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Chapter 1

Preliminary concepts and an introduction
to the model

In this chapter we will briefly introduce some concepts related to complexity theory and dynamical
systems. First, we give a general notion of the terms system and complexity. Secondly, we introduce
networks and complex networks, and a short list of relevant kinds of networks. We will also try to
connect both networks and dynamical systems through a definition of coupled dynamical systems.
Finally we define chaos, when related to dynamical systems, and we describe the dynamics of the
logistic map.

1.1 Complex and dynamical systems

Even though they are frequently used in mathematics and computational sciences, the terms complex-
ity, system, and complex system refer to more general concepts. We will give non rigurous definitions.

Definition. • A system is a set of components and relations between them, acting as a whole.

• We say a property of a system is emergent if it can not be reduced to the properties of its
components.

• A complex system is a system with non-trivial emergent properties.

Although the definitions are ambiguous, some general properties are commonly said to be related
to complexity, such as feedback, non-linearity, self organization, pattern formation, chaos and
memory.

Now we give a mathematical background, introducing dynamical systems.

Definition 1.1.1. We call dynamical system to the tuple (S ,φ ,T) where S is an arbitrary set, called
phase space, T = Z∨R called set of times, and φ = {φt} is a family of maps φt : S −→S defined
for t ≥ 0, such that:

• φ0 = 1S

• φs+t = φs ◦φt , ∀t,s≥ 0

If the set of times is Z we say the dynamical system is discrete, and if it is R we say it is continous.
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VI Chapter 1. Preliminary concepts and an introduction to the model

1.2 Complex networks and coupled dynamical systems

Again, the term complex network is not well defined, it may make reference to several kinds of net-
works. We will first remind some general graph theory concepts to give a mathematical background.

Definition 1.2.1. A graph is a tuple G = (V,E) with E and V two sets such that E ⊆ V×V. We call
V the set of vertices and E the set of edges of the graph. We will say that a graph is undirected if
(i, j) ∈ E⇐⇒ ( j, i) ∈ E. A subgraph of G = (V,E) is another graph G1 = (V1,E1) such that V1 ⊆ V
y E1 ⊆ E.

Definition 1.2.2. Set the graph G = (V,E), and i, j ∈ V. A path of length l from the vertex i to j
is a sequence of vertices (i0, i1, i2, . . . , il) such that i0 = i, il = j and (ih−1, ih) ∈ E for h = 1,2, . . . , l.
A graph is said to be connected if there exists a paht joining every pair of vertices. A connected
component of a graph is a connected subgraph.

Definition 1.2.3. Given a undirected graph G = (V,E) and a vertex i ∈ V, we call degree of a vertex
Ni, to the cardinal of its set of neighbors or adjacent vertices, that is, the vertices in V such that there
exists a path of lenght 1 connecting them with i.

A general definition of complex network may be:

Definition. We say a network is a complex network if it has topological properties substantially
different from those present on a random graph.

Therefore, the complexity of a graph is measured using several properties of the network. We
understand some natural networks as complex networks, and classify them according to its structure.
Some typical networks of interest are random networks, scale-free networks and small-world net-
works.

We end this section by giving a definition of coupled dynamical systems. First, we give a definition
of coupled system of equations:

Definition 1.2.4. Given a system of k first order ordinary differential equations or a system of recur-
rences:

dxi

dt
= Fi(x1, . . . ,xk, t) or xi,n+1 = Gi(x1,n, . . . ,xk,n,n) with i = 1, . . . ,k

With Fi : S ×R −→S and Gi : S ×Z −→S being S = ∏Si a product of k sets where the
equation is well defined.

Set the graph H = (V,E), the coupling graph, with V = {1, . . . ,k} and the set of edges E with
(i, j) ∈ E⇐⇒ i ∈ V and j is a variable where Fi or Gi, depending on the kind of system, is non trivial
(that is, non constant on the component j) and i 6= j.
A system of equations is coupled if the graph H is connected. Otherwise, we will call coupled com-
ponents to the subsystems associated to the connected components of H.

We can finally define a coupled dynamical system as follows:

Definition 1.2.5. We call coupled dynamical system to a dynamical system (S ,φ ,T) where φ is the
general solution of a coupled system.

1.3 Chaos in dynamical systems: The logistic map

From now on we will assume that S is a metric space. Lets first remind the definition of orbit of a
point and orbit of period τ .
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1.3. Chaos in dynamical systems: The logistic map VII

Definition 1.3.1. Given a dynamical system (S ,φ ,T) and x ∈S we call orbit of x to the set:

γx = {φt(x) | t ∈ T}

We say that an orbit is a periodic orbit with period τ if:

∃τ ∈ T such that φτ(y) = y, ∀y ∈ γx

And we say that τ is its minimum period if:

φt(y) 6= y, ∀t < τ

Lets introduce the definition of chaos.

Definition 1.3.2. We say a dynamical system (S ,φ ,T) is chaotic if it satisfies:

• It is sensible to initial conditions:

∃δ > 0 such that ∀x0 ∈S and ∀Ux0 nhood of x0 we have that ∃y0 ∈ Ux0 and a t > 0 such that:

d(φt(x0),φt(y0))> δ

• It is topologically transitive in S :

Given U and V open in S , ∃x0 ∈ U∧ t > 0 such that φt(x0) ∈ V

• It has a set of periodic orbits dense in S .

Now we give a characterization of chaos:

Definition 1.3.3. We call Sarkovskii order to the order of the naturals given as follows:

3 5 7 9 11 . . . (2n+1) ·20 . . .
3 ·21 5 ·21 7 ·21 9 ·21 11 ·21 . . . (2n+1) ·21 . . .
3 ·22 5 ·22 7 ·22 9 ·22 11 ·22 . . . (2n+1) ·22 . . .

...
...

3 ·2k 5 ·2k 7 ·2k 9 ·2k 11 ·2k . . . (2n+1) ·2k . . .
...

...
. . . 2n 2n−1 . . . 23 22 2 1

Theorem 1.3.4. (Sarkovskii’s theorem) Given the dynamical system (I,φ ,Z) with I closed, and denote
Sarkovskii’s order with �. φn : I −→ I a continuous mapping with an orbit of minimum period m .
Then, φn has orbits of minimum period k, ∀k≺m. In particular, if φn has an orbit of minimum period
3, then it has orbits of minimum period k, ∀k ∈ N.

Now we introduce the logistic map:

Definition 1.3.5. We call logistic map of parameter p, with p ∈ (0,4) to the dynamical system
([0,1],λ ,Z) where λ = {λn} is the family of maps λn : S −→S given by:

λ1(x) = px(1− x) and λn(x) = λ1
n· · ·λ1(x)

And now we summarize the dynamics of the system:

1. 0 < p≤ 1: All the initial conditions converge to 0.
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VIII Chapter 1. Preliminary concepts and an introduction to the model

2. 1 < p≤ 3: As p gets bigger than 1 the dynamics change. A stable, non-zero fixed point appears:

x =
p−1

p
(1.1)

3. 3 < p < 3.57: Takes place the period doubling cascade. The fixed point loses its stability, and
the initial conditions tend to oscilate in period 2n orbits, with n growing to infinity as p gets
near the critical value 3.57.

4. 3.57 < p < 3.82: Chaotic behaviour appears in this range.

5. 3.82 < p < 3.85: A period 3 orbit appears for p = 3.82. We also get a period doubling cascade
with periods 3 ·2n.

6. 3.85 < p < 4: We get chaotic behavior mixed with periodic obits in this range.

7. p = 4: We get chaotic behavior in all [0,1].
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Chapter 2

The model of coupled logistic maps

In this chapter we introduce and study a new system of coupled logistic maps. We also give some
notions on stability and define the concept of bistability of a dynamical system. We show that the new
model is bistable no matter what coupling network we choose.

2.1 Coupling of two maps

Definition 2.1.1. Given a dynamical system (S ,φ ,T) a set J ⊆S is said to be an invariant set if it
satisfies:

I f x ∈ J =⇒ φt(x) ∈ J, ∀t ∈ T

Definition 2.1.2. Let J be an invariant set, we say that J is stable (Lyapunov stable) if:

∀V open with J ⊂ V, ∃W open with J ⊂W such that φt(x) ∈ V, ∀t ≥ 0 and ∀x ∈W

Definition 2.1.3. Let J be an invariant set, we say that J is an attractor if:

• Attracts the dynamics, that is, ∃V open with J ⊂ V, such that ∀x ∈V we have that:

d(φt(x),V )
t→∞−→ 0

We call V the basin of attraction of J.

• V is a minimal set, that is, it does not contain any non-empty subset invariant and attracting the
dynamics.

Theorem 2.1.4. Let (S ,φ ,Z) be a discrete dynamical system, y F = φ1 a differentiable function,
such that φn = F ◦ n· · · ◦F. Let O = {p0, . . . , pτ−1} be an orbit of minimum period τ , and consider
B = Dφτ(p0) = B = DF(pτ−1)◦DF(pτ−2)◦ · · · ◦DF(p0). Then, denote ρ to the spectral ratio:

• If ρ(B)< 1, then the periodic orbit is asymptotically stable, (in particular stable).

• If ρ(B)> 1, then the periodic orbit is unstable.

Definition 2.1.5. A dynamical system is said to be bistable if it has two stable orbits.

Now we consider the two vertices coupling, the dynamical system in [0,1]× [0,1] given by the
system of equations:

xn+1 = p(3yn +1)xn(1− xn) (2.1)

yn+1 = p(3xn +1)yn(1− yn) (2.2)

with p ∈ (0,4).
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X Chapter 2. The model of coupled logistic maps

2.1.1 Fixed points and dynamics

Lets summarize the dynamics as p changes:

1. 0 < p < 0.75: The dynamic of the system converge to 0 for all the initial values.

2. 0.75 < p < 0.86: A sudden change happens. When both initial conditions are chosen in a
certain range, both vertices tend to syncrhonize at the fixed point:

x+ = (α+,α+) with α+ =
1
3
(1+

√
4− 3

p
)

If the initial values are chosen below or over that certain range both values will eventually
converge to 0. Therefore this is the first range where the system presents bistability.

3. 0.86 < p < 0.95: The fixed point bifurcates in to a period two orbit at p∼ 0.86. Both variables
oscilate out of phase.

