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Summary

The survival analysis is a set of techniques whose aim is the study of the variable “time to

the ocurrence of a given event”. This event can be, for example, the development of a disease,

response to a treatment or the death. This random continuos variable is called Survival Time

and is denoted by T .

Survival analysis is an essential tool to the study the evolution of diseases but also has great

influence in other areas of knowledge, for example, engineering.

Our work focuses on survival analysis applied to medicine. Firstly, we introduce the ba-

sic concepts of survival analysis (chapter 1); secondly, we explain the usual nonparametric

methods for estimating and comparating and semiparametric models of the survival analysis

(chapter 2 and chapter 3) for, finally, apply them to a particular group of individuals with

prostate cancer (chapter 4).

Introduction of survival analysis

One of the most important feature of survival data is the lack information of the data.

This occurs when some subjects in the study have not experienced the event of interest at

the end of the study. For example, some patients may still be alive or disease-free at the end

of the study period. This is because, in the practice, it is almost impossible to have lengthy

studies that allow collect full information on all patients. So, the exact survival times of these

subjects are unknown and these are called censored observations or censored times.

It is said that an individual survives if has not suffered yet to the event. In this case, it is said

that the individual is at risk. Furthermore, it is said that an individual has failed if he has

suffered the event ; consequently it is called failure time to time when the event occurred.

The distribution of survival times is usually described or characterized by three functions:

the survivorship function, the density function and the hazard function. These three functions

are mathematically equivalent.

The survivorship function, denoted by S(t), is defined as the probability that an individual

survives longer than t, that is,

S(t) = P (T > t).

The hazard function, denoted by h(t), is defined as the probability of failure during a very

small time interval, assuming that the individual has survived to the beginning of the interval,

per unit time, that is,

h(t) = ĺım
4t→0+

P (t < T ≤ t+4t | T > t)

4t
.
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Furthermore, the cumulative hazard function is defined as:

H(t) =

∫ t

0
h(x) dx.

The function of density of T is defined as usual.

In addition to the censoring problem, we do not usually know specific hypotheses about

the distribution of the random variable T, so we do not dispose of a parametric model for

the survival functions . For that reason, we need to incorporate nonparametric methods (not

assumed any particular form in the variable T ) of estimating survival functions.

Nonparametric estimators

The Kaplan-Meier estimator is a nonparametric estimator of the survivorship function

S(t), introduced by Edward L.Kaplan and Paul Meier, and which includes information on all

data, censored and uncensored. In addition, Kaplan and Meier assume independence between

the time of entry into the study and the probability of failure.

Suppose a study of n individuals where their failure times or censorship ( uncensored and

censored times ) are known. We denoted t(1), . . . , t(s) with s ≤ n to the different ordered times

of failure. The Kaplan-Meier estimator S(t) is defined as

Ŝ(t) =
∏

j,t(j)≤t

nj − dj
nj

, j = 1, . . . , s y Ŝ(t) = 1 si t < t(1).

where nj is the number of individuals that are at risk at the time t(j) and dj the number of

individuals that fail at the time t(j).

The Kaplan-Meier estimator can be derivated as a maximum likelihood estimator [8]. In this

way, confidence intervals for large samples for the function S(t) can be obtained. The variance

of the Kaplan-Meier estimator can be obtained by applying the Delta method [7].

Nelson y Aalen propose a nonparametric estimator of the cumulative hazard function

given by

H̃(t) =
∑

j;t(j)≤t

dj
nj
,

where t(j), dj , nj are defined as before.

As for the Kaplan-Meier estimator, the estimator can be derived also as a maximum likelihood

estimator [1].

Nonparametric test. Test de Logrank

The problem of comparing survival distributions arises often in medical research. Suppose,

for example, that we want to compare the tumor-free times for two groups of people, G1, G2,

that received treatments 1 and 2, respectively. To compare these groups, we explain and use

the Logrank test, a nonparametric test that can be used for data with and without censored

observations. The null hypothesis is H0 : S1(t) = S2(t), that is, treatments 1 and 2 are equally

effective.

In this situation, we know ([11]) that the statistical

Z =
2∑
i=1

(Oi − Ei)2

Ei
,
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where Oi is the observed number of patients who relapse and Ei are the expected number of

patients who relapse in the group Gi i = 1, 2, follows, under the null hypothesis of equality

of the survival functions, a distribution χ2
1 (asymptotically).

Until now, we have only considered the estimate of the survival function as a function of

time. Now we propose a model that analyze the influence of other variables.

Cox model

Cox was the first to propose a semiparametric regression model, called Cox model or

proportional hazards model, that is represented as follows:

h(t,X, β) = h0(t) exp(Xβ),

where X is the covariate, β the unknown coefficient asociated to the covariate and h0(t) a

function called baseline hazard function. Note that the model is valid for several covariables.

Cox regression allows us to evaluate, from a set of independent variables, which of them have

a significant influence on the hazard function. To evaluate the influence of each variable, we

use the Wald test, whose null hypothesis is H0 : β = 0.

The main element in the Cox regression is the hazard ratio that allows us to compare

the hazard function between two groups of patients. Unlike Logrank test, the hazard ratio

provides us information about the magnitude of the differences between groups.

In the Cox model, the hazard ratio is expressed as:

HR(xi, xj) =
h(t, xi, β)

h(t, xj , β)
= exp(β(xi − xj)),

where xi and xj indicate the value of the covariable of the two groups.

The above expression shows that the hazard ratio does not depend of the time; this is the

proportional hazards assumption .

The coefficients β are unknown coefficients that we must estimate. To estimate the coef-

ficients, Cox [4] proposed a partial likelihood function. Later, it was shown that the partial

likelihood function had the same properties as the maximum likelihood estimators [2]. This

fact allow to get confidence intervals for large samples for the coefficientes β.

Application

In the last chapter, we apply all the previous concepts to a real problem.

We will do a survival analysis to a group of 359 individuals with prostate cancer. The da-

ta belong to the hospital “Miguel Servet”. The individuals are incorporated to the study

after surgery (radical prostatectomy). The event of interest occurs when the value of PSA

> 0, 4ng/mL.

The aim of our analysis is to study the influence of some preoperative variables and the

age of the patient in the operation, on the survival time, this is, the free time of cancer. The

study will carry out, mainly, with the SSPS statistical program and the R program.

The results of this analysis are shown in the work (chapter 4).
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Caṕıtulo 1

Introducción al análisis de

supervivencia

El análisis de supervivencia es un conjunto de técnicas que tienen como objeto estudiar

la variable ‘tiempo hasta la ocurrencia de un suceso de interés’ y su dependencia con otras

posibles variables. A esta variable aleatoria se le conoce como tiempo de supervivencia y

se denota por T.

1.1. Introducción histórica

El análisis de supervivencia tiene su origen en la construcción de tablas de mortalidad,

de donde proviene el término de ’supervivencia’ pues el suceso de interés alĺı era la muerte.

Las primeras tablas de mortalidad fueron construidas por el astrónomo inglés Edmond Halley

(1656-1742) a partir de los registros de nacimientos y funerales de la ciudad de Breslau (1693).

Posteriormente, el análisis de supervivencia fue extendido al campo de la ingenieŕıa para

analizar la fiabilidad de los diferentes elementos que forman una máquina. La Segunda Guerra

Mundial aceleró el desarrollo de estas técnicas para aplicarlas a la industria militar.

El auge del análisis de supervivencia en medicina empezó en la década de los 70 jugando

un papel muy importante en el estudio de la evolución de enfermedades y más tarde también

gracias al avance tecnológico.

