
Anexo I

En este anexo se detalla el código programado para las simulaciones de las ruedas, separando en
los casos antes establecidos.

Caso 1

Listing 1: Caso 1
1 function Caso1(n,fin)
2

3 % Resuelve el caso en el que nos dan la carretera en la forma f(t)=(t,y(t))
4 % Los datos requeridos son nodos que queremos usar para
5 % obtener numéricamente la rueda y la distancia que queremos que recorra
6 % dicha rueda en la simulación
7

8 c1=1; %Contador para la generación de las imágenes
9 h=fin/n; x=0:h:fin;

10 theta(1)=-pi/2; %Condición inicial%
11 matriz=zeros(n+1,3); matriz2=zeros(2,n+1);
12 for i=1:n %En este bucle se realiza el método Runge-Kutta
13 k1=-1/exacta1(x(i));
14 k2=-1/exacta1(x(i)+h/2);
15 k3=-1/exacta1(x(i)+h/2);
16 k4=-1/exacta1(x(i)+h);
17 theta(i+1)=theta(i)+h*(k1+2*k2+2*k3+k4)/6;
18 end
19

20 for i=1:n+1
21 radio(i)=-exacta1(x(i)); %Calculamos la distancia de los
22 % puntos de la rueda al origen
23 end
24

25 for i=1:n+1
26 matriz(i,1)=x(i);
27 matriz(i,2)=theta(i);
28 matriz(i,3)=radio(i);
29 end
30

31 z=-3:0.01:40;
32 for i=1:length(z) %En este bucle calculamos los puntos de la carretera
33 c(i)=exacta1(z(i));
34 end
35

36 for j=1:n+1 %Este bucle nos sirve para representar el avance en el eje x
37 % la rueda a la vez que representa el giro de la misma
38

39 for i=1:n+1 %En este bucle calculamos los puntos de la rueda
40 matriz2(1,i)=matriz(i,3)*cos(matriz(i,2)-(theta(j)-theta(1)))+x(j);
41 matriz2(2,i)=matriz(i,3)*sin(matriz(i,2)-(theta(j)-theta(1)));
42 end

I

II Anexo I

43

44 a=matriz2(1,:); % Coordenadas x de los puntos de la rueda
45 b=matriz2(2,:); % Coordenadas y de los puntos de la rueda
46

47 e1(j)=matriz2(1,1);
48 e2(j)=matriz2(2,1);
49

50 plot(a,b,z,c,e1,e2,'r-.',x(j),0,'bo', 'MarkerFaceColor','b','MarkerSize',5)
51

52 axis([-3,23, -10, 10.54])
53 saveas(1,sprintf('%d.png',c1)); %Guardamos las imágenes que
54 % se van generando
55 c1=c1+1;
56 clf;
57 end

Es necesario definir una función de Matlab en la que se especificará la carretera. Se ha denomina-
do a esta función exacta1.

Listing 2: Función de la carretera
1 function f= exacta1(x)
2

3 f=2*(-1.887365-2*cos(x)/3+sin(x)-sin(2*x)/2);
4

5 return

Diseño y presentación de material divulgativo matemático

III

Caso 2

Listing 3: Caso 2
1 function Caso2(n,fin)
2

3 % Este es el caso en el que tenemos la rueda en polares, es decir,
4 % r=g(theta).
5 % Las datos requeridos son el número de nodos que queremos usar para
6 % la obtención numérica de la carretera y el ángulo que queremos que gire
7 % la rueda en la simulación
8

9 c1=1; %Contador para la generación de las imágenes
10 h=fin/n; theta=-pi/2:h:fin-pi/2;
11 x(1)=0; %Condición inicial
12 matriz=zeros(n+1,3); matriz3=zeros(2,n+1);
13

14 for i=1:n %En este bucle se realiza el método Runge-Kutta
15 k1=exacta2(theta(i));
16 k2=exacta2(theta(i)+h/2);
17 k3=exacta2(theta(i)+h/2);
18 k4=exacta2(theta(i)+h);
19 x(i+1)=x(i)+h*(k1+2*k2+2*k3+k4)/6;
20 end
21

22

23 for i=1:n+1
24 matriz(i,1)=x(i);
25 matriz(i,2)=theta(i);
26 matriz(i,3)=-exacta2(theta(i));
27 end
28

29 matriz2=matriz';
30 a=matriz2(1,:); % Coordenadas x de los puntos de la carretera
31 b=matriz2(3,:); % Coordenadas y de los puntos de la carretera
32

