
 

 

 

 

Trabajo Fin de Grado 

 

 

Sistema de verificación para circuitos integrados en 

laboratorios de electrónica 

 

Autor 

Raúl Arenaz Callao 

 

Directores 

José Barquillas Pueyo 

José María García del Pozo Faldós 

 

Departamento de Ingeniería Electrónica y Comunicaciones 

Junio 2015 

 

 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

                Resumen 

Sistema de verificación para circuitos integrados en laboratorios de electrónica 

El objetivo es el diseño y construcción de un prototipo electrónico para la rápida 

verificación del correcto funcionamiento de una serie de circuitos integrados (ICs) utilizados 

habitualmente en las prácticas de laboratorio y proyectos/trabajos. 

El trabajo se ha realizado en varias fases. Una primera fase, de revisión bibliográfica, ha 

marcado, en líneas muy generales, los pasos a seguir para la construcción del sistema. Después 

se ha realizado la selección de los componentes mecánicos y electrónicos necesarios, de 

acuerdo con nuestras necesidades (microcontrolador, display, etc), y teniendo en cuenta el 

costo y prestaciones de los mismos. 

 Tras ello se comienza el trabajo de laboratorio, realizando medidas y comprobaciones 

experimentales sobre chips defectuosos, centrando especialmente la atención en su consumo, 

que constituye un claro indicio de su mal funcionamiento. 

De hecho, la programación del microcontrolador comienza por medir este consumo y 

desechar el chip si es demasiado elevado. 

En paralelo, se ha diseñado y verificado software específico para detectar posibles 

errores en los chips, mediante la comprobación de su funcionamiento lógico. 

Cabe destacar que la labor desarrollada en el laboratorio ha proporcionado 

competencias en aspectos prácticos experimentales y en la construcción de interfaces 

electrónicos auxiliares. 

El resultado final ha sido la construcción de un prototipo capaz de detectar chips 

defectuosos, con la capacidad de ser reprogramado y ampliado fácilmente para posibles 

nuevos dispositivos. 

 

 

 

 

 

 

 

 



4 

 

 

  



5 

 

INDICE: 

 

1. Introducción .................................................................................................... 7 

2. Objetivos ........................................................................................................... 9 

3. Desarrollo .......................................................................................................11 

3.1 Hardware utilizado ...................................................................................................... 11 

               3.2 Alimentación y detección de consumos  ............................................................... 16 

                              3.2.1 Detección de consumos ............................................................................ 16            

3.3 Red de interruptores: arquitectura y control  .................................................... 21                                                          

3.4 Dispositivos de entrada/salida  ............................................................................... 23 

3.5 Software ............................................................................................................................ 25 

 3.5.1 Selección del chip y comienzo de verificación  ................................. 26                    

 3.5.2 Verificación de un chip determinado: VerificaChip() .................... 28 

 3.5.3 Programa principal: loop() ...................................................................... 31 

4. Resultados ..................................................................................................... 33 

5. Conclusiones ..................................................................................................35 

6. Bibliografía .................................................................................................... 37 

 

Anexos 

 Anexo I: Código del programa 

 Anexo II: Datasheet de los componentes utilizados 

 Anexo III: Esquemático y layout de la placa de circuito impreso 

utilizada 

 Anexo IV: Modelos comerciales 

  



6 

 

 
  



7 

 

1. Introducción 

Un problema clásico en todos los laboratorios donde se realizan prácticas con circuitos 

electrónicos, analógicos o digitales, es la existencia de componentes de circuito defectuosos, 

dando lugar a que los montajes experimentales realizados por los alumnos no funcionen 

adecuadamente. 

Así, además de desviar su atención de los objetivos básicos de la práctica a realizar, se 

produce una pérdida de tiempo para localizar el componente defectuoso e incluso una 

sensación frustrante con la consiguiente pérdida de interés. 

Sin descartar posibles defectos ya en el momento de su adquisición, esta situación es 

habitualmente el resultado de su uso continuo “por muchas manos”, y no siempre en las 

mejores condiciones, o de conexiones claramente incorrectas. 

El problema se complica por el hecho de que, por error o despiste, algunos de los 

componentes estropeados son devueltos a su caja de almacenamiento original, mezclando de 

esta forma componentes con un funcionamiento correcto con otros defectuosos. 

Lógicamente, los laboratorios de prácticas del Dpto. de Ingeniería y Comunicaciones en 

la Facultad de Ciencias no son ajenos a este problema, especialmente significativo en la 

asignatura de Electrónica Digital, donde se utiliza un número elevado de chips, similares en 

formato de encapsulado y apariencia, pero con funcionalidades muy distintas. 

La verificación manual de estos dispositivos no resulta fácil ni rápida, ya que se 

requiere montar circuitos concretos de test para cada uno de ellos y someterlos a una serie de 

pruebas para determinar si su funcionamiento es el correcto. 

Aunque se realiza una comprobación de este tipo, de forma selectiva en función de la 

experiencia del personal técnico de mantenimiento de los laboratorios, es prácticamente 

imposible extender esta labor periódicamente a todos los chips disponibles. 

Así, sería de gran ayuda disponer de un sistema automático de verificación que 

determine, a partir de la referencia del chip, y tras la realización de una serie de test, si 

funciona adecuadamente, de acuerdo a las especificaciones del fabricante. 

En la actualidad existen diversos sistemas de verificación de este tipo, resultado de 

proyectos específicos, como el nuestro, o comercializados por empresas (Tesca S.A., Kitek, 

Anexo IV) de instrumentación de laboratorio. 

Su principal desventaja es su elevado costo, debido a que son aparatos capaces de 

testear una gran cantidad de componentes, la mayoría de los cuales están fuera de nuestro 

interés. Otro inconveniente se presenta a la hora de intentar reprogramar el sistema para 

mejorar o ampliar sus prestaciones, el software es cerrado y su modificación resulta imposible. 



8 

 

A partir de estas consideraciones surgió el presente proyecto: la construcción de un 

sistema de verificación de bajo costo, adaptado a las necesidades específicas de los 

laboratorios del área de Electrónica, y totalmente abierto a ampliaciones/modificaciones 

futuras para incluir nuevos componentes. 