4. 0.95 < p < 1: The system does no longer converge to a periodic orbit. Quasiperiodic orbits
appear in this range. Bistability is still possible.

5. p > 1: The system loses its bistability. Chaotic regimes appear for this p.

2.2 Arbitrary coupling

Given a graph G=(V,E) with N vertices, and i∈V . We call neighbourhood of i to the set of neighbors
of i, and we denote it as vi. We associate to each i a state in [0,1], denoted by xi. We call local mean
to the value:

x̄i =
1
Ni

∑
j∈vi

x j (2.3)

Therefore, given a graph we can build the system:

xi,n+1 = p(3x̄i,n +1)xi,n(1− xi,n) with i = 1, . . . ,N (2.4)

2.2.1 Dynamics and bistability of an arbitrary coupling

Over the synchronization manifold the equations end up as follows:

xn+1 = p(3xn +1)xn(1− xn) (2.5)

So the fixed points over this manifold are:

O = 0, x± =
1
3
(1±

√
4− 3

p
) (2.6)

The point O is stable for 0 < p < 1 and x± appear when p > 0.75. Therefore we will only study
bistability for p ∈ (0,1). Here, x+ is stable if 0.75 < p ≤ 1, but x− is not, and so we have bistability
in the synchronization manifold. We will say that O is the Off state and x+ is the On state.

Stability over the synchronization manifold does not imply global stability. Lets study how a
perturbation affects the system. Let ϕxi,n represent the evolution of an initial perturbation. Then we
have:

xi,n = θ +ϕxi,n con θ = O ∨ x+ (2.7)

with θ being one of the synchronized stable states. Now lets define the local mean perturbation:
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2.2. Arbitrary coupling XI

ϕ x̄i,n =
3
Ni

∑
j∈vi

ϕx j,n (2.8)

And so, we can get the following system by substituting this expresions on the main system, giving
us the dynamic of the perturbation:

ϕxi,n+1 = p(3θ +1)(1−2θ)ϕxi,n + pθ(1−θ)ϕ x̄i,n (2.9)

And the dynamics of the local mean perturbation:

ϕ x̄i,n+1 = p(3θ +1)(1−2θ)ϕ x̄i,n +3pθ(1−θ)× 1
Ni

∑
j∈vi

ϕ x̄ j,n (2.10)

One can write the local mean perturbation as:

1
Ni

∑
j∈vi

ϕ x̄ j,n = σi,nϕ x̄i,n =⇒ σi,n =
1
Ni

∑ j∈vi ϕ x̄ j,n

ϕ x̄i,n
(2.11)

Considering both systems, one gets the following two dimensional dynamical system for the per-
turbations:

(
ϕxi,n+1
ϕ x̄i,n+1

)
=

(
p(3θ +1)(1−2θ) pθ(1−θ)

0 p(3θ +1)(1−2θ)+3pσi,nθ(1−θ)

)(
ϕxi,n

ϕ x̄i,n

)
(2.12)

whose only dependence of the network is captured by σi,n. For θ = O the eigenvalues of the
matrix are λ1 = λ2 = p, therefore this state is stable if 0 < p < 1, and bistability is possible only if
p ≤ 1, and it depends on the stability of x+. Let now be θ = x+, and assume σi,n = σ , then, the
eigenvalues of the matrix are:

λ1 = 2−2p− p

√
4− 3

p
and λ2 = λ1 +

σ
3
(3−2p+ p

√
4− 3

p
) (2.13)

The eigenvalue |λ1|< 1 if p < 1. Therefore, the loss of stability must come from λ2. We name pc

to the value of p where x+ becomes unstable. Lets study the stabilty as σ varies:

• 0 < σ < 1: Then | λ2 |< 1, therefore the system is bistable for all p ∈ (0.75,1).

• −1 < σ < 0: There may be values where x+ becomes unstable for p < 1, thus pc < 1. Bistabil-
ity stills viable even if x+ is unstable, but with different dynamics.
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Chapter 3

Some new results

The logistic coupling presents lots of different properties, dependent and independent of the chosen
network. In this chapter we give some new characteristics of the coupling.

3.1 Fixed points of certain networks

We will check that, for some kinds of networks, the only fixed points of the system lay over the
synchronization manifold, but lets give an interesting property that links a pair of states and its local
mean.

Proposition 3.1.1. Let G be an undirected graph of N vertices and L the logistic coupling associated
to G. Let X = (x1, . . . ,xN) be a fixed point, and take two vertices, i and j such that xi,x j 6= 0, being xi

and x j the states of the vertices on the fixed point x̄i and x̄ j the local means. Then:

xi = x j ⇐⇒ x̄i = x̄ j (3.1)

The only fixed points of the following networks lay over the synchronization manifold:

1. Star networks

2. All-to-all clusters

3. All-to-all clusters with one vertex disconected from any other vertices on the cluster

3.2 Computational values of parameters related to the system

Bistability holds for any kind of network on a certain range of values of the parameter p. However,
some other properties are dependent of the chosen network. In this section, we will compute some
parameters sharing this dependence.

3.2.1 Value of pc for certain topologies

We call pc to the first value of the parameter p where the On state stops being a fixed point.
We make the computations using the perturbation system:

ϕxi,n+1 = p(3θ +1)(1−2θ)ϕxi,n + pθ(1−θ)ϕ x̄i,n (3.2)

When the perturbations do not converge to 0 the system do not lock into one of the, once stable,
fixed points, θ . Therefore it is enough to approximate the first value of p where this happens. We will
only study networks with 100 vertices.
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• For a scale-free network, pc ≈ 0.86, with an error of ±0.01. We obtain the same pc for a star
graph, that we may consider as a limit case of a scale-free network.

• For ring lattices, the values of pc grow from 0.86 to 1 as they approach to an all-to-all network.

• For all-to-all networks pc ≈ 0.99, computed with an error of ±0.01.

From this we conclude that, the denser the network is, the wider the region where x+ is stable,
that is, more connections mean a stronger simple bistability.

3.2.2 Value of σ for certain topologies

Now we compute the σ value for some networks, once again with 100 vertices. First, recall that, if x+
is stable, σi,n is not well defined, since the perturbations become 0. Therefore, σ is computed after x+
loses its stability, that is, for p > pc.

• A scale-free network has σ =−1, independent of the power law chosen.

• For ring lattices, the value of σ grows similar to pc, from −1 to 0 as they approach to an
all-to-all network.

• For an all-to-all network σ ≈ 0.

The values of σ and pc are strongly dependent. In fact, they are close to a linear dependence, here
computed by least squares:

pc = 0.998+0.135σ , σ ∈ [−1,0] (3.3)

3.3 Strategies for breaking the bistability of the system

In this section we try to remove the On state from the system.

3.3.1 Random parameter spread

We consider networks with 100 vertices, and we will choose randomly 50 of this vertices. Now we
construct the following system, being N1 the chosen vertices and N2 = N \N1:

{
xi,n+1 = p1(3x̄i,n +1)xi,n(1− xi,n) con i ∈ N1 y p1 ∈ [0.75,1)
xi,n+1 = p2(3x̄i,n +1)xi,n(1− xi,n) con i ∈ N2 y p2 ∈ [0,0.75)

(3.4)

A random selection implies different behaviours, depending on the importance of the chosen
vertices. However, some of this behaviours only depend of the network topology.

Scale-free, simple ring and all-to-all networks

We consider a scale-free network with γ = 2.5, an all-to-all network and a simple ring network, and
we choose 50 vertices randomly. Rings and scale-free networks present stronger bistability. The
ring is stronger than the scale-free network, and the scale-free network is stronger than the all-to-all
network. An interesting property is that they become imposible to shutdown when the parameter p1
becomes bigger than pc.
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3.3.2 Breaking bistability through a border effect

We take pairs of identic graphs of 50 vertices of the previosly considered networks, and consider its
join:

Definition 3.3.1. Given two graphs, G = (V1,E1) y H = (V2,E2), we define the graph join G+H as
follows:

G+H = (V3,E3) with V3 = V1∪V2, E3 = E1∪E2∪{(i, j)| i ∈ V1∧ j ∈ V2}

We give the first network a parameter p1 ∈ [0.75,1] and p2 ∈ [0.0,0.75] to the second one. Scale-
free and simple rings happen to be more sensible in this case. We can break bistability for any p1. The
join of two 50 vertices all-to-all networks is an all-to-all with 100 vertices, therefore we well obtain
the same results as before.
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Prólogo

La ciencia de sistemas complejos es un campo multidisciplinar que actualmente atrae gran interés
por su variedad de aplicaciones. Desde la interacción de las neuronas en un cerebro o la organización
social de una colonia de hormigas, hasta la forma en que se distribuyen los recursos de un cierto gru-
po comercial o su cotización en bolsa a lo largo del tiempo pueden interpretarse como sistemas que
presentan propiedades que no pueden ser extrapoladas ni deducidas solo en base al conocimiento del
comportamiento de sus componentes. Esto es lo que entendemos por un sistema complejo.

Por otra parte, también podemos hablar de complejidad al referirnos a una red. La teoría de re-
des complejas estudia las propiedades de una red que permiten caracterizarlas, para simplificar el
estudio de redes de gran envergadura que aparecen en fenómenos naturales y sociales y deducir com-
portamientos comunes, o bien para explicar la aparición de ciertos tipos de estructuras en situaciones
concretas. Un ejemplo típico es el juego de los seis grados de separación, que postula que dos per-
sonas cualesquiera están separadas, en media, solamente por una cadena de seis “amigos de amigos”
y que ilustra que las redes sociales comparten la característica de tener caminos cortos entre sus nodos.

