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1. RESUMEN 

 

El Síndrome Cornelia de Lange (SCdL) es un trastorno congénito del desarrollo con gran 

variabilidad fenotípica. Hasta la fecha se han descrito cinco genes asociados con este síndrome, 

SMC1A, SMC3 y RAD21 son componentes estructurales del complejo de cohesinas, mientras 

que NIPBL y HDAC8 son reguladores del mismo. Se estima que aproximadamente el 80% de 

los pacientes con SCdL presentan mutaciones en NIPBL. En este trabajo, se presentan dos 

nuevas mutaciones de splicing en el gen NIPBL. Están localizadas en posiciones no canónicas y 

son las mutaciones intrónicas más profundas descritas hasta el momento. El paciente 1 posee la 

mutación c.5329-15A>G en el intrón 27 que provoca la pérdida del exón 28 y que mantiene la 

pauta de lectura. La adenina que resulta mutada podría ser el nucleótido clave en la secuencia 

del punto de ramificación. El paciente 2 presenta una deleción de seis nucleótidos en el intrón 

36, c.6344del(-13)_(-8), que da lugar a pérdida del exón 37 y que rompe la pauta de lectura. 

Esta mutación podría afectar al tracto de polipirimidinas. En el paciente 1 los resultados de la 

qPCR han mostrado una expresión de mRNA similar al observado en el control. Sin embargo, 

en el paciente 2 hay casi un 30% de reducción de la expresión de NIPBL debido probablemente 

a la activación de mecanismos de degradación de tránscritos aberrantes (NMD, nonsense 

mediated decay). Estos resultados apoyarían la idea de que una disminución en los niveles de 

mRNA por un tránscrito que rompe la pauta de lectura o codifica una proteína truncada, da 

lugar a un fenotipo más severo que cuando hay mutaciones/transcritos que mantienen la pauta 

de lectura y que no afectan a los niveles de mRNA. 

 

1. ABSTRACT  

Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder with a high 

grade of phenotypic variability. To date, mutations in five genes have been associated with 

CdLS: SMC1A, SMC3 and RAD21 are structural components of cohesin complex, whereas 

NIPBL and HDAC8 regulate the complex. Currently, it is estimated that about 80% of patients 

with CdLS have a mutation in the NIPBL gene. Here, it is reported two new splicing mutations 

in the NIPBL gene. They are located in noncanonical splicing positions and are the deepest 

mutations reported to date. Patient 1 carries the mutation c.5329-15A>G in the intron 27 with 

exon 28 skipping and an in frame aberrant transcript. The mutated adenine could be the key 

nucleotide of the branch point sequence. Patient 2 carries a six nucleotide deletion on intron 36, 

c.6344del(-13)_(-8), with an out of frame aberrant transcript. This mutation could affect the 

polypirimidine tract. In patient 1, qPCR has shown a similar NIPBL mRNA level compared to 

the control. Whereas in patient 2, qPCR has shown an about 30% reduction of NIPBL mRNA 

level, probably due to the activation of mechanisms to degrade aberrant transcripts (NMD, 

nonsense mediated decay). These results would support the idea that a reduction in mRNA 

level, due to an out of frame aberrant transcript, results in a more severe phenotype. And 

mutations that generate in frame aberrant transcripts result in less severe phenotypes.   
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2. INTRODUCCIÓN 

 

El Síndrome Cornelia de Lange (SCdL, también llamado el Síndrome Brachmann-de 

Lange; MIM 122470, 300590, 610759, 614701, 300882) fue descrito inicialmente por 

Brachmann y posteriormente caracterizado por de Lange, de quien toma su nombre. Se trata de 

un trastorno congénito de afectación multisistémica caracterizado por dimorfismo facial, 

alteración del crecimiento, hirsutismo, malformaciones que afectan fundamentalmente a las 

extremidades superiores y retraso mental, entre otros síntomas (figura 1). La prevalencia de la 

enfermedad se estima en 0,5-10 de cada 100.000 personas, pero la exacta es desconocida debido 

a que los casos leves a menudo no son bien diagnosticados.
1
 

           

             Figura 1. Paciente con el fenotipo facial típico de SCdL
2
 

 

Cuando un paciente llega a la consulta médica existen diversos criterios que permiten 

clasificar la gravedad del síndrome. El primer sistema fue desarrollado por la doctora Lynette 

Gillis y clasifica a los pacientes en función de las malformaciones en las extremidades, el 

desarrollo físico y las capacidades cognitivas. Tras la evaluación siguiendo estos criterios 

distinguimos tres grupos: clase I (leve), clase II (moderado)  y clase III (severo).
3
  

Posteriormente la doctora Antonie Kline, desarrolló un segundo método más detallado que 

analiza una gran cantidad de parámetros (peso al nacer, malformaciones, adquisición de 

habilidades…) que llevan asociados una puntuación en función de la gravedad (en el caso de las 

malformaciones), o tiempo transcurrido hasta la adquisición de la habilidad (primera palabra, 

capacidad de andar...). Una vez que se ha realizado este estudio se obtiene una puntuación final, 

para la que también existen unos baremos, que permiten clasificar al paciente en grave (22 o 

más puntos), intermedio (de 15 a 22 puntos) o leve (menos de 15 puntos). 
4,5

 

Hasta la fecha se han descrito cinco genes diferentes asociados con este síndrome, tres de 

ellos siguen una herencia autosómica dominante (NIPBL, SMC3 y RAD21) y los otros dos son 

de herencia dominante ligada al cromosoma X (SMC1A y HDAC8). Por lo que se refiere a su 

función en el organismo, SMC1A (Xp11.2, MIM: 300040), SMC3 (10q25, MIM: 606062) y 

RAD21 (8q24, MIM:614701) son componentes estructurales del complejo de cohesinas, 

mientras que NIPBL y HDAC8 (Xq13.1, MIM: 300882) son reguladores del mismo.
1
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La severidad de los síntomas está asociada con el gen que resulta alterado, de tal forma 

que, en orden creciente de gravedad, los genes quedarían ordenados de la siguiente manera: 

SMC3, RAD21, SMC1A, HDAC8 y NIPBL. Sin embargo, se han visto diferencias en el fenotipo 

de pacientes no relacionados que presentan la misma mutación, lo cual indicaría la existencia de 

otros factores genéticos o ambientales que podrían intervenir en el fenotipo. Además esta idea 

estaría apoyada por las diferencias fenotípicas observadas en los casos familiares.
4,6

  

El complejo de cohesinas (figura 2) está ampliamente expresado en todas las células 

somáticas y es un elemento esencial en numerosos procesos celulares que incluyen el 

mantenimiento de la estructura de los cromosomas y su segregación, la regulación 

transcripcional, la reparación y replicación del DNA, además de intervenir en la unión y 

segregación de las cromátidas hermanas. Sin embargo, se cree que el SCdL es causado sobre 

todo por una desregulación transcripcional.
7
  

La proteína codificada por NIPBL interviene en el proceso de cargar el anillo sobre los 

cromosomas en la metafase, mientras que HDAC8 es responsable de la desacetilación de SMC3 

para facilitar la renovación del complejo de cohesinas después de su disociación de las 

cromatinas durante la profase o anafase.  Todas las mutaciones identificadas en el SCdL afectan 

a proteínas de las cohesinas, de tal forma que junto con el Síndrome Roberts y el Síndrome de 

Varsovia-, el SCdL pertenece al grupo de enfermedades denominadas cohesinopatías.
4
   

 

Figura 2.El complejo de cohesinas y sus proteínas asociadas. El complejo está constituido por cuatro 

subunidades principales, SMC1A, SMC3,  RAD21 y STAG1/2. Hay una serie de proteínas que regulan el 

funcionamiento de este complejo entre las que destacan NIPBL (Nipped-B-like-protein) y HDAC8. 
4
 

 

Se estima que aproximadamente el 80% de los pacientes con SCdL presentan mutaciones 

en NIPBL, incluyendo al 23% de los casos de mosaicismo somático. NIPBL está localizado en 

el cromosoma 5 (5p13.2) y consta de 47 exones. Se han encontrado más de 300 mutaciones a lo 

largo del gen pero el exón 10 parece ser un punto caliente. Hasta el momento no se han hallado 

mutaciones en los exones 13 y 16. Este hecho podría sugerir que mutaciones en estas regiones 

no son toleradas y que los dominios proteicos que estos exones codifican jugarían un papel 

importante en la funcionalidad de la proteína, aunque esto todavía no ha sido demostrado. 

