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Chapter 1

Preliminary concepts and an introduction
to the model

In this chapter we will briefly introduce some concepts related to complexity theory and dynamical
systems. First, we give a general notion of the terms system and complexity. Secondly, we introduce
networks and complex networks, and a short list of relevant kinds of networks. We will also try to
connect both networks and dynamical systems through a definition of coupled dynamical systems.
Finally we define chaos, when related to dynamical systems, and we describe the dynamics of the
logistic map.

1.1 Complex and dynamical systems

Even though they are frequently used in mathematics and computational sciences, the terms complex-
ity, system, and complex system refer to more general concepts. We will give non rigurous definitions.

Definition. o A system is a set of components and relations between them, acting as a whole.

o We say a property of a system is emergent if it can not be reduced to the properties of its
components.

o A complex system is a system with non-trivial emergent properties.

Although the definitions are ambiguous, some general properties are commonly said to be related
to complexity, such as feedback, non-linearity, self organization, pattern formation, chaos and
memory.

Now we give a mathematical background, introducing dynamical systems.

Definition 1.1.1. We call dynamical system to the tuple (-, ¢,T) where . is an arbitrary set, called

phase space, T = 7.V R called set of times, and ¢ = {@,} is a family of maps ¢, : ./ — . defined
fort >0, such that:

e =1y
L4 ¢s+t2¢x0¢t, VI,SZO

If the set of times is Z we say the dynamical system is discrete, and if it is R we say it is continous.
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VI Chapter 1. Preliminary concepts and an introduction to the model

1.2 Complex networks and coupled dynamical systems

Again, the term complex network is not well defined, it may make reference to several kinds of net-
works. We will first remind some general graph theory concepts to give a mathematical background.

Definition 1.2.1. A graph is a tuple G = (V,E) with E and V two sets such that E C V x V. We call
V the set of vertices and E the set of edges of the graph. We will say that a graph is undirected if
(i,j) € E<=(j,i) € E. A subgraph of G = (V,E) is another graph G| = (V\,E}) such that Vi C'V
yE| CE.

Definition 1.2.2. Set the graph G = (V,E), and i,j € V. A path of length I from the vertex i to j
is a sequence of vertices (i,i1,12,...,i;) such that io =i, iy = j and (ip—1,ip) € E for h=1,2,...,1.
A graph is said to be connected if there exists a paht joining every pair of vertices. A connected
component of a graph is a connected subgraph.

Definition 1.2.3. Given a undirected graph G = (V,E) and a vertex i € V, we call degree of a vertex
N, to the cardinal of its set of neighbors or adjacent vertices, that is, the vertices in V such that there
exists a path of lenght 1 connecting them with i.

A general definition of complex network may be:

Definition. We say a network is a complex network if it has topological properties substantially
different from those present on a random graph.

Therefore, the complexity of a graph is measured using several properties of the network. We
understand some natural networks as complex networks, and classify them according to its structure.
Some typical networks of interest are random networks, scale-free networks and small-world net-
works.

We end this section by giving a definition of coupled dynamical systems. First, we give a definition
of coupled system of equations:

Definition 1.2.4. Given a system of k first order ordinary differential equations or a system of recur-
rences:

dx,-

dr

With F;: & xR — . and G;:.S X7 — & being . =[].% a product of k sets where the
equation is well defined.

=F(x1,...,x%,t)  or Xip+1 =Gi(X1p,...,Xp0,n) with i=1,....k

Set the graph H = (V E), the coupling graph, with V = {1,... k} and the set of edges E with
(i,]) € E<= i€V and j is a variable where F; or G;, depending on the kind of system, is non trivial
(that is, non constant on the component j) and i # j.

A system of equations is coupled if the graph H is connected. Otherwise, we will call coupled com-
ponents to the subsystems associated to the connected components of H.

We can finally define a coupled dynamical system as follows:

Definition 1.2.5. We call coupled dynamical system to a dynamical system (., 9,%) where ¢ is the
general solution of a coupled system.

1.3 Chaos in dynamical systems: The logistic map

From now on we will assume that . is a metric space. Lets first remind the definition of orbit of a
point and orbit of period T.
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1.3. Chaos in dynamical systems: The logistic map VIL

Definition 1.3.1. Given a dynamical system (., ¢,%) and x € .¥ we call orbit of x to the set:
Y= {9:(x) | 1 €T}
We say that an orbit is a periodic orbit with period 7 if:
dt €T suchthat ¢(y) =y, Vy € %
And we say that T is its minimum period if:

(Pt(y) #yv Vt <7

Lets introduce the definition of chaos.
Definition 1.3.2. We say a dynamical system (., ¢, %) is chaotic if it satisfies:

e [t is sensible to initial conditions:

36 > 0 such that Vxy € . and YUy, nhood of xo we have that 3yo € Uy, and at > 0 such that:
d(¢:(xo), ¢:(y0)) > 0

o [t is topologically transitive in . :
Given U and V open in .#, Ixy € UAt >0 such that ¢, (xp) € V

e [t has a set of periodic orbits dense in ..
Now we give a characterization of chaos:

Definition 1.3.3. We call Sarkovskii order to the order of the naturals given as follows:

3 5 7 9 1 ... (2n+1)-2°
3.20 5.20 720 9.2 112t 0 (2n+1)-2!
3.22 5.22 722 9.22 11-22 ... (2n+1)-22
3.2k 5.2k 7.2k 9.2k 112k 0 (2n+1)-2k

on onmbo 23 22 2 1

Theorem 1.3.4. (Sarkovskii’s theorem) Given the dynamical system (I, ¢,7Z) with I closed, and denote
Sarkovskii’s order with —. ¢, : I — I a continuous mapping with an orbit of minimum period m .
Then, @, has orbits of minimum period k, Yk < m. In particular, if ¢, has an orbit of minimum period
3, then it has orbits of minimum period k, Yk € N.

Now we introduce the logistic map:

Definition 1.3.5. We call logistic map of parameter p, with p € (0,4) to the dynamical system
([0,1],A,Z) where A = {A,} is the family of maps A, : ¥ — ./ given by:

M) =px(1—x) and Ap(x) = A" 2 (x)
And now we summarize the dynamics of the system:

1. 0 < p < 1: All the initial conditions converge to 0.
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VIII Chapter 1. Preliminary concepts and an introduction to the model

[\

. 1 < p <3: As p gets bigger than 1 the dynamics change. A stable, non-zero fixed point appears:

x=E— (1.1)

3. 3 < p < 3.57: Takes place the period doubling cascade. The fixed point loses its stability, and
the initial conditions tend to oscilate in period 2" orbits, with n growing to infinity as p gets
near the critical value 3.57.

4. 3.57 < p < 3.82: Chaotic behaviour appears in this range.

5. 3.82 < p < 3.85: A period 3 orbit appears for p = 3.82. We also get a period doubling cascade
with periods 3 - 2".

6. 3.85 < p < 4: We get chaotic behavior mixed with periodic obits in this range.

7. p = 4: We get chaotic behavior in all [0, 1].
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Chapter 2

The model of coupled logistic maps

In this chapter we introduce and study a new system of coupled logistic maps. We also give some
notions on stability and define the concept of bistability of a dynamical system. We show that the new
model is bistable no matter what coupling network we choose.

2.1 Coupling of two maps

Definition 2.1.1. Given a dynamical system (., ¢,%) a set J C .7 is said to be an invariant set if it
satisfies:

If xeJ=¢(x)eJ,Vt€X
Definition 2.1.2. Let J be an invariant set, we say that J is stable (Lyapunov stable) if:
YV open with J C 'V, AW open with J C W such that ¢;(x) € V,Vt > 0 and Vx € W

Definition 2.1.3. Let J be an invariant set, we say that J is an attractor if:

e Artracts the dynamics, that is, AV open with J C V, such that ¥x € V we have that:

d(¢(x),V) =30
We call V the basin of attraction of J.
e Vis a minimal set, that is, it does not contain any non-empty subset invariant and attracting the

dynamics.

Theorem 2.1.4. Let (7, ¢9,7) be a discrete dynamical system, y F = ¢ a differentiable function,
such that ¢, = F o NoF. Let 0 = {po,---,pr—1} be an orbit of minimum period T, and consider
B=D¢:(po) =B =DF(p;—1)oDF(pr—2)o---0DF(py). Then, denote p to the spectral ratio:

e Ifp(B) < 1, then the periodic orbit is asymptotically stable, (in particular stable).
e Ifp(B) > 1, then the periodic orbit is unstable.

Definition 2.1.5. A dynamical system is said to be bistable if it has two stable orbits.

Now we consider the two vertices coupling, the dynamical system in [0, 1] x [0, 1] given by the
system of equations:

Xn+1 :p(3yn+1)xn(l_xn) (2.1)
Ynt+1 = p(3xn + 1))’11(1 _yn) (2.2)
with p € (0,4).
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X Chapter 2. The model of coupled logistic maps

2.1.1 Fixed points and dynamics

Lets summarize the dynamics as p changes:

1. 0 < p < 0.75: The dynamic of the system converge to O for all the initial values.

2. 0.75 < p<0.86: A sudden change happens. When both initial conditions are chosen in a
certain range, both vertices tend to syncrhonize at the fixed point:

1 3
xp = (ay,04) with (x+:§(1_|_ 4_;)

If the initial values are chosen below or over that certain range both values will eventually
converge to 0. Therefore this is the first range where the system presents bistability.

3. 0.86 < p < 0.95: The fixed point bifurcates in to a period two orbit at p ~ 0.86. Both variables
oscilate out of phase.

4. 0.95 < p < 1: The system does no longer converge to a periodic orbit. Quasiperiodic orbits
appear in this range. Bistability is still possible.