Para adquirir unas ideas previas que nos ayuden a construir un prototipo con estas 

características se han revisado distintas referencias, en las que se especifican los componentes 

utilizados e incluso se comentan, de una forma general, posibles rutinas de verificación de los 

chips [Cia87] [Pan04] [Man13]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

2. Objetivos 

En concreto, los objetivos de este proyecto son diseñar, construir y poner a punto un 

sistema automático de verificación de los chips digitales utilizados habitualmente en las 

prácticas y trabajos/proyectos asociados de la asignatura Sistemas Digitales del Grado de 

Física, en este momento centrados en tecnología CMOS (74HCXX). 

Este sistema tendrá una aplicación real e inmediata, permitiendo verificar los chips 

disponibles actualmente en el laboratorio y garantizando así un alto margen de fiabilidad de 

los mismos de cara al próximo curso académico. 

Además, la disponibilidad de este sistema permitirá una comprobación rutinaria 

mucho más rápida y frecuente de los mismos, siendo posible realizarla en los periodos entre 

prácticas para detectar posibles “nuevos” chips defectuosos. 

Así mismo, y dentro del ámbito formativo de los proyectos Fin de Grado, es un objetivo 

paralelo y no menos importante la adquisición por parte del alumno de conocimientos 

complementarios relacionados con la materia en cuestión y no necesariamente incluidos en 

los programas docentes. 

En nuestro caso, dado que constituyen el núcleo del sistema, se realiza un estudio a 

fondo de los microcontroladores, de su arquitectura y programación, muy superior al expuesto 

en la correspondiente asignatura del Grado de Física. 

Se abordan aspectos nuevos del diseño y construcción de sistemas electrónicos, como 

es el interconexionado entre los distintos componentes del sistema, para lo cual se ha 

diseñado una placa de circuito impreso específica. 

Es necesario también identificar los diversos fallos encontrados en una recopilación de 

chips defectuosos para intentar detectarlos mediante los adecuados procesos de test, así 

como un estudio detallado de las etapas de entrada y salida de la tecnología CMOS. 

Además, para la construcción física del prototipo se requiere ensamblar sus diversos 

componentes electrónicos y mecánicos, dándole de este modo una forma funcional lo más 

cómoda y fácil de usar. 

 

 

 

 



10 

 

 
  



11 

 

3. Desarrollo 

3.1 Hardware utilizado 

Básicamente, para llevar a cabo la comprobación funcional de un chip digital se 

requiere un zócalo  donde colocarlo [Far02][Cia87], una red de interruptores que permitan 

conectar o desconectar los terminales de datos del sistema a los pines del chip y un sistema de 

control que vaya aplicando vectores de test en las entradas y verifique la validez de las 

respuestas obtenidas. 

La alternativa idónea para esta labor es utilizar un microcontrolador (C) que, bajo el 

control del correspondiente software (lenguaje C), es capaz de generar  vectores binarios (0/1) 

en los terminales configurados como salidas y leer los datos presentes en los configurados 

como entradas [Pan04][Cia87]. 

Dado que se trata de una reconfiguración dinámica de puertos  se puede adaptar a la 

arquitectura de entradas y salidas de cada chip a verificar sin más que realizar los oportunos 

cambios en el software de control. 

Con el fin de adquirir una idea global del prototipo diseñado se procede a continuación 

a una breve exposición de sus diversos bloques, para realizar posteriormente una descripción 

más detallada de los más importantes. 

Placa de Microcontrolador  

El microcontrolador elegido ha sido el Atmel ATMega2560, insertado en una placa 

Arduino que lleva su misma referencia, y una de las más usadas en la actualidad, por su bajo 

coste y sus elevadas prestaciones 

Dicha placa incluye todos los componentes periféricos necesarios para el correcto 

funcionamiento del μC (reloj, regulador, etc).  Permite utilizar cerca de 80 pines del μC, los 

cuales pueden configurarse como entrada/salida, algunas analógicas, o como buses de 

comunicación con otros dispositivos (I2C, SPI, puerto serie) 

 En cuanto a su capacidad de memoria  incluye 256 Kb de memoria Flash, 8 Kb de RAM 

y 4 Kb de EEPROM, más que suficiente para nuestro propósito.  

Además, posee un entorno de desarrollo muy completo y fácil de usar, dentro de la 

filosofía de software libre, que una vez instalado en el ordenador permite escribir, depurar, 

compilar y cargar en la memoria Flash del C el código objeto correspondiente a través del 

puerto USB conectado a la placa Arduino. 

Zócalo de inserción del chip 

Se utiliza un zócalo tipo ZIF  (Zero Insertion Force),  que permite la inserción y retirada 

de chips de una forma cómoda y rápida (figura 1), sin tener que realizar ningún tipo de 

presión, evitando así dañar sus terminales. Está provisto de una palanca de fijación para 

conseguir que los chips queden firmemente sujetos y la conexión eléctrica sea correcta. 



12 

 

Aunque los circuitos integrados a verificar tienen un máximo de 16 pines (2x8) se ha  

seleccionado un zócalo ZIF de 24 (2x12) para dejar abierta la posibilidad de extender el sistema 

a chips más complejos con el mínimo de modificaciones en el montaje. 

 

 

 

 

Figura 1 

 Red programable de interruptores 

  La interconexión entre el C y los pines del chip a verificar se realiza a través de los 

puertos  C y L (8 bits), que se conectan al zócalo ZIF mediante dos buses de 8 líneas. 

Su adecuada configuración como entradas o salidas permite escribir en las entradas 

del chip los vectores de test necesarios para cada una de las comprobaciones funcionales y 

leer en las salidas los vectores respuesta correspondientes, además de proporcionarle la 

tensión de alimentación (Vcc y GND) 

Para evitar daños al sistema o al dispositivo a verificar, esta red de interruptores debe 

aislar totalmente el dispositivo del C cuando se inserta un nuevo chip y cada vez que se 

cambie de vector de test.  

 Como alternativa más simple para el diseño de esta red podrían usarse relés, pero 

presentan los inconvenientes de ser caros, lentos, poseen un consumo elevado y tienen una 

vida limitada.  

 Una solución mejor y más actual es utilizar interruptores de estado sólido, con 

prestaciones notablemente superiores en velocidad, costo y consumo de potencia. 

