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1. RESUMEN 

En este trabajo se ha abordado la síntesis y caracterización de nanopartículas 

magnéticas (MNPs) funcionalizadas con ácidos nucleicos en vista de su aplicación 

en liberación controlada de fármacos. Las MNPs fueron sintetizadas por 

descomposición térmica de un precursor organometálico de Fe(III) consiguiéndose 

un buen control del tamaño y de la morfología de las mismas. Su transferencia a 

fase acuosa se llevó a cabo usando un polímero anfifílico que genera grupos 

carboxilo para su posterior funcionalización con ácidos nucleicos. Se utilizaron 

distintas proporciones de ADN y PNA (ácido péptidonucleico) para establecer el 

protocolo óptimo de funcionalización. 

Los resultados obtenidos indican que efectivamente, usando este procedimiento se 

puede controlar la cantidad de ADN/PNA que se une covalentemente a las MNPs, 

lo que es de importancia vital para diseñar futuras aplicaciones en el campo de la 

biomedicina. 

 

ABSTRACT 

This work deals with the synthesis and characterization of magnetic nanoparticles 

(MNPs) functionalized with nucleic acids magnetic hyperthermia-mediated drug 

delivery applications. The MNPs were synthesized by thermal decomposition of an 

organometallic Fe(III) precursor. This method provides good control over the size 

and the morphology of the obtained nanoparticles. The transfer of the organic 

MNPs to water was achieved using an amphiphilic polymer that generates 

carboxylic groups for their posterior functionalization with nucleic acids. Different 

rations of ADN and PNA (peptide nucleic acid) were used in order to establish the 

optimal functionalization protocol. 

The results obtained indicated that using this protocol it was possible to control the 

amount of ADN/PNA covalently attached to the MNPs which is very important for 

design future applications in the field of biomedicine. 
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2. INTRODUCCIÓN 

La nanotecnología se define como el estudio y la manipulación de materiales en la 

escala nanométrica. 1 

Se trata de un campo que está en auge y está experimentando un gran desarrollo en 

los últimos años porque se están encontrando numerosas aplicaciones en sectores 

muy diferentes: medio ambiente2, energético3, médico4, textil5, construcción6, étc. 

Algunos ejemplos de estas aplicaciones son tan dispares como desde la 

encapsulación de insecticidas botánicos7 a sistemas de transporte para vacunas4. 

Se pueden encontrar diferentes tipos de nanopartículas. Las más investigadas debido 

a sus numerosas aplicaciones son los quantum dots, las nanopartículas de oro y las 

nanopartículas magnéticas. 

 

 

 

 

 

 

 

 

 

Ilustración 1. Escala en la que se ve el tamaño de las nanopartículas 
(http://www.justoginer.com) 
 

De todos los tipos de nanopartículas que existen, cabe destacar a los quantum dots 

que son nanocristales hechos de un material semiconductor y que dependiendo de su 

tamaño emiten un color de luz diferente.  Sus principales aplicaciones están dirigidas a 

LEDs o como agentes de imagen clínica.8 

También han sido muy investigadas por su importancia las nanopartículas de oro, 

especialmente en el campo de la biomedicina, ya que generalmente presentan baja 

citotoxicidad y se pueden obtener en gran cantidad con diferentes tamaños y 

morfologías. Además en la actualidad existen procesos de síntesis muy sencillos de 

llevar a cabo e incluso pueden realizarse de manera divulgativa.9 
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Las nanopartículas magnéticas (MNPs, por sus siglas en inglés) tienen propiedades 

únicas frente a otros nanomateriales; por ejemplo, por el hecho de poder ser 

manipuladas por un campo magnético externo. Las MNPs de óxido de hierro gozan de 

especial popularidad debido a su biocompatibilidad y han encontrado varias 

aplicaciones en el campo de la biomedicina, por ejemplo como agente de contraste en 

resonancia magnética de imagen (RMI), hipertermia magnética (un tipo de tratamiento 

del cáncer basado en la capacidad de las NPs magnéticas de generar calor cuando se 

les aplica un campo magnético externo y la alta sensibilidad de las células tumorales al 

calor) o administración y/o liberación de fármacos de forma dirigida.1, 10 

Cabe destacar que es necesario realizar un protocolo de funcionalización de estas 