33 for j=1:n+1 % Este bucle nos sirve para representar el avance en el eje x
34 % la rueda a la vez que representa el giro de la misma
35

36 for i=1:n+1 % Calculamos los puntos de la rueda
37 matriz3(1,i)=exacta2(theta(i))*cos(theta(i)-(theta(j)-theta(1)))+x(j);
38 matriz3(2,i)=exacta2(theta(i))*sin(theta(i)-(theta(j)-theta(1)));
39 end
40 c=matriz3(1,:); % Coordenadas x de los puntos de la rueda
41 d=matriz3(2,:); % Coordenadas y de los puntos de la rueda
42

43 e1(j)=matriz3(1,1);
44 e2(j)=matriz3(2,1);
45

46 plot(a,b,c,d,e1,e2,'r-.',x(j),0,'bo', 'MarkerFaceColor','b','MarkerSize',5)
47 axis([-10,55,-25,25])
48 saveas(1,sprintf('carretera-%d.png',c1)); %Guardamos las imágenes que
49 % se van generando
50 clf;
51 c1=c1+1;
52 end

Debe definirse la función de Matlab que contendrá la forma polar de la rueda. En este caso se le
ha llamado exacta2

Autor: Eduardo Fernández González

IV Anexo I

Listing 4: Función polar de la rueda
1 function r= exacta2(theta)
2

3 r=4*sqrt(5-4*sin(theta)*sin(theta));
4

5 return

Diseño y presentación de material divulgativo matemático

V

Caso 3

Listing 5: Caso 3
1 function Caso3(n,fin)
2

3 % Resuelve el caso en el que nos dan la carretera en la forma
4 % f(t)=(x(t),y(t))
5 % Los datos requeridos son nodos que queremos usar para
6 % obtener numéricamente la rueda y el tiempo final en la simulación
7

8 c1=1; %Contador para la generación de las imágenes
9 h=fin/n; t=0:h:fin; x=exacta3x(t);

10 theta(1)=-pi/2; %Condición inicial%
11 matriz=zeros(n+1,3); matriz2=zeros(2,n+1);
12

13 for i=1:n %En este bucle se realiza el método Runge-Kutta
14 k1=integral3(t(i));
15 k2=integral3(t(i)+h/2);
16 k3=integral3(t(i)+h/2);
17 k4=integral3(t(i)+h);
18 theta(i+1)=theta(i)+h*(k1+2*k2+2*k3+k4)/6;
19 end
20

21 for i=1:n+1
22 radio(i)=-exacta3y(t(i)); %Calculamos la distancia de los
23 % puntos de la rueda al origen
24 end
25

26 for i=1:n+1
27 matriz(i,1)=x(i);
28 matriz(i,2)=theta(i);
29 matriz(i,3)=radio(i);
30 end
31

32 t2=-x(n+1):0.005:x(n+1);
33 for i=1:length(t2) %En este bucle calculamos los puntos de la carretera
34 z(i)=exacta3x(t2(i));
35 c(i)=exacta3y(t2(i));
36 end
37

38 for j=1:n+1 %Este bucle nos sirve para representar el avance en el eje x
39 % la rueda a la vez que representa el giro de la misma
40

41 for i=1:n+1 %En este bucle calculamos los puntos de la rueda
42 matriz2(1,i)=matriz(i,3)*cos(matriz(i,2)-(theta(j)-theta(1)))+x(j);
43 matriz2(2,i)=matriz(i,3)*sin(matriz(i,2)-(theta(j)-theta(1)));
44 end
45

46 a=matriz2(1,:); % Coordenadas x de los puntos de la rueda
47 b=matriz2(2,:); % Coordenadas y de los puntos de la rueda
48

49 e1(j)=matriz2(1,1);
50 e2(j)=matriz2(2,1);
51

52 plot(a,b,z,c,e1,e2,'r-.',x(j),0,'bo',
53 'MarkerFaceColor','b','MarkerSize',5)
54 axis([-5,25, -11.8, 11.8])
55 saveas(1,sprintf('%d.png',c1)); %Guardamos las imágenes que
56 % se van generando
57 c1=c1+1;
58 clf;
59 end

Autor: Eduardo Fernández González

VI Anexo I

En este caso deben definirse 3 fuciones. Las que contienen las ecuaciones paramétricas de la
carretera (que se han denominado exacta3x y exacta3y respectivamente) y otra en la que estará la
función −x′(t)

y(t) , la cual se ha nombrado integral3

Listing 6: Función parámetrica x de la rueda
1 function f=exacta3x(t)
2

3 f=t+sin(t);
4

5 return

Listing 7: Función parámetrica y de la rueda
1 function g=exacta3y(t)
2

3 g=-1-2/3+cos(t);
4

5 return

Listing 8: Función que se usa en el método Runge-Kutta
1 function f=integral3(t)
2