Tras una revisión de diversos circuitos integrados de este tipo se ha seleccionado  el 

ADG715 de Analog Devices, que incluye 8 interruptores bidireccionales CMOS controlados por 

bus I2C, cuyo funcionamiento y características detalladas se exponen más adelante. 

 Display LCD 

  Como elemento básico de visualización se utiliza un display LCD de 20x4 caracteres 

(figura 2) para mostrar una lista de las referencias de chips que el dispositivo es capaz de 

verificar. Además, una vez el proceso se haya completado, mostrará un mensaje indicando si el 

chip es defectuoso. 

Combina simplicidad de programación (diversas librerías C disponibles) con un precio 

reducido y se controla fácilmente desde la placa Arduino mediante un bus de 6 líneas. Se 

incluye también un potenciómetro de ajuste de la intensidad luminosa. 



13 

 

 

 

 

 

 

 

Figura 2 

Para desarrollar el software necesario para el control del display LCD se ha utilizado la 

librería LiquidCrystal.h [LCD], disponible en la página web de Arduino y ampliamente 

referenciada en la red. Contiene funciones para borrar la pantalla, configurar el cursor y 

representar textos y números con suma facilidad. 

Como dispositivos de representación adicional se utilizan dos leds,  verde y  rojo, para 

indicar si el chip funciona correctamente o es defectuoso. 

 Se incorpora también un zumbador (buzzer) que avisará acústicamente del resultado 

del proceso de verificación: dos señales sonoras en caso de chip defectuoso y una para  

correcto. 

Selector/pulsador rotatorio (“Rotary Encoder”) 

 Para seleccionar el chip a verificar se utiliza un selector rotatorio que permitirá al 

usuario desplazarse por el listado que contiene la referencia y descripción de los chips y, 

accionando el pulsador incorporado, iniciar la rutina de verificación. El modelo elegido es el 

siguiente, con 18 pasos por vuelta, cuyo funcionamiento se explica en secciones posteriores: 

 

 

 

 

 

 

  Figura 3 [Alp15] 

Alimentación 

 La etapa de alimentación está compuesta por dos reguladores, de 9V y 5V (7809 y 

7805), ampliamente usados en dispositivos electrónicos. El 7809 se alimentará con una 

entrada exterior de 12V y su salida (+9V) se conectará a la entrada del 7805. De esta forma 

tendremos disponibles tensiones de 9V y 5V con un mínimo factor de rizado. 



14 

 

Detección de consumos 

Para garantizar la seguridad del sistema se ha diseñado y construido un sistema de 

detección de consumo de alimentación cuyo funcionamiento se explica más adelante. 

Reset 

Se ha incluido un pulsador en la parte trasera del dispositivo, conectado al Reset de la 

placa Arduino, que servirá para inicializar el sistema. 

 Placa de circuito impreso 

El cableado requerido para interconectar todos los dispositivos del sistema es 

impracticable y se hace necesaria por tanto la realización de una placa de circuito impreso para 

montaje superficial (SMD) específica para este proyecto. 

Con el fin de conseguir un montaje lo más compacto posible el diseño se ha realizado 

de modo que la placa Arduino se inserta directamente en un zócalo que reproduce 

exactamente su arquitectura de pines, sin ningún cable de conexión. 

Dicha placa incluye, asimismo, los terminales de entrada y salida necesarios para la 

interconexión con el resto de dispositivos del sistema. 

Para su diseño y fabricación se ha contado con la colaboración del Servicio de 

Instrumentación Electrónica de la Universidad de Zaragoza, que dispone de los medios 

técnicos necesarios, en este caso la máquina LPKF 93s, grabando una placa de fibra de vidrio 

“single layer” metalizada en cobre. El fabricante de la misma es Circuitos JCF. 

El esquema general es el siguiente, donde se detalla la localización de cada uno de los 

bloques funcionales del sistema: 

 

                         Figura 4 



15 

 

Prototipo final 

 Para el montaje definitivo y compacto de todos los componentes se ha utilizado una 

caja comercial adecuada a las características del sistema (figura 5), provista de un panel frontal 

para colocar el display LCD y los LEDs adicionales, así como el zócalo ZIF y el selector de chips. 

En la parte posterior se sitúa la entrada de tensión de alimentación (12V) y el conector 

USB necesario para posteriores reconfiguraciones del sistema. 

Así, el trabajo final adquiere el siguiente aspecto: 

 

 

 

 

 

 

 

 

 

       Figura 5 

El diagrama de bloques del sistema completo se muestra a continuación: 

 

 

 

 

 

 

 

 

 

 

Figura 6 



16 

 

3.2 Alimentación y detección de consumos 

Como ya se comentó con anterioridad se usan dos reguladores integrados para 

generar las tensiones de alimentación necesarias para el sistema. 

El regulador de 9V se conecta a la entrada de alimentación externa de la placa Arduino 

(7-12V), de forma que midiendo su consumo de corriente se puedan detectar valores 

demasiado elevados que indican posibles cortocircuitos en el chip bajo verificación. 

El regulador auxiliar de 5V sirve para alimentar los componentes externos: display LCD 

e integrados ADG715, evitando así que la placa Arduino tenga que suministrar la corriente que 

éstos consumen (>200mA). 

3.2.1 Detección de consumos 

Dado que nuestro interés se centra en la tecnología CMOS, que presenta un consumo 

estático de corriente prácticamente nulo, supondremos que si el chip a verificar consume 

corriente, será defectuoso. 

 Así, de modo previo a la verificación funcional de la lógica que contiene el chip bajo 

test, es conveniente realizar una medida de los consumos de corriente, para detectar posibles 

cortocircuitos y evitar daños al propio sistema de verificación. Esta tarea la llevaremos a cabo 

mediante el conversor analógico digital de 10 bits (ADC) que incorpora el ATMega2560      

[ATM06]. 

 Ante la dificultad de medir individualmente las corrientes en los distintos terminales 

del chip, se ha optado por determinar la intensidad total que consume el sistema y asignarle 

un valor umbral que califica el consumo como excesivo, y por tanto, al chip, como defectuoso. 

 Aunque se han considerado otras opciones, finalmente se ha fijado un valor de 10 mA, 

teniendo en cuenta que los dispositivos secuenciales pueden presentar un cierto consumo 

dinámico (<2mA), siempre inferior a este valor.  