En este trabajo damos una noción básica de lo que entendemos por sistemas y redes comple-
jas, algunas características que suelen asociarse a los sistemas complejos y algunas redes de interés
práctico. Daremos un trasfondo matemático introduciendo la definición de sistema dinámico. Descri-
biremos con cierta profundidad la dinámica del mapa logístico, un sistema que sirve de modelo básico
para representar la evolución de la población de una especie limitada por el exceso de individuos,
con la intención de estudiar a posteriori un modelo en el que varios mapas logísticos interaccionan
entre sí de acuerdo a una red subyacente que estructura sus relaciones. Consideraremos una relación
cooperativa entre los mapas. En términos del modelo de poblaciones podremos interpretar el nuevo
sistema como la acción entrelazada de varias especies que se ayudan mutuamente, que actúan sim-
bióticamente dado un cierto orden. Concretamente estudiaremos la biestabilidad del sistema, esto es,
la presencia simultánea de dos estados estables, que nos permite darle al modelo un enfoque neuroló-
gico, como representación sencilla de los estados de sueño y vigilia, apagado y encendido. Veremos
que esta propiedad esta presente primero en un enlace de dos nodos, y que se preserva al hacer crecer
la red, independientemente de la estructura que escojamos.

En el último capítulo se recopilan algunos resultados propios sobre varias propiedades del modelo
en red cuyo estudio queda pendiente. En particular se estudian los puntos fijos del sistema en varias
topologías. Así como la biestabilidad resultará ser independiente de la red escogida, estudiaremos
otras características y parámetros que rigen el sistema que si son dependientes de la red, como el
punto en el que la dinámica estable de la red cambia de comportamiento. Finalizaremos estudiando
un método para romper la biestabilidad del sistema, partiendo de una red que presente ambos estados y
manipulándola hasta que solo quede uno de ellos, hasta que la dinámica del sistema siempre converja
al apagado.

XVII





Índice general

1. Conceptos previos e introducción al modelo 1
1.1. Sistemas complejos y sistemas dinámicos . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Redes complejas y acoplado de sistemas dinámicos . . . . . . . . . . . . . . . . . . 3
1.3. Caos en sistemas dinámicos: El mapa logístico . . . . . . . . . . . . . . . . . . . . 5

2. El modelo de acoplado logístico 9
2.1. Acoplo de dos unidades funcionales . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. Dinámica y puntos fijos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2. Acoplado de una red arbitraria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Dinámica y biestabilidad del modelo de muchos nodos . . . . . . . . . . . . 12

3. Algunos resultados nuevos 17
3.1. Puntos fijos en ciertas topologías de red . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1. Topología en estrella . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2. Clústers de tipo all-to-all . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3. Desconectado de clústers all-to-all . . . . . . . . . . . . . . . . . . . . . . . 19

3.2. Medidas computacionales de parámetros asociados al sistema . . . . . . . . . . . . . 21
3.2.1. Cálculo de pc en algunas topologías . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2. Cálculo de σ en algunas topologías . . . . . . . . . . . . . . . . . . . . . . 22

3.3. Estrategias para la ruptura de la biestabilidad . . . . . . . . . . . . . . . . . . . . . 23
3.3.1. Por sembrado aleatorio de parámetros . . . . . . . . . . . . . . . . . . . . . 23
3.3.2. Ruptura por efecto frontera . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliografía 27

XIX





Capítulo 1

Conceptos previos e introducción al
modelo

En este capítulo se introducirán brevemente algunos conceptos de teoría de la complejidad y sis-
temas dinámicos, con objeto de esclarecer los términos y herramientas que después utilizaremos para
construir el acoplado de mapas logísticos.

En primer lugar se dan las nociones de sistema y complejidad, así como su relación con los siste-
mas dinámicos. A continuación se introduce el concepto de red y de red compleja y algunos tipos de
redes destacables por su presencia en gran cantidad de sistemas de diversas naturalezas. Además se
expone cómo su conjunción con los sistemas dinámicos puede dar lugar a sistemas complejos. En la
última sección se define el concepto de caos en un sistema dinámico y se presenta y estudia el mapa
logístico, un ejemplo sencillo de sistema con estas características y elemento fundamental del modelo
posterior.

1.1. Sistemas complejos y sistemas dinámicos

Aunque se utilizan con frecuencia en matemáticas y ciencias de la computación para referirse a
ciertos tipos de modelos y sistemas dinámicos, los conceptos sistema, complejidad y, en conjunto,
sistema complejo tienen un origen más bien epistemológico, pues hacen referencia a ideas más ge-
nerales, que no están necesariamente relacionadas con estas disciplinas. Daremos definiciones que,
aunque nada rigurosas, están muy extendidas.

Definición. Un sistema es un conjunto de elementos dotados de relaciones entre ellos y que actúan
como un todo.

El término sistema es tan ambiguo que la concepción de complejidad es, en muchas ocasiones,
definida a partir del mismo. No obstante, la complejidad es un concepto usado en gran variedad de
campos de rigor matemático, por tanto existen definiciones concebidas con la intención de servir a
propiedades especificas de sus objetos de estudio. Desgraciadamente, en nuestro caso, el término sis-
tema complejo y la complejidad a que se refiere no están universalmente perfilados. Un intento de
fundamentar estas definiciones en el marco de la teoría de sistemas se atribuye a Robert Rosen [R].

En general el concepto sistema complejo bebe directamente de la noción epistemológica de emer-
gencia. Ambos términos son definidos como sigue.

Definición. Diremos que una propiedad de un sistema es emergente si no puede ser reducida
al comportamiento particular de ninguna de sus componentes. Es decir, es una propiedad que
se asocia a las interacciones que tienen lugar entre los mismos, y que es imposible sin dicha
interacción.
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2 Capítulo 1. Conceptos previos e introducción al modelo

Un sistema complejo es un sistema en el que el conocimiento de los elementos que lo conforman
no es suficiente para caracterizar su comportamiento. Es decir, un sistema complejo es aquel
que presenta propiedades emergentes no triviales.

Aunque la terminología es ambigua, hay ciertas características reconocidas como causas o con-
ductas asociadas a la complejidad. Damos a continuación una lista no rigurosa y algunos ejemplos
[BY].

Retroalimentación:

Sistemas cuya evolución depende no solo del estado de sus elementos en un instante, sino
también de uno o varios estados anteriores.

Ejemplo. Sistemas definidos mediante ecuaciones recursivas.

Dinámica no-lineal:

Los sistemas con dinámica lineal son aquellos cuya evolución puede expresarse como suma de
componentes más pequeñas. Esto simplifica en gran medida el estudio y por eso no suelen estar
asociados a la complejidad.

Auto-organización:

Sistemas cuyas componentes interaccionan entre sí para dar lugar a un orden particular. Esta
organización no depende de elementos externos, sino de las partes del sistema. Por tanto se
presenta una propiedad emergente.

Formación de patrones:

La formación de patrones, fijos, repetitivos o variables es una clara propiedad emergente de
algunos sistemas. Ya sean patrones de conducta, o patrones espaciales, esta temática esta fuer-
temente asociada a la aparición de complejidad.

Ejemplo. Autómatas celulares.

Figura 1.1: Patrones formados por un autómata celular, regla 30.

Caos:

El término caos al que nos referimos, en sí mismo, implica la imposibilidad de predicción del
comportamiento a largo plazo solo en base al conocimiento de la evolución del sistema en
condiciones similares. Es por tanto esta incertidumbre la que lo relaciona con la complejidad.

Sistemas complejos



1.2. Redes complejas y acoplado de sistemas dinámicos 3

Algunos autores en cambio consideran que la aparición de caos rompe la complejidad, pues
exigen que el término sea utilizado exclusivamente sobre sistemas cuyo comportamiento es
difícil de predecir, no impredecible. De cualquier manera, los sistemas caóticos tienen patrones
de comportamiento determinados.

Ejemplo. Meteorología y dinámica de fluidos.

Memoria:

Es posible que algunos sistemas tengan memoria, esto es, que la evolución de estos sea diferente
en condiciones idénticas en base a cambios producidos en el sistema durante la experiencia
previa.

Tras esta introducción a la terminología y a fin de dar un marco y un fundamento sólido que nos
permita hacer estudio riguroso de sistemas concretos, así como modelizarlos, definimos lo que es un
sistema dinámico.

Definición 1.1.1. Llamamos sistema dinámico a la terna (S ,φ ,T) donde S es un conjunto arbitra-
rio, al que llamamos espacio de estados, T= Z∨R, y lo llamamos conjunto de tiempos, y φ = {φt}
es una familia de aplicaciones φt : S −→S definida para t ≥ 0, satisfaciendo:

φ0 = 1S

φs+t = φs ◦φt , ∀t,s≥ 0

Si el conjunto de tiempos es Z diremos que el sistema dinámico es discreto, y si es R diremos que es
continuo.

1.2. Redes complejas y acoplado de sistemas dinámicos

De nuevo la expresión red compleja no hace necesariamente referencia a un objeto matemático
concreto, sino que puede englobar distintas clases de redes, en función de lo que entendamos por la
complejidad de una red. La teoría de grafos da el marco natural para el estudio matemático riguroso
de estos objetos.

Primero recordemos la definición de red o grafo y de algunos otros términos de teoría de grafos
que nos son necesarios.

Definición 1.2.1. Un grafo es un par G = (V,E) con E y V dos conjuntos que satisfacen E ⊆ V×V.
Llamamos a V conjunto de nodos y a E conjunto de aristas del grafo. Decimos que el grafo es no
dirigido si se tiene que (i, j)∈E⇐⇒ ( j, i)∈E. Un subgrafo de G=(V,E) es otro grafo G1 =(V1,E1)
tal que V1 ⊆ V y E1 ⊆ E.

Definición 1.2.2. Sea el grafo G=(V,E), y i, j∈V. Un itinerario de longitud l desde el nodo i al nodo
j es una sucesión de nodos (i0, i1, i2, . . . , il) tal que i0 = i, il = j y (ih−1, ih) ∈ E para h = 1,2, . . . , l.
Un grafo se dice conexo si existe un itinerario uniendo dos nodos cualesquiera. Una componente
conexa de un grafo es un subgrafo conexo.

Definición 1.2.3. Dado un grafo no dirigido G = (V,E) y un nodo i ∈ V, llamamos grado del nodo
Ni, al cardinal de su conjunto de vecinos o nodos adyacentes, esto es, los nodos en V tales que existe
un itinerario de longitud 1 que los conecta con i.

Hay consenso a la hora de dar una noción general de red compleja.

Definición. Decimos que una red es una red compleja si posee propiedades topológicas que difieren
en gran medida de aquellas presentes en un grafo aleatorio.

