Apéndice A
Formalismo cuantico

El mundo cuédntico dista mucho del mundo clésico, tanto formal como fenomenoldgica-
mente. El concepto clasico de trayectoria es inexistente en el mundo cuéantico, debido a la
falta de informacion sobre la situacién de un cierto estado fisico en un momento determinado.
Es por ello que caracterizamos un estado puro, por ejemplo una particula, por una funcion de
ondas (7, t), la cual contiene toda la informacién que es posible obtener de dicho sistema.
Esta funcion de ondas es interpretada como la amplitud de probabilidad de presencia de la
particula. Asi

dP(F,t) = C (7, t) > d>F (A.1)
se interpreta como la correspondiente densidad de probabilidad de que la particula se encuentre

en una cierta posicion del espacio 7 en un momento determinado y donde C' es una constante
de normalizacién.

Habiéndonos creido esté interpretacion, tendremos que aceptar, que la probabilidad total
de encontrar a la particula en cualquier sitio del espacio debe ser 1, asi que tenemos:

/Rs (7 ) 7 = 1 (A2)

Por tanto, los rayos del espacio de Hilbert que representan a los sistemas cuanticos han de
ser funciones de cuadrado integrable, 1 (7, t) € L*(R?). Recordar que el espacio (L%(X), ||,)
es un espacio de Hilbert, con el producto escalar dado por'.

(f] g) = /X F@)g(e)du(x) (A.3)

Por otro lado debemos enunciar las bases que sustentan el formalismo cuéntico. Para ello,
esta teoria estd basada en una serie de axiomas que establecen las estructuras matematicas
que se habran de utilizar.

Axioma A.0.1. Estados fisicos En un tiempo fijo to, el estado puro de un sistema fisi-
co estd especificado por una funcion de ondas (7, t) perteneciente a un espacio de Hilbert

(H, (-] ))-

Axioma A.0.2. Cada magnitud fisica medible A estd descrita por un operador (lineal) au-
toadjunto A en H; este operador se denomina observable.

LEl convenio utilizado por los fisicos es distinto al de los mateméticos, conjugado estos tltimos la segunda
funcién
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32 Capitulo A. Formalismo cuantico

Notar que existe una gran diferencia respecto al mundo cldsico, donde ambos, estados y
operadores, vienen dados por funciones.

Axioma A.0.3. Los unicos resultados posibles de la medida de una magnitud fisica A es uno
de los autovalores correspondientes al observable asociado A.

Axioma A.0.4. Cuando una magnitud fisica A es medida sobre un sistema en el estado
Y(7,t) normalizado segun (A.3), la probabilidad P(ay) de obtener el autovalor a,, del corres-
pondiente observable A es:

Plan) =Y (| ) (A)

donde {u}l}f; es el conjunto de autovalores normalizados de A asociados al autovalor ay,.

Axioma A.0.5. Sila medida de la magnitud fisica A sobre el sistema en el estado (7, t) da
como resultado ay, el estado del sistema inmediatamente después de la medida es la proyeccion

normalizada, %, de 1) en el subespacio asociado al autovalor a.,.

Este ultimo postulado, ha suscitado grandes debates entre los fisicos que se prequntan sobre
su necesidad. No obstante, a dia de hoy, ningin experimento ha logrado falsearlo. Es de hecho
en este axioma, donde se basa gran parte de la discusion sobre el efecto Zenon cudntico que
serd desarrollado mds adelante. Por 4ltimo,

Axioma A.0.6. La evolucion temporal del estado i estd gobernada por un operador unitario
modtficar:

od o "
ih— (7 8) = H(6)(4(7 1)) (A.5)
donde H(t) es el observable asociado con la energia total del sistema.

A H se le llama el operador Hamiltoniano del sistema, y de forma andloga al caso
clasico controla la evolucion del sistema (ecuaciones de Hamilton).

Formulacion simpléctica de la Mecdnica Cudntica



Apéndice B
Sistemas cuanticos abiertos

Los sistemas cudnticos reales, evolucionan en un medio con el cual interaccionan, creando
una asi’'fuga’ de informacion y de coherencia del sistema cudntico en estudio. Estos sistemas
en los que hay una interaccion con el entorno, son los conocidos como sistemas cudnticos
abiertos.

En esta seccion introduciremos los resultados matemdticos mas importantes para modelar
la dindmica de los sistemas cudnticos abiertos. Este es el caso de un sistema en el que el
espacio de estados se descompone en dos partes. La del sistema fisico estudiado y la dada
por el entorno con el cual interacciona. Es por ello que podemos escribir dicho espacio como

H=HsQHE.

Para estudiar la dindmica introduciremos los conceptos semigrupo uniparamétrico de ope-
radores sobre un espacio de Banach y de generador de un grupo.

Definicién B.1. Una familia de operadores lineales 7} (¢ > 0) en un espacio de Banach finito
forma un semigrupo uniparamétrico si

: TtTS = E-i—sa Vta S

- Th=1

Ademss se dird semigrupo uniformemente continuo si la aplicacién
t— Ty (Bl)

es continua en la norma de los operadores.

Ademds si un semigrupo uniparamétrico es uniformemente continuo, entonces (B.1) es
diferenciable, y la derivada de Ty estd dada por

con L = % o (teorema 2.2 [21]).

Por otro lado, cualquier semigrupo uniparamétrico uniformemente continuo puede escri-
birse de la forma Ty = T(t) = e, donde L se conoce como el generador del semigrupo y es
la unica solucién al problema diferencial

i = LTy, t € R
Ty =1
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34 Capitulo B. Sistemas cuanticos abiertos

Por tanto, dada ’la omnipresencia de las ecuaciones diferenciales en la fisica, es evidente
pues la importancia de los semigrupos’.

B.1. Evolucidon en sistemas cuanticos abiertos

Como ya comentamos los sistemas cudnticos reales, no son sistemas aislados, sino que
estan acoplados con un entorno. Es por ello que su evolucion no vendrd determinada por la
ecuacion (1.9) en general. La teoria de sistemas cudnticos abiertos juega asi un papel principal
en muchas aplicaciones de la fisica cudntica debido al hecho que un aislamiento perfecto de
un sistema cudntico no es posible de conseguir y una completa descripcion de los grados de
libertad del entorno no es factible.

Diremos que un sistema cudntico es cerrado si su dindmica viene dada por (1.9). Un
sistema cudntico abierto es un sistema S el cual estd acoplado a otro sistema cudntico llamado
el entorno E, del cual no se tiene conocimiento completo de su evolucion. Sistema y entorno
S+FE forman un sistema cerrado cuya dindmica estd otra vez dada por una evolucion unitaria.
Sin embargo, la dindmica del sistema S, que es la que nos interesa, no vendrd dada en general
por una ecuacion ‘sencilla” como (1.9).