MNPs para que sean estables en medio fisiológico y para que puedan llevar a cabo la 

función para la cual han sido diseñadas.1, 10 
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3. ANTECEDENTES 

 

Se han estandarizado diferentes métodos para llevar a cabo la síntesis de las 

nanopartículas magnéticas de manera eficaz. Los dos más importantes son la co-

precipitación y la descomposición térmica. A pesar de que el procedimiento de la 

descomposición térmica es más laborioso las nanopartículas que se obtienen son 

esféricas,  monodispersas y de tamaño controlado.10,11,12,13 

Mediante el método de descomposición térmica del acetilacetonato de hierro 

(Fe(acac)3) en presencia de ácido oleico y oleilamina se obtienen generalmente 

nanopartículas magnéticas formadas por un núcleo de magnetita (Fe3O4) recubierto de 

moléculas de ácido oleico y oleilamina. Estos surfactantes se disponen de manera que 

el grupo carboxilo y amino, respectivamente, están en contacto con la superficie de la 

esfera de óxido de hierro. El extremo opuesto de estas moléculas, compuesto por 

cadenas alifáticas, queda en contacto con el exterior, lo que hace que estas 

nanopartículas sean solubles en disolventes orgánicos, pero no en disolventes 

polares.10,11,12,14 

Para que las nanopartículas puedan ser utilizadas para aplicaciones biomédicas es 

necesario que sean solubles y estables en disolventes acuosos y medios fisiológicos. 

Uno de los métodos más utilizados para transferir a agua nanopartículas sintetizadas 

en medio orgánico se basa en el  uso de polímeros anfifílicos, como por ejemplo el 

PMAO (poly(maleic anhydride-alt-1-octadecene)).14 

 

 

 

 

 

 

 

Este polímero tiene tantos grupos hidrofílicos (anhídridos) como grupos hidrofóbicos 

(cadenas alifáticas). Las cadenas hidrofóbicas se pueden intercalar con las cadenas 

del ácido oleico que presentan en la superficie las nanopartículas dejando los grupos 

Ilustración 2. Estructura 

del PMAO. (ChemDraw) 

Ilustración 3. Resultado de la superficie de la 

nanopartícula cuando es soluble en agua. 

(ChemDraw) 
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polares hacia el exterior de manera que la nanopartícula pasará a ser soluble en agua 

(ilustración 3). 

Para lograr el anclaje de un fármaco a la superficie de las nanopartículas éstas se van 

a funcionalizar con ácidos nucleicos. La superficie de la nanopartícula está 

funcionalizada con grupos carboxílicos, para facilitar su unión con el ADN vamos a 

disponer de una hebra con el extremo 5´modificado con un grupo amino. 

Una vez se ha unido la primera hebra de ADN, se hará reaccionar con una segunda 

hebra que es complementaria y que en el extremo que queda libre lleva anclado el 

fármaco. De la misma manera además se pueden incorporar péptidos de 

internalización celular, marcadores tumorales y/o marcadores fluorescentes para poder 

estudiar la internalización y biodistribución de las MNPs.10 

La estructura de la nanopartícula de esta manera facilita que al aplicar un campo 

magnético, la nanopartícula genere calor lo que provoca la desnaturalización del ADN. 

Cuando las dos hebras se separan, la segunda hebra que lleva anclado el fármaco 

queda libre podrá ejercer su efecto. 

En este TFG se abordará la síntesis y funcionalización de MNPs para su aplicación en 

liberación controlada de fármacos mediante hipertermia magnética. Una de las 

posibles aplicaciones de esta técnica sería como tratamiento del cáncer, en cuyo caso 

las MNPs deben incorporar también un marcador celular selectivo de las células 

cancerosas. 

Con el ánimo de optimizar la unión de las hebras de ADN a las MNPs se va a llevar un 

estudio utilizando distintas proporciones de ADN y PNA (ácido peptidonucleico): 100/0; 

75/25; 50/50 y 25:75. La principal ventaja de usar el PNA es que tiene grupos amida 

en vez de grupos fosfato en su estructura de forma que no tiene carga negativa. Dado 

que la superficie de las MNPs tiene carga negativa por los grupos carboxilo, usando el 

PNA se disminuye esta repulsión electroestática.14  
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Ilustración 4. Esquema comparativo de las estructuras del ADN y del PNA. 
(http://www.biomers.net) 
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4. OBJETIVOS 

 La síntesis de MNPs monodispersas, esféricas y con un diámetro de 11 nm 

aproximadamente. Estas MNPs también deben tener unas propiedades 

magnéticas adecuadas para su posterior aplicación. 