Debido a que estos dos exones son los más pequeños del gen NIPBL, también es probable que 

su tasa de mutación sea muy baja.
8,9

      

 

También existe variedad entre los tipos de mutaciones detectadas hasta el momento: 

cambio del marco de lectura/frameshift (32%), cambio de sentido/missense, (26%), sin 

sentido/nonsense, (18%), de splicing (17%) e inserciones o delecciones que no alteran el marco 
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de lectura/in-frame deletion or insertion (7%). Porcentajes mucho menores corresponden con 

HDAC8 (aproximadamente el 4% de los casos) y el 4-6% para el gen SMC1A. De este gen se 

han descrito 34 mutaciones (82% de tipo cambio de sentido y 18% de delecciones que no 

modifican el marco de lectura). Sólo seis pacientes han sido hallados con mutaciones en SMC3 

y ocho pacientes en el caso de RAD21. Aunque la mayoría de los casos hallados hasta el 

momento son mutaciones de novo también se han descrito algunos casos familiares en NIPBL, 

SMC1A, RAD21 y HDAC8.
8
  

Debido a la gran cantidad de mutaciones que han sido reportadas para el gen NIPBL 

también existe una gran diferencia entre los fenotipos que presentan estos pacientes. Pese a ello 

sí que se han encontrado síntomas comunes para todas las mutaciones de este gen. Estos 

síntomas son: retraso en el crecimiento pre y postnatal,  alteraciones en órganos principales 

(corazón, intestino y aparato urogenital) y afectaciones en las extremidades que van desde 

clinodactilia hasta la ausencia de antebrazos.
4
  

Asimismo se han realizado estudios que han tratado de establecer correlaciones entre el 

fenotipo de un paciente y el tipo de mutación en NIPBL que presenta. Se ha podido establecer 

que la gravedad de los síntomas sí que está relacionado con el tipo de mutación de tal forma que 

en orden creciente de gravedad los tipos de mutaciones quedarían ordenados de la siguiente 

manera: missense, splicesite y frameshift/nonsense.
4
                                                                                                                                                                                          

El fenotipo más leve está asociado con las mutaciones de cambio de sentido (missense) y 

su sintomatología se corresponde con retrasos menores en el crecimiento y en las funciones 

cognitivas, reflujo gastroesofágico y ausencia de alteraciones en las extremidades. Un fenotipo 

intermedio es el presente en pacientes con mutaciones de splicing. Estos pacientes presentan 

reflujo gastroesofágico, retrasos, desde nivel moderado hasta severo, en el crecimiento y en las 

capacidades cognitivas, malformaciones en las extremidades e incluso alteraciones en los 

órganos principales. Los casos más severos están asociados con mutaciones que alteran el marco 

de lectura y con mutaciones sin sentido (frameshift y nonsense). Estos pacientes presentan 

reflujo gastroesofágico, retrasos severos en sus funciones cognitivas y en su crecimiento y 

alteraciones graves en las extremidades y en órganos principales.
4
 

En cuanto al cDNA del gen NIPBL, mediante análisis de Northem-blot, se pudo confirmar 

el tamaño del tránscrito de 9,8Kb. Los resultados mostraron además que NIPBL está muy 

expresado en el riñón, tanto en feto como en adulto; en el hígado del feto; y en el adulto además 

en: corazón, músculo esquelético y timo. Por otra parte, y en contraste, está muy poco 

expresado, y en algunos casos prácticamente indetectable, en cerebro y pulmón tanto en feto 

como en adulto; y también apenas detectable en hígado, colon, intestino delgado y leucocitos de 

adulto.
10

     

La maduración del mRNA o splicing es el proceso por el cual los intrones son eliminados 

de manera precisa y los exones se unen generando las secuencias codificantes. Existe una 

maquinaria específica para llevar a cabo el splicing, el complejo denominado spliceosoma. Este 

complejo dinámico está constituido por dos tipos de proteínas, las snRNPs (small nuclear 

ribonucleoproteins) y los factores de empalme. Otros elementos necesarios para que el proceso 

de splicing se lleve a cabo son un conjunto de señales de secuencia nucleotídica que indican por 

dónde ha de cortarse el intrón. Entre estas secuencias estarían las secuencias aceptora y 

donadora del splicing, la secuencia rica en pirimidinas y la zona de ramificación.
11

  

El splicing alternativo del mRNA permite obtener diferentes isoformas de una proteína a 

partir de un único gen, permitiendo a los organismos una mayor capacidad de adaptación al 
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medio. Se ha visto que este proceso puede verse afectado por mutaciones dando lugar a un 

incorrecto procesamiento del mRNA y obteniéndose tránscritos aberrantes con pérdida de un 

exón o con inserción de secuencia intrónica.
11

 

En lo que se refiere a las variantes de splicing del gen NIPBL, se describieron en principio 

dos posibles isoformas: la isoforma principal (A) constituida por 2804 aminoácidos (exones 2-

47) y la otra isoforma (B), 2697 aminoácidos, que no contiene al exón 47 y posee un final 

extendido del exón 46. Ambas son idénticas hasta el aminoácido 2683 pero sus extremos C-

terminales no coinciden. Esta proteína contiene dominios específicos (figura 3) incluyendo al 

dominio de interacción N-terminal MAU, un dominio rico en glutamina, un dominio predicho 

de señalización nuclear (NLS), repetición de un undecapéptido y un dominio conservado con 

cinco repeticiones HEAT que son importantes para la interacción con otras proteínas.
6,9

  

 

Figura 3. Localización de los principales dominios presentes en NIPBL. 
6 

                                                                                                                                                        

Hasta hacía poco sólo se habían aislado estas dos isoformas en tejidos humanos 

embrionarios pero un estudio reciente ha podido identificar la presencia de cuatro nuevas 

variante de splicing en leucocitos humanos adultos. Una de ellas ha sido denominada isoforma 

B´ ya que es un tránscrito similar a la isoforma B excluyendo al exón 45 lo que da lugar a la 

rotura en el marco de lectura. Mediante la amplificación sistemática de fragmentos que se 

solapan se estudió las otras tres nuevas variantes, que presentaban una deleción del exón 10 

(ΔE10), del exón 12 (ΔE12), y de los exones 33 y 34 (ΔE33-34) respectivamente.
12

  

De entre los diferentes tipos de mutaciones que pueden afectar a NIPBP las de splicing 

pueden tener consecuencias variables. Lo más frecuente es que se pierda el siguiente exón 

durante el proceso de splicing. Esto se ha visto en mutaciones en nucleótidos canónicos 

(c.358+1G>A, c.869-2A>G, y c.5328+1G>A). También se han encontrado mutaciones que 

afectan al tracto de polipirimidinas (c.3856-5delT y c.5329-6T>G).
12

  

En otras ocasiones las mutaciones de splicing pueden provocar la pérdida parcial del exón 

por activación de secuencias crípticas. Un ejemplo sería la mutación c.7860+5G>A, que 

interrumpe la secuencia de splicing donadora. En este caso se esperaría la perdida completa del 

exón debido a que el exón 45 posee una secuencia aceptora débil y su pérdida da lugar al 

tránscrito B´. Sin embargo, se ha encontrado un tránscrito aberrante con una deleción de 33 

nucleótidos en el extremo 3´ del exón 45.
12

  

Aunque se ha descrito que pacientes con mutaciones de splicing en NIPBL muestran una 

amplia variabilidad clínica los fenotipos más severos parecen estar asociados con tránscritos 

aberrantes que rompen la pauta de lectura.
12
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3. OBJETIVOS 

 

El objetivo de este trabajo es caracterizar dos nuevas mutaciones localizadas en las regiones 

intrónicas flanqueantes del gen NIPBL, que podrían estar alterando el splicing y generando 

tránscritos aberrantes. Además, se pretende estudiar las relaciones genotipo-fenotipo de este tipo 

de mutaciones. 