5. p > 1: The system loses its bistability. Chaotic regimes appear for this p.

2.2 Arbitrary coupling

Given a graph G = (V,E) with N vertices, and i € V. We call neighbourhood of i to the set of neighbors
of i, and we denote it as v;. We associate to each i a state in [0, 1], denoted by x;. We call local mean
to the value:

G=—) x (2.3)
Therefore, given a graph we can build the system:

Xint1 = pB3Xin+ )xin(l —xi) with i=1,....N 2.4)

2.2.1 Dynamics and bistability of an arbitrary coupling

Over the synchronization manifold the equations end up as follows:

X1 = p(3xy + 1)xn (1 —xp) (2.5)

So the fixed points over this manifold are:

6 =0, xi:;(li,m—j) 2.6)

The point & is stable for 0 < p < 1 and x4 appear when p > 0.75. Therefore we will only study
bistability for p € (0,1). Here, x; is stable if 0.75 < p < I, but x_ is not, and so we have bistability
in the synchronization manifold. We will say that & is the Off state and x. is the On state.

Stability over the synchronization manifold does not imply global stability. Lets study how a
perturbation affects the system. Let @x;, represent the evolution of an initial perturbation. Then we
have:

Xin=0+0x;, con 0=0Vx, 2.7)

with 0 being one of the synchronized stable states. Now lets define the local mean perturbation:

Sistemas complejos



2.2. Arbitrary coupling XI

3
PFin = ) @i (2.8)

Ljevi
And so, we can get the following system by substituting this expresions on the main system, giving
us the dynamic of the perturbation:

Oxipnt1 =p(360+1)(1—-20)0x;,+pO(1 —0)Qx;, 2.9

And the dynamics of the local mean perturbation:

1
91 = p(30+1)(1-20)9%, +3p0(1—6) x - ) @0 (2.10)

Ljevi

One can write the local mean perturbation as:

1 —
1 _ _ ﬁiZjew OXjn
- Z OXjn=0inQXjp=—Oip = —" -

i @2.11)
Ni i, QX

Considering both systems, one gets the following two dimensional dynamical system for the per-
turbations:

<(Pxi,n+1> _ <p(39+1)(1—29) po(1-6) ) ("’x"v”> (2.12)

OX; nt1 0 p(30+1)(1—-20)+3p0c;,0(1—06)) \ @z,

whose only dependence of the network is captured by 0;,. For 8 = & the eigenvalues of the
matrix are A; = A, = p, therefore this state is stable if 0 < p < 1, and bistability is possible only if
p <1, and it depends on the stability of x,. Let now be 8 = x, and assume 0;, = o, then, the
eigenvalues of the matrix are:

3 3
A :2—2p—p1/4—; and 12:ﬁ,1+%(3—2p+p1/4—;) (2.13)

The eigenvalue |A;| < 1 if p < 1. Therefore, the loss of stability must come from A,. We name p,
to the value of p where x; becomes unstable. Lets study the stabilty as ¢ varies:

e 0 <o < 1:Then|A;|< 1, therefore the system is bistable for all p € (0.75,1).

e —1 < 0 < 0: There may be values where x; becomes unstable for p < 1, thus p. < 1. Bistabil-
ity stills viable even if x is unstable, but with different dynamics.
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Chapter 3

Some new results

The logistic coupling presents lots of different properties, dependent and independent of the chosen
network. In this chapter we give some new characteristics of the coupling.

3.1 Fixed points of certain networks

We will check that, for some kinds of networks, the only fixed points of the system lay over the
synchronization manifold, but lets give an interesting property that links a pair of states and its local
mean.

Proposition 3.1.1. Let G be an undirected graph of N vertices and L the logistic coupling associated
to G. Let X = (x1,...,xy) be a fixed point, and take two vertices, i and j such that x;,xj # 0, being x;
and x; the states of the vertices on the fixed point X; and X the local means. Then:

Xi=Xx; < X=X 3.1
The only fixed points of the following networks lay over the synchronization manifold:
1. Star networks

2. All-to-all clusters

3. All-to-all clusters with one vertex disconected from any other vertices on the cluster

3.2 Computational values of parameters related to the system

Bistability holds for any kind of network on a certain range of values of the parameter p. However,
some other properties are dependent of the chosen network. In this section, we will compute some
parameters sharing this dependence.

3.2.1 Value of p. for certain topologies

We call p, to the first value of the parameter p where the On state stops being a fixed point.
We make the computations using the perturbation system:

Oxipnt1 =p(360+1)(1—-20)0x;,+pO(1 —0)Qx;, 3.2)

When the perturbations do not converge to 0 the system do not lock into one of the, once stable,
fixed points, 8. Therefore it is enough to approximate the first value of p where this happens. We will
only study networks with 100 vertices.
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X1V Chapter 3. Some new results

e For a scale-free network, p. ~ 0.86, with an error of £0.01. We obtain the same p, for a star
graph, that we may consider as a limit case of a scale-free network.

e For ring lattices, the values of p. grow from 0.86 to 1 as they approach to an all-to-all network.

e For all-to-all networks p. ~ 0.99, computed with an error of £0.01.

From this we conclude that, the denser the network is, the wider the region where x is stable,
that is, more connections mean a stronger simple bistability.

3.2.2 Value of ¢ for certain topologies

Now we compute the o value for some networks, once again with 100 vertices. First, recall that, if x
is stable, o; , is not well defined, since the perturbations become 0. Therefore, ¢ is computed after x.
loses its stability, that is, for p > p..

o A scale-free network has 0 = —1, independent of the power law chosen.

e For ring lattices, the value of ¢ grows similar to p., from —1 to O as they approach to an
all-to-all network.

e For an all-to-all network o = 0.

The values of o and p, are strongly dependent. In fact, they are close to a linear dependence, here
computed by least squares:

pe=0.998+0.1350, o€ [—1,0] (3.3)

3.3 Strategies for breaking the bistability of the system

In this section we try to remove the On state from the system.

3.3.1 Random parameter spread

We consider networks with 100 vertices, and we will choose randomly 50 of this vertices. Now we
construct the following system, being N; the chosen vertices and N; = N \ Ny:

3.4)

Xint1 =p1(3%in+ 1)xin(l —x;p) con i€N; y p;€[0.75,1)
Xint1 = p2(3%in+ 1)xin(1 —xi) con €N, y ppe0,0.75)

A random selection implies different behaviours, depending on the importance of the chosen
vertices. However, some of this behaviours only depend of the network topology.

Scale-free, simple ring and all-to-all networks

We consider a scale-free network with y = 2.5, an all-to-all network and a simple ring network, and
we choose 50 vertices randomly. Rings and scale-free networks present stronger bistability. The
ring is stronger than the scale-free network, and the scale-free network is stronger than the all-to-all
network. An interesting property is that they become imposible to shutdown when the parameter p
becomes bigger than p..
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3.3. Strategies for breaking the bistability of the system XV

3.3.2 Breaking bistability through a border effect

We take pairs of identic graphs of 50 vertices of the previosly considered networks, and consider its
join:

Definition 3.3.1. Given two graphs, G = (Vi,E1) y H = (Va,E>), we define the graph join G+ H as
follows:

G+H=(V3,E3) with V3=V,UVs, E3=EUEU{(i,j)]i€ViAjcV}

We give the first network a parameter p; € [0.75,1] and p; € [0.0,0.75] to the second one. Scale-
free and simple rings happen to be more sensible in this case. We can break bistability for any p;. The
join of two 50 vertices all-to-all networks is an all-to-all with 100 vertices, therefore we well obtain

the same results as before.
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Prologo

La ciencia de sistemas complejos es un campo multidisciplinar que actualmente atrae gran interés
por su variedad de aplicaciones. Desde la interaccion de las neuronas en un cerebro o la organizacién
social de una colonia de hormigas, hasta la forma en que se distribuyen los recursos de un cierto gru-
po comercial o su cotizacién en bolsa a lo largo del tiempo pueden interpretarse como sistemas que
presentan propiedades que no pueden ser extrapoladas ni deducidas solo en base al conocimiento del
comportamiento de sus componentes. Esto es lo que entendemos por un sistema complejo.

Por otra parte, también podemos hablar de complejidad al referirnos a una red. La teoria de re-
des complejas estudia las propiedades de una red que permiten caracterizarlas, para simplificar el
estudio de redes de gran envergadura que aparecen en fendmenos naturales y sociales y deducir com-
portamientos comunes, o bien para explicar la aparicion de ciertos tipos de estructuras en situaciones
concretas. Un ejemplo tipico es el juego de los seis grados de separacion, que postula que dos per-
sonas cualesquiera estdn separadas, en media, solamente por una cadena de seis “amigos de amigos”
y que ilustra que las redes sociales comparten la caracteristica de tener caminos cortos entre sus nodos.

En este trabajo damos una nocién basica de lo que entendemos por sistemas y redes comple-
jas, algunas caracteristicas que suelen asociarse a los sistemas complejos y algunas redes de interés
practico. Daremos un trasfondo matematico introduciendo la definicion de sistema dindmico. Descri-
biremos con cierta profundidad la dindmica del mapa logistico, un sistema que sirve de modelo bdsico
para representar la evolucién de la poblacién de una especie limitada por el exceso de individuos,
con la intencidn de estudiar a posteriori un modelo en el que varios mapas logisticos interaccionan
entre si de acuerdo a una red subyacente que estructura sus relaciones. Consideraremos una relacién
cooperativa entre los mapas. En términos del modelo de poblaciones podremos interpretar el nuevo
sistema como la accién entrelazada de varias especies que se ayudan mutuamente, que actdan sim-
biéticamente dado un cierto orden. Concretamente estudiaremos la biestabilidad del sistema, esto es,
la presencia simultdnea de dos estados estables, que nos permite darle al modelo un enfoque neurolé-
gico, como representacion sencilla de los estados de suefio y vigilia, apagado y encendido. Veremos
que esta propiedad esta presente primero en un enlace de dos nodos, y que se preserva al hacer crecer
la red, independientemente de la estructura que escojamos.