 Transferencia a agua de las MNPs usando el polímero anfifílico PMAO. 

 Funcionalización con ácidos nucleicos usando diferentes proporciones de ADN 

y PNA y cuantificación de esta unión gracias a un fluoróforo (FAM), que está 

unido en el extremo libre de la segunda hebra de ADN. 
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5. MATERIALES Y MÉTODOS 

Todos los reactivos usados son de la casa comercial Sigma-Aldrich excepto la agarosa 

(Lonza), la disolución de hierro (Acros Organics) y los ácidos nucleicos 

(Nanoimmunotech). 

5.1 SÍNTESIS NANOPARTÍCULAS 

Las nanopartículas usadas a lo largo de este proyecto se obtuvieron en dos pasos. En 

primer lugar se sintetizaron las semillas de 6 nm y luego se llevó a cabo una etapa de 

recrecimiento en la que se obtuvieron 

nanopartículas de 11 nm. 

Los reactivos necesarios fueron Fe(acac)3 

0,71 g (2,01 mmol), 1-2 hexanodecanodiol 

2,58 g (9,98 mmol), ácido oleico 2 ml (5,65 

mmol), oleilamina 2 ml (4,22 mmol), éter 

bencílico (40ml).11,12 

Tras mezclar todos los reactivos y aplicar 

tres ciclos de vacío-argón, la mezcla de 

reacción se calentó de manera controlada 

utilizando un controlador de temperatura 

con las siguiente etapas:11,12 

 

 

 

- Calentamiento de temperatura ambiente (25-27 ºC) a 200 ºC a una velocidad de 

180 ºC/hora 

- Mantenimiento a 200 ºC durante 2 horas 

- Calentamiento de 200 ºC a 305 ºC a una velocidad de 10 ºC/minuto 

- Mantenimiento a 305 ºC durante 2 horas 

 

Ilustración 5. Imagen que muestra como 

es el  montaje del sistema de síntesis 

de MNPs por descomposición térmica. 
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Con el objetivo de eliminar los posibles restos de reactivos que pueden haber quedado 

sin reaccionar o especies derivadas del hierro que se hayan podido formar se llevan a 

cabo 3 lavados con etanol. Es un agente desestabilizante de las nanopartículas que 

provoca su agregación, lo que las hace fácilmente separables con la ayuda de un 

imán. Después de cada lavado con etanol las nanopartículas se resuspenden en 

hexano.  

Tras el último lavado se resuspenden en una mezcla de hexano, ácido oleico y 

oleilamina (en proporción 90:5:5) para evitar que se deteriore la capa orgánica. 

Para  la etapa de recrecimiento de nanopartículas de 11 nm se mezclaron 40 mg de 

semillas disueltas en hexano con Fe(acac)3 (4,02 mmol), 1-2 hexanodecanodiol (19,97 

mmol), ácido oleico (1ml, 3,12 mmol), oleilamina (1ml, 4,22 mmol), éter bencílico (40 

ml).11,12  

La mezcla de reacción se calentó utilizando el siguiente programa de temperatura:11,12   

- Calentamiento de temperatura ambiente (25-27 ºC) a 100 ºC a una velocidad de 

180ºC/hora. 

- Mantenimiento a 100 ºC durante 30 minutos 

- Calentamiento de 100 ºC a 200 ºC a una velocidad de 3 ºC/minuto 

- Mantenimiento a 200 ºC durante 1 hora 

- Calentamiento de 200 ºC a 305 ºC en 15 minutos 

- Mantenimiento a 305 ºC durante 1 hora 

Una vez concluida la etapa de recrecimiento se realizan tres lavados con etanol y 

hexano. Cuando se han terminado estos tres lavados las nanopartículas se 

resuspenden en la mezcla de hexano, ácido oleico y oleilamina (90:5:5). 

