciones de riesgo en funcién de los cambios en la variable independiente, esto es, permite
comparar la funcién de riesgo entre dos grupos de pacientes. En el modelo de Cox el cociente
de riesgos es:

HR(Xi, Xj) = exp(ﬁ(:ﬂi — x]))



25

La expresién anterior muestra que el cociente de riesgos no depende del tiempo. Esto equivale
a la denominada hipétesis de riesgos proporcionales.

Asumiendo que la funcién de riesgo viene dada por (3.2), el primer tema que debemos
abordar es la estimacién de los parametros 5. Posteriormente debemos analizar si las cova-
riables son realmente significativas para nuestro modelo y de cudles podemos prescindir.

3.1.1. Estimacion de los parametros

Como acabamos de decir, una vez propuesto el modelo que vamos a considerar debe-
mos estimar, a partir de los datos, los parametros de dicho modelo, esto es, los coeficientes
B1, ..., Bp de las covariables X,..., X,.

Para la estimacién de los coeficientes f1, ..., 3p, Cox [4] propuso una funcién de verosi-
militud parcial que depende solo del parametro vectorial de interés y de la que se obtienen
los coeficientes estimados. Cox especuld que los estimadores de los pardametros obtenidos de
la funcién de verosimilitud parcial tendrian las mismas propiedades que los estimadores de
méxima verosimilitud. Més tarde se demostré esta conjetura [2]. Cox asumia que no habia
empates en los tiempos de supervivencia; sin embargo, sabemos que en la practica los empates
en los tiempos de supervivencia son comunes y la funcién de verosimilitud parcial de Cox fue
modificada para poder manejarlos [5]. Con el fin de facilitad la exposicién, en lo que sigue
presentaremos la funcion de verosimilitud parcial para el caso de que no haya empates.

Supongamos que tenemos n individuos con t1,...,t, sus tiempos de supervivencia. Sean

t) < ... <tq los tiempos de fallo (r < n) y sea R( (j)) €l conjunto de riesgo en el instante
t(;), esto es, el conjunto de personas cuyos tiempos de supervivencia son de al menos (. La
funcién de verosimilitud parcial del modelo de Cox viene dada por:

T

exp(B'zi(t;)))

L(B) = ,
) i1 2ieR( ) SXP(Bz)

(3.3)

donde 2;(t(;)) es el vector de valores de las covariables para el individuo i que muere en el
instante ¢(;), 2 es el vector de valores de las covariables para el individuo [ del conjunto R(t;))

y B =(B1,-- - Bp)-
La expresion (3.3) estd expresada s6lo en funcién de los tiempos de fallo. La funcién de vero-
similitud parcial expresada en funcién de todos los tiempos es

m [ ep(Batg) ]
1;[ [ZleR (i) eXP(ﬁ'ZZ)]

donde §; es el indicador del evento, tomando el valor 0 si el dato j-ésimo es censurado.

La estimaciéon 3 del vector de coeficientes 8 cumplird que § = %%X(l(ﬁ)), siendo I(B) =

logL(3), el logaritmo de la funcién de verosimilitud. Por tanto, B es la solucién de las siguien-
tes ecuaciones simultaneas:
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De esta forma, la solucién ,5’ se obtiene mediante métodos numéricos como, por ejemplo, el
de Newton-Raphson multivariable [6].

Intervalo de confianza para j3;

Por otra parte, es posible construir intervalos de confianza para [3; a partir de la estimacién
de la correspondiente matriz de covarianzas [7]. En concreto, el intervalo de confianza, para
muestras grandes, de nivel 100(1 — «) % para un f; viene dado por

(Bi — 212 /i, Bi + 21-2v/0i),

donde v;; es el elemento (i,i) de dicha matriz (inversa de la matriz de Fisher).

