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CAPITULO 1

Resumen

Este trabajo estd basado en una serie de articulos publicados por un grupo

de investigadores de los Departamentos de Geometria y Topologia de Sevilla y
Granada, que compartieron Proyectos Coordinados del Ministerio a partir del afio
2004 y en el que se fijaban varios objetivos orientados al estudio de problemas
de la Fisica desde un punto de vista Geométrico. Asi, segun el resumen de la
propuesta del Proyecto MTM?2004-04934-C04-04 se dice:
Es bien conocida la existencia tanto en Matemdticas como en Fisica, de una am-
plia gama de problemas y fenomenos no lineales, en los cudles las teorias de
curvas 'y superficies (y mds generalmente, la de subvariedades) juegan un papel
fundamental ........ la teoria de geodésicas y curvas nulas, de eldsticas generales,
de superficies de Willmore y subvariedades de Willmore-Chen ........ las teorias bo-
sonicas de cuerdas ........ asi como el de las trayectorias de particulas relativistas
con curvatura y torsion en espacios de curvatura constante (Riemannianos y Lo-
rentzianos) ........ el problema de Landau-Hall para campos magnéticos sobre
una superficie y encontrar su relacion con los modelos de particulas relativistas,
etc. ([4,7,8,9, 10, 11]).

Hemos estructurado esta memoria de la siguiente forma: tras ésta breve in-
troduccidn, abrimos el Capitulo 2 observando el lugar destacado que ocupan las
formaciones helicoidales en la Naturaleza, consecuencia de una ley de la propia
Naturaleza que indica el cumplimiento de un principio de economia: el crecimien-
to se realiza con el coste minimo de espacio. Asi, tanto en el mundo microscépico
como el macroscépico encontramos formaciones helicoidales naturales, e incluso
podemos afadir el uso de dicha estructura helicoidal en gran cantidad de objetos
y obras realizadas por el hombre. La hélice aparecerd también como la trayectoria
que sigue una particula cargada en presencia de un campo magnético.
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6 CAPITULO 1. RESUMEN

Tras éstas consideraciones damos una pequeiia introduccion histérica del mag-
netismo, la electricidad y el electromagnetismo en la Seccién 2.2 y a continuacién
recordamos los conceptos mds simples asociados, como el campo magnético crea-
do por un imdn, visualizando sus lineas de campo (cerradas) mediante limaduras
de hierro. Una corriente eléctrica a través de un hilo produce también un campo
magnético del que Oersted obtuvo su direccion.

En el Capitulo 3 abrimos la Seccién 3.1 recordando conceptos matemético-
fisicos que nos serdn necesarios para la descripcion de los operadores sobre fun-
ciones y campos mds elementales, como son el gradiente de una funcién, la di-
vergencia y rotacional de un campo con la notacién utilizada en Fisica, menos
rigurosa que la matematica, pero muy intuitiva y practica.

A continuacidn presentamos las cuatro ecuaciones de Maxwell [22] (origi-
nalmente 20) en su version diferencial de 1884, que Oliver Heaviside junto con
Willard Gibbs agruparon y reformularon en la notacion vectorial mds reconocible
de la actualidad. La gran contribucién de James Clerk Maxwell fue reunir en estas
ecuaciones largos afios de resultados experimentales, debidos a Coulomb, Gauss,
Ampere, Faraday y otros, introduciendo el concepto de campo, y unificando los
campos eléctricos y magnéticos en un solo concepto: el campo electromagnéti-
co. Estas ecuaciones describen los fendmenos electromagnéticos, de las que nos
interesa destacar la segunda, la Ley de Gauss para el campo magnético, que se
puede interpretar como una ley (no probada) de la no existencia de monopolos.

En la Seccion 3.2 exponemos la Ley de la fuerza de Lorentz, que nos indica
cOmo se moverd una particula cargada en presencia de un campo magnético (sin
campo eléctrico presente). Esta ley es la base fundamental del estudio de las cur-
vas magnéticas asociadas a un campo magnético, y ha sido muy contrastada con
lo observado en la realidad. Hendrik Antoon Lorentz introduce las teorias atomis-
tas en la teoria de Maxwell y crea modelos que explicaran la interaccion entre la
radiacion y la materia, convencido de que esta ultima tenia una estructura atémica.
Fruto de estos trabajos enmarcé la teoria de Maxwell en una teoria microscépica
del electromagnetismo considerando los campos existentes en el interior de la ma-
teria en los espacios vacios entre las particulas. Todo esto le llevé al que seria uno
de los mayores éxitos de su carrera como fisico tedrico, la prediccion exacta del
efecto Zeeman normal por el cual recibi6 el premio Nobel de Fisica en 1902 junto
con Pieter Zeeman (el efecto es descrito como la division de una linea espectral
en varios componentes cuando el elemento se coloca en la presencia de un campo
magnético).

En la Seccién 3.3 estudiamos un sencillo ejemplo modelo en R3 consideran-
do un campo estdtico con la direccion del eje OZ y su efecto mediante la Ley
de Lorentz sobre una particula cargada moviéndose con una direccion dada. Con
éste ejemplo en mente, disponemos de una motivacion para definir lo que serd un
campo magnético en una variedad Riemanniana de dimension arbitraria m, que



serd introducido en la Seccién 3.4. Se define entonces el concepto de campo mag-
nético I’ en una variedad Riemanniana (M™, g), donde g es la métricaen M™. La
fuerza de Lorentz asociada a un campo magnético F' se define de forma natural y
por fin, el concepto de curva magnética del campo F'. Algunas propiedades funda-
mentales de las curvas magnéticas son obtenidas y convenientemente comparadas
con las propiedades de las curvas geodésicas de la variedad.

En el Capitulo 4 abrimos la Seccién 4.1 describiendo cémo es un campo mag-
nético F' en una superficie Riemanniana. Se define a continuacion la fuerza de
Lorentz ¢ de dicho campo, lo que nos permitira calcular la curvatura de una cur-
va magnética correspondiente a /. A continuacion se considera el caso particular
de los campos uniformes en una superficie, para los que damos la caracterizaciéon
de las curvas magnéticas en el caso de que nuestra superficie sea de curvatura K
constante distinguiendo los casos de curvatura cero, positiva y negativa.