 

Este objetivo general se subdivide en varios objetivos específicos:  

1. Comprobar mediante el estudio de DNA genómico la mutación del gen NIPBL de 

cada paciente. 

2. Identificar los tránscritos aberrantes producidos como consecuencia de las 

mutaciones de splicing. 

3. Cuantificar la expresión total de mensajeros del gen NIPBL y su variación según el 

tipo de mutación.  

4. Establecer relaciones genotipo-fenotipo teniendo en cuenta las características de la 

mutación y la expresión total de mensajeros. 
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4. MATERIALES Y MÉTODOS 

4.1 Historia clínica de los pacientes estudiados 

El grupo de investigación dispone de una tabla estandarizada que recoge todas las 

características fenotípicas que deben ser estudiadas en un paciente que presenta el SCdL. Esta 

tabla se encuentra en  el ANEXO I.  

4.2 Gravedad de los pacientes según clasificación de Gillis 

Los criterios utilizados en la clasificación clínica de los dos pacientes estudiados son los 

desarrollados por la doctora Lynette Gillis que establecen una clasificación atendiendo a tres 

parámetros: malformaciones en las extremidades, desarrollo físico del paciente que se valora 

teniendo en cuenta los percentiles de peso, altura y perímetro craneal para individuos de la 

misma edad y sexo; y finalmente, se hace un estudio de las capacidades cognitivas. Teniendo en 

cuenta a estos tres parámetros los pacientes son clasificados en tres grupos: clase I (leve), clase 

II (moderado)  y clase III (severo).
3
  (tabla 1). 

 

 Clase I (leve) Clase II (Moderado) Clase III (Severo) 

Anomalías en  

extremidades 

No presenta Defectos parciales, 

oligodactilia (> de 2 dedos 

en cada mano) 

Afectación severa 

(< de 2 dedos en 

cada mano) 

Desarrollo y 

habilidades 

cognitivas 

< de 2 años de retraso en la 

capacidad motora, posee 

habilidades comunicativas 

> de 2 años de retraso en la 

capacidad motora, limitado 

desarrollo del lenguaje 

Retraso motor 

profundo, incapaz 

de hablar 

Crecimiento > Percentil 75 Percentil 25-75 < Percentil 25 

  Tabla 1. Método de clasificación de pacientes con SCdL de la doctora L.Gillis. 

                                                                                                                                                

4. 3 Comprobación de la mutación en el DNA genómico 

Una vez recibidas las muestras de DNA de ambos pacientes se comprueba la mutación 

asociada a cada uno de los pacientes. Para ello se amplifica el exón correspondiente con la 

mutación mediante una PCR, se comprueba que se ha producido amplificación con una 

electroforesis en gel de agarosa y se secuencia el producto de la PCR del correspondiente exón. 

 

4.3.1 Amplificación del exón correspondiente 

El proceso de PCR consiste en una serie de 20 a 35 ciclos. Cada ciclo está precedido por 

un choque térmico a alta temperatura, y seguido por otro paso similar al final del proceso para la 

extensión de producto final. Las temperaturas usadas y el tiempo aplicado en cada ciclo 

dependen de diversos parámetros (enzima usado, concentración de iones divalentes y de los 

dNTPs, así como la longitud del DNA que se desea amplificar). Existen tres etapas 

fundamentales dentro de cada ciclo: desnaturalización, unión del primer y elongación de la 

cadena. En la desnaturalización se produce la separación de las dos hebras del DNA.  
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La temperatura a la cual se realiza esta etapa depende, de entre otros factores, de la 

longitud de la cadena. Entonces se producirá la hibridación del primer a la hebra del DNA a la 

que es complementario. Para este paso la temperatura desciende hasta aproximadamente 40-

60ºC (dependiendo de los primers usados en cada caso). Finalmente tiene lugar la elongación de 

la cadena por parte de la DNA polimerasa mediante la unión de los dNTPs y teniendo como 

molde a la hebra del DNA original.  

El diseño de los primers es una etapa fundamental para que la PCR se produzca 

correctamente. Tienen que ser secuencias cortas, normalmente de dieciocho a veintidós 

nucleótidos; no deben tener secuencias repetidas o complementarias y su contenido en C+G 

deber ser aproximadamente del 40%.  

La PCR que se usa es la basada en Master Mix. En lugar de tener que adicionar de manera 

independiente la DNA polimerasa, los dNTPs, el magnesio y el tampón, se añade directamente 

la Master Mix que ya lleva incluida todos los componentes mencionados. La mezcla que se usa 

para amplificar cada uno de los exones es la que se muestra en la tabla 2. El programa de PCR 

usado para todos los exones es el mismo. Consta de 35 ciclos y es el que se muestra en la tabla 

3. Se usan controles negativos para garantizar que no se hayan contaminado los reactivos (H2O, 

Master Mix…) con DNA de otros pacientes. Estos controles llevan los mismos componentes 

que una muestra de amplificación a excepción del DNA 

Reactivo Volumen   Tiempo Temperatura 

Master mix 10µl  Inicio 3 minutos 98°C 

Agua 8.5µl  Desnaturalización 30 segundos 96°C 

Primer F 0.5µl  Hibridación 30 segundos Tª específica 

Primer R 0.5µl  Extensión 30 segundos 72°C 

DNA paciente 0.5µl   Extensión final 5 minutos 72°C 

     Tabla 2. Mezcla de PCR.                                                        Tabla 3. Programa de PCR. 

 

4.3.2 Electroforesis en gel de agarosa 

La electroforesis en gel es una técnica muy utilizada para separar ácidos nucleicos  que 

utiliza unos geles que son polímeros de poliacrilamida o agarosa. Los geles se comportan como 

un tamiz molecular y permiten separar moléculas cargadas en función de su tamaño y forma. 

Las moléculas de DNA sometidas a electroforesis se desplazarán al polo positivo ya que a pH 

superiores a cinco poseen carga negativa. En los fragmentos de DNA de doble cadena la 

velocidad de migración es inversamente proporcional a su tamaño.                        

En el caso de los geles de agarosa, se añade bromuro de etidio, compuesto que se intercala 

entre las bases del DNA y es fluorescente cuando se ilumina con luz ultravioleta. Tras la 

electroforesis, se visualiza el gel con una lámpara de luz UV, y así se pueden identificar las 

bandas correspondientes con cada una de las muestras. En cada gel debe cargarse un marcador 

de pesos moleculares conocidos ya que permitirá calcular el tamaño de las muestras de DNA 

amplificadas y comprobar si concuerda con el tamaño del exón correspondiente. 

35 

ciclos 
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El protocolo usado en la electroforesis en gel de agarosa es el siguiente: 

1. Pesar la cantidad necesaria de agarosa. Para geles al 1%, se pesan 0.5 g de agarosa y se 

mezclan con 50mL de tampon TBE 1X.  

2. Calentar hasta la completa disolución de la agarosa.  

3. Esperar hasta que se enfríe y añadir el bromuro de etidio hasta una concentración final 

de 0.5µg/ml. 

4. Verter la disolución sobre la cama que ha sido previamente preparada y que contiene el 

peine para la formación de los pocillos.   

5. Esperar a que se solidifique el gel. 

6. Colocar el gel dentro de una cubeta de electroforesis (BioRad) llena de TBE. 

7. Mezclar la muestra (problema o marcador de pesos) con azul de bromo fenol (1:1). Este 

compuesto proporciona densidad y color a la muestra. De esta manera, la muestra se 

deposita en el fondo de cada pocillo. 