5.2 TRANSFERENCIA A AGUA DE LAS NANOPARTÍCULAS 

Se disuelven 224 mg de PMAO (poly(maleic anhydride-alt-1-octadecene)) en 200 ml 

de cloroformo. Cuando está perfectamente disuelto se añaden 20 mg de 

nanopartículas en el sonicador y se deja reaccionar la mezcla en este aparato durante 

15 minutos para optimizar la unión del polímero (PMAO) a las cadenas alifáticas del 

ácido oleico.10   

A continuación, usando el rotavapor, se evapora todo el cloroformo de la mezcla 

menos 5 ml a 40 ºC y con vacío. Luego se añaden 10 ml H2O y 10 ml NaOH (0,1 N) y 

se agita a 70 ºC en el rotavapor. 
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Para eliminar el exceso de polímero se realizan 3 lavados a 24000 rpm, 18 ºC y 

durante 2 horas.  

5.3 FUNCIONALIZACIÓN 

 

La secuencia de la hebra de ADN que se va a unir a la 

MNP es 5´-cagtcgccaagct-3´, la del PNA es 

acccagtcgccaagc y la de la segunda hebra de ADN es 

5´FAM-agcttggcgactg-3´. 

 

 

Paso 1- Funcionalización 

 

Se preparan dos disoluciones, 150 μl de EDC (1-Etil-3-(3-

dimetilaminopropil)carbodiimida) (2,9 mg, 100 mM) en MES (pH 6,5, 50 mM) y 225 μl 

de S-NHS (S-N-hidroxisuccinimida) (4,9 mg, 100 mM) en MES (pH 6,5, 100 mM). 

Se juntan estas dos disoluciones y se agitan 10 minutos a temperatura ambiente. 

Se añaden 2 μl de SDS (dodecilsulfato sódico) (10%), 0,33 mg de MNPs y tanto 

volumen de MES (pH 6,5, 50 mM) como sea necesario para llegar a un volumen final 

de 1210 μl.10 

 

Se agita la mezcla durante 30 minutos a temperatura ambiente y a continuación se 

sonica durante 30 segundos. Se adicionan 40 μl de ADN/PNA (2000 pmol), se lleva al 

sonicador 30 segundos y se deja agitando durante 16 horas. 

 

Se centrifuga a 13400 rpm y a 4 ºC durante 30 minutos y se descartan 1,150 ml del 

sobrenadante. Se añade 1 ml de MES y se sonica hasta que se aprecie la re-

dispersión de las MNPs. A continuación se centrifuga a 13400 rpm y a 4 ºC durante 30 

minutos y se elimina 1 ml de sobrenadante. Se repite el proceso desde la adición de 1 

ml de MES dos veces más igual, excepto en el último lavado que no se añade 1 ml de 

MES. 

 

 

Ilustración 6. Estructura del fluoróforo (FAM o 6-carboxifluoresceína) unido a la segunda 

hebra de ADN.  
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Paso 2- Hibridación  

 

Para hibridar las MNPs con la segunda hebra de ADN se añaden 16 μl de MNPs 

resultantes de los lavados anteriores, 4 μl de la segunda hebra de ADN (100 μM, 400 

pmol) y 380 μl de 1xPBS. Se deja reaccionar 1 hora sin agitación. 

 

A continuación se centrifuga a 13400 rpm y a 20 ºC durante 20 minutos. Se descartan 

320 μl del sobrenadante y se adicionan 800 μl de 1xPBS. Se vuelve a centrifugar a 

13400 rpm y a 20 ºC durante 20 minutos y se eliminan 800 μl del sobrenadante. Se 

repite este lavado desde la adición de 800 μl de 1xPBS dos veces más, pero en el 

último lavado en vez de añadir 800 μl, se añaden 320 μl de 1xPBS hasta un volumen 

final de 400 μl.10 

 

Paso 3- Deshibridación 

 

 La solución del paso anterior se sonica hasta la re-dispersión de las MNPs y se 

añaden 4 μl de NaOH (2M). Se deja reaccionar durante 2 horas a temperatura 

ambiente sin agitación y sin luz. A continuación se centrifuga a 13400 rpm durante 20 

min a 20 ºC y finalmente se quitan 320 μl del sobrenadante y se mide la fluorescencia  

a una longitud de onda de 495 nm. Se usa un fluorímetro de la casa comercial Perkin 

Elmer (LS55 Fluorescence Spectometer). 

