
Apéndice A

Formalismo cuántico

El mundo cuántico dista mucho del mundo clásico, tanto formal como fenomenológica-
mente. El concepto clásico de trayectoria es inexistente en el mundo cuántico, debido a la
falta de información sobre la situación de un cierto estado f́ısico en un momento determinado.
Es por ello que caracterizamos un estado puro, por ejemplo una part́ıcula, por una función de
ondas ψ(~r, t), la cual contiene toda la información que es posible obtener de dicho sistema.
Esta función de ondas es interpretada como la amplitud de probabilidad de presencia de la
part́ıcula. Aśı

dP(~r, t) = C |ψ(~r, t)|2 d3~r (A.1)

se interpreta como la correspondiente densidad de probabilidad de que la part́ıcula se encuentre
en una cierta posición del espacio ~r en un momento determinado y donde C es una constante
de normalización.

Habiéndonos créıdo está interpretación, tendremos que aceptar, que la probabilidad total
de encontrar a la part́ıcula en cualquier sitio del espacio debe ser 1, aśı que tenemos:∫

R3

|ψ(~r, t)|2 d3~r = 1 (A.2)

Por tanto, los rayos del espacio de Hilbert que representan a los sistemas cuánticos han de
ser funciones de cuadrado integrable, ψ(~r, t) ∈ L2(R3). Recordar que el espacio (L2(X), ‖·‖2)
es un espacio de Hilbert, con el producto escalar dado por1.

〈f | g〉 =

∫
X
f(x)g(x)dµ(x) (A.3)

Por otro lado debemos enunciar las bases que sustentan el formalismo cuántico. Para ello,
esta teoŕıa está basada en una serie de axiomas que establecen las estructuras matemáticas
que se habrán de utilizar.

Axioma A.0.1. Estados f́ısicos En un tiempo fijo t0, el estado puro de un sistema f́ısi-
co está especificado por una función de ondas ψ(~r, t) perteneciente a un espacio de Hilbert
(H, 〈·| ·〉).

Axioma A.0.2. Cada magnitud f́ısica medible A está descrita por un operador (lineal) au-
toadjunto A en H; este operador se denomina observable.

1El convenio utilizado por los f́ısicos es distinto al de los matemáticos, conjugado estos últimos la segunda
función
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32 Caṕıtulo A. Formalismo cuántico

Notar que existe una gran diferencia respecto al mundo clásico, donde ambos, estados y
operadores, vienen dados por funciones.

Axioma A.0.3. Los únicos resultados posibles de la medida de una magnitud f́ısica A es uno
de los autovalores correspondientes al observable asociado A.

Axioma A.0.4. Cuando una magnitud f́ısica A es medida sobre un sistema en el estado
ψ(~r, t) normalizado según (A.3), la probabilidad P(an) de obtener el autovalor an del corres-
pondiente observable A es:

P(an) =

gn∑
i=1

∣∣〈uin∣∣ ψ〉∣∣2 (A.4)

donde
{
uin
}gn
i=1

es el conjunto de autovalores normalizados de A asociados al autovalor an.

Axioma A.0.5. Si la medida de la magnitud f́ısica A sobre el sistema en el estado ψ(~r, t) da
como resultado an, el estado del sistema inmediatamente después de la medida es la proyección
normalizada, Pn(ψ)√

〈ψ|Pn(ψ)〉
, de ψ en el subespacio asociado al autovalor an.

Este último postulado, ha suscitado grandes debates entre los f́ısicos que se preguntan sobre
su necesidad. No obstante, a d́ıa de hoy, ningún experimento ha logrado falsearlo. Es de hecho
en este axioma, donde se basa gran parte de la discusión sobre el efecto Zenón cuántico que
será desarrollado más adelante. Por último,

Axioma A.0.6. La evolución temporal del estado ψ está gobernada por un operador unitario
modificar:

i~
d

dt
ψ(~r, t) = H(t)(ψ(~r, t)) (A.5)

donde H(t) es el observable asociado con la enerǵıa total del sistema.

A H se le llama el operador Hamiltoniano del sistema, y de forma análoga al caso
clásico controla la evolución del sistema (ecuaciones de Hamilton).

Formulación simpléctica de la Mecánica Cuántica



Apéndice B

Sistemas cuánticos abiertos

Los sistemas cuánticos reales, evolucionan en un medio con el cual interaccionan, creando
una aśı’fuga’ de información y de coherencia del sistema cuántico en estudio. Estos sistemas
en los que hay una interacción con el entorno, son los conocidos como sistemas cuánticos
abiertos.

En esta sección introduciremos los resultados matemáticos más importantes para modelar
la dinámica de los sistemas cuánticos abiertos. Este es el caso de un sistema en el que el
espacio de estados se descompone en dos partes. La del sistema f́ısico estudiado y la dada
por el entorno con el cual interacciona. Es por ello que podemos escribir dicho espacio como
H = HA ⊗HB.

Para estudiar la dinámica introduciremos los conceptos semigrupo uniparamétrico de ope-
radores sobre un espacio de Banach y de generador de un grupo.

Definición B.1. Una familia de operadores lineales Tt (t ≥ 0) en un espacio de Banach finito
forma un semigrupo uniparamétrico si

· TtTs = Tt+s, ∀t, s

· T0 = 1

Además se dirá semigrupo uniformemente continuo si la aplicación

t 7→ Tt (B.1)

es continua en la norma de los operadores.

Además si un semigrupo uniparamétrico es uniformemente continuo, entonces (B.1) es
diferenciable, y la derivada de Tt está dada por

dTt
dt

= LTt

con L = dTt
dt

∣∣
t=0

(teorema 2.2 [21]).

Por otro lado, cualquier semigrupo uniparamétrico uniformemente continuo puede escri-
birse de la forma Tt = T (t) = eLt, donde L se conoce como el generador del semigrupo y es
la única solución al problema diferencial{

dTt
dt = LTt, t ∈ R+

T0 = 1
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34 Caṕıtulo B. Sistemas cuánticos abiertos

Por tanto, dada ’la omnipresencia de las ecuaciones diferenciales en la f́ısica, es evidente
pues la importancia de los semigrupos’.

B.1. Evolución en sistemas cuánticos abiertos

Como ya comentamos los sistemas cuánticos reales, no son sistemas aislados, sino que
están acoplados con un entorno. Es por ello que su evolución no vendrá determinada por la
ecuación (1.9) en general. La teoŕıa de sistemas cuánticos abiertos juega aśı un papel principal
en muchas aplicaciones de la f́ısica cuántica debido al hecho que un aislamiento perfecto de
un sistema cuántico no es posible de conseguir y una completa descripción de los grados de
libertad del entorno no es factible.

Diremos que un sistema cuántico es cerrado si su dinámica viene dada por (1.9). Un
sistema cuántico abierto es un sistema S el cual está acoplado a otro sistema cuántico llamado
el entorno E, del cual no se tiene conocimiento completo de su evolución. Sistema y entorno
S+E forman un sistema cerrado cuya dinámica está otra vez dada por una evolución unitaria.
Sin embargo, la dinámica del sistema S, que es la que nos interesa, no vendrá dada en general
por una ecuación ‘sencilla´ como (1.9).