8. Correr 30 minutos a 90V y 400mA.                                                                                

 

Una vez transcurrido el tiempo, se revelan  los geles para lo cual se ilumina con luz UV de 

longitud de onda 320nm. A la hora de analizar los resultados de la amplificación de cada una de 

las muestras existen varias situaciones posibles: 

 Aparece una única banda cuyo peso se corresponde con el peso del exón de interés. La 

PCR ha amplificado correctamente el exón. 

 Se observa una doble blanda. Esto implica que la temperatura no es suficientemente 

restrictiva y que es necesario repetir la PCR aumentando la temperatura. 

 En lugar de una doble banda puede observarse un smear (presencia de varias bandas 

indistinguibles unas de otras que forman un barrido) que también implica que la 

temperatura es poco restrictiva y que hay que aumentarla. 

4.3.3. Secuenciación del exón  

Una vez que un exón ha sido amplificado por PCR y se ha comprobado por electroforesis 

que sólo se ha amplificado la región deseada se puede proceder a la secuenciación de la misma. 

El servicio de secuenciación no se realiza en este laboratorio sino que las muestras son enviadas 

a un servicio externo. Antes de mandar a secuenciar las muestras es necesario proceder a la 

purificación de las mismas. Para ello se somete a las muestras un programa de PCR con Exosap 

(ver tabla 4), un enzima encargado de degradar DNA monohebra. Este enzima va a eliminar los 

restos de primer que puedan quedar y el DNA del paciente que no se haya amplificado 

correctamente. Las cantidades de las muestras enviadas a secuenciar aparecen en la tabla 5. 

 

Tiempo Temperatura  Reactivo Volumen 

45 minutos 37°C  Agua 15µl 

15 minutos 80°C  Muestra purificada 0.5µl 

∞ 4ºC  Primer F o R 0.5µl 

         Tabla 4. Programa de purificación.                              Tabla 5. Mezcla que se envía a purificar. 
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4.4 Extracción de RNA 

Una vez que se comprobó en el DNA genómico de cada paciente la mutación asociada, se 

procedió a verificar si efectivamente estas mutaciones alteraban el proceso de splicing y daban 

lugar a tránscritos aberrantes. La extracción de RNA se hizo con el PAXgene Blood RNA KIT 

que se describe a continuación.  

 

1. Centrifugar el tubo con sangre durante 10 minutos a 400xg. 

2. Eliminar el sobrenadante por pipeteo. Añadir 4ml de agua RNAase-free al pellet.  

3. Vortear hasta que el pellet se haya disuelto y centrifugar 10 minutos a 4000xg. 

Descartar el sobrenadante. 

4. Añadir 350µl de tampón (BR1) y vortear hasta que el pellet esté disuelto.  

5. Pipetear la muestra a un eppendorf de 1.5ml y añadir 300µl de tampón (BR2) y 40µl de 

proteinasa K. Mezclar por vorteo durante 5 segundos e incubar 10 minutos a 55ºC 

usando un shaker a 400-1400rpm. Después poner el shaker a 65ºC. 

6. Pipetear el lisado en  la columna PAXgene shredder spin column colocada en un tubo de 

2ml y centrifugar 3 minutos a máxima velocidad.  

7. Transferir el eluido a un nuevo eppendorf. 

8. Añadir 350µl de etanol 100%, mezclar por vorteo y centrifugar 1-2 segundos a 

4000rpm. 

9. Pipetear 700µl de muestra en la columna PAXgene RNA spin column  situada en un tubo 

de 2ml y centrifugar 1 minuto a 13000rpm. Colocar la columna en un nuevo tubo y 

descartar el usado. 

10.  Pipetear el resto de la muestra y repetir el proceso anterior. 

11.  Pipetear 350µl de tampón de lavado 1 (BR3) en la columna. Centrifugar 1 minuto a 

13000rpm. Colocar la columna en un tubo nuevo. 

12.  Añadir en un eppedorf 10µl de DNAse I en solución y después 70µl de RDD (tampón 

de digestión). 

13.  Pipetear los 80µl de esta mezcla a la columna y dejarlo 15 minutos a temperatura 

ambiente. 

14.  Pipetear 350µl de tampón de lavado 1 (BR3) en la columna. Centrifugar 1 minuto  a 

8000-20000xg. Colocar la columna en un tubo nuevo. 

15.  Pipetear 500µl de tampón de lavado 2 (BR4). Centrifugar 1 minuto a 8000-20000xg. 

Colocar la columna en un tubo nuevo. 

16.  Añadir otros 500µl de tampón de lavado 2 (BR4). Centrifugar 3 minutos a 8000-

20000xg. Colocar la columna en un tubo nuevo. 

17.  Desechar el tubo y poner la columna en un tubo nuevo. Centrifugar 1 minuto a 8000-

20000xg. 

18.  Desechar el tubo y colocar la columna en un tubo de 1.5ml y pipetear 25µl de tampón 

de elución (BR5) en la membrana. Centrifugar 1 minuto a 13000rpm. 

19.  Sobre la misma columna se vuelve a añadir 25µl de tampón de elución (BR5). 

20.  Incubar 5 minutos a 65ºC e inmediatamente poner en hielo. Guardar el RNA  -80ºC. 
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4.5 Cuantificación del RNA 

El RNA puede cuantificarse directamente en soluciones acuosas midiendo la absorbancia 

a 260nm. Si la muestra es pura, es decir, si no contiene cantidades significativas de 

contaminantes como proteínas (que absorben a 280nm), la medida espectrofotométrica de la 

irradiación ultravioleta absorbida por las bases es exacta. El cociente de los valores obtenidos a 

260nm y a 280nm (A260/A280) proporciona una estimación del grado de pureza de los ácidos 

nucleicos y es de aproximadamente 2. Con un paso de luz de 10mm y una longitud de onda de 

260nm, una absorbancia igual a 1 corresponde aproximadamente a 40 µg/ml de RNA.  

Para medir la cantidad de RNA, que se ha aislado de la sangre del paciente, basándose en 

métodos de espectrofotometría, se utiliza el Nanodrop que permite la medida en un volumen 

mínimo de muestra. Se utiliza como blanco el tampón TE. Además, para minimizar errores se 

realizan triplicados de las muestras de los pacientes.  

4.6 Retotranscripción del RNA 

La retrotranscripción (RT-PCR) es una técnica que permite sintetizar el DNA 

complementario a moléculas de RNA usando para ello la enzima transcriptasa reversa. Para 

obtener el cDNA a partir del RNA se usó el First Strand cDNA synthesis Kit (Qiagen). Una vez 

cuantificado el RNA y ajustado a una concentración de 500ng/20µl se procede con la RT-PCR 

(los volúmenes de los diferentes reactivos de las mezclas 1 y 2 están ajustados a esta 

concentración de RNA).  

1. Preparar la mezcla 1 (tabla 6) e incubar 5 minutos a 65ºC. 

2. Añadir la mezcla 2 (tabla 7) e incubar: 25ºC 5 minutos, 37ºC 60 minutos y 70ºC             

5 minutos. 

        Reactivo       Volumen  Reactivo Volumen 

RNA 1.6µl  Tampón 4µl 

Random hexámeros 1µl  Inhibidor de RNAsa  1µl 

Agua 8.4µl  dNTPs 10mM 2µl 

      Tablas 6. Mezcla 1de la RT-PCR.  Transcriptasa reversa 2µl 2µl 

                                                                                                      Tablas 7. Mezcla 2 de la RT-PCR. 

El cDNA obtenido va a ser posteriormente amplificado por PCR utilizando primers 

específicos para NIPBL. 

4.7 Identificación de tránscritos aberrantes 

Debido a la localización de las mutaciones el proceso de splicing podría verse alterado, 

pero era necesario comprobar la existencia de tránscritos aberrantes. Se hizo una PCR a partir 

del cDNA y después se analizó los productos de PCR mediante una electroforesis en gel de 

agarosa. La mutación del paciente 1 está localizada en el intrón 27. La pareja de primers usada 

amplifica la región comprendida entre los exones 27 y 30 (tabla 8).  