Autor: Mario Asís Cánovas



4 Capítulo 1. Conceptos previos e introducción al modelo

Por tanto, la complejidad de una red depende de las propiedades topológicas que tomamos como
marco comparativo (podemos encontrar una compilación detallada de estas propiedades en [B]). Esto
da lugar a todo un estudio de las distintas medidas de la complejidad en función de los parámetros
escogidos. Así pues, podemos ver diversos tipos de redes que encontramos en la naturaleza (e.g. los
ciclos moleculares de las células, la estructura neuronal de un cerebro, las relaciones tróficas de un
ecosistema...) como redes complejas en función del tipo de topología que presentan. Es de interés
conocer y caracterizar bien las redes por su importancia para desentrañar las estructuras implicadas
en gran cantidad de procesos. En este sentido, se han estudiado distintos tipos de estructuras de red
destacables por aparecer con frecuencia organizando fenómenos sociales y naturales. Resumimos a
continuación las tratadas en [S].

1. Redes aleatorias:

Estos grafos se construyen de forma sencilla uniendo nodos aleatoriamente. Llamemos m al
número de aristas que añadimos a un conjunto de n nodos totalmente desconectado. Erdös y
Rényi estudiaron como la topología esperada de la red varía en función de m [ER]. Cuando
m es pequeño, el grafo tiende a estar fragmentado en muchas agregaciones o clústeres con
pocos nodos. Conforme aumentamos el valor de m, las componentes crecen en tamaño, primero
enlazándose con nodos aislados, y después uniendo entre sí distintos clústeres. Una cambio
drástico en la estructura surge cuando m = n/2. Muchos de los clústeres comienzan a enlazarse
entre sí para formar una única gran componente. Cuando m > n/2 la componente contiene del
orden de n nodos, esto es, la red esta totalmente conectada. De hecho, los caminos conectando
dos nodos son, en cierto sentido, cortos.

2. Redes scale-free

En muchas redes relacionadas con fenómenos naturales, algunos pocos nodos acumulan la ma-
yoría de enlaces, mientras el resto de nodos se enlazan menos. Cuantificamos este efecto de-
finiendo pk, donde pk es el número de nodos con k vértices, es decir, el número de nodos de
grado k. La distribución de grados para grafos aleatorios generados de forma sencilla (como
hemos descrito en el apartado anterior), sigue una distribución de Poisson. No obstante, mu-
chas redes reales siguen distribuciones que decaen mucho más lentamente que la distribución
de Poisson. De hecho, la distribución suele decaer siguiendo una ley potencial, pk ∼ k−γ , e.g. la
Web, redes de reacciones metabólicas y la red telefónica tienen exponentes γ ≈ 2.1− 2.4. Es-
tas redes, con distribución potencial de grados, fueron bautizadas por Barabási y Albert como
scale-free, que las estudiaron y dieron un método de construcción [BA]. Descubrieron ventajas
funcionales de esta topología, que justifican su frecuente presencia. Estas redes son resistentes
a fallos aleatorios, ya que la mayoría de los nodos tienen grados pequeños, esto es, el fallo de
un nodo afecta normalmente a pocos nodos adyacentes. Por otra parte, son muy vulnerables a
ataques deliberados, ya que desconectar un punto fuertemente conectado puede anular la red
por completo.

3. Redes small-world

Las redes small-world son redes entre la aleatoriedad y la regularidad, que poseen caminos
muy cortos entre sus nodos. Watts y Strogatz estudiaron estas redes y dieron un método para
construirlas [WS]. Estas redes también están presentes en gran cantidad de fenómenos naturales,
e.g. en el cerebro y en redes sociales y de empresas.
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(a) Aleatoria de Erdös-Renyi (b) Scale-free de Barabási-Albert (c) Small-world de Watts-Strogatz

Figura 1.2: Algunos ejemplos de redes

Para terminar, con la intención de estudiar como distintos sistemas pueden interactuar entre ellos,
demos una definición de sistema dinámico acoplado, de forma que después podamos construir un
sistema dinámico en base a un grafo.

Definición 1.2.4. Dado un sistema de k ecuaciones diferenciales ordinarias o de ecuaciones de recu-
rrencia de primer orden:

dxi

dt
= Fi(x1, . . . ,xk, t) o bien xi,n+1 = Gi(x1,n, . . . ,xk,n,n) con i = 1, . . . ,k

Con Fi : S ×R−→S y Gi : S ×Z−→S siendo S = ∏Si un producto de k conjuntos donde
la ecuación esté bien definida.

Sea el grafo H = (V,E), el grafo de acoplado, con V = {1, . . . ,k} y el conjunto de aristas E con
(i, j) ∈ E⇐⇒ i ∈ V y j es una componente en la que la aplicación Fi o Gi, en función del tipo de
sistema considerado, es no trivial (esto es, no son constantes en la componente j) y i 6= j.
Diremos que un sistema de ecuaciones, diferenciales o de recurrencia, es acoplado si el grafo H es
conexo. En otro caso, llamaremos componentes acopladas a los subsistemas de ecuaciones asociados
a las componentes conexas de H.

A partir de aquí es fácil hablar de sistemas dinámicos acoplados.

Definición 1.2.5. Llamamos sistema dinámico acoplado a un sistema dinámico (S ,φ ,T) donde φ
es solución de un sistema de ecuaciones acoplado, ya sean diferenciales o de recurrencia.

1.3. Caos en sistemas dinámicos: El mapa logístico

El caos, en lo que a sistemas dinámicos se refiere, se entiende a efectos prácticos como la impo-
sibilidad de conocer la evolución de un elemento del sistema aun conociendo el comportamiento de
elementos arbitrariamente cercanos al mismo. Es por ello que necesitamos definir primero el término
cercanía.

Recordamos la definición de espacio métrico [W].

Definición 1.3.1. Un espacio métrico es un par ordenado (S,d), constando de un conjunto S junto
con una función d : S×S :−→ R, a la que llamaremos métrica, cumpliendo que, ∀x,y,z ∈ S:

1. d(x,y)≥ 0

Autor: Mario Asís Cánovas



6 Capítulo 1. Conceptos previos e introducción al modelo

2. d(x,x) = 0 y d(x,y) = 0⇒ x = y

3. d(x,y) = d(y,x)

4. d(x,y)+d(y,z)≥ d(x,z) (desigualdad triangular)

Recordemos también la definición de órbita de un punto y de órbita de periodo τ .

Definición 1.3.2. Dado un sistema dinámico (S ,φ ,T) y x ∈S llamamos órbita de x al conjunto:

γx = {φt(x) | t ∈ T}

Decimos que una órbita es una órbita periódica de periodo τ si:

∃τ ∈ T tal que φτ(y) = y, ∀y ∈ γx

Y decimos que τ es su periodo mínimo si:

φt(y) 6= y, ∀t < τ

De ahora en adelante asumiremos que S es un espacio métrico dotado de la topología inducida
por la métrica.

Introduzcamos la noción de caos referida a un sistema dinámico [SN].

Definición 1.3.3. Diremos que un sistema dinámico (S ,φ ,T) es caótico si satisface:

Es sensible a condiciones iniciales:

∃δ > 0 tal que ∀x0 ∈S y ∀Ux0 entorno de x0 se tiene que ∃y0 ∈ Ux0 y un t > 0 tal que:

d(φt(x0),φt(y0))> δ

Es topológicamente transitivo en S :

Dados U y V abiertos en S , ∃x0 ∈ U∧ t > 0 tal que φt(x0) ∈ V

Posee un conjunto de órbitas periódicas denso en S .

A continuación enunciamos un teorema para sistemas dinámicos discretos que da una condición
suficiente para la existencia de regímenes caóticos. Una demostración del teorema puede encontrarse
en [T]. Primero introducimos el orden de Sarkovskii, un orden parcial para N.

Definición 1.3.4. Llamamos orden de Sarkovskii a la ordenación de los números naturales dada
como sigue:

3 5 7 9 11 . . . (2n+1) ·20 . . .
3 ·21 5 ·21 7 ·21 9 ·21 11 ·21 . . . (2n+1) ·21 . . .
3 ·22 5 ·22 7 ·22 9 ·22 11 ·22 . . . (2n+1) ·22 . . .

...
...

3 ·2k 5 ·2k 7 ·2k 9 ·2k 11 ·2k . . . (2n+1) ·2k . . .
...

...
. . . 2n 2n−1 . . . 23 22 2 1
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1.3. Caos en sistemas dinámicos: El mapa logístico 7

Teorema 1.3.5. (Teorema de Sarkovskii) Sea el sistema dinámico (I,φ ,Z) con I un intervalo cerrado,
y denotemos por � al orden de Sarkovskii. Sea φn : I −→ I una función continua con una órbita de
periodo m. Entonces, φn tiene órbitas de periodo mínimo k, ∀k ≺ m. En particular, si φn tiene una
órbita de periodo mínimo 3, entonces tiene órbitas de periodo mínimo k, ∀k ∈ N.

El mapa logístico es un sistema dinámico que sirve de modelo simple para la dinámica de pobla-
ciones de una especie aislada con recursos limitados. Además, es ejemplo muy sencillo de sistema
que presenta regímenes caóticos y el ladrillo fundamental del sistema que estudiaremos después.

Ahora definimos el mapa como sistema dinámico:

Definición 1.3.6. Llamamos mapa logístico de parámetro p, con p ∈ (0,4) al sistema dinámico dado
por la terna ([0,1],λ ,Z) donde λ = {λn} es la familia de aplicaciones λn : S −→S dada por:

λ1(x) = px(1− x) y λn(x) = λ1
n· · ·λ1(x)

Para simplificar notaciones el mapa logístico suele ser expresado mediante la relación de recu-
rrencia:

xn+1 = pxn(1− xn) (1.1)

Con esta notación, en términos del modelo de poblaciones, xn representa la población tras n ge-
neraciones. La expansión está controlada por el término pxn, proporcional a la población actual xn y
al parámetro p, al que llamamos ratio de crecimiento. La limitación de los recursos lleva al sistema
a una contración, directamente relacionada con la sobrepoblación, expresada con el término (1− xn).
La restricción del parámetro al intervalo (0,4) se toma para garantizar que xn ∈ (0,1). En general,
la ecuación de recurrencia no tiene una solución cerrada aunque es posible calcularla para valores
concretos del parámetro, pero solo estamos interesados en un resumen general de la dinámica, que se
puede caracterizar fácilmente mediante simulaciones.