Como una aplicacion, en la Seccién 4.2 terminamos estudiando un caso practi-
co: planteamos encontrar las superficies de revolucion cuyos paralelos son curvas
magnéticas correspondientes a un determinado campo magnético uniforme dado.
Veremos que la superficie no trivial que cumple tal propiedad es necesariamente
la pseudo-esfera.

Finalmente, presentamos los campos magnéticos en variedades Riemannianas
de dimensién 3, en las que brevemente exponemos la correspondencia biunivoca
entre el campo magnético F' considerado como una 2-forma cerrada y el campo
vectorial B asociado a la misma, y que tiene ademds divergencia nula, como se
exige en la segunda ley de Maxwell.

Summary

This study is based on some results obtained by a team of researches from
the University of Granada and Sevilla which collaborate in a Coordinate Research
Project from 2004 to 2007. In fact, the application for the Projects starts,

“It is well known the existence, in Mathematics and Physics, of a large series
of nonlineal problems strongly related with the theories of curves, surfaces and
more generally submanifolds. Most of them involve the extrinsic geometry of the
submanifolds and in particular, the tension or mean curvature. Some well known
examples are the theory of minimal surfaces and the theory of capillary surfaces.
However, other with higher projection in physics are: the theory of geodesics and
null curves, the general elatica, Willmore surfaces and Willmore-Chen submani-
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folds in its more wide sense. These topics provide interesting nonlineal models of
physics phenomena, relativistic particles (massive or massless), membranes and
vesicles, gravitatory waves and Cauchy hypersurfaces, bosonic string theories, su-
perstring theories, branes and M-theory."

We have structured this work on three chapters. After this summary, in Chapter
2 we note that helical configurations are structures that occur very often in nature.
They appear in microscopic systems (biomolecules, bacterial fibers, nanosprings,
protein chains in particular DNA, etc.), as well as in macroscopic phenomena
(brussels sprouts, snail shells, coiled springs, vortices, etc.). The helix is usually
defined as a curve that makes a constant angle with a given vector. These cur-
ves are called generalized helices, and can be characterized by the constancy of
the ratio between torsion and curvature. Then we give a brief historical review
of electricity and magnetism. A connection between electricity and magnetism
was discovered (accidentally) by Orsted over 100 years ago, who noticed that a
compass needle is deflected when brought into the vicinity of a current carrying
wire. A further connection between electricity and magnetism was discovered by
Faraday, who found that changing magnetic fields though loops of wire will cau-
se currents to be induced. Now we give a review of necessary mathematical and
physical concepts, such as the gradient, divergence and rotational operators.

Maxwell’s equations are a set of four partial differential equations that, toget-
her with the Lorentz force law, form the foundation of classical electrodynamics,
classical optics, and electric circuits. Maxwell’s first major contribution to science
was his extension and mathematical formulation of Michael Faraday’s theories of
electricity and magnetic lines of force. In his research, conducted between 1864
and 1873, Maxwell showed that a few relatively simple mathematical equations
could express the behaviour of electric and magnetic fields and their interrelated
nature; that is, an oscillating electric charge produces an electromagnetic field.
These four partial differential equations first appeared in fully developed form in
Electricity and Magnetism (1873). Since known as Maxwell’s equations they are
one of the great achievements of 19th-century physics.

In Section 3.2 we show the Lorentz force law, which explain how a charged
particle moves in the presence of a uniform magnetic field. This law is the basic
tool in order to study the magnetic curves, which has been widely confirmed by
laboratory experiments. Lorentz shows the interactions between matter and radia-
tion that allowed him to predict the normal Zeeman effect. As a consequence was
awarded with the Nobel Prize in Physics jointly with to Pieter Zeeman in 1902.

In Section 3.3 we study a particular example of a magnetic field in R® which
we assume with direction of the Ox3-axis. Then, we consider a charged particle
moving in the z'2? plane and apply the Lorentz law to obtain a cylindrical helix
as magnetic trajectory. With this example as a model, we introduce the notion of
magnetic fiel on a Riemannian manifold (A", g) with metric g as a closed 2-form



F on M". The Lorentz force associated to a magnetic field /' is introduced, and
then the magnetic curves of F. Some basic properties of these curves are obtained
and compared with those of the geodesic curves.

In Chapter 4 we start by studying magnetic fields /' on a Riemannian surface
(M?, g). Then we introduce the Lorentz force ® of this magnetic field, which will
allows us to obtain the curvature of the magnetic curves. In particular, uniform
magnetic fields are considered and their corresponding magnetic curves are obtai-
ned when the surface is as constant curvature surface. As an exercise, we probe
that for a given revolution surface in R? such that all their parallel curves are the
magnetic curves corresponding to a uniform magnetic field ', then the surface is
necessarily the Pseudosphere.

Finally, we present a short introduction to magnetic fields on 3- dimensio-
nal manifolds, where magnetic fields can be considered as closed 2-forms or as
divergence-free vector fields.
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CAPITULO 2

Campos magnéticos

2.1. Configuraciones helicoidales

En 1939 Paul Dirac escribi6: El investigador, en su esfuerzo por expresar las
leyes fundamentales de la Naturaleza en forma matemdtica, deberia preocuparse
principalmente por la belleza matemdtica. Ocurre a veces, que los requerimien-
tos de simplicidad y belleza son los mismos, pero cuando ambos se enfrentan, el
segundo debe prevalecer.

Las configuraciones helicoidales son estructuras muy abundantes en la Natu-
raleza. En particular, su interés en Biologia estd estrechamente relacionado con
el bien conocido (en la comunidad de biélogos), Teorema de Pauling (Nobel de
Quimica, 1954): objetos idénticos, regularmente ensamblados, forman una hélice.