Primer Secuencia 

sF27 CCGTTTGCCCAGAGCTTTG 

sR30 CTATGACCATAGTCACAG 

Tabla 8. Primers usados para amplificar los tránscritos (exones 27-30) en el paciente 1. 
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En el caso del paciente 2 la mutación se halla en el intrón 36. Se amplifica la región 

flanqueada por los exones 35 y 38 (tabla 9). 
 

Primer Secuencia 

sF35 CATCATCAAATATGGCATGAC 

sR36 CCTCGACAACATTTATTTCAC 

Tabla 9. Primers usados para amplificar los tránscritos (exones 35-38) en el paciente 2. 

                                                                                                                                                 

4.8 Cuantificación de la expresión total de NIPBL mediante qPCR 

Para poder establecer una relación entre los fenotipos observados en los pacientes y la 

mutación que presentan se ha usado la técnica de qPCR para cuantificar la expresión total del 

gen NIPBL. Esta versión de la PCR surgió para resolver el problema de la cuantificación de la 

técnica de la PCR tradicional. El hecho de que los datos sean tomados en la fase exponencial del 

proceso asegura que ningún componente pueda estar limitando el proceso de amplificación.  

Los parámetros más importantes de la qPCR (mostrados en la figura 4) son: la línea base 

(baseline) que se corresponde con la fluorescencia basal detectada en los primeros ciclos de la 

reacción y que se considera como blanco. El umbral (treshold) que se define como la 

fluorescencia estadísticamente significativa y que marca el inicio de la amplificación. Y, 

finalmente, el parámetro Ct se define experimentalmente como el número de ciclos en el que se 

alcanza el umbral de fluorescencia o treshold. Cuanto mayor es la cantidad inicial de DNA, 

antes se detecta el producto acumulado en el proceso de la PCR, y más bajo es el valor Ct.          

                                                                   
Figura 4. Gráfica que representa la fluorescencia frente al número de ciclos en una qPCR. 

 

El fluorocromo utilizado en este caso es SYBR-Green que se une al surco menor del DNA 

bicatenario, pero no al DNA monocatenario. Al iniciarse la PCR, el aumento de la cantidad de 

DNA recién sintetizado produce un incremento de la señal fluorescente. Tiene la desventaja de 

que se une a cualquier producto de doble hebra de DNA ya que se trata de una unión 

inespecífica. 
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La cuantificación se basa en obtener una curva estándar absoluta para cada amplicón 

individual. Para construir esta curva se necesita un estándar adecuado del que se conozca el 

número exacto de copias.  

Una vez obtenido el Ct del gen de la muestra desconocida se procede a la interpolación del 

valor Ct en la recta patrón. De esta forma se puede calcular el número de copias inicial de una 

muestra desconocida. Para evitar problemas en la cuantificación se debe normalizar mediante un 

control interno. Si no se aplicara podría haber variaciones debido a diferencias en la extracción 

del RNA o por diferencias en la retrotranscripción. Este control interno debe expresarse por 

igual en todos los tejidos y en todos los estados de desarrollo y no verse afectado por el proceso 

experimental. En este caso se va a usar el gen housekeeping GADPH.  

                                                                                                                                                           

4.8.1. Diseño de primers 

La longitud óptima del amplicón para su detección por qPCR está entre 100-150 pares de 

bases. Esto se debe a que los fragmentos más cortos son amplificados de manera más eficiente, 

y son más tolerantes a variaciones en las condiciones de la reacción. Las características 

esenciales para el diseño de primers son las indicadas a continuación: 

1. Los primers deben tener una temperatura de disociación (Tm) de 58-60ºC y la Tm 

de ambos no puede diferir más de 1-2ºC. 

2. El porcentaje de G+C debe estar entre el 40 y el 60%. Debido a que un exceso de 

bases púricas incrementaría la temperatura de desnaturalización y las 

interacciones inespecíficas. 

3. Se debe evitar que haya varios nucleótidos iguales seguidos, sobre todo guaninas. 

4. Las últimas bases del extremo 3´ del primer no pueden contener más de dos 

guaninas o citosinas, para evitar la formación de productos inespecíficos; por 

ejemplo dímeros de primers. 

 

Primer Secuencia 

NIPBL4-F TGGCATGACTGTAGTGCAAC 

NIPBL4-R ATTGAAACAAGCCCACACAA 

Tabla 10. Primers usados en la qPCR para cuantificar la expresión total de NIPBL. 

 

La pareja de primers usada (NIPBL4-F y NIPBL4-R) (tabla 10) amplifica la región 

comprendida por los exones 35 y 36. Se usa esta pareja porque no se han descrito mutaciones de 

splicing en esta región y van a permitir cuantificar la expresión total de NIPBL. 

                                                                                                                                                          

4.8.2. Construcción de la curva estándar 

La muestra de partida para la elaboración de la curva estándar usada en la cuantificación 

de total de NIPBL ha sido una muestra de concentración conocida del plásmido pCR2.1TOPO 

con un inserto de 2526 pares de bases, c.4579-7104, que se corresponde con los exones 22-42 

del gen NIPBL. En el caso de la cuantificación de GADPH se ha clonado el gen completo en el 

plásmido pCR2.1TOPO.  
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Como se va a realizar una cuantificación total del NIPBL se elige una pareja de primers 

que amplifique el cDNA en una zona que no este sujeta a splicing fisiológico o aberrante. Al 

representar los Cts obtenidos frente al logaritmo del número de copias se obtiene una línea recta. 

La relación del Ct con el número de copias es inversamente proporcional.  

Después se toma una muestra de cDNA del paciente y se realiza la cuantificación de la 

expresión total tanto de NIPBL como de GADPH (utilizando las mismas parejas de primers 

usadas para las rectas patrón). Si el valor de expresión de GADPH no está dentro de los 

estándares de expresión (su expresión no varía debido a su condición de housekeeping), esto 

indicaría que los valores de expresión del gen NIPBL no serían válidos y habría que repetir el 

proceso. Una vez obtenida la concentración del gen NIPBL se normaliza este valor mediante el 

cociente del Ct de NIPBL y el Ct de GADPH. Esta normalización se aplica en los dos pacientes 

y en el control para poder así estudiar posteriormente como varía la expresión.  

                                                                                                                                                               

4.8.3. qPCR 

La qPCR se ha realizado usando el SYBR Green Mastermix KIT (Applied Biosystems), 

que incluye concentraciones optimizadas de dNTPs, tampón con el marcador SYBER Green, 

MgCl2 y AmpliTaqGold DNA polimerasa. La mezcla usada para 25µl y el programa de PCR 

usado se muestran en las tablas 11 y 12 respectivamente.  

El programa de PCR utilizado incluye una etapa final de disociación compuesta por tres 

pasos a distintas temperaturas y tiempos. Esta etapa permite comprobar la identidad del 

fragmento amplificado mediante el parámetro temperatura de melting o de disociación (Tm), 

que es específico para cada uno de los productos. Se realizaron triplicados de las muestras de 

ambos pacientes con el fin de minimizar errores.  

 

Reactivo   Volumen  Tiempo Temperatura 

SYBR Green Master mix 12.5µl  10 minutos 95°C 

Primer R  100 nM  15 segundos 95°C 

Primer F 100 nM  1 minuto 60ºC 

cDNA paciente  25 ng (1µl)  15 segundos 95°C 

H2O miliQ  c.s.p 25µl  20 segundos 60°C 

          Tabla 11. Mezcla de PCR.  15 segundos          95°C 

                                                                                                    Tabla 12. Programa de la qPCR. 

 

5. RESULTADOS 

 

5.1 Historia clínica de los pacientes estudiados 

Los dos pacientes fueron evaluados por médicos especialistas y las características clínicas 

más relevantes se indican en las tablas 13 y 14. Las fotos de ambos pacientes donde aparecen 

los rasgos característicos del Síndrome se muestran en las figuras 5 y 6. 

