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Abstract

In spite of the fact that quantum mechanics has been formulated in an algrebaic way, a
geometrical formulation has been developed since 70’s [1]. Our goal in this thesis will be to
explain how to compute this ‘geometrization’ in terms of observables O and then to apply it
to the contractions of the underlying algebraic structures of open quantum systems.

On one hand, in order to reformulate quantum mechanics, we need to identify the minimal
mathematical apparatus. In our case, our main objects will be the space of observables O
and the space of states p € O*. This presentation of quantum mechanics is known as the
Heisenberg picture. So in the first chapter we will identify these ingredients, then we will
study the underlying mathematical structures of O and finally we will transport them into
a geometrical formulation. To this aim, we will define a pair of tensors fields, R and the
bivector A, which codify the Jordan and Lie algebras, respectively. Eventually, at the end of
the chapter we will explain how to compute the vector field associated with the dynamics
over O and also over O, this last one given by the von Neumann equation for closed systems.

However, due to the non-negligible interaction between a real quantum system and its
environment, the system loses some of its genuine quantum features and eventually displays
some ‘classical’ behaviour, where observables which didn’t commute, start to do it. This kind
of systems, known as open quantum systems, will be the reason of this work.

Therefore, we would like to study how the algebra of observables O change under the
evolution, in order to describe what happens to the observables of an open quantum system.
As this evolution is not unitary, we will make use of the mathematical concept of contractions
of algebras. This concept became popular with Segal [2] and In6nii and Wigner [3], who tried
to consider the symmetry group of classical mechanics as being a limit, in some sense, of
the Poincaré group. In the second chapter, we will define contraction of an algebra and will
classify them for the case of Lie algebras. We will also introduce a new concept, which has
been called contraction of Jordan algebras associated to an associative algebra. Finally, we
will develop the effect of a contraction of a Lie-Jordan algebra g over the tensors R and A.

Once we will have become familiar with contractions, they will be applied to a particular
example of dissipative quantum system, in order to exemplify how to deal with this new
formulation of quantum mechanics and contractions, and to understand in a deeper sense
how this systems behave.

In addition, we will face up with the quantum Zeno effect. This effect, which has been
developed in the last forty years [4], could be useful in several fields such as: the control of
decoherence in quantum computing, to reduce the dosage in neutron tomography, efficient
preservation of spin polarization in gases etc. Because of this effect, one is supposed to be
able to protect a particular quantum state by continuously measuring the system in study.
Our feeling, is that we can explain this process by making use of the geometrical formalism
of quantum mechanics and the theory of contractions. For this reason, we have compute the
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v Capitulo 0. Abstract

dynamical vector field associated with the quantum Zeno evolution, as reader can find in
the appendices. We have also applied it to some examples as a first step to understand the
problem.

As reader could verify, this work makes use of many different branches of mathematics:
Lie and Jordan algebras, theory of contractions, differential geometry, symplectic geometry,
quantum mechanics and algebra, among others. Because of that, some topics have not been
explained enough and have been developed in appendices. In them, reader can find almost
any physical or mathematical concept mentioned in this work and also examples and deeper
explanations about some concepts. However, this work is self-contained enough and reader
will not have any problem to understand it without appendices. Regarding the computations
done in order to understand and learn how to work with this formulation the author has used
Mathematica. Because of complexity of calculations rises with dimension, we have just work
with two and three dimensions.

In addition, I must say that this work is the continuation of another previous one, which
was titled: ” Sistemas cudnticos Hamiltonianos en Mecanica Cudntica: el efecto Zenén”, which
was also wrote by me. That is the reason of the analysis of the quantum Zeno effect in terms of
contractions of algebras. Despite the fact we will not be able to totally explain quantum Zeno
effect through contractions, we will analyze in some depth. Next, we introduce in Spanish, a
symbol appendix in order to clarify the notation use during the writing.

Geometria diferencial

TM — Fibrado tangente a la variedad.

T,M — Espacio tangente a la variedad en el punto p.

X — Campo vectorial sobre la variedad.

Xp — Campo vectorial sobre la variedad en el punto p.
XK — Campo vectorial asociado a la aplicacién lineal K.
o — Flujo asociado al campo vectorial X.

A — Bivector codificando la estructura de Poisson.

R —  2-tensor codificando la estructura de Jordan.

xt — Funciones coordenadas.

8‘; — Elemento de la base del espacio tangente a un punto.
A — Producto exterior.

Qs — Producto simétrico.

Lx — Derivada de Lie respecto al campo X.

Algebras

O —  Algebra de observables.

o* — Dual del dlgebra de observables.

péa=Ac O AcO — Elementos del dual del algebra de observables.
A e (0% — elemto del bidual del algebra de observables.
[A,B] = AB— BA — Paréntesis de Lie.

[A,B]_ = —i(AB — BA) — Paréntesis de Lie para O.

AoB=[AB| = $(AB + BA) — Paréntesis de Jordan para O.

(A,B)p, = 3 Tr(AB) — Producto escalar sobre O.

During the writing we will make use of Einstein summation convention, whick means
summation over repeated indices.

Formulacion simpléctica de la Mecdnica Cudntica
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Capitulo 1

La formulacion geométrica de la
Mecanica Cuantica

Para poder reformular la teoria cudntica desde un punto de vista geométrico es impres-
cindible identificar los ingredientes principales que engloba el marco cuédntico, de forma que
podamos reformular la estructura matematica que lo sostiene. Entre estos ingredientes en-
contramos': un espacio de estados al cual denotaremos S, que corresponde al conjunto de
rayos de un espacio de Hilbert H complejo separable en la formulaciéon usual de la Mecénica
Cuantica, y que representan los estados puros del sistema, y un espacio de observables O,
que corresponde al conjunto de las magnitudes fisicas del sistema, y que en la formulacion
habitual es el conjunto de operadores esencialmente autoadjuntos en el espacio de Hilbert
considerado. Debemos considerar ademas el proceso de medida y la evolucion de los esta-
dos del sistema fisico. El proceso de medida viene representado por una asignacién numeérica
al par definido por el estado fisico y el observable O x & — R, mientras que para describir
la evolucién del sistema debemos introducir una ecuacién diferencial, correspondiente a la
ecuacién de Schrodinger en la formulacién tradicional, cuyas soluciones definen la evolucién
temporal de los estados del sistema fisico.

Existen no obstante otras interpretaciones distintas. En este trabajo haremos referencia a
una de ellas, la imagen de Heisenberg. En esta imagen, los estados cudnticos del sistema ¢ (7),
permanecen inalterables a lo largo del tiempo. Es decir, existe una densidad de probabilidad
en el espacio que es constante. Es en esta imagen, donde los observables ‘evolucionan’. Sin
embargo, ; qué significa que un observable evolucione?, jcudl es la ecuacion diferencial que rige
dicha evolucion? y por ultimo, ;existe alguna relacion entre las evoluciones dadas en ambas
imagenes?.

Toda la teoria desarrollada a continuacion, serd para el caso particular de un espacio de
Hilbert de dimensién finita N de manera que podamos prescindir de dificultades topoldgicas
que hacen referencia a propiedades de continuidad de los operadores que aparecen, asi como
a sus posibles dominios de definicion.

'En el primer capitulo del apéndice se pueden encontrar los axiomas, bajo los cuales se desarrolla el marco
cuantico A.



2 Capitulo 1. La formulacion geométrica de la Mecanica Cuantica
1.1. Los observables. Estructuras geométricas en O

La descripcién de Heisenberg de la mecédnica cuantica considera al sistema cuantico, des-
crito por una C*-algebra A cuya parte real [5] son los observables O del sistema (en este
caso los elementos autoadjuntos de dicha algebra), y sus estados cudnticos S son funcionales
normalizados y positivos actuando sobre ellos, las denominadas matrices densidad. Desde el
punto de vista de la formulacién habitual para el caso de sistemas finitos de dimensién N, dicha
C*-élgebra viene dada por el conjunto de End(H), y O por el subconjunto de endomorfismos
Hermiticos. Por otro lado, el conjunto de estados viene dado por el subconjunto D(H) C O*
de operadores positivos con traza uno actuando en el espacio de Hilbert H. En un sistema
finito de dimensién compleja N, este conjunto es D(H) = {p € O* : Tr(p) =1; p > 0}.”

Definicién 1.1. Un &lgebra de Banach A es un algebra asociativa sobre el cuerpo de los
numeros reales o de los complejos que es a su vez espacio de Banach. Ademas se requiere que
la multiplicacién en el algebra y la norma del espacio estén relacionadas por la desigualdad
lzy|| < [|z|| ||yl para todo =,y € A, de manera que la multiplicacién sea una operacién
continua.

Definicién 1.2. Una C*-algebra A es un algebra de Banach sobre el cuerpo de los niimeros
complejos, junto con una aplicacién * : A — A satisfaciendo:

- Para cada z € A: 2™ = (z%)" = «.
- Para cada z € A: ||z*z| = ||z|*.
- Paratodo z,y € A: (z+y)" =z*+y*, (vy)" =y z*

- Paratodo A € Cytodo z € A: (\z)* = Az*.