La evolución del sistema S se modela asumiendo una serie de aproximaciones, [21] y[22].
Se asumen evoluciones Markovianas o con falta de memoria, es decir, evoluciones en los que
el estado del sistema en un tiempo determinado sólo depende del estado del sistema en un
tiempo infinitesimalmente anterior (análoga a la definición clásica de proceso Markoviano), y
por otro lado un acoplo débil con el entorno. En este caso, la ecuación diferencial más general
que rige la evolución de ρ viene dada por:

dρ(t)

dt
= L(ρ(t)) = −i [H(t), ρ(t)] +

∑
k

γk

[
Vk(t)ρ(t)V †k (t)− 1

2

{
V †k (t)Vk(t), ρ(t)

}]
, (B.2)

donde H(t) y Vk(t) son operadores dependientes del tiempo, con H(t) autoadjunto, y γk(t) ≥ 0
para cada k y cada tiempo t.

Por tanto la evolución de un sistema abierto está dada por un semigrupo de transforma-
ciones definidas positivas φt : D(H) → D(H), para todo t ≥ 0, de forma que el generador
de este semigrupo es el operador L : D(H) ⊂ u(H)∗ → u(H)∗. Dicho operador es conocido
como operador de Kossakowski-Lindblad. Será entonces nuestra intención, derivar el campo
vectorial XL responsable de dicha evolución, asociado a la aplicación lineal L (1.10) y aplicar
entonces la formulación geométrica.

Formulación simpléctica de la Mecánica Cuántica



Apéndice C

Formulación geométrica de la
mecánica cuántica. Imagen de
Schrödinger

C.1. Base matemática

En primer lugar, para poder aplicar el formalismo geométrico, debemos introducir una
variedad diferenciable 1 donde trabajar. Para ello observemos que la realificación del espacio
de Hilbert H de dimensión compleja N puede dotarse de una estructura de variedad real
diferenciable HR := MQ de dimensión real 2N , que admite una carta global, por ejemplo
la obtenida al elegir una base del mencionado espacio de Hilbert. Al elegir una tal base cada
elemento de H posee unas coordenadas {|zk〉} y podemos separar cada una de sus coordenadas
en su parte real y parte imaginaria de la forma:

|ψ〉 =
∑
k

ψk |ek〉 de forma que ψk → ψRk + i ψIk (C.1)

Entonces,

({ψ1, ψ2, ..., ψN}) ∈ H 7→
({
ψR1 , ψ

R
2 , ..., ψ

R
N , ψ

I
1 , ψ

I
2 , ..., ψ

I
N

})
≡ (ΨR,ΨI) ∈MQ (C.2)

En consecuencia esta variedad real diferenciable MQ es equivalente a R2N

Además, el hecho de que el espacio de Hilbert sea complejo se traduce en la existencia
de un tensor J de tipo (1,1) en la variedad MQ tal que J2 = −I, que recibe el nombre de
estructura compleja2 . La variedad que hemos obtenido aśı es del tipo particular que se conoce
como variedad Kähler [23].

Por ahora hemos traducido el espacio de estados dados en unas ciertas coordenadas que
por analoǵıa con el caso de mecánica clásica, denotaremos

ψRi ≡ qi y ψIi ≡ pi (C.3)

1Ver en apéndice A DFN E.1 y siguientes.
2Aunque inicialmente este cambio de notación i → J parezca trivial, este pequeño cambio en el punto de

vista permitirá introducir la formulación simpléctica de la mecánica cuántica.
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36 Caṕıtulo C. Formulación geométrica de la mecánica cuántica. Imagen de Schrödinger

En efecto, veamos que MQ está dotada de una estructura simpléctica y que las mencionadas
coordenadas son efectivamente coordenadas de Darboux3 para tal forma simpléctica. La pro-
piedad de que el producto interno sea tal que 〈ψ| φ〉 sea conjugado de 〈φ| ψ〉 se traduce en que
el espacio lineal de Hilbert HR está dotado de una forma bilineal antisimétrica no degenerada
mediante ω(|φ〉 , |ψ〉) = Im 〈φ| ψ〉 y por tanto MQ está dotado de una estructura simpléctica.
Recordando que

〈φ| ψ〉 =

n∑
k=1

(φRk − i φIk)(ψRk + i ψIk),

vemos que

ω(|φ〉 , |ψ〉) = Im 〈φ| ψ〉 =
n∑
k=1

(φRk ψ
I
k − ψRk φIk),

lo que nos muestra que qk = Reφk, pk = Imφk son coordenadas de Darboux.

Podemos traducir las estructuras algebráicas disponibles en H en objetos tensoriales sobre
la variedad MQ. Por otro lado, al igual que en el caso clásico, las trayectorias del sistema
f́ısico vendrán determinadas por las curvas integrales de un campo vectorial4 responsable de
la dinámica. Es por ello que para esta ‘traducción’ debemos considerar los fibrado tangente y
cotangente, teniendo en cuenta que puesto que H es un espacio vectorial podemos identificar
para cada |φ〉 ∈ H el espacio tangente T|φ〉H con el propio H, de forma que a cada |ψ〉 ∈ H le
corresponde la aplicación que asocia a cada función f diferenciable en un entorno del punto
|φ〉, el valor real (

d

dt
f(|φ〉+ t |ψ〉)

)
t=0

.

Además, con esta identificación los campos vectoriales en H vendrán dados por aplicaciones
X : H → H. Mencionamos a continuación algunos ejemplos interesantes, como son los
campos vectoriales constantes y los campos vectoriales lineales:

· Con cada elemento |ψ〉 ∈ H le podemos asociar un campo vectorial constante

X|ψ〉 : MQ → TMQ |φ〉 7→ (|φ〉 , |ψ〉) (C.4)

Observemos que lo que hemos hecho, es trasladar |ψ〉 ∈ H al espacio tangente en cada
punto, es decir, en este lenguaje los estados |ψ〉 ∈ H son los vectores pertenecientes
al espacio tangente en el punto |φ〉. Además, elegida una base de H las componentes
de |ψ〉 ∈ H tienen una parte real y una imaginaria pura de forma que el campo queda
descrito por:

X|ψ〉(|φ〉) = (|φ〉 ,ΨR,ΨI) (C.5)

· Recordemos que si V es un espacio lineal real, con la identificación del espacio tangente
a V en cada punto con el propio V , cada aplicación lineal A : V → V define un
campo vectorial XA mediante XA(v) = (v,Av). En la carta definida por la elección de
una base de V , cuyas coordenadas denotaremos

{
xi
}

, dichos campos vectoriales XA

vendrán dados en tales coordenadas por XA = ai jx
j ∂
∂xi

, de forma que las ecuaciones
que determinan sus curvas integrales son ecuaciones diferenciales lineales.

En el caso particular de un espacio de Hilbert H el campo vectorial XA definido por
la aplicación lineal A : H → H, con la identificación TH ≈ H × H, está dado por
XA : |ψ〉 7→ (|ψ〉 , A |ψ〉) ∈ H × H. Las curvas integrales de estos campos vectoriales

3Ver en apéndice A el teorema E.0.1.
4Ver en apéndice A DFN E.3.