Resumamos la dinámica del mapa logístico en función del valor de p [LF]:

1. 0 < p≤ 1: El ratio de crecimiento es demasiado pequeño para estabilizar la población. La fun-
ción es contractiva en todo [0,1] y por el teorema del punto fijo de Banach, el sistema decae a
su único punto fijo, 0. La población se extingue.

2. 1 < p≤ 3: Cuando p se hace mayor que 1 la dinámica cambia drásticamente. Se hace posible la
estabilización de una población no-nula. Aparece un punto de equilibrio entre el consumo y la
reproducción. Además, la población alcanza este estado independientemente de sus condiciones
iniciales. Concretamente, resolviendo la ecuación:

x = px(1− x) (1.2)

Ahora, como estamos interesados en la solución no-nula, podemos considerar:

1 = p(1− x)⇐⇒ x =
p−1

p
(1.3)

3. 3 < p < 3.57: Comienza la llamada cascada de doblamiento de periodo. La población deja de
asentarse en un único valor y comienza a oscilar en órbitas de periodo 2n, con n creciendo
progresivamente hacia infinito conforme p se aproxima al valor crítico 3.57.

4. 3.57 < p < 3.82: Cuando el parámetro se desplaza el sistema alterna comportamientos periódi-
cos de gran periodo en ciertos intervalos y regímenes caóticos para valores no localizados en
intervalos (el conjunto de puntos para los que el sistema es caótico no es abierto). La población
puede volverse impredecible a pesar del determinismo del sistema.
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8 Capítulo 1. Conceptos previos e introducción al modelo

Figura 1.3: Diagrama de bifurcación el mapa logístico.

5. 3.82 < p < 3.85: Aparece una órbita de periodo 3 para p = 3.82 tras un régimen donde el
sistema se vuelve más sencillo. Las zonas impredecibles, llamadas intermitencias, se vuelven
más infrecuentes, hasta desaparecer y originar la órbita de periodo 3. El teorema de Sarkovskii
garantiza por tanto que podemos encontrar órbitas de cualquier periodo, aunque en este caso
no son observables dada la inestabilidad computacional. En este rango aparece una cascada de
doblamiento de periodos 3 ·2n.

6. 3.85 < p < 4: Aparece de nuevo un comportamiento caótico con ventanas periódicas en este
intervalo.

7. p = 4: El régimen caótico se obtiene, para este valor del parámetro, en todo el intervalo [0,1].
Este régimen especifico produce dinámicas que parecen aleatorias. La dinámica pierde su de-
terminismo, y la población evoluciona como un generador de números aleatorios.

Estos comportamientos quedan bien representados en su diagrama de bifurcación. Se omiten los
estados transitorios, la trayectoria descrita antes de alcanzar un punto fijo o una órbita periódica.
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Capítulo 2

El modelo de acoplado logístico

En este capítulo se introduce y estudia la dinámica de un acoplado multiplicativo de mapas logís-
ticos sobre una red, que puede ser interpretado como modelo de un sistema cooperativo o simbiótico.
Se definen los conceptos de estabilidad y biestabilidad y se estudian los parámetros de acoplo para los
que el sistema presenta dicha propiedad. Se comprueba que cuando el valor del parámetro de acoplo es
pequeño, la dinámica de la red se disipa con el tiempo y deja de haber actividad: la red está apagada.
Cuando aumentamos el parámetro emerge, a partir de un valor crítico, un nuevo estado sincronizado
no nulo, para el cual consideraremos que la red está encendida. Se prueba, además, que el valor del
parámetro en el que aparece la bifurcación de estados es independiente de la topología de la red. Esto
motiva la reinterpretación del sistema simbiótico como modelo sencillo para los estados despierto y
dormido de un cerebro [BL].

2.1. Acoplo de dos unidades funcionales

Como hemos visto antes, el mapa logístico modeliza la evolución de una especie, generación tras
generación, en un sistema en el que el exceso de población es limitante. En esta sección generalizamos
el modelo a dos especies que coexisten simbióticamente, es decir, una puede contribuir al crecimiento
de la otra. En terminología de redes neurales hablamos de acoplado excitatorio.

Demos primero unas nociones sobre estabilidad.

Definición 2.1.1. Dado un sistema dinámico (S ,φ ,T) un conjunto J ⊆ S se dice conjunto inva-
riante si se cumple:

Si x ∈ J =⇒ φt(x) ∈ J, ∀t ∈ T

Definición 2.1.2. Sea J un conjunto invariante, se dice que J es estable (en el sentido de Lyapunov)
si se satisface:

∀V abierto con J ⊂ V, ∃W abierto con J ⊂W tal que φt(x) ∈ V, ∀t ≥ 0 y ∀x ∈W

Definición 2.1.3. Sea J un conjunto invariante, se dice que J es un atractor si:

Atrae la dinámica, es decir, ∃V abierto con J ⊂ V, tal que ∀x ∈V se tiene que:

d(φt(x),V )
t→∞−→ 0

Llamamos a V vasija de atracción de J.

V es un conjunto minimal, es decir, no existe ningún subconjunto no vacío de V que sea inva-
riante y atraiga la dinámica.
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Teorema 2.1.4. Sea (S ,φ ,Z) un sistema dinámico discreto, y sea F = φ1 una función diferenciable,
de forma que φn = F ◦ n· · · ◦F. Sea O = {p0, . . . , pτ−1} una órbita periódica de periódica de perio-
do mínimo τ , y consideremos B = Dφτ(p0) = B = DF(pτ−1) ◦DF(pτ−2) ◦ · · · ◦DF(p0). Entonces,
denotando ρ al radio espectral:

Si ρ(B)< 1, entonces la órbita periódica es asintóticamente estable, (en particular es estable).

Si ρ(B)> 1, entonces la órbita periódica es inestable.

Definición 2.1.5. Un sistema dinámico se dice biestable si coexísten dos órbitas estables.

Consideremos ahora el modelo de dos nodos [LF, LP], el sistema dinámico en [0,1]× [0,1] dado
por la ecuación de recurrencia:

xn+1 = p(3yn +1)xn(1− xn) (2.1)

yn+1 = p(3xn +1)yn(1− yn) (2.2)

Nótese que el grafo de acoplado es en este caso el grafo conexo de dos nodos, una red muy sen-
cilla. Es el producto de las ecuaciones por un término externo lo que acopla las ecuaciones, hablamos
de un acoplado multiplicativo. Se escoge precisamente el término p(3z+ 1) para forzar al ratio de
crecimiento de cada especie, ahora variable con el tiempo, a pertenecer al intervalo (0,4), al igual que
en el mapa logístico.

2.1.1. Dinámica y puntos fijos

Estudiamos la dinámica del sistema en función del parámetro p:

1. 0 < p < 0.75: El beneficio que una unidad ofrece a la otra es demasiado pequeño para permitir
la estabilización de actividad. Ambas unidades decaen hasta desaparecer, independientemente
de las condiciones iniciales. El único punto fijo estable en esta franja es O = (0,0), el estado
apagado.

2. 0.75 < p < 0.86: Un cambio repentino aparece al hacer variar el parámetro en este intervalo.
Ambas poblaciones se sincronizan en un punto fijo estable y no nulo, el estado encendido,
cuando las condiciones iniciales superan ciertos valores críticos:

x+ = (α+,α+) con α+ =
1
3
(1+

√
4− 3

p
)

Si las condiciones iniciales se escogen bajo estos límites, en la vasija de atracción del estado
apagado, ambas desaparecen. Coexisten por tanto dos estados estables. El sistema es biestable
en esta franja. Existe otro punto fijo, inestable y sincronizado, en esta franja:

x− = (α−,α−) con α− =
1
3
(1−

√
4− 3

p
)

3. 0.86 < p < 0.95: El estado encendido, antes un solo punto fijo, se bifurca en una órbita de perio-
do 2 cuando p∼ 0.86. Ambas unidades oscilan desfasadas. El punto fijo sigue existiendo, pero
solo atrae actividad dentro de la diagonal. Es necesaria menor actividad inicial para encender la
red. Anular una de las componentes sigue siendo buena estrategia para apagarla.

Sistemas complejos
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(a) p = 0.8 (b) p = 0.9 (c) p = 0.98

Figura 2.1: Divisiones del espacio de fases en función del parámetro p.

4. 0.95 < p < 1: El sistema ya no converge a una órbita de periodo 2, esta pierde la estabilidad.
Aparecen órbitas cuasiperiódicas y estables alrededor de ambos puntos de la órbita de periodo
2, en forma de curva invariante cerrada. El sistema sigue apagándose cuando anulamos una de
las componentes.

5. p > 1: El sistema pierde la biestabilidad. Regímenes caóticos aparecen a partir de este punto.

La figura 2.1 resume la dinámica en las tres regiones en las que la existe biestabilidad. Se pinta de
negro la región de condiciones iniciales que lleva al estado apagado, y de blanco la región que lleva a
la red al encendido.

2.2. Acoplado de una red arbitraria

Después de haber estudiado la dinámica de dos unidades que interactúan entre si parece razona-
ble preguntarse como evolucionarán un número arbitrario de unidades, enlazadas también de forma
cooperativa. Ahora bien, es natural que una especie, neurona o grupo de activos pueda relacionarse
de forma directa solo con un número concreto de elementos de una estructura mayor. Es por ello que
construiremos un modelo que permita generalizar este tipo de enlace simbiótico a una red con cual-
quier estructura [BL]. Centraremos el modelo en grafos no dirigidos.

Dado un grafo no dirigido G = (V,E) de N nodos, y sea un nodo i ∈ V . Llamaremos vecindario
de i al conjunto de vecinos de i, y lo denotaremos vi. Asociamos a cada nodo i un estado en [0,1], al
que denotaremos xi (sin hablar todavía de dependencias temporales). Llamaremos media local de un
nodo al valor:

x̄i =
1
Ni

∑
j∈vi

x j (2.3)

Con estos ingredientes podemos pasar ya a la construcción del sistema dinámico. Este vendrá
dado por el sistema de ecuaciones de recurrencia acoplado:

xi,n+1 = p(3x̄i,n +1)xi,n(1− xi,n) con i = 1, . . . ,N (2.4)

Es claro que el grafo de acoplado del sistema coincide con el grafo inicial G, y que el modelo
general es compatible con el de dos nodos.