Puesto que trataremos con sistemas cuanticos de dimensién finita IV, identificamos el con-
junto de observables con el espacio de operadores Hermiticos de dimensién N, O = Herm(N).
Estos definen un élgebra de Lie real isomorfa al dlgebra de Lie u(#) del grupo unitario U(H),
que corresponde a los operadores anti-Hermiticos. En el caso de sistemas de dimensién finita,
definen el dlgebra de Lie u(NV). Dicho isomorfismo viene dado por,

a:0—=u(H), oafAh)=IiA. (1.1)

Una “geometrizacién’ de la estructura de &dlgebra de Lie en el espacio de observables
vendra dada por la identificacién del paréntesis de Lie con un tensor de Poisson® defini-
do sobre el espacio dual u(#)* del élgebra de Lie u(H). Por otro lado, de manera similar
transportaremos la estructura de algebra de Jordan. De esta forma pasamos de un espacio
vectorial restringido a transformaciones lineales, a una variedad N2-dimensional para u(#) y
u(#H)*, donde disponemos de transformaciones méas generales, dependientes del punto sobre
la variedad.

Ahora siguiendo el desarrollo dado en [6], iremos caracterizando el algebra de observables

0.

2Como veremos, la existencia del producto escalar en el espacio de observables, nos permitird definir un
isomorfismo entre este y su dual, de forma que podriamos haber presentado al conjunto de estados p como
matrices Hermiticas, de traza uno y definida positivas, sin més que tener presente que son objetos distintos a
los observables.

3Este objeto seré definido més adelante.

Formulacion simpléctica de la Mecdnica Cudntica



1.1. Los observables. Estructuras geométricas en O 3

Lema 1.1.1. El espacio de observables O queda dotado de una estructura de dlgebra de Lie
real, isomorfa a la estructura natural existente en u(H) definiendo

[A,B]_ :=a Y(a(A)a(B) — a(B)a(A)) = —i[a(A), a(B)], (1.2)
donde por comodidad definiremos [a(A), a(B)] = % (a(A)a(B) — a(B)a(A)).

Por otro lado, el espacio de operadores Hermiticos también estd dotado de otro producto
binario interno, conocido como producto de Jordan, definido por

1
AOBE[A,B]+:§(AB+BA), (1.3)
donde con esta definicién conseguimos que,
Ao A= A%

Por completitud y puesto que haremos uso de ello méas adelante introduzcamos las definiciones
siguientes.

Definicién 1.3. Un élgebra de Lie (A, [-,]) es un espacio vectorial sobre un cierto cuerpo K
junto con una operacién binaria [-,-] : A x A — A, llamada paréntesis de Lie, que satisface
las propiedades siguientes:

- es bilineal, es decir, [ax + by, 2] = a[x,z] + by, 2] ¥ [z,ax + by| = a [z, z] + b |z, y] para
todo a, b en K y todo z, y, z en A.
- es antisimétrica: [x,y] + [y, z] = 0 para todo z, y en A.

- satisface la identidad de Jacobi: [[z,y], z] + [[y, ], 2] + [[#, x] ,y] = 0 para todo z, y, z
en A.

Definicién 1.4. Un dlgebra conmutativa (.4, o) sobre un cuerpo K se dice lgebra de Jordan
si
(xoy)o(xox)=zo(yo(rox)) Vz,y €A

Por dltimo, las estructuras de Lie y de Jordan pueden ser combinadas para definir una

nueva estructura conocida como &dlgebra de Lie-Jordan.

Definicion 1.5. Un algebra de Lie-Jordan es un espacio vectorial real dotado de una estruc-
tura de Jordan o y una estructura de Lie real [-, -] que satisfacen:

- [a,boc] =[a,bloc+bo[a,c| para todo a,b,c € A.

- Paratodo a,b,c € Ay paraalgin i € R se tiene (aob)oc—ao(boc) = h? ([[a,b] , c] — [a, [b, c]])
para algin h € R. La razon por la que se introduce la constante h, es porque en el
limite clasico, h = 0, el dlgebra de Jordan se vuelve asociativa.

Lema 1.1.2. El espacio de observables O, con las operaciones definidas anteriormente, for-
man un dlgebra de Lie-Jordan.

—

Demostracion. Consultar [7] para la demostracion. O

Autor: Pablo Sala de Torres-Solanot



4 Capitulo 1. La formulacion geométrica de la Mecanica Cuantica

Esto nos permite definir una estuctura de dlgebra asociativa en el espacio de observables
combinando ambas estructuras,

AB=AoB+i[AB] VA B €O (1.4)

Por ahora se ha llegado a que O = u(H). Las estructuras definidas anteriormente en
O pueden ser transportadas a u(#) por el isomorfismo dado en (1.1). También podemos
transportar dichas estructuras a O*, debido a la existencia en O de un producto escalar,

(A, B}y = %TT(AB) ABeO, (1.5)

de manera que A € O — &4 :=(A,), € O".

Por tanto, debido a la existencia de este producto escalar sobre el espacio de observables,
para cada elemento elemento (¢ € O* existe un elemento C' € O, tal que ¢ = (C, )"

Nota. El espacio de observables O forma un algebra de Lie-Jordan-Banach (LJB), es decir,
un algebra de Lie-Jordan, completa con respecto a la norma inducida por el producto escalar
[5]. La complexificacién de este espacio (O, o, [, -], (-,")»), da lugar a la C*-dlgebra original.
Este hecho permite trasladar el analisis de las estructuras subyacentes a dicha C*-algebra, al
algebra de observables, lo que a su vez nos permitird desarrollar la formulacién geométrica de
la mecanica cuantica mediante la tensorizacion de las estructuras de Lie y de Jordan.

Transportemos estas estructuras existentes sobre el espacio de observables, O a su espacio
dual O*, de manera que podamos aplicar las herramientas aportadas por la geometria dife-
rencial, entre las que destacan las estructura de Poisson y la forma simétrica correspondiente.
Pasaremos pues a considerar una nueva estructura, muy parecida a la de algebra de Lie, sobre
el espacio de funciones, C*°(O*).

Definiciéon 1.6. Una estructura de Poisson en una variedad diferenciable P estd dada por
una aplicacién R-bilineal antisimétrica {-,-} : C°(P) x C*°(P) — C*°(P) tal que

a) {fi,{fe, fa}} +{fo, {f3, fi}} + {f3,{f1, fo}} = 0 (Identidad de Jacobi).
b) {fif2,9} = fi{f2,9} + f2{f1,9} (Regla de Leibniz).

Observar que a) significa que C*°(P) queda dotado de una estructura de élgebra de Lie
real. Por otro lado la importancia de la propiedad b) es que garantiza la existencia de un
campo vectorial, que se denotard como Xy, conocido como campo Hamiltoniano, tal que

Xyr(9) = {9, f}-

Nota. Resaltar que un algebra de Poisson, es un élgebra de Lie real, dotada de un producto
adicional para el cual el paréntesis de Lie es una derivacion.

Una forma de geometrizar la estructura de dlgebra de Lie existente en O es la siguiente.
Asociamos un tensor de Poisson sobre el dual de O, de manera que como el espacio de Hilbert
‘H es de dimension finita N, podemos identificar O con el espacio de funciones lineales C-
valuadas sobre su dual O*”, es decir, O = Lin(O*,C). De esta forma definimos el paréntesis
de Poisson de dos funciones (lineales) @, v € Lin(O*,C) como

(i1, 0} = [u, 0],

4Se ha hecho uso del teorema de representacién de Riesz.

5 ’ . . . .

°Notar que en general, en un dlgebra de Poisson se pueden considerar todo tipo de funciones C*°(O*) como
veremos en el siguiente capitulo.

Formulacion simpléctica de la Mecdnica Cudntica



1.2. La dindamica 5

donde el conmutador de la izquierda es el paréntesis de Poisson de @ y 0, pensados como
elementos de (O*)*.0

Podemos pues considerar la estructura de Poisson existente en O*" [6], y extender de
modo andlogo la estructura de Jordan existente en O a través de (1.5). Asi, denotando Ay B
a las funciones lineales sobre O* correspondientes a los elementos A, B € O, podemos definir
los tensores A y R de manera que para todo £ € O* se obtiene

A(dA, dB) (&) = €0([A, B]) = %Tr C(AB — BA) — %Tr C[A,B]_ =(C,[A,B] ),

R(dA,dB)(¢c) = éc(|A, B],) = %Tr C(AB + BA) = %Tr C[A, B, = (C,[A,B],),

(1.6)

donde como se puede apreciar & € O* hace de punto sobre la variedad.

Por ultimo, como ya comentamos en (1.4), ambas estructuras nos permitian definir un
algebra asociativa. De modo coherente, estos dos campos vectoriales pueden juntarse para
dar lugar a un campo vectorial de la forma,

(R+iA) (dA, dB)(€0) = £c(AB) = %Tr(CAB), o € O, (1.7)

Usando este tensor se puede definir un producto de funciones en O* de la forma,

(AxB)(&c) = €c(AB) = (R+1iA)(dA,dB)(&c).