Formulación simpléctica de la Mecánica Cuántica



C.1. Base matemática 37

son soluciones de ecuaciones diferenciales lineales ˙|ψ〉 = A |ψ〉 . Veremos que el caso de
interés en Mecánica Cuántica es cuando A es un operador (anti-)autoadjunto.

· El caso particular en que A = I es especialmente importante ya que el campo vectorial
lineal correspondiente, ∆ = XI , codifica la estructura lineal disponible en MQ. Juega
un papel bastante similar al conocido como campo de Liouville [24], o campo de dila-
taciones, ya que en este caso no sólo se dilata a lo largo de la fibra si no también del
espacio base. Más en concreto,

∆ : MQ → TMQ |ψ〉 7→ (|ψ〉 , |ψ〉) (C.6)

se escribe en coordenadas {qk, pk} asociadas a la elección de una base mediante:

∆ = qk
∂

∂qk
+ pk

∂

∂pk
(C.7)

Ya indicamos que la subvariedad MQ también está dotada de otra estructura relevante,
que es consecuencia de la estructura Hermı́tica en H. Para el desarrollo matemáti-
co completo de este apartado se recomienda leer el Caṕıtulo 3 de [24]. La estructura
Hermı́tica queda codificada por el tensor Hermı́tico h. Para obtenerlo usamos que si
|ψ1〉 , |ψ2〉 ∈ H entonces

〈ψ1| ψ2〉 = h(X|ψ1〉, X|ψ2〉)(|φ〉) ∀ |φ〉 (C.8)

Llegados a este punto se puede ver siguiendo el desarrollo matemático encontrado en
[23], que en coordenadas zk = qk + ipk, el tensor Hermı́tico queda definido por

h =
∑
k

dz̄k ⊗ dzk =
∑
k

(dqk − i dpk)⊗ (dqk + i dpk) (C.9)

y que sobre la variedad real MQ, que está dotada de una estructura compleja, se puede
expresar como

h(X|ψ1〉, X|ψ2〉) = Re 〈ψ1| ψ2〉+i Im 〈ψ1| ψ2〉 = g(X|ψ1〉, X|ψ2〉)+i ω(X|ψ1〉, X|ψ2〉) (C.10)

donde g es un tensor simétrico y ω un tensor antisimétrico que define la mencionada
estructura simpléctica, y además puesto que el producto interno es sesquilineal,

〈ψ1| i ψ2〉 = i 〈ψ1| ψ2〉 〈i ψ1| ψ2〉 = −i 〈ψ1| ψ2〉 (C.11)

implica que,

ω(X,Y ) = g(JX, Y ) g(JX, JY ) = g(X,Y ) ω(JX, JY ) = ω(X,Y ) (C.12)

· Por último, la estructura compleja de H es traducida mediante el tensor de tipo (1, 1)

J : TMQ → TMQ tal que J

(
∂

∂qk

)
=

∂

∂pk
J

(
∂

∂pk

)
= − ∂

∂qk
(C.13)

cumpliendo que

J2 = −I (C.14)

Autor: Pablo Sala de Torres-Solanot



38 Caṕıtulo C. Formulación geométrica de la mecánica cuántica. Imagen de Schrödinger

Cabe destacar por tanto que en la descomposición (C.9) el tensor simétrico g es definido
positivo y no degenerado y por tanto define una estructura Riemanniana en la variedad real,
(MQ, g), mientras que el tensor antisimétrico ω es también no degenerado y es cerrado (dω =
0), por lo que dicho tensor es una forma simpléctica. Esto implica que (MQ, ω) es una variedad
simpléctica. Más aún, (MQ, (g, ω, J)) es una variedad Kähler y la forma covariante de estos
tensores viene dada por:

J = ∂pk ⊗ dqk − ∂qk ⊗ dpk g = dqk ⊗ dqk + dpk ⊗ dpk ω = dqk ∧ dpk (C.15)

como se puede ver sin más que hacer uso de la relación (C.9).

Como ω es no degenerada define un tensor de Poisson (su forma contragradiente)

Ω =
N∑
k=1

∂

∂qk
∧ ∂

∂pk
(C.16)

como también es posible considerar un tensor dos veces contravariante simétrico que co-
rresponde a g,

G =

N∑
k=1

∂

∂qk
⊗ ∂

∂qk
+

∂

∂pk
⊗ ∂

∂pk
(C.17)

Ambos tensores están relacionados por G = J ·Ω. Como veremos estos tensores permiten
definir un corchete de Poisson y un corchete Riemann-Jordan sobre funciones suaves.

En resumen, la traducción obtenida ha sido:

H −→ HR := MQ

〈·, ·〉 h = g + i ω

i J

(CN , 〈·, ·〉) (MQ, (g, ω, J))

Es interesante destacar, que han aparecido dos estructuras adicionales al caso de la mecáni-
ca clásica: la estructura compleja y la estructura Riemanniana compatible con la estructura
simpléctica dada por la igualdad (C.12). Será esta segunda la que nos permitirá traducir las
incertidumbres en la medida.

C.2. Los observables

Una vez introducida la base matemática sobre la que se trabaja y el espacio de estados
considerado, se ha de dar significado a los operadores en el formalismo geométrico. En la
imagen de Schrödinger, los operadores que representan las magnitudes f́ısicas son los ope-
radores lineales autoadjuntos, los cuales actúan sobre los estados. La forma más sencilla de
traducir esto es asociar a cada observable A una función real dada por

O → FR(MQ) A→ fA(ψ) =
1

2
〈ψ| Aψ〉 con ψ ∈ H (C.18)

donde F(MQ) es el conjunto de todas las funciones cuadráticas sobre MQ y FR(MQ) el sub-
conjunto de funciones reales.

Formulación simpléctica de la Mecánica Cuántica
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C.3. El espacio complejo proyectivo

Cuando un sistema cuántico es descrito mediante un espacio de Hilbert H, debemos te-
ner en cuenta que el conjunto de estados que difieren en un factor λ ∈ C∗ = C − {0} son
f́ısicamente equivalentes y por tanto debemos trabajar con el correspondiente espacio pro-
yectivo. En la formulación geométrica de la mecánica cuántica, podemos introducir la acción
de multiplicar por un número complejo de módulo uno sobre MQ como una transformación
cuyo generador infinitesimal se escribe,

Γ =
∑
k

(
pk

∂

∂qk
− qk

∂

∂pk

)
(C.19)

Ver que el tensor dado en esas coordenadas lo que hace es cambiar la fase global, si
pensamos en el plano, dado un par {qk, pk},

qk = rk cos θk pk = rk sin θk

entonces,

Γ =
∑
k

∂

∂θk

Es decir, las curvas integrales del campo Γ están dadas por el conjunto de estados que se
obtienen partiendo de un estado inicial |ψ〉 y multiplicarlo por una fase global eiθ |ψ〉.

Por otro lado el campo de dilataciones ∆, al expresarlo en coordenadas polares toma la
forma

∆ =
∑
k

rk
∂

∂rk

Ello implica, que las curvas integrales de este campo están dadas por el conjunto de vectores
obtenidos multiplicando uno dado por un número real diferente de cero.