 

Para añadir la máxima validez posible al experimento se realiza una recta patrón cada 

vez que se lleva a cabo una funcionalización. Para realizar esta recta de calibrado se 

usan diferentes concentraciones conocidas de la segunda hebra de ADN de las que se 

toman 500 μl y se les adiciona 10 μl de NaOH (2M). Esta mezcla se deja reaccionar 2 

horas sin agitación y sin luz y después de centrifugar ya estarán listas para medir en el 

fluorímetro. 

A la vez que se funcionaliza una muestra de MNPs con las dos hebras de ADN se va a 

realizar otra funcionalización simultanea de las mismas MNPs que va a ser el 

experimento control. Esta funcionalización va a tener la peculiaridad de que no vamos 

a añadir la primera hebra de ADN y por lo tanto nos va a servir como control para 

establecer cuáles son las interacciones no específicas que se generan entre la MNP y 

la segunda hebra de ADN.  
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Es necesario realizar un experimento control cada vez que se funcionaliza. 

El protocolo de funcionalización para esta muestra control es el mismo, salvo que 

cuando se añade 40 μl de la primera hebra de ADN en esta muestra se va añadir 40 μl 

de la segunda hebra de ADN (50 pmol/μl). Se continúa con el protocolo hasta el 

momento de la hibridación en el que se mezclan 16 μl de MNPs funcionalizadas y 384 

μl de 1xPBS. El resto del protocolo es igual para las dos muestras. 

5.4 CARACTERIZACIÓN 

5.4.1 DETERMINACIÓN DE HIERRO 

Es un protocolo que sirve para determinar cuál es la concentración de hierro en una 

muestra de nanopartículas. 

Para realizar este procedimiento es necesario hacer una recta de calibrado cada vez 

que se quiera determinar la concentración de hierro de alguna muestra. Así luego, con 

una simple extrapolación se obtiene el dato de la concentración de hierro de la 

muestra. 

El tratamiento de todas las muestras es el mismo. En primer lugar, hay que mezclar 50 

μl de la muestra con 100 μl de aqua regia y calentar durante 15 minutos a 60 ºC. 

Transcurrido este tiempo se añaden 350 μl de agua MiliQ. Finalmente se cogen 50 μl 

de esta solución y se añaden 60 μl de una disolución de TIRON (forma un complejo 

con todo el hierro) y 100 μl de Na3PO4. Se deja reaccionar 15 minutos a temperatura 

ambiente y sin agitación y se mide en el espectrofotómetro a 480 nm la intensidad del 

complejo formado por el hierro y el TIRON. 

 

5.4.2 ELECTROFORESIS  

Se usó un gel de agarosa al 0,8% en TBE 0,5x.  

Las condiciones de electroforesis son 90 V, 150 mA y durante 30 minutos. 

Preparación de la muestra: Se mezclan 5 μl de la muestra que vamos a correr en la 

electroforesis con 1μl de tampón de electroforesis (glicerol y TBE). 

 

5.4.3 DLS (DYNAMIC LIGHT SCATTERING) 

El equipo que proporciona el dato de DLS es Brookhaven Zeta PALS. El dato indica si 

se han formado agregados o no. Además va a llevar a cabo una distribución de 

tamaños del radio hidrodinámicof de las nanopartículas.  

El aparato realiza un número variable de repeticiones que se establecen antes de la 

medida. El resultado se puede presentar de dos formas, en intensidad o en número. 
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Normalmente se elige el resultado en intensidad porque es menos propenso a 

errores.14 

Preparación de la muestra: Se prepara una disolución de la muestra con concentración 

0,1 mg/ml en 2 ml de KCl (0,01M), se filtra y se mide en el aparato usando un cubeta 

de plástico. 

 

5.4.4 POTENCIAL Z 

Se utiliza el mismo equipo que para la medida de DLS. 

El dato de potencial Z se relaciona con la carga superficial de las nanopartículas lo 

cual indica la estabilidad electrostática de las nanopartículas en disolución.14 

Preparación de la muestra: Se filtran 1,5 ml de la solución con concentración 0,1mg/ml 

y se le añade 1 ml de KCl (0,01M) también filtrado. Hay que medir el pH antes porque 

el dato de potencial Z es pH dependiente. 