 La placa Arduino Mega incluye un regulador de tensión, con rango de entrada de 7 a 

12V, para obtener la tensión de alimentación del microcontrolador. 

  



17 

 

 Se han realizado una serie de medidas del consumo del regulador en función del 

voltaje, Vin, con el que se alimenta: 

 

Figura 7 

 Se puede apreciar cómo, para valores bajos de Vin, el consumo es proporcional al 

voltaje. En el momento en que éste toma un valor de 6.5V, el consumo permanece constante 

en torno a 75 mA (con pequeñas variaciones), independientemente de Vin. Como se ha 

comentado, la tensión de alimentación debe estar comprendida entre 7 y 12 voltios. Es 

aceptable considerar por tanto que el consumo del regulador es de 75 mA cuando trabaja en 

condiciones de alimentación óptimas. A este valor hay que añadir en cada momento la suma 

de las intensidades de los terminales configurados como salida, según su estado lógico, que 

sería el hipotético consumo del chip (Isalidas). 

 Una resistencia R en serie con la entrada del regulador, como se muestra en la figura 8, 

producirá una caída de potencial, a partir de la cual podremos determinar la intensidad que 

consume la placa. 

 

Figura 8 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

80 

4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5 

I (
m

A
) 

Vin(V) 

Consumo del regulador 



18 

 

 La tensión V1 es:   

                          

 Para una resistencia de 15Ω resulta (sustituyendo         por 75 mA): 

                     

 Este valor V1 debe ser superior a 7V para el correcto funcionamiento del regulador.  

Además, V2 ha de ser inferior a 5V, límite superior del rango dinámico del ADC que 

utilizamos para la medida, con una resolución de 5V/1024 ≅ 5mV. 

 Se requiere por tanto un divisor de tensión de factor de atenuación 5/7.88, de forma 

que en estado de reposo, la tensión V2 aplicada a la entrada del conversor sea 5V, lo que se 

consigue con R1=33kΩ y R2=56kΩ. 

 Conviene observar la baja precisión de las medidas, ya que sólo se va a utilizar una 

pequeña parte del rango dinámico de entrada del ADC. 

 Como ejemplo ilustrativo consideramos que el chip consume 50 mA, Isalidas=50 mA. Este 

es un valor muy elevado que se daría bajo condiciones muy raras y lo tomaremos como 

intensidad máxima.  

En este caso, V2 resulta ser 4,52V, con un ΔV de tan sólo 0.48V. 

 Por tanto: 

    
             

  
≅    

La resolución resulta ser algo menos de 7 bits (27=128) de modo que la precisión de la 

medida resulta bastante reducida. 

 Con estos parámetros como punto de partida, se han realizado una serie de medidas 

de la intensidad para distintos valores de R y del factor de amortiguación del divisor de tensión 

y los resultados no son satisfactorios. 

 Estudiando a fondo las características del ADC que se exponen en el datasheet del 

ATMega2560, vemos que se pueden optimizar sus prestaciones para nuestras necesidades 

concretas [ATM10]. 

 Es posible utilizarlo en modo diferencial, así como modificar la tensión de referencia y 

la ganancia del amplificador incorporado para adaptar el rango dinámico de entrada al 

intervalo de posibles valores de la tensión V2  y por tanto mejorar la precisión. 

 



19 

 

 

Figura 9 

 

 Como no es posible utilizar para este fin las funciones incluidas en el entorno de 

programación de Arduino, es necesario configurar directamente los diversos registros del 

microcontrolador que controlan la operación del ADC. 

 Esto nos obliga a un estudio minucioso de dichos registros y a una cuidada selección de 

los valores asignados a cada bit de control. 

 ADCSRA: un 1 en su bit 7 activa el conversor y un 1 en el bit 6 inicia un nuevo proceso 

de conversión, mientras que los tres bits menos significativos (0, 1, 2) permiten seleccionar la 

frecuencia de reloj que utiliza. 

 ADMUX: es el principal registro de control del conversor. Configura el modo de 

operación diferencial y selecciona (junto con el registro auxiliar ADCSRB) las entradas 

analógicas a comparar. Permite, además, modificar la ganancia y la tensión de referencia VREF 

para el proceso de conversión, siendo en nuestro caso 1.1V el valor seleccionado. 

 En estas condiciones el rango de entrada es de –VREF a +VREF y la resolución es de: 

    

    
≅     

 El resultado de la conversión viene dado por: 

    
              

    
 

 que se almacena en forma de complemento a 2 en los registros de datos ADCH y ADCL.

  

  



20 

 

Seleccionamos las entradas analógicas A2 para VPOS (5V) y A1 para VNEG, de acuerdo con 

el siguiente esquema: 

Arduino
BUS 8 líneas

BUS 8 líneas

ZIF

DC+9V

Ireposo + Isalidas

R

R
1

R
2

Isalidas

I’

V1

V2A1

A2

+5V

 

Figura 10 

 y obtenemos el siguiente valor para el resultado de la conversión: 

    
          

    
 

 Si ahora volvemos al ejemplo anterior, con una intensidad de 50 mA la tensión V2 baja 

a 4.52V  y resulta una resolución de: 

    
             

    
≅     

 La resolución ahora es cercana a los 8 bits, más del doble de la que teníamos antes, 

suficiente ya para nuestro propósito. 

 Hay que tener en cuenta que aunque inicialmente hemos supuesto constante el 

consumo de la placa Arduino (75mA), éste puede variar con la temperatura e incluso con la 

placa concreta utilizada. 

 Con el fin de minimizar la influencia de esta posible variación, hemos optado por 

medirlo en vacío (sin ningún chip conectado en el zócalo) cada vez que queremos examinar un 

chip y almacenarlo como referencia en una variable, de modo que posibles cambios en su valor 

no afecten al proceso de verificación. 

 Así, el sistema de detección de consumo determinará la diferencia entre el valor en 

vacío y en el momento de conectar el chip, de forma que si es superior al nivel umbral 

consideraremos el chip como defectuoso. 

 



21 

 

3.3 Red de interruptores: arquitectura y control 

 Los interruptores integrados ADG715 son los encargados de activar o interrumpir, bajo 
control del software desarrollado al efecto, las conexiones entre el chip bajo test y el 
microcontrolador (figura 11). 