La evolucion del sistema S se modela asumiendo una serie de aproximaciones, [21] y[22].
Se asumen evoluciones Markovianas o con falta de memoria, es decir, evoluciones en los que
el estado del sistema en un tiempo determinado sélo depende del estado del sistema en un
tiempo infinitesimalmente anterior (andloga a la definicion clasica de proceso Markoviano), y
por otro lado un acoplo débil con el entorno. En este caso, la ecuacion diferencial mds general
que rige la evolucion de p viene dada por:

d’;(tt) = L(p(t)) = —i [H(t), p()] + > _ [Vk(t)p(t)v,j (t) — % {v,j (t)Vi(t), p(t)}], (B.2)
k

donde H(t) y Vi(t) son operadores dependientes del tiempo, con H (t) autoadjunto, y vi(t) > 0
para cada k y cada tiempo t.

Por tanto la evolucion de un sistema abierto estd dada por un semigrupo de transforma-
ciones definidas positivas ¢y : D(H) — D(H), para todo t > 0, de forma que el generador
de este semigrupo es el operador L : D(H) C u(H)* — uw(H)*. Dicho operador es conocido
como operador de Kossakowski-Lindblad. Serd entonces nuestra intencion, derivar el campo
vectorial X responsable de dicha evolucidn, asociado a la aplicacion lineal L (1.10) y aplicar
entonces la formulacion geométrica.

Formulacion simpléctica de la Mecdnica Cudntica



Apéndice C

Formulacion geométrica de la
mecanica cuantica. Imagen de
Schrodinger

C.1. Base matematica

En primer lugar, para poder aplicar el formalismo geométrico, debemos introducir una
variedad diferenciable ' donde trabajar. Para ello observemos que la realificacion del espacio
de Hilbert H de dimension compleja N puede dotarse de una estructura de variedad real
diferenciable Hr := M¢g de dimension real 2N, que admite una carta global, por ejemplo
la obtenida al elegir una base del mencionado espacio de Hilbert. Al elegir una tal base cada
elemento de H posee unas coordenadas {|z)} y podemos separar cada una de sus coordenadas
en su parte real y parte imaginaria de la forma:

|) = Zwk lex) de forma que ¥y — Lb]f +i¢,{, (C.1)
k

Entonces,

<{¢17¢27 7’¢N}) EHm ({wﬁvwé%a --wlb]]\%/ﬂﬁ{albéa 7%]\/}) = (\I/Raqjl) S MQ (02)

En consecuencia esta variedad real diferenciable Mg es equivalente a R2N

Ademds, el hecho de que el espacio de Hilbert sea complejo se traduce en la existencia
de un tensor J de tipo (1,1) en la variedad Mg tal que J? = —1I, que recibe el nombre de
estructura compleja’ . La variedad que hemos obtenido asi es del tipo particular que se conoce
como variedad Kdahler [25].

Por ahora hemos traducido el espacio de estados dados en unas ciertas coordenadas que
por analogia con el caso de mecdnica cldsica, denotaremos

Vi=¢ yyl=pi (C.3)

Ver en apéndice A DFN E.1 y siguientes.
2 Aunque inicialmente este cambio de notacién i — J parezca trivial, este pequefio cambio en el punto de
vista permitira introducir la formulacién simpléctica de la mecédnica cuantica.
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36 Capitulo C. Formulacién geométrica de la mecanica cuantica. Imagen de Schrodinger

En efecto, veamos que M¢ estd dotada de una estructura simpléctica y que las mencionadas
coordenadas son efectivamente coordenadas de Darboux’ para tal forma simpléctica. La pro-
piedad de que el producto interno sea tal que (Y| @) sea conjugado de (P| V) se traduce en que
el espacio lineal de Hilbert Hr estd dotado de una forma bilineal antisimétrica no degenerada
mediante w(|@) , V) = Im ($| ¢) y por tanto Mg estd dotado de una estructura simpléctica.

Recordando que
n

(Bl 9) = (o8 —idp)(Wf + i),
k=1
vemos que

w(|¢),[¥) = Im (¢] Y) = iwﬁw,ﬁ — Yion),

k=1

lo que nos muestra que qx = Re i, pr = Im ¢y, son coordenadas de Darbouz.

Podemos traducir las estructuras algebrdicas disponibles en H en objetos tensoriales sobre
la variedad Mcg. Por otro lado, al igual que en el caso cldsico, las trayectorias del sistema
fisico vendrdn determinadas por las curvas integrales de un campo vectorial' responsable de
la dindmica. Es por ello que para esta ‘traduccion’ debemos considerar los fibrado tangente y
cotangente, teniendo en cuenta que puesto que H es un espacio vectorial podemos identificar
para cada |¢) € H el espacio tangente TigyH con el propio H, de forma que a cada 1) € H le
corresponde la aplicacion que asocia a cada funcion f diferenciable en un entorno del punto
|p), el valor real

(700 -+ 10n)

Ademds, con esta identificacion los campos vectoriales en H vendrdn dados por aplicaciones
X : 'H — H. Mencionamos a continuacion algunos ejemplos interesantes, como son los
campos vectoriales constantes y los campos vectoriales lineales:

t=0

- Con cada elemento 1)) € H le podemos asociar un campo vectorial constante

Xy : Mg = TMq  |¢) = (|9),[4)) (C.4)

Observemos que lo que hemos hecho, es trasladar |¢) € H al espacio tangente en cada
punto, es decir, en este lenguaje los estados |1) € H son los vectores pertenecientes
al espacio tangente en el punto |p). Ademds, elegida una base de H las componentes
de ) € H tienen una parte real y una imaginaria pura de forma que el campo queda
descrito por:

Xipy(19)) = (1), VR, V1) (C.5)

- Recordemos que si V' es un espacio lineal real, con la identificacion del espacio tangente
a V en cada punto con el propio V, cada aplicacion lineal A : V. — V define un
campo vectorial X 4 mediante X 4(v) = (v, Av). En la carta definida por la eleccion de
una base de V', cuyas coordenadas denotaremos {x } dichos campos vectoriales X o
vendrdn dados en tales coordenadas por X4 = a ]xja -, de forma que las ecuaciones
que determinan sus curvas integrales son ecuaciones diferenciales lineales.

En el caso particular de un espacio de Hilbert H el campo wvectorial X4 definido por
la aplicacion lineal A : H — H, con la identificacion TH ~ H x H, estd dado por
A0y = (|0),A|lY)) € H x H. Las curvas integrales de estos campos vectoriales

3Ver en apéndice A el teorema F.0.1.
4Ver en apéndice A DFN E.3.