 

5.4.5 TEM (MICROSCOPIO ELECTRÓNICO DE TRANSMISIÓN) 

Con las imágenes obtenidas con el microscopio  modelo Tecnai T20 (FEI) y utilizando 

el programa Digital Micrograph se realizaron histogramas para evaluar la dispersión de 

tamaños de cada muestra.14 

Preparación de la muestra: Si la muestra está disuelta en hexano se hacen 3 lavados 

con etanol, diluyendo al final en cloroformo. De esta disolución se dispone una gota en 

una rejilla de cobre y se deja que se evapore por completo a temperatura ambiente. 

Si la muestra está disuelta en agua, se preparan 200 μl de una disolución 0,1 mg/ml 

de donde se coge una gota que se dispone en una rejilla de cobre y se deja que se 

evapore el disolvente por completo a temperatura ambiente. 

 

5.4.6 SAR (SPECIFIC ABSORPTION RATE) 

Esta técnica va a medir la capacidad que tienen las nanopartículas de generar calor 

cuando se les aplica un campo magnético.14 

El equipo que usamos es el DM100, nB nanoscale Biomagnetics. 

Preparación de la muestra: Hay que preparar 1 ml de una disolución con 

concentración 1 mg/ml. Este mililitro se mide directamente.  
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6. RESULTADOS Y DISCUSIÓN 

6.1 SÍNTESIS Y CARACTERIZACIÓN 

Hay varios procesos por los que podemos obtener nanopartículas magnéticas. Los  

principales son la coprecipitación del ión ferroso (Fe+2) y del ión férrico (Fe+3) por la 

adición de una base, la descomposición térmica de una solución alcalina de un quelato 

de hierro Fe+3 y la descomposición en fase orgánica de precursores de hierro a altas 

temperaturas.  

El problema con los dos primeros métodos es que hay que estar ajustando el pH en 

todo momento. Y las nanopartículas que se obtienen no son tan pequeñas y 

monodispersas como las que se obtienen con la descomposición en fase orgánica. 

Además, usando este método se puede controlar el tamaño de las nanopartículas con 

variaciones en la temperatura o cambiando el precursor del metal con el que hacemos 

la reacción.  

 

Ilustración 7. Imagen TEM de las semillas de MNPs. Escala= 50 nm. 
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Ilustración 8. Distribución de tamaños de la ilustración 7. El radio medio de las MNPs es 
de 5,58 nm y la desviación estándar de 0,70 nm. 

La determinación de hierro realizada revela una concentración de 1,73 mg Fe/ml para 

estas MNPs. 

 

Ilustración 9. Recta de calibrado obtenida para realizar la extrapolación y determinar la 
concentración de hierro de la muestra. Se obtiene un valor de R

2
 bastante elevado lo que 

indica la fortaleza estadística de la recta de calibrado. 
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Ilustración 10. Imagen TEM de las MNPs de 11 nm en disolvente orgánico. Escala = 50 
nm. 

 

Ilustración 11. Distribución de tamaños de la ilustración 10. Se obtienen MNPs con un 
tamaño medio de 10,53 nm y una desviación estándar de 1,14 nm. 

La determinación de hierro de estas MNPs de 11 nm en disolvente orgánico es de 3,42 

mg Fe/ml. 

El principal inconveniente que presenta este procedimiento es que la síntesis se 

realiza en disolvente orgánico, y va a ser necesaria la realización de otro paso extra 

para que estas nanopartículas sean solubles en disolvente acuoso. Por ello vamos a 

recubrir la nanopartícula con PMAO. 
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El PMAO es un polímero que se utiliza para la transferencia a agua porque su cadena 

alifática va a intercalarse entre las cadenas alifáticas de la oleilamina y del ácido oleico 

(interaccionan estableciendo fuerzas de Van der Waals). Lo que hace especial al 

PMAO es que cuando se hidrolice el grupo anhídrido con sosa (NaOH 0.1 M) se 

obtendrán dos grupos carboxílos por cada molécula de PMAO en la superficie de la 

nanopartícula. Esto provoca que la nanopartícula sea polar y por lo tanto soluble en 

disolventes polares. Por último, se elimina el polímero que haya podido quedar en la 

muestra por centrifugación. Para comprobar que el polímero había sido eliminado se 

realiza una electroforesis en gel de agarosa (ilustración 12). 

Las nanopartículas transferidas a agua se han caracterizado de diferentes maneras. 