En el dltimo capitulo se recopilan algunos resultados propios sobre varias propiedades del modelo
en red cuyo estudio queda pendiente. En particular se estudian los puntos fijos del sistema en varias
topologias. Asi como la biestabilidad resultard ser independiente de la red escogida, estudiaremos
otras caracteristicas y parametros que rigen el sistema que si son dependientes de la red, como el
punto en el que la dindmica estable de la red cambia de comportamiento. Finalizaremos estudiando
un método para romper la biestabilidad del sistema, partiendo de una red que presente ambos estados y
manipuldndola hasta que solo quede uno de ellos, hasta que la dindmica del sistema siempre converja
al apagado.
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Capitulo 1

Conceptos previos e introduccion al
modelo

En este capitulo se introducirdn brevemente algunos conceptos de teoria de la complejidad y sis-
temas dindmicos, con objeto de esclarecer los términos y herramientas que después utilizaremos para
construir el acoplado de mapas logisticos.

En primer lugar se dan las nociones de sistema y complejidad, asi como su relacion con los siste-
mas dindmicos. A continuacion se introduce el concepto de red y de red compleja y algunos tipos de
redes destacables por su presencia en gran cantidad de sistemas de diversas naturalezas. Ademds se
expone como su conjuncion con los sistemas dindmicos puede dar lugar a sistemas complejos. En la
ultima seccion se define el concepto de caos en un sistema dindmico y se presenta y estudia el mapa
logistico, un ejemplo sencillo de sistema con estas caracteristicas y elemento fundamental del modelo
posterior.

1.1. Sistemas complejos y sistemas dinamicos

Aunque se utilizan con frecuencia en matematicas y ciencias de la computacion para referirse a
ciertos tipos de modelos y sistemas dindmicos, los conceptos sistema, complejidad y, en conjunto,
sistema complejo tienen un origen mds bien epistemolégico, pues hacen referencia a ideas mas ge-
nerales, que no estdn necesariamente relacionadas con estas disciplinas. Daremos definiciones que,
aunque nada rigurosas, estan muy extendidas.

Definicion. Un sistema es un conjunto de elementos dotados de relaciones entre ellos y que actiian
como un todo.

El término sistema es tan ambiguo que la concepcion de complejidad es, en muchas ocasiones,
definida a partir del mismo. No obstante, la complejidad es un concepto usado en gran variedad de
campos de rigor matemdtico, por tanto existen definiciones concebidas con la intencién de servir a
propiedades especificas de sus objetos de estudio. Desgraciadamente, en nuestro caso, el término sis-
tema complejo y la complejidad a que se refiere no estdn universalmente perfilados. Un intento de
fundamentar estas definiciones en el marco de la teoria de sistemas se atribuye a Robert Rosen [R].

En general el concepto sistema complejo bebe directamente de la nocidn epistemoldgica de emer-
gencia. Ambos términos son definidos como sigue.

Definicion. = Diremos que una propiedad de un sistema es emergente si no puede ser reducida
al comportamiento particular de ninguna de sus componentes. Es decir, es una propiedad que
se asocia a las interacciones que tienen lugar entre los mismos, y que es imposible sin dicha
interaccion.



2 Capitulo 1. Conceptos previos e introduccion al modelo

= Un sistema complejo es un sistema en el que el conocimiento de los elementos que lo conforman
no es suficiente para caracterizar su comportamiento. Es decir, un sistema complejo es aquel
que presenta propiedades emergentes no triviales.

Aunque la terminologia es ambigua, hay ciertas caracteristicas reconocidas como causas o0 con-
ductas asociadas a la complejidad. Damos a continuacién una lista no rigurosa y algunos ejemplos
[BY].

= Retroalimentacién:
Sistemas cuya evolucién depende no solo del estado de sus elementos en un instante, sino

también de uno o varios estados anteriores.

Ejemplo. Sistemas definidos mediante ecuaciones recursivas.

= Dinamica no-lineal:

Los sistemas con dindmica lineal son aquellos cuya evolucién puede expresarse como suma de
componentes mds pequeiias. Esto simplifica en gran medida el estudio y por eso no suelen estar
asociados a la complejidad.

= Auto-organizacion:

Sistemas cuyas componentes interaccionan entre si para dar lugar a un orden particular. Esta
organizacién no depende de elementos externos, sino de las partes del sistema. Por tanto se
presenta una propiedad emergente.

= Formacion de patrones:

La formacién de patrones, fijos, repetitivos o variables es una clara propiedad emergente de
algunos sistemas. Ya sean patrones de conducta, o patrones espaciales, esta temdtica esta fuer-
temente asociada a la apariciéon de complejidad.

Ejemplo. Automatas celulares.

Figura 1.1: Patrones formados por un autémata celular, regla 30.

s Caos:

El término caos al que nos referimos, en si mismo, implica la imposibilidad de prediccién del
comportamiento a largo plazo solo en base al conocimiento de la evolucién del sistema en
condiciones similares. Es por tanto esta incertidumbre la que lo relaciona con la complejidad.

Sistemas complejos
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Algunos autores en cambio consideran que la aparicién de caos rompe la complejidad, pues
exigen que el término sea utilizado exclusivamente sobre sistemas cuyo comportamiento es
dificil de predecir, no impredecible. De cualquier manera, los sistemas cadticos tienen patrones
de comportamiento determinados.

Ejemplo. Meteorologia y dindmica de fluidos.

= Memoria:

Es posible que algunos sistemas tengan memoria, esto es, que la evolucion de estos sea diferente
en condiciones idénticas en base a cambios producidos en el sistema durante la experiencia
previa.

Tras esta introduccion a la terminologia y a fin de dar un marco y un fundamento sélido que nos
permita hacer estudio riguroso de sistemas concretos, asi como modelizarlos, definimos lo que es un
sistema dindmico.

Definicién 1.1.1. Llamamos sistema dindmico a la terna (., ¢,%T) donde .# es un conjunto arbitra-
rio, al que llamamos espacio de estados, ¥ = 7./ R, y lo llamamos conjunto de tiempos, y ¢ = {¢,}
es una familia de aplicaciones ¢; : ¥ — . definida para t > 0, satisfaciendo:

= =1y
- ¢S+t:¢so¢ta Vt,sz()

Si el conjunto de tiempos es 7 diremos que el sistema dindmico es discreto, y si es R diremos que es
continuo.

1.2. Redes complejas y acoplado de sistemas dinamicos

De nuevo la expresion red compleja no hace necesariamente referencia a un objeto matemético
concreto, sino que puede englobar distintas clases de redes, en funcién de lo que entendamos por la
complejidad de una red. La teorfa de grafos da el marco natural para el estudio matemético riguroso
de estos objetos.

Primero recordemos la definicién de red o grafo y de algunos otros términos de teoria de grafos
que nos son necesarios.

Definicion 1.2.1. Un grafo es un par G = (V,E) con E y V dos conjuntos que satisfacen EC'V x V.
Llamamos a V conjunto de nodos y a E conjunto de aristas del grafo. Decimos que el grafo es no
dirigido si se tiene que (i, j) € E <= (j,i) € E. Un subgrafo de G = (V ,E) es otro grafo G; = (V,E))
tal que Vi CVyE| CE.

Definicion 1.2.2. Sea el grafo G= (V,E), yi,j € V. Unitinerario de longitud 1 desde el nodo i al nodo
J es una sucesion de nodos (iy,i1,i2,...,i) tal que ic =1, i; = j y (ip—1,ip) € Epara h=1,2,... 1.
Un grafo se dice conexo si existe un itinerario uniendo dos nodos cualesquiera. Una componente
conexa de un grafo es un subgrafo conexo.

Definicion 1.2.3. Dado un grafo no dirigido G = (V,E) y un nodo i € V, llamamos grado del nodo
N, al cardinal de su conjunto de vecinos o nodos adyacentes, esto es, los nodos en V tales que existe
un itinerario de longitud 1 que los conecta con i.

Hay consenso a la hora de dar una nocién general de red compleja.

Definicion. Decimos que una red es una red compleja si posee propiedades topologicas que difieren
en gran medida de aquellas presentes en un grafo aleatorio.
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4 Capitulo 1. Conceptos previos e introduccion al modelo

Por tanto, la complejidad de una red depende de las propiedades topoldgicas que tomamos como
marco comparativo (podemos encontrar una compilacion detallada de estas propiedades en [B]). Esto
da lugar a todo un estudio de las distintas medidas de la complejidad en funcién de los pardmetros
escogidos. Asi pues, podemos ver diversos tipos de redes que encontramos en la naturaleza (e.g. los
ciclos moleculares de las células, la estructura neuronal de un cerebro, las relaciones tréficas de un
ecosistema...) como redes complejas en funcién del tipo de topologia que presentan. Es de interés
conocer y caracterizar bien las redes por su importancia para desentrafiar las estructuras implicadas
en gran cantidad de procesos. En este sentido, se han estudiado distintos tipos de estructuras de red
destacables por aparecer con frecuencia organizando fenémenos sociales y naturales. Resumimos a
continuacidn las tratadas en [S].