En las últimas décadas, los modelos estad́ısticos para el análisis de supervivencia han

continuado progresando extendiéndose su aplicación a otras áreas como son la economı́a,

criminoloǵıa o las ciencias sociales y del comportamiento. De esta manera, hoy en d́ıa, el

suceso de interés para el estudio no es necesariamente la muerte como lo era en su origen si

no que puede ser la recáıda o desarrollo de una cierta enfermedad, fallo en una pieza de un

máquina, una determinada subida en la prima de riesgo o la salida de la universidad, por

ejemplo.

Aśı, el análisis de supervivencia se extiende y se aplica a otras áreas de conocimiento

además del área de la medicina que es en la que nos centramos en nuestro trabajo.
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1.2. Conceptos básicos del análisis de supervivencia

Con el fin de facilitar la visualización de los conceptos básicos que definiremos a continua-

ción vamos a considerar la siguiente situación:

Supongamos que se realiza un estudio durante un año observando cada mes a un grupo de

6 personas que padecieron un tipo de enfermedad y que, tras someterlas a una intervención

quirúrgica y quedar, aparentemente, libres de dicha enfermedad, se quiere estudiar la distri-

bución de la variable aleatoria tiempo de supervivencia, siendo el evento la recáıda en dicha

enfermedad, esto es, el tiempo libre de enfermedad.

En la práctica, suele ser imposible hacer un estudio que permita conocer los tiempos de

supervivencia exactos de los pacientes por lo que se consideran los tiempos de observación en

el estudio como tiempos de supervivencia. De esta manera, en ocasiones, debido a la forma

en la que observamos a los pacientes, los tiempos de supervivencia se miden de forma discreta

como ocurre, por ejemplo, en la situación anterior donde los tiempos de supervivencia podrán

tomar el valor t ∈ N con t = 1, . . . , 12. Notemos que es importante la unidad de tiempo que

se considera pues, dependiendo de ésta, la información puede ser más o menos refinada.

1.2.1. Terminoloǵıa básica

Hoy en d́ıa, se dice que un individuo sobrevive si no ha sufrido todav́ıa el suceso. En este

caso, se dirá que dicho individuo está en riesgo. Por otro lado, se dice que un individuo ha

fallado si ha sufrido el suceso de interés; consecuentemente se denomina tiempo de fallo al

tiempo en el que ha ocurrido el suceso.

Datos censurados

En un estudio, como el de la situación anterior, puede que todos los pacientes hayan fallado

y se conozcan sus tiempos de ocurrencia, es decir, contamos con la información completa

de todos sus tiempos de supervivencia. Los datos de supervivencia conocidos con exactitud

reciben el nombre de exactos o no censurados.

Sin embargo, la obtención de muestras con información completa de todos los pacientes suele

requerir estudios demasiado largos que no se dan en la práctica. De esta forma, habitualmente

no conocemos los tiempos de supervivencia exactos de todos los pacientes. En este caso,

algunos tiempos de supervivencia son conocidos parcialmente (no conocemos su tiempo de

fallo) y reciben el nombre de datos u observaciones censuradas. Por ejemplo, en el

caso de la situación anterior, puede ocurrir que algunos pacientes puedan estar libres de la

enfermedad al final del periodo de estudio o incluso puede ocurrir que se pierda su seguimiento

(por abandono o muerte por otras causas, por ejemplo). En estos casos, se conoce solamente

una cota de sus tiempos de supervivencia. En este sentido, existen tres tipos de censura en

los datos que pueden darse en el análisis de supervivencia:

Censura por la derecha: Es la censura que tiene lugar cuando se desconoce el tiempo

exacto en el que se produce el suceso pero se sabe que ocurre después de un cierto

tiempo t. Es la censura más habitual y es con la que trabajaremos.
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Censura por la izquierda: Es la censura que tiene lugar cuando se desconoce el

tiempo exacto en el que se produce el suceso pero se sabe que ocurre antes de un cierto

tiempo t.

Censura por intervalo: Es la censura que tiene lugar cuando se sabe que el ha ocurrido

entre los tiempos a y b.

Volviendo a la situación descrita al inicio, supongamos que la información sobre los seis

individuos en los doce meses de estudio se recoge en el esquema siguiente:

Supongamos que el ćırculo rojo representa un dato censurado y el cuadrado gris un dato no

censurado, esto es, un tiempo de fallo. Bajo dicha suposición, la interpretación del esquema

seŕıa la siguiente:

Los individuos A,B y C entran en el estudio (se les interviene quirúrgicamente) al inicio

de éste mientras que los individuos D, E y F entran en el estudio después del primer, segundo

y sexto mes de estudio, respectivamente. Los individuos A, C, E y F proporcionan datos

censurados con censura a derecha. Sus tiempos de supervivencia son 3+, 12+, 7+ y 12+

respectivamente, donde t+ denota un tiempo de censura. Los individuos A y E son individuos

a los que se les ha perdido su seguimiento en el estudio y los individuos C y F siguen libres de

enfermedad al final del estudio. Por otro lado, los individuos B y D presentan un tiempo de

supervivencia exacto de 3 y 9 meses respectivamente; esto es, permanecen, respectivamente,

3 y 9 meses libres de enfermedad.

1.2.2. Funciones de tiempos de supervivencia

El tiempo de supervivencia T es una variable aleatoria continua. La distribución de super-

vivencia se describe generalmente por tres funciones que serán equivalentes matemáticamente;

si conocemos una de ellas, las otras dos se derivan de ésta. Aśı, para conocer la distribución

de la variable aleatoria T , que es en lo que estamos interesados, bastará con conocer o estimar

una de las funciones que se describen a continuación.

La función de supervivencia

Definición 1.1. La función de supervivencia, denotada por S(t), se define como la probabi-

lidad de que un individuo sobreviva más de un cierto tiempo t, es decir:
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S(t) = P (T > t).

La gráfica de S(t) se denomina curva de supervivencia.

Observación 1.2. Obsérvese, en primer lugar, que la función S(t) es complementaria a la

función de distribución de T pues, por definición, F (t) = P (T ≤ t) = 1−S(t). Por otro lado,

notemos que S(t) es una función no creciente y verifica que S(0) = 1 y ĺım
t→∞

S(t) = 0.

En la práctica, si no hay observaciones censuradas, la función de supervivencia se estima

como la proporción de pacientes que sobreviven más de un cierto tiempo t. Esto es,

Ŝ(t) =
número de individuos que sobreviven más de un cierto tiempo t

número total de individuos
. (1.1)

Kaplan y Meier ([8]) nos proporcionan un estimador para la función de supervivencia cuando

existen datos censurados que describiremos en el caṕıtulo siguiente.

La función de densidad

Definición 1.3. La función de densidad, denotada por f(t), se define de manera usual como

el limite de la probabilidad de que un individuo falle en un corto intervalo de tiempo, de t a

t+4t, por unidad de tiempo; es decir:

f(t) = ĺım
4t→0+

P (t < T ≤ t+4t)
4t

.

En la práctica, si no hay observaciones censuradas, la función de densidad f(t) se estima

como la proporción de pacientes en riesgo en un intervalo de tiempo por unidad de tiempo.

En el caso de observaciones censuradas, a partir del estimador de Kaplan-Meier para la función

de supervivencia se puede obtener una estimación para f(t).

Función de riesgo

Definición 1.4. La función de riesgo, denotada por h(t), se define como la probabilidad de

fallo durante un intervalo pequeño de tiempo, de t a t+4t, asumiendo que el individuo está en

riesgo en el tiempo t, por unidad de tiempo; es decir:

h(t) = ĺım
4t→0+

P (t < T ≤ t+4t | T > t)

4t
.

Por otro lado, se define la función de riesgo acumulada como:

H(t) =

∫ t

0
h(x) dx.
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En este caso, la función h(t) puede decrecer, crecer ó ser constante. Ejemplos de los diversos

tipos de comportamiento y su interpretación puede verse en [10].

De manera similar a la estimación de f(t), la función h(t) se estima, cuando no hay datos

censurados, como la proporción de pacientes que fallan en un intervalo de tiempo, dado que

hab́ıan sobrevivido al comienzo del intervalo, por unidad de tiempo.