Las imágenes obtenidas con TEM muestran que las nanopartículas de 11 nm 

transferidas a agua, son monodispersas y que tienen una distribución de tamaños 

relativamente estrecha (ilustración 13 y 14) 

También se utilizaron otras técnicas como la determinación de hierro (3,98 mg Fe/ml) ,  

DLS (diámetro efectivo=29,1 nm y la polidispersidad=0,176)  y potencial Z (-38,14 mV 

a pH 6,82) para determinar algunas de las características físico-químicas de estas 

MNPs de 11 nm. 

Finalmente, la caracterización de la hipertermia de las MNPs dio como resultado un 

valor de 507 W/g Fe a un campo magnético de 252 Gauss y a una frecuencia de 838,5 

kHz.  Se trata un valor muy elevado y que pone de manifiesto cuan apropiadas son 

estas MNPs para las aplicaciones biomédicas para las que se están diseñando. 

 

Ilustración 12. Electroforesis en gel de 

agarosa del sobrenadante de los 

diferentes lavados y de la muestra de 

MNPs recubiertas de PMAO. Se ve como 

en el los primeros lavados hay bastante 

cantidad de polímero sin reaccionar, 

aunque cada vez es menor. Y finalmente 

en la muestra de MNP no queda ya nada 

de polímero. (L1= lavado 1, L2= lavado 2, 

L3= lavado 3 y MNPs= muestra de MNPs). 

L1 L2 L3 MNPs 
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Ilustración 13. Imagen TEM de la 

muestra de MNPs de 11 nm y pasadas a 

agua. Escala 50 nm. 

Ilustración 14. Distribución de tamaños de la muestra de la 

ilustración 13. El diámetro medio es de 11,20 ± 1,05 nm. 
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6.2. FUNCIONALIZACIÓN  

En primer lugar se mezclan las MNPs con EDC, S-NHS y con SDS en diferentes 

cantidades, estos compuestos van a activar los grupos carboxílicos para facilitar su 

reacción con los grupos amino de la hebra de ADN/PNA. El SDS se añade como 

surfactante para estabilizar las MNPs. Tras la reacción con ADN/PNA, se realizan 4 

lavados con MES para eliminar el exceso de reactivos que pueda haber en la muestra 

y separar las MNPs unidas a ADN/PNA.  

A continuación se añade la segunda hebra de ADN que lleva unida el fluoróforo, pero 

no está modificado con un grupo amino. También se realiza un cambio de tampón, 

ahora se utiliza el tampón PBS. El tampón MES tiene una concentración de sales e 

iones que facilita la reacción de los grupos carboxílicos con los grupos amino. En 

cambio, el tampón PBS facilita la hibridación de las dos hebras de ADN. 

Los lavados posteriores sirven para eliminar de la muestra todo el ADN que no haya 

hibridado. 

Finalmente, se añade NaOH con la finalidad de deshibridar las dos hebras de ADN. Es 

decir, lo que se quiere conseguir es que todo ADN que se haya hibridado se separe y 

por lo tanto la segunda hebra de ADN pasará a estar en el sobrenadante y la 

podremos separar fácilmente centrifugando y cuantificar la fluorescencia en el 

fluorímetro. 
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Ilustración 16. Esquema representativo de los pasos que se siguen en la 
funcionalización de las MNPs con ADN (en la muestra que no es la muestra control) 

En la muestra control, solo se va a añadir la segunda hebra de ADN que tiene unido el 

fluoróforo, pero no el grupo amino  de manera que no va a poder formar un enlace 

covalente con los grupos carboxílicos de la MNP. La utilidad de esta muestra es que 

permite evaluar las interacciones inespecíficas que se generan entre la MNP y esta 

hebra de ADN de manera que posibilita la discriminación de las diferentes 

proporciones de ADN/PNA usadas para funcionalizar. Así se puede determinar cuál es 

la proporción en la que se produce una mayor unión específica.  

Esta unión específica es la que es interesante optimizar porque es la que sirve para la 

liberación controlada de fármacos. 

 

 

 

Ilustración 17. Modelos de cómo queda la estructura de las MNP cuando se les 

añade las dos hebras de ADN y cuando solo se añade una hebra. 