1. Redes aleatorias:

Estos grafos se construyen de forma sencilla uniendo nodos aleatoriamente. Llamemos m al
nimero de aristas que afiadimos a un conjunto de n nodos totalmente desconectado. Erdds y
Rényi estudiaron como la topologia esperada de la red varia en funcién de m [ER]. Cuando
m es pequefio, el grafo tiende a estar fragmentado en muchas agregaciones o cliisteres con
pocos nodos. Conforme aumentamos el valor de m, las componentes crecen en tamaiio, primero
enlazandose con nodos aislados, y después uniendo entre si distintos clisteres. Una cambio
dréstico en la estructura surge cuando m = n/2. Muchos de los clisteres comienzan a enlazarse
entre si para formar una tnica gran componente. Cuando m > n/2 la componente contiene del
orden de n nodos, esto es, la red esta totalmente conectada. De hecho, los caminos conectando
dos nodos son, en cierto sentido, cortos.

2. Redes scale-free

En muchas redes relacionadas con fenémenos naturales, algunos pocos nodos acumulan la ma-
yoria de enlaces, mientras el resto de nodos se enlazan menos. Cuantificamos este efecto de-
finiendo py, donde p; es el nimero de nodos con k vértices, es decir, el niimero de nodos de
grado k. La distribucién de grados para grafos aleatorios generados de forma sencilla (como
hemos descrito en el apartado anterior), sigue una distribuciéon de Poisson. No obstante, mu-
chas redes reales siguen distribuciones que decaen mucho més lentamente que la distribucién
de Poisson. De hecho, la distribucion suele decaer siguiendo una ley potencial, py ~ k™7, e.g. la
Web, redes de reacciones metabdlicas y la red telefénica tienen exponentes ¥y ~ 2.1 —2.4. Es-
tas redes, con distribucién potencial de grados, fueron bautizadas por Barabdsi y Albert como
scale-free, que las estudiaron y dieron un método de construccion [BA]. Descubrieron ventajas
funcionales de esta topologia, que justifican su frecuente presencia. Estas redes son resistentes
a fallos aleatorios, ya que la mayoria de los nodos tienen grados pequefios, esto es, el fallo de
un nodo afecta normalmente a pocos nodos adyacentes. Por otra parte, son muy vulnerables a
ataques deliberados, ya que desconectar un punto fuertemente conectado puede anular la red
por completo.

3. Redes small-world
Las redes small-world son redes entre la aleatoriedad y la regularidad, que poseen caminos
muy cortos entre sus nodos. Watts y Strogatz estudiaron estas redes y dieron un método para
construirlas [WS]. Estas redes también estdn presentes en gran cantidad de fendémenos naturales,

e.g. en el cerebro y en redes sociales y de empresas.
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(a) Aleatoria de Erdos-Renyi (b) Scale-free de Barabési-Albert ~ (¢) Small-world de Watts-Strogatz

Figura 1.2: Algunos ejemplos de redes

Para terminar, con la intencién de estudiar como distintos sistemas pueden interactuar entre ellos,
demos una definicién de sistema dindmico acoplado, de forma que después podamos construir un
sistema dindmico en base a un grafo.

Definicion 1.2.4. Dado un sistema de k ecuaciones diferenciales ordinarias o de ecuaciones de recu-
rrencia de primer orden:

d .
% =F(x1,...,x,t) obien Xjny1=Gi(X1p,...,Xkp,n) con i=1,...k

ConF;: xR— 7y G;: S XL — & siendo .’ =[] un producto de k conjuntos donde
la ecuacion esté bien definida.

Sea el grafo H = (V,E), el grafo de acoplado, conV = {1,... k} y el conjunto de aristas E con
(i,j) € E<= i€V y jes una componente en la que la aplicacion F; o G;, en funcion del tipo de
sistema considerado, es no trivial (esto es, no son constantes en la componente j)y i # j.

Diremos que un sistema de ecuaciones, diferenciales o de recurrencia, es acoplado si el grafo H es
conexo. En otro caso, llamaremos componentes acopladas a los subsistemas de ecuaciones asociados
a las componentes conexas de H.

A partir de aqui es facil hablar de sistemas dindmicos acoplados.

Definicion 1.2.5. Llamamos sistema dindmico acoplado a un sistema dindmico (% ,9,%) donde ¢
es solucion de un sistema de ecuaciones acoplado, ya sean diferenciales o de recurrencia.

1.3. Caos en sistemas dinamicos: El mapa logistico

El caos, en lo que a sistemas dindmicos se refiere, se entiende a efectos practicos como la impo-
sibilidad de conocer la evolucién de un elemento del sistema aun conociendo el comportamiento de
elementos arbitrariamente cercanos al mismo. Es por ello que necesitamos definir primero el término
cercania.

Recordamos la definicién de espacio métrico [W].

Definicion 1.3.1. Un espacio métrico es un par ordenado (S,d), constando de un conjunto S junto
con una funcion d : S X S :— R, a la que llamaremos métrica, cumpliendo que, Vx,y,z € S:

1. d(x,y) >0
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2.dx,x)=0 y dx,y)=0=x=y
3. d(x,y) =d(yx)
4. d(x,y)+d(y,z) >d(x,z) (desigualdad triangular)
Recordemos también la definicién de orbita de un punto y de orbita de periodo 7.

Definicién 1.3.2. Dado un sistema dindmico (., ¢,%) y x € . llamamos orbita de x al conjunto:
h={&x)[reT}
Decimos que una orbita es una orbita periodica de periodo 7 si:
ATeT talque ¢(y) =y, Yy E R
Y decimos que T es su periodo minimo si:

q)[(y);éy, Vi<t

De ahora en adelante asumiremos que . es un espacio métrico dotado de la topologia inducida

por la métrica.
Introduzcamos la nocién de caos referida a un sistema dinamico [SN].

Definicion 1.3.3. Diremos que un sistema dindmico (-, ¢,%) es cadtico si satisface:

n Es sensible a condiciones iniciales:

306 > 0 tal que Vxo € .7 y YUy, entorno de x se tiene que 3yo € Uy, y unt > 0 tal que:
d(¢:(x0),9:(y0)) > 6

» Es topologicamente transitivo en .7 :
Dados U y V abiertos en ., Ixo € UNt >0 tal que ¢;(xp) €V

= Posee un conjunto de orbitas periddicas denso en .

A continuacién enunciamos un teorema para sistemas dindmicos discretos que da una condicién
suficiente para la existencia de regimenes cadticos. Una demostracién del teorema puede encontrarse
en [T]. Primero introducimos el orden de Sarkovskii, un orden parcial para N.

Definicion 1.3.4. Llamamos orden de Sarkovskii a la ordenacion de los niimeros naturales dada

como sigue:

3 5 7 9 1 ... (2n+1)-2°
3.20 5.20 7.2t 9.2 112t L0 (2n+1)-2!
3.22 5.22 7.22 9.22 1122 ... (2n+1)-22
3.2k 5.2k 7.2k 9.0k 112k L (2n41)-2k

n b 23 22 2 1
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Teorema 1.3.5. (Teorema de Sarkovskii) Sea el sistema dindamico (1,9 ,Z) con I un intervalo cerrado,
y denotemos por = al orden de Sarkovskii. Sea ¢, : | — I una funcion continua con una orbita de
periodo m. Entonces, ¢y tiene drbitas de periodo minimo k, Yk < m. En particular, si ¢, tiene una
orbita de periodo minimo 3, entonces tiene orbitas de periodo minimo k, Vk € N.

El mapa logistico es un sistema dindmico que sirve de modelo simple para la dindmica de pobla-
ciones de una especie aislada con recursos limitados. Ademads, es ejemplo muy sencillo de sistema
que presenta regimenes cadticos y el ladrillo fundamental del sistema que estudiaremos después.

Ahora definimos el mapa como sistema dindmico:

Definicion 1.3.6. Llamamos mapa logistico de pardmetro p, con p € (0,4) al sistema dindmico dado
por la terna ([0,1],A,Z) donde A = {A,} es la familia de aplicaciones A, : . — . dada por:

M) =px(1—x) y Au(x) =2A-" A (x)

Para simplificar notaciones el mapa logistico suele ser expresado mediante la relacién de recu-
rrencia:

Xp1 = pxn(1—x,) (1.1

Con esta notacién, en términos del modelo de poblaciones, x, representa la poblacién tras n ge-
neraciones. La expansion estd controlada por el término px,, proporcional a la poblacién actual x,, y
al pardmetro p, al que llamamos ratio de crecimiento. La limitacién de los recursos lleva al sistema
a una contracion, directamente relacionada con la sobrepoblacion, expresada con el término (1 —x;,).
La restriccion del pardmetro al intervalo (0,4) se toma para garantizar que x, € (0,1). En general,
la ecuacién de recurrencia no tiene una solucion cerrada aunque es posible calcularla para valores
concretos del pardmetro, pero solo estamos interesados en un resumen general de la dindmica, que se
puede caracterizar facilmente mediante simulaciones.

Resumamos la dindmica del mapa logistico en funcién del valor de p [LF]:

1. 0 < p < 1: El ratio de crecimiento es demasiado pequefio para estabilizar la poblacién. La fun-
cién es contractiva en todo [0, 1] y por el teorema del punto fijo de Banach, el sistema decae a
su tnico punto fijo, 0. La poblacién se extingue.

2. 1 < p < 3: Cuando p se hace mayor que 1 la dindmica cambia drdsticamente. Se hace posible la
estabilizacién de una poblacién no-nula. Aparece un punto de equilibrio entre el consumo y la
reproduccién. Ademads, la poblacién alcanza este estado independientemente de sus condiciones
iniciales. Concretamente, resolviendo la ecuacién:

x=px(1—x) (1.2)
Ahora, como estamos interesados en la soluciéon no-nula, podemos considerar:

lzp(l—x)<:>x:p;1 (1.3)

3. 3 < p < 3.57: Comienza la llamada cascada de doblamiento de periodo. La poblacién deja de
asentarse en un unico valor y comienza a oscilar en drbitas de periodo 2", con n creciendo
progresivamente hacia infinito conforme p se aproxima al valor critico 3.57.