1.2. La dinamica

Una vez establecidas las estructuras geométricas analogas a la imagen de Schrédinger,
querriamos escribir unas ecuaciones de movimiento en el espacio de fases de los observables
O = iu(H), o bien sobre el espacio de estados, D(H) C O*. Asi, en la imagen de Heisenberg

si A € O se tiene
dA 2

—=—-[AH 1.8
dt h [ Y ]— Y ( )
o de forma andloga, sobre O*,
dp(t) 2 (A
—r=—<H . 1.9
it  h { P } (1.9)

Dichas ecuaciones dindmicas vienen determinadas por el campo vectorial asociado al ope-
rador Hamiltoniano, lo que en 1.6 llamamos campo Hamiltoniano. En general, para obtener
el campo dindmico asociado a una cierta evolucién, sea ésta Hamiltoniana o no, seguiremos
el siguiente desarrollo. Sea K € End(O) y sea v : I — O una curva tal que,

dy

_ . K
dt w© = K(’Y(to)) = X’Y(to) € T’Y(tO)O'

6Usaremos la notacién A para denotar a los elementos de A € O vistos como funciones lineales sobre el
dual, es decir @ € (O*)x.

"Desarrollaremos esta idea en la seccién 2 del siguiente capitulo y construiremos dicho tensor para un
algebra de Lie cualquiera.

Autor: Pablo Sala de Torres-Solanot



6 Capitulo 1. La formulacion geométrica de la Mecanica Cuantica

Es decir, definimos el campo asociado a la aplicacion lineal K como aquel que en el punto
~(to) se identifica con el vector tangente a la curva en dicho punto. De esta forma si {e;} es
base ortonormal de O © se tendrd que ~y(t) = > vi(t)ej, y asi

dvj

LI = (e, K(r(to))o

to

Asi desde el punto de vista geométrico, si €; son las funciones coordenadas respecto a
dicha base se tendra,
d’7j

to
y por tanto,

(ej, K(v(t0) o = X110 ()

De este modo obtenemos que si B € O, de manera que B € O* entonces

XJp)(dB) = (B.K(3(t0))o = (K'(B),~(t0) ) (1.10)

donde recordemos que ¥(ty) € O y donde KT representa el operador traspuesto conjugado.

Por ejemplo, para obtener el campo Hamiltoniano 1.6 sobre la variedad al que denomi-

naremos X 7, necesitaremos aplicar (1.10), al caso concreto en que K = adg(-) = [H,-]_, el
cual cumple que adl, = —ad H v asi se obtiene

Xl (B) = (=adi(B),1(t0))o = ([B, H]_ ,7(t0)) (1.11)
y por tanto

Por otro lado, querremos definir también la dindmica sobre el espacio de estados O*. Para
ello, tomando la curva 4 : I — O* y K € End(O%"), se tiene la aplicacién adjunta de K dada
por K*: O — O y un camino v : I — O sin méas que hacer uso del isomorfismo dado por el
producto escalar. Asi obtenemos que el campo actua,

XLy (dB) = K (3(t0))(B) = 4(to) (K*(B)) = (7(to), K*(B))o -
Para el caso de K = ad}; : O* — O, se tiene que

X’%{to)(dé) = <’Y(t0)7adH(B)>O = <7(t0)7 [H) B]—>@ = A(dﬂvdé)(’?(tO))a

y por tanto,

X ) = (0 [H ) = AH, () | (1.13)

de forma que obtenemos un resultado andlogo al obtenido en mecéanica clasica.Como vere-
mos en el apéndice los dos formalismos utilizados para desarrollar la teoria cuantica, el de
Schrodinger y el de Heisenberg, son equivalentes. Dicha equivalencia viene dada por la apli-
cacién (C.38).

8 Al ser O espacio vectorial se identifica con el espacio tangente en cada punto, y por tanto {e;} también
serd base en dicho espacio. Es decir, TO = O x O.

Formulacion simpléctica de la Mecdnica Cudntica



1.2. La dindamica 7

Nota. Es importante resaltar que los campos vectoriales y los tensores R y A definidos an-
teriormente, son campos y 2-tensores lineales, es decir, toman la forma X = aé-mja%i en el
caso de campos vectoriales, y andlogamente para R y A. Esto hace que la derivada de Lie
respecto a un campo X, Lx”, pueda ser calculada como una aplicacién lineal sobre el espacio
de bivectores A. De este hecho hecho nos serviremos en los capitulos siguientes, con el fin de
analizar las contracciones de dlgebras.

El siguiente esquema, resume el proceso de la geometrizacién de estructuras y del andlisis
que desarrollaremos en los dos préximos capitulos. Observar, como se van modificando para-
lelamente las estructuras tanto en la C*-dlgebra como en O, y como es posible recuperar las
de un algebra en funcién de las de la otra.

C* — glgebra — 0 @ i0 ) O(H) = LIB-dlgebra
e=o+i[,] Geometrizacién (Cap. 1) o, []
| |
R +iA Contraccién  (Cap. 2) R, A
| |
(R+iM)so Reo; Ao

9Ver apéndice de geometria diferencial E.13.

Autor: Pablo Sala de Torres-Solanot






Capitulo 2

Contraccion de algebras

De manera rudimentaria, se entiende por contraccion de un algebra al proceso de trans-
formacién de la misma en otras algebras, que en el caso de un édlgebra de Lie, la transforma
en otra &lgebra de Lie ‘mds Abeliana’. En la literatura [8] se encuentra como los fisicos han
estado interesados en la teoria de contracciones, motivados por la explicaciéon de porqué algu-
nas teorfas aparecen como limite de teorias més ‘exactas’. Asi por ejemplo, es bien conocido
que la mecénica clasica puede ser considerada como una buena aproximacion de la mecanica
relativista cuando las velocidades que aparecen en el problema son pequenas comparadas con
la velocidad de la luz, o bien como se recupera el limite clasico cuando A — 0. Con esta idea,
Segal [2] y anos mds tarde Inont y Wigner [3], intentaron considerar el grupo de Galileo como
el limite cuando v/c¢ — 0, del grupo de Poincaré. Otras situaciones similares se dan en la
fisica: el universo de de Sitter y la mecédnica cudntica. A dia de hoy, este limite es de uso
frecuente para obtener, partiendo de un grupo de Lie dado o una estructura de dlgebra de
Lie, una nueva estructura la cual se dice contraida de la original. Sin embargo, dicha idea no
ha sido desarrollada sobre algebras de Jordan.

La idea bésica de una contraccién es que uno tiene una familia de dlgebras g = (V, u)
dependientes de un parametro ¢ > 0, de tal forma que en el limite ¢ = 0 uno obtiene una
nueva algebra g° = (V, /).

Definicién 2.1. Sea V un espacio vectorial complejo o real, N-dimensional. Sea g = (V, u)

un algebra. Las constantes de estructura ij, coni,j,k=1,2,...,N de L con respecto a

la base e, es,...,en de V son un conjunto de N3 niimeros dados por
k
plei,e5) = Cisex,

donde de nuevo hacemos uso del convenio de sumacién sobre indices repetidos. Por tanto,
conociendo las constantes de estructura, sabemos cémo actia la operacién binaria sobre todo
el conjunto de elementos del algebra.

Definicién 2.2. Dos algebras g = (V,u) v ¢ = (V, i/) se dicen isomorfas, g = ¢’, si existe
T € Aut(V) tal que
T(u(z,y)) = W (T2, Ty); zy €V (2.1)
Ahora ya estamos en disposicién de dar la definicién principal de este capitulo [9].

Definicién 2.3. Contraccién. Sea T'(¢) € Aut(V), 0 < € < 1, una familia de aplicaciones
lineales no singulares. Entonces las algebras

ge:(VaUe>7 6>07
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10 Capitulo 2. Contraccién de algebras

donde
pe(z,y) =T HOp(T(e)x, T(e)y); wyeV (2.2)

son ismorfas a g = (V, ). Si el limite
po(,y) = lim pe(x, y) (2.3)
e—0

existe para todo z,y € V, entonces jg es un producto para un cierto dlgebra g = (V, o) que

T
se llama contraccién de g por T'(¢), o de forma resumida g ig gv.
Existen dos casos triviales:

- Para que g° 2 g, una condicién suficiente es que T(0) = lim._,07T'(¢) exista y sea no
singular. Sin embargo, esta condicién no es necesaria.

- La eleccién T'(¢) = -1 da lugar a una contraccién g° la cual es Abeliana, es decir todas
las constantes de estructura de la nueva algebra son nulas.

2.1. Contracciones de algebras de Lie: Contracciones de Inonii-
Wigner

Dentro de las contracciones de algebras de Lie existen unas de especial interés que son las
conocidas como contracciones generalizadas de Inénii-Wigner. Inénii y Wigner [9] estudiaron
bajo qué condiciones el limite C’Z-kj (0) = im0 C’fj(e) existia para un caso particular de la
familia de transformaciones lineales T'(e) dependientes del pardmetro €, donde se ha denotado
por ij(e) a las constantes de estructura del dlgebra g.. Sea un algebra de Lie g = (V,[-,]]) ¥
una base de dicha dlgebra {e;, ..., e,}, y consideremos la familia de transformaciones lineales
tales que si el espacio vectorial subyacente se escribe como suma directa, V = Vi & Vy,
entonces T'(¢) actia T'(€) v, = v,  T(€) vy = elyy.