Parece que el éxito de la configuracién helicoidal, como una forma popular en
las moléculas, se debe a que la naturaleza trabaja de la mejor manera contra las
restricciones existentes. La forma espiral del ADN viene dictada por el espacio
disponible en una célula, asi como la forma de una escalera de caracol obedece al
tamafio de un apartamento.

Actina Troponina Tropomiosina

Figura 2.1: ADN, 6xido de zinc sobre 6xido de indio y la proteina Miosina
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12 CAPITULO 2. CAMPOS MAGNETICOS

Asi ocurre también en fenémenos macroscépicos naturales: ciclones, cuernos de
animales, plantas,...

Figura 2.2: Tornado, cuerno, girasol...

Podemos observar también formaciones helicoidales en distintos ambitos de la
vida cotidiana producidos por el hombre, como en la arquitectura, maquinaria,...

Figura 2.3: Parque Giiell, edificio en T'aipei, escalera,...

Y de una forma especial el Campo Magnético Terrestre actuando sobre particu-
las cargadas que son atrapadas por el campo B,

Figura 2.4: Campo Magnético Terrestre

La actuacion del campo magnético Terrestre sobre la lluvia de particulas cargadas
que caen sobre la Tierra desde el espacio exterior es extraordinaria: las particu-
las cargadas (electrones y protones) provenientes de ese espacio exterior, prin-
cipalmente del sol, son enviadas hacia la superficie terrestre por el viento solar,
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y quedan milagrosamente atrapadas en su mayor parte por este campo (Ley de la
Fuerza de Lorentz), forzando a éstas a girar en espiral alrededor de las lineas de di-
cho campo llevdndolas hacia el polo norte, y evitando asi que caigan directamente
sobre nuestra superficie. Esto significa que disponemos de una proteccion natural
sobre las mismas, de modo que la mayor parte de ellas en su camino de acerca-
miento a los polos girando a alta velocidad son expulsadas de nuevo al exterior
por el aumento de concentracion de las lineas de campo en esa zona. En la zona
ecuatorial se observa que se mantienen dos bandas toroidales que rodean la Tie-
rra a diferentes alturas con alta concentracion de estas particulas cargadas recién
atrapadas. Estas dos bandas se denominan los cinturones de Van Allen. Fueron
descubiertos en 1958 por el fisico americano James van Allen, que era respon-
sable de un experimento confiado al primer satélite artificial americano Explorer
1. Los cinturones son evitados por las misiones espaciales tripuladas, ya que su
radiacion puede dafar el organismo humano. Estas regiones se extienden desde
algunos cientos de kilémetros sobre la Tierra hasta unos 48.000 a 64.000 km. La
mayor parte de los protones de alta energia (mayor de 10 MeV) se encuentran en
el cinturdn interior a una altitud de 3.200 km; los electrones estan mas concen-
trados en un cinturén exterior que se extiende a muchos radios de la Tierra en el
espacio.

Ha sido también de gran interés una noticia publicada primero en la prensa
([11,[2], etc.) y después en revistas cientificas ([30],[20], etc.) el 1 de abril de
2013 sobre la conocida SuperNova 1987A (descubierta en 1987): A team of as-
tronomers led by the International Centre for Radio Astronomy Research (ICRAR)
have succeeded in observing the death throws of a giant star in unprecedented de-
tail: "Supernova remnants are like natural particle accelerators, the radio emis-
sion we observe comes from electrons spiralling along the magnetic field lines
and emitting photons every time they turn", said Professor Lister Staveley-Smith,
Director of ICRAR.

Figura 2.5: SN1987A
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Bajo nuestro punto de vista, estas observaciones confirman que la Ley de Lorentz
se cumple tanto en nuestro entorno proximo (con el campo magnético terrestre
actuando sobre las particulas cargadas) como con en el caso de la Supernova 1987
que ocurrié aproximadamente a 168.000 afios luz de la Tierra, y las particulas
cargadas atrapadas por el campo magnético de la estrella en explosion giran des-
cribiendo hélices alrededor del eje que representan las lineas de los campos mag-
néticos generados. La supernova estd situada en la Gran Nube de Magallanes.
Fue la supernova més cercana observada desde SN 1604, que apareci6 en la Via
Lactea.

A pesar de ser la hélice un tipo de curva bastante simple en Geometria Dife-
rencial, muy detalladamente estudiada por Lancret [18], en la actualidad se siguen
publicando articulos en los que son protagonistas en espacios mas generales que
el Euclideo, y que a veces resultan ser soluciones a ciertos problemas ([5],[6] [29],
etc.)

2.2. Los origenes del electromagnetismo

Hacemos a continuacion un breve repaso histérico del magnetismo, la electri-
cidad y electromagnetismo.

El Magnetismo.

El origen del conocimiento de la interaccion magnética hay que buscarlo varios
siglos antes de Cristo, cuando el hombre observé que existen ciertos minerales de
hierro, cobalto o manganeso que tienen la propiedad de atraer pequefios trozos de
hierro. A esta propiedad se le di6 el nombre de magnetismo. La palabra magne-
tismo viene de la regién griega de Magnesia la cual forma parte de la periferia
de Tesalia (Grecia), lugar donde se encontraban esos minerales, en particular la
magnetita. El naturalista Plinio El viejo nos habla de su existencia en el siglo I de
nuestra era. Un material de esta clase recibe el nombre de iman, siendo el efec-
to de atraccion mds pronunciado en ciertas zonas del iman denominadas polos
magnéticos.

En China también existen referencias sobre este fendmeno, la primera alusién
se encuentra en un manuscrito del siglo IV a.C. titulado Libro del amo del valle
del diablo: La magnetita atrae al hierro hacia si o es atraida por éste. La primera
mencion sobre la atraccion de una aguja aparece en un trabajo realizado entre los
afios 20 y 100 de nuestra era: La magnetita atrae a la aguja.