3 f=(1+cos(t))/(1+2/3-cos(t));
4

5 return

Diseño y presentación de material divulgativo matemático

VII

Caso 4

Listing 9: Caso 4
1 function Caso4(n,fin)
2

3 % Resuelve el caso en el que nos dan la rueda en la forma
4 % f(t)=(x(t),y(t))
5 % Los datos requeridos son nodos que queremos usar para
6 % obtener numéricamente la rueda y el valor final del parámetro t
7

8 c1=1; %Contador para la generación de las imágenes
9 h=fin/n; t=0:h:fin;

10 x(1)=0; %Condición inicial%
11 theta(1)=-pi/2;
12

13 for i=1:n % En este bucle se realizan los dos métodos Runge-Kutta
14 % que son necesarios en este caso
15 k1=integral4c(t(i));
16 k2=integral4c(t(i)+h/2);
17 k3=integral4c(t(i)+h/2);
18 k4=integral4c(t(i)+h);
19 x(i+1)=x(i)+h*(k1+2*k2+2*k3+k4)/6;
20 l1=integral4r(t(i));
21 l2=integral4r(t(i)+h/2);
22 l3=integral4r(t(i)+h/2);
23 l4=integral4r(t(i)+h);
24 theta(i+1)=theta(i)+h*(l1+2*l2+2*l3+l4)/6;
25

26 end
27

28 for i=1:n+1
29 % Calculamos la distancia de los
30 % puntos de la rueda al origen
31 radio(i)=sqrt(exacta4x(t(i))^2+exacta4y(t(i))^2);
32 end
33

34 for j=1:n+1 %Este bucle nos sirve para representar el avance en el eje x
35 % la rueda a la vez que representa el giro de la misma
36

37 for i=1:n+1 %En este bucle calculamos los puntos de la rueda
38 a(i)=radio(i)*cos(theta(i)-(theta(j)-theta(1)))+x(j);
39 b(i)=radio(i)*sin(theta(i)-(theta(j)-theta(1)));
40 end
41

42

43 plot(a,b,x,-radio,'c-.',x(j),0,'bo','MarkerFaceColor','b','MarkerSize',5)
44 axis([-3,12, -6, 6])
45 saveas(1,sprintf('%d.png',c1)); %Guardamos las imágenes que
46 % se van generando
47 c1=c1+1;
48 clf;
49 end

Este último caso requiere la programación de 4 funciones de Matlab extra. Dos de ellas serán las
ecuaciones paramétricas de la rueda (denominadas exacta4x y exacta4y) y las otras dos contienen
las funciones −x′(t)

y(t) donde x e y son los parámetros de la carretera o de la rueda según la función
(denominadas integral4c y integral4r respectivamente)

Autor: Eduardo Fernández González

VIII Anexo I

Listing 10: Función parámetrica x de la rueda
1 function f=exacta4x(t)
2

3 f=sin(t)-sin(2*t)/2;
4

5 return

Listing 11: Función parámetrica y de la rueda
1 function g=exacta4y(t)
2

3 g=-cos(t);
4

5 return

Listing 12: Función que se usa en el método Runge-Kutta de la carretera
1 function f=integral4c(t)
2

3 f=((exacta4x(t))*(sin(t))-(cos(t)-cos(2*t))*...
4 (exacta4y(t)))/sqrt(exacta4x(t)^2+exacta4y(t)^2);
5

6 return

Listing 13: Función que se usa en el método Runge-Kutta de la rueda
1 function f=integral4r(t)
2

3 f=((exacta4x(t))*(sin(t))-(cos(t)-cos(2*t))*...
4 (exacta4y(t)))/(exacta4x(t)^2+exacta4y(t)^2);
5

6 return

Diseño y presentación de material divulgativo matemático

Anexo II

En este anexo se detalla el código programado para la simulación del botafumeiro. El resultado
del mismo es una animación que se reproduce en una ventana de Matlab al compilar y ejecutar el
código.