Cuando elegimos bases {e;,...,e.} vy {€r41,...,e,} de Vg y Vy respectivamente, la trans-
formacién actua
T(e)ey, = e, =0b5,, v=1,...,r1,
T(e)ear = €ean =by,, A=r+1,...,n

Es decir, se presenta la contraccién desde un punto de vista pasivo, donde la contraccion
viene dada por un cambio de base. Asi teniendo en cuenta que u,v < r,

1
€ € _ T _ 1k € 2\ €
[ lp,’bll/] = [e1w, e10] = C1per = Cipnbig + ECI/LIV 200

donde k=1,--- ,ry A=7r+1,...,n, es por tanto necesario que
Cin, =0 (2.4)

de forma que el limite cuando € — 0 exista. Esta condicion es equivalente a pedir que Vg sea
una subdlgebra de Lie de g. Es decir, que los elementos de la base {¢;,...,e,} cierren una
subdlgebra de Lie entre ellos. Esta condicién es suficiente puesto que como

€ € _ 1k € 2§ 3
(65, 05, ] = € Clianbi + Ol a2

Formulacion simpléctica de la Mecdnica Cudntica



2.1. Contracciones de algebras de Lie: Contracciones de Inénii- Wigner 11

€ € _ 2 1k € 2¢ 3
[05,,, 053] =€ Couanbiy, + € Oy 03 b

entonces,
, 2¢ €
lim |b5,,b5,| = C

€_>0[ 1o 2>\] 1u2272¢

i[85, 5] = 0

donde por comodidad hemos llamado C’fj a ij(l), es decir, a las constantes de estructura
originales del algebra de Lie g.

De esta forma se obtiene que el dlgebra contraida obtenida a partir de g, a la que llama-
remos g', estd generada por los vectores,

b(l);u para p=1,...,7, bg)\, paraA=r+1,...,n,

con las relaciones de conmutacién y constantes de estructura obtenidas mas arriba obteniendo
asi,

cik (0) = cik (1), C\ (0) =C3\ (1) =0,

1ply 1ply 1ply 1ply
2 2
Cll,lju(o) =0, 0152,\(0) = 01,52,\(1)7 (2.5)
Caroe(0) =0, Cole(0) =0

con p,v,k=1,....ryNén=r+1,...,n.

Inoni y Wigner también probaron que las constantes de estructura C’fj(e) satisfacian la
identidad de Jacobi, para cada e, si asi ocurria para € = 1.

Diremos que el &lgebra de Lie g ha sido contraida con respecto a la subdlgebra Vg,
012;}11,(0) = 012;\1,}(1) = 0, definida por los vectores ey, con p = 1,...,7, y que los ele-

mentos esy, con A =7+ 1,...,n, han sido contraidos, ya que se cumple que 021];25(0) =0y
2
02;]25(0) =0.

En resumen, mientras que la subdlgebra Vx definida por la contraccién de Inénii-Wigner
permanece invariable, todos los otros generadores se contraen.

2.1.1. Contracciones de Saletan

En 1961 Saletan [10],[11] buscando una generalizacién de las contracciones de Inonii-
Wigner, propuso la siguiente dependencia de las transformaciones lineales U en el parametro
67

T(e) =u—+ew (2.6)

donde u y w son transformaciones lineales con la condicién T'(1) = I, lo que permite escribir
(2.6) como,
T(e) =€l + (1 —e€)u.

Ademsds la transformacién T'(e) es singular si y sélo si € = 0, es decir, u = T(0) es
singular. La generalizacién consiste en que u puede ser cualquier matriz singular. Ademaés
Saletan utilizé6 un punto de vista activo, en el sentido de que las transformaciones no se
consideraban un cambio de base sino una modificacién del espacio lineal subyacente V. De
esta forma 'transportaremos’ la estructura de dlgebra de Lie mediante las aplicaciones lineales
e invertibles T'(¢) con € # 0,

[a,b], = T(e) ' [T(e)a, T(€)b], Va,b € V. (2.7)

Autor: Pablo Sala de Torres-Solanot



12 Capitulo 2. Contraccién de algebras

El producto de Lie, [-,-], depende del valor de € y la forma explicita de cémo cambia el
producto de Lie viene dada por,

[a,b]. = T(e)"" [T(€)a, T(e)¥], (2.8)

de manera que todas las dlgebras de Lie (V,[-,-],) son isomorfas a la original.

Algunas veces el limite e — 0 de [a, b], existird para todo a,b € V' y entonces dicho limite
definird un nuevo producto de Lie; sin embargo, la existencia de dicho limite no implica que
el algebra obtenida sea isomorfa a la original. Esto a se debe a la singularidad existente en
T(0).

Nota. En el desarrollo se hace uso de un resultado algebraico [12] existente en espacios lineales
de dimensién finita que enuncia:

Lema 2.1.1. Sea u un endomorfismo de un espacio lineal finito dimensional V. Entonces,
existe un entero ¢ € N tal que V. = Vg & Vi, donde VN = ker(u?), Vg = Im(uf) y las
restricciones de u a Vi y Vg son nilpotente de orden q e invertible, respectivamente.

Por tanto, de modo analogo a como hicimos con las contracciones de Inonii-Wigner,
podriamos investigar cudles son las condiciones para que dicho limite exista'. Sin entrar en de-
talles (pueden encontrarse en [11]), los resultados importantes de este proceso de contraccién
debido a Saletan son:

a) La condicién necesaria y suficiente para la existencia del limite es,
[ua, ub] y — u [ua, by — u[a, ub] 5y + v?ufa,bly =0 a,b €V,
donde [+, -] es la restriccién del paréntesis de Lie al subespacio V.

b) Si la aplicacién lineal u contrae el dlgebra de Lie g a g%, entonces u™ también contrae el
dlgebra de Lie g a otra dlgebra, g°,. Ademds el espacio vectorial subyacente se divide en
suma directa como, V = Vi & V de la misma forma que para u.

2.2. Contracciones de algebras asociativas

Sea A = (V, 1) un dlgebra asociativa sobre un cuerpo K, con el producto p: V x V —
V., (A,B)—~ AxBysea N:V — V una aplicacién lineal. Si N fuese una derivacién del
algebra A, entonces N(A) « B+ Ax N(B) — N(A x B) = 0. En otro caso, la aplicacién,

pun :VxV =V, (A B)— AxyB=N(A)«xB+ AxN(B)— N(Ax*B), (2.9)

es una aplicacién bilineal y define una nueva estructura (V, uy).

Nuestro objetivo es que ambas algebras (V, p) v (V, pun) sean isomorfas. Por tanto, una
idea es medir la obstruccién existente a que esta aplicacion lineal sea un homomorfismo de
dichas algebras asociativas. Dicha obstruccién es medida por la torsién de p-Nijenhuis de N

Tn(A, B) = N(A*y B) — N(A)N(B). (2.10)

Definicion 2.4. Se dice que la aplicacién lineal N : V' — V es un tensor de p-Nijenhuis si la
torsién de p-Nijenhuis se hace nula, Ty (A, B) =0,VA,B € V.

'Ejemplo hecho en los apéndices F.

Formulacion simpléctica de la Mecdnica Cudntica



2.2. Contracciones de algebras asociativas 13

LLegamos asi al resultado mas importante de esta seccion.

Teorema 2.2.1. El producto py definido por (2.9)es asociativo si y sdlo si se cumple
ATN(B, C) — TN(AB, C) + TN(A, BC) - TN(A, B)C =0.

Si este es el caso, un es un producto asociativo compatible con u, es decir que p+ Ay son
asociativos para todo A € K.

En particular, si N es un tensor de p-Nijenhuis, entonces pun es un producto asociativo
sobre V' el cual es compatible con .

Demostracion. Consultar pagina 4 de [13]. O

Por otro lado, se sabe [14] que un tensor de Nijenhuis para el algebra de Lie (V,[-,]) es
una aplicacién lineal N : V' — V tal que N([A, B]y) = [N(A), N(B)], donde

y que entonces [-, -], es un paréntesis de Lie compatible si N es un tensor de Lie-Nijenhuis.

Teorema 2.2.2. Si N es un tensor de p-Nijenhuis para un dlgebra asociativa (V, p), entonces

N es un tensor de Nijenhuis para el dalgebra de Lie (V,[-,+]), donde [A, B] = %Z(A x B— BxA)
4 .
A, B]y = %Z(A sy B — By A).

Demostracion. Aplicar la definicién 2.11. O

Recordemos que dada una aplicacién lineal N : V' — Vcon V espacio lineal de dimensién
finita, por el lema 2.1.1 se tiene que V = Vr & Vi, tal que la restriccion de N a Vp y a Vi
es invertible y nilpotente respectivamente.