Están fabricados en tecnología CMOS e incluyen 8 interruptores bidireccionales, con 
una resistencia de tan solo 2.5Ω. El control de los mismos se realiza mediante el protocolo de 
comunicación I2C (Inter-Integrated Circuit), compatible con el ATMega2560. 

     

Figura 11 [ANA13] 

 Los terminales S (1 a 8) se conectan al zócalo ZIF que contiene los chips a verificar, 

mientras que los terminales D (1 a 8), se conectarán a los puertos del μC. 

Las líneas SDA y SCL (bus I2C) permiten controlar el estado de los interruptores en cada 

momento, siendo A0 y A1 las dos entradas que determinan la dirección del dispositivo en el 

bus. Además, el RESET, activo en bajo, cortará las 8 líneas de comunicación abriendo todos los 

interruptores.  

 I2C es un bus de comunicación muy generalizado para comunicar un microcontrolador 

con circuitos integrados auxiliares. Se denominará master/maestro al dispositivo que controla 

el bus en cada momento y slave/esclavo a los dispositivos controlados. Es además multi-

maestro, permitiendo así que varios dispositivos puedan actuar como maestros, lógicamente 

en momentos distintos [ELC]. 

Consta de dos líneas: SDA, que transmite los datos, y SCL, que constituye el reloj y 

establece el sincronismo entre dispositivos, de forma que con cada pulso de SCL se transmite 

un bit de SDA.  

Aunque para el sistema desarrollado se precisan sólo dos chips ADG715, dado que 

existen dos pines de dirección, A0 y A1, es posible incluir hasta cuatro, lo que permite ampliar 

el sistema si fuera necesario. 

De acuerdo con el protocolo I2C, para comenzar una trama general de comunicación el 

master enviará por la línea SDA un bit de start, que “alertará” a los esclavos poniéndolos a la 

espera de una transacción, seguido de un byte de dirección (7 bits) que seleccionará el esclavo 



22 

 

concreto con el que quiere comunicar, y finalmente un último bit que indica si la acción a 

realizar es de lectura o escritura. 

Por su parte, el esclavo responde con un nuevo bit de reconocimiento, que confirma 

que el byte enviado previamente ha llegado a su destino, y consiste en una transición de bajo a 

alto (ACK). 

Se envían ahora todos los bytes de datos a transmitir y finalmente, un bit de stop 

(transición de bajo a alto) cierra la transmisión y deja el bus libre. 

Para desarrollar el software necesario para el control de los chips de interruptores 

usados en este proyecto se ha utilizado la librería Wire.h, disponible en la página web de 

Arduino y ampliamente referenciada en la red [WIR] 

Los chips ADG715 tienen prefijados de fábrica cinco de los siete bits de dirección, de 

forma que con los dos bits restantes, A1 y A0, se podrán configurar cuatro direcciones físicas 

distintas (00, 01, 10 ó 11) 

En estos dispositivos los bytes de datos se utilizan para establecer el estado de los 

interruptores del chip seleccionado. Así, por ejemplo, el byte de datos 10101010 cierra los 

interruptores 2, 4, 6 y 8 (1) y abre los 1, 3, 5 y 7 (0).  

Como ilustración de lo explicado anteriormente se muestra un código que abre los 

interruptores impares y cierra los pares: 

Wire.beginTransmission(0b1001000);  //byte de dirección. Dos últimos bits son A1 y A0 (00) 

Wire.write(0b10101010); // byte de datos. Abre/cierra los interruptores impares/pares 

Wire.endTransmission(); //Acaba la transmisión, dejando las líneas de comunicación libres 

Se representan asimismo las señales eléctricas que se envían por las líneas SDA y SCL, 

pudiéndose observar el byte de dirección y un byte de datos. 

 

Figura 12 



23 

 

3.4 Dispositivos de entrada/salida 

Como ya se ha comentado anteriormente, para que el usuario pueda interactuar con el 

sistema de verificación de chips se requieren los adecuados dispositivos de entrada/salida: 

display LCD,  LED’s de visualización, un buzzer  y un selector/pulsador rotatorio. 

Por su interés, se expone en primer lugar el funcionamiento del selector/pulsador, que 

posee cinco terminales de conexión 

 

Figura 13 [Alp15] 

Los terminales A, B, C corresponden al selector rotatorio y los D, E al pulsador 

mecánico que lleva incorporado el dispositivo. Los terminales C y D se conectan a tierra, 

mientras que los A, B y E lo están a entradas de Arduino.  

 Si conectamos el terminal E a una tensión de alimentación mediante una resistencia de 

“pull-up” cada vez que se accione el pulsador la tensión del terminal E bajará a 0V y el pulso 

producido será reconocido por el C, que iniciará el proceso de verificación. 

 El selector consta de dos fases A y B, que es necesario conectar a una tensión de 

alimentación mediante resistencias de “pull-up”, como se ve en el siguiente esquema: 

 

Figura 14 [Alp15] 

Con el fin de evitar el efecto de los rebotes asociados a los elementos mecánicos de 

conmutación, que producen múltiples contactos de muy corta duración,  se han incluido redes 

RC en todos los terminales, con R=1K y C=10 nF. 

Se ha comprobado experimentalmente que basta incorporar estos circuitos para evitar 

el efecto de los rebotes, no siendo necesario así incluir rutinas de corrección en el software 

desarrollado. 

Cada una de las fases se puede representar por un interruptor ON/OFF que puede 

dejar los terminales a 5V (abierto) o conectarlos a tierra (cerrado). Cuando el selector se gira a 



24 

 

la derecha el sistema mecánico hará que el interruptor A conmute antes que el  B, cambiando 

así los estados de ambos interruptores (de 0 a 5V o viceversa) con un cierto retardo, τ,  entre 

ellos. Cuando giremos en el otro sentido, será el interruptor B el que conmute antes [Alp15]. 

 Se han medido en el laboratorio las dos fases o terminales, A y B, con giro hacia la 

derecha (figura 15) y hacia la izquierda (figura 16): 

 

               Figura 15                  Figura 16 

 En la primera figura se observa que el terminal A cambia de estado y un tiempo τ 

después lo hace el B. En la segunda se produce la situación contraria, el primero en cambiar de 

estado es B y un tiempo τ después lo hace A. En ambas imágenes pueden observarse varios 

pasos del selector para mayor claridad. 