Nos preguntamos ahora si el modelo de muchos nodos heredará la biestabilidad de su progenitor
y, en caso afirmativo, como y cuando surge. Veamos que esta propiedad esta presente independiente-
mente de la red escogida.
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12 Capítulo 2. El modelo de acoplado logístico

(a) Condiciones iniciales (b) Segunda iteración (c) Quinta iteración

Figura 2.2: Las siguientes figuras retratan el movimiento de los puntos de una sección de un grafo
completo de 100 nodos, con p = 0.97. Se toman dos nodos distintos y cada eje corresponde al estado
de un nodo. Las condiciones iniciales para los nodos elegidos se distribuyen uniformemente. Para el
resto de los nodos se escogen condiciones aleatoriamente, siguiendo una distribución uniforme.

2.2.1. Dinámica y biestabilidad del modelo de muchos nodos

Pese a que hay muchas definiciones del término [BK], consideraremos que el sistema está sincro-
nizado cuando se cumpla que xi,n = xn para i = 1, . . . ,N. Estudiaremos, por simplicidad, que es lo que
sucede en este régimen sincronizado y veremos cuando la dinámica es atraída a este estado.

Nótese que, en estas condiciones de sincronía, también se tiene que x̄i,n = xn, ya que sumamos Ni

copias del mismo estado.

Sustituyendo en cualquier ecuación los estados antiguos por los sincronizados obtenemos que la
evolución del sistema sobre la variedad de sincronización, ∆, viene dada por el mapa cúbico:

xn+1 = p(3xn +1)xn(1− xn) (2.5)

Es claro ahora que la variedad de sincronización (o dada nuestra definición de sincronía simple-
mente diagonal) a la que hemos llamado ∆, es un conjunto invariante del sistema dinámico, ya que si
las condiciones iniciales se escogen idénticas, las relaciones recursivas toman la expresión anterior en
todo nodo, y por tanto su evolución es la misma.

Calculemos los puntos fijos de esta ecuación haciendo xn+1 = xn = x:

x = p(3x+1)x(1− x) (2.6)

Cuyas soluciones son:

O = 0, x± =
1
3
(1±

√
4− 3

p
) (2.7)

Exactamente los mismos puntos fijos que en el modelo de dos nodos, cosa evidente ya que ambos
sistemas coinciden en ∆.

El estado O es estable para 0 < p < 1 y los estados x± surgen cuándo p > 0.75, bifurcándose
en p = p0 = 0.75 a partir del punto fijo x = 1

3 . Aunque hay dinámicas estables para p > 1, solo
consideraremos los casos en los que p ∈ [0,1], que es donde el estado apagado es estable, y por tanto
la región donde puede existir biestabilidad acorde a la interpretación que estamos siguiendo.

Sistemas complejos



2.2. Acoplado de una red arbitraria 13

En estas condiciones, el punto fijo x+ es estable en todo el recorrido de p en el que existe, 0.75 <
p≤ 1. Por contra, como en la red de dos nodos, el punto fijo x− es inestable en esta región. Por tanto
obtenemos biestabilidad en ∆:

xi = O −→ Apagado

xi = x+ −→ Encendido

Ahora bien, la diagonal solo comprende una región cerrada del espacio de fases, por tanto la esta-
bilidad sobre ∆ no implica necesariamente la estabilidad global. Pequeñas perturbaciones que sacaran
los estados fuera de esta sincronización podrían desestabilizarlos completamente.

Estudiamos a continuación cómo afecta una perturbación transversal a ∆ a la dinámica, y cuando
podemos garantizar que el sistema tenderá de nuevo a la sincronización.

Representamos la perturbación en el instante n del nodo i con ϕxi,n, de forma que el estado en
cada nodo, desplazado de cualquiera de los estados sincronizados estables que ahora representamos
con θ , queda como sigue:

xi,n = θ +ϕxi,n con θ = O ∨ x+ (2.8)

Definimos en base a esto la perturbación de la media local de un nodo como:

ϕ x̄i,n =
3
Ni

∑
j∈vi

ϕx j,n (2.9)

Incluimos el 3 para simplificar expresiones posteriores. Sustituyendo estos valores en la ecuación
del sistema, podemos despejar una ecuación que exprese la evolución temporal de la perturbación.

ϕxi,n+1 = p(3θ +1)(1−2θ)ϕxi,n + pθ(1−θ)ϕ x̄i,n (2.10)

En esta expresión podemos comprobar la estabilidad del estado apagado, θ = O:

ϕxi,n+1 = pϕxi,n (2.11)

Por tanto cuando 0 < p < 1 la sucesión de perturbaciones:

ϕxi,n = pnϕxi,0
n→∞−→ 0 (2.12)

Por otra parte podemos ver cómo avanza la perturbación sobre la media local sustituyendo la
expresión 2.10 en 2.9 :

ϕ x̄i,n+1 = p(3θ +1)(1−2θ)ϕ x̄i,n +3pθ(1−θ)× 1
Ni

∑
j∈vi

ϕ x̄ j,n (2.13)

Ahora expresemos la media local de perturbaciones de forma más sencilla, en función de su nodo
central, definiendo σi,n, una cantidad variable de forma que:

1
Ni

∑
j∈vi

ϕ x̄ j,n = σi,nϕ x̄i,n (2.14)

Por tanto:

σi,n =
1
Ni

∑ j∈vi ϕ x̄ j,n

ϕ x̄i,n
(2.15)

Luego esta cantidad queda determinada por la propia dinámica del sistema y es dependiente de
la topología. Si consideramos el sistema dinámico que expresa la evolución de ambas cantidades, la
perturbación en un nodo y en su media local, tenemos el sistema de ecuaciones:
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14 Capítulo 2. El modelo de acoplado logístico

Figura 2.3: En negro el diagrama de bifurcación del estado de un nodo, para una red scale-free de
100 nodos, con γ = 2.5. En rojo el punto x+ para cada valor del parámetro entre 0.75 y 1. Podemos
ver que hay biestabilidad, primero sobre un punto, después sobre una órbita periódica y después en lo
que parecen órbitas cuasiperiódicas, igual que en el modelo de dos nodos. Las condiciones iniciales
se generan aleatoriamente siguiendo una distribución uniforme. En este caso p f = 1 y pc = 0.87. En
la gráfica interior es idéntica para un grafo completo de 100 nodos. El estado del punto se solapa
completamente con x+.

(
ϕxi,n+1
ϕ x̄i,n+1

)
=

(
p(3θ +1)(1−2θ) pθ(1−θ)

0 p(3θ +1)(1−2θ)+3pσi,nθ(1−θ)

)(
ϕxi,n

ϕ x̄i,n

)
(2.16)

La única dependencia de la topología de la red está contenida en el valor de σi,n, el resto de la
matriz es completamente independiente de la red escogida y es igual para todos los nodos.

Estudiemos ahora los valores propios de la matriz, que nos dará información sobre la estabilidad
del sistema de perturbaciones.
Cuando θ = O los valores propios de la matriz son λ1 = λ2 = p, por tanto es un estado atractivo si

0 < p < 1, información que ya conocíamos por 2.12 . Por tanto el parámetro máximo para el que la
biestabilidad es posible, p f ≤ 1, y desaparecerá solo cuando falle la estabilidad de x+.

Sea ahora θ = x+. El estudio de este estado es más complicado. Supongamos, por simplicidad,
que σi,n = σ , esto es, constante sobre todo nodo y a lo largo del tiempo. En el siguiente capítulo
veremos que esta hipótesis está justificada. En este caso, los valores propios de la matriz quedan:

λ1 = 2−2p− p

√
4− 3

p
(2.17)

λ2 = λ1 +
σ
3
(3−2p+ p

√
4− 3

p
) (2.18)

El valor propio λ1 es función decreciente de p, y toma el valor λ1 =−1 cuando p = 1. Por tanto
el valor del parámetro p para el cual x+ pierde la estabilidad, al que llamaremos pc satisface pc ≤ 1,

Sistemas complejos



2.2. Acoplado de una red arbitraria 15

y esta inestabilidad vendrá asociada a λ2, ya que | λ1 |< 1 si p < 1. Notemos que, por como esta
definido, σ ∈ (−1,1). Veamos cómo varía el valor de pc en función del de σ :

0 < σ < 1: En este caso | λ2 |< 1. Por tanto el sistema es estable, y para estos valores de σ
hay biestabilidad siempre que el estado encendido, propiamente x+, esté definido. Esto es, hay
biestabilidad si 0.75 < p < 1. El estado pierde la estabilidad en p = 1, por tanto pc = p f = 1.

−1 < σ < 0: En este caso obtenemos valores para los que x+ pierde la estabilidad con p < 1,
por tanto pc < 1, es decir, λ2 =−1 para algún p < 1. Es aun posible encontrar dinámica activa
y estable distinta de un punto fijo para valores de p tales que pc < p < p f = 1, tal y como pasa
en el modelo de dos nodos. Esto es, la biestabilidad sigue siendo viable, y el punto en el que se
pierda y el tipo de actividad es dependiente de la topología de la red.

De todo esto se deduce que el valor de σ captura en cierta medida información de la estructura
de la red, además de información sobre la dinámica del sistema. De la ecuación 2.14 se deduce que,
si σ < 0, las perturbaciones local y de la media oscilan desfasadas. Sin embargo, si σ > 0, ambas
perturbaciones oscilan sincronizadas en fase.

En el siguiente capítulo calcularemos un valor aproximado de σ para algunos tipos de redes.
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Capítulo 3

Algunos resultados nuevos

El acoplado de mapas logísticos da lugar a una gran cantidad de propiedades emergentes, depen-
dientes e independientes de la topología de red escogida.

En este capítulo revisaremos algunas características cuyo estudio ha quedado pendiente, motiva-
dos por su relevancia en la dinámica del sistema.