Formulacion simpléctica de la Mecdnica Cudntica



C.1. Base matematica 37

son soluciones de ecuaciones diferenciales lineales |1)) = A|) . Veremos que el caso de
interés en Mecdnica Cudntica es cuando A es un operador (anti-)autoadjunto.

- El caso particular en que A = I es especialmente importante ya que el campo vectorial
lineal correspondiente, A = Xy, codifica la estructura lineal disponible en Mg. Juega
un papel bastante similar al conocido como campo de Liouville [2]], o campo de dila-
taciones, ya que en este caso no solo se dilata a lo largo de la fibra si no también del
espacto base. Mds en concreto,

A:Mq—TMg [¢) = ([9),[¥)) (C.6)

se escribe en coordenadas {qx,pr} asociadas a la eleccion de una base mediante:
0 0
Er + D (C.7)

Ya indicamos que la subvariedad Mg también estd dotada de otra estructura relevante,
que es consecuencia de la estructura Hermitica en H. Para el desarrollo matemdti-
co completo de este apartado se recomienda leer el Capitulo 3 de [2/]. La estructura
Hermitica queda codificada por el tensor Hermitico . Para obtenerlo usamos que si

[t1) , |12) € H entonces

W1l P2) = H( Xy, Xjgo))([0))  V]9) (C.8)

Llegados a este punto se puede ver siguiendo el desarrollo matemadtico encontrado en
[23], que en coordenadas 3 = qi + ipk, el tensor Hermitico queda definido por

b= dsr®@dsr =Y (dgi — idpy) ® (dgi + i dps) (C.9)
k k

y que sobre la variedad real Mg, que estd dotada de una estructura compleja, se puede
eTpresar como

H(Xjp1ys Xjgoy) = Re (1| h2)+i Im (1| ¥2) = g(Xjpyys Xjyy) +1 0( Xy, Xjyy) (C.10)

donde g es un tensor simétrico y w un tensor antisimétrico que define la mencionada
estructura simpléctica, y ademds puesto que el producto interno es sesquilineal,

(1| inh2) =i (1| 2)  (iha] ¥2) = =1 (Y] o) (C.11)
implica que,

w(X,Y)=g¢(JX,Y) g(JX,JY)=g(X,Y) w(JX,JY) =w(X,Y) (C.12)
- Por dltimo, la estructura compleja de H es traducida mediante el tensor de tipo (1,1)

0 0 0 0
J:TMp —TMo tal gue J | — | = — Jl— ) =—— C.13
“ @t < g > Opk < Opk ) gy (C-13)

cumpliendo que
J? =1 (C.14)

Autor: Pablo Sala de Torres-Solanot



38 Capitulo C. Formulacién geométrica de la mecanica cuantica. Imagen de Schrodinger

Cabe destacar por tanto que en la descomposicion (C.9) el tensor simétrico g es definido
positivo y no degenerado y por tanto define una estructura Riemanniana en la variedad real,
(Mg, g), mientras que el tensor antisimétrico w es también no degenerado y es cerrado (dw =
0), por lo que dicho tensor es una forma simpléctica. Esto implica que (Mg,w) es una variedad
simpléctica. Mds ain, (Mg, (g9,w,J)) es una variedad Kdhler y la forma covariante de estos
tensores viene dada por:

J =0y, ®dqr — Og, @ dpy, g = dqr ® dqg + dpy, @ dp  w = dgi A dpy, (C.15)
como se puede ver sin mds que hacer uso de la relacion (C.9).

Como w es no degenerada define un tensor de Poisson (su forma contragradiente)
N
0
A — C.16
*= 20 " i o

como también es posible considerar un tensor dos veces contravariante simétrico que co-
rresponde a g,

N

0 0 0

7 & 5 @ -— C.1r7
=3 o e OO (47

Ambos tensores estdn relacionados por G = J - Q. Como veremos estos tensores permiten
definir un corchete de Poisson y un corchete Riemann-Jordan sobre funciones suaves.

En resumen, la traduccion obtenida ha sido:

M — He= M
() hb=yg+iw
i J
(€Y, () (Mq, (9,w, 7))

Es interesante destacar, que han aparecido dos estructuras adicionales al caso de la mecdni-
ca cldsica: la estructura compleja y la estructura Riemanniana compatible con la estructura
simpléctica dada por la igualdad (C.12). Serd esta sequnda la que nos permitird traducir las
incertidumbres en la medida.

C.2. Los observables

Una vez introducida la base matemdtica sobre la que se trabaja y el espacio de estados
considerado, se ha de dar significado a los operadores en el formalismo geométrico. En la
imagen de Schrodinger, los operadores que representan las magnitudes fisicas son los ope-
radores lineales autoadjuntos, los cuales actian sobre los estados. La forma mds sencilla de
traducir esto es asociar a cada observable A una funcién real dada por

O —= Fr(Mg) A—= faly)= < | Ay) conp € H (C.18)

donde F(Mgq) es el conjunto de todas las funciones cuadrdticas sobre Mg y Fr(Mg) el sub-
conjunto de funciones reales.

Formulacion simpléctica de la Mecdnica Cudntica



C.3. El espacio complejo proyectivo 39
C.3. El espacio complejo proyectivo

Cuando un sistema cudntico es descrito mediante un espacio de Hilbert H, debemos te-
ner en cuenta que el conjunto de estados que difieren en un factor X € C* = C — {0} son
fisicamente equivalentes y por tanto debemos trabajar con el correspondiente espacio pro-
yectivo. En la formulacion geométrica de la mecdnica cudntica, podemos introducir la accion
de multiplicar por un nimero complejo de mddulo uno sobre Mg como una transformacion
cuyo generador infinitesimal se escribe,

0 0
I'= — — Q= C.19
%@mqwﬁ (C.19)

Ver que el tensor dado en esas coordenadas lo que hace es cambiar la fase global, si
pensamos en el plano, dado un par {qx, pr},

qr = TR cosly  prp = rEsinf;

entonces,
0
I'= —
>0

Es decir, las curvas integrales del campo T' estan dadas por el conjunto de estados que se
obtienen partiendo de un estado inicial |v) y multiplicarlo por una fase global € |¢)).

Por otro lado el campo de dilataciones A, al expresarlo en coordenadas polares toma la

forma
0
A= E —
A rkark

Ello implica, que las curvas integrales de este campo estdan dadas por el conjunto de vectores
obtenidos multiplicando uno dado por un nimero real diferente de cero.

Por tanto, la accion de estos campos sobre la variedad real Mg, corresponden a la accién
del grupo C* =Ry ® U(1) sobre Mg. Como dicho grupo es Abeliano, se verifica que

[A,T]=0 (C.20)

Cabe destacar que el hecho de que [A,T] = 0, significa que los campos generadores que
modifican la fase global y la norma de los estados |1) conmutan entre si. Esto da lugar al
siguiente resultado,

Proposicién 2. Sean v; y ¢s flujos locales de los campos vectoriales A y I, respectivamente,
en el entorno de un punto. Se cumple que ¢y 0 s = 15 0 ¢y.