Segun escribié Tales de Mileto alrededor del 600 a.C., una forma de electri-
cidad ya fue observada por los antiguos griegos que podia causar una particular
atraccion por frotamiento de piel sobre varias sustancias, como el dmbar. Tales de
Mileto escribi6 sobre el efecto actualmente conocido como electricidad estdtica.
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Figura 2.6: Magnesia

Los griegos notaron que los botones de &mbar podrian atraer objetos ligeros como
el pelo y que si ellos se frotaba el &mbar durante bastante tiempo podria incluso
saltar una chispa. Durante esta época en la alquimia y la filosofia natural, se pen-
saba que podria existir un medio material llamado «éter», una sustancia que llena
el espacio o campo.

En el periodo comprendido entre los afios 1000-1200 d.C. se hizo la primera
aplicacidn préctica del iman. Un matemético chino, Shen Kua (1030-1090) fue el
primero que escribi6 acerca del uso de una aguja magnética para indicar direccio-
nes, que fue el antecedente de la brijula y mejord la precision en la navegacion
empleando el concepto astronémico del norte absoluto. Este instrumento se basa
en el principio de que si se suspende un imédn en forma de aguja, de tal manera
que pueda girar libremente, uno de sus extremos siempre apuntard hacia el nor-
te. Mas tarde, después del afio 1100, Chu Yu informé que la brijula se utilizaba
también para la navegacion entre Canton y Sumatra. Hacia el siglo XII los chinos
ya habian desarrollado la técnica lo suficiente como para utilizar la brijula para
mejorar la navegacion.

En 1180, el inglés Alexander Neckam (1157-1217) fue el primer europeo que
hizo referencia a esa capacidad del magnetismo para sefialar la direccién. Més
tarde la aguja magnética se colocd sobre una tarjeta marcada con distintas direc-
ciones y la aguja se podia mover libremente girando sobre la tarjeta. Al dispositivo
se le dio el nombre de brujula, y en la terminologia marinera a la brijula se la lla-
ma compas.

En el afio 1600 el inglés William Gilbert (1544-1603), médico de la reina Isa-
bel I, public6 un famoso tratado, De magnete, en el que resumi6 el conocimiento
que se tenia en su época sobre los fendmenos magnéticos. Analizé las diferentes
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posiciones de la brijula y propuso que la Tierra es un enorme imén, lo que cons-
tituy6 su gran contribucién. De esta forma pudo explicar la atraccién que ejerce
el polo norte sobre el extremo de una aguja imantada. Asimismo, Gilbert se dio
cuenta de que cada imdn tiene dos polos, el norte (N) y el sur (S), que se dirigen
hacia los respectivos polos terrestres. Descubrié que polos iguales se repelen, y
que que polos distintos se atraen, y que si un imdn se calienta pierde sus propie-
dades magnéticas, las cuales vuelve a recuperar si se le enfria a la temperatura
ambiente.

La Electricidad.

En cuanto a la electricidad, hacia principios del siglo XVIII se inici6 la inves-
tigacion en detalle de los fendmenos eléctricos. De 1729 a 1736 dos cientificos
ingleses, Stephen Gray (1696-1736) y Jean Desaguliers (1683-1744) dieron a co-
nocer los resultados de una serie de experimentos eléctricos: encontraron que si
unian por medio de un alambre metdlico un tubo de vidrio previamente frotado
con un trozo de corcho, éste se electrificaba, ya que al aproximarle trozos de pa-
pel éstos eran atraidos por él. Este fendmeno persistia aun si el vidrio y el corcho
se separaban a distancias de 300 metros. Si en lugar de efectuar la unién con un
alambre metdlico empleaban un hilo de seda, el corcho no se electrificaba. Ade-
mads descubrieron que si la linea de transmision hacia contacto con el suelo, o sea
con la tierra, el corcho dejaba de electrificarse.

Con todos estos experimentos llegaron a la conclusion de que la electrificacién
era un efecto que se presentaba en la superficie de los cuerpos, en donde aparecia
lo que llamaron un “fluido” eléctrico al que en la actualidad se le llama carga eléc-
trica. Encontraron que la carga eléctrica podia moverse libremente de un cuerpo a
otro a través de ciertos materiales que llamaron conductores (el cuerpo humano,
los metales, el aire humedo, etc.). También existen materiales que no conducen
electricidad, a los que se llama aislantes o no-conductores (la madera, la seda, la
ceramica, etcétera).

Un cientifico francés, Franc¢ois du Fay (1698-1739), hizo otro tipo de experi-
mentos entre 1733 y 1734. Frot6 con tela de seda dos tubos de vidrio iguales. Al
acercar los tubos vio que siempre se repelian. Asi concluyé que dos materiales
idénticos se repelan cuando se electrifican en formas idénticas. Como cada uno de
los tubos adquiere el mismo tipo de carga se puede afirmar que cargas iguales se
repelen.

Poco después, Benjamin Franklin (1706-1790)) realizé estos mismos descu-
brimientos en Estados Unidos, sin conocer los trabajos del francés. En su opinion,
el vidrio electrificado habia adquirido un exceso de fluido (carga) eléctrico, y le
llamé a este estado positivo. Al estado de la seda con la que frot6 el vidrio lo llamé
negativo, pues consideraba que habia tenido una deficiencia de fluido (carga) eléc-
trico. Esta terminologia de Franklin es la que se utiliza hasta hoy en dia, aunque
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no se acepten las ideas con que la concibi6 este cientifico. En resumen, existen en
la naturaleza dos tipos de cargas eléctricas: positiva y negativa. Ademds, se puede
concluir de una multitud de resultados experimentales que dos cargas eléctricas
del mismo tipo (negativa-negativa o positiva-positiva) se repelen, mientras que
dos cargas de tipos distintos (positiva-negativa) se atraen.

El ingeniero militar francés Charles Auguste Coulomb (1736-1806), que habia
medido las fuerzas entre cargas eléctricas (Ley de Coulomb: F' = k%) midi6
también con su balanza las fuerzas entre los polos de dos imanes. Descubri6é que
la magnitud de esta fuerza varia con la distancia entre los polos. Mientras mayor
sea la distancia, menor es la fuerza: si la distancia aumenta al doble, la fuerza
disminuye a la cuarta parte; si la distancia aumenta al triple, la fuerza disminuye
a la novena parte y asi sucesivamente, igual que en el caso de las cargas eléctricas
que él mismo habia descubierto.