Nelson y Aalen ([1] y [3]) nos proporcionan un estimador de la función de riesgo acumulada

cuando hay datos censurados que describiremos en el caṕıtulo siguiente.

Relaciones entre las funciones de supervivencia

Proposición 1.5. La función de riesgo, de densidad y de supervivencia definidas anterior-

mente son matemáticamente equivalentes.

Demostración. En efecto, en primer lugar, es obvio que

h(t) =
f(t)

1− F (t)
=
f(t)

S(t)
. (1.2)

Por otro lado,

f(t) =
d

dt
F (t) =

d

dt
[1− S(t)],

es decir,

f(t) = −S′(t). (1.3)

Sustituyendo ahora (1.3) en (1.2) e integrando de 0 a t obtenemos

H(t) = − log(S(t)), (1.4)

puesto que S(0)=1, y tomando exponenciales a ambos lados de la igualdad resulta

S(t) = exp (−H(t)) = exp

(
−
∫ t

0
h(t)dt

)
. (1.5)

Por último, sustituyendo (1.5) en (1.2) obtenemos

f(t) = h(t) exp (−H(t)) = h(t) exp

(
−
∫ t

0
h(t)dt

)
.
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Caṕıtulo 2

Métodos no paramétricos

Generalmente, en la práctica, no se conocen hipótesis concretas acerca de la distribución

de la variable T . Por tanto, no se dispone de un modelo paramétrico para las funciones de

supervivencia. En estos casos, empleamos métodos no paramétricos para su estimación.

En nuestro trabajo nos ceñimos al estudio de métodos no paramétricos de estimación

y comparación de funciones de supervivencia (Caṕıtulo 2) y de modelos semiparamétricos,

donde se asume una forma paramétrica en parte del modelo (Caṕıtulo 3). En [9] y [7] se

pueden consultar algunos modelos paramétricos y su estimación.

2.1. Estimador para la función de supervivencia

En el caṕıtulo anterior se daba una estimación de la función de supervivencia S(t) cuando

no existen datos censurados (1.1). Sin embargo, cuando existen observaciones censuradas el

estimador (1.1) no es el adecuado. En efecto, si consideramos los tiempos de censura como

tiempos de fallo en ese instante tendemos a subestimar la función de supervivencia y si

ignoramos los datos censurados y trabajamos con los demás, estamos prescindiendo de parte

de la información que nos proporcionan los datos. De esta manera, existe una necesidad de

introducir un nuevo estimador de la función de supervivencia que incluya la información de

los datos censurados y evite ese sesgo.

Existen dos procedimientos no paramétricos para estimar S(t): la estimación actuarial

mediante tablas de vida, en la que los datos vienen agrupados en intervalos, y el estimador

de Kaplan-Meier o estimador producto-ĺımite basado en observaciones individuales. Nosotros

trabajaremos con datos obtenidos de forma individual por lo que describiremos a continuación

el estimador de Kaplan-Meier, que a su vez puede verse como un caso particular del anterior.

Si se desea más detalle sobre el análisis de tablas de vida puede consultarse [10].

2.1.1. Estimador de Kaplan-Meier

El estimador de Kaplan-Meier es el estimador no paramétrico de la función de superviven-

cia S(t) cuando disponemos de tiempos de supervivencia individuales, y fue introducido por

15
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Edward L.Kaplan y Paul Meier. Incluye la información de todos los datos, censurados y no

censurados y además tiene buenas propiedades como se verá en la siguiente sección (Teorema

2.2). Por otro lado, Kaplan y Meier asumen independencia entre el tiempo de entrada en el

estudio y la probabilidad de fallo.

Definición

Consideremos un estudio en el que se observa a n individuos y de los que se conoce

sus tiempos de fallo o el instante de censura (tiempos no censurados y censurados). Sean

t(1), . . . , t(s) con s ≤ n los tiempos de fallo distintos ordenados. Notar que es posible que en la

muestra se produzcan empates en los tiempos de fallo debido a la forma en la que se observan

los datos. Sean:

nj : número de individuos en riesgo en el instante t(j).

dj : número de individuos que fallan en el tiempo t(j).

El estimador de Kaplan-Meier de S(t) se define como

Ŝ(t) =
∏

j,t(j)≤t

nj − dj
nj

, j = 1, . . . , s y Ŝ(t) = 1 si t < t(1). (2.1)

Notar que el estimador está bien definido pues nj ≥ 1 y nj ≥ dj .

Observaciones

La idea de empate está incluida en la definición de dj .

Kaplan-Meier incluye la información de los datos censurados a través de la definición

de nj . En efecto, por definición, nj es el número de individuos en riesgo en el tiempo

t(j), esto es, número de individuos con tiempo de supervivencia de al menos t(j), donde

se incluyen también los individuos con instante de censura t(j).

La función Ŝ(t) permanece constante entre los tiempos entre sucesos. Aśı, la función

Ŝ(t) será una función escalonada.

Cuando el último tiempo observado de la muestra ordenada t(s) es un tiempo de fallo, el

estimador toma el valor cero a partir de ese instante de tiempo. Sin embargo, si el último

corresponde a un dato censurado, Ŝ(t) no toma valor cero a partir de ese instante. En

esta situación, es habitual considerar que Ŝ(t) no está definido para t > t(s).

Denotemos por p̂j =
nj − dj
nj

a la probabilidad estimada de sobrevivir en un tiempo t(j).

De esta forma, el estimador de Kaplan-Meier puede escribirse como Ŝ(t(j)) = p̂1×· · ·×p̂j ,
y de forma recursiva Ŝ(t(j)) = Ŝ(t(j−1))p̂j .

Nota 2.1. Desde un punto de vista teórico, si asumimos que el tiempo de supervivencia

es continuo, no es posible que, con probabilidad positiva, se produzcan empates en tiempos

de fallo. Sin embargo, en la práctica este hecho se puede dar debido a la forma en la que
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tomamos las observaciones. Esto es, tomar los tiempos de supervivencia como tiempos de

observación. Una forma de romper esos empates podŕıa consistir en considerar que realmente

no han ocurrido en un tiempo t sino que han ocurrido de manera secuencial en instantes

de tiempo muy próximos (infinitesimalmente) al tiempo t. Este esquema evita los empates

pero es inmediato comprobar que el factor que contribuye a la estimación de la función de

supervivencia en el tiempo t es el mismo que el dado por Kaplan-Meier. En consecuencia es

innecesario hacer ajustes del tipo romper los empates considerándolos consecutivos en tiempos

muy próximos en el estimador de Kaplan-Meier.

El estimador de Kaplan-Meier admite una expresión alternativa, menos intuitiva pero más

sencilla de calcular, como es:

Ŝ(t) =
∏

r,t(r)≤t

n− r
n− r + 1

,

donde r ∈ N es el lugar que ocupa el tiempo de fallo observado t(r) con t(1), . . . , t(n) los n

tiempos de supervivencia ordenados (censurados y no censurados). Una aplicación práctica

con esta expresión puede verse en [10].

Veamos ahora un ejemplo que ilustra la idea del estimador de Kaplan Meier.

Ejemplo

Supongamos que 10 pacientes se unen a un estudio cĺınico al principio del año 2000.

Durante el año, 6 pacientes mueren y 4 sobreviven. Al final de ese año, 20 pacientes más se

unen al estudio. En el 2001, 3 pacientes de los que entraron al principio del 2000 y 15 de los

que entraron al final del año mueren quedando 1 y 5 superviventes respectivamente.

Supongamos que el estudio termina al final del 2001 y queremos estimar S(2), esto es, la

proporción de pacientes que sobreviven a la muerte 2 o más años.