Relevancia de las covariables

Una vez estimado el modelo debemos analizar si todas las variables son relevantes para el
modelo, es decir, si podemos prescindir de alguna de ellas. En concreto, nos planteamos un

test de la forma:
HD : ,Bj =0

H1 : ,Bj 75 0
En caso de aceptar Hy, el test nos dice que podemos prescindir de la covariable x;. Para ello
usaremos el test de Wald [10].
Debe notarse que si prescindimos de alguna variable debemos reevaluar los coeficientes del
modelo.

Interpretacién del coeficiente

En general, las variables con las que trabajamos son continuas o categoricas. Por simplifi-
cidad nos centraremos en el caso de variables dicotémicas (dos valores) y variables continuas.

e Caso de una variable dicotomicas:

Supongamos que estamos interesados en comparar la funcién de riesgo de dos grupos de
pacientes con cancer de préstata segun la edad. Consideremos la covariable dicotémica,
X, que toma el valor 0 en los pacientes con edad menor a una cierta edad dada y el
valor 1 en los pacientes con una edad mayor o igual a la dada. Asi, la funcién de riesgo

para el i-ésimo paciente se representa como:

ho(t)exp(B) si X;=1
hi(t, X, B) = ho(t) exp(Xif) =
ho(t) St Xi =0

Si queremos comparar la funciéon de riesgo entre los individuos con edad menor a una
dada y los individuos con edad mayor o igual que la dada, el cociente de riesgos queda:

ho(t) exp(8)

= ho(t)

= exp(3).
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Si B tomara el valor In(2) la interpretacién seria que el riesgo de fallo en los pacientes
con mayor edad que una cierta dada es el doble que en los pacientes con menor edad
que la dada.

De esta forma, el coeficiente 8 representa el aumento en el logaritmo de la funcién de
riesgo cuando pasamos de una categoria a otra.

e Caso de una variable continua:

Supongamos que los dos grupos a comparar toman los valores z + a y x en la variable
X, siendo a un valor real cualquiera. El cociente de riesgos quedaria

HR(z + a,z) = exp(af).

El coeficiente 5 representaria el incremento en el logaritmo de la funcién de riesgo por

cada incremento a en la variable.

Cuando se trabaja con variables categoéricas con méas de dos clases, por ejemplo n, lo que
se hace es generar n — 1 variables denominadas de diseno que representan las n categorias
posibles. Por ejemplo, en el caso de tener tres categorias A, B y C se definen dos variables de
disenio D1 y Do de manera que, para los individuos de la categoria A ambas variables toman
el valor 0, para los de la B la variable D; toma el valor 1 y la Dy el valor 0 y para los de
la categoria C, la variable D; toma el valor 0 y la D3 el valor 1. La interpretacién de los

coeficientes es andloga a lo comentado anteriormente.
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Capitulo 4