Consideremos U (€) = el + N la familia de morfismos lineales dependientes continuamente
del pardmetro e € R de manera que en un entorno U de 0, U (¢) es invertible para e € U —{0}.
Entonces consideremos la familia continua de productos X % Y definidos por

Xy Y =U(e)  (U(e)(X) * ()(Y)) (2.12)
=U(e) Y EX «Y + AMN(X)*Y + X« N(Y) + N(X) « N(Y), (2.13)

parae € U—{0}. Todos estos productos son isomorfos por definicién, y nos gustaria encontrar
las condiciones que aseguran la existencia del limite

XxyY =lim X x4 Y,
e—0
para todo X,Y € V y asi encontrar la correspondiente contraccién X *xy Y.
Notar que (2.12) puede ser rescrito de la forma,
XY =eX *Y + XinY —U(e) ' Tn(X,Y),

donde,
XinY =NX)*Y 4+ X« N(Y) - N(XxY),

Ty(X,Y) = N(X#yY) — N(X) * N(Y).

Autor: Pablo Sala de Torres-Solanot



14 Capitulo 2. Contraccién de algebras

Por tanto el limite existe si y solo si,

h’n(l) Ule) 'Tn(X,Y) existe para cada X,Y € V.
€E—

Es facil encontrar que es condicién necesaria que T (X,Y) € Vi para cada X, Y € V
para que el limite exista.

Teorema 2.2.3. Sea p : V x V. — V un producto bilinear (escribiremos X =Y en vez de
w(X,Y)) y N:V =V una aplicacion lineal. Denotemos por U(e) = e+ N a la deformacion
de N y por V.=Vr ® Vyn la descomposicion de V relativa a N. Entonces el limite,

lim U (€)™ (U () (X) = (e)(V))

e—0

existe para cada X,Y € V y define una nueva operacion bilineal (contraida)
X xnY,

sobre V si y sdlo si la torsion de Nijenhuis Tn(X,Y) toma valores en Vi. Si este es el caso,
entonces
X sy Y = XiyY + N My(X,Y).

Ademds, N es un homomorfismo de (V,un) en (V,u):

N(X sy Y) = N(X)* N(Y).

Demostracion. Se puede encontrar un desarrollo completo en la pagina 5 de [13]. ]

Nota. Notar que esta tultima implicacion es equivalente a afirmar que N es un tensor de
p-Nijenhuis, es decir que,

TN(X,Y) = N(X #y Y) — N(X) * N(Y) = 0.

Por tanto por el teorema 2.2.1 se sigue que si (V,p) es un &lgebra asociativa entonces
(V, un) es un élgebra asociativa compatible.

2.3. Contraccién de algebras de Jordan

La teorfa desarrollada hasta ahora sélo ha hecho referencia a la contraccién de algebras
de Lie y de algebras asociativas. Sin embargo, no existe en la literatura una descripcién de lo
que entenderiamos como ‘contraccion de algebras de Jordan’. Sera el objetivo de este capitulo
intentar definir y formalizar este concepto.

Siendo este un primer desarrollo para este tipo de contracciones, desarrollaremos un for-
mulacion algebraica y no geométrica. En este caso nos hacemos la siguiente pregunta: Si N
es un tensor de p-Nijenhuis para un algebra asociativa (V) u), (serd un tensor de Nijenhuis
para un dlgebra de Jordan dada por Aoy B = N(A)o B+ Ao N(B)— N(Ao B)?

Sea Aoy B:=N(A)oB+ Ao N(B)— N(Ao B) entonces a partir de esta definicién se
tiene que,

1
AONB:§(A*NB—|—B*NA).

Formulacion simpléctica de la Mecdnica Cudntica



2.4. El efecto en el tensor de Poisson A sobre g* asociado a una contraccion de Lie sobre gl15

Ademas, si N es un tensor de p-Nijenhuis para un dlgebra asociativa resulta que,
1 1
N(Aoy B) = §N(A xy B+ Bxy A) = §N(A)N(B) + N(B)N(A)) = N(A) o N(B),

y asi IV es un tensor de Nijenhuis para el dlgebra de Jordan.

Por otro lado, es facil ver que si T]J\;(A7 B) es la torsion de Nijenhuis de la estructura de
Jordan, T (A, B) la de Lie, entonces

Tn(A,B) =Ty (A,B)+iTy(A,B) AB €V,
y por tanto, en virtud de los teoremas 2.2.1, y 2.2.2 y de la nota 2.2 se tiene que:

Teorema 2.3.1. Sea (V,u) un dlgebra asociativa y N : V — V una aplicacion lineal. Deno-
temos por U(e) = e+ N a la deformacion de N y por V.= Vi @ Vx la descomposicion de V
relativa a N. Entonces si la torsion de Nijenhuis Tn(X,Y') toma valores en Vi se tiene que:

a) La contraccion (V,un) es un dlgebra asociativa compatible con (V, ).
b) La contraccion (V,[-,-]y) es un dlgebra Lie compatible con (V,[-,-]).

¢) La contraccion (V,on) es un dlgebra de Jordan.

Faltarfa ver la compatibilidad entre las algebras de Jordan (V, o) y (V,on). Para ello notar
que,
AoB=-AxB+i|A, B,

Yy que
Aoy B=—AxyB+i[A By,

y como sabemos que las dlgebras asociativa y de Lie son compatibles, también se tendrd que
el dlgebra de Jordan lo es.

Notar que este resultado no es de caracter general, sino que sélo es aplicable a las dlgebras
de Jordan definidas como la parte totalmente simétrica de un &dlgebra asociativa conocida;
siendo por otro lado el algebra de Lie su parte antisimétrica. Por tanto, partiendo de una
C*-élgebra (A, -, *) con un producto asociativo dado, serd posible caracterizar la contraccién
de estructuras sobre el espacio de observables . No obstante, la formulacién suele darse en
sentido contrario [5]. Partiendo de un algebra de Lie-Jordan-Banach correspondiente a los
observables O, tomando las combinaciones de los productos de Lie y de Jordan, se define
un producto asociativo e en O = O @ O, de manera que dicha 4lgebra asociativa (OC, e)
equipada con la involucién * = (a + ib)* = a — ib y la norma ||z|| = ||z*z|'/?, definida a
partir de la norma existente en O, es la tinica C*-algebra cuya parte real es O.

2.4. El efecto en el tensor de Poisson A sobre g* asociado a
una contraccion de Lie sobre g

Recordemos que estamos trabajando en todo momento sobre un espacio de Hilbert de
dimensién compleja N, y que de este modo el algebra O es de dimensién finita. Como hemos
visto en el Capitulo 1, la estructura de Lie existente en O define de manera natural
mediante (1.6) una estructura de Poisson {-,-} sobre O*. También anteriormente,
hemos usado que en dimensién finita O = (0*)* a través de la aplicacion,

0:0—= (0 A A (2.14)

Autor: Pablo Sala de Torres-Solanot



16 Capitulo 2. Contraccién de algebras

donde A(a) = a(A), Va € O*. Esto nos permite dualizar la estructura de Lie existente en
O al subconjunto de C*°(0*) dado por las funciones lineales sobre O*. De ahora en adelante
la teoria se desarrollara para un algebra de Lie g genérica, aplicandose el resultado al caso
particular del algebra O.

Sea (eq,...,en) una base del dlgebra de Lie g y llamemos 2 = é;Vi = 1,...,N a las
aplicaciones lineales correspondientes sobre g* dadas por
'(§) =&(er) VE € g (2.15)

De esta forma las relaciones de conmutacién para la estructura de Poisson existente en g*
estardn dadas por

o vk
{ml,aﬁ]}g = (2",
donde C’fj son las constantes de estructura del algebra de Lie g con respecto a la base,
lei, ej] = CE ek

y asi, el paréntesis de Poisson para dos funciones f,g € C*(g*) vendra dado por:

af g
k _k
C Ozt Oz

{f.g}; = (2.16)

Como ya se hizo referencia en el capitulo anterior, la existencia de un algebra de Lie y
de Jordan en O permite definir de manera natural objetos tensoriales que traduzcan estas

estructuras sobre O*. Asi, la propiedad del paréntesis de Poisson, [-,] o de ser antisimétrico
y una biderivacién en C°°(g*)” permite asociarle un bi-vector A4 escrito en coordenadas z
como 5 5
_ ok ok
Ay = Clia* 5 N o (2.17)

de manera que encontramos,

— _ of . i 9y of 0Og P
{f, 9}, = Ag(df,dg) = A (a ot o jd 2l) = 5 B ]A (da', da?)
_0f 99 ¢ ; j k kaf g*

Del mismo modo el algebra de Jordan es traducida por el tensor que en coordenadas x;
toma la forma,

a®a
ort =% Ogi

Ry = dj;a” (2.18)

de manera que,

Rg(dﬁdg) = {f?g}—‘,-g vag € Coo(g*)

Por 1ltimo debemos investigar cial es la condicion equivalente a la identidad de Jacobi
para el paréntesis de Poisson {-,-} ¢ que debe de cumplir Agy. Estd condicién equivale a que
se anule el paréntesis de Schouten® del tensor de Poisson consigo mismo,

[Ag, Aglg = 0. (2.19)

Nota. Para el caso del tensor R asociado al dlgebra de Jordan sobre O, no se tiene una
condiciéon andloga. No existe en la literatura referencias sobre este objeto y el andlisis del
mismo sale fuera del objetivo de este trabajo.