De los 10 pacientes que comienzan en el estudio a principios del año 2000, 6 tienen tiem-

po de supervivencia 1 (mueren a final de año) y 4 de al menos 1 (tiempo de supervivencia

censurado que se denota por 1+). De los 20 individuos que se unen al final de este año, 15

tienen tiempo de supervivencia 1 y 5 tienen tiempo de supervivencia 1+. De los 4 individuos

que sobreviven el primer año, 3 mueren en el segundo año.

Aśı, n1 = 10 + 20 = 30, d1 = 6 + 15 = 21, n2 = 4 y d2 = 3.

Los pacientes que sobreviven dos años pueden ser considerados como los que sobreviven el

primer año y de éstos los que sobreviven un año más. Esto es,

Ŝ(2) = P (sobreviven el primer año y entonces sobreviven un año más)

= P (sobreviven 2 años | sobreviven el primer año)× P (sobreviven el primer año).
Luego,

Ŝ(2) = (proporción de pacientes sobrevivendo dos años dado que sobreviven el primer año)×

× (proporción de pacientes que sobreviven un año) =
1

4
× 4 + 5

10 + 20
=
n2 − d2
n2

× n1 − d1
n1

,

que es el estimador de Kaplan-Meier (2.1) para t = 2.
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Intervalos de confianza para S(t)

Una vez construido el estimador de Kaplan-Meier de S(t) es necesario tener una medida

de su precisión. Para ello, se requiere una estimación de su varianza que nos permitirá obtener

intervalos de confianza para S(t).

Teorema 2.2. Un intervalo de confianza de S(t) para un tiempo fijo t, para muestras grandes,

a un nivel del 100(1− α) % viene dado por(
Ŝ(t)− z1−α

2

√
̂V ar(Ŝ(t)), Ŝ(t) + z1−α

2

√
̂V ar(Ŝ(t))

)
(2.2)

donde z1−α
2

es el cuantil correspondiente a la distribución normal estándar y

̂
V ar(Ŝ(t)) ≈ [Ŝ(t)]2

∑
ti≤t

di
ni(ni − di)

(2.3)

conocida como la fórmula de Greenwood y que resulta de aplicar el Método Delta.

Demostración. El estimador no paramétrico de Kaplan-Meier de la función de supervivencia

se puede deducir también como un estimador máximo verośımil [8]. De esta manera, el esti-

mador de Kaplan-Meier posee buenas propiedades respecto a los conceptos de consistencia,

sesgo, eficiencia y suficiencia, entre otros. Además, por otro lado, las propiedades asintóticas

de los estimadores de máxima verosimilitud garantizan la normalidad asintótica del estimador

de Kaplan-Meier. Luego, podemos construir el intervalo de confianza para S(t) como en (2.2).

Demostremos ahora la fórmula de Greenwood (2.3). El Método Delta [7] está basado en la

aproximación de primer orden por el desarrollo en serie de Taylor. Consideremos la función

de la variable aleatoria X denotada por f(X). Usando los dos primeros términos de la serie

de Taylor, en torno a la media de la variable, para aproximar el valor de la función tenemos

f(X) ≈ f(µ) + (X − µ)× ∂f(X)

∂X
|X=µ .

Aśı, se sigue que la varianza de la función es aproximadamente

V ar(f(X)) ≈ V ar(X − µ)× [f ′(µ)]2 ≈ σ2 × [f ′(µ)]2.

El estimador del Método Delta se obtiene cuando usamos las estimaciones de σ2 y µ en la

ecuación anterior. Esto es,
̂V ar(f(X)) ≈ σ̂2 × [f ′(µ̂)]2.

Como ya se ha visto, Ŝ(t) puede verse como producto de proporciones, aśı por comodidad

estimaremos primero la varianza del logaritmo del estimador Kaplan-Meier.

Considerando f(X) = ln(X) tenemos que

̂V ar(ln(X)) ≈ σ̂2 × 1

µ̂2
.

Suponiendo primero que las observaciones de supervivencia entre los ni sujetos en riesgo son

independientes Bernoulli con probabilidad constante p̂i queda:

̂V ar(ln(p̂i)) ≈
p̂i(1− p̂i)

ni
× 1

p̂2i
=

di
ni(ni − di)

.
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La segunda suposición es que las observaciones en diferentes conjuntos de riesgo son inde-

pendientes, esto es, que un individuo sobreviva 1 año es independiente a que otro individuo

distinto sobreviva 2 años. Luego tomando X = ln(Ŝ(t)),

̂
V ar(ln(Ŝ(t))) =

∑
ti≤t

̂V ar(ln(p̂i)) ≈
∑
ti≤t

di
ni(ni − di)

.

Por último, aplicando otra vez lo mismo para f(X) = exp(X) siendo X = ln(Ŝ(t)) obtenemos

la fórmula de Greenwood (2.3).

Nota 2.3. Notemos que el intervalo de confianza (2.2) para valores extremos de t puede

incluir valores fuera del rango (0,1). Además, debido a la hipótesis asintótica de normalidad,

el intervalo de confianza no será demasiado satisfactorio para muestras pequeñas. Una manera

de corregir estos problemas consiste en considerar una transformación biyectiva, g, que evite

las restricciones en el rango y que mejore la aproximación normal en muestras pequeñas. Se

calculaŕıa el intervalo de confianza para g(S(t)) (calculando la estimación de la varianza de

g(S(t)) por el Método Delta) y, tras aplicar la transformación inversa, g−1, a los extremos del

intervalo de confianza obtenido, obtendŕıamos el intervalo de confianza para S(t). Un ejemplo

de estas tranformaciones es g(S(t)) = log (− log(S(t))) (página 43 de [7]).

2.2. Estimador para la función de riesgo acumulada

A partir de la estimación de Kaplan-Meier pueden derivarse estimaciones para otras fun-

ciones de interés, por ejemplo, para la función de riesgo acumulado. Recuérdese que (1.4)

relaciona la función de riesgo acumulado H(t) y la función de supervivencia S(t); en conse-

cuencia, un estimador de la función de riesgo acumulado es

Ĥ(t) = − log Ŝ(t), (2.4)

siendo Ŝ(t) el estimador de Kaplan-Meier dado en (2.1).

2.2.1. Estimador de Nelson Aalen

Nelson y Aalen ([1] y [3]) propusieron otro estimador cuya expresión es

H̃(t) =
∑

j;t(j)≤t

dj
nj
, (2.5)

con t(j), dj , nj definidos como en (2.1). Es un estimador no paramétrico de H(t) y se puede

presentar una derivación formal de este estimador en términos de la teoŕıa de procesos de

conteo y Martigalas [1], pero queda fuera del alcance de este trabajo.

Desde el punto de vista teórico, no hay argumentos para preferir un estimador al otro si

bien el estimador de Nelson-Aalen tiene la ventaja de la sencillez de cálculo.

A partir del estimador de Kaplan-Meier hemos obtenido un estimador para la función de

supervivencia. Sin embargo, se puede invertir el esquema, esto es, derivar un estimador para

la función de supervivencia a partir del estimador de Nelson-Aalen. De esta manera, Nelson y
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Aalen proponen un estimador para la función de supervivencia usando la relación (1.5), esto

es,

S̃(t) = exp (−H̃(t)), (2.6)

Teorema 2.4. Sea T variable continua. Los estimadores (2.4) y (2.5) son asintóticamente

equivalentes, siendo el estimador de Nelson-Aalen, H̃(t), la aproximación lineal de primer

orden de la función Ĥ(t). Por otro lado, los estimadores (2.1) y (2.6) son también asintóti-

camente equivalentes, siendo el estimador de Kaplan-Meier, Ŝ(t), la aproximación lineal de

primer orden de la función S̃(t).

Demostración. Usando Taylor y por la definición del estimador de Kaplan-Meier (2.1),

H̃(t) = − log Ŝ(t) = −
∑

j;t(j)≤t
log

(
1− dj

nj

)
≈

∑
j;t(j)≤t

(
dj
nj

)
, con dj << nj .