4. 3.57 < p < 3.82: Cuando el pardmetro se desplaza el sistema alterna comportamientos periddi-
cos de gran periodo en ciertos intervalos y regimenes cadticos para valores no localizados en
intervalos (el conjunto de puntos para los que el sistema es cadtico no es abierto). La poblacién
puede volverse impredecible a pesar del determinismo del sistema.
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Figura 1.3: Diagrama de bifurcacién el mapa logistico.

5. 3.82 < p < 3.85: Aparece una 6rbita de periodo 3 para p = 3.82 tras un régimen donde el
sistema se vuelve mds sencillo. Las zonas impredecibles, llamadas intermitencias, se vuelven
mds infrecuentes, hasta desaparecer y originar la 6rbita de periodo 3. El teorema de Sarkovskii
garantiza por tanto que podemos encontrar Orbitas de cualquier periodo, aunque en este caso
no son observables dada la inestabilidad computacional. En este rango aparece una cascada de
doblamiento de periodos 3 -2".

6. 3.85 < p < 4: Aparece de nuevo un comportamiento cadtico con ventanas periddicas en este
intervalo.

7. p = 4: El régimen cadtico se obtiene, para este valor del pardmetro, en todo el intervalo [0, 1].
Este régimen especifico produce dindmicas que parecen aleatorias. La dindmica pierde su de-
terminismo, y la poblacién evoluciona como un generador de nimeros aleatorios.

Estos comportamientos quedan bien representados en su diagrama de bifurcacion. Se omiten los
estados transitorios, la trayectoria descrita antes de alcanzar un punto fijo o una 6rbita periddica.
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Capitulo 2

El modelo de acoplado logistico

En este capitulo se introduce y estudia la dindmica de un acoplado multiplicativo de mapas logis-
ticos sobre una red, que puede ser interpretado como modelo de un sistema cooperativo o simbidtico.
Se definen los conceptos de estabilidad y biestabilidad y se estudian los pardmetros de acoplo para los
que el sistema presenta dicha propiedad. Se comprueba que cuando el valor del pardmetro de acoplo es
pequeiio, la dindmica de la red se disipa con el tiempo y deja de haber actividad: la red estd apagada.
Cuando aumentamos el pardmetro emerge, a partir de un valor critico, un nuevo estado sincronizado
no nulo, para el cual consideraremos que la red estd encendida. Se prueba, ademads, que el valor del
parametro en el que aparece la bifurcacion de estados es independiente de la topologia de la red. Esto
motiva la reinterpretacion del sistema simbidtico como modelo sencillo para los estados despierto y
dormido de un cerebro [BL].

2.1. Acoplo de dos unidades funcionales

Como hemos visto antes, el mapa logistico modeliza la evolucién de una especie, generacion tras
generacion, en un sistema en el que el exceso de poblacién es limitante. En esta seccion generalizamos
el modelo a dos especies que coexisten simbidticamente, es decir, una puede contribuir al crecimiento
de la otra. En terminologia de redes neurales hablamos de acoplado excitatorio.

Demos primero unas nociones sobre estabilidad.

Definicion 2.1.1. Dado un sistema dindmico (., ¢,%) un conjunto J C .¥ se dice conjunto inva-
riante si se cumple:

SixeJ=¢(x)eJ,VteT

Definicion 2.1.2. Sea J un conjunto invariante, se dice que J es estable (en el sentido de Lyapunov)
si se satisface:

V'V abierto con J C 'V, W abierto con J C W tal que ¢,(x) € V,Vt >0yVx e W
Definicion 2.1.3. Sea J un conjunto invariante, se dice que J es un atractor si:

= Atrae la dindmica, es decir, 3V abierto con J C V, tal que Vx €V se tiene que:

t—ro0

d(¢t (x),V) —0
Llamamos a V vasija de atraccion de J.

» V es un conjunto minimal, es decir, no existe ningiin subconjunto no vacio de V que sea inva-
riante y atraiga la dindmica.
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Teorema 2.1.4. Sea (7, 9,7) un sistema dindmico discreto, y sea F = ¢ una funcion diferenciable,
de forma que ¢, = F o M. oF. Sea 0 = {po,...,pr—1} una orbita periédica de periédica de perio-
do minimo 7, y consideremos B = D¢.(py) = B = DF (pr_1) o DF (p;_3) o ---oDF(pg). Entonces,
denotando p al radio espectral:

» Sip(B) < 1, entonces la drbita periddica es asintéticamente estable, (en particular es estable).

» Si p(B) > 1, entonces la orbita periddica es inestable.

Definicion 2.1.5. Un sistema dindmico se dice biestable si coexisten dos orbitas estables.

Consideremos ahora el modelo de dos nodos [LF, LP], el sistema dindmico en [0, 1] x [0, 1] dado
por la ecuacién de recurrencia:

Xn+1 = p(3yn + l)xn(l _xn> (2.1)

Yn+1 = p(3xn + l)yn(l _.VH) (2.2)

Notese que el grafo de acoplado es en este caso el grafo conexo de dos nodos, una red muy sen-
cilla. Es el producto de las ecuaciones por un término externo lo que acopla las ecuaciones, hablamos
de un acoplado multiplicativo. Se escoge precisamente el término p(3z+ 1) para forzar al ratio de
crecimiento de cada especie, ahora variable con el tiempo, a pertenecer al intervalo (0,4 ), al igual que
en el mapa logistico.

2.1.1. Dinamica y puntos fijos

Estudiamos la dindmica del sistema en funcién del pardmetro p:

1. 0 < p < 0.75: El beneficio que una unidad ofrece a la otra es demasiado pequefio para permitir
la estabilizacién de actividad. Ambas unidades decaen hasta desaparecer, independientemente
de las condiciones iniciales. El tinico punto fijo estable en esta franja es & = (0,0), el estado
apagado.

2. 0.75 < p < 0.86: Un cambio repentino aparece al hacer variar el pardmetro en este intervalo.
Ambas poblaciones se sincronizan en un punto fijo estable y no nulo, el estado encendido,
cuando las condiciones iniciales superan ciertos valores criticos:

3
xp = (0, 04) con O!+:§(1—|— 4—;)

Si las condiciones iniciales se escogen bajo estos limites, en la vasija de atraccion del estado
apagado, ambas desaparecen. Coexisten por tanto dos estados estables. El sistema es biestable
en esta franja. Existe otro punto fijo, inestable y sincronizado, en esta franja:

1 3
x-=(a_,a_) con a-= g(l - \/;)

3. 0.86 < p < 0.95: El estado encendido, antes un solo punto fijo, se bifurca en una 6rbita de perio-
do 2 cuando p ~ 0.86. Ambas unidades oscilan desfasadas. El punto fijo sigue existiendo, pero
solo atrae actividad dentro de la diagonal. Es necesaria menor actividad inicial para encender la
red. Anular una de las componentes sigue siendo buena estrategia para apagarla.
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Figura 2.1: Divisiones del espacio de fases en funcién del pardmetro p.

4. 0.95 < p < 1: El sistema ya no converge a una orbita de periodo 2, esta pierde la estabilidad.
Aparecen 6rbitas cuasiperiddicas y estables alrededor de ambos puntos de la érbita de periodo
2, en forma de curva invariante cerrada. El sistema sigue apagandose cuando anulamos una de
las componentes.

5. p > 1: El sistema pierde la biestabilidad. Regimenes cadticos aparecen a partir de este punto.

La figura 2.1 resume la dindmica en las tres regiones en las que la existe biestabilidad. Se pinta de
negro la regién de condiciones iniciales que lleva al estado apagado, y de blanco la regién que lleva a
la red al encendido.

2.2. Acoplado de una red arbitraria

Después de haber estudiado la dindmica de dos unidades que interactiian entre si parece razona-
ble preguntarse como evolucionardn un nimero arbitrario de unidades, enlazadas también de forma
cooperativa. Ahora bien, es natural que una especie, neurona o grupo de activos pueda relacionarse
de forma directa solo con un niimero concreto de elementos de una estructura mayor. Es por ello que
construiremos un modelo que permita generalizar este tipo de enlace simbidtico a una red con cual-
quier estructura [BL]. Centraremos el modelo en grafos no dirigidos.

Dado un grafo no dirigido G = (V,E) de N nodos, y sea un nodo i € V. Llamaremos vecindario
de i al conjunto de vecinos de i, y lo denotaremos v;. Asociamos a cada nodo i un estado en [0, 1], al
que denotaremos x; (sin hablar todavia de dependencias temporales). Llamaremos media local de un
nodo al valor: :

Xi = ﬁ Z X; (2.3)
Ljevi

Con estos ingredientes podemos pasar ya a la construccion del sistema dindmico. Este vendra

dado por el sistema de ecuaciones de recurrencia acoplado:

Xint1 = PB3%in+ Dxin(l—xip) con i=1,....N (2.4)

Es claro que el grafo de acoplado del sistema coincide con el grafo inicial G, y que el modelo
general es compatible con el de dos nodos.

Nos preguntamos ahora si el modelo de muchos nodos heredard la biestabilidad de su progenitor
y, en caso afirmativo, como y cuando surge. Veamos que esta propiedad esta presente independiente-
mente de la red escogida.