3.1. Puntos fijos en ciertas topologías de red

Durante el análisis computacional se hace razonable la posibilidad de que los únicos puntos fijos
(al menos los estables) sin ninguna componente nula del sistema yazcan sobre la variedad sincroniza-
da. Por tanto, si esto es cierto, otra dinámica estable que pudiera existir deberá ser de otro tipo.

En esta sección se comprobará la certeza de la hipótesis en ciertos tipos de red, pero primero
demos una propiedad que deben satisfacer los puntos fijos del sistema.

Proposición 3.1.1. Sea G un grafo no dirigido de N nodos cualquiera y L el sistema de acoplado
logístico asociado a G. Sea X = (x1, . . . ,xN) un punto fijo del sistema y tomemos dos nodos, i y j tales
que xi,x j 6= 0, siendo xi y x j sus estados en el punto fijo y x̄i y x̄ j sus medias locales. Entonces:

xi = x j ⇐⇒ x̄i = x̄ j (3.1)

Demostración. Primero supongamos que xi = x j = x. Tomemos las ecuaciones i y j del sistema:

xi,n+1 = p(3x̄i,n +1)xi,n(1− xi,n)

x j,n+1 = p(3x̄ j,n +1)x j,n(1− x j,n)

Como se trata de un punto fijo eliminamos la dependencia temporal:

xi = p(3x̄i +1)xi(1− xi)

x j = p(3x̄ j +1)x j(1− x j)

Restando ambas ecuaciones y cambiando la notación de los puntos i y j por x:

0 = 3p(x̄i− x̄ j)x(1− x)

Como X no tiene ninguna componente nula (y es fácil ver que ninguna puede tomar el valor 1), se
tiene que x̄i = x̄ j.

17



18 Capítulo 3. Algunos resultados nuevos

Recíprocamente, sea x̄i = x̄ j = x̄. Entonces, la i-ésima ecuación queda:

xi = p(3x̄+1)xi(1− xi)

Como xi es no-nula podemos despejar el valor de xi:

xi = 1− 1
p(3x̄+1)

Y como la ecuación para la componente j es idéntica, se tiene el resultado:

xi = x j = 1− 1
p(3x̄+1)

Este sencillo resultado desvela una ligadura entre el valor del estado de dos nodos y sus medias
locales.

A partir de ahora, como en la proposición, llamaremos G al grafo no dirigido de N nodos al que
nos refiramos y L a su sistema de acoplado logístico asociado.

3.1.1. Topología en estrella

Uno de los casos más sencillos de comprobar, debido a sus simetrías, es la topología en estrella.
Sea X un punto fijo de L para G un grafo en estrella, es decir, el nodo c es el centro y es adyacente

al resto de nodos, y todos los demás solo son adyacentes a c.

Entonces x̄i = xc para todo i 6= c, y x̄c =
1

N−1 ∑ j 6=c x j. Con esta información el sistema que da los
puntos fijos, eliminando el paso temporal, se reduce a solo dos ecuaciones distintas:

{
1
p = (3xc +1)(1− xi)
1
p = (3x̄c +1)(1− xc)

(3.2)

Por tanto, despejando el valor de xi:

xi = 1− 1
p(3xc +1)

(3.3)

Luego xi = x j = x para todos i, j 6= c. De aquí, x̄c = x, y por tanto las ecuaciones quedan:

{
1
p = (3xc +1)(1− x)
1
p = (3x+1)(1− xc)

=⇒
{

1
p = (3xc +1)(1− x)
1
p = (3x+1)(1− x)+(3x+1)(x− xc)

(3.4)

En la segunda expresión, restando la primera ecuación a la segunda queda:

0 = 3(x− xc)(1− x)+(3x+1)(x− xc) =⇒ 0 = 4(x− xc) (3.5)

y por tanto xi = x = xc, como queríamos demostrar.
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3.1.2. Clústers de tipo all-to-all

A continuación pasamos a comprobar agregaciones de una red en las que todos los nodos son ve-
cinos entre sí. Esta propiedad no es exclusiva de una red all-to-all (todos con todos, o grafo completo),
algunas componentes de otro tipo de redes pueden satisfacer esta condición. Veremos a continuación
que en un punto fijo, todos los estados asociados a estas agregaciones deben coincidir.

Las medias locales de este tipo de agregados satisfacen:

x̄i,n +
xi,n

N−1
= x̄ j,n +

x j,n

N−1
, ∀i, j (3.6)

Sea pues X un punto fijo, y veamos que los estados de los nodos en este tipo de componentes
coinciden. La i-ésima y la j-ésima ecuación del sistema que da los puntos fijos quedan:

{
1
p = (3x̄i +1)(1− xi)
1
p = (3x̄ j +1)(1− x j)

(3.7)

Podemos reescribir 3.6 de la siguiente manera:

x̄i,n +
xi,n− x j,n

N−1
= x̄ j,n, ∀i, j (3.8)

Sustituimos esta expresión, ahora sin la dependencia temporal, en la segunda ecuación de 3.7 y
queda:

1
p
= (3x̄ j +1)(1− x j) = (3(x̄i +

xi− x j

N−1
)+1)(1− x j) (3.9)

Que podemos desplegar y reescribir como:

1
p
= (3x̄i +1)(1− xi)+(3x̄i +1)(xi− x j)+

3(xi− x j)

N−1
(1− x j) (3.10)

Restamos la primera ecuación de 3.7 a 3.10, y queda la expresión:

0 = (3x̄i +1)(xi− x j)+
3(xi− x j)

N−1
(1− x j) (3.11)

Sacando fuera el factor (xi− x j):

0 = (xi− x j)((3x̄i +1)+
3

N−1
(1− x j)) (3.12)

El segundo factor de la expresión de la izquierda no se puede anular, es mayor que 1. Por tanto
xi = x j = x, como queríamos demostrar. Además, de la ecuación 3.6 se deduce que x̄i = x̄ j = x.

3.1.3. Desconectado de clústers all-to-all

Comprobamos como afecta a los puntos fijos de los agregados anteriores la desconexión de un
nodo de un cierto número de nodos adyacentes. Para simplificar las expresiones asumiremos que la
red tiene N +1 nodos.

Elegimos un nodo, i, y k nodos que desconectaremos de este. Los nodos que están desconectados
de i forman un clúster all-to-all, todos ellos están conectadas entre sí y comparten los mismos vecinos.
Los nodos no desconectados, obviamente, siguen estando conectados con todos los demás, forman
otro clúster. Por tanto, en un punto fijo, cada uno de estos grupos toma el mismo valor. Al valor del
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grupo conectado lo denotamos x, y al del grupo desconectado y. Las medias de un elemento en cada
grupo quedan:

x̄ =
ky+ xi +(N− k−1)x

N
; ȳ =

(k−1)y+(N− k)x
N−1

; x̄i = x (3.13)

Por tanto, sustituyendo estos valores, las ecuaciones de los puntos fijos quedan:





1
p = (3( ky+xi+(N−k−1)x

N )+1)(1− x)
1
p = (3( (k−1)y+(N−k)x

N−1 )+1)(1− y)
1
p = (3x+1)(1− xi)

(3.14)

La tercera ecuación puede reescribirse como:

1
p
= (3x+1)(1− x)+(3x+1)(x− xi) (3.15)

La primera como:
1
p
= (3x+1+3

ky+ xi

N
−3

k+1
N

x)(1− x) (3.16)

Restamos 3.16 y 3.15:

0 = (3
ky+ xi

N
−3

k+1
N

x)(1− x)+(3x+1)(xi− x) (3.17)

Reagrupamos:

0 = (
3k
N
(y− x)+

3
N
(xi− x))(1− x)+(3x+1)(xi− x) (3.18)

Y sacando los factores:

0 =
3k
N
(1− x)

︸ ︷︷ ︸
c1

(y− x)+(3x+1+
3
N
(1− x))

︸ ︷︷ ︸
c2

(xi− x) (3.19)

Por otra parte multiplicamos la segunda ecuación de 3.14 por N−1 y queda:

N−1
p

= [3((k−1)y+(N−k)x)+(N−1)](1−x)+[3((k−1)y+(N−k)x)+(N−1)](x−y) (3.20)

Ahora multiplicamos la primera por N y le restamos 3.20, y obtenemos:

1
p
= (3(y+ xi− x)+1)(1− x)+ [3((k−1)y+(N− k)x)+(N−1)](y− x) (3.21)

Restamos 3.15 a 3.21, y queda, tras reordenar:

0 = 4︸︷︷︸
c4

(xi− x)+ [3((k−1)y+(N− k−1)x)+(N +2)]︸ ︷︷ ︸
c3

(y− x) (3.22)

Tomando las dos expresiones finales nos queda el sistema:
{

0 = c1(y− x)+ c2(xi− x)
0 = c3(y− x)+ c4(xi− x)

con c1,c2,c3,c4 > 0 (3.23)

Multiplicamos la primera ecuación por c3 y la segunda por c1 y las restamos, obteniendo así:

0 = (c2c3− c1c4)(xi− x) (3.24)
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Comprobemos en que condiciones podemos garantizar que c2c3 6= c1c4, teniendo en cuenta que
x,y ∈ (0,1) y N,k ∈ N con k < N.

Si c2c3 = c1c4 podemos despejar y de la igualdad como función de x:

y(x) =
16kN

3(k−1)(N−1)(3Nx+N−3x+3)
+

x(k−N +1)
k−1

− 4k+N2 +N−2
3(k−1)(N−1)

(3.25)

Un análisis sencillo de la función muestra que es decreciente en [0,1]. Su máximo por tanto se
alcanza para x = 0, y es y≤ 0 si N ≥ 1, en contradicción con las condiciones de contorno escogidas.
Por tanto si N ≥ 1 entonces x = xi ∀k≤N. Y de 3.22 se sigue que x = xi = y, como queríamos probar.

Un reinterpretación de este resultado es la posibilidad de añadir un nuevo nodo conectado arbitra-
riamente a una agregación de este tipo.

3.2. Medidas computacionales de parámetros asociados al sistema

La biestabilidad es una propiedad que el sistema presenta a partir del valor del parámetro logístico
p≥ 0.75, independientemente de la red escogida. Pasamos ahora a calcular algunos de los parámetros
que utilizamos en el estudio previo, que rigen la dinámica de la red y son dependientes de la topología.