Por un procedimiento análogo se tiene la equivalencia para los estimadores de la función de

supervivencia.

Salvo para valores altos de t, la diferencia entre ambos estimadores es pequeña por lo general.

Intervalos de confianza para H(t)

El estimador de Nelson-Aalen puede deducirse como un estimador de máxima verosimi-

litud ([1]). De esta manera, podemos construir un intervalo de confianza de para la función

de riesgo acumulado, en un tiempo fijo t para muestras grandes, a un nivel del 100(1− α) %.

Dicho intervalo viene dado por:(
H̃(t)− z1−α

2

√
̂V ar(H̃(t)), H̃(t) + z1−α

2

√
̂V ar(H̃(t))

)
,

donde una estimación de la varianza viene dada por

̂V arH̃(t) =
∑

j;t(j)≤t

(
dj(nj − dj)

n3j

)
,

expresión que se obtiene de forma análoga al Teorema 2.2 (Método Delta).

Otra estimación de la varianza puede verse en [1]:

̂V arH̃(t) =
∑

j;t(j)≤t

dj
n2j
.

2.3. Comparación de funciones de supervivencia

A menudo estamos interesados en comparar distribuciones de supervivencia de dos o más

grupos de pacientes. Entre los distintos tests no paramétricos para comparar distribuciones

de supervivencia (ver en [10]), describiremos el test de Logrank (introducido originalmente

por Mantel en 1966) pues es apropiado cuando disponemos de datos censurados con censura

a derecha.
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2.3.1. Test de Logrank

El test de Log-rank es un método no paramétrico que compara las funciones de supervi-

vencia de dos grupos de individuos y el marco de trabajo es el mismo que cuando calculamos el

estimador Kaplan Meier. No ofrece ninguna información sobre la magnitud de las diferencias

entre los grupos o un intervalo de confianza. Para conocer este tipo de información se utiliza

el cociente de riesgos que se explica en el siguiente caṕıtulo (Caṕıtulo 3).

La idea en la que se basa este test es la misma que cuando en Estad́ıstica se intenta com-

parar dos distribuciones a través del test χ2. Ahora sólo se considera dos clases: individuos

que han sufrido el suceso y los que no. Aśı, si representamos en una tabla de contingencia

esta situación tendŕıamos:

Población SI NO Total

P1 O1 n1 −O1 n1

P2 O2 n2 −O2 n2

donde n1 y n2 representan el tamaño de cada una de las poblaciones, O1 y O2 el número de

sucesos observados en las poblaciones P1 y P2 respectivamente.

En esta situación, se sabe ([11]), que el estad́ıstico

Z =
2∑
i=1

(Oi − Ei)2

Ei
,

donde Ei es el número esperado de sucesos en la población Pi, sigue, bajo la hipótesis nula de

igualdad de las funciones de supervivencia de cada población, esto es, H0 : S1(t) = S2(t), una

distribución χ2
1, asintóticamente. Aśı, cuando calculemos el valor del estad́ıstico Z anterior,

si el p-valor correspondiente es suficientemente pequeño asumiremos que las funciones de

supervivencia son distintas.
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Caṕıtulo 3

Modelos semiparamétricos

Hasta ahora solo se ha considerado la estimación de la supervivencia (funciones de super-

vivencia) en función del tiempo. Ahora nos planteamos cómo pueden estar influyendo otras

variables. En otras palabras, ¿cómo incluir covariables en la estimación de las funciones de

supervivencia?.

Por otra parte, el proceso de envejecimiento que está presente cuando los individuos se siguen

en el tiempo es lo que distingue el tiempo de supervivencia de otras variables aleatorias. De

las funciones que manejamos que describen la distribución del tiempo de supervivencia, la

función de riesgo es la que mejor captura la esencia de este proceso de envejecimiento.

Modelos semiparamétricos

Consideramos un modelo de regresión en el que la función de riesgo depende del tiempo y

de otras covariables que describen los sujetos. Para facilitar la notación, consideraremos, en

primer lugar, que solo hay una covariable que denotaremos por X y siendo β el coeficiente de

regresión desconocido asociado a la covariable.

El modelo de regresión se representa como sigue:

h(t,X, β) = h0(t)r(X,β), (3.1)

La función de riesgo, tal como se expresa en la fórmula anterior, es el producto de dos funciones

elegidas de forma que h(t,X, β) > 0.

La función h0(t) no toma ninguna forma paramétrica en particular, es la única parte del

modelo que depende del tiempo y caracteriza pues el cambio en la función de riesgo en

función del tiempo. La función h0(t) sólo depende del tiempo, es decir, toma el mismo valor

en un tiempo t para todos los pacientes. Notemos que la función h0(t) es la función de riesgo

cuando r(X,β) = 1. Cuando la función r(X,β) es tal que r(X = 0, β) = 1, a h0(t) se le

denomina función de riesgo base.

Por otra parte, la otra función, r(X,β), caracteriza el cambio en la función de riesgo en función

de las covariables. En este modelo no se hace ningún supuesto sobre la forma espećıfica de

la función h0(t), por lo que este es un modelo semiparamétrico en el sentido de que sólo se

asume una forma paramétrica para el efecto de las covariables.

A menudo estamos interesados en comparar la función de riesgo entre dos grupos de

23



24

pacientes. En este contexto juega un papel importante el cociente de riesgos definido como:

HR(t, xi, xj) =
h(t, xi, β)

h(t, xj , β)
,

para dos grupos de individuos con valores de la covariable denotados por xi y xj , respectiva-

mente, en un tiempo t. Además, por (3.1),

HR(xi, xj) =
r(xi, β)

r(xj , β)
.

Aśı, la razón de riesgo (HR) no depende del tiempo; depende solo de la función r(X,β).

En el caso de que se dispone de más covariables, el modelo (3.1) se representa de la misma

manera sólo que ahora X representa un vector de covariables y β el correspondiente vector

de parámetros asociados a ellos.

3.1. Modelo de Cox

Cox fue el primero en proponer el modelo en (3.1) tomando r(X,β) = exp(Xβ), modelo

que se denomina modelo de Cox o modelo de riesgos proporcionales y que, si tenemos p

covariables, se representa por:

h(t,X, β) = h0(t) exp(Xβ) = h0(t) exp(β1X1 + · · ·+ βpXp), (3.2)

Nótese que, en este modelo, h0(t) es lo que hemos denominado como función de riesgo base.

Por otro lado, podemos también dar una expresión para la función de supervivencia a

través del modelo de Cox. Por (1.5) tenemos que

S(t,X, β) = exp(−H(t,X, β))

y, por (3.2),

H(t,X, β) =

∫ t

0
h(u,X, β)du = exp(Xβ)H0(t),

donde H0(t) =
∫ t
0 h0(u) se define como la función de riesgo base acumulada.

De esta forma, la función de supervivencia para el modelo de Cox queda representada como

sigue:

S(t,X, β) = [S0(t)]
exp(Xβ),

donde S0(t) se define como la función base de supervivencia.

Cociente de riesgos

El elemento principal en la regresión de Cox es el cociente de riesgos pues relaciona las dos

funciones de riesgo en función de los cambios en la variable independiente, esto es, permite

comparar la función de riesgo entre dos grupos de pacientes. En el modelo de Cox el cociente

de riesgos es:

HR(Xi, Xj) = exp(β(xi − xj)).
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La expresión anterior muestra que el cociente de riesgos no depende del tiempo. Esto equivale

a la denominada hipótesis de riesgos proporcionales.

Asumiendo que la función de riesgo viene dada por (3.2), el primer tema que debemos

abordar es la estimación de los parámetros β. Posteriormente debemos analizar si las cova-

riables son realmente significativas para nuestro modelo y de cuáles podemos prescindir.