Autor: Mario Asis Canovas



12 Capitulo 2. El modelo de acoplado logistico

(a) Condiciones iniciales (b) Segunda iteracién (¢) Quinta iteracién

Figura 2.2: Las siguientes figuras retratan el movimiento de los puntos de una seccién de un grafo
completo de 100 nodos, con p = 0.97. Se toman dos nodos distintos y cada eje corresponde al estado
de un nodo. Las condiciones iniciales para los nodos elegidos se distribuyen uniformemente. Para el
resto de los nodos se escogen condiciones aleatoriamente, siguiendo una distribucién uniforme.

2.2.1. Dinamica y biestabilidad del modelo de muchos nodos

Pese a que hay muchas definiciones del término [BK], consideraremos que el sistema esté sincro-
nizado cuando se cumpla que x; , = x, parai=1,...,N. Estudiaremos, por simplicidad, que es lo que
sucede en este régimen sincronizado y veremos cuando la dindmica es atraida a este estado.

Noétese que, en estas condiciones de sincronia, también se tiene que &; , = x,, ya que sumamos N;
copias del mismo estado.

Sustituyendo en cualquier ecuacion los estados antiguos por los sincronizados obtenemos que la
evolucién del sistema sobre la variedad de sincronizacion, A, viene dada por el mapa cubico:

Xnp1 = p(B3xn+ 1)x, (1 — ) (2.5)

Es claro ahora que la variedad de sincronizacion (o dada nuestra definicién de sincronia simple-
mente diagonal) a la que hemos llamado A, es un conjunto invariante del sistema dindmico, ya que si
las condiciones iniciales se escogen idénticas, las relaciones recursivas toman la expresion anterior en
todo nodo, y por tanto su evolucién es la misma.

Calculemos los puntos fijos de esta ecuacion haciendo x4 = x, = x:

x=pBx+1)x(1—x) (2.6)

Cuyas soluciones son:

1 3
0=0, xy==-(1%4/4—-) 2.7)
3 P
Exactamente los mismos puntos fijos que en el modelo de dos nodos, cosa evidente ya que ambos

sistemas coinciden en A.

El estado & es estable para 0 < p < 1y los estados x4 surgen cuando p > 0.75, bifurcdndose
en p = po = 0.75 a partir del punto fijo x = % Aunque hay dindmicas estables para p > 1, solo
consideraremos los casos en los que p € [0, 1], que es donde el estado apagado es estable, y por tanto
la region donde puede existir biestabilidad acorde a la interpretacion que estamos siguiendo.

Sistemas complejos



2.2. Acoplado de una red arbitraria 13

En estas condiciones, el punto fijo x; es estable en todo el recorrido de p en el que existe, 0.75 <
p < 1. Por contra, como en la red de dos nodos, el punto fijo x_ es inestable en esta regién. Por tanto
obtenemos biestabilidad en A:

x; = 0 — Apagado
x; = x; — Encendido
Ahora bien, la diagonal solo comprende una regién cerrada del espacio de fases, por tanto la esta-

bilidad sobre A no implica necesariamente la estabilidad global. Pequefias perturbaciones que sacaran
los estados fuera de esta sincronizacién podrian desestabilizarlos completamente.

Estudiamos a continuacién cémo afecta una perturbacion transversal a A a la dindmica, y cuando
podemos garantizar que el sistema tenderd de nuevo a la sincronizacion.

Representamos la perturbacion en el instante 7 del nodo i con @x;,, de forma que el estado en
cada nodo, desplazado de cualquiera de los estados sincronizados estables que ahora representamos
con 0, queda como sigue:

Xin=0+4+0x;, con 6=0Vx, (2.8)

Definimos en base a esto la perturbacion de la media local de un nodo como:
_ 3
Ni JEVI

Incluimos el 3 para simplificar expresiones posteriores. Sustituyendo estos valores en la ecuacién
del sistema, podemos despejar una ecuacién que exprese la evolucién temporal de la perturbacion.

Oxipnt1 =p(360+1)(1—20)0x;,+pO(1 —0)Qx;, (2.10)

En esta expresion podemos comprobar la estabilidad del estado apagado, 6 = O

PXipnt1 = PPXin @.11)

Por tanto cuando 0 < p < 1 la sucesion de perturbaciones:

Pxin = p"Pxip 3 0 2.12)

Por otra parte podemos ver cdmo avanza la perturbacién sobre la media local sustituyendo la
expresion 2.10en 2.9 :

1
OXins1 = p(30+1)(1-20)0%;,+3p6(1—0) x N Y o5, (2.13)

Ljev
Ahora expresemos la media local de perturbaciones de forma mds sencilla, en funcién de su nodo
central, definiendo 0; ,, una cantidad variable de forma que:

1
N Z (Pf],n - O-i,n(Pxi,n (214)
i jev
Por tanto:
1 -
N; Z j i (px ‘7
Oin= N ZJCvi YN (2.15)

(szyn
Luego esta cantidad queda determinada por la propia dindmica del sistema y es dependiente de
la topologia. Si consideramos el sistema dindmico que expresa la evolucion de ambas cantidades, la
perturbacién en un nodo y en su media local, tenemos el sistema de ecuaciones:

Autor: Mario Asis Cdnovas



14 Capitulo 2. El modelo de acoplado logistico

02

0.0 02 0.4 08

p

Figura 2.3: En negro el diagrama de bifurcacion del estado de un nodo, para una red scale-free de
100 nodos, con ¥ = 2.5. En rojo el punto x; para cada valor del pardmetro entre 0.75 y 1. Podemos
ver que hay biestabilidad, primero sobre un punto, después sobre una 6rbita periddica y después en lo
que parecen Orbitas cuasiperiddicas, igual que en el modelo de dos nodos. Las condiciones iniciales
se generan aleatoriamente siguiendo una distribucion uniforme. En este caso py = 1y p. = 0.87. En
la gréfica interior es idéntica para un grafo completo de 100 nodos. El estado del punto se solapa
completamente con x..

Pxin1) _ (P(30+1)(1-26) p6(1-6) PYin) (2.16)
OFine1) 0 p(30+1)(1-26)+3p0;,,0(1—06)) \ @i, '

La unica dependencia de la topologia de la red estd contenida en el valor de o;,, el resto de la
matriz es completamente independiente de la red escogida y es igual para todos los nodos.

Estudiemos ahora los valores propios de la matriz, que nos dard informacién sobre la estabilidad
del sistema de perturbaciones.
Cuando 6 = & los valores propios de la matriz son A; = A, = p, por tanto es un estado atractivo si
0 < p < 1, informacién que ya conociamos por 2.12 . Por tanto el pardmetro miximo para el que la
biestabilidad es posible, py < 1, y desaparecera solo cuando falle la estabilidad de x..

Sea ahora 8 = x,. El estudio de este estado es mas complicado. Supongamos, por simplicidad,

que 0;, = O, esto es, constante sobre todo nodo y a lo largo del tiempo. En el siguiente capitulo
veremos que esta hipdtesis estd justificada. En este caso, los valores propios de la matriz quedan:

/11:2—2p—p,/4—E 2.17)
p
o 3
12:11+§(3—2p+p1/4—;) (2.18)

El valor propio A, es funcién decreciente de p, y toma el valor A; = —1 cuando p = 1. Por tanto
el valor del parametro p para el cual x; pierde la estabilidad, al que llamaremos p,. satisface p. <1,

Sistemas complejos



2.2. Acoplado de una red arbitraria 15

y esta inestabilidad vendrd asociada a A,, ya que | 4; |[< 1 si p < 1. Notemos que, por como esta
definido, o € (—1,1). Veamos cémo varia el valor de p. en funcién del de o:

» 0 <o <1:Eneste caso | A, |< 1. Por tanto el sistema es estable, y para estos valores de ¢
hay biestabilidad siempre que el estado encendido, propiamente x, esté definido. Esto es, hay
biestabilidad si 0.75 < p < 1. El estado pierde la estabilidad en p = 1, por tanto p. = py = 1.

= —] < 0 <0: En este caso obtenemos valores para los que x pierde la estabilidad con p < 1,
por tanto p. < 1, es decir, A = —1 para algiin p < 1. Es aun posible encontrar dindmica activa
y estable distinta de un punto fijo para valores de p tales que p. < p < pr = 1, tal y como pasa
en el modelo de dos nodos. Esto es, la biestabilidad sigue siendo viable, y el punto en el que se
pierda y el tipo de actividad es dependiente de la topologia de la red.

De todo esto se deduce que el valor de o captura en cierta medida informacién de la estructura
de la red, ademds de informacién sobre la dindmica del sistema. De la ecuacién 2.14 se deduce que,
si o0 < 0, las perturbaciones local y de la media oscilan desfasadas. Sin embargo, si o > 0, ambas
perturbaciones oscilan sincronizadas en fase.

En el siguiente capitulo calcularemos un valor aproximado de ¢ para algunos tipos de redes.

Autor: Mario Asis Canovas






Capitulo 3

Algunos resultados nuevos

El acoplado de mapas logisticos da lugar a una gran cantidad de propiedades emergentes, depen-
dientes e independientes de la topologia de red escogida.

En este capitulo revisaremos algunas caracteristicas cuyo estudio ha quedado pendiente, motiva-
dos por su relevancia en la dindmica del sistema.

3.1. Puntos fijos en ciertas topologias de red

Durante el andlisis computacional se hace razonable la posibilidad de que los tinicos puntos fijos
(al menos los estables) sin ninguna componente nula del sistema yazcan sobre la variedad sincroniza-
da. Por tanto, si esto es cierto, otra dindmica estable que pudiera existir debera ser de otro tipo.

En esta seccién se comprobard la certeza de la hipdtesis en ciertos tipos de red, pero primero
demos una propiedad que deben satisfacer los puntos fijos del sistema.