Listing 14: Programa principal
1 function botafumeiro3(tirones,theta0,v0,n,L,L1)
2

3 % Los datos requeridos para realizar la simulación son el número máximo de
4 % tirones que queremos simular, el ángulo inicial del péndulo, la velocidad
5 % inicial del mismo, el número de nodos que queremos usar para la
6 % resolución numérica, la longitud máxima de la cuerda y la longitud mínima
7 % de la misma.
8

9 theta(1)=theta0; v(1)=v0; %Condiciones iniciales
10

11 componentes=0; % El número de puntos de la trayectoria del péndulo
12 % se inicializa a 0
13 tiemposubida=0.25; % Se fija el tiempo que dura el proceso de
14 % acortamiento de la cuerda
15 h=tiemposubida/n; t=0:h:tiemposubida; t2=0:h:tiemposubida; for
16 j=1:tirones
17

18 % PRIMERA ETAPA, PÉNDULO EN LONGITUD MÁXIMA
19 i1=0;
20 z=1;
21 while (z==1 || theta(i1)*theta(i1+1)>0) % Se aplica el método Runge-Kutta
22 z=0;
23 i1=i1+1;
24 k1=h*v(i1);
25 l1=h*f(t(1),theta(i1),v(i1),L);
26 k2=h*(v(i1)+l1/2);
27 l2=h*f(t(1)+h/2,theta(i1)+k1/2,v(i1)+l1/2,L);
28 k3=h*(v(i1)+l2/2);
29 l3=h*f(t(1)+h/2,theta(i1)+k2/2,v(i1)+l2/2,L);
30 k4=h*(v(i1)+l3);
31 l4=h*f(t(1)+h,theta(i1)+k3,v(i1)+l3,L);
32

33 theta(i1+1)=theta(i1)+(k1+2*k2+2*k3+k4)/6;
34 v(i1+1)=v(i1)+(l1+2*l2+2*l3+l4)/6;
35 end
36

37 i1=i1-1; % Como el último punto calculado es cuando ya
38 % se ha cruzado el eje vertical se usará el punto anterior
39

IX

X Anexo II

40 for k=1:i1
41 x(k+componentes)=L*cos(theta(k)-pi/2);
42 y(k+componentes)=L*sin(theta(k)-pi/2);
43 hold off
44 plot(x(k+componentes),y(k+componentes),'o', ...

'MarkerFaceColor','b','MarkerSize',10);
45 hold on
46 plot([0;x(k+componentes)],[0;y(k+componentes)]);
47 plot(x,y,'red');
48

49 title(['Tirones : ' num2str(j-1)]);
50 axis([-L*1.264, L*1.264 ,-L, 0]);
51 set(gca,'dataAspectRatio',[1 1 1])
52 pause(0.0001);
53 end
54

55 componentes=componentes+i1; % Actualizamos el número de puntos de la
56 % trayectoria recorrida
57

58 if max(abs(theta))>pi/2 % Si se superan los 90º paramos la animación
59 break
60 end
61

62 % SEGUNDA ETAPA, PÉNDULO SUBIENDO
63

64 theta2(1)=theta(i1); % Las condiciones iniciales de esta etapa son las
65 v2(1)=v(i1); % finales de la anterior
66

67 for j1=1:n+1 % Se aplica el método Runge-Kutta
68 k1=h*v2(j1);
69 l1=h*f2(t2(j1),theta2(j1),v2(j1),L,tiemposubida);
70 k2=h*(v2(j1)+l1/2);
71 l2=h*f2(t2(j1)+h/2,theta2(j1)+k1/2,v2(j1)+l1/2,L,tiemposubida);
72 k3=h*(v2(j1)+l2/2);
73 l3=h*f2(t2(j1)+h/2,theta2(j1)+k2/2,v2(j1)+l2/2,L,tiemposubida);
74 k4=h*(v2(j1)+l3);
75 l4=h*f2(t2(j1)+h,theta(j1)+k3,v(j1)+l3,L,tiemposubida);
76

77 theta2(j1+1)=theta2(j1)+(k1+2*k2+2*k3+k4)/6;
78 v2(j1+1)=v2(j1)+(l1+2*l2+2*l3+l4)/6;
79 end
80

81 for k=1:j1
82 x(k+componentes)=longitud(t(k),tiemposubida,L)*cos(theta2(k)-pi/2);
83 y(k+componentes)=longitud(t(k),tiemposubida,L)*sin(theta2(k)-pi/2);
84 hold off
85 plot(x(k+componentes),y(k+componentes),'o', ...