3.1.1. Estimación de los parámetros

Como acabamos de decir, una vez propuesto el modelo que vamos a considerar debe-

mos estimar, a partir de los datos, los parámetros de dicho modelo, esto es, los coeficientes

β1, . . . , βp de las covariables X1, . . . , Xp.

Para la estimación de los coeficientes β1, . . . , βp, Cox [4] propuso una función de verosi-

militud parcial que depende solo del parámetro vectorial de interés y de la que se obtienen

los coeficientes estimados. Cox especuló que los estimadores de los parámetros obtenidos de

la función de verosimilitud parcial tendŕıan las mismas propiedades que los estimadores de

máxima verosimilitud. Más tarde se demostró esta conjetura [2]. Cox asumı́a que no hab́ıa

empates en los tiempos de supervivencia; sin embargo, sabemos que en la práctica los empates

en los tiempos de supervivencia son comunes y la función de verosimilitud parcial de Cox fue

modificada para poder manejarlos [5]. Con el fin de facilitad la exposición, en lo que sigue

presentaremos la función de verosimilitud parcial para el caso de que no haya empates.

Supongamos que tenemos n individuos con t1, . . . , tn sus tiempos de supervivencia. Sean

t(1) < . . . < t(r) los tiempos de fallo (r ≤ n) y sea R(t(j)) el conjunto de riesgo en el instante

t(j), esto es, el conjunto de personas cuyos tiempos de supervivencia son de al menos t(j). La

función de verosimilitud parcial del modelo de Cox viene dada por:

L(β) =
r∏
j=1

exp(β′zi(t(j)))∑
l∈R(t(j))

exp(β′zl)
, (3.3)

donde zi(t(j)) es el vector de valores de las covariables para el individuo i que muere en el

instante t(j), zl es el vector de valores de las covariables para el individuo l del conjunto R(t(j))

y β′ = (β1, . . . , βp).

La expresión (3.3) está expresada sólo en función de los tiempos de fallo. La función de vero-

similitud parcial expresada en función de todos los tiempos es

L(β) =
n∏
j=1

[
exp(β′zi(t(j)))∑
l∈R(t(j))

exp(β′zl)

]δj
,

donde δj es el indicador del evento, tomando el valor 0 si el dato j-ésimo es censurado.

La estimación β̂ del vector de coeficientes β cumplirá que β̂ = máx
∀β

(l(β)), siendo l(β) =

logL(β), el logaritmo de la función de verosimilitud. Por tanto, β̂ es la solución de las siguien-

tes ecuaciones simultáneas:

∂l(β)

∂βj
= 0 j = 1, 2, . . . , p.



26

De esta forma, la solución β̂ se obtiene mediante métodos numéricos como, por ejemplo, el

de Newton-Raphson multivariable [6].

Intervalo de confianza para βi

Por otra parte, es posible construir intervalos de confianza para βi a partir de la estimación

de la correspondiente matriz de covarianzas [7]. En concreto, el intervalo de confianza, para

muestras grandes, de nivel 100(1− α) % para un βi viene dado por

(β̂i − z1−α
2

√
vii, β̂i + z1−α

2

√
vii),

donde vii es el elemento (i,i) de dicha matriz (inversa de la matriz de Fisher).

Relevancia de las covariables

Una vez estimado el modelo debemos analizar si todas las variables son relevantes para el

modelo, es decir, si podemos prescindir de alguna de ellas. En concreto, nos planteamos un

test de la forma: 
H0 : βj = 0

H1 : βj 6= 0

En caso de aceptar H0, el test nos dice que podemos prescindir de la covariable xj . Para ello

usaremos el test de Wald [10].

Debe notarse que si prescindimos de alguna variable debemos reevaluar los coeficientes del

modelo.

Interpretación del coeficiente β

En general, las variables con las que trabajamos son continuas o categóricas. Por simplifi-

cidad nos centraremos en el caso de variables dicotómicas (dos valores) y variables continuas.

• Caso de una variable dicotómica:

Supongamos que estamos interesados en comparar la función de riesgo de dos grupos de

pacientes con cáncer de próstata según la edad. Consideremos la covariable dicotómica,

X, que toma el valor 0 en los pacientes con edad menor a una cierta edad dada y el

valor 1 en los pacientes con una edad mayor o igual a la dada. Aśı, la función de riesgo

para el i-ésimo paciente se representa como:

hi(t,X, β) = h0(t) exp(Xiβ) =


h0(t) exp(β) si Xi = 1

h0(t) si Xi = 0

.

Si queremos comparar la función de riesgo entre los individuos con edad menor a una

dada y los individuos con edad mayor o igual que la dada, el cociente de riesgos queda:

HR =
h0(t) exp(β)

h0(t)
= exp(β).
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Si β tomara el valor ln(2) la interpretación seŕıa que el riesgo de fallo en los pacientes

con mayor edad que una cierta dada es el doble que en los pacientes con menor edad

que la dada.

De esta forma, el coeficiente β representa el aumento en el logaritmo de la función de

riesgo cuando pasamos de una categoŕıa a otra.

• Caso de una variable continua:

Supongamos que los dos grupos a comparar toman los valores x+ a y x en la variable

X, siendo a un valor real cualquiera. El cociente de riesgos quedaŕıa

HR(x+ a, x) = exp(aβ).

El coeficiente β representaŕıa el incremento en el logaritmo de la función de riesgo por

cada incremento a en la variable.

Cuando se trabaja con variables categóricas con más de dos clases, por ejemplo n, lo que

se hace es generar n − 1 variables denominadas de diseño que representan las n categoŕıas

posibles. Por ejemplo, en el caso de tener tres categoŕıas A, B y C se definen dos variables de

diseño D1 y D2 de manera que, para los individuos de la categoŕıa A ambas variables toman

el valor 0, para los de la B la variable D1 toma el valor 1 y la D2 el valor 0 y para los de

la categoŕıa C, la variable D1 toma el valor 0 y la D2 el valor 1. La interpretación de los

coeficientes es análoga a lo comentado anteriormente.
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Caṕıtulo 4

Análisis de supervivencia aplicado

al cáncer de próstata

4.1. Cáncer de próstata

La próstata es la glándula sexual masculina encargada de producir el semen. Es del tamaño

de una nuez y se encuentra debajo de la vejiga urinaria, rodeando a la uretra.

El cáncer de próstata es el tercer tumor más frecuente en varones españoles y supone la tercera

causa de muerte por cáncer en España. La enfermedad se desarrolla más frecuentemente en

individuos mayores de 50 años y la incidencia de ésta aumenta con la edad. A diferencia de

otro tipo de cáncer, el cáncer de próstata se caracteriza por evolucionar de forma muy lenta

y es extremadamente frecuente. De hecho, la mayoŕıa de los hombres con cáncer de próstata

mueren muchos años después de su detección por causas naturales sin que el cáncer les afecte

en la calidad de vida.

Detección del cáncer
La detección del cáncer se suele llevar a cabo principalmente por la prueba en sangre del

ant́ıgeno prostático espećıfico (PSA) o por la exploración f́ısica de la glándula prostática

(tacto rectal). El ant́ıgeno prostático espećıfico es una protéına producida por la próstata y

su elevación en plasma es proporcional a la masa tumoral presente, de ah́ı que se utilice como

test para detectar el cáncer. Los valores de PSA que consideraremos normales en nuestro

estudio (siguiente sección) son los PSA < 4ng/mL. Los pacientes con PSA mayor presentan,

en principio, mayor riesgo. Sin embargo, los niveles de PSA en sangre pueden elevarse por

otras razones como puede ser el agrandamiento de próstata, lo que se denomina hiperplasia

prostática benigna (HPB), que es un problema común en casi todos los hombres a medida

que envejecen. Por esto, podŕıan considerarse diferentes niveles de PSA en función de la edad

del paciente.