Por otro lado obtenemos de la relacion (C.20) que dichos campos cierran dlgebra. Es por
ello que estos campos definen una distribucion integrable sobre el fibrado tangente.

Definicion C.1. Sea M una variedad n-dimensional. Una distribucién D de dimension k es
una forma de asignar a cada p € M un subespacio k dimensional D, C T,M, de forma que
en un entorno U, venga generado por campos de vectores { X1, Xo,..., Xi}.

Ademas el teorema de Frobenius establece bajo qué condiciones una distribucion es com-
pletamente integrable, es decir, cudndo para cada punto p € M, existe una carta (Uy, ¢) con
la cual {01,...,0r} forman una base local de D. Es por ello que debemos introducir la idea
de distribucion involutiva.

Autor: Pablo Sala de Torres-Solanot



40 Capitulo C. Formulacién geométrica de la mecanica cuantica. Imagen de Schrodinger

Definiciéon C.2. Se dice que D una distribucién de dimensién k es involutiva si para cada
base local {X71,..., X} se cumple que para todo 1 <i,j < k [X;, X;] estd en el subespacio
generado por { X7, ..., X;}. Normalmente se escribe como [D, D] C D.

Teorema C.3.1. (teorema de Frobenius) Una distribucion es involutiva si y sdlo si es
integrable.

Demostracion. Consultar [25]. O

A las distribuciones integrables se les conoce con el nombre de foliaciones.

Lema C.3.2. A yI' definen una foliacion C.1 (de dimension 2) sobre la variedad M.

Cada clyg
clase de €quivalenci,

= hOja

Figura C.1: Foliacién de Mg dada por A y I

Por tanto, se tiene una distribucion integrable generada por I' y A los cuales forman una
subdlgebra de Lie Abeliana. Cada una de las hojas de la foliacion es una clase de equivalencia
formada por el conjunto de estados que pertenecen a la misma orbita bajo la accion de C*.
Obsérvese que I' = J(A).

Por otro lado en el espacio de Hilbert, se suele trabajar con estados normalizados, o en caso
de que no se haga, uno debe tener presente la norma del estado a la hora de dar probabilidades
y valores medios. Es por ello que nos interesa ver el conjunto de estados incluidos en una de
las hojas dadas por la foliacion definida por A y de ', ya que estos estados son equivalentes
en cuanto a los resultados fisicos que se obtienen.

De un modo mds grifico esto implica que dado un |p) € H—{0} y sea A € C*, entonces |1)
y M) pertenecen a la misma clase de equivalencia y es este conjunto de clases de equivalncias
al que denominamos espacio complejo proyectivo.

Definiciéon C.3. La variedad cociente resultante, denotada como P y dada por
m:Mg—P = Mg/C* (C.21)

se llama espacio complejo proyectivo y sus puntos representan los estados fisicos puros de un
sistema cuantico:

Pallv):==(v)) ) e Mg, (C.22)

Conviene recordar que un espacio proyectivo no es lineal y por tanto la suma de dos estados
fisicos no determina un nuevo estado fisico, es decir no existe la suma de clases de equivalencia.
Es por ello que es mas comodo trabajar en la variedad real Mg, al igual que también lo es
en la formulacion original de la mecédnica cudntica, en la cual trabajamos en el espacio de

Hilbert H.

Formulacion simpléctica de la Mecdnica Cudntica
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Una vez hemos definido el espacio complejo proyectivo P se deben traducir las herramien-
tas y estructuras con las que ha sido dotada Mg al espacio proyectivo subyacente, ya que
para representar magnitudes fisicas reales, estas se deben corresponder con funciones que sean
constantes a lo largo de las fibras® de la fibracién 7 : Mg — P, es decir funciones que para
estados pertenecientes a la misma clase de equivalencia tomen los mismos valores. Entre otras
muchas funciones de este tipo podemos considerar las funciones:

(W)

para las cuales se cumple que I'(eq) = A(es) = 0, ya que dichas funciones son su propia
imagen bajo el pullback” 7* : T*P — T* Mg, es decir representan tanto a funciones sobre
Mg como a funciones definidas sobre el espacio complejo proyectivo P.

Es interesante ver la imposibilidad de traducir al espacio complejo proyectivo las formas
gy w. Esto es debido a que dichos tensores estdn definidos sobre Mg y por tanto no podemos
proyectarlas mediante la aplicacion codiferencial asociada a m : Mg — P. Es por ello que
necesitamos la forma contravariante de dichos tensores, G y €0 ya que bajo la aplicacién
diferencial proyectan adecuadamente. Sin embargo, mientras que las funciones e 4 definidas
anteriormente, son proyectables a través de m : Mg — P, G'y € no lo son. Es decir, sus
derivadas de Lie’ LAG = —2G y LAQ = —2Q no se anulan sobre la fibra de la aplicacién.
Podemos sustituirlos por otros nuevos tensores Gp y 2p definidos sobre Mg que si lo sean
dados por

Gp=®¢¥)G-Tal -A®A

C.24
Qp =W PY)Q-TRA+ART ( )
Notar que en general cualquier Gp y p dados por
Gp = G—al QT —bARA —cI'® A—dART
pi=Y)G—a c (C.25)

Qp =@ P)Q—dTOT - VARA-T®A-dART

con a,b,c,d,a’,b',c,d € R, son proyectables. Se han eligido los coeficientes de forma que
encontramos la métrica de Fubini-Study (ver [23]) sobre el espacio complejo proyectivo P.

Un resultado importante obtenido en [1] es el siguiente:
Lema C.3.3. La accion de Gp en el conjunto de funciones proyectables corresponde a
Gp(dea,dep) = €[4,B], — €A €B
lo cual implica que si A = B se obtiene
Gp(dea,des) = eq2 — €4

de esta forma Gp estd directamente relacionada con las relaciones de indeterminacion.

5Ver en apéndice A la seccién dedicada a campos vectoriales.

5Sea M y N dos variedades diferenciables. Cada aplicacién diferenciable F' : M — N tiene asociadas
dos aplicaciones entre campos vectoriales y formas dadas por la aplicacién diferencial F, : TM — TN y la
codiferencial F* : T*N — T* M respectivamente. De nuevo consultar apéndice A.

"En el apéndice A DFN E.13 se encuentra la definicién de dicha derivada asi como algiin ejemplo.