Proposicion 3.1.1. Sea G un grafo no dirigido de N nodos cualquiera y 1L el sistema de acoplado
logistico asociado a G. Sea X = (x1,...,xy) un punto fijo del sistemay tomemos dos nodos, i y j tales
que x;,x; # 0, siendo x; y xj sus estados en el punto fijo y X; y X; sus medias locales. Entonces:

Xi=X; <= .f,':.fj 3.1
Demostracion. Primero supongamos que x; = x; = x. Tomemos las ecuaciones i y j del sistema:
Xin+l = p(3-fi,n + 1)xi,n(1 - xi,n)

Xjn+l = p(3)zj,n + l)xm(l —x_,-,n)

Como se trata de un punto fijo eliminamos la dependencia temporal:
Xi = p<3.fl + l)xi(l —Xi)
xj = p(3%j + Dxj(1 —x;)

Restando ambas ecuaciones y cambiando la notacién de los puntos i y j por x:

0=3p(x—x;)x(1 —x)

Como X no tiene ninguna componente nula (y es facil ver que ninguna puede tomar el valor 1), se
tiene que Xx; = X;.

17



18 Capitulo 3. Algunos resultados nuevos

Reciprocamente, sea X; = X; = X. Entonces, la i-€sima ecuacion queda:
xi = p3x+1)xi(1 —x;)
Como x; es no-nula podemos despejar el valor de x;:

1

i=l-—
* p(3x+1)

Y como la ecuacién para la componente j es idéntica, se tiene el resultado:

1
p(3x+1)

x,-:szl—
O

Este sencillo resultado desvela una ligadura entre el valor del estado de dos nodos y sus medias
locales.

A partir de ahora, como en la proposicion, llamaremos G al grafo no dirigido de N nodos al que
nos refiramos y IL a su sistema de acoplado logistico asociado.

3.1.1. Topologia en estrella

Uno de los casos mds sencillos de comprobar, debido a sus simetrias, es la topologia en estrella.
Sea X un punto fijo de I para G un grafo en estrella, es decir, el nodo c es el centro y es adyacente
al resto de nodos, y todos los demads solo son adyacentes a c.

- . | . . .
Entonces X; = x, para todo i # ¢, y Xo = 57 X jcXj- Con esta informacion el sistema que da los
puntos fijos, eliminando el paso temporal, se reduce a solo dos ecuaciones distintas:

1
- = (3xc+1)(1 —x;
117 ( )fc )( xl) (3.2)
5 =B+ 1)(1—x)
Por tanto, despejando el valor de x;:
1 - (3.3)
xi=1— .
' p(3x.+1)
Luego x; = x; = x para todos 7, j # c¢. De aqui, X. = x, y por tanto las ecuaciones quedan:
1 _ _ 1_ —
%—(3xc+1)(1 X) . 117_(3XC+1)<1 X) (3.4)
5 =0Cx+ 11 —x) 5 =0Bx+1)(1—x)+ Bx+1)(x —x)
En la segunda expresién, restando la primera ecuacion a la segunda queda:
0=3x—x)(1—x)+Bx+1)(x—x.) = 0=4(x—x,) (3.5)

y por tanto x; = x = x., como queriamos demostrar.

Sistemas complejos



3.1. Puntos fijos en ciertas topologias de red 19

3.1.2. Cluasters de tipo all-to-all

A continuacién pasamos a comprobar agregaciones de una red en las que todos los nodos son ve-
cinos entre si. Esta propiedad no es exclusiva de una red all-fo-all (todos con todos, o grafo completo),
algunas componentes de otro tipo de redes pueden satisfacer esta condicién. Veremos a continuacién
que en un punto fijo, todos los estados asociados a estas agregaciones deben coincidir.

Las medias locales de este tipo de agregados satisfacen:

Xin Xjn

Sea pues X un punto fijo, y veamos que los estados de los nodos en este tipo de componentes

coinciden. La i-ésima y la j-ésima ecuacidn del sistema que da los puntos fijos quedan:

5= 0u+1)(1-x) a7
L =065+ 1D)(1-x))
Podemos reescribir 3.6 de la siguiente manera:
Xin —Xj -
Fipt = = Ei Vi (3.8)

Sustituimos esta expresion, ahora sin la dependencia temporal, en la segunda ecuacién de 3.7 y
queda:

;z (Bxj+1)(1—x;) = (3(xl~+);\"/__x1’)+1)(1—x,~) (3.9)

Que podemos desplegar y reescribir como:

1 3(x;i —x;
> =35+ 1)(1—x;) + 3%+ 1)(xi —x;) +H(1 —Xxj) (3.10)
Restamos la primera ecuacién de 3.7 a 3.10, y queda la expresion:
3(x; —x;
O:(3)E,~+1)(x,-xj)+(;\c]_)lcj)(1xj) (3.11)
Sacando fuera el factor (x; —x;):
_ 3
O:(x,-—xj)((3x,~—|—1)+m(l—xj)) (3.12)

El segundo factor de la expresion de la izquierda no se puede anular, es mayor que 1. Por tanto
X; = xj = x, como queriamos demostrar. Ademds, de la ecuacién 3.6 se deduce que ¥; = X; = x.

3.1.3. Desconectado de clasters all-to-all

Comprobamos como afecta a los puntos fijos de los agregados anteriores la desconexién de un
nodo de un cierto nimero de nodos adyacentes. Para simplificar las expresiones asumiremos que la
red tiene N + 1 nodos.

Elegimos un nodo, i, y k nodos que desconectaremos de este. Los nodos que estdn desconectados
de i forman un cluster all-fo-all, todos ellos estan conectadas entre si y comparten los mismos vecinos.
Los nodos no desconectados, obviamente, siguen estando conectados con todos los demds, forman
otro cluster. Por tanto, en un punto fijo, cada uno de estos grupos toma el mismo valor. Al valor del
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20 Capitulo 3. Algunos resultados nuevos

grupo conectado lo denotamos x, y al del grupo desconectado y. Las medias de un elemento en cada

grupo quedan:

ky+xi+ (N —k—1)x (k—1)y+ (N —k)x_

= N > Y= N—1 :

Xi=2Xx

Por tanto, sustituyendo estos valores, las ecuaciones de los puntos fijos quedan:

L= (3t 4 1y (1—x)
L= B+ (1)
5= Cx+1)(1—x)

La tercera ecuacion puede reescribirse como:

L Get 1)(1—x)+ Bxt D (x—x)

p
La primera como:
1 ; k+1
p:(3x+1+3kyﬂ’—3;x)(1—x)
Restamos 3.16y 3.15:
k ; k+1
0=(3 y]_vi_xl—3%x)(1—x)—|—(3x+1)(x,-—x)
Reagrupamos:
0= (X (=) & 2 (3 —3)) (1 =) + B+ 1)(xi— )
= Ny X Nx, X X X Xi—X
Y sacando los factores:
3k 3
0:N(l—x)(y—x)+(3x+l—|—ﬁ(l—x))(x,'—x)
N——
C1 )

Por otra parte multiplicamos la segunda ecuacién de 3.14 por N — 1 y queda:

N—-1

(3.13)

(3.14)

(3.15)

(3.16)

3.17)

(3.18)

(3.19)

—— = B(k=1y+(N=k)x) + (N = DJ(1 =x) +[3((k = 1)y+ (N —k)x) + (N = D] (x—y) (3.20)

p

Ahora multiplicamos la primera por N y le restamos 3.20, y obtenemos:

; = (3(y+xi—3)+ D)1 —x) + Bk~ Dy+ (V=) + (N — 1] (y— )

Restamos 3.15a 3.21, y queda, tras reordenar:

O:\él/(xi—x)—i—[S((k— Dy+(N—k—1)x)+(N+2)](y—x)

c4

(&)
Tomando las dos expresiones finales nos queda el sistema:

{ 0=ci(y—x)+ca(xi—x)

con cy,c3,c3,c4 >0
0=c3(y—x)+ca(xi—x) ’

(3.21)

3.22)

(3.23)

Multiplicamos la primera ecuacién por c¢3 y la segunda por ¢ y las restamos, obteniendo asi:

0= (coc3—cicq)(xi —x)

Sistemas complejos
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Comprobemos en que condiciones podemos garantizar que cpc3 # cjca, teniendo en cuenta que
x,y€(0,1)yN,ke Nconk <N.

Si ¢pc3 = c1¢4 podemos despejar y de la igualdad como funcién de x:

16kN x(k=N+1) 4k+N*4+N-2

3k—D(N_1)BNa N _3x+3) | k-1 GO0 (3.25)

y(x) =

Un andlisis sencillo de la funcién muestra que es decreciente en [0, 1]. Su méximo por tanto se
alcanza parax =0,y esy <0si N > 1, en contradiccién con las condiciones de contorno escogidas.
Por tanto si N > 1 entonces x = x; Vk < N. Y de 3.22 se sigue que x = x; =y, como queriamos probar.

Un reinterpretacion de este resultado es la posibilidad de afiadir un nuevo nodo conectado arbitra-
riamente a una agregacion de este tipo.

3.2. Medidas computacionales de parametros asociados al sistema

La biestabilidad es una propiedad que el sistema presenta a partir del valor del pardmetro logistico
p > 0.75, independientemente de la red escogida. Pasamos ahora a calcular algunos de los pardmetros
que utilizamos en el estudio previo, que rigen la dindmica de la red y son dependientes de la topologia.