Asi, en las primeras décadas del siglo XVIII ya existian maquinas que produ-
cian cargas eléctricas por medio de friccion. Funcionaban esencialmente a base de
discos que se hacian girar por medio de manivelas. Al girar se friccionaban con
otra superficie y se cargaban, de la misma forma en que un trozo de vidrio se carga
al frotarlo con un pafo. Estas maquinas producian cantidades respetables de carga
eléctrica y al acercarlas a otras superficies se producian chispas. Era muy frecuen-
te encontrar estas maquinas en salones de juegos, pues hacian que los cabellos de
las sefioras se pusieran de punta al ser atraidos por las cargas generadas.

Hacia 1746 Pieter van Musschenbroek, en Leiden, Holanda, construyo el pri-
mer dispositivo para almacenar cargas eléctricas. Se trataba de una botella de vi-
drio que estaba recubierta, tanto en sus paredes interiores como exteriores, de una
capa muy delgada de estafio. En esta famosa botella de Leiden se pudieron alma-
cenar considerables cantidades de carga eléctrica, producidas por las maquinas de
friccion. Posteriormente se disefiaron otros dispositivos mds practicos y comodos
para almacenar carga eléctrica, a los cuales se llamé condensadores.

Electromagnetismo.
El conocimiento del magnetismo se limitaba a los imanes, hasta que Hans Chris-
tian Oersted en 1820 demostrd experimentalmente que existia una relacion clara
entre los fendmenos eléctricos y magnéticos. No lo demostré hasta 1820, ins-
pirando los desarrollos posteriores de André-Marie Ampere y Faraday, cuando
descubri6 la desviacion de una aguja imantada al ser colocada en direccion per-
pendicular a un conductor eléctrico, por el que circula una corriente eléctrica,
demostrando asi la existencia de un campo magnético en torno a todo conductor
atravesado por una corriente eléctrica, e inicidindose de ese modo el estudio del
electromagnetismo.

Esta relacion la puso de manifiesto Oersted al comprobar experimentalmente
que una corriente eléctrica era capaz de desviar una aguja imantada, confirman-
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Figura 2.7: Hans Christian Oersted, Rudkobing (Dinamarca), 1777 — 1851

dose de esta forma que una corriente eléctrica crea un campo magnético. Oersted
estaba preparando su clase de fisica en la Universidad de Copenhague, cuando al
mover una brujula cerca de un cable que conducia corriente eléctrica not6 que la
aguja giraba hasta quedar en una posicién perpendicular a la direccién del cable.
Mais tarde repiti6 el experimento una gran cantidad de veces, confirmando el fe-
némeno. Por primera vez se habia hallado una conexién entre la electricidad y
el magnetismo en un accidente que puede considerarse como el nacimiento del
electromagnetismo. Es decir, una corriente eléctrica produce efectos magnéticos
cambiando la orientacién de la varilla imantada. El propio Oersted acufi6 el tér-
mino electromagnetismo para la rama de la Fisica que englobaria desde entonces
la Electricidad y el Magnetismo.

Experimentos posteriores realizados por Ampere demostraron que también
dos corrientes eléctricas interactian, atrayéndose o repeliéndose los respectivos
conductores. El fisico escocés James Clerk Maxwell (1831-1879) desarroll6 la
teoria electromagnética cldsica, sintetizando todas las anteriores observaciones,
experimentos y leyes sobre electricidad, magnetismo y aun sobre Optica, en una
teoria consistente. El Electromagnetismo continud desarrollandose en el siglo XX,
siendo incorporado en las teorias més fundamentales como la Teoria de campo de
gauge, en la electrodindmica cudntica y en la teoria electro débil.

El electromagnetismo ilustra la relacién entre la ciencia y la tecnologia. Una
vez realizados los descubrimientos cientificos tuvieron un rapida aplicacion prac-
tica y viceversa. El conocimiento de la relacion directa entre electricidad y mag-
netismo permitieron obtener aplicaciones importantes, como el telégrafo o los
motores eléctricos y generadores de electricidad. El hecho de disponer de fuentes
de electricidad de gran intensidad cambid la vida de la humanidad, principalmente
debido a la iluminacién eléctrica y al teléfono. De otra parte James Clerk Max-
well realizé una sintesis de los trabajos de Ampere y Faraday sobre electricidad y



2.2. LOS ORIGENES DEL ELECTROMAGNETISMO 19

magnetismo que le llev a descubrir que la luz era de origen eléctrico y magnético.
Maxwell predijo las ondas electromagnéticas y Hertz llev6 a cabo experimentos y
quedé verificada la hipétesis de Maxwell.

A principios dell siglo XX los trabajos de Marconi dieron como resultado el
teléfono inalambrico, y poco después de entender el funcionamiento de los tubos
de vacio apareci6 la radio, y con el tiempo la television y el radar, que al parecer
fue determinante en la victoria de los ingleses en la llamada Batalla de Inglaterra.
Para mejorar su funcionamiento y reducir su tamafo se trabajé con microondas
generadas por el magnetrén. Hacia 1940 se inventa el transistor (los fundamentos
de fisica cudntica fueron indispensables para entender la estructura microscopi-
ca de los solidos). En 1946 se termina de construir un dispositivo definitivo: la
computadora electrénica.

Desde 1950 la cadena de descubrimientos y aplicaciones ha sido continua. Asf,
una aplicacion basada en en un mecanismo que Einstein propuso en 1917 para
explicar la distribucién de la radiacién encontrada por Planck en 1900 permitié
construir el laser.

Finalmente, los avances de los ultimos afios de la actualidad utilizan la foté-
nica, es decir, transmision de sefiales, pero ahora por medio de ondas electromag-
néticas y usando fibras Opticas, con posibilidades de reemplazar a los dispositivos
electrénicos, sustituyendo los aparatos electrénicos for foténicos.