Autor: Pablo Sala de Torres-Solanot



42 Capitulo C. Formulacién geométrica de la mecanica cuantica. Imagen de Schrodinger
C.4. La dinamica

En la formulaciéon geométrica de la mecanica Hamiltoiana, se considera una variedad
simpléctica (M,w) y una funcion H € C*°(M), lo que nos permite definir un campo Hamlto-
niano Xy por la relaciéon

ixyw=dH <= Xg = &' (dH). (C.26)

La expresion en coordenadas de Darboux de Xy es

COH O OH 0
T Opi 0g;  0q; Op;

(C.27)

por lo que las ecuaciones que determinan las curvas integrales del campo Hamiltoniano X g,
son las bien conocidas ecuaciones de Hamilton:

H H
0 TP (C.28)

h=75— DPr=—F5—
Opk gy,

Para proceder de modo analogo en mecanica cuantica, se considera que el sistema dinamico
se encuentra sobre la variedad Mg en vez de sobre P, ya que resultard mas comodo. Estamos
en una variedad Kéahler donde hemos construido una forma simpléctica de forma que tenemos
el ingrediente basico para aplicar una formulacién Hamiltoniana. En este caso la funcién
Hamiltoniana viene dada por

fir =5 (] HY) (C.29)

siendo H el operador Hamiltoniano definido sobre H. El campo Hamiltoniano sera
X =Q(,dfr) (C.30)
cuyas curvas integrales son las soluciones de la ecuaciéon de Schrodinger.

i) = H [)) (C.31)

Veamos que efectivamente, las curvas integrales del campo Hamiltoniano se corresponden
con las soluciones de la ecuacién de Schrodinger. Sea A un operador autoadjunto en H.
Entonces la funcién real f4 : H — R definida por fa(|t))) = 3 (¢ |A%) tiene asociada un
campo Xy, tal que:

ixp,w=w(Xy,, ) =dfa. (C.32)

Si se toma un |¢)) € T4 H entonces,

(df a) 1) (19)) (C.33)

es la derivada direccional de f4 en el punto |¢) en la direccién [¢), de esta forma

(@alo(4) = 5 5 (0-+ 10l Ao+ 1)
= 5 a1 (191 40) 41061 46) + (6] AWt + (0] A0 )]
L (C.34)
= 2 (] A6) + (6] 4v)) = 3 (@] A0) + (o] aTw)")
= Re {{y] 46)) = Tm {(~7 4|8)| [¢)))
= (=T Al6), )

Formulacion simpléctica de la Mecdnica Cudntica
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asi comparando con (C.32) se obtiene que,

Xra(l9) = —JAl¢) (C.35)

Por tanto Xy es un campo globalmente Hamiltoniano y ademds es también un campo de
Killing®, Lx,,g = 0, lo cual significa que la forma Hermitica es “invariante” bajo la accién
del grupo de isometrias asociado al campo Xyr. Debido a estas dos propiedades tenemos que
es un campo que conserva la estructura Riemanniana y la estructura simpléctica y por tanto
también conserva la estructura Hermitica. Es por ello que la evolucion temporal de cualquier
sistema mecano cuantico se puede escribir en términos de las ecuaciones de Hamilton clasicas.
Como se enuncia en [26] ”Schrodinger’s equation is Hamilton’s equation in disguised!”.

C.5. La informacién espectral

Un tema pendiente es el hecho de como recuperar la nocién de autovalor y autovector
de los operadores definidos sobre H a nivel de las funciones definidas sobre Mg o sobre el
proyectivo. Sea A un operador autoadjunto,

44+—>eA<h¢>>::<ﬁlfiﬁ§ (C.36)

entonces,

- Los autovectores corresponden a los puntos criticos de las funciones e 4, es decir,
dea(|y),) = 0siy sélo si |1)), es un autovector de A

donde cabe destacar que si |)) es autovector de e4 entonces € [1)) también lo sera.

- Los autovalores correspondientes estdn dados por e4(|1)),).

Resaltar que mediante el uso de los tensores de Poisson (2 y de Riemann G, se ha podido
recuperar el producto de Lie y el producto de Jordan respectivamente, para las funciones
cuadraticas.

C.6. Equivalencia: formalismo de Schrodinger y de Heisenberg

Los formalismos desarrollados en el capitulo 1 y en el apéndice, sobre el espacio de estados
y sobre el espacio de observables, son equivalentes. En [1], se encuentra como haciendo uso
de la aplicacién,

FidMgxO =R, (9),4) 3 (] 4%) = falle), (c.a7

podemos construir si fijamos [¢), una aplicacién F(|¢)) : O — R, de forma que a cada ele-
mento |¢)) € H asociamos un elemento en O*. A esta aplicacién se le conoce como aplicacién
momento [27],

peH =0, () = py = [¥) (Y], (C.38)

8Ver en apéndice A DFN E.15

Autor: Pablo Sala de Torres-Solanot
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donde py(A) = L (1| Ap) para todo A € O.

Como consecuencias de esta aplicacion p definida, se puede demostrar que si A € O
entonces:

pe(G+1iQ) = R+iA,  p(Xpg) = Xpg, p*(A) = fa, (C.39)

donde se ha usado la notacién Xy para distinguir ambos campos Hamiltonianos, puesto que
estan definidos en distintos espacios.

Formulacion simpléctica de la Mecdnica Cudntica



Apéndice D

QZE: Efecto Zendén cuantico

Este efecto recibe su nombre en 1976 [4]. Se trata de un fenémeno existente en el mundo
cuantico, por el cual uno podria congelar un sistema cuédntico en un estado determinado[18],[19].
Pensemos por ejemplo en un sistema cuédntico inestable [28]. Su espacio de configuracién se
divide en los estados para los cuales la particula no ha decaido y en aquellos estados en los que
si. Mediante una observacién del estado sin decaer lo que hacemos es ’colapsar’ (proyectar),
la funcién de ondas al estado sin decaer (visién a la von Neumann). La probabilidad de que
el estado decaiga, después de este colapso crece cuadraticamente con el tiempo para tiempos
suficientemente cortos. Si lo que se hace es realizar infinitas observaciones en intervalos muy
cortos de tiempo de forma que no dejemos evolucionar al sistema, estaremos confinando el
estado de la particula al estado sin decaer, de manera que podremos evitarlo finalmente. De
esta forma, un estado que sea continuamente observado nunca decaerd [29]. Resaltar que este
es un efecto tedrico, corroborado anos mas tarde en el laboratorio.

Dentro de las tres maneras equivalentes que tenemos de describir este efecto, [19], existe
una consistente en suponer a las medidas sobre el sistema cudntico como proyecciones ins-
tantaneas sobre el mismo. Es en esta formulacién donde aplicaremos la teoria desarrollado
hasta ahora.