Analisis de supervivencia aplicado
al cancer de prostata

4.1. Cancer de prostata

La préstata es la glandula sexual masculina encargada de producir el semen. Es del tamafio
de una nuez y se encuentra debajo de la vejiga urinaria, rodeando a la uretra.
El cancer de préstata es el tercer tumor mas frecuente en varones espanoles y supone la tercera
causa de muerte por cancer en Espania. La enfermedad se desarrolla mas frecuentemente en
individuos mayores de 50 afios y la incidencia de ésta aumenta con la edad. A diferencia de
otro tipo de cancer, el cancer de prostata se caracteriza por evolucionar de forma muy lenta
y es extremadamente frecuente. De hecho, la mayoria de los hombres con cancer de préstata
mueren muchos anos después de su deteccién por causas naturales sin que el cancer les afecte
en la calidad de vida.
Deteccion del cancer
La deteccién del cancer se suele llevar a cabo principalmente por la prueba en sangre del
antigeno prostatico especifico (PSA) o por la exploracién fisica de la glandula prostatica
(tacto rectal). El antigeno prostético especifico es una proteina producida por la préstata y
su elevacién en plasma es proporcional a la masa tumoral presente, de ahi que se utilice como
test para detectar el cancer. Los valores de PSA que consideraremos normales en nuestro
estudio (siguiente seccién) son los PSA < 4ng/mL. Los pacientes con PSA mayor presentan,
en principio, mayor riesgo. Sin embargo, los niveles de PSA en sangre pueden elevarse por
otras razones como puede ser el agrandamiento de prostata, lo que se denomina hiperplasia
prostética benigna (HPB), que es un problema comun en casi todos los hombres a medida
que envejecen. Por esto, podrian considerarse diferentes niveles de PSA en funcién de la edad
del paciente.
Gradacién histolégica del cancer
Si los resultados de poseer el cancer son sospechosos se procede a la extraccién de una muestra
tisular de la proéstata (biopsia prostatica) que es examinada en microscopio. Una vez realizada
la biopsia, si se encuentra el cancer, el patdlogo emplea dos sistemas de gradacién del cancer
de préstata: la escala de Gleason y el estadio clinico. El procedimiento de la escala de Gleason
consiste en seleccionar dos zonas de la muestra y, basdndose en la observacién al microscopio
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de las caracteristicas que presentan las células, asignar a cada una de ellas un nimero del 1
al 5 en relacion con el grado de diferenciacién de las células y, por tanto, con la agresividad
del cancer. Posteriormente se suman los dos valores obtenidos de las dos zonas de la muestra
obteniéndose un nimero comprendido entre el 2 y el 10. Este valor es el valor conocido como
la escala de Gleason. Un valor menor que 6 corresponde a un cancer con escasa agresividad,
un valor 7 con un céncer de agresividad intermedia y un valor mayor que 8 con un cancer de
alta agresividad.

Por otro lado, el estadio clinico basado en el resultado de pruebas como, por ejemplo, imagenes
o biopsias describe la extension local del tumor de la préstata clasificindolo en las siguientes
categorias y subcategorias:

= T1: Tumor clinicamente indetectable, no se puede palpar ni observar por imégenes.

e Tla: El tumor se encuentra en menos del 5% del tejido extirpado.
e T1b: El tumor se encuentra en més del 5% del tejido extirpado.

e Tlc: El tumor se encuentra mediante biopsia por aguja.

= T2: Tumor clinicamente detectable, se puede palpar u observar por imagenes, pero
esta confinado a la préstata.

e T2a: El tumor se encuentra en la mitad o menos de un solo lado de la préstata.
e T2b: El tumor se encuentra en mas de la mitad de un solo lado de la préstata.

e T2c: El tumor se encuentra a ambos lados de la préstata.

= T3: Tumor extendido fuera de la prostata. Pudo haberse propagado a las vesiculas
seminales.

= T4: Tumor extendido a tejidos adyacentes a la préstata (ademaés de las vesiculas semina-
les), como por ejemplo los esfinteres externos, el recto, la vejiga,los musculos elevadores
o la pared pélvica.

Tratamiento y seguimiento

Con el fin de tratar el cincer de préstata, se le aplica un tratamiento al paciente. Si el cancer
no se ha propagado por fuera de la glandula prostédtica el tratamiento m&ds comun es la
prostatectomia radical, que es la cirugia consistente en extirpar toda la glandula prostatica y
algunos tejidos alrededor de ésta. La cirugia debe eliminar las células cancerosas, sin embargo,
el cancer es posible que pueda reaparecer ya que, en la préactica, suele ser practicamente
imposible extirpar con éxito todas las células cancerosas, por lo que es frecuente hacer chequeos
regulares como, por ejemplo, pruebas en sangre del PSA. El nivel de PSA deberia bajar a
valores muy préoximos a 0 ng/mL. El punto de corte de PSA establecido para considerar
recidiva bioquimica en nuestro estudio es > 0,4 ng/mL.

4.2. Estudio de un grupo de pacientes con cancer

Realizaremos el estudio del analisis de supervivencia a un grupo de 359 individuos a que
se les ha detectado un cancer de prostata, en el hospital “Miguel Servet” de Zaragoza.
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Los individuos entran en el estudio en el momento que se les interviene quirurgicamente
con una prostatectomia radical hasta que se produce la recidiva bioquimica o no se produce
(censura). Los pacientes en estudio son pacientes de “bajo riesgo”, en el sentido de que todos
pertenecen a las categorias T1 o T2 del estado clinico.