Por tanto, la acción de estos campos sobre la variedad real MQ, corresponden a la acción
del grupo C∗ = R+ ⊗ U(1) sobre MQ. Como dicho grupo es Abeliano, se verifica que

[∆,Γ] = 0 (C.20)

Cabe destacar que el hecho de que [∆,Γ] = 0, significa que los campos generadores que
modifican la fase global y la norma de los estados |ψ〉 conmutan entre śı. Esto da lugar al
siguiente resultado,

Proposición 2. Sean ψt y ψs flujos locales de los campos vectoriales ∆ y Γ, respectivamente,
en el entorno de un punto. Se cumple que φt ◦ ψs = ψs ◦ φt.

Por otro lado obtenemos de la relación (C.20) que dichos campos cierran álgebra. Es por
ello que estos campos definen una distribución integrable sobre el fibrado tangente.

Definición C.1. Sea M una variedad n-dimensional. Una distribución D de dimensión k es
una forma de asignar a cada p ∈ M un subespacio k dimensional Dp ⊂ TpM , de forma que
en un entorno Up venga generado por campos de vectores {X1, X2, . . . , Xk}.

Además el teorema de Frobenius establece bajo qué condiciones una distribución es com-
pletamente integrable, es decir, cuándo para cada punto p ∈ M , existe una carta (Up, φ) con
la cual {∂1, . . . , ∂k} forman una base local de D. Es por ello que debemos introducir la idea
de distribución involutiva.

Autor: Pablo Sala de Torres-Solanot



40 Caṕıtulo C. Formulación geométrica de la mecánica cuántica. Imagen de Schrödinger

Definición C.2. Se dice que D una distribución de dimensión k es involutiva si para cada
base local {X1, . . . , Xk} se cumple que para todo 1 ≤ i, j ≤ k [Xi, Xj ] está en el subespacio
generado por {X1, . . . , Xk}. Normalmente se escribe como [D,D] ⊂ D.

Teorema C.3.1. (teorema de Frobenius) Una distribución es involutiva si y sólo si es
integrable.

Demostración. Consultar [25].

A las distribuciones integrables se les conoce con el nombre de foliaciones.

Lema C.3.2. ∆ y Γ definen una foliación C.1 (de dimensión 2) sobre la variedad MQ.

Figura C.1: Foliación de MQ dada por ∆ y Γ

Por tanto, se tiene una distribución integrable generada por Γ y ∆ los cuales forman una
subálgebra de Lie Abeliana. Cada una de las hojas de la foliación es una clase de equivalencia
formada por el conjunto de estados que pertenecen a la misma órbita bajo la acción de C∗.
Obsérvese que Γ = J(∆).

Por otro lado en el espacio de Hilbert, se suele trabajar con estados normalizados, o en caso
de que no se haga, uno debe tener presente la norma del estado a la hora de dar probabilidades
y valores medios. Es por ello que nos interesa ver el conjunto de estados incluidos en una de
las hojas dadas por la foliación definida por ∆ y de Γ, ya que estos estados son equivalentes
en cuanto a los resultados f́ısicos que se obtienen.

De un modo más gráfico esto implica que dado un |ψ〉 ∈ H−{0} y sea λ ∈ C∗, entonces |ψ〉
y λ |ψ〉 pertenecen a la misma clase de equivalencia y es este conjunto de clases de equivalncias
al que denominamos espacio complejo proyectivo.

Definición C.3. La variedad cociente resultante, denotada como P y dada por

π : MQ → P = MQ/C∗ (C.21)

se llama espacio complejo proyectivo y sus puntos representan los estados f́ısicos puros de un
sistema cuántico:

P 3 [|ψ〉] := π(|ψ〉) |ψ〉 ∈MQ , (C.22)

Conviene recordar que un espacio proyectivo no es lineal y por tanto la suma de dos estados
f́ısicos no determina un nuevo estado f́ısico, es decir no existe la suma de clases de equivalencia.
Es por ello que es más cómodo trabajar en la variedad real MQ, al igual que también lo es
en la formulación original de la mecánica cuántica, en la cual trabajamos en el espacio de
Hilbert H.

Formulación simpléctica de la Mecánica Cuántica
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Una vez hemos definido el espacio complejo proyectivo P se deben traducir las herramien-
tas y estructuras con las que ha sido dotada MQ al espacio proyectivo subyacente, ya que
para representar magnitudes f́ısicas reales, estas se deben corresponder con funciones que sean
constantes a lo largo de las fibras5 de la fibración π : MQ −→ P, es decir funciones que para
estados pertenecientes a la misma clase de equivalencia tomen los mismos valores. Entre otras
muchas funciones de este tipo podemos considerar las funciones:

eA =
〈ψ| Aψ〉
〈ψ| ψ〉

(C.23)

para las cuales se cumple que Γ(eA) = ∆(eA) = 0, ya que dichas funciones son su propia
imagen bajo el pullback6 π∗ : T ∗P −→ T ∗MQ, es decir representan tanto a funciones sobre
MQ como a funciones definidas sobre el espacio complejo proyectivo P.

Es interesante ver la imposibilidad de traducir al espacio complejo proyectivo las formas
g y ω. Esto es debido a que dichos tensores están definidos sobre MQ y por tanto no podemos
proyectarlas mediante la aplicación codiferencial asociada a π : MQ → P. Es por ello que
necesitamos la forma contravariante de dichos tensores, G y Ω ya que bajo la aplicación
diferencial proyectan adecuadamente. Sin embargo, mientras que las funciones eA definidas
anteriormente, son proyectables a través de π : MQ → P, G y Ω no lo son. Es decir, sus
derivadas de Lie7 L∆G = −2G y L∆Ω = −2Ω no se anulan sobre la fibra de la aplicación.
Podemos sustituirlos por otros nuevos tensores GP y ΩP definidos sobre MQ que śı lo sean
dados por

GP := 〈ψ| ψ〉G− Γ⊗ Γ−∆⊗∆

ΩP := 〈ψ| ψ〉Ω− Γ⊗∆ + ∆⊗ Γ
(C.24)

Notar que en general cualquier GP y ΩP dados por

GP := 〈ψ| ψ〉G− aΓ⊗ Γ− b∆⊗∆− cΓ⊗∆− d∆⊗ Γ

ΩP := 〈ψ| ψ〉Ω− a′Γ⊗ Γ− b′∆⊗∆− c′Γ⊗∆− d′∆⊗ Γ
(C.25)

con a, b, c, d, a′, b′, c′, d′ ∈ R, son proyectables. Se han eligido los coeficientes de forma que
encontramos la métrica de Fubini-Study (ver [23]) sobre el espacio complejo proyectivo P.

Un resultado importante obtenido en [1] es el siguiente:

Lema C.3.3. La acción de GP en el conjunto de funciones proyectables corresponde a

GP(deA, deB) = e[A,B]+
− eA · eB

lo cual implica que si A = B se obtiene

GP(deA, deA) = eA2 − e2
A

de esta forma GP está directamente relacionada con las relaciones de indeterminación.

5Ver en apéndice A la sección dedicada a campos vectoriales.
6Sea M y N dos variedades diferenciables. Cada aplicación diferenciable F : M −→ N tiene asociadas

dos aplicaciones entre campos vectoriales y formas dadas por la aplicación diferencial F∗ : TM −→ TN y la
codiferencial F ∗ : T ∗N −→ T ∗M respectivamente. De nuevo consultar apéndice A.