En definitiva, el selector de posición nos proporciona dos señales digitales, desfasadas 

entre ellas, que pueden ser procesadas por el μC. De esta forma, podremos conocer el sentido 

de giro y desplazarnos por el listado de chips disponibles de acuerdo con la elección del 

usuario. 

 

 

 

 

 

 

 

 

 

 



25 

 

3.5 Software 

En esta sección se explica el software desarrollado para el control y operación del 

sistema de verificación propuesto. Como ya se ha apuntado previamente, la programación se 

lleva a cabo en lenguaje C, y dentro del entorno operativo Arduino. 

En este ámbito la estructura de cualquier programa  consta de dos funciones o 

procedimientos básicos: setup() y loop() 

setup() 

Encabeza cualquier programa y contiene líneas de código como configuraciones de 

registros internos, declaración de variables, configuración de entradas/salidas, en definitiva 

sentencias que sólo se ejecutan una vez. Cada vez que Arduino comience a funcionar, 

ejecutará esta función e inmediatamente pasará al loop(). Para volver al setup() hay que 

resetear el μC. 

loop():  

Es un bucle que se repite indefinidamente mientras el C esté conectado a la 

alimentación, ejecutando así de modo continuo las instrucciones contenidas en la función. 

A continuación se muestra la arquitectura de un programa básico de Arduino con las 

funciones setup() y loop() vacías: 

 

Figura 17 

Lógicamente este programa no realiza ninguna acción, siendo preciso introducir las 

correspondientes instrucciones declarativas o ejecutivas en ambas funciones para que realice 

una función concreta. 

Se van a explicar a continuación detalladamente las principales funciones que 

componen el programa desarrollado. Unas están asociadas a interrupciones y otras son 

llamadas directamente en líneas de código. 

En primer lugar se explican las funciones asociadas a la selección del chip a verificar y a 

la orden de comienzo del proceso, (ambas asignadas a interrupciones) para describir después 

la función de verificación de chips, que realiza todas las operaciones funcionales para 

determinar su estado. 



26 

 

El código completo del software desarrollado para el prototipo construido para este 

proyecto se adjunta en el anexo I, donde se han incluido también los comentarios adecuados 

para ayudar a comprenderlo. 

 

3.5.1 Selección del chip y comienzo de verificación 

En la zona de declaración de variables se han incluido, en forma de matriz, las 

referencias y descripciones de los circuitos integrados digitales que el prototipo construido 

permite verificar. 

Un simple índice identifica unívocamente cada dispositivo, de forma que resulta muy 

sencillo ampliar dicha lista sin más que introducir nuevos componentes. 

Además, un segundo índice auxiliar realiza un direccionamiento indirecto de las 

matrices, lo que permite que las referencias de los chips aparezcan siempre ordenadas 

alfabéticamente en la pantalla, independientemente del orden en que han sido introducidas. 

 Para agilizar la respuesta y facilitar la programación se ha decidido el uso de 

interrupciones como método para la interacción del selector/pulsador con el C. 

 Una interrupción permite detectar un evento asíncrono independientemente de las 

líneas de código que se estén ejecutando en ese momento y responder en consecuencia. Así, 

al ocurrir el evento, se ejecutará la sección de código incluida en su función correspondiente, 

asignada con anterioridad.  

El Arduino Mega posee seis terminales que se pueden usar como entrada de 

interrupciones. Las declaraciones de las interrupciones utilizadas deberán incluirse en la 

función setup(), especificando siempre la interrupción seleccionada, la función que se 

ejecutará cuando actúe y el evento asíncrono que deberá producirse para que se ejecute. 

A continuación se muestra un ejemplo de declaración de una interrupción: 

 

Figura 18 

 En nuestro caso se hace necesario el uso de dos interrupciones distintas: una para el 

selector de posición rotatorio y otra para el pulsador incorporado. 



27 

 

 De acuerdo con el funcionamiento del selector expuesto en la sección 3.4, se requiere 

una interrupción para la fase B y una entrada digital para la fase A [HOB]. La interrupción se 

debe activar con cada cambio de la fase B y “muestreará” el valor de ambas fases en ese 

momento. 

 Cuando el mando del selector rotatorio gira a la izquierda, la fase B cambia de estado  

y se activa la interrupción, siendo en este momento A y B distintos, mientras que si el giro es a 

la derecha, la interrupción vuelve a actuar, pero ahora A y B son iguales (figuras 15 y 16). 

 Por tanto, la función SelPosicion(), asignada a la interrupción, debe leer los bits de las 

fases A y B, que constituyen el estado del selector en ese momento (00, 01, 10 ó 11).  Si el 

estado es 0 ó 3 (los dos bits iguales) el sentido de giro es hacia la derecha, mientras que si es 1 

ó 2 (los dos bits distintos) se estará girando hacia la izquierda.  

La estructura de la función SelPosición() es la siguiente:

 

 

Figura 19 

 Teniendo en cuenta que el pulsador de selección de chip se cierra al activarlo y 

por tanto conecta a tierra su terminal E, el evento que activa su interrupción será un cambio 

de alto a bajo (FALLING), mientras que la función correspondiente StartTest() será la 

asignación a la variable indiceTest del valor de la variable índice, que indica el chip actualmente 

seleccionado. 

 

 

 

 

 

 

 



28 

 

3.5.2 Verificación de un chip determinado: VerificaChip() 

La idea ha sido incluir en una única función VerificaChip() todo el proceso de 

verificación de  los chips, pasándole como argumento el índice que lo identifica. Se parte de 

una lista de  circuitos integrados disponibles en la que cada uno tiene asignado un número 

único. 

Mediante la estructura lógica switch case se seleccionaran las alternativas de 

comprobación para cada tipo y referencia de chip. 

 

Figura 20 

 La estructura  switch case  toma como referencia la variable var  y realiza una u otra 

acción dependiendo de su valor. En nuestro caso, dependiendo del valor de índice, se realizará 

una u otra rutina de verificación. 

 La verificación del correcto funcionamiento del chip se lleva a cabo en dos fases. En la 

primera se mide el consumo, si éste es elevado el chip se considera defectuoso y se descarta. 

Por el contrario, si el consumo no es elevado, se pasará a la verificación funcional de la lógica 

intrínseca de cada chip. 