D.1. Formulacion geométrica de la dinamica de Zenon

Como hemos venido observando desde el principio, la dindmica en una formulaciéon geométri-
ca de la mecanica cuantica, viene determinada por el campo vectorial asociado al Hamilto-
niano (1.13), asi como la evolucién de las estructuras subyacentes en dicho espacio (2.26).
Nos preguntamos pues ahora si una evolucién como la de Zendén puede ser descrita por uno
de estos campos. Cabe destacar que es la primera vez que esta cuestion ha sido abordada y
que por tanto su resolucién es original para este trabajo.

La dindmica de Zendn para esta formulacién a base de proyecciones supone que: partiendo
de un determinado estado cudntico p , del cual queremos proteger un determinado subespacio,
proyectamos sobre dicho subespacio (midiendo) y entonces dejamos evolucionar el sistema
cuantico durante un cierto intervalo temporal 7 suficientemente pequenio. Tras ese lapso,
el sistema se ve proyectado de nuevo, siendo estas proyecciones instantaneas y generando
asi puntos de discontinuidad en el flujo. Consideremos pues la transformacién,

pz(to +7) = Pe 7 Pp(ty) PetI™ P, (D.1)

donde P son operadores de proyeccion, los cuales son operadores de contraccién (|| P|| < 1),
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46 Capitulo D. QZE: Efecto Zenén cuantico

y H el operador Hamiltoniano. De esta forma

pz(to+7) = Pp(to)P—i |PHP.—Pp(to)PHP | 7+0(7%) = Pp(to)P+[Hz, Pp(to) P]+0O(7?).
Hz

Po{to) P

z PU(T) Pyt U (1) P

-z
Kttt nt

Figura D.1: Explicacién visual de la dindmica de Zenoén: proceso de medida y obtencién del
campo.

Supongamos que s € [0,7] es el pardmetro de la curva durante ese intervalo, entonces
tomando la derivada de esta evolucién respecto a dicho pardmetro y evaluando en s = 0
obtenemos

. dpz(to +s)
lim —=————= = [Hz, Pp(to)P| = [P,[Hz, p(to)]]. — [Hz,p(to)] -
s—0 ds
Lo que aqui hemos obtenido es el generador infinitesimal que gobierna la dindmica del
sistema durante un cierto periodo de tiempo 7, definiendo asi una ecuacién diferencial andloga
a la dada para sistemas cudnticos abiertos,

(t) = Z(p(0))
donde Z viene dado por,
2wy — (M), p Z(p) = [P [Hz pltol — [Haoplte)] . (D2)

Asi su campo vectorial asociado, XZ se calcula haciendo uso de (1.10). De esta forma se
sigue que

XZ(A) = (A, 2(p)) = (21(A),p) = (= [P.[Hz, All, + [Hz, AL, p),. (D3)

(@]

No obstante, cabe destacar que aunque aparentemente hemos determinado un campo de
vectores en todo el espacio, sélo hemos determinado un conjunto de vectores tangente a la
curva evolucién, en un conjunto numerable de puntos. La intencién serd pues aplicar el limite
de medidas muy frecuentes, es decir un lapso temporal 7 — 0, de forma que recuperemos el
vector tangente a la curva en todo punto de la misma.

Formulacion simpléctica de la Mecdnica Cudntica



Apéndice E

Algunos conceptos de geometria
diferencial

Definicion E.1. Una variedad topoldgica M de dimension n es un espacio localmente Euclideo,
lo que significa que para todo punto x € M existe un entorno abierto U de z y un homeo-
morfismo ¢ : U — o(U) C R"™ con ¢(U) abierto en R™.

Al par (U, ¢) se le donomina carta local de M en x. Un ejemplo, de variedad topoldgica es
la circunferencia, S donde como carta puede ser usada entre otras la proyeccién estereografica
desde el polo norte N = (0,1) o la parametrizacién de la circunferencia con un éngulo .

Una vez se ha introducido el concepto de variedad topoldgica, podemos pasar a definir
variedad diferenciable.

Definicion E.2. Una variedad diferenciable M de dimension n y de clase C* es una variedad
topoldgica de dimensién n tal que existe un sistema de cartas locales {(Uy,Ya)}tocq que
satisfacen

I) UaeAu — M
11) Para todo a, 8 € A tal que U, NUp # 0 la aplicacién
05090 i pallla NUs) CR" = @p(Ua NUg) CR" (E.1)

es diferenciable de clase €™ (y, por tanto un difeomorfismo).

El significado de esta definicién es que podemos encontrar un conjunto de abiertos U,
cuya union cubra toda la variedad de forma que aunque dos de ellos solapen, el cambio de
coordenadas de uno a otro es un difeomorfismo, es decir que el cambio de un sistema de
coordenadas a otro es suave.

Como ejemplo sencillo de variedad diferenciable podemos pensar en cualquier abierto de
R"™, donde existe una carta global (R",idg)

Cabria pensar qué relacion tiene esta definicién matemaética tan abstracta con la fisica.
Para apreciar dicho enfoque se recomienda leer el capitulo 2 de [30]. La definicién aqui dada
de variedad diferenciable no es la méas general ni la més rigurosa. Para ver desarrollos més
rigurosos de este concepto ver [31] y [32].

Definiciéon E.3. Sea M una variedad diferenciable y p € M. LLamaremos vector tangente
en p a toda aplicaciéon X, : C*°(p) — R que verifique:
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48 Capitulo E. Algunos conceptos de geometria diferencial

Figura E.1: Representacion visual. [23]

1) X, es lineal, es decir: X,(Af + png) = AXp(f) + nXp(9), A, p € R,

1) X,(f,9) = f(p)Xp(9) + 9(p)Xp(f) (Regla de Leibniz).

Definicion E.4. LLamaremos espacio vectorial tangente a M en el punto p al espacio vec-
torial de los vectores en el punto p. Sera denotado por T),(M).

De forma intuitiva un campo vectorial en un abierto 4 C R™ es una aplicaciéon que asigna
a cada punto p € U un vector X, € T,U. El conjunto

TU = | J T,u
peU

es el conjunto de todos los pares (p,X,) con p € U y X, € T,U. Si denotamos por 7 la
proyeccién 7 : TU — U definida por 7(p, X;,) = p, un campo vectorial en U es una aplicacién
X :U —TU tal que 7 o X = idy.

Definicion E.5. El conjunto

T™™ = | ] T,M
peEM

se denomina fibrado tangente de la variedad M.

Ademds diremos que un campo vectorial X es diferenciable en la variedad M si y sélo
si para cada carta (U,¢) de M, las componentes del campo respecto de dicha carta son
diferenciables. El conjunto de campos vectoriales diferenciables sobre la variedad M al cual
denotamos X(M), es un espacio vectorial real respecto a la operacién suma y producto por
escalar y puede ser dotado de una estructura de C°° (M )-mdédulo.