2A esta propiedad la denotamos en 1.6 por regla de Leibniz.
3 Ver apéndice sobre geometria diferencial 3.

Formulacion simpléctica de la Mecdnica Cudntica



2.4. El efecto en el tensor de Poisson A sobre g* asociado a una contraccién de Lie sobre g17

A continuacién nuestro objetivo en esta seccién serd estudiar la relacién existente entre
la estructura de Poisson Ago asociada a la contraccion del dlgebra de Lie g y la estructura A4
asociada a esta ultima.

Nota. Notar que la variedad soporte en todo el desarrollo es M = g*, de forma que si F': g* —
g* es una aplicacién diferenciable, contaremos con sus respectivas aplicaciones diferencial, F} y
codiferencial F™*; transportando campos a campos y formas diferenciales a formas diferenciales.

Tal y como definimos contraccién en la seccién anterior, consideremos la familia de au-
tomorfismos ¢g(€) : g — g, Ve € (0,1], y denotemos por ¢(€) = ¢o(€)* al mapa dual y por
¢2<6) - ¢(6)* a,

donde 74" es la funcién lineal coordenada sobre g* asociada al elemento ¢(¢)(a), es decir:
2%(a) = ¢a(€)(2%) = a(d(e)a) Vo € ¢
Asf con la identificacién g = (g*)*, podemos poner:
[Do(e)a, do(e)h] = {8} = Ag(di*,da") € (g")".

y teniendo en cuenta la definicién de contraccién 2.3, se tiene que para todo € € (0,1] las
algebras de Lie g = (V, [+, ],) donde,

0.0 = 0(0)" [Bole)a, do()h] = dale) " {38} = éa(e) M Ag(di, di"),  (220)

son isomorfas a g = (V, [, -]).

Por otro lado, como A4 es un bi-vector, considerando la imagen por la aplicacién diferen-
cial,
(ds(e)) : Tg" — Tg",

se obtiene [11] que,

((9+(e)) Ag) (da®, dz")(p) = (&(e) ") Ag(dZ”, dz")(p) = (d2(€) ") Ag(dE?, dz")(p),

(2.21)
Vp € u(H),
donde se ha usado que ¢o(€)™! = (¢(e)*) ! = (gb(e)_l)* y que ¢*(e)(z®) = o(e)*(x?).
Asf juntando (2.20) y (2.21) se obtiene,
A, (da®, da?) = [a, bl 0 = ((6:(6)) Ag) (da, da”), (2.22)
y por tanto,
Ag. = (0(€)), Ay, (2.23)
que en el caso del limite € — 0 resulta en
Ago = lim (¢(e)), Ag. (2.24)

e—0

Por tanto, lo que hemos hecho es introducir formalmente la idea de contraccién de algebras
de Lie desde un punto de vista geométrico. En nuestro estudio posterior, deberemos verificar

4Para evitar una notacién recargada y confusa, denotaremos por z% a lo que antes llamdbamos A para el
caso del algebra de operadores O.

Autor: Pablo Sala de Torres-Solanot



18 Capitulo 2. Contraccién de algebras

que efectivamente, el tensor Ag obtenido tras la contraccién, es de tipo Poisson, es decir,
cumple (1.6). Del mismo modo querremos ver qué ocurre con la estructura de Jordan y si es
posible definir contracciones para dichas algebras.

Desde un punto de vista dindmico, dado el isomorfismo
dle):g" —=g° ar ¢le)a=aopoe),

si tomamos € = 1/t con t una variable que representa el tiempo, la ecuacién (2.23) representa
la evolucién (transporte) de la estructura de Poisson A, existente en el espacio de observables
O. Por ejemplo, en el caso de sistemas disipativos, (2.23) determina la evolucién del tensor A,
para una determinada condicién inicial Ay, de manera que en el limite, £ — 0o, Ago da cuenta
de cémo se ha contraido la estructura una vez que el sistema ha alcanzado el equilibrio. Este
flujo ¢(t), es el asociado a un campo vectorial X L5 Es decir X es el generador infinitésimal
del semigrupo uniparamétrico ¢(t). De esta forma el tensor de Poisson, pasado un cierto
tiempo ¢ > 0, vendrd determinado por,

At = ¢>k (t)Aga

que nombrando ¢(t) = ¢; por comodidad, actua como ya hemos visto (2.21),
Ad(a, B) = (67) " (Ag (67 (), 67 (8), Vo, 8 € /\ ' (g7). (2.25)
Ademsés dada la definicién de derivada de Lie para tensores contravariantes,

1
Lx(A) 1= lim (A = 6(t). ),

se puede concluir que,

d
—A = —LxA. 2.2
dt |, Lx (2:26)

De manera analoga se define la evolucién para el tensor simétrico R, no obstante la demos-
tracién queda pendiente,

d
= = —LxR. 2.2
ol » LxR (2.27)

Notar que la ecuacién (2.25) no es equivalente a la obtenida en (2.8)

[a,b]. = U(e) ™ [U(€)a, U()d].

En ese caso se modificaba la estructura de Lie en un espacio lineal subyacente sobre el
algebra g = (V,[-,+]). Ahora observamos el efecto de tal modificacién sobre la estructura de
Poisson existente sobre el dual del algebra g*, caracterizada por el tensor A.

Por tanto, si queremos desarrollar un estudio sobre la contraccién de las estructuras A y
R analogo al realizado por Saletan e Inonii y Wigner, deberemos estudiar para qué ‘tipo’ de
campos dinamicos, los limites
lim e XA lim e "X R, (2.28)
t—00 t—00

existen. Asf habrd de analizarse el operador e *£X sobre el espacio de bivectores A y de 2-
tensores R, para los distintos campos dindmicos. Notar que haciendo uso de la linealidad de

°El nombre del campo X es debido a Lindblad.

Formulacion simpléctica de la Mecdnica Cudntica
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X, Ry A comentada en 1.2, el espectro de este operador viene determinado por el espectro
del operador Lx, visto como aplicacién lineal sobre sendos espacios. Este método desarrollado
para el estudio de las contracciones desde un punto de vista geométrico, agiliza el andlisis de
las mismas y plantea una manera ’intuitiva’ y facilmente implementable del estudio de dichos
limites 2.28. En el caso de que sélo nos interese conocer si existe una contraccién del algebra
de Lie real sobre funciones lineales (g*)*, bastard con analizar el flujo ¢; asociado a dicho
campo X.

Autor: Pablo Sala de Torres-Solanot
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Formulacion simpléctica de la Mecdnica Cudntica



Capitulo 3

Aplicacion de contracciones de
algebras en su formulacion
geométrica

Una de las caracteristicas més notorias de la mecanica cudntica es la no conmutatividad
de algunos de sus observables [15]. Si un conmutador es nulo, los observables asociados se
comportan como magnitudes cldsicas una respecto a la otra, en el sentido de que ambas
magnitudes pueden ser medidas similtaneamente A.0.4. Asi un sistema es cldsico cuando
todos sus observables conmutan.

Por otro lado, debemos tener en cuenta que un sistema cuantico debe ser pensando como
un sistema abierto B, debido a que cualquier sistema real estd sujeto a un acoplo incontrola-
ble con el entorno, el cual le influye de una forma no despreciable. Asi un sistema cudntico
disipativo, es decir aquel sistema que interaccionando con el entorno sufre una ‘fuga de pro-
babilidad’, pierde algunas de sus caracteristicas cuanticas mas genuinas durante su evolucion;
mostrando finalmente un comportamiento ‘clasico’, ya que algunos observables que en princi-
pio no conmutaban pasan a conmutar. Por ejemplo, dichos sistemas pierden la capacidad de
interferir [16].

Parece pues interesante entender qué les ocurre a los observables de un sistema cuantico
disipativo, y puesto que es la no-conmutatividad la que mide el acercamiento al mundo clésico,
parece util estudiar qué le ocurre al algebra de observables O a lo largo de dicha evolucién,
en términos de contracciones de dlgebras. Aplicaremos por tanto la formulacién geométrica
de la mecéanica cuantica sobre el dlgebra de observables, para asi caracterizar la evolucién de
los mismos y la contraccion de las estructuras subyacentes.

3.1. Ejemplo 1: Evoluciéon en sistemas cuanticos abiertos

Consideremos la evolucién de un qubit' que sufre un amortiguamiento en su fase [15] y [17],
de manera que el operador de Kossakowski-Lindblad B.2, es decir la aplicaciéon L € End(O%)
es de la forma

L(p) = =y (p—o3po3) p € O (3.1)

siendo vy > 0y o; coni=1,2,3,4 las matrices de Pauli.