Reacción del grupo 

amino y carboxílico-

unión específica Hibridación 

Deshibridación-

liberación en el 

sobrenadante del ADN 

marcado que estaba 

unido  de manera 

específica a la MNP 
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ADN/PNA   

1 (100/0) 47,5 pmolADN/mgFe 

 64,3 pmolADN/mgFe 

2 (75/25) 53,7 pmolADN-PNA/mgFe 

 124 pmolADN-PNA/mgFe 

3 (50/50) 58 pmolADN-PNA/mgFe 

 199 PmolADN-PNA/mgFe 

4 (25/75) 74 PmolADN-PNA/mgFe 

 328 pmolADN-PNA/mgFe 

 

 

 

 

 

 

 

En primer lugar estos datos reflejan la existencia real de las interacciones 

inespecíficas que se producen entre la hebra de ADN (la que no lleva el grupo amino) 

y la superficie de la MNP. Además, se puede apreciar que se mantiene más o menos 

constante salvo en el experimento 4 que sale más elevada. 

Tabla 1. Tabla que recoge los diferentes datos resultados de las 

funcionalizaciones con diferentes proporciones de ADN y PNA. En azul están los 

datos que corresponden a la funcionalización cuando solo se usa la segunda 

hebra de ADN (reflejan por tanto solo la unión inespecífica). Los de color rojo 

corresponden al uso de las dos hebras de ADN. 

Ilustración 18. En esta gráfica se recogen los mismos datos que en la tabla 1. 
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En el experimento 1 se usó solo ADN, nada de PNA. El resultado es que el porcentaje 

de unión específica es muy parecido al que se obtiene como unión inespecífica, por lo 

que se puede concluir que la mayoría del ADN se ha unido de manera inespecífica. 

En el experimento 2 se usó una muestra que contenía el 75% de ADN y el 25% de 

PNA. Se aprecia como hay un aumento del porcentaje de unión específica. 

Lo mismo ocurre en el experimento 3 para el cual se usó una mezcla que estaba 

formada por el 50% de ADN y el 50% de PNA. En este caso también se vuelve a 

apreciar una subida en el porcentaje de unión específica. 

Finalmente, en el experimento 4 que se llevó a cabo usando una mezcla de 25% de 

ADN y 75% de PNA es en el que se logró un mayor porcentaje de unión específica 

aun teniendo en cuenta que se produjo un aumento de las interacciones inespecíficas. 

Este aumento en las interacciones específicas puede explicarse comparando las 

estructuras del ADN y del PNA (ilustración 4). Se puede apreciar que una de las 

mayores diferencias es que en el esqueleto del ADN hay grupos fosfato que aportan 

carga negativa a la cadena, mientras que en el PNA al no encontrarse estos grupos no 

hay carga negativa. Esta ausencia de la carga posibilita una menor repulsión con la 

superficie de la MNP que al estar recubierta de grupos carboxílicos también va a 

presentar carga negativa. 
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7. CONCLUSIONES 

 Se ha conseguido llevar a cabo la síntesis y la transferencia a agua de MNP 

siguiendo un protocolo determinado y obteniendo MNP con propiedades 

estables en los diferentes procesos de síntesis. El estudio de estas 

propiedades se llevó a cabo usando diferentes técnicas de caracterización de 

las que se ha logrado un manejo total. 

 Siguiendo un protocolo optimizado por el grupo también se ha logrado 

funcionalizar exitosamente las MNP con ADN y con PNA gracias a la adición 

de un grupo amino a la hebra de ADN que reacciona espontáneamente con el 

grupo carboxílico de la superficie de la MNP. 

 Se ha puesto de manifiesto la existencia de interacciones inespecíficas que de 

momento no son evitables. Pero se pueden cuantificar para conocer 

exactamente las interacciones específicas que se producen. 

 Al realizar la funcionalización con diferentes proporciones de ADN/PNA se 

observa que a mayor cantidad de PNA hay una mayor unión específica. 

CONCLUSIONS 

 MNPs of 11 nm have been obtained by thermal decomposition and transferred 

to water. The resulting MNPs have been characterized using different 

techniques of characterization to study the properties of these MNPs. 

 The functionalization of the MNPs with nucleic acids has been achieved using a 

protocol established in the group. 

 It has been revealed that nonspecific interactions between DNA and the 

nanoparticles could not be avoided, but it is possible to quantify them using a 

control experiment. 

 Functionalizing with different mixtures of DNA/PNA in different ratios revealed 

that the amount of DNA/PNA covalently attached to the MNPs increases with 

the amount of PNA used 
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