3.2.1. Cálculo de pc en algunas topologías

En primer lugar calcularemos aproximaciones de los puntos en los que el punto fijo x+ deja de
ser estable y la dinámica del estado encendido sufre un cambio. Utilizaremos el sistema que define la
evolución de las perturbaciones como se vio en el capítulo anterior:

ϕxi,n+1 = p(3θ +1)(1−2θ)ϕxi,n + pθ(1−θ)ϕ x̄i,n (3.26)

Lo que nos hace posible calcular pc a partir de las perturbaciones ϕxi,n es el hecho de que, si el
sistema se asienta en el punto fijo sincronizado a partir de un cierto tiempo k, entonces ϕxi,n = 0,
∀n≥ k. Por tanto basta aproximar el primer valor de p para el que ϕxi,n 6= 0, ∀n. Este procedimiento
resulta más preciso y más sencillo que aproximar el punto de bifurcación directamente de los valores
del sistema logístico. Todos los cálculos se realizan con redes de 100 nodos, y asumiendo que el
tiempo de transición hasta que el sistema cae en el estado encendido es menor que 100.

Para una red scale-free el valor de pc ≈ 0.86, calculado con un error de ±0.01. Este rango de
valores resulta ser casi independiente del parámetro γ asociado a la distribución de grados de los
nodos. En concreto, calculando el valor de pc para una red en estrella, que podemos considerar
un caso límite de este tipo de redes, obtenemos el mismo valor.

Para redes en anillo obtenemos los valores representados en la figura 3.1. Se observa que pc se
acerca más a 1 conforme la red se compacta, aunque este crecimiento no es monótono.

Para redes all-to-all el valor de pc es muy cercano a 1, como se observa al final de la gráfica
3.1. En este caso, con 100 nodos, pc ≈ 0.99, con un error de ±0.01.
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Figura 3.1: Calculamos la siguiente gráfica para redes de 100 nodos. El primer valor corresponde a
una red en anillo simple. A partir de esta red construimos anillos con mayor densidad de enlaces,
conectando cada nodo con todos los nodos a distancia menor o igual que n. Por tanto, la última de
estas redes corresponderá al grafo all-to-all de 100 nodos, para n = 50.

De este estudio se concluye que, cuanto más compacta es la red, más amplia es la región en la
que el punto fijo x+ es estable, es decir, un mayor número de interconexiones hacen más fuerte la
biestabilidad sencilla. Si interpretáramos la memoria de la red como su capacidad para acceder a
estados dinámicos estables complejos, las redes con más memoria en su zona biestable son aquellas
con menor densidad de conexiones.

3.2.2. Cálculo de σ en algunas topologías

Pasamos ahora al cálculo del parámetro σ , de nuevo en redes de 100 nodos. Se comprueba en la
práctica que la suposición de que σi,n es constante para todo nodo y a partir de un cierto tiempo es
razonable. El valor de este parámetro proporciona más información sobre la red que pc. De hecho,
conociendo σ podemos calcular el valor exacto de pc a partir de los valores propios de la matriz del
sistema de perturbaciones dado en el capítulo anterior:

λ1 = 2−2p− p

√
4− 3

p
(3.27)

λ2 = λ1 +
σ
3
(3−2p+ p

√
4− 3

p
) (3.28)

Si 0 ≤ σ < 1 vimos que pc = 1, y si −1 < σ < 0 entonces, por ser λ2 < 0.5 en esta región, y
decreciente como función de p, se tiene que pc es el valor que hace λ2 =−1:

pc =
3σ2−30σ −27−

√
3(σ −3)2(3σ2 +14σ +27)
32σ

∈ (0.75,1) (3.29)

Primero notemos que, en la zona en la que el punto fijo x+ es estable, σi,n deja de estar bien
definido a partir de un cierto tiempo, pues las perturbaciones terminan por anularse. Por tanto el
cálculo de σ debe hacerse tras la pérdida de estabilidad de x+, esto es, a partir de pc.

Sistemas complejos
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Figura 3.2: De nuevo construimos redes anulares desde el anillo simple hasta la red all-to-all, y le
asignamos a la red n el valor de σ correspondiente. La similitud entre ambas gráficas sugiere una
dependencia lineal.

Para una red scale-free σ = −1. Este valor es, de nuevo, independiente del parámetro de dis-
tribución de grados escogido. Resolviendo el problema, obtenemos un valor pc = 0.866, que
coincide con el valor obtenido en el apartado anterior.

Para redes en anillo obtenemos los valores de σ representados en la gráfica 3.2. Esta gráfica está
construida en las mismas condiciones que la del apartado anterior. Nótese la fuerte similaridad
de ambas figuras, casi idénticas, que deja clara la dependencia entre pc y σ .

Para redes all-to-all tomamos el último valor calculado para los anillos. Por tanto, σ ≈ 0, esto
es, λ1 ≈ λ2 y por tanto x+ es estable para todo valor de p, de nuevo confirmando lo obtenido en
el apartado anterior.

Para ver más clara la dependencia entre σ y pc calculamos varios valores de pc usando la ecuación
3.29. En la figura 3.3 vemos que la dependencia entre estos dos valores es prácticamente lineal. El
ajuste por mínimos cuadrados da, con un error medio de 0.00117, la siguiente recta:

pc = 0.998+0.135σ , σ ∈ [−1,0] (3.30)

3.3. Estrategias para la ruptura de la biestabilidad

En esta sección estudiaremos métodos para romper la biestabilidad de las redes anteriores, elimi-
nando el estado encendido y dejando solamente el estado apagado.

3.3.1. Por sembrado aleatorio de parámetros

El proceso que seguiremos, más concretamente, consistirá en considerar una red de 100 nodos con
un parámetro fijo, seleccionar de ésta la mitad de sus nodos al azar y asignarles un parámetro distinto,
dentro de la región en la que la red no presenta biestabilidad. Es decir, si llamamos p1 al parámetro
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(a) (b)

Figura 3.3: En el primer gráfico se representan los valores de pc calculados para cada σ . En el segundo
gráfico se representan los valores de σ para cada p en una red anular con n = 17. Se observa que el
parámetro se asienta casi perfectamente sobre un valor fijo, justificando empíricamente la suposición
de que σ es constante.

Figura 3.4: Ruptura por sembrado de parámetros. En rojo los valores para la red scale-free, en azul
los valores para la red en anillo y en negro los valores para la red all-to-all.

inicial, p2 al parámetro impuesto a posteriori, N1 y N2 = N \N1 a los conjuntos de nodos asociados a
cada uno de ellos obtenemos el nuevo sistema de recurrencias:

{
xi,n+1 = p1(3x̄i,n +1)xi,n(1− xi,n) con i ∈ N1 y p1 ∈ [0.75,1)
xi,n+1 = p2(3x̄i,n +1)xi,n(1− xi,n) con i ∈ N2 y p2 ∈ [0,0.75)

(3.31)

La elección aleatoria provoca distintos comportamientos en función de los nodos escogidos y de
su relevancia en la red: perturbar nodos que afectan a un mayor número de vecinos es más perjudicial
para la biestabilidad que elegir nodos con poca influencia. No obstante, ciertas conductas se preservan
independientemente de los nodos escogidos, solo son relativas a la topología de la red.

En adelante, dado un parámetro inicial p1, llamaremos pm al valor máximo de p2 que rompe la
biestabilidad de la red. Por tanto la biestabilidad se pierde ∀p2 ≤ pm .

Red scale-free, en anillo y all-to-all

Tomamos una red scale-free con γ = 2.5, una red all-to-all y un anillo periódico simple, n = 1,
con una selección aleatoria de 50 nodos. Obtenemos los pm representados en la gráfica 3.4.

Sistemas complejos
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Figura 3.5: Ruptura por efecto frontera. En rojo los valores para la red scale-free, en azul los valores
para la red en anillo y en negro los valores para la red all-to-all

.

En la gráfica, p representa a p1, el valor inicial del parámetro. Como cabía esperar, cuanto menor
es p mayor es pm, es decir, cuanto más pequeño es el valor del parámetro inicial más fácil es apa-
gar la red. Conforme el valor de p avanza, más difícil se hace romper la biestabilidad de la red. Se
observa una caída drástica conforme p se acerca a pc, el punto en el que el estado estable de la red
cambia de dinámica. Es tal la caída que cuando superamos en cierta medida pc la biestabilidad no
puede eliminarse solamente rebajando los parámetros de media red, el resto de nodos es suficiente
para mantenerla encendida.

Las redes scale-free tienen una biestabilidad sólida ante ataques aleatorios. La red en anillo mues-
tra ser la más robusta de las tres. En la red all-to-all, por su estructura, da igual que nodos seleccio-
nemos. Los resultados son independientes de los nodos elegidos, y por tanto los valores de pm solo
dependen del número de nodos cuyo parámetro rebajamos. No obstante, esta red es más sensible.
También se vuelve imposible apagar la red a partir de cierto valor, pero es más sencillo apagarla que
a cualquiera de las anteriores.

3.3.2. Ruptura por efecto frontera

En este caso tomaremos pares de las mismas redes que hemos tratado antes, pero ahora con 50
nodos. Construimos con cada par de redes idénticas una nueva, enlazando cada nodo de una con todos
los nodos de la otra. Esta operación se conoce como suma de grafos. Formalmente:

Definición 3.3.1. Dados dos grafos, G = (V1,E1) y H = (V2,E2), se define el grafo G+H como:

G+H = (V3,E3) con V3 = V1∪V2, E3 = E1∪E2∪{(i, j)| i ∈ V1∧ j ∈ V2}

Ahora asignamos un parámetro distinto a cada uno de los grafos iniciales, a uno p1 ∈ [0.75,1] y
al otro p2 ∈ [0.0,0.75]. Repetimos los mismos cálculos para las nuevas redes, obteniendo los valores
representados en la figura 3.5.

Las redes scale-free y anular resultan ser más sensibles en este caso, justo al contrario que con el
proceso anterior. Es posible apagarlas en todo el recorrido del parámetro. La red resultante de sumar
dos redes all-to-all de 50 nodos no es más que otra red all-to-all de 100 nodos, luego los valores
obtenidos deben ser los mismos.
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