Ejemplo:

Si la variedad es M = R3—{0}. El campo gravitatorio viene definido por algo proporcional
al campo,

.

0
Xp = Z oxt

=1 p

ﬁw‘ IS

Por otro lado el dual de T, M recibe el nombre de espacio vectorial cotangenteenp € My
se denota Ty M. Sus elementos se llaman covectores en p o vectores covariantes. Por ejemplo,
para cada funcién f € C*(p), podemos definir un covector en p que denotamos (df), por

(df)p(Xp) = pr-

Formulacion simpléctica de la Mecdnica Cudntica
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Una 1-forma diferencial en una variedad diferenciable M es una aplicacién
w:M—=>T"M
tal que w, € TyM.
Definicion E.6. El conjunto
"M = | J ;M
peEM
se denomina fibrado cotangente de la variedad M.

Asociado a este espacio podemos definir la proyeccién (natural)
oy TM — M

definida como sigue
mu(p,wp) =p, wp € Ty M

Por ejemplo cuando un sistema mecdnico admite una variedad diferenciable () como es-
pacio de configuracion, la descripcién del sistema en el espacio de fases hace uso del fibrado
cotangente, en donde el campo vectorial Hamiltoniano Xy en T*( admite una expresion
coordenada,

i 9 i 9
XH’(q,p) =a (Q7p)87ql ’(q,p) +b (Q7p)87p1 |(q,p)

Describamos a continuacién lo que denominamos diferencial y codiferencial de una apli-
cacién F': M — N, siendo M y N variedad diferenciales.

Sea F' : M — N una aplicacién diferenciable de M a N. Para cada punto p € M, la
diferencial de F' en p € M, denotada como Fly, definida mediante Fi,(X,)f = X,p(f o F),
Vf € C*°(F(p)) es un morfismo de espacios vectoriales, Fi, : TyM — TpyN. Por tanto I
induce una aplicacién F, que transporta vectores tangentes X, del conjunto de curvas que
pasan por p, a vectores tangentes Xp(,) de curvas que pasan por F (p)Vp € M.

D

o p=c(0)

Figura E.2: La aplicacién F': M — N induce la aplicacién diferencial Fy : T,M — T, N.
¢(t) representa una curva sobra M y g una funcién definida sobre N. Imagen sacada de [23]

Del mismo modo una aplicacién F': M — N induce una aplicaciéon F™* : T}, p)N =T, M,
de modo que para cada 1-forma diferencial w definida sobre N podemos definir una 1-forma
diferencial en M, que se denotard F*(w) y se dice imagen reciproca (pullback) de w, mediante

[(F* (@) X] (p) = [(F*(w)], Xp = wr@) [Fap(Xp)], VX € X(M)

Una vez definido el espacio tangente T,M y su dual T;M podemos construir el dlgebra
tensorial 7,M correspondiente a T),M, siendo los elementos de un subespacio de T,M de la
forma v1 ®...v, ® ... V45 donde v; € TyM coni=1,...,ryv; € T;M para los s indices
restantes. Dicho elementos reciben el nombre de tensores en p de tipo (7, s).

Autor: Pablo Sala de Torres-Solanot
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Definiciéon E.7. Si X es un campo vectorial sobre una variedad M, se dice que una curva
diferenciable v : I — M, es una curva integral del campo X si
dy

E|t=to = Xv(to) (EQ)

Si tomamos una carta (U, ¢) de M en p € y(I) podemos expresar la curva en coordenadas
de forma que ¢ : I — R™ con ¢ = ¢-~. La curva c asf definida es una curva integral del campo
©v«(X) de forma que

dct ,
d—‘; = Fi(cl(t),...,c™ (1) (E.3)

donde F* son las componentes del campo ¢.(X) en R™ respecto de la base canénica en R™.

Definicion E.8. Sea M una variedad diferenciable. Se llama forma simpléctica en M a una
2-forma cerrada (dw = 0) no degenerada (rango méximo) w. El par (M,w) recibe el nombre
de variedad simpléctica. En particular, cuando w es exacta ( w = dO) se dice que (M, w) es
una variedad simpléctica exacta.

Un ejemplo sencillo de variedad simpléctica es la esfera S? con la 2-forma diferencial dada
por
w = sinfdo N df (E.4)

donde w viene a representar el elemento de area inducido sobre la esfera unidad.

El estudio de las variedades simplécticas estd basado en el teorema siguiente, el cual
caracteriza localmente dichas variedades.

Teorema E.0.1. (Teorema de Darboux) Si w es una forma simpléctica en una variedad
diferenciable M, para cada punto x € M hay una carta local coordenada en torno a x en la
cual las coordenadas de w son constantes.

Nota. Si (M,w) es una variedad simpléctica de dimensién finita 2n, entonces, alrededor de
cada punto z € M, hay una carta coordenada (U, ¢), en donde la aplicacién ¢ esta dada por
o(x)=(¢*,...,q",p1,...,pn), tal que w se escribe como:

n
wy = Z dqi A dp;
i=1

A tales coordenadas (¢*, p;) se les denomina coordenadas candnicas o de Darboux.

Definicién E.9. Sea M una variedad m-dimensional y T}, M el espacio tangente en p € M.
Una distribucién k-dimensional sobre M es una eleccién de un subespacio lineal k-dimensional
D, C T,M para cada punto p € M. Dicha distribucién denotada como D , viene dada por

D= ][] D,cTM
peEM

Definicion E.10. Llamamos forma diferencial de grado r, o simplemente r-forma en M a
todo campo tensorial covariante de tipo (0,r), totalmente antisimétrico.

Definicién E.11. Denotamos por A "(M) el conjunto de las r-formas definidas sobre M,y
por A\ °(M) a C>®(M).

Definicién E.12. Si X € X(M), se denota por ix 0 i(X) a la aplicacién ix : A(M) - A\(M)
(conjunto de formas antisimétricas sobre M) tal que

Formulacion simpléctica de la Mecdnica Cudntica
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1) ix A"(M) c A" (M) si r > 1 mientras que ix A°(M) = 0.
1) Siwe A\"(M), entonces ixw(Xi,...,Xr—1) =w(X, X1,...,X;—1).