 En primer lugar hay que configurar los bits de los puertos del C como entradas o 

salidas, dependiendo del carácter de entrada o salida de los terminales del chip a comprobar. 

Para detectar posibles cortocircuitos se mide el consumo del regulador en vacío y se 

almacena este valor en una variable. Después se realizan dos medidas de consumo más: una 

con las entradas en valor lógico 1, para detectar posibles cortocircuitos a tierra, y otra con las 

entradas en valor 0, para detectar posibles cortocircuitos a Vcc. Se calculan las diferencias  con 

el consumo en vacío, de forma que si alguna de ellas es mayor que un valor umbral, el 

consumo se considerará excesivo y se interrumpe el proceso de verificación aplicando un 

Reset a los interruptores. 

 Se consideran las diferencias de consumos en lugar de los valores absolutos con el fin 

eliminar las posibles variaciones de consumo del regulador. 

 

 

 

 



29 

 

La función que realiza esta tarea es la siguiente: 

 

Figura 21 

La verificación lógica o funcional consiste en aplicar, al circuito integrado bajo test, 

todas las posibles combinaciones de vectores entrada y leer sus vectores de salida 

correspondientes, para comprobar que los valores de todos ellos son correctos. 

 Antes de entrar en más detalles de este proceso conviene hacer una distinción previa 

entre tipos de chips, de acuerdo con su funcionamiento: 

 Combinacionales 

Puertas lógicas, decodificadores,  comparadores, sumadores, multiplexores. En todos 

ellos los vectores salida son función exclusivamente de los vectores entrada y no 

incluyen reloj en su funcionamiento. 

Se utilizan dos métodos distintos y complementarios para realizar el proceso de 

verificación: 

 Verificación mediante vectores de test   [Cia87] 

Con este procedimiento se comprobarán los chips de puertas lógicas, el 

decodificador BCD y el multiplexor, debido a su simplicidad. Se declara al inicio del 

programa una matriz que contiene los vectores test para las entradas del chip y otra 

con los vectores respuesta esperados para las salidas, de acuerdo a la lógica interna de 

cada uno 

Se aplican a cada circuito integrado específico sus vectores de test 

correspondientes y se leen las respuestas que generan. Si son distintas de los vectores 

declarados como respuestas correctas, se entiende que la lógica del chip no funciona 

adecuadamente y  será considerado defectuoso. Este método permite, además, 

verificar al mismo tiempo todas las puertas lógicas de un chip [Bru06].  

Constituye, por su sencillez, una gran simplificación de los métodos basados en 

vectores de test que utilizan las empresas fabricantes de circuitos integrados. 

  



30 

 

Verificación individual 

Se utiliza para los chips en los que sería muy complejo realizar una comprobación 

mediante vectores test debido a la gran cantidad de combinaciones posibles para sus 

entradas, como por ejemplo en el comparador de magnitud de 4 bits. En estos casos se 

lleva a cabo una verificación individualizada implementando la tabla de 

funcionamiento que aporta el fabricante. 

 Secuenciales 

Son aquellos que para su correcto funcionamiento requieren la presencia de una señal 

de reloj, pudiendo ser activo con flancos de subida o de bajada. Por lo tanto, para su 

verificación se debe simular la presencia de un reloj, para lo cual se han construido dos 

funciones que provocan un paso de alto a bajo o de bajo a alto por el pin de Arduino 

que se requiera. 

Las funciones, que emulan los flancos de subida o bajada de un reloj, son las 

siguientes: 

 

                  Figura 22 

En este caso el proceso de verificación será individualizado, implementando, fila a fila, 

la tabla de funcionamiento que proporciona el fabricante. 

Se establece en primer lugar el estado inicial del chip mediante la oportuna 

configuración de las entradas, se aplica una transición activa de reloj y se lee el nuevo 

estado para determinar si es el correcto. Basta repetir esta tarea sucesivamente para ir 

recorriendo y comprobando la tabla de transición de estados del dispositivo. 

Resulta muy conveniente para la fiabilidad del proceso introducir pequeños retardos 

antes y después de las transiciones activas de reloj, para eliminar efectos no deseados 

asociados al efecto de los tiempos tset-up y thold, de acuerdo con las especificaciones 

indicadas en el  datasheet  de los dispositivos. 



31 

 

3.5.3 Programa principal: loop() 

 Como es habitual en la programación de C´s el código introducido en la función loop() 

representa una mínima parte del software desarrollado y se limitará, en nuestro caso, a 

representar en el  display la referencia y descripción del chip actualmente seleccionado, sólo si 

se ha producido una modificación en el mismo por la acción del selector rotatorio. De esta 

forma se evitan parpadeos molestos en la pantalla, consecuencia de borrar y escribir 

continuamente los mismos datos. 

 Son las funciones asociadas a las interrupciones las que realizan, bajo control de los 

dispositivos de entrada que las activan, la mayor parte del trabajo operacional del sistema, 

fijando el chip bajo test e iniciando el correspondiente proceso de verificación. 

Se puede decir que el programa principal, función loop(), se limita a esperar que el 

usuario active alguno estos controles, y a llamar a la respectiva función respuesta. 

 Así, si se gira el selector a derecha o izquierda, se activará su respectiva interrupción 

que modificará la variable global índice que identifica a cada chip y por tanto se actualizará de 

modo inmediato en el display la referencia y descripción del chip.  

Actualmente, la lista de chips disponibles es la siguiente: 

74HC00 – 4 puertas lógicas NAND de 2 entradas 

74HC02 – 4 puertas lógicas NOR de 2 entradas 

74HC04 – 4069UB– 6 inversores 

74HC08 – 4 puertas lógicas AND de 2 entradas 

74HC10 – 3 puertas lógicas NAND de 3 entradas 

74HC11 – 3 puertas lógicas AND de 3 entradas 

74HC27 – 3 puertas lógicas NOR de 3 entradas 

74HC32 – 4 puertas lógicas OR de 2 entradas 

74HC4511 – Decodificador BCD de 7 segmentos 

74HC74 – 2 flip-flops D  

74HC85 – Comparador de magnitud de 4 bits 

74HC86 – 4 puertas lógicas XOR de 2 entradas 

74HC107 – 2 flip-flop JK 

74HC151 – Multiplexor de 8 entradas 

74HC163 – Contador binario de 4 bits 

74HC194 – Registro bidireccional de 4 bits 



32 

 

No obstante, en la lista de las referencias de los chips se han incluido algunos más 

aunque todavía no están disponibles para su verificación. 