40    

ciclos 
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Figura 5. Paciente 1.                                                 Figura 6. Paciente 2. 

Paciente 1 Hallazgo clínico 

SEXO Masculino 

RAZA Caucásico 

 

NARIZ 

Puente nasal deprimido 

Las narinas no están antevertidas 

Philtrum largo y liso 

 

OJOS 

Cejas arqueadas 

Pestañas largas 

No hay miopía 

No hay obstrucción en el conducto lacrimal 

 

 

BOCA 

Labio superior delgado 

No presenta micrognatia 

No tiene la boca en carpa ni el paladar hendido 

Los dientes no son pequeños ni están muy separados 

CABEZA La línea de inserción de cabello posterior no es baja 

OREJAS Las orejas no son de baja implantación 

No están rotadas posteriormente 

RESPIRATORIO No hay apnea  

No presenta infecciones recurrentes 

CARDIOVASCULAR No hay cardiopatía congénita 

GASTROINTESTINAL No hay reflujo gastroesofágico patológico 

Problemas de alimentación en la infancia 

GENITOURINARIO No hay malformaciones renales 

 

EXTREMIDADES 

No hay reducción de extremidades 

Manos pequeñas pero no pies pequeños 

No hay clinodactilia en el quinto dedo 

No hay ausencia de brazos o antebrazos 

No tiene limitación de movimiento en el codo 

PIEL No presenta hirsutismo 

Cutis marmorata 

 

SNC 

Pituitaria pequeña 

Alta tolerancia al dolor 

Alteraciones del sueño 

MENTAL/ COGNITIVO Ligera discapacidad intelectual 
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DESARROLLO 

Ligero retraso en el desarrollo del lenguaje 

Primera palabra a los 18 meses  

Capacidad motora reducida   

Capacidad de caminar de manera autónoma a los 18 meses 

 

NACIMIENTO 

Peso al nacer  

Longitud al nacer  

Perímetro cefálico  

3260 g 

50 cm 

34 cm  

 

DATOS ACTUALES 

Edad de la valoración 

Peso  

Talla  

7 años 

19 kg  

112 cm  

Tabla13. Características clínicas del paciente 1. 

 

Paciente 2 Hallazgo clínico 

SEXO Femenino 

RAZA Caucásica 

 

NARIZ 

Puente nasal deprimido y narinas antevertidas 

Philtrum largo y liso 

 

OJOS 

Cejas arqueadas 

Pestañas largas 

Ptosis  

Sinofris  

BOCA Labio superior delgado 

CABEZA Braquicefalia 

La línea de inserción de cabello anterior es baja 

CUELLO Baja línea de inserción del cabello posterior  

RESPIRATORIO Infecciones del sistema respiratorio superior 

 

GASTROINTESTINAL 

Reflujo gastroesofágico patológico 

Problemas de alimentación en la infancia 

Alimentación por sonda hasta los cinco años 

No es capaz de masticar  

 

EXTREMIDADES 

Manos  y pies pequeños 

Dedos cortos 

Movimientos limitados del codo 

PIEL Hirsutismo severo 

Cutis marmorata 

 

SNC 

Pituitaria pequeña 

Alta tolerancia al dolor 

Alteraciones del sueño 

Ni hipertonia ni hipotonia 

MENTAL/ COGNITIVO Dificultad de aprendizaje 

No habla 

DESARROLLO Capacidad de caminar de manera autónoma a los 3,5 años 

Problemas de comportamiento 

 

NACIMIENTO 

Peso al nacer  

Longitud al nacer  

Perímetro cefálico  

2130 g 

43 cm 

30 cm  

Tabla 14. Características clínicas del paciente 2. 
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5.2 Gravedad de los fenotipos según clasificación de Gillis 

Aplicando el método de Gillis para la clasificación de los pacientes con SCdL, el paciente 

1 se incluiría en la clase I (fenotipo leve). Aunque presenta un ligero retraso en el desarrollo, 

posee habilidades comunicativas y su retraso en la capacidad motora es inferior a 2 años. 

Además carece de anomalías en las extremidades. Sin embargo el paciente 2 no es capaz de 

masticar,  tiene ausencia de habilidades comunicativas (no habla) y presenta un retraso severo 

de las capacidades motoras (incapacidad de andar hasta los 3.5 años). Por todo ello, el paciente 

2 quedaría incluido en la clase III (fenotipo severo). 

                                                                                                                                                

5.3 Comprobación de la mutación en el DNA genómico 

El paciente 1 posee una mutación en heterocigosis situada en el intrón 27 por la cual en la 

posición c.5329-15 se observa que en lugar de una adenina hay una guanina (figura 7). 

 

Figura 7. Secuencia del DNA genómico del paciente 1. En la posición c.5329-15 del intrón 27 se 

observa el cambio de adenina por guanina.  

 

En uno de los alelos del paciente 2 se ha producido una deleción de seis pares de bases en 

la posición c.6344del(-13)_(-8) del intrón 36 (figura 8). 

 

Figura 8. Secuencia del DNA genómico del paciente 2. Se ha producido una deleción de 6pb en la 

posición c.6344del(-13)_(-8) del intrón 36.  

                                                                                                                                                   

5.4 Identificación de tránscritos aberrantes  

Tras la retrotranscripción  para obtener el cDNA, se hizo una PCR usando primers que 

amplificaran una región que flanquea a la mutación  y ver si se alteraba el proceso de splicing.  

En el paciente 1 se amplificó la región comprendida por los exones 27-30. En la 

electroforesis en gel de agarosa se observan dos tránscritos, el wild type de 634 pb y otro de 535 

pb que se corresponde con la pérdida del exón 28 (figura 9). La pérdida de este exón de 33 

aminoácidos no altera el marco de lectura. 
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Figura 9. Electroforesis en gel de agarosa del cDNA del paciente 1. Se observa la presencia del 

tránscrito wild type (WT) pero también hay un tránscrito aberrante que carece del exón 28. También se 

muestran las secuencias de estos dos tránscritos.                                                                                                                                                                  

En el caso del paciente 2, se amplificó la región situada entre los exones 36 y 38. La 

electroforesis en gel de agarosa muestra el tránscrito wild type de 363 pb y otro de 208 pb que se 

corresponde con la deleción del exón 37 (figura 10). La pérdida del exón 37 altera la pauta de 

lectura y daría lugar a la aparición de un codón stop 11 aminoácidos después. 

                                    

Figura 10. Electroforesis en gel de agarosa del cDNA del paciente 2. Además del tránscrito wild type 

(WT) también se observa el tránscrito aberrante que carece del exón 37. También se muestra las 

secuencias de ambos tránscritos. 

                                                                                                                                                     

5.5 qPCR 

Para la cuantificación total de NIPBL se ha obtenido una curva estándar que permite 

relacionar el Ct con el número de copias. Como se explicó en el apartado de Materiales y 

Métodos, la curva se ha construido a partir de diluciones seriadas de un estándar con un número 

de copias conocidas. En la figura 11 se representa la recta de calibrado obtenida para NIPBL. 

Las diluciones seriadas de la curva estándar del gen NIPBL son: 1.43*10
2
; 1.43*10

3
; 1.43*10

4
; 

1.43*10
5
 y 1.43*10

6
 número de copias.  
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Figura 11. Curva estándar de la expresión total de NIPBL (Ct frente a logaritmo número de copias). 

En la figura 12 se muestra la recta patrón correspondiente con GADPH, control interno 

que va a permitir la normalización de los resultados. Las diluciones seriadas realizadas son: 

3.41*10
2
; 3.41*10

3
; 3.41*10

4
; 3.41*10

5
 y 3.41*10

6  
número de copias. 

De todas las diluciones se han hecho duplicados. Las curvas muestrasn una alta linearidad, 

R
2
>0.99, y la eficiencia de la PCR viene dada por la pendiente de la recta cuyo valor debe estar 

en el rango (-4,-3) como sucede en ambos casos.  