El objetivo de nuestro estudio es estudiar la influencia de las variables preoperatorias (nivel
de PSA, escala de Gleason, estadio clinico), junto a la edad del paciente a la intervencién
quirurgica, sobre el tiempo de supervivencia, es decir, el tiempo libre de cancer. Como se
ha indicado anteriormente, se considera que se ha producido una recidiva del cancer cuando
PSA > 0,4ng/mL (recidiva bioquimica).

El estudio se llevard a cabo, principalmente con el programa estadistico SSPS y con el
programa R.

Las variables con las que trabajaremos son las siguientes:

e Meses_hasta_tltimo_seguimiento: Es la variable continua ”tiempo de supervivencia”siendo

la unidad de tiempo los meses. El suceso de interés es la recidiva bioquimica, esto es,
un valor de PSA> 0,4 ng/mL.

e PSA 04 _Dummy: Es una variable dicotémica donde el valor 0 indica que no se ha dado

el suceso (recidiva bioquimica) en el individuo, esto es, el dato es censurado y el valor
1 que si ha dado, esto es, dato no censurado.

e Edad_a_la_prostatectomia: Es la variable continua que expresa la edad del paciente a la

prostatectomia radical.

Las variables siguientes son variables preoperatorias.

e PSA: Es la variable continua que expresa el valor de PSA del paciente en las pruebas
de sangre para la deteccién del cancer realizadas antes de la operacion.

e Gl Bx _Cat: Es la variable categorica que indica el grado en la escala de Gleason.

e Est_Clin_Cat_Rec: Es la variable categérica que indica el estadio clinico del paciente, el

valor “1” para la categoria T1. Toma el valor “4” para las categorias T2a y T2b y el
valor “5” para la categoria T2c.

4.2.1. Analisis descriptivo de las variables

Empezaremos el estudio con un andlisis descriptivo de nuestras variables con la ayuda
del programa estadistico SSPS. Las tablas de frecuencias de las variables categoricas o los
estadisticos descriptivos de las variables continuas se muestran en el Anexo.

Los tiempos de supervivencia de los pacientes varian entre 1 y 15 afios y el tiempo medio
es de aproximadamente 7 anos (Figura 4.7). Por otro lado, recordando que el valor ‘ST’ denota
que se ha producido el suceso (recidiva bioquimica), se observa en la Figura 4.8 que, en mds
de la mitad de los casos, 65,7 %, no se ha producido la recidiva durante el estudio.

Como se habia indicado en el inicio del capitulo, la enfermedad se desarrolla mas frecuen-
temente a partir de los 50 anos; en nuestro caso, la media de los pacientes en la intervencién
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quirurgica es de 64 anos. El mds joven tiene 43 y el mas mayor 74 (Figura 4.9). Los pacientes
mayores que 74 anos tendran, como se ha dicho antes, un tiempo de supervivencia medio de
unos 7 anos por lo que se decide no incluirlos en el estudio.

En media, los pacientes presentan valores altos (superiores al valor tipificado como normal)
de PSA (Figura 4.10), lo que tiene sentido pues los pacientes del estudio son pacientes que
padecen céncer de préstata. Sin embargo, el 87,7 % de los casos presentan un céncer de escasa
agresividad y solo 5 pacientes presentan un cancer de agresividad alta (Figura 4.11). Por
ultimo, se observa que los pacientes se reparten de manera casi proporcional en las categorias
T1y T2 (Figura 4.12).

4.2.2. Curva de supervivencia

Usando el programa Rcommander hemos representado graficamente (ver Anexo, Figura

4.13) la funcién de supervivencia estimada por Kaplan y Meier (2.1) y los intervalos de
confianza para cada tiempo ¢ con la férmula de Greenwood (2.2),(2.3), a un nivel del 95 %,
esto es, a = 0, 05.
Observamos que la grafica no toma el valor cero en su ultimo tiempo de observacién, es
decir, el tiempo de supervivencia méaximo corresponde a un dato censurado. Por otro lado,
observamos que, por ejemplo, la probabilidad estimada de estar libre de enfermedad més de
4 anos es casi del 0,8.