7En el apéndice A DFN E.13 se encuentra la definición de dicha derivada aśı como algún ejemplo.

Autor: Pablo Sala de Torres-Solanot
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C.4. La dinámica

En la formulación geométrica de la mecánica Hamiltoiana, se considera una variedad
simpléctica (M,ω) y una funcion H ∈ C∞(M), lo que nos permite definir un campo Hamlto-
niano XH por la relación

iXHω = dH ⇐⇒ XH = ω̂−1(dH). (C.26)

La expresión en coordenadas de Darboux de XH es

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
, (C.27)

por lo que las ecuaciones que determinan las curvas integrales del campo Hamiltoniano XH ,
son las bien conocidas ecuaciones de Hamilton:

q̇k =
∂H

∂pk
ṗk = −∂H

∂qk
. (C.28)

Para proceder de modo análogo en mecánica cuántica, se considera que el sistema dinámico
se encuentra sobre la variedad MQ en vez de sobre P, ya que resultará más cómodo. Estamos
en una variedad Kähler donde hemos construido una forma simpléctica de forma que tenemos
el ingrediente básico para aplicar una formulación Hamiltoniana. En este caso la función
Hamiltoniana viene dada por

fH =
1

2
〈ψ| Hψ〉 (C.29)

siendo H el operador Hamiltoniano definido sobre H. El campo Hamiltoniano será

XH = Ω(·, dfH) (C.30)

cuyas curvas integrales son las soluciones de la ecuación de Schrödinger.

i~ ˙|ψ〉 = H |ψ〉 (C.31)

Veamos que efectivamente, las curvas integrales del campo Hamiltoniano se corresponden
con las soluciones de la ecuación de Schrödinger. Sea A un operador autoadjunto en H.
Entonces la función real fA : H −→ R definida por fA(|ψ〉) = 1

2 〈ψ |Aψ 〉 tiene asociada un
campo XfA tal que:

iXfAω = ω(XfA , ·) = dfA. (C.32)

Si se toma un |ψ〉 ∈ T|φ〉H entonces,

(dfA)|φ〉(|ψ〉) (C.33)

es la derivada direccional de fA en el punto |φ〉 en la dirección |ψ〉, de esta forma

(dfA)|φ〉(|ψ〉) =
1

2

d

dt
〈φ+ tψ| A(φ+ tψ)〉

∣∣∣∣
t=0

=
1

2

d

dt

(
〈φ| Aφ〉+ [〈ψ| Aφ〉+ 〈φ| Aψ〉] t+ 〈ψ| Aψ〉 t2

)∣∣∣∣
t=0

=
1

2
(〈ψ| Aφ〉+ 〈φ| Aψ〉) =

1

2

(
〈ψ| Aφ〉+

〈
φ
∣∣∣ A†ψ〉∗)

= Re {〈ψ| Aφ〉} = Im {〈−J A |φ〉 | |ψ〉 〉}
= ω(−J A |φ〉 , |ψ〉)

(C.34)
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aśı comparando con (C.32) se obtiene que,

XfA(|φ〉) = −JA |φ〉 (C.35)

Por tanto XH es un campo globalmente Hamiltoniano y además es también un campo de
Killing8, LXHg = 0, lo cual significa que la forma Hermı́tica es “invariante” bajo la acción
del grupo de isometŕıas asociado al campo XH . Debido a estas dos propiedades tenemos que
es un campo que conserva la estructura Riemanniana y la estructura simpléctica y por tanto
también conserva la estructura Hermı́tica. Es por ello que la evolución temporal de cualquier
sistema mecano cuántico se puede escribir en términos de las ecuaciones de Hamilton clásicas.
Como se enuncia en [26] ”Schrödinger’s equation is Hamilton’s equation in disguised!”.

C.5. La información espectral

Un tema pendiente es el hecho de cómo recuperar la noción de autovalor y autovector
de los operadores definidos sobre H a nivel de las funciones definidas sobre MQ o sobre el
proyectivo. Sea A un operador autoadjunto,

A 7→ eA(|ψ〉) =
〈ψ| Aψ〉
〈ψ| ψ〉

(C.36)

entonces,

· Los autovectores corresponden a los puntos cŕıticos de las funciones eA, es decir,

deA(|ψ〉a) = 0 si y sólo si |ψ〉a es un autovector de A

donde cabe destacar que si |ψ〉 es autovector de eA entonces eiα |ψ〉 también lo será.

· Los autovalores correspondientes están dados por eA(|ψ〉a).

Resaltar que mediante el uso de los tensores de Poisson Ω y de Riemann G, se ha podido
recuperar el producto de Lie y el producto de Jordan respectivamente, para las funciones
cuadráticas.

C.6. Equivalencia: formalismo de Schrödinger y de Heisenberg

Los formalismos desarrollados en el caṕıtulo 1 y en el apéndice, sobre el espacio de estados
y sobre el espacio de observables, son equivalentes. En [1], se encuentra como haciendo uso
de la aplicación,

F : MQ ×O → R, (|ψ〉 , A) 7→ 1

2
〈ψ| Aψ〉 = fA(|ψ〉), (C.37)

podemos construir si fijamos |ψ〉, una aplicación F (|ψ〉) : O → R, de forma que a cada ele-
mento |ψ〉 ∈ H asociamos un elemento en O∗. A esta aplicación se le conoce como aplicación
momento [27],

µ : H → O, µ(|ψ〉) = ρψ := |ψ〉 〈ψ| , (C.38)

8Ver en apéndice A DFN E.15

Autor: Pablo Sala de Torres-Solanot
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donde ρψ(A) = 1
2 〈ψ| Aψ〉 para todo A ∈ O.

Como consecuencias de esta aplicación µ definida, se puede demostrar que si A ∈ O
entonces:

µ∗(G+ iΩ) = R+ iΛ, µ∗(XH) = X̂H , µ∗(Â) = fA, (C.39)

donde se ha usado la notación X̂H para distinguir ambos campos Hamiltonianos, puesto que
están definidos en distintos espacios.

Formulación simpléctica de la Mecánica Cuántica



Apéndice D

QZE: Efecto Zenón cuántico

Este efecto recibe su nombre en 1976 [4]. Se trata de un fenómeno existente en el mundo
cuántico, por el cual uno podŕıa congelar un sistema cuántico en un estado determinado[18],[19].
Pensemos por ejemplo en un sistema cuántico inestable [28]. Su espacio de configuración se
divide en los estados para los cuales la part́ıcula no ha decáıdo y en aquellos estados en los que
śı. Mediante una observación del estado sin decaer lo que hacemos es ’colapsar’ (proyectar),
la función de ondas al estado sin decaer (visión a la von Neumann). La probabilidad de que
el estado decaiga, después de este colapso crece cuadráticamente con el tiempo para tiempos
suficientemente cortos. Si lo que se hace es realizar infinitas observaciones en intervalos muy
cortos de tiempo de forma que no dejemos evolucionar al sistema, estaremos confinando el
estado de la part́ıcula al estado sin decaer, de manera que podremos evitarlo finalmente. De
esta forma, un estado que sea continuamente observado nunca decaerá [29]. Resaltar que este
es un efecto teórico, corroborado años más tarde en el laboratorio.