Durante la segunda mitad del siglo XIX los resultados de los trabajos de Fara-
day, Maxwell y Hertz condujeron al desarrollo de la fisica moderna, a la creaciéon
de nuevos conceptos que constituyen una nueva imagen de la realidad distinto del
anterior o mecénico. Entre estos conceptos estd el concepto de campo.

Los Campos

Para familiarizarnos con el concepto de campo vamos a recordar como son las li-
neas de fuerza del campo gravitatorio, con el objetivo de facilitar la visualizacién
de las lineas de fuerza de los campos magnéticos, las cuales, a pesar de represen-
tarse de forma parecida son algo mas complejas.

Sabemos por la ley de la Gravitacion Universal que dos particulas se atraen
mutuamente con una fuerza inversamente proporcional al cuadrado de la distancia.
Podemos representar este hecho como se hace en siguiente figura.

El pequeio circulo del grafico representa el cuerpo atrayente, en nuestro caso
por ejemplo el Sol. En realidad este diagrama debe imaginarse en el espacio y
no como figura plana, de manera que el circulo representa entonces a una esfera.
La flecha dibujada sobre cada una de las lineas indica que la fuerza es atractiva y
que por tanto todo cuerpo proximo a la esfera es atraido por ella. Estas rectas, se
Ilaman lineas de fuerza del campo gravitacional y nos indica cémo se comportaria
un cuerpo colocado en la proximidad de la esfera, es decir, la trayectoria que
seguird dicho cuerpo. Dado que esas lineas se retinen en el centro de la esfera,
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Figura 2.8: Representacion de las lineas de fuerza sobre un cuerpo atrayente.

es evidente que su densidad es mayor en la proximidad de ella y disminuye a
medida que se alejan. Esta densidad indica como varia la fuerza en relacién con
la distancia.

Al igual que hemos hecho con la gravitacién podemos hacerlo con el magne-
tismo y visualizar las lineas de fuerza de un campo magnético. Por ejemplo, las
lineas del campo magnético creado por un imédn pueden visualizarse con ayuda de
limaduras de hierro distribuidas alrededor del mismo sobre un cartén (figura 2.9).

Figura 2.9: El campo magnético se representa mediante el vector tangente a la linea de
campo.

El campo magnético B es una magnitud vectorial. Puede estar producido por
una carga puntual en movimiento o por un conjunto de cargas en movimiento,
es decir, por una corriente eléctrica. Para visualizar las lineas del campo magné-
tico creado por un hilo conductor rectilineo podemos colocar a su alrededor un
gran nimero de agujas imantadas que nos indiquen en cada punto la direccion del
campo magnético.

Se comprueba que a una distancia pequefia del conductor respecto a su longi-
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tud, existe un patrén de lineas de campo consistente en circunferencias centradas
en el conductor, contenidas en planos perpendiculares al mismo (figura 2.10).

+
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Figura 2.10: El campo magnético creado por un conductor rectilineo.

Ademads se demuestra experimentalmente que si el sentido de la corriente se
invierte, las agujas dan media vuelta, mostrando esto que el sentido del campo
magnético también se invierte.

Para determinar cudl es el sentido de las lineas del campo a partir del sentido
de la corriente se utiliza la regla de la mano derecha o de avance de un tornillo
en su giro: cogiendo el hilo conductor con la mano derecha y extendiendo el dedo
pulgar en el sentido de circulacion de la corriente, el sentido de los demds dedos
es el que nos indica el sentido de las lineas de campo.

Si queremos aumentar la intensidad del campo magnético creado por una co-
rriente eléctrica en un punto del espacio sin tener que incrementar la intensidad
de corriente podemos enrrollar el conductor alrededor de dicho punto formando
una espira. De esta manera, las lineas se superponen en el entorno del punto,
provocando esto un aumento del campo magnético en la regiéon determinada por
la espira (figura 2.11).

Cara Norte Cara Sur

Figura 2.11: Lineas de campo magnético en el entorno de un punto interior a una espira.

Consideremos ahora el caso de una corriente que circula por un solenoide, 1la-
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mando asi a un conductor en forma de espiral, como el de la figura 2.12. Las lineas
de campo magnético son perpendiculares a las espiras y su sentido es el del avance
de un tornillo que gira siguiendo el sentido de la intensidad de corriente. En dicha
figura se ve como las lineas de fuerza son curvas cerradas que rodean al solenoide.
Si comparamos las lineas del campo magnético generado por el solenoide (figura
2.12) con las lineas del campo magnético generado por un imdn (figura 2.9) se
puede comprobar que el solenoide induce un campo magnético muy similar al del
iman:

Figura 2.12: Estructura del campo magnético de una corriente solenoidal.

La unidad de campo magnético en el Sistema Internacional es el tesla (T). Un
tesla se define como el campo magnético que ejerce una fuerza de 1 N (newton)
sobre una carga de 1 C (culombio) que se mueve a velocidad de 1 m/s dentro del
campo y perpendicularmente a las lineas de campo.

El tesla es una unidad muy grande, por lo que a veces se emplea como unidad
de campo magnético el gauss (G) que, aunque no pertenece al Sistema Internacio-
nal sino al sistema CGS (cegesimal: centimetro, gramo, segundo) tiene un valor
mads acorde con el orden de magnitud de los campos magnéticos que habitualmen-
te se manejan: 1 T = 10.000 gauss.



CAPITULO 3

Campo Magnético en una variedad Riemanniana

3.1. Las ecuaciones de Maxwell

Figura 3.1: James Clerk Maxwell (1831-1879)

Las ecuaciones de Maxwell representan una de las formas més elegantes y
concisas de establecer los fundamentos de la Electricidad y el Magnetismo. A
partir de ellas, se pueden desarrollar la mayoria de las férmulas de trabajo en este
campo. Debido a su breve declaracion, encierran un alto nivel de sofisticaciéon
matematica.