En realidad, lo que aparenta graficamente ser una banda de confianza no lo es. Lo que
representa el programa son los intervalos de confianza en cada punto. Asi, la “aparente” banda
de confianza es la unién de los puntos extremos de estos intervalos de confianza individuales.
Obviamente, las bandas de confianza reales seran méas amplias que estas bandas “aparentes”
“proporcionadas” por los intervalos de confianza individuales pues tienen que asegurar el nivel
de confianza en cualquier punto.

4.2.3. Test de Logrank

Con el fin de valorar la influencia de los valores que toman las variables sobre el tiempo
de supervivencia del paciente, en esta seccién aplicaremos en SSPS y en R el test de Logrank
(seccién 2.3.1). Para ello, hemos considerado las siguientes variables dicotémicas, calculadas
a partir de las variables que se nos proporcionan:

= Edad65: Toma el valor O si el paciente tiene una edad menor o igual a 65 y el valor 1
para el resto de pacientes.

= PSA4: Toma el valor 0 en los pacientes con un valor de PSA preoperatorio menor o
igual a 4 ng/mL (valor de PSA considerado normal) y el valor 1 en el resto.

= GleasonBiopsiab: Toma el valor 0 en los pacientes con una escala de Gleason menor o
igual a 6, esto es, cdncer con escasa agresividad, y el valor 1 para el resto (cadncer mas
agresivo).

= EstadioclinicoT1T2: Toma el valor 0 en el paciente con un estadio clinico T1 y el valor
1 en el paciente con un estadio clinico T2.
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Las tablas de frecuencias de estas variables dicotémicas pueden verse en el Anexo. El valor

o que tomamos es a = 0, 05.

Test de Logrank para la variable ‘Edad65’

En este caso, las poblaciones son: “pacientes con una edad menor o igual a 65 anos” y
“pacientes con edad mayor que 65 anos”. El propdsito del test serda conocer si tener una edad
mayor o menor que 65 anos influye significativamente sobre el tiempo de supervivencia. Los
resultados del estadistico en R y SSPS son los siguientes:

N Observed Expected (0-E)"2/E
Edad&5=0 199 61 £9.9 1.13
Edad&s5=1 160 62 53.1 1.4%

Chisg= 2.6 on 1 degrees of freedom, p= 0.105

Comparaciones globales
Chi-cuadrado al Sig.

Log Rank (Mantel-Cox) 2622 1 105

Prueba de igualdad de distribuciones de supervivencia para los
distintos niveles de Edadgs.

Figura 4.1: Test de Log Rank.Edad65

El p-valor es mayor que 0,05 luego no se rechaza la hipétesis nula de igualdad de las funciones
de supervivencia. Esto es, tener més o menos de 65 anos no influye significativamente en el

tiempo de supervivencia.

Test de Logrank para la variable ‘PSA4’

Los resultados del estadistico en R y SSPS se muestran en la figura siguiente:



34

M Chserved Expected (0-E)"2/E
ESh4=0 24 3 9.78 4,693
B5n4=1 335 120 113.22 0.406

Chi=g= 5.1 on 1 degrees of freedom, p= 0.0238

Comparaciones globales

Chi-cuadrado ol Sig.

Log Rank (Mantel-Cox) 5111 1 024

Prueba de igualdad de distribuciones de supenivencia para los
distintos niveles de PSA4.

Figura 4.2: Test de Log Rank.PSA4

El p-valor es menor que 0,05 luego se rechaza la hipétesis nula de igualdad de las funciones
de supervivencia. Es una variable significativa, es decir, estar por debajo o por encima del valor
de PSA 4 ng/mL influird en el tiempo de supervivencia. Como es légico y, como se puede
ver en el Anexo en la (Figura 4.18), un paciente con un valor menor que 4 tendrd mayor
probabilidad de sobrevivir mas de un cierto tiempo ¢ que un paciente un valor mayor a 4.