Dentro de las tres maneras equivalentes que tenemos de describir este efecto, [19], existe
una consistente en suponer a las medidas sobre el sistema cuántico como proyecciones ins-
tantáneas sobre el mismo. Es en esta formulación donde aplicaremos la teoŕıa desarrollado
hasta ahora.

D.1. Formulación geométrica de la dinámica de Zenón

Como hemos venido observando desde el principio, la dinámica en una formulación geométri-
ca de la mecánica cuántica, viene determinada por el campo vectorial asociado al Hamilto-
niano (1.13), aśı como la evolución de las estructuras subyacentes en dicho espacio (2.26).
Nos preguntamos pues ahora si una evolución como la de Zenón puede ser descrita por uno
de estos campos. Cabe destacar que es la primera vez que esta cuestión ha sido abordada y
que por tanto su resolución es original para este trabajo.

La dinámica de Zenón para esta formulación a base de proyecciones supone que: partiendo
de un determinado estado cuántico ρ , del cual queremos proteger un determinado subespacio,
proyectamos sobre dicho subespacio (midiendo) y entonces dejamos evolucionar el sistema
cuántico durante un cierto intervalo temporal τ suficientemente pequeño. Tras ese lapso,
el sistema se ve proyectado de nuevo, siendo estas proyecciones instantáneas y generando
aśı puntos de discontinuidad en el flujo. Consideremos pues la transformación,

ρZ(t0 + τ) = Pe−iHτPρ(t0)PeiHτP, (D.1)

donde P son operadores de proyección, los cuales son operadores de contracción (‖P‖ ≤ 1),
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y H el operador Hamiltoniano. De esta forma

ρZ(t0+τ) = Pρ(t0)P−i

PHP︸ ︷︷ ︸
HZ

−Pρ(t0)PHP

 τ+O(τ2) = Pρ(t0)P+[HZ , Pρ(t0)P ]+O(τ2).

Figura D.1: Explicación visual de la dinámica de Zenón: proceso de medida y obtención del
campo.

Supongamos que s ∈ [0, τ ] es el parámetro de la curva durante ese intervalo, entonces
tomando la derivada de esta evolución respecto a dicho parámetro y evaluando en s = 0
obtenemos

ĺım
s→0

dρZ(t0 + s)

ds
= [HZ , Pρ(t0)P ] = [P, [HZ , ρ(t0)]]+ − [HZ , ρ(t0)] .

Lo que aqúı hemos obtenido es el generador infinitesimal que gobierna la dinámica del
sistema durante un cierto peŕıodo de tiempo τ , definiendo aśı una ecuación diferencial análoga
a la dada para sistemas cuánticos abiertos,

d

dt
ρ(t) = Z(ρ(t)),

donde Z viene dado por,

Z : u(H)∗ −→7→ u(H)∗, ρ 7→ Z(ρ) = [P, [HZ , ρ(t0]]+ − [HZ , ρ(t0)] . (D.2)

Aśı su campo vectorial asociado, XZ se calcula haciendo uso de (1.10). De esta forma se
sigue que

XZ
ρ (Â) = 〈A,Z(ρ)〉 =

〈
Z†(A), ρ

〉
O

=
〈
− [P, [HZ , A]]+ + [HZ , A] , ρ

〉
O . (D.3)

No obstante, cabe destacar que aunque aparentemente hemos determinado un campo de
vectores en todo el espacio, sólo hemos determinado un conjunto de vectores tangente a la
curva evolución, en un conjunto numerable de puntos. La intención será pues aplicar el ĺımite
de medidas muy frecuentes, es decir un lapso temporal τ → 0, de forma que recuperemos el
vector tangente a la curva en todo punto de la misma.

Formulación simpléctica de la Mecánica Cuántica



Apéndice E

Algunos conceptos de geometŕıa
diferencial

Definición E.1. Una variedad topológica M de dimensión n es un espacio localmente Eucĺıdeo,
lo que significa que para todo punto x ∈ M existe un entorno abierto U de x y un homeo-
morfismo ϕ : U → ϕ(U) ⊆ Rn con ϕ(U) abierto en Rn.

Al par (U , ϕ) se le donomina carta local de M en x. Un ejemplo, de variedad topológica es
la circunferencia, S1 donde como carta puede ser usada entre otras la proyección estereográfica
desde el polo norte N = (0, 1) o la parametrización de la circunferencia con un ángulo α.

Una vez se ha introducido el concepto de variedad topológica, podemos pasar a definir
variedad diferenciable.

Definición E.2. Una variedad diferenciable M de dimensión n y de clase C∞ es una variedad
topológica de dimensión n tal que existe un sistema de cartas locales {(Uα, ϕα)}α∈A que
satisfacen

i)
⋃
α∈A Uα = M

ii) Para todo α, β ∈ A tal que Uα ∩ Uβ 6= ∅ la aplicación

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) ⊆ Rn → ϕβ(Uα ∩ Uβ) ⊆ Rn (E.1)

es diferenciable de clase C∞ (y, por tanto un difeomorfismo).

El significado de esta definición es que podemos encontrar un conjunto de abiertos Uα
cuya unión cubra toda la variedad de forma que aunque dos de ellos solapen, el cambio de
coordenadas de uno a otro es un difeomorfismo, es decir que el cambio de un sistema de
coordenadas a otro es suave.

Como ejemplo sencillo de variedad diferenciable podemos pensar en cualquier abierto de
Rn, donde existe una carta global (Rn, idR)

Cabŕıa pensar qué relación tiene esta definición matemática tan abstracta con la f́ısica.
Para apreciar dicho enfoque se recomienda leer el caṕıtulo 2 de [30]. La definición aqúı dada
de variedad diferenciable no es la más general ni la más rigurosa. Para ver desarrollos más
rigurosos de este concepto ver [31] y [32].

Definición E.3. Sea M una variedad diferenciable y p ∈ M . LLamaremos vector tangente
en p a toda aplicación Xp : C∞(p)→ R que verifique:
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Figura E.1: Representación visual. [23]

i) Xp es lineal, es decir: Xp(λf + µg) = λXp(f) + µXp(g), λ, µ ∈ R.

ii) Xp(f, g) = f(p)Xp(g) + g(p)Xp(f) (Regla de Leibniz).

Definición E.4. LLamaremos espacio vectorial tangente a M en el punto p al espacio vec-
torial de los vectores en el punto p. Será denotado por Tp(M).

De forma intuitiva un campo vectorial en un abierto U ⊂ Rn es una aplicación que asigna
a cada punto p ∈ U un vector Xp ∈ TpU . El conjunto

TU =
⋃
p∈U

TpU

es el conjunto de todos los pares (p,Xp) con p ∈ U y Xp ∈ TpU . Si denotamos por τ la
proyección τ : TU → U definida por τ(p,Xp) = p, un campo vectorial en U es una aplicación
X : U → TU tal que τ ◦X = idU .

Definición E.5. El conjunto

TM =
⋃
p∈M

TpM

se denomina fibrado tangente de la variedad M .