23
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Son un conjunto de cuatro ecuaciones (originalmente 20) que describen por
completo los fendmenos electromagnéticos. La gran contribucion de James Clerk
Maxwell fue reunir en estas ecuaciones largos afios de resultados experimentales,
debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos
de campo y corriente de desplazamiento, y unificando los campos eléctricos y
magnéticos en un solo concepto: el campo electromagnético. La historia es aun
confusa, debido a que el término “ecuaciones de Maxwell” se usa también para un
conjunto de ocho ecuaciones en la publicacion de Maxwell de 1865, A Dynamical
Theory of the Electromagnetic Field, y esta confusion se debe a que seis de las
ocho ecuaciones son escritas como tres ecuaciones para cada eje de coordenadas,
asi se puede uno confundir al encontrar veinte ecuaciones con veinte incognitas.

Podemos escribir dichas ecuaciones en forma diferencial (mas conveniente
para nuestro interés que la forma integral) teniendo en cuenta la definicion del
operador nabla en R? como

P N ST
= 9 oy 9.~ Ox’ Oy’ 0z

donde {ey, e, e3} son los vectores unitarios en las direcciones de los ejes coorde-
nados. Si se aplica a una funcién diferenciable p(x,y, 2), ¢ : R> — R, se define
Oy dp Oy
V Y = a. 9749 0 o
Ox’ 0y 0z

campo vectorial.

), que se denomina gradiente de ¢, que es obviamente un

Podemos pensar en aplicar V a un campo vectorial diferenciable V' = (V;, V5, V3)
de R3, y abusando de la notaci6n al poner el punto de producto escalar entre am-
bos (V - V) definir la divergencia de V' como la funcién:

o 0 0

9 Jd 0 81/1+8‘/2+8‘/},
Ox’ Oy’ Oz

ox dy 0z

mmnzvvz< )«www@:

Finalmente, el rotacional de V' es el campo vectorial que se construye (abusando
de nuevo de la notacién) realizando el producto vectorial del operador V con V':

B [0V OV, v, v v, o
TOt(V)—V/\V—(a—y E)el—i‘(g %>62+<% 8_y>63

Pues bien, las cuatro ecuaciones de Maxwell en su forma diferencial son las cuatro
siguientes:
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V-FE= i Ley de Gauss para el campo eléctrico E
€0
V-B=0 Ley de Gauss para el campo magnético B (no monopolos)
0B
VAE = o Maxwell-Faraday
VAB = poJ + ,uoéoa Ley de Ampere

donde £ es el campo eléctrico, B el campo magnético, p la carga total, ¢, la
constante eléctrica, 1o la constante magnética, J densidad de corriente.

A continuacién comentamos algunos algunos aspectos de las dos primeras

ecuaciones con la intencién de sacar conclusiones para el desarrollo de este traba-
jo.
La Ley de Gauss para el campo eléctrico se trata de la generalizacion de una Ley
mads bdsica, la Ley de Coulomb, decubierta por Charles-Augustin de Coulomb, y
que basicamente afirma que “dos cargas eléctricas se atraen o repelen con una
fuerza que es directamente proporcional al producto de ambas e inversamente
proporcional al cuadrado de la distancia que las separa”

Para comprender la Ley de Gauss para el campo eléctrico observemos que la
expresion de la parte izquierda de la ecuacién, V - E, es la divergencia del campo
vectorial £, que nos permite saber donde “nacen” y donde “mueren” las lineas
de campo y como de intenso es el proceso de “nacimiento” o “muerte” de lineas.
De manera que si en un punto la V - £/ = 0 esto significa que ninguna linea de
campo “muere” ni “nace” en el entorno de este punto. Dicho de otro modo, toda
linea que entra en el entorno de este punto sale otra vez de €l, y toda linea que sale
de aqui entré6 antes.

Si la divergencia en un punto es negativa, V- E < 0, eso significa que en un en-
torno muy pequefio alrededor de ese punto “mueren” lineas del campo eléctrico,
siendo por tanto el flujo entrante de dicho entorno. Si la divergencia en un punto
es positiva, V - F/ > 0, significa que en un entorno muy pequeiio alrededor de ese
punto “nacen” las lineas del campo eléctrico, siendo por tanto el flujo saliente en
dicho entorno.

En el lado derecho de la Ley de Gauss tenemos %, donde ¢, es una constante
fisica positiva. Por tanto, obtenemos las siguientes conclusiones a partir de la Ley
de Gauss para el campo eléctrico:
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Figura 3.2: Lineas de campo eléctrico en el entorno de un punto donde el campo tiene
divergencia 0.

Figura 3.3: Lineas de campo con divergencia negativa ¢ positiva

= Si en el entorno de un punto no hay cargas, todas las lineas de campo eléc-
trico que entran salen otra vez como si nada. Véase figura 3.2.

= Si en el punto que estamos mirando hay carga positiva, es decir, p > 0,
entonces la divergencia serd positiva y por tanto estardn naciendo lineas de
campo eléctrico de la carga.

La segunda ecuacion de Maxwell es la Ley de Gauss para el campo mag-
nético, como veremos a continuacién es la mas importante para el desarrollo de
nuestro trabajo, pues es la que nos permite considerar la no existencia del mono-
polo magnético. Al igual que ocurria con la Ley de Gauss para el campo eléctrico,
esta Ley describe el comportamiento del campo magnético a través de su diver-
gencia V - B. Ya que dicha divergencia es cero, el significado de la Ley de Gauss
para el campo magnético esté claro: las lineas del campo magnético no “nacen”
ni “mueren” en ninguna parte de manera neta, por tanto, son cerradas.