Test de Logrank para la variable ‘GleasonBiopsia6’

Los resultados del estadistico en R y SSPS son los siguientes:

N Cbsexrved Expected (0-E)"2/E
GleasonBiopsia&e=0 315 98 112.2 2.34
GleasonBiop=siag=1 44 27 10.8 24.25

Chisg= 26.7 on 1 degrees of freedom, p= 2.43e-07

Comparaciones globales

Chi-cuadrado al Sig.

Log Rank (Mantel-Cox) 26,656 1 000

Prueba de igualdad de distribuciones de supervivencia para los
distintos niveles de GleasonBiopsiaf.

Figura 4.3: Test de Log Rank.GleasonBiopsia6

El p-valor es menor que 0,05 luego se rechaza la hipdtesis nula; es una variable significativa,
luego la agresividad del cédncer antes de la intervencién quirturgica (pertenecer a un grupo
con un gleason menor que 6 o a un grupo con un gleason mayor que 6) influird en el tiem-
po de supervivencia. Como en el caso anterior, esto puede verse reflejado en sus curvas de
supervivencia (Figura 4.19), en el Anexo.

Test de Logrank para la variable ‘EstadioClinicoT1T2’

El propédsito del test consistird en predecir si existe diferencia significativa en los tiempos
de supervivencia dependiendo de la extensién local del tumor que presentaban los pacientes
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antes de la cirugia. Los resultados del estadistico en R y SSPS son los siguientes:

N Chserved Expected (0-E)"2/E

EstadioClinicoT1T2=0 168 50 59.2 1.44
EsztadioClinicoT1T2=1 131 73 63.8 1.34
Chisg= 2.8 on 1 degrees of freedom, p= 0.0956
Comparaciones globales
Chi-cuadrado al Sig.
Log Rank (Mantel-Cox) 2,778 1 096

Prueha de igualdad de distribuciones de supervivencia para los
distintos niveles de EstadioClinicoT1T2.

Figura 4.4: Test de Log Rank.EstadioclinicoT1T2

El p-valor, mayor que 0,05, indica que la variable no es significativa. No se rechaza la hipétesis
nula de igualdad de las funciones de supervivencia de las poblaciones “pacientes con estadio
clinico T1” y “pacientes con estadio clinico T2”.

4.2.4. Modelo de Cox

Comenzaremos planteando un modelo de Cox con todas la covariables que hemos conside-
rado en el estudio, es decir, ‘Edad_la_prostatectomia’, ‘PSA’, ‘GI_Bx_Cat’ y ‘Est_Clin_Cat_Rec’
y el test de Wald valorara la influencia de cada una de ellas, rechazandola o no como variable

explicativa del modelo. Los resultados son:

coef exp(coef) se(coef) z Pri>|z|
edad_a_la_prostatectomé.a 0.02366 1.03010 0.01651 1.796 0.07253 .
psa 0.03108 1.03157 0.0115% 2.681 0.00733 **
est_clin cat_rec[T.4 ] 0.1%125 1.21077 0.21355 0.8% 8 0.37046
est_clin cat_rec[T.5 ] 0.58%23 1.76691 0.23322 2.441 0.01466 *
gl_bx cat[T.7] 0.78313 2.18832 0.242e2 3.228 0.00125 ==
gl _bx cat[T.8-10] 2.81155 16.63571 0.49088 5.728 1.02e-08 #**
Signif. codes: O '***' 0,001 '#**' Q0,01 '*" 0,05 "." 0.1 ' ' 1

exp (coef) exp(-coef) lower .85 upper .95

edad_a_la_prostatectomé.a 1.030 0.97078 0.9973 1.064
psa 1.032 0.96939 1.0084 1.055
est_clin cat_rec[T.4 1 1.211 0.82592 0.73967 1.840
est_clin cat_rec[T.5 1 1.767 0.56596 1.1187 2.791
gl _bx _cat[T.7] 2.188 0.45637 1.3602 3.521
gl_bx cat[T.8-10] 16.6386 0.06011 6.3563 43.539

Figura 4.5: Modelo de Cox

A la vista de los p-valores, es evidente que las variables ‘Est_Clin_Cat’ y ‘Edad_la_prostatectomia’
pueden ser eliminadas del modelo. En consecuencia, ajustaremos un nuevo modelo sin esas
variables.