 En resumen, para verificar el chip mostrado en la pantalla, habrá que presionar el 

pulsador, de modo que su interrupción se activará y asignará a la variable indiceTest el valor 

indice actual, lo que provocará a su vez la ejecución de la función VerificaChip() y por tanto su 

comprobación funcional. 

 

Figura 23 

 

 

 

 

 

 

 
  



33 

 

4. Resultados 

 El resultado final ha sido el diseño y construcción de un prototipo capaz de detectar 

chips defectuosos, con la capacidad de ser reprogramado y ampliado fácilmente a posibles 

nuevos dispositivos. 

Se ha realizado un detallado estudio experimental de una serie de circuitos integrados 

digitales defectuosos con el fin de determinar características que los identifiquen como tales, 

siendo un consumo elevado una de ellas. Obviamente, un funcionamiento lógico incorrecto es 

otra. 

Para el diseño del prototipo se ha utilizado una arquitectura funcional basada en un 

microcontrolador, con los dispositivos periféricos necesarios para la interacción con el usuario, 

buscando siempre un compromiso razonable entre costo y prestaciones. 

De acuerdo con lo anterior se ha seleccionado la placa Arduino que incorpora el 

microcontrolador ATMega 2560, con una amplia gama de dispositivos de entrada/salida 

compatibles. 

Se ha desarrollado y comprobado el software necesario para detectar las posibles 

características de error de los chips defectuosos: consumo excesivo de corriente o 

funcionamiento lógico incorrecto. 

Dada la complejidad del cableado necesario para la interconexión de los diversos 

bloques del prototipo, se ha diseñado y construido una placa de circuito impreso específica 

que simplifica considerablemente el montaje físico. 

Ha sido necesario adaptar los conocimientos generales de programación C++ a los 

requerimientos de un microcontrolador, con recursos de memoria RAM y de programa 

limitados. 

Con la labor desarrollada en el laboratorio se han adquirido competencias en aspectos 

prácticos experimentales y en la construcción de interfaces electrónicos auxiliares. 

  



34 

 

 
  



35 

 

5. Conclusiones 

 A la vista del trabajo terminado, se puede concluir que su realización ha sido muy 

interesante tanto desde el punto de vista de ampliación de conocimientos como por su 

disponibilidad futura dentro del laboratorio de electrónica. 

  Dado que en el montaje físico del prototipo han surgido problemas de hardware no 

previstos, a la hora de abordar la construcción de un sistema hay que tener en cuenta aspectos 

particulares, no tenidos en cuenta tal vez en el diseño teórico pero que luego resultan 

decisivos para su funcionamiento (cableado, interferencias, rebotes mecánicos, etc). 

 En cuanto a la revisión bibliográfica, se ha comprobado que actualmente resulta 

fundamental consultar la información en la red. En este ámbito las referencias clásicas en 

libros es escasa y desfasada, debido a la actualización y desarrollo constante en este campo. 

 Aunque se han considerado diversas alternativas, algunas muy ambiciosas, que 

incluirían incluso la detección automática del chip [Bru06], se ha optado por escoger la 

expuesta en esta memoria teniendo en cuenta el tiempo y recursos disponibles. 

 De acuerdo  con lo anterior, no ha sido nuestra intención construir un prototipo con un 

enfoque comercial, por lo que tal vez se ha perdido flexibilidad y modularidad del dispositivo 

en algunos aspectos. 

  

 

 

  



36 

 

 
  



37 

 

6. Bibliografía 

 

[Alp15] ALPS, “ALPS Manufacturer of Electronic Components/Parts Catalog”, 2015. (Anexo II)  

[ANA13] Analog Devices, “Serially Controlled, OCTAL SPST Switches”, Datasheet ADG715, 

2013. (Anexo II). 

[ATM10] Atmel, “25. ADC – Analog to Digital Converter”, Datasheet  ATMega2560, 2010. 

(Anexo II). 

[ATM06] Atmel, “Characterization and calibration of the ADC on an AVR”, Application Note, 

2006. http://www.atmel.com/images/doc2559.pdf (Anexo II). 

[Bru06] M. Brutscheck, M. Franke, A. Th. Schwarzbacher, St. Becker, “Determination of Pin 

Types and Minimisation of Test Vectors in Unknown CMOS Integrated Circuits”, School of 

Electronic and Communications Engineering, Dublin Institute of Technology, Ireland and 

Department of Computer Science and Communications Systems, University of Applied Sciences 

Merseburg, Germany, 2006. 

[Cia87] Steven A. Ciarcia, “Ciarcia´s Circuit Cellar”, McGraw-Hill Publishing Company, 1987. 

[ELC] http://www.electroensaimada.com/i2c.html. “Tutorial Arduino: I2C”. 

[Far02] Joe Farr, “Digital I.C. tester”, Everyday Practical Electronics, October 2002. 

[HOB] “Tutorial 6 – Rotary Encoder”, http://www.hobbytronics.co.uk/arduino-tutorial6-rotary-

encoder. 

[LCD] LiquidCristal. http://www.arduino.cc/en/pmwiki.php?n=Tutorial/LiquidCrystal. 

[Man13] Mannaf Hossain, “Computer Interfaced Logic IC Tester and R-C Meter”, global journal 

of researches in engineering electrical and electronics engineering, volume 13, publicación 6, 

2013. 

[Pan04] Fang Pang, Tyler Brandon, Brucee Cockburn, Michael Hume, “A reconfigurable digital 

IC tester implemented using the ARM integrator rapid prototyping system”, Department of 

Electrical and Computer Engineering, University of Alberta, Canada, 2004. 

[WIR] Wire library. https://www.arduino.cc/en/Reference/Wire. 

 

 

  

 

  

http://www.atmel.com/images/doc2559.pdf
http://www.electroensaimada.com/i2c.html
http://www.hobbytronics.co.uk/arduino-tutorial6-rotary-encoder
http://www.hobbytronics.co.uk/arduino-tutorial6-rotary-encoder
http://www.arduino.cc/en/pmwiki.php?n=Tutorial/LiquidCrystal
https://www.arduino.cc/en/Reference/Wire



	Página en blanco
	Página en blanco