                                                                         
Figura 12. Curva estándar de la expresión del GADPH (Ct frente a logaritmo número de copias).                                                                                                                                                          

Para cada paciente se ha obtenido una curva de amplificación por qPCR en la que se ha 

determinado el valor Ct. A continuación se muestran los resultados obtenidos para el paciente 1 

(figura 13, la gráfica correspondiente con el paciente 2 sería análoga). Se han realizado 

quintuplicados de las muestras de cada paciente para minimizar errores. 

      
Figura 13. qPCR del gen NIPBL en el paciente. 

Pendiente: -3.063992 

Intersección: 32.750164                   

R
2
: 0.998391 

Pendiente: -3.937094 

Intersección: 41.995537                   

R
2
: 0.998271 
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Se puede verificar que se ha producido un único producto durante la amplificación 

mediante las curvas de disociación. Para obtenerlas se somete el producto de PCR a un 

incremento paulatino de la temperatura, y se observa la variación de fluorescencia conforme se 

produce la desnaturalización de la doble hebra del DNA. Aparece un pico, característico de cada 

amplicón, a su temperatura de disociación, que dependerá de su tamaño y composición de 

nucleótidos. De esta manera se puede ver si hay un único producto. Si aparecieran dos picos 

querría decir que se ha producido algún error a lo largo del ensayo y se están amplificando dos 

productos diferentes.  

En las curvas de disociación de las muestras de ambos pacientes se observa un único pico, 

lo cual indica que en cada muestra solo se ha cuantificado un único producto. Se está estudiando 

la expresión total del gen NIPBL mediante el fluorocromo SYBR-Green que se une a ambos 

tránscritos independientemente de que haya  mutación o no. En la figura 14 se puede observar la 

curva de disociación obtenida en el paciente 1. La curva del paciente 2 sería análoga a la del 

paciente 1. 

                 
Figura 14. Curva de disociación de la muestra del paciente 1. Se observa un solo pico lo cual indica 

que hay un único producto de amplificación. 

                                                                                                                                                      

Para cada uno de los pacientes se han obtenido los valores Ct para NIPBL y para 

GADPH. Se realizaron cinco mediciones para cada una de las muestras obtenidas de los 

pacientes. Mediante la interpolación de estos valores en las rectas de calibrado se ha podido 

obtener el número de copias de los dos genes (NIPBL y GADPH) de ambos pacientes. 

Finalmente para poder comparar los niveles de expresión se han tomado muestras de cinco 

voluntarios sanos, se ha obtenido un pool con sus DNA y se ha cuantificado la expresión de 

ambos genes. Para normalizar los valores se ha calculado el cociente entre ambos valores 

(copias NIPBL/copias GADPH). Los datos obtenidos se muestran en las tablas 15, 16 y 17. 

 Ct NIPBL Ct GADPH Copias NIPBL Copias GADPH NIPBL/GADPH 

P1 23,44 24,7 1093 24712 0,0034 

P1 23,42 24,53 1109 27295 0,0312 

P1 23,39 24,46 1135 28436 0,0300 

P1 22,98 24,25 1545 32152 0,0369 

P1 23,37 24,45 1152 28603 0,0309 

Media 23,29 24,48 1224 28145 0,0434 

Tabla 15. Expresión de ambos genes en el paciente 1. 
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 Ct NIPBL Ct GADPH Copias NIPBL Copias GADPH NIPBL/GADPH 

P2 24,61 25,18 454 18663 0,0090 

P2 24,08 25,26 676 17810 0,0140 

P2 24,12 25,33 656 17095 0,0142 

P2 23,95 25,04 746 20256 0,0136 

Media 24,07 24,73 682 24282 0,0104 

Tabla 16. Expresión de ambos genes en el paciente 2. 

 

 Ct NIPBL Ct GADPH Copias NIPBL Copias GADPH NIPBL/GADPH 

Control 24,61 25,18 454 18663 0,0090 

Control 24,08 25,26 676 17810 0,0140 

Control 24,12 25,33 656 17095 0,0142 

Control 23,95 25,04 746 20256 0,0136 

Media 24,07 24,73 682 24282 0,0104 

Tabla 17. Expresión de ambos genes en la muestra control. 

 

A la normalización del valor de expresión obtenida para el control se le ha asigando el 

100% de la expresión. En el paciente 1 se obtuvo una expresión del 95.2% y en el paciente 2 del 

71,3%. Mientras que no se detectan cambios en los niveles de mRNA de NIPBL en el paciente 1 

(P1=95,2%, SD=1,4%) hay una disminución de aproximadamente el 30% de los niveles de 

mRNA de NIPBL medidos en el paciente 2 (P2= 71,3%, SD=1,4%). (Figura 15). 

 

Figura 15. Expresión total de NIPBL en ambos pacientes y en el control. 
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6. DISCUSIÓN 

En este trabajo se presentan dos nuevas mutaciones de splicing en el gen NIPBL en dos 

pacientes con Síndrome Cornelia de Lange. Están localizadas en posiciones no canónicas y son 

las mutaciones intrónicas más profundas  descritas hasta la fecha en el  gen NIPBL. 

El paciente 1 posee la mutación c.5329-15A>G en el intrón 27 que provoca la pérdida del 

exón 28. La adenina que resulta mutada podría ser el nucleótido clave en la secuencia del punto 

de ramificación. Por un lado, está situada quince nucleótidos upstream del sitio aceptor de 

splicing, y por otro lado, los nucleótidos próximos a la adenina se corresponden con la 

secuencia consenso YNYYRAY, donde Y es una pirimidina, N significa cualquier nucleótido, 

R es una purina y la A es una adenina clave en el proceso de splicing. Dentro de las mutaciones 

que afectan a la secuencia de ramificación, la mutación de la adenina es el evento más 

frecuente.
13

  

El paciente 2 presenta una deleción de seis nucleótidos en el intrón 36,                     

c.6344del(-13)_(-8), que da lugar a la deleción del exón 37. Esta mutación podría afectar al 

tracto de polipirimidinas debido a que está situada upstream de la secuencia aceptora y cinco de 

los seis nucleótidos delecionados son pirimidinas. 
14

 Aunque todavía no se ha definido una 

secuencia consenso, sí que se ha reportado que es necesario un mínimo del tracto de 

polipirimidinas, y que tanto su tamaño como su composición, contribuyen a la eficiencia del 

proceso de splicing.
15

 Aunque el evento más frecuente es el cambio de pirimidinas por purinas,
16

  

esta mutación afectaría a la longitud de la secuencia. 

Normalmente, las mutaciones “frameshift” en NIPBL dan lugar a proteínas truncadas que 

resultan en haploinsuficiencias, y han sido asociadas con fenotipos severos. Por otro lado, se 

piensa que las mutaciones “missense” y las deleciones que no rompen el marco de lectura 

provocan proteínas alteradas y están asociadas a fenotipos más leves.
9,17

  

En el caso del paciente 1 la mutación  c.5329-15A>G da lugar a un tránscrito aberrante 

con deleción del exón 28 que mantiene la pauta de lectura. Los resultados de la qPCR han 

mostrado un nivel de expresión total de NIPBL similar al observado en el control. Sin embargo, 

en el paciente 2, la mutación c.6344del(-13)_(-8) da lugar a un tránscrito aberrante con deleción 

del exón  37 que rompe el marco de lectura. En este caso, los resultados de la qPCR muestran 

casi un 30% de reducción en la expresión total de NIPBL, debido probablemente a la activación 

de mecanismos que disminuyen la cantidad de mRNA mediante la degradación de tránscritos 

aberrantes (NMD, nonsense mediated decay).
18

 Se ha reportado que en las mutaciones de 

NIPBL que llevan asociadas haploinsuficiencia hay aproximadamente un 70% de actividad 

residual,
19

 lo cual podría explicar el mecanismo de patogenicidad del paciente 2. 