Podriamos haber deducido también esta afirmacién fijandonos en los intervalos de confianza.
En efecto, en el test de Wald [10] la hipétesis nula es 5 = 0 (variable no significativa) luego,
para el valor usual @ = 0,05 podemos fijarnos el intervalo de confianza para el coeficiente (8
0, equivalentemente, para exp 8 que es el que aparece directamente en la Figura 4.5. Asi, si
el valor exp(f) = 1 pertenece al intervalo , no se rechaza la hipé6tesis nula; en caso contrario,
se rechaza, es decir, la variable permanece en el modelo. Por ejemplo, para la variable ‘PSA’,
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el intervalo de confianza para exp 3 incluye el valor 1, lo que significa que la variable entra en
el modelo.

En coherencia con los comentarios que acabamos de hacer, hemos considerado dos modelos
incluyendo, o bien la variable ‘Edad_la_prostatectomia’, o la ‘Est_Clin_Cat’ en el modelo. En
ambos casos, hemos obtenido que ninguna de esas dos variables era estadisticamente signi-

ficativa, por lo que finalmente hemos seleccionado un modelo con sélo las variables ‘PSA’ y
‘Gl_Bx_Cat’.

Los resultados correspondientes a este modelo se muestran en la tabla siguiente, donde se
observa que todos los p-valores son significativos:

coef exp(coef) se(coef) z Pri>|z])
psa 0.03167 1.03218 0.01145 2.766 0.005677 **
gl bx cat[T.7] 0.82638 2.28502 0.23937 3.452 0.000556 ***
gl bx cat[T.8-10] 2.5206% 12.43711 0.47489% 5.308 1.11e-07 ##*
Signif. codes: O '**%' Q.Q001 '**' Q.01 '#' Q.05 '." 0.1 ' " 1

exp(coef) exp(-coef) lower .95 upper .95

psa 1.032 0.9688 1.00% 1.058
gl bx cat[T.7] 2.285 0.4376 1.42% 3.653
gl bx cat[T.E-10] 12.437 0.0804 4,903 31.546

Figura 4.6: Modelo de Cox. Modelo final

4.2.5. Conclusiones de los resultados

Los pacientes en el estudio son pacientes a los que se les detecté el cancer pero categori-
zados en “bajo riesgo”. Esto se refleja en el andlisis descriptivo de las variables ‘Gl_.Bx_Cat’ y
‘Est_Clin_Cat’. Por otro lado, no hay datos censurados por pérdidas en el estudio y los datos
censurados (no recidiva) presentan el 65,7 % de los casos. Esto, junto al anélisis descriptivo de
la variable ‘tiempo de supervivencia’, nos permite decir que los pacientes, en general, tienen
un buen pronéstico del cancer.

Por otro lado, se ha demostrado que no existe influencia en ser mayor o menor de 65 anos
ni en pertenecer a la categoria clinica T1 o T2, sobre el tiempo hasta la recidiva bioquimica.
Si influye, en cambio, sobre el tiempo de supervivencia, tener un diagnoéstico preoperatorio
de escasa o mucha agresividad del cédncer (Gleason) o un PSA mayor o menor que 4 ng/mL
antes de la operacion.

Por dltimo, las variables que aparecen en el modelo de Cox, esto es, que mejor explican la
variable ‘tiempo de supervivencia’ son las variables preoperatorias ‘Gl_Bx_Cat’ y ‘PSA’.
Bajo estos resultados, diriamos que los exdmenes de PSA o Gleason son exdmenes fundamen-
tales y posiblemente decisivos para una futura recidiva del cancer.
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