1 . . . s .
Se denomina qubit a un sistema cudntico con dos estados propios.

21



22 Capitulo 3. Aplicacién de contracciones de dlgebras en su formulacién geométrica

En este caso se tendrd que O = iu(2). Sabemos que una base de este espacio viene dada
por las matrices de Pauli mas la matriz identidad (matrices todas ellas hermiticas), es decir,

(01 (0 —i (1 0 (10
7=\10) 2?7 i o) 7\ o 1) T \o 1)
siendo pues la matriz mas general de la forma

4 3 1 .2
zt+x° ozt —ix 1 9 3 4

A= . =z 01 +x°09 + 203+ 04
at+ir? 2t — a3 3 ’

donde haciendo uso de la existencia de un producto escalar (1.5) se tiene,

1
= QTr(AJi) para i =1,2,3,4.

Ademads conocemos las constantes de estructura, tanto de Lie como de Jordan, de este
algebra.
[Ui,O'j]i = €ijk Ok [U4,0j]7 =0 para i,j,k)z 1,2,3. (3.2)

donde ¢, es el tensor de Levi-Civita, y por otro lado,
[0i,05], =dijos  |oa,0;] =0; parai,j=1,2,3. (3.3)

donde ¢;; es la delta de Kronecher. Si {4, € O* es un punto sobre O* tal que A = z2"0,, € O,
entonces se tendra que las componentes 4,7 de los tensores obtenidos en (1.6) en esta base

seran,
" “ 1 1 n :c"eijk
A(dé6;,do;)(€a) = iTr (Aloi,o5] ) = §Tr (x"on€ijror) = 5 Tr (onok) (3.4)
= Jjneijk&kn = l‘kﬁijk para Z)] = ]-a 25 35 (35)
A a 1 .
A(d64,dc;)(Ea) = 5 Tr (Alos,05] ) =0 Vj=1,234. (3.6)
y analogamente
R(da-za d6j)(€A) = lAéZ]a R(dé’47d6j)(€x4) = xj para i,j = 1,2,3. (37)
Por tanto, los tensores vienen dados por,
0 0 5 O 0 3 0 0
A=zl A= — A= — A= .
T N o T 0 o T 01 B2 (3:8)
3
0 0 8 0 4 0 0
R= L9 — —— ®8 = = 3.9
;xaxﬂ 97 Z:: 927 ©5 51 T 51 © g (3.9)

Como hemos obtenido en este iltimo ejemplo, dada la definicién de ambos tensores (1.6)
resulta que:

Proposicién 1. Dada una base {e,} del dlgebra O cuyas funciones coordenadas son {z"},
se tienen las expresiones coordenadas:

1 0 0 0 0
A= _chat —, R= d’“ F —

ozt 0ad” ozt o
donde c y dk corr’esponden a las constantes de estructuras de las dlgebras de Lie y de Jordan
exzstentes en (’)

(3.10)
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3.1. Ejemplo 1: Evolucién en sistemas cuanticos abiertos 23

Calculemos ahora el campo vectorial X asociado al operador de Lindblad (3.1). Sea
p € OF el estado cuéntico del sistema de manera que p € O° y sea A € O , entonces ya
vimos que el campo venia dado por

X, (dA) = L(p)(A) = p(L*(A)) = (5, L*(A))o -

Observar que para las matrices de Pauli 0;0; = i€;j,01 + ;504 y entonces se tiene que,
L*(01) = —2y01 L*(02) = —2y02 L*(03) =0 L*(04) =0,

y por tanto,
X[ (doy) = =2yt X[(dda) = —2vya®.

En definitiva, en la base {%} se tiene

0 0
L _ 1 2
P 2y (a: ozl v 8x2> '

En este caso sencillo, para calcular las soluciones de las ecuaciones diferenciales (2.26) y

(2.27), dadas por
Ay =exLA  Ry=e"CxLR

sumamos la serie obtenida a partir de la exponencial del operador Lxr, haciendo uso de las

relaciones’,
0 0 0 0 0 0
OAY = (29 3 A n — 4t o —
(L) (A) = (20)" @ Ox! " Ox? (Lxe)" (B) = ()= <8x1 @ Ox! + Ox? @ 0302) vnenl
T S

de manera que se obtiene,
A=A+ (e -1)T R =R+ (e"-1)8,

que en el limite ¢ — oo da lugar a las contracciones,

Para este ejemplo es facil verificar las estructuras de Jordan, de Lie y la compatibilidad
de Lie-Jordan, obteniéndose asi una ’buena’ contraccién de todas ellas, y por tanto también
de la estructura asociativa inducida por ambas.

a) Estructura de Lie:

01,08, = —02,  [02,03] =01, [01,02] =0, [o4,05] =0 paraj=123.
(3.11)

2De nuevo se ha hecho uso del isomorfismo existente entre un espacio y su dual dado por el producto escalar.
3Debido a la longitud de las cuentas, la resolucién de las mismas se han hecho en Mathematica 9.0 usando

célculo simbdlico.

Autor: Pablo Sala de Torres-Solanot
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b) Estructura de Jordan:

(0i00j) =0, (0400j)  =0; vparai,j=1,23. (3.12)

Vemos pues como en ambos casos las estructuras se han vuelto maés sencillas, en el sentido
de que algunos paréntesis de Jordan y de Lie se han anulado. De hecho para el caso del
algebra de Lie, se ha obtenido el 4lgebra del grupo Euclideo en dos dimensiones, ¢(2)* Nos
preguntamos ahora por la caracterizacién de la contraccién de Lie obtenida, aplicando la
teoria desarrollada en el Capitulo 2. En este sentido, la transformacién lineal sobre el dlgebra
O, es el endomorfismo adjunto (¢;)* de ¢y : O* — O*, donde ¢, es el flujo asociado al campo
XL Puesto que trabajamos con campos lineales, esto nos permitird desarrollar de manera
algebraica la evolucién de la contraccién.

Sea {e;} base de O*, entonces el flujo asociado a X* sobre la variedad O* vendrs dado
por,
oi(po) = e~ p,
donde por ser X un campo lineal podré escribirse de la forma,

Xt = a;r! —,
oz’

y asi podemos ver a ¢; como aplicacién lineal sobre O* dada por ¢¢(py) = e % po- Como
estamos en un espacio lineal de dimensién finita, el endomorfismo adjunto de ¢; viene dado
por la conjugacion de la matriz que representa a ¢;. De esta forma en el ejemplo en el que
estamos se tiene,

(¢1)" = Diag (6_2’%, e 1, 1) :

Notar que dicha contraccion se puede identificar con las introducidas por Saletan, siendo
u = Diag(0,0,1,1) w = Diag(1,1,0,0),

y € = e~ 27, Por tanto se obtiene que el espacio vectorial subyacente se escinde en Vi = (03, 04)
y VN = (01, 02) , donde se comprueba que los elementos de Vi generan una subédlgebra de Lie
del &lgebra inicial.

3.2. Ejemplo 2: Efecto Zenén Cuantico en dos niveles

Este efecto, descrito en el apéndice D, recibe su nombre en 1976 [1]. Se trata de un
fendmeno existente en el mundo cudntico, por el cual uno podria congelar un sistema cuantico
en un estado determinado [18], [19],[20], mediante una sucesién de medidas sobre el sistema
de interés.

Dicha sucesién de observaciones continuadas, tiene un efecto similar sobre el sistema
cudntico [19], al que tenia la evolucién en sistemas cudnticos abiertos. Entre ellos, la pérdida
casi total de coherencia. Nos preguntamos pues si serd posible entender la dindmica de Zenén
desde el punto de vista expuesto en el Ejemplo 1. Puesto que necesitamos caracterizar la
evolucién de un sistema cuantico bajo este efecto, necesitamos deducir el campo dindmico
asociado a dicha evolucién XZ. En el apéndice D.1, se deduce la expresién para este campo
obteniéndose que toma la forma:

XpZ(A) = <A7Z(p)>(’) = <ZT(A)7p>O = <_ [Pv [H27AH+ + [HZ’A] 7p>(9 AeO, S o*.
(3.13)

4Ver ejemplo apéndice F.
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Dado el campo dinamico, el planteamiento es el siguiente:

Sea un sistema cudntico en el estado p € O* cuya evolucién viene determinada por un
Hamiltoniano H, y sea P el proyector que representa al proceso de medir, protegiendo el
subespacio sobre el que proyecta. Dado que la evolucién viene descrita por el campo de Zenén
(3.13), {Es cierto que se produce una contraccion del dlgebra de Lie-Jordan de los observables,
de forma que existen los limites (2.26) y (2.27)7 ;En caso de que asi sea, las dlgebras obtenidas
siguen siendo de Lie-Jordan o conservan alguna estructura?