A partir de la Ley del Gauss para el campo eléctrico sabfamos que las lineas
del campo eléctrico nacen en las cargas positivas y mueren en las cargas negativas
pero de la Ley de Gauss para el campo magnético no podemos sacar estas con-
clusiones, no es posible observar un punto determinado y ver que se produce un
fendmeno u otro, sélo es posible ver ambas cosas a la vez.
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Si volvemos al campo eléctrico vemos que las cargas se pueden separar y ver-
las por separado, pero en el caso del campo magnético no ocurre lo mismo ya que
la divergencia del campo magnético siempre es cero, por tanto, nunca podremos
conseguir que sus lineas no sean cerradas. Es por esto que al cortar un imdn por
la mitad, por ejemplo, para intentar quedarnos con el polo norte en una mano y
el polo sur en la otra, veriamos que cada uno de los dos pedazos es un imdn mas
pequeio con su polo norte y su polo sur. Por tanto, la Ley de Gauss para el campo
magnético supone la no exitencia de monopolos magnéticos. Sin embargo, no
podemos olvidar que las ecuaciones de Maxwell son la representacién matema-
tica de principios fisicos, no verdades absolutas. Es tedricamente posible que si
existan los monopolos magnéticos.

No obstante, hasta ahora todos los intentos de crear un monopolo magnético
en aceleradores de particulas han fracasado. Es interesante destacar que el 16 de
Octubre de 2009 se publicaron en Nature [12] unos resultados obtenidos por C.
Castelnovo, R. Moessner y S. L. Sondhi en el Rudolf Peierls Centre for Theoreti-
cal Physics, (Oxford University, Oxford OX1 3NP, UK), Max-Planck-Institut fiir
Physik komplexer Systeme, 01187 Dresden (Germany), y PCTP and Department
of Physics, Princeton University, Princeton, New Jersey 08544 (USA) donde se
informa de la observacion por primera vez un monopolo magnético en un estado
de la materia que se daria a partir de una disposicion especial de los momentos
magnéticos dentro de un cristal a baja temperatura. Si este experimento confirma
la existencia de monopolos magnéticos entonces tendriamos que modificar las
leyes de Maxwell, cambiando la ecuaciéon que hemos visto antes por esta otra:
V - B = popo, donde py es una constante no nula que representaria, si existe, la
densidad de carga magnética.

Por otra parte, en la celebracion de la International Conference on Neutron
Scattering 2009 (May 7, 2009; ICNS2009 C9.2), un trabajo conjunto de H. Ka-
dowaki, N. Doi, Y. Aoki (Dep. of Physics, Tokyo Metropolitan Univ.), Y. Tabata,
(Dep. of Materials Science and Engineering, Kyoto Univ.), T. J. Sato (NSL Insti-
tute for Solid State Physics, Univ. Kyoto), J. W. Lynn (NIST Center for Neutron
Research, National Inst. of Standards and Technology, Gaithersburg, Maryland),
K. Matsuhira (Dep. of Electronics, Fac. Engineering, Kitakyushu) and Z. Hiroi
(Institute for Solid State Physics, Univ. Tokyo), posteriormente publicado en el J.
Phys. Soc. Japan [16] se explica que,

“From the symmetry of Maxwell’s equations of electromagnetism as well as
field theoretical arguments, magnetic charges or monopoles would be expected to
exist. But magnetic monopoles have never been observed despite longstanding ex-
perimental searches. Recently, attention has turned to condensed matter systems
where tractable analogs of magnetic monopoles might be found, and one predic-
tion is for an emergent elementary excitation in the spin ice compound, where
the strongly competing magnetic interactions exhibit the same I type of frustra-
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tion as water ice. We directly probe the monopoles in spin ice using neutrons, and
show that they interact via the magnetic Coulomb force. Specific heat measure-
ments show that the density of monopoles can be controlled by temperature and
magnetic field, with the density following the expected Arrhenius law."

3.2. Laley de la fuerza de Lorentz

El problema de Landau—Hall es el estudio del movimiento de una particula
cargada en presencia de un campo magnético estatico y constante 5 en una su-
perficie Riemanniana [19]. Consideremos que existe un campo magnético en cada
punto del espacio. El campo magnético B se puede expresar en téminos de la
fuerza magnética que se ejerce sobre un objeto de prueba apropiado. El objeto de
prueba para expresar el campo magnético B en téminos de la fuerza magnética
serd una carga puntual ¢ de masa m que se mueve con una velocidad v.

Ya sabemos que cuando colocamos una carga en reposo en un campo mag-
nético no actua sobre ella fuerza alguna, pero cuando la carga eléctrica se mueve
en una region donde hay un campo magnético, se observa una nueva fuerza sobre
la carga. Los experimentos realizados sobre el movimiento de diversas particu-
las cargadas que se desplazan en un campo magnético estin de acuerdo con la
siguiente ecuacion denominada Ley de la Fuerza de Lorentz para la fuerza F'
actuante sobre la particula de carga q que se mueve con velocidad v en una regién
con presencia del campo magnético B,

F=¢q(vxB).
A partir de esta expresion se tiene facilmente que:
» |F| = q|v||B|sené.
» La direccién de F' es perpendicular al plano que forman los vectores v y B.

= El sentido de F' es el del producto vectorial quv x B teniendo en cuenta el
signo de la carga q.

La fuerza es médxima cuando v y B son perpendiculares, y la fuerza es nula si los
vectores v y B tienen la misma direccion.

Cuando la particula se mueve en una regién donde hay un campo eléctrico £
y uno magnético B, la fuerza total es la suma de la fuerza eléctrica ¢ E' y la fuerza
magnética qu X B, es decir:

F=q(E+vxB). (3.1)
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Figura 3.4: Albert Einstein visitando a H. A. Lorentz en 1921

Esta expresion se denomina Ley de Lorentz para campo eléctrico y magnético. En
este trabajo consideraremos que estamos en ausencia de campo eléctrico, siendo
por tanto £/ = 0 y quedando la fuerza de Lorentz reducida a:

F=gq(vxB). (3.2)

La ecuacién 3.2 nos ha servido hasta el momento para definir el campo magné-
tico B a partir de la fuerza a la que se ve sometida una carga ¢ la cual se mueve
con velocidad v en presencia de dicho campo magnético. Sin embargo, esta ecua-
cién también nos permite determinar la trayectoria magnética que describe dicha
particula.

3.3. Ejemplo modelo

Consideremos a continuacién un ejemplo que nos permitird generalizar el con-
cepto de campo magnético a cualquier variedad Riemanniana