Definicion E.13. Sea M una variedad diferenciable, X un campo vectorial y ®; el flujo de
dicho campo. Si p € M, entonces recordar que X,, es el vector tangente al flujo en el punto p,
es decir X, = %@t(p)h:o. De esta forma como (X f) (p) = X, f se puede ver que

d

(XF)(p) = = [f(2e(p))] le=o (E.5)

La generalizacion para campos vectoriales covariantes es:
Para cada campo vectorial X € X(M) y cada campo r-covariante w se define la derivada

de Lie de w segtin el campo vectorial X como el campo r-covariante,

(£xw) () = lim < [(27)(p) — w(p)] (6)

t—0
Ademsds a continuacién se presentan algunas propiedades ttiles de la derivada de Lie.
1) Si f € C®°(M) y w es un campo r veces covariante, para cada campo vectorial X €

X(M),
Lx(fw)=(Xflw+ fLxw

11) Si Ty S son dos tensores sobre la variedad M, entonces

Lx(T®S)=(LxT)2S+T® (LxS)
) Para cada f € C°(M) y cada X € X(M),
Lxdf =d(X[f)=d(Lx[)

1v) Se puede demostrar que si X e Y son dos campos vectoriales diferenciables definidos
sobre M, entonces
LxY =[X,Y]

Como ejemplo vamos a calcular LxG siendo G = g;(q)dg; ® dg;

LxG = (Xgij(q))dg; @ dg; + 9ij(q)d(X ;) ® dgj + gij(q)dg; @ d(Xq;)

Definicién E.14. Se llama sistema dindmico Hamiltoniano a una terna (M,w, H) donde
(M, w) es una variedad simpléctica y H una funcién C°°(M). El campo vectorial del sistema
dindmico viene dado por Xy = @ 1 (dH), o de forma equivalente por la solucién de i XpW =
dH.

De hecho el campo vectorial Xz correspondiente a H se escribe en coordenadas candnicas
como

OH 0 0H 0
" 9p 0¢  0q' Op; (E7)
dado que
OH  , OH
dH = g dq' + o dp; (E.8)

De aqui se deduce que efectivamente las curvas integrales del campo vectorial Xy son
determinadas en coordenadas candnicas por ecuaciones como las de Hamilton.

Autor: Pablo Sala de Torres-Solanot
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Definicién E.15. Sea (M, g) una variedad Riemanniana y X € X(M) un campo vectorial so-
bre dicha variedad. Si al practicar un desplazamiento €X infinitesimal, se genera una isometria
(se preserva la métrica), el campo X se dice campo de Killing. Se puede ver que entonces
L Xg = 0.

Definicién E.16. Se dice que un campo vectorial X € X(M) es localmente Hamiltoniano
respecto de la estructura simpléctica w si ¢xw es una 1-forma cerrada. En caso de que 7xw
sea exacta se dice que es Hamiltoniano. El conjunto de los campos localmente Hamiltonianos,
asi como el subconjunto Hamiltoniano, son espacios vectoriales reales.

Ademas existe un teorema que demuestra, haciendo uso de la identidad de homotopia y de
que w es una forma simpléctica (por tanto cerrada) que un campo es localmente Hamiltoniano
si y sélo si Lxw = 0, lo cual implica que bajo la accién del flujo de dicho campo w no varia.

Definicion E.17. Sea V un subespacio vectorial tal que P, es el proyector que proyecta
sobre V. Si V es invariante bajo A entonces

PAP = AP

Ademds si no sélo V es invariante bajo A sino que también V= lo es, entonces
(1-P)A1—-P)=A(1-P)

lo cual implica que,
AP = PA

Definiciéon E.18. Si ® : G x M — M es una accién del grupo de Lie G en la variedad
diferenciable M, se llama érbita del punto m € M al subconjunto @,,(G).

Definicion E.19. Sea M una variedad compleja con estructura compleja J y una métrica
Riemanniana g. La 2-forma alterna, y por tanto antisimétrica

w(X,Y) :=g9(JX,Y)
es la llamada forma de Kéhler asociada.

Adema&s remarcar que visto 7'M junto con J como un espacio complejo tangente sobre M,
y b una métrica Hermitica en T M. Entonces g = Re b es una métrica Riemaniana compatible
en M, es decir, g(JX,JY)=¢g(X,Y) VXY € M ew=1Imb es la forma Kéhler asociada:

g(JX,Y) = Reh(JX,Y) = Reh(i X,Y) = Re(—i h(X,Y)) = Imh(X,Y) = w(X,Y)

Vice versa, si g es una métrica Riemaniana compatible en M y w es la forma Kahler,
entonces h = g + iw es una forma Hermitica en TM. Ademads las propiedades del producto
Hermitico dado por h, implican que g es un producto interno definido positivo y que w es una
forma simpléctica, ambos no degenerados.

En resumen, el triplete (J, g,w) equipa a Mg con la estructura de un espacio de Kéhler.

Por tltimo introduzcamos el concepto de paréntesis de Schouten, el cual fue utilizado en
la contraccién de algebras de Lie.

Proposicién 3. Sea M una variedad diferenciable. Entonces existe un unico paréntesis R-
lineal [-,-]g : X*(M) x X*(M) — X*(M) tal que

1) [-,] es de grado -1.

Formulacion simpléctica de la Mecdnica Cudntica
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2) Para todo X € X'(M) y Q € X*(M)

[XvQ]S = £XQ

En particular el paréntesis coincide con el usual paréntesis de Lie de campos vectoriales
sobre X*(M).

3) Para todo P € XP(M) y Q € X1(M)
[P,Qls = —(-1)"" Ve [Q, Plg.
4) Para todo P € XP(M), Q € X9(M) y R € X*(M)

[P,Q AR = [P,Qlg AR+ (=1)""VIQ A [P, R].

5) Para todo P € XP(M), Q € X4(M) yR € X"(M)

()PP [Q, ) + () DV [Q, [R, Pl + (-1)" VY[R, [PQ)

Demostracion. Se puede encontrar en [33]. O

Autor: Pablo Sala de Torres-Solanot






Apéndice F
Ejemplo de contraccién

Consideremos el algebra de Lie so0(3) de la rotaciones en tres dimensiones en el espacio
Euclideo y apliquemos la teoria de contracciones de dlgebras de Lie. En este caso haremos uso
del punto de vista pasivo, donde las transformaciones U (€) son consideradas como un cambio
de base.

Podemos elegir como base B = {a1, az,a3} de forma que

la1,a2) = a3, |ag,a3] = a1, [a3,a1] = as.

Para este caso las tnicas subdlgebras son dimension uno. Asi podemos elegir por ejemplo
la generada por ag, es decir, Vg = (e3) y Vy = (e1, e2) y b] = U(e)er = eay, b5 = U(€)a; = eag,
b5 = U(e)as = a3 y asi encontramos que,

[b, 5] = €05
(b5, b5] = b

[ g? bel] = b;,
y en el limite ¢ — 0 se obtiene
[0,65] =0, [09,08] =07,  [08,09] =03,

que es el algebra ¢(2) del grupo Euclideo en dos dimensiones ( rotaciones y traslaciones en
R?).

Andlogamente se obtendria para el punto de vista activo, sin més que recurrir a (2.7).
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