Además diremos que un campo vectorial X es diferenciable en la variedad M si y sólo
si para cada carta (U , φ) de M , las componentes del campo respecto de dicha carta son
diferenciables. El conjunto de campos vectoriales diferenciables sobre la variedad M al cual
denotamos X(M), es un espacio vectorial real respecto a la operación suma y producto por
escalar y puede ser dotado de una estructura de C∞(M)-módulo.

Ejemplo:

Si la variedad es M = R3−{0}. El campo gravitatorio viene definido por algo proporcional
al campo,

Xp =
3∑
i=1

xi

r3

∂

∂xi

∣∣∣∣
p

Por otro lado el dual de TpM recibe el nombre de espacio vectorial cotangente en p ∈ M y
se denota T ∗pM . Sus elementos se llaman covectores en p o vectores covariantes. Por ejemplo,
para cada función f ∈ C∞(p), podemos definir un covector en p que denotamos (df)p por
(df)p(Xp) = Xpf .

Formulación simpléctica de la Mecánica Cuántica
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Una 1-forma diferencial en una variedad diferenciable M es una aplicación

ω : M → T ∗M

tal que ωp ∈ T ∗pM .

Definición E.6. El conjunto

T ∗M =
⋃
p∈M

T ∗pM

se denomina fibrado cotangente de la variedad M .

Asociado a este espacio podemos definir la proyección (natural)

πM : T ∗M →M

definida como sigue
πM (p, ωp) = p, ωp ∈ T ∗pM

Por ejemplo cuando un sistema mecánico admite una variedad diferenciable Q como es-
pacio de configuración, la descripción del sistema en el espacio de fases hace uso del fibrado
cotangente, en donde el campo vectorial Hamiltoniano XH en T ∗Q admite una expresión
coordenada,

XH |(q,p) = ai(q, p)
∂

∂qi
|(q,p) + bi(q, p)

∂

∂pi
|(q,p)

Describamos a continuación lo que denominamos diferencial y codiferencial de una apli-
cación F : M → N , siendo M y N variedad diferenciales.

Sea F : M → N una aplicación diferenciable de M a N . Para cada punto p ∈ M , la
diferencial de F en p ∈ M , denotada como F∗p, definida mediante F∗p(Xp)f = Xp(f ◦ F ),
∀f ∈ C∞(F (p)) es un morfismo de espacios vectoriales, F∗p : TpM → TF (p)N . Por tanto F
induce una aplicación F∗ que transporta vectores tangentes Xp del conjunto de curvas que
pasan por p, a vectores tangentes XF (p) de curvas que pasan por F (p)∀p ∈ M .

Figura E.2: La aplicación F : M → N induce la aplicación diferencial F∗ : TpM → TF (p)N .
c(t) representa una curva sobra M y g una función definida sobre N . Imagen sacada de [23]

Del mismo modo una aplicación F : M → N induce una aplicación F ∗ : T ∗F (p)N → T ∗pM ,
de modo que para cada 1-forma diferencial ω definida sobre N podemos definir una 1-forma
diferencial en M , que se denotará F ∗(ω) y se dice imagen rećıproca (pullback) de ω, mediante

[(F ∗(ω)X] (p) = [(F ∗(ω)]pXp = ωF (p) [F∗p(Xp)] , ∀X ∈ X(M)

Una vez definido el espacio tangente TpM y su dual T ∗pM podemos construir el álgebra
tensorial TpM correspondiente a TpM , siendo los elementos de un subespacio de TpM de la
forma v1 ⊗ . . . vr ⊗ . . . vr+s donde vi ∈ TpM con i = 1, . . . , r y vi ∈ T ∗pM para los s ı́ndices
restantes. Dicho elementos reciben el nombre de tensores en p de tipo (r, s).

Autor: Pablo Sala de Torres-Solanot
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Definición E.7. Si X es un campo vectorial sobre una variedad M , se dice que una curva
diferenciable γ : I →M , es una curva integral del campo X si

dγ

dt
|t=t0 = Xγ(t0) (E.2)

Si tomamos una carta (U,ϕ) de M en p ∈ γ(I) podemos expresar la curva en coordenadas
de forma que c : I → Rm con c = ϕ ·γ. La curva c aśı definida es una curva integral del campo
ϕ∗(X) de forma que

dci

dt
= F i(c1(t), . . . , cm(t)) (E.3)

donde F i son las componentes del campo ϕ∗(X) en Rm respecto de la base canónica en Rm.

Definición E.8. Sea M una variedad diferenciable. Se llama forma simpléctica en M a una
2-forma cerrada (dω = 0) no degenerada (rango máximo) ω. El par (M,ω) recibe el nombre
de variedad simpléctica. En particular, cuando ω es exacta ( ω = dΘ) se dice que (M,ω) es
una variedad simpléctica exacta.

Un ejemplo sencillo de variedad simpléctica es la esfera S2 con la 2-forma diferencial dada
por

ω = sinθdφ ∧ dθ (E.4)

donde ω viene a representar el elemento de área inducido sobre la esfera unidad.

El estudio de las variedades simplécticas está basado en el teorema siguiente, el cual
caracteriza localmente dichas variedades.

Teorema E.0.1. (Teorema de Darboux) Si ω es una forma simpléctica en una variedad
diferenciable M , para cada punto x ∈ M hay una carta local coordenada en torno a x en la
cual las coordenadas de ω son constantes.

Nota. Si (M,ω) es una variedad simpléctica de dimensión finita 2n, entonces, alrededor de
cada punto x ∈ M , hay una carta coordenada (U , ϕ), en donde la aplicación ϕ está dada por
ϕ(x) = (q1, . . . , qn, p1, . . . , pn), tal que ω se escribe como:

ωU =
n∑
i=1

dqi ∧ dpi

A tales coordenadas (qi, pi) se les denomina coordenadas canónicas o de Darboux.

Definición E.9. Sea M una variedad m-dimensional y TpM el espacio tangente en p ∈ M .
Una distribución k-dimensional sobre M es una elección de un subespacio lineal k-dimensional
Dp ⊂ TpM para cada punto p ∈ M . Dicha distribución denotada como D , viene dada por

D =
∐
p∈M

Dp ⊂ TM

Definición E.10. Llamamos forma diferencial de grado r, o simplemente r-forma en M a
todo campo tensorial covariante de tipo (0, r), totalmente antisimétrico.

Definición E.11. Denotamos por
∧

r(M) el conjunto de las r-formas definidas sobre M , y
por

∧
0(M) a C∞(M).

Definición E.12. Si X ∈ X(M), se denota por iX o i(X) a la aplicación iX :
∧

(M)→
∧

(M)
(conjunto de formas antisimétricas sobre M) tal que
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i) iX
∧r(M) ⊂

∧r−1(M) si r ≥ 1 mientras que iX
∧0(M) = 0.

ii) Si ω ∈
∧r(M), entonces iXω(X1, . . . , Xr−1) = ω(X,X1, . . . , Xr−1).