'MarkerFaceColor','b','MarkerSize',10);
86 hold on
87 plot([0;x(k+componentes)],[0;y(k+componentes)]);
88 plot(x,y,'red');
89

90 title(['Tirones : ' num2str(j-1)]);
91 axis([-L*1.264, L*1.264 ,-L, 0]);
92 set(gca,'dataAspectRatio',[1 1 1])
93 pause(0.0001);
94 end
95

96 componentes=componentes+j1; % Actualizamos el número de puntos de la
97 % trayectoria recorrida
98

Diseño y presentación de material divulgativo matemático

XI

99 % TERCERA ETAPA, PÉNDULO EN LONGITUD MÍNIMA
100

101 theta3(1)=theta2(j1); % Las condiciones iniciales de la nueva etapa son
102 v3(1)=v2(j1); % las finales de la anterior
103

104 i2=0;
105 z=1;
106 while (z==1 || v3(i2)*v3(i2+1)>0) % Se aplica el método Runge-Kutta
107 z=0;
108 i2=i2+1;
109 k1=h*v3(i2);
110 l1=h*f(t(2),theta3(i2),v3(i2),L1);
111 k2=h*(v3(i2)+l1/2);
112 l2=h*f(t(2)+h/2,theta3(i2)+k1/2,v3(i2)+l1/2,L1);
113 k3=h*(v3(i2)+l2/2);
114 l3=h*f(t(2)+h/2,theta3(i2)+k2/2,v3(i2)+l2/2,L1);
115 k4=h*(v3(i2)+l3);
116 l4=h*f(t(2)+h,theta3(i2)+k3,v3(i2)+l3,L1);
117

118 theta3(i2+1)=theta3(i2)+(k1+2*k2+2*k3+k4)/6;
119 v3(i2+1)=v3(i2)+(l1+2*l2+2*l3+l4)/6;
120 end
121

122 i2=i2-1; % Como el último punto calculado es cuando la velocidad ha
123 % cambiado de signo, se usará el punto anterior
124

125 for k=1:i2
126 x(k+componentes)=L1*cos(theta3(k)-pi/2);
127 y(k+componentes)=L1*sin(theta3(k)-pi/2);
128 hold off
129 plot(x(k+componentes),y(k+componentes),'o', ...

'MarkerFaceColor','b','MarkerSize',10);
130 hold on
131 plot([0;x(k+componentes)],[0;y(k+componentes)]);
132 plot(x,y,'red');
133

134 title(['Tirones : ' num2str(j)]);
135 axis([-L*1.264, L*1.264 ,-L, 0]);
136 set(gca,'dataAspectRatio',[1 1 1])
137 pause(0.0001);
138 end
139

140 componentes=componentes+i2; % Actualizamos el número de puntos de la
141 % trayectoria recorrida
142

143 if max(abs(theta3))>pi/2 % Si se superan los 90º paramos la animación
144 break
145 end
146

147 theta(1)=theta3(i2); % Las condiciones iniciales de la siguiente etapa
148 v(1)=0; % son las finales de la última calculada
149

150 end
151

152 plot(x,y) % La trayectoria se va dibujando en rojo mientras se va recorriendo
153 % y cuando acaba la animación se queda marcada en azul

Autor: Eduardo Fernández González

XII Anexo II

Se usan también 3 funciones aparte del programa principal:

La función que se usa durante la resolución del problema de valor inicial mediante el método
Runge-Kutta en las partes donde la longitud es fija se denota por f.

A la función que devuelve la longitud de la cuerda en función del tiempo en los tramos donde
dicha longitud varía se le ha llamado longitud

La función que se usa durante la resolución del problema de valor inicial mediante el método
Runge-Kutta en las partes donde la longitud varía se denota por f2.

Listing 15: Función usada en el método Runge-Kutta cuando la longitud es fija
1 function f=f(t,theta,v,L)
2

3 f=-9.8*sin(theta)/L;
4

5 return

Listing 16: Función que determina la longitud de la cuerda cuando esta varía
1 function f=f2(t,theta,v,L,tsubida)
2

3 f=(-2*v*((exp((-((t-tsubida)/0.2)^2)/2))*((t-tsubida)/0.2^2)*2.9/...
4 (exp(0)-exp((-((-tsubida)/0.2)^2)/2)))-9.8*sin(theta))/longitud(t,tsubida,L);
5

6 return

Listing 17: Función usada en el método Runge-Kutta cuando la longitud varía
1 function f=longitud(t,tsubida,L)
2

3 f=L-(exp((-((t-tsubida)/0.2)^2)/2)-exp((-((-tsubida)/0.2)^2)/2))*2.9/...
4 (exp((0/0.2)^2/2)-exp((-((0-tsubida)/0.2)^2)/2));
5

6 return

Diseño y presentación de material divulgativo matemático

	Anexo I
	Anexo II