Consideremos el Hamiltoniano y el proyector P,

_ a O+ (10
i=( g0, ") P=(00)

que protege el subespacio generado por ((1,0)). Puesto que estamos en un sistema cudntico
de 2 niveles consideraremos de nuevo O = iu(2), siendo la base, la formada por las matrices
de Pauli més la identidad. En este caso, el campo dindmico toma la forma,

a 0 a ; 0

o a 2 a 1 : —
Xz = (§a*~3210.0) . obien Xp=fmy - ety (3.14)

De nuevo, debemos analizar la convergencia de los limites

A =e xzN R=e"%x2R

En el ejercicio anterior abordamos el proceso de contraccién haciendo uso de propiedades
recursivas particulares para el problema dado. En este caso haremos uso del procedimiento
general, analizando del operador E)Z(. Centrémonos en la contraccién de la estructura de Lie.
Sabemos que el tensor A es un tensor antisimétrico y asi su representacion matricial viene
dada por,

0 2 =22 0
—z3 0 b0
A= R N |

0 0 0 0

una matriz antisimétrica. Por otro lado la derivada de Lie transforma objetos antisimétricos
en objetos antisimétricos, por lo cual Lx=A es un tensor antisimétrico.

Por tanto, la existencia de una base de matrices antisimétricas {B;} dependientes de las
coordenadas {xi}?zl permitirian expresar cualquier bivector (antisimétrico) sobre la variedad
O*, como combinacién lineal de elementos de dicha base. Esto nos permite representar £y z
como una matriz y por otro lado a A como un vector en dicho espacio. De esta forma,
s6lo necesitarfamos calcular la exponencial de dicha matriz y aplicar el resultado a A. No
obstante, para que dicho limite definierd una contraccion, seria necesario que si {v;} es la
base de vectores propios del operador Lz, A estuviera contenida en el subespacio invariante
asociado a los valores propios nulos o/y a aquellos con parte real positiva de Lyz. De esta
manera dicho limite convergeria. También puede darse el caso de que sean imaginarios puros
COMO Veremos.

En efecto, este desarrollo es el que se ha seguido para programar en Mathematica 9.0 las
cuentas a realizar , siendo para este caso la representacién matricial de £z, de tamano 12.
Se ha encontrado que los valores propios del operador £z son imaginarios puros y nulos (ya
que la matriz obtenido es antisimétrica), y que A € Ker(Lxz) y por tanto la dindmica de
Zenon no contrae el algebra de Lie. Por otro lado, tampoco contrae el adlgebra de Jordan, de
forma que Ao = A y R = R, y por tanto las dlgebras resultantes son las originales.

Autor: Pablo Sala de Torres-Solanot



26 Capitulo 3. Aplicacién de contracciones de dlgebras en su formulacién geométrica

Esto es debido a que LxzA =0y LyzR = 0y por tanto dicha evolucién no contrae la
dindmica (se dice que es unitaria). De hecho es fécil obtener que dicho campo Hamiltoniano
X7 tiene como operador Hamiltoniano asociado,

Hy = < ﬁ AO “ > .donde A € R, de manera que X% = A(dﬁo,-).
2

3.3. Ejemplo 3: Efecto Zenén en tres niveles

El ejemplo anterior, aunque didactico, no ha reportado ninguna informacién sobre la
posibilidad de explicar la dindmica de Zenén mediante la teoria de contracciones. De hecho,
en el estudio del efecto Zendn para el caso de sistemas de dos niveles, se ha encontrado que
para el Hamiltoniano mas general (el usado en el ejemplo anterior) y para cualquier proyector
P en dos dimensiones, no existen contracciones del algebra de Lie. De hecho, se obtiene que
para todo tiempo, finito e infinito, las algebras obtenidas son difeomorfas a la inicial.

Este resultado, no implica que se haya de descartar la posibilidad de obtener contracciones
de algebras para la dinamica de Zendén, ya que podria ser debido a la baja dimension del
espacio considerado. Por tanto, para este ejemplo consideraremos un espacio de dimension
superior.”’

Sean el Hamiltoniano del sistema y el proyector,

a O +1Qy Q3+ 10y
H = 0 — 1) b Q5 + i P =
Q3 —ifdy Q5 — 10 c

S O =
oS O O
o O O

Realizando un desarrollo andlogo al del anterior ejemplo, encontramos que A pertenece
al subespacio invariante asociado al autovalor cero del operador Lyz, que vuelve a ser anti-
simétrico. Por tanto, no encontraremos una contraccién del algebra de Lie en O*, sino que
se tendrd Ay, = A. Por otro lado se encuentra también que R, = R. Por tanto, llegamos al
mismo resultado obtenido en el ejemplo anterior. ;Se deduce entonces que debemos conside-
rar proyectores sobre subespacios de mayor dimensién? Pese a que aun no se ha desarrollado
un andlisis completo del problema, esta parece ser una via acertada para la explicacién del
mismo, pues se han encontrado casos en los se transforman las estructuras algebraicas inicia-
les. Sin embargo, queda por analizar si dichas transformaciones dan lugar a contracciones del
algebra.

3.4. Conclusion

En resumen, habiendo partido de una C*-dlgebra, un algebra de Banach compleja asociati-
va dotada de una involucién antilineal (A, -, T), hemos identificado los elementos autoadjuntos
O = {A € AJAT = A} con los observables del sistema cudntico, y ademds definiendo los
nuevos productos,

AoB = %(AB +BA), [4,B]= (4B~ BA),

SEsto supondr4 hacer uso de Mathematica como programa de anélisis simbélico (a no ser que la complejidad
del problema haga necesario un andlisis numérico). En este caso, el operador Ly z tiene una representacién
matricial de dimensién 252.
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hemos dotado a O de una estructura de dlgebra de Lie-Jordan-Banach.

Una vez hemos caracterizado el dlgebra de observables, el resultado importante de la
primera seccion es que hemos transportado las estructuras algebraicas existentes en el espacio
lineal O, a una variedad diferenciable” de manera que hemos encontrado nuevos objetos
(diferenciales) y transformaciones sobre dicha variedad. De esta forma, nos hemos servido de
objetos tensoriales para geometrizar las estructuras algebraicas existentes en O, Ry A.

Tras este enorme salto que supone reformular la mecdnica cudntica sobre una variedad
diferenciable y a raiz de la caracterizacién dada en [15] para sistemas cudnticos abiertos, se nos
ocurrié si podriamos caracterizar las estructuras algebraicas subyacentes para todo tiempo ¢
de la evolucion de un sistema cudntico, y en caso de que asi fuera, si seria posible determinar
dichas estructuras una vez el sistema haya alcanzado el equilibrio ¢ — oo.

Haciendo por tanto uso de la teoria de contracciones, encontramos para dichos tensores
ecuaciones analogas a pe(z,y) = T~ He)u(T(e)x, T(e)y) Vx,y € V, donde las transforma-
ciones T'(¢) vienen dadas por el flujo del campo dindmico X. Como consecuencia conseguimos
obtener dos ecuaciones diferenciales que rigen la evolucién de las estructuras algebrai-

cas, dadas por

d d
Ly — _LxR.
dt |, Lx a o LxR

Por ultimo, los resultados relevantes obtenidos en este trabajo han sido: por un lado la
deduccién de las condiciones suficientes para que un dlgebra de Jordan asociada a un algebra
asociativa, definiera una contraccién 2.3.1; por otro, gracias a la formulaciéon geométrica de
la mecanica cuantica hemos conseguido:

Definir el proceso de contraccién de algebras de Jordan, el cual no hemos encontrado
descrito en la literatura cientifica.

Generalizar el tipo de isomorfismos de un algebra que determinan una contraccién de
la misma.

Imponer condiciones necesarias y suficientes sobre dichas transformaciones con el fin
de que determinen una contraccién, mediante el anélisis del espectro del operador Ly
actuando sobre el espacio correspondiente (bivectores y 2-tensores).

Definir el proceso de contraccién de las estructuras de Poisson, dualizando la correspon-
diente algebra de Lie real.

Comprender la evolucién de las estructuras algebraicas subyacentes en un determinado
sistema fisico.

Conciliar el formalismo geométrico con la teoria de contracciones y asi aplicar esta
formulacién a la resoluciéon de problemas fisicos.

Empezar a entender la casuistica dada en la dindmica del efecto Zenén cudntico.

Como hemos senalado en el ultimo punto, tan sélo empezamos a entender el efecto que
sobre las estructuras algebraicas, tiene la evolucién de Zenén. Como corroboramos en el

5Para ello hemos tomado como carta global (M (N, C), ) la dada por

2
np:M(N,C)—)RN, A (a11,a12,...,aNN),
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Ejemplo 3, no es trivial el encontrar un caso de contraccién de la estructura de Lie. Por tanto,
queda como problema abierto el entender si existen casos para los cuales la dinamica de Zenén
defina buenas contracciones, o si existe algin impedimento en su formulacién que impida la
aplicacién de la teoria de contraccion de algebras a este efecto en concreto y por qué. De hecho,
tampoco se puede descartar la posibilidad, de que mientras la evolucién transforma el dlgebra
de Lie en &lgebras isomorfas para todo tiempo t; el dlgebra de Jordan pueda contraerse. A
estas preguntas se les intentard dar respuesta en breve.

Formulacion simpléctica de la Mecdnica Cudntica
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