Definición E.13. Sea M una variedad diferenciable, X un campo vectorial y Φt el flujo de
dicho campo. Si p ∈M , entonces recordar que Xp es el vector tangente al flujo en el punto p,
es decir Xp = d

dtΦt(p)|t=0. De esta forma como (Xf) (p) = Xpf se puede ver que

(Xf)(p) =
d

dt
[f(Φt(p))] |t=0 (E.5)

La generalización para campos vectoriales covariantes es:

Para cada campo vectorial X ∈ X(M) y cada campo r-covariante ω se define la derivada
de Lie de ω según el campo vectorial X como el campo r-covariante,

(LXω) (p) = ĺım
t→0

1

t
[(Φ∗tω)(p)− ω(p)] (E.6)

Además a continuación se presentan algunas propiedades útiles de la derivada de Lie.

i) Si f ∈ C∞(M) y ω es un campo r veces covariante, para cada campo vectorial X ∈
X(M),

LX(fω) = (Xf)ω + fLXω

ii) Si T y S son dos tensores sobre la variedad M , entonces

LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS)

iii) Para cada f ∈ C∞(M) y cada X ∈ X(M),

LXdf = d(Xf) = d(LXf)

iv) Se puede demostrar que si X e Y son dos campos vectoriales diferenciables definidos
sobre M , entonces

LXY = [X,Y ]

Como ejemplo vamos a calcular LXG siendo G = gij(q)dqi ⊗ dqj

LXG = (Xgij(q))dqi ⊗ dqj + gij(q)d(Xqi)⊗ dqj + gij(q)dqi ⊗ d(Xqj)

Definición E.14. Se llama sistema dinámico Hamiltoniano a una terna (M,ω,H) donde
(M,ω) es una variedad simpléctica y H una función C∞(M). El campo vectorial del sistema
dinámico viene dado por XH = ω̂−1(dH), o de forma equivalente por la solución de iXHω =
dH.

De hecho el campo vectorial XH correspondiente a H se escribe en coordenadas canónicas
como

XH =
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi
(E.7)

dado que

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (E.8)

De aqúı se deduce que efectivamente las curvas integrales del campo vectorial XH son
determinadas en coordenadas canónicas por ecuaciones como las de Hamilton.
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Definición E.15. Sea (M, g) una variedad Riemanniana y X ∈ X(M) un campo vectorial so-
bre dicha variedad. Si al practicar un desplazamiento εX infinitesimal, se genera una isometŕıa
(se preserva la métrica), el campo X se dice campo de Killing. Se puede ver que entonces
LXg = 0.

Definición E.16. Se dice que un campo vectorial X ∈ X(M) es localmente Hamiltoniano
respecto de la estructura simpléctica ω si iXω es una 1-forma cerrada. En caso de que iXω
sea exacta se dice que es Hamiltoniano. El conjunto de los campos localmente Hamiltonianos,
aśı como el subconjunto Hamiltoniano, son espacios vectoriales reales.

Además existe un teorema que demuestra, haciendo uso de la identidad de homotoṕıa y de
que ω es una forma simpléctica (por tanto cerrada) que un campo es localmente Hamiltoniano
si y sólo si LXω = 0, lo cual implica que bajo la acción del flujo de dicho campo ω no vaŕıa.

Definición E.17. Sea V un subespacio vectorial tal que Pn es el proyector que proyecta
sobre V. Si V es invariante bajo A entonces

PAP = AP

Además si no sólo V es invariante bajo A sino que también V ⊥ lo es, entonces

(1− P )A(1− P ) = A(1− P )

lo cual implica que,
AP = PA

Definición E.18. Si Φ : G × M → M es una acción del grupo de Lie G en la variedad
diferenciable M , se llama órbita del punto m ∈M al subconjunto Φm(G).

Definición E.19. Sea M una variedad compleja con estructura compleja J y una métrica
Riemanniana g. La 2-forma alterna, y por tanto antisimétrica

ω(X,Y ) := g(JX, Y )

es la llamada forma de Kähler asociada.

Además remarcar que visto TM junto con J como un espacio complejo tangente sobre M ,
y h una métrica Hermı́tica en TM . Entonces g = Re h es una métrica Riemaniana compatible
en M , es decir, g(JX, JY ) = g(X,Y ) ∀X Y ∈ M e ω = Im h es la forma Kähler asociada:

g(JX, Y ) = Re h(JX, Y ) = Re h(iX, Y ) = Re(−i h(X,Y )) = Im h(X,Y ) = ω(X,Y )

Vice versa, si g es una métrica Riemaniana compatible en M y ω es la forma Kähler,
entonces h = g + i ω es una forma Hermı́tica en TM . Además las propiedades del producto
Hermı́tico dado por h, implican que g es un producto interno definido positivo y que ω es una
forma simpléctica, ambos no degenerados.

En resumen, el triplete (J, g, ω) equipa a MQ con la estructura de un espacio de Kähler.

Por último introduzcamos el concepto de paréntesis de Schouten, el cual fue utilizado en
la contracción de álgebras de Lie.

Proposición 3. Sea M una variedad diferenciable. Entonces existe un único paréntesis R-
lineal [·, ·]S : X•(M)× X•(M)→ X•(M) tal que

1) [·, ·] es de grado -1.
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2) Para todo X ∈ X1(M) y Q ∈ X•(M)

[X,Q]S = LXQ.

En particular el paréntesis coincide con el usual paréntesis de Lie de campos vectoriales
sobre X1(M).

3) Para todo P ∈ Xp(M) y Q ∈ Xq(M)

[P,Q]S = −(−1)(p−1)(q−1) [Q,P ]S .

4) Para todo P ∈ Xp(M), Q ∈ Xq(M) y R ∈ X•(M)

[P,Q ∧R]S = [P,Q]S ∧R+ (−1)(p−1)qQ ∧ [P,R]S .

5) Para todo P ∈ Xp(M), Q ∈ Xq(M) y R ∈ Xr(M)

(−1)(p−1)(r−1) [P, [Q,R]] + (−1)(q−1)(p−1) [Q, [R,P ]] + (−1)(r−1)(q−1) [R, [P,Q]]

Demostración. Se puede encontrar en [33].
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Apéndice F

Ejemplo de contracción

Consideremos el álgebra de Lie so(3) de la rotaciones en tres dimensiones en el espacio
Eucĺıdeo y apliquemos la teoŕıa de contracciones de álgebras de Lie. En este caso haremos uso
del punto de vista pasivo, donde las transformaciones U(ε) son consideradas como un cambio
de base.

Podemos elegir como base B = {a1, a2, a3} de forma que

[a1, a2] = a3, [a2, a3] = a1, [a3, a1] = a2.

Para este caso las únicas subálgebras son dimensión uno. Aśı podemos elegir por ejemplo
la generada por a3, es decir, VR = 〈e3〉 y VN = 〈e1, e2〉 y bε1 = U(ε)e1 = εa1, bε2 = U(ε)a1 = εa2,
bε3 = U(ε)a3 = a3 y aśı encontramos que,

[bε1, b
ε
2] = ε2bε3

[bε2, b
ε
3] = bε1

[bε3, b
ε
1] = bε2,

y en el ĺımite ε→ 0 se obtiene[
b01, b

0
2

]
= 0,

[
b02, b

0
3

]
= b01,

[
b03, b

0
1

]
= b02,

que es el álgebra e(2) del grupo Eucĺıdeo en dos dimensiones ( rotaciones y traslaciones en
R2).

Análogamente se obtendŕıa para el punto de vista activo, sin más que recurrir a (2.7).
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