Gradación histológica del cáncer
Si los resultados de poseer el cáncer son sospechosos se procede a la extracción de una muestra

tisular de la próstata (biopsia prostática) que es examinada en microscopio. Una vez realizada

la biopsia, si se encuentra el cáncer, el patólogo emplea dos sistemas de gradación del cáncer

de próstata: la escala de Gleason y el estadio cĺınico. El procedimiento de la escala de Gleason

consiste en seleccionar dos zonas de la muestra y, basándose en la observación al microscopio
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de las caracteŕısticas que presentan las células, asignar a cada una de ellas un número del 1

al 5 en relación con el grado de diferenciación de las células y, por tanto, con la agresividad

del cáncer. Posteriormente se suman los dos valores obtenidos de las dos zonas de la muestra

obteniéndose un número comprendido entre el 2 y el 10. Este valor es el valor conocido como

la escala de Gleason. Un valor menor que 6 corresponde a un cáncer con escasa agresividad,

un valor 7 con un cáncer de agresividad intermedia y un valor mayor que 8 con un cáncer de

alta agresividad.

Por otro lado, el estadio cĺınico basado en el resultado de pruebas como, por ejemplo, imágenes

o biopsias describe la extensión local del tumor de la próstata clasificándolo en las siguientes

categoŕıas y subcategoŕıas:

T1: Tumor cĺınicamente indetectable, no se puede palpar ni observar por imágenes.

• T1a: El tumor se encuentra en menos del 5 % del tejido extirpado.

• T1b: El tumor se encuentra en más del 5 % del tejido extirpado.

• T1c: El tumor se encuentra mediante biopsia por aguja.

T2: Tumor cĺınicamente detectable, se puede palpar u observar por imágenes, pero

está confinado a la próstata.

• T2a: El tumor se encuentra en la mitad o menos de un solo lado de la próstata.

• T2b: El tumor se encuentra en más de la mitad de un solo lado de la próstata.

• T2c: El tumor se encuentra a ambos lados de la próstata.

T3: Tumor extendido fuera de la próstata. Pudo haberse propagado a las veśıculas

seminales.

T4: Tumor extendido a tejidos adyacentes a la próstata (además de las veśıculas semina-

les), como por ejemplo los esf́ınteres externos, el recto, la vejiga,los músculos elevadores

o la pared pélvica.

Tratamiento y seguimiento
Con el fin de tratar el cáncer de próstata, se le aplica un tratamiento al paciente. Si el cáncer

no se ha propagado por fuera de la glándula prostática el tratamiento más común es la

prostatectomı́a radical, que es la ciruǵıa consistente en extirpar toda la glándula prostática y

algunos tejidos alrededor de ésta. La ciruǵıa debe eliminar las células cancerosas, sin embargo,

el cáncer es posible que pueda reaparecer ya que, en la práctica, suele ser prácticamente

imposible extirpar con éxito todas las células cancerosas, por lo que es frecuente hacer chequeos

regulares como, por ejemplo, pruebas en sangre del PSA. El nivel de PSA debeŕıa bajar a

valores muy próximos a 0 ng/mL. El punto de corte de PSA establecido para considerar

recidiva bioqúımica en nuestro estudio es > 0, 4 ng/mL.

4.2. Estudio de un grupo de pacientes con cáncer

Realizaremos el estudio del análisis de supervivencia a un grupo de 359 individuos a que

se les ha detectado un cáncer de próstata, en el hospital “Miguel Servet” de Zaragoza.
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Los individuos entran en el estudio en el momento que se les interviene quirúrgicamente

con una prostatectomı́a radical hasta que se produce la recidiva bioqúımica o no se produce

(censura). Los pacientes en estudio son pacientes de “bajo riesgo”, en el sentido de que todos

pertenecen a las categoŕıas T1 o T2 del estado cĺınico.

El objetivo de nuestro estudio es estudiar la influencia de las variables preoperatorias (nivel

de PSA, escala de Gleason, estadio cĺınico), junto a la edad del paciente a la intervención

quirúrgica, sobre el tiempo de supervivencia, es decir, el tiempo libre de cáncer. Como se

ha indicado anteriormente, se considera que se ha producido una recidiva del cáncer cuando

PSA > 0,4ng/mL (recidiva bioqúımica).

El estudio se llevará a cabo, principalmente con el programa estad́ıstico SSPS y con el

programa R.

Las variables con las que trabajaremos son las siguientes:

• Meses hasta último seguimiento: Es la variable continua ”tiempo de supervivencia”siendo

la unidad de tiempo los meses. El suceso de interés es la recidiva bioqúımica, esto es,

un valor de PSA> 0, 4 ng/mL.

• PSA 04 Dummy: Es una variable dicotómica donde el valor 0 indica que no se ha dado

el suceso (recidiva bioqúımica) en el individuo, esto es, el dato es censurado y el valor

1 que si ha dado, esto es, dato no censurado.

• Edad a la prostatectomı́a: Es la variable continua que expresa la edad del paciente a la

prostatectomı́a radical.

Las variables siguientes son variables preoperatorias.

• PSA: Es la variable continua que expresa el valor de PSA del paciente en las pruebas

de sangre para la detección del cáncer realizadas antes de la operación.

• Gl Bx Cat: Es la variable categórica que indica el grado en la escala de Gleason.

• Est Clin Cat Rec: Es la variable categórica que indica el estadio cĺınico del paciente, el

valor “1” para la categoŕıa T1. Toma el valor “4” para las categoŕıas T2a y T2b y el

valor “5” para la categoŕıa T2c.

4.2.1. Análisis descriptivo de las variables

Empezaremos el estudio con un análisis descriptivo de nuestras variables con la ayuda

del programa estad́ıstico SSPS. Las tablas de frecuencias de las variables categóricas o los

estad́ısticos descriptivos de las variables continuas se muestran en el Anexo.

Los tiempos de supervivencia de los pacientes vaŕıan entre 1 y 15 años y el tiempo medio

es de aproximadamente 7 años (Figura 4.7). Por otro lado, recordando que el valor ‘SI’ denota

que se ha producido el suceso (recidiva bioqúımica), se observa en la Figura 4.8 que, en más

de la mitad de los casos, 65,7 %, no se ha producido la recidiva durante el estudio.

Como se hab́ıa indicado en el inicio del caṕıtulo, la enfermedad se desarrolla más frecuen-

temente a partir de los 50 años; en nuestro caso, la media de los pacientes en la intervención
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quirúrgica es de 64 años. El más joven tiene 43 y el más mayor 74 (Figura 4.9). Los pacientes

mayores que 74 años tendrán, como se ha dicho antes, un tiempo de supervivencia medio de

unos 7 años por lo que se decide no incluirlos en el estudio.

En media, los pacientes presentan valores altos (superiores al valor tipificado como normal)

de PSA (Figura 4.10), lo que tiene sentido pues los pacientes del estudio son pacientes que

padecen cáncer de próstata. Sin embargo, el 87,7 % de los casos presentan un cáncer de escasa

agresividad y solo 5 pacientes presentan un cáncer de agresividad alta (Figura 4.11). Por

último, se observa que los pacientes se reparten de manera casi proporcional en las categoŕıas

T1 y T2 (Figura 4.12).

4.2.2. Curva de supervivencia

Usando el programa Rcommander hemos representado gráficamente (ver Anexo, Figura

4.13) la función de supervivencia estimada por Kaplan y Meier (2.1) y los intervalos de

confianza para cada tiempo t con la fórmula de Greenwood (2.2),(2.3), a un nivel del 95 %,

esto es, α = 0, 05.

Observamos que la gráfica no toma el valor cero en su último tiempo de observación, es

decir, el tiempo de supervivencia máximo corresponde a un dato censurado. Por otro lado,

observamos que, por ejemplo, la probabilidad estimada de estar libre de enfermedad más de

4 años es casi del 0,8.