3.2.1. Calculo de p. en algunas topologias

En primer lugar calcularemos aproximaciones de los puntos en los que el punto fijo x4 deja de
ser estable y la dindmica del estado encendido sufre un cambio. Utilizaremos el sistema que define la
evolucion de las perturbaciones como se vio en el capitulo anterior:

Oxipr1 =p(30+1)(1-20)0x;,+p0(1 —0)p%;, (3.26)

Lo que nos hace posible calcular p. a partir de las perturbaciones @x;, es el hecho de que, si el
sistema se asienta en el punto fijo sincronizado a partir de un cierto tiempo k, entonces @x;, = 0,
Vn > k. Por tanto basta aproximar el primer valor de p para el que ¢x;, # 0, Va. Este procedimiento
resulta mds preciso y mas sencillo que aproximar el punto de bifurcacién directamente de los valores
del sistema logistico. Todos los cdlculos se realizan con redes de 100 nodos, y asumiendo que el
tiempo de transicion hasta que el sistema cae en el estado encendido es menor que 100.

= Para una red scale-free el valor de p. ~ 0.86, calculado con un error de +0.01. Este rango de
valores resulta ser casi independiente del pardmetro y asociado a la distribucion de grados de los
nodos. En concreto, calculando el valor de p. para una red en estrella, que podemos considerar
un caso limite de este tipo de redes, obtenemos el mismo valor.

= Para redes en anillo obtenemos los valores representados en la figura 3.1. Se observa que p. se
acerca mds a 1 conforme la red se compacta, aunque este crecimiento no es monétono.

= Para redes all-to-all el valor de p. es muy cercano a 1, como se observa al final de la grifica
3.1. En este caso, con 100 nodos, p. = 0.99, con un error de +0.01.
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n

Figura 3.1: Calculamos la siguiente grafica para redes de 100 nodos. El primer valor corresponde a
una red en anillo simple. A partir de esta red construimos anillos con mayor densidad de enlaces,
conectando cada nodo con todos los nodos a distancia menor o igual que n. Por tanto, la dltima de
estas redes corresponderd al grafo all-to-all de 100 nodos, para n = 50.

De este estudio se concluye que, cuanto mds compacta es la red, mas amplia es la regién en la
que el punto fijo x; es estable, es decir, un mayor nimero de interconexiones hacen mds fuerte la
biestabilidad sencilla. Si interpretiramos la memoria de la red como su capacidad para acceder a
estados dindmicos estables complejos, las redes con mds memoria en su zona biestable son aquellas
con menor densidad de conexiones.

3.2.2. Calculo de o en algunas topologias

Pasamos ahora al calculo del pardmetro ¢, de nuevo en redes de 100 nodos. Se comprueba en la
prictica que la suposicién de que 0;, es constante para todo nodo y a partir de un cierto tiempo es
razonable. El valor de este pardmetro proporciona mas informacién sobre la red que p.. De hecho,
conociendo o podemos calcular el valor exacto de p, a partir de los valores propios de la matriz del
sistema de perturbaciones dado en el capitulo anterior:

/11:2—2p—p,/4—g 3.27)
p
o 3
lzzll+§(3—2p+p,/4—;) (3.28)

Si0< o<1 vimos que p. =1,y si —1 < o <0 entonces, por ser A, < 0.5 en esta regién, y
decreciente como funcién de p, se tiene que p, es el valor que hace A, = —1:

_ 306%2-300—-27—/3(c —3)2(302 + 140 +27)
N 320

pe € (0.75,1) (3.29)

Primero notemos que, en la zona en la que el punto fijo x; es estable, 0;, deja de estar bien
definido a partir de un cierto tiempo, pues las perturbaciones terminan por anularse. Por tanto el

célculo de o debe hacerse tras la pérdida de estabilidad de x, esto es, a partir de p..

Sistemas complejos
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00

n

Figura 3.2: De nuevo construimos redes anulares desde el anillo simple hasta la red all-to-all, y le
asignamos a la red n el valor de ¢ correspondiente. La similitud entre ambas graficas sugiere una
dependencia lineal.

= Para una red scale-free c = —1. Este valor es, de nuevo, independiente del pardmetro de dis-
tribucién de grados escogido. Resolviendo el problema, obtenemos un valor p. = 0.866, que
coincide con el valor obtenido en el apartado anterior.

= Pararedes en anillo obtenemos los valores de ¢ representados en la grafica 3.2. Esta grafica esta
construida en las mismas condiciones que la del apartado anterior. Nétese la fuerte similaridad
de ambas figuras, casi idénticas, que deja clara la dependencia entre p. y ©.

= Para redes all-to-all tomamos el dltimo valor calculado para los anillos. Por tanto, o =~ 0, esto
es, A; &= Ay y por tanto x; es estable para todo valor de p, de nuevo confirmando lo obtenido en
el apartado anterior.

Para ver més clara la dependencia entre ¢ y p. calculamos varios valores de p. usando la ecuacién
3.29. En la figura 3.3 vemos que la dependencia entre estos dos valores es practicamente lineal. El
ajuste por minimos cuadrados da, con un error medio de 0.00117, la siguiente recta:

pe=0.998+0.13506, o©€[-1,0] (3.30)

3.3. Estrategias para la ruptura de la biestabilidad

En esta seccién estudiaremos métodos para romper la biestabilidad de las redes anteriores, elimi-
nando el estado encendido y dejando solamente el estado apagado.

3.3.1. Por sembrado aleatorio de parametros

El proceso que seguiremos, mas concretamente, consistird en considerar una red de 100 nodos con
un pardmetro fijo, seleccionar de ésta la mitad de sus nodos al azar y asignarles un pardmetro distinto,
dentro de la region en la que la red no presenta biestabilidad. Es decir, si llamamos p; al pardmetro
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Figura 3.3: En el primer gréfico se representan los valores de p, calculados para cada ¢. En el segundo
gréfico se representan los valores de ¢ para cada p en una red anular con n = 17. Se observa que el
pardmetro se asienta casi perfectamente sobre un valor fijo, justificando empiricamente la suposicién
de que o es constante.

Figura 3.4: Ruptura por sembrado de pardmetros. En rojo los valores para la red scale-free, en azul
los valores para la red en anillo y en negro los valores para la red all-to-all.

inicial, p; al pardmetro impuesto a posteriori, Ny y No = N\ N; a los conjuntos de nodos asociados a
cada uno de ellos obtenemos el nuevo sistema de recurrencias:

Xint1 =p1(3%in+1)xin(l —xip) con i€Ny y p;€]0.75,1)

_ . (3.31)
Xint1 = P2(3%in+ D)xin(1 =x;n) con i€N» y pr€0,0.75)

La eleccién aleatoria provoca distintos comportamientos en funcién de los nodos escogidos y de
su relevancia en la red: perturbar nodos que afectan a un mayor nimero de vecinos es mds perjudicial
para la biestabilidad que elegir nodos con poca influencia. No obstante, ciertas conductas se preservan
independientemente de los nodos escogidos, solo son relativas a la topologia de la red.

En adelante, dado un pardmetro inicial p;, llamaremos p,, al valor maximo de p, que rompe la
biestabilidad de la red. Por tanto la biestabilidad se pierde Vp, < py, .

Red scale-free, en anillo y all-to-all

Tomamos una red scale-free con y = 2.5, una red all-to-all y un anillo periddico simple, n =1,
con una seleccion aleatoria de 50 nodos. Obtenemos los p,, representados en la grafica 3.4.

Sistemas complejos
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Figura 3.5: Ruptura por efecto frontera. En rojo los valores para la red scale-free, en azul los valores
para la red en anillo y en negro los valores para la red all-to-all

En la gréfica, p representa a p1, el valor inicial del pardmetro. Como cabia esperar, cuanto menor
€s p mayor es p,,, es decir, cuanto mas pequefio es el valor del pardmetro inicial mds fécil es apa-
gar la red. Conforme el valor de p avanza, mds dificil se hace romper la biestabilidad de la red. Se
observa una caida dréstica conforme p se acerca a p., el punto en el que el estado estable de la red
cambia de dindmica. Es tal la caida que cuando superamos en cierta medida p. la biestabilidad no
puede eliminarse solamente rebajando los pardmetros de media red, el resto de nodos es suficiente
para mantenerla encendida.

Las redes scale-free tienen una biestabilidad s6lida ante ataques aleatorios. La red en anillo mues-
tra ser la mds robusta de las tres. En la red all-to-all, por su estructura, da igual que nodos seleccio-
nemos. Los resultados son independientes de los nodos elegidos, y por tanto los valores de p,, solo
dependen del niimero de nodos cuyo pardmetro rebajamos. No obstante, esta red es mds sensible.
También se vuelve imposible apagar la red a partir de cierto valor, pero es mas sencillo apagarla que
a cualquiera de las anteriores.

3.3.2. Ruptura por efecto frontera

En este caso tomaremos pares de las mismas redes que hemos tratado antes, pero ahora con 50
nodos. Construimos con cada par de redes idénticas una nueva, enlazando cada nodo de una con todos
los nodos de la otra. Esta operacion se conoce como suma de grafos. Formalmente:

Definicion 3.3.1. Dados dos grafos, G = (V1,E|) y H = (Va,E3), se define el grafo G+ H como:
G+H= (V3,E3) con V3=ViUV,, E3=E UEzU{(i,j)‘ ieViNje V2}

Ahora asignamos un pardmetro distinto a cada uno de los grafos iniciales, a uno p; € [0.75,1] y
al otro p, € [0.0,0.75]. Repetimos los mismos calculos para las nuevas redes, obteniendo los valores
representados en la figura 3.5.

Las redes scale-free y anular resultan ser mds sensibles en este caso, justo al contrario que con el
proceso anterior. Es posible apagarlas en todo el recorrido del pardmetro. La red resultante de sumar
dos redes all-to-all de 50 nodos no es mas que otra red all-to-all de 100 nodos, luego los valores
obtenidos deben ser los mismos.
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