 

Atendiendo a las características clínicas, aunque ambos pacientes presentan 

manifestaciones típicas del SCdL, el paciente 1 muestra un fenotipo más leve que el paciente 2 

que tiene un retraso grave del crecimiento. El paciente 1 muestra un fenotipo más leve sin 

restricción del crecimiento intrauterino, y un ligero retraso postnatal de altura y peso. Además 

padece problemas de alimentación pero no hay reflujo gastroesofágico, tiene ligeras anomalías 

en las extremidades y su retraso en el crecimiento es leve. En contraste, el paciente 2 muestras 

un fenotipo mucho más severo, con rasgos craneofaciales evidentes incluso en el periodo 

neonatal, malformaciones en las extremidades, retrasos graves del crecimiento y de la 

psicomotricidad, además de microcefalia profunda.  
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Estas características clínicas de los pacientes podrían apoyar los resultados moleculares. 

Cuando se observa una disminución  de los niveles de mRNA de NIPBL  por un tránscrito que 

rompe la pauta de lectura o codifica una proteína truncada, el fenotipo resultante es más severo 

que  cuando hay mutaciones/transcritos que mantienen la pauta de lectura y no afectan a los 

niveles totales de mRNA 

En este trabajo, además se aportan evidencias de que las variantes intrónicas que no 

alteran las secuencias aceptores y donadoras de splicing pueden dar lugar a tránscritos 

aberrantes de NIPBL, con  lo que estas mutaciones deben examinarse cuidadosamente antes de 

considerarlas no relevantes para la enfermedad. 
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7. CONCLUSIONES 

 

1. Se confirma que las mutaciones c.5329-15A>G y c.6344del(-13)_(-8)  que no afectan a 

secuencias conservadas donadoras y aceptoras de intrón son mutaciones de splicing. 

2. Se demuestra que las mutaciones c.5329-15A>G y c.6344del(-13)_(-8) producen 

tránscritos aberrantes con deleciones de los exones 28 y 37 respectivamente. 

3. La mutación de splicing con pérdida del exón 37 causa un tránscrito aberrante con 

ruptura del marco de lectura que se asocia a una disminución de mensajeros y a un 

fenotipo severo. 

4. La mutación de splicing con pérdida del exón 28 causa un tránscrito aberrante con 

conservación del marco de lectura y sin disminución de mensajeros que se asocia a un 

fenotipo leve. 

 

 

 

 

 

7. CONCLUSIONS 

 

1. It is confirmed that both mutations c.5329-15A>G and c.6344del(-13)_(-8) are splicing 

mutations and neither of them are located in canonical splicing positions. 

2. It is reported that the two mutations c.5329-15A>G and c.6344del(-13)_(-8) generate 

aberrant transcripts with the skipping of exons 28 and 37. 

3. The splicing mutation with exon 37 delection generates an out of frame aberrant 

transcript associated with a reduction of mRNA level and a severe phenotype.  

4. The splicing mutation with exon 28 delection generates an in frame aberrant transcript 

associated with a reduction of mRNA level and results in a mild phenotype.  
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9. APÉNDICE 

 

A Adenina 

cDNA DNA codificante 

C Citosina 

c.s.p Cantidad suficiente para 

cm Centímetro 

DNA Ácido desoxirribonucleico 

dNTP Desoxirribonucleótidos-trifosfatos 

et al Y otros 

g Gramo 

G Guanina 

Kb Kilobase 

mA Miliamperio 

mM  Milimolar 

mRNA Ácido ribonucleico mensajero 

ng Nanogramo 

nm Nanómetro 

PCR Reacción en cadena de la polimerasa 

PM Peso molecular 

Primer F Primer forward 

Primer R Primer reverse 

pb Pares de bases 

RNA Ácido ribonucleico 

rpm Revoluciones por minuto 

RT-PCR Retrotranscripción  

SCdL Síndrome Cornelia de Lange 

SNC Sistema nervioso central 

Tª Temperatura 

T Timina 

TBE Tris, borato y EDTA 

TE Tris:EDTA 10:1 

Tm Temperatura de disociación 

UV Ultravioleta 

V Voltio 

WT Wild type 

µl Microlitro 

ºC Grado centígrado 
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10. ANEXO 1 

A continuación se muestra la tabla estandarizada que los médicos especialistas usan para 

evaluar a los pacientes con SCdL (tabla 18). 

FECHA IDENTIFICACIÓN DEL PACIENTE 

 HALLAZGOS CLINICOS 

 

RESPONDA SI/ NO o            

descripción breve 

 SEXO  

 EDAD  

 FECHA DE NACIMIENTO  

CRANEO MICROCEFALIA  

 BRAQUICEFALIA  

 LINEA DE INSERCION DEL 

CABELLO ANTERIOR BAJA 

 

 EDAD DE CIERRE DE LA 

FONTANELA ANTERIOR 

 

 OTRAS  

OJOS CEJAS ARQUEADAS  

 SINOFRIDIA  

 PESTAÑAS LARGAS  

 PTOSIS  

 MIOPIA  

 OBSTRUCCION DEL CONDUCTO 

LACRIMAL 

 

 OTROS  

NARIZ PUENTE NASAL DEPRIMIDO  

 NARINAS ANTEVERTIDAS  

 PHILTRUM LARGO Y LISO  

BOCA LABIO SUPERIOR DELGADO  

 BOCA EN CARPA  

 PALADAR ALTO  

 PALADAR HENDIDO  

 ANOMALIAS DENTALES  

 MICROGNATIA  

 OTROS  

ORL HIPOACUSIA/ SORDERA  

 OTITIS/ SINUSITIS/ 

AMIGDALITIS 

A REPETICIÓN 

 

CUELLO LINEA DE INSERCION DE 

CABELLO POSTERIOR BAJA 

 

CARDIOVASCULAR CARDIOPATIA CONGENITA  

PULMONAR APNEAS  

 INFECCIONES RESPIRATORIAS 

RECURRENTES 

 

 OTRAS  

GASTROINTESTINAL REFLUJO GASTROESOFAGICO 

PATOLO 

 

PROBLEMAS CON LA  
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ALIMENTACION/SUCCIÓN 

GENITOURINARIO MALFORMACIONES RENALES  

REFLUJO VESICOURETERAL  

EXTREMIDADES MALFORMACIONES 

UTERINAS/OVARIOS 

 

CRIPTORQUIDIA  

HIPO/EPISPADIAS  

OTROS  

MANOS PEQUEÑAS  

INSERCION PROXIMAL DEL 

PULGAR 

 

CLINODACTILIA DEL 5º DEDO  

PLIEGUE PALMAR UNICO  

PIES PEQUEÑOS  

SINDACTILIA DE LOS DEDOS 

DEL PIE 

 

DEFECTOS DE REDUCCION DE 

EXTREMIDADES 

 

LIMITACION PARA EL 

MOVIMIENTO DE LOS CODOS 

 

 OTROS  

PIEL HIRSUTISMO  

 CUTIS MARMORATA  

 OTROS  

SNC ANOMALIAS ESTRUCTURALES 

EN SNC (ECO, TAC, RNM) 

 

 CONVULSIONES  

 OTRAS  

MENTAL / 

COGNITIVO 

DISCAPACIDAD INTELECTUAL  

 ALTERACIONES DE 

COMPORTAMIENTO/PERSONAL

IDAD 

 

DESARROLLO DESARROLLO DEL LENGUAJE  

 EDAD PRIMERA PALABRA  

 DESARROLLO MOTOR  

 EDAD SENTARSE SOLO  

 EDAD CAMINAR SOLO  

DATOS 

ANTROPOMETRICOS 

EDAD GESTACIONAL  

NACIMIENTO PESO AL NACER (g)  

 LONGITUD AL NACER (cm)  

 PERIMETRO CEFALICO (cm)  

DATOS ACTUALES EDAD DE LA VALORACIÓN  

 PESO (kg)  

 TALLA (cm)  

 PERIMETRO CEFALICO (cm)  

DATOS GENÉTICOS GEN AFECTADO  

MUTACION/ VARIANTE  

Tabla 18. Tabla estandarizada para evaluar a los pacientes con SCdL. 