En realidad, lo que aparenta gráficamente ser una banda de confianza no lo es. Lo que

representa el programa son los intervalos de confianza en cada punto. Aśı, la “aparente” banda

de confianza es la unión de los puntos extremos de estos intervalos de confianza individuales.

Obviamente, las bandas de confianza reales serán más amplias que estas bandas “aparentes”

“proporcionadas” por los intervalos de confianza individuales pues tienen que asegurar el nivel

de confianza en cualquier punto.

4.2.3. Test de Logrank

Con el fin de valorar la influencia de los valores que toman las variables sobre el tiempo

de supervivencia del paciente, en esta sección aplicaremos en SSPS y en R el test de Logrank

(sección 2.3.1). Para ello, hemos considerado las siguientes variables dicotómicas, calculadas

a partir de las variables que se nos proporcionan:

Edad65: Toma el valor 0 si el paciente tiene una edad menor o igual a 65 y el valor 1

para el resto de pacientes.

PSA4: Toma el valor 0 en los pacientes con un valor de PSA preoperatorio menor o

igual a 4 ng/mL (valor de PSA considerado normal) y el valor 1 en el resto.

GleasonBiopsia6: Toma el valor 0 en los pacientes con una escala de Gleason menor o

igual a 6, esto es, cáncer con escasa agresividad, y el valor 1 para el resto (cáncer más

agresivo).

EstadioclinicoT1T2: Toma el valor 0 en el paciente con un estadio cĺınico T1 y el valor

1 en el paciente con un estadio cĺınico T2.
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Las tablas de frecuencias de estas variables dicotómicas pueden verse en el Anexo. El valor

α que tomamos es α = 0, 05.

Test de Logrank para la variable ‘Edad65’

En este caso, las poblaciones son: “pacientes con una edad menor o igual a 65 años” y

“pacientes con edad mayor que 65 años”. El propósito del test será conocer si tener una edad

mayor o menor que 65 años influye significativamente sobre el tiempo de supervivencia. Los

resultados del estad́ıstico en R y SSPS son los siguientes:

Figura 4.1: Test de Log Rank.Edad65

El p-valor es mayor que 0,05 luego no se rechaza la hipótesis nula de igualdad de las funciones

de supervivencia. Esto es, tener más o menos de 65 años no influye significativamente en el

tiempo de supervivencia.

Test de Logrank para la variable ‘PSA4’

Los resultados del estad́ıstico en R y SSPS se muestran en la figura siguiente:
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Figura 4.2: Test de Log Rank.PSA4

El p-valor es menor que 0,05 luego se rechaza la hipótesis nula de igualdad de las funciones

de supervivencia. Es una variable significativa, es decir, estar por debajo o por encima del valor

de PSA 4 ng/mL influirá en el tiempo de supervivencia. Como es lógico y, como se puede

ver en el Anexo en la (Figura 4.18), un paciente con un valor menor que 4 tendrá mayor

probabilidad de sobrevivir más de un cierto tiempo t que un paciente un valor mayor a 4.

Test de Logrank para la variable ‘GleasonBiopsia6’

Los resultados del estad́ıstico en R y SSPS son los siguientes:

Figura 4.3: Test de Log Rank.GleasonBiopsia6

El p-valor es menor que 0,05 luego se rechaza la hipótesis nula; es una variable significativa,

luego la agresividad del cáncer antes de la intervención quirúrgica (pertenecer a un grupo

con un gleason menor que 6 o a un grupo con un gleason mayor que 6) influirá en el tiem-

po de supervivencia. Como en el caso anterior, esto puede verse reflejado en sus curvas de

supervivencia (Figura 4.19), en el Anexo.

Test de Logrank para la variable ‘EstadioCĺınicoT1T2’

El propósito del test consistirá en predecir si existe diferencia significativa en los tiempos

de supervivencia dependiendo de la extensión local del tumor que presentaban los pacientes
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antes de la ciruǵıa. Los resultados del estad́ıstico en R y SSPS son los siguientes:

Figura 4.4: Test de Log Rank.EstadioclinicoT1T2

El p-valor, mayor que 0,05, indica que la variable no es significativa. No se rechaza la hipótesis

nula de igualdad de las funciones de supervivencia de las poblaciones “pacientes con estadio

cĺınico T1” y “pacientes con estadio cĺınico T2”.

4.2.4. Modelo de Cox

Comenzaremos planteando un modelo de Cox con todas la covariables que hemos conside-

rado en el estudio, es decir, ‘Edad la prostatectomı́a’, ‘PSA’, ‘Gl Bx Cat’ y ‘Est Clin Cat Rec’

y el test de Wald valorará la influencia de cada una de ellas, rechazándola o no como variable

explicativa del modelo. Los resultados son:

Figura 4.5: Modelo de Cox

A la vista de los p-valores, es evidente que las variables ‘Est Clin Cat’ y ‘Edad la prostatectomı́a’

pueden ser eliminadas del modelo. En consecuencia, ajustaremos un nuevo modelo sin esas

variables.

Podŕıamos haber deducido también esta afirmación fijándonos en los intervalos de confianza.

En efecto, en el test de Wald [10] la hipótesis nula es β = 0 (variable no significativa) luego,

para el valor usual α = 0, 05 podemos fijarnos el intervalo de confianza para el coeficiente β

o, equivalentemente, para expβ que es el que aparece directamente en la Figura 4.5. Aśı, si

el valor exp(β) = 1 pertenece al intervalo , no se rechaza la hipótesis nula; en caso contrario,

se rechaza, es decir, la variable permanece en el modelo. Por ejemplo, para la variable ‘PSA’,
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el intervalo de confianza para expβ incluye el valor 1, lo que significa que la variable entra en

el modelo.

En coherencia con los comentarios que acabamos de hacer, hemos considerado dos modelos

incluyendo, o bien la variable ‘Edad la prostatectomı́a’, o la ‘Est Clin Cat’ en el modelo. En

ambos casos, hemos obtenido que ninguna de esas dos variables era estad́ısticamente signi-

ficativa, por lo que finalmente hemos seleccionado un modelo con sólo las variables ‘PSA’ y

‘Gl Bx Cat’.

Los resultados correspondientes a este modelo se muestran en la tabla siguiente, donde se

observa que todos los p-valores son significativos:

Figura 4.6: Modelo de Cox. Modelo final

4.2.5. Conclusiones de los resultados

Los pacientes en el estudio son pacientes a los que se les detectó el cáncer pero categori-

zados en “bajo riesgo”. Esto se refleja en el análisis descriptivo de las variables ‘Gl Bx Cat’ y

‘Est Clin Cat’. Por otro lado, no hay datos censurados por pérdidas en el estudio y los datos

censurados (no recidiva) presentan el 65,7 % de los casos. Esto, junto al análisis descriptivo de

la variable ‘tiempo de supervivencia’, nos permite decir que los pacientes, en general, tienen

un buen pronóstico del cáncer.

Por otro lado, se ha demostrado que no existe influencia en ser mayor o menor de 65 años

ni en pertenecer a la categoŕıa cĺınica T1 o T2, sobre el tiempo hasta la recidiva bioqúımica.

Śı influye, en cambio, sobre el tiempo de supervivencia, tener un diagnóstico preoperatorio

de escasa o mucha agresividad del cáncer (Gleason) o un PSA mayor o menor que 4 ng/mL

antes de la operación.

Por último, las variables que aparecen en el modelo de Cox, esto es, que mejor explican la

variable ‘tiempo de supervivencia’ son las variables preoperatorias ‘Gl Bx Cat’ y ‘PSA’.

Bajo estos resultados, diŕıamos que los exámenes de PSA o Gleason son exámenes fundamen-

tales y posiblemente decisivos para una futura recidiva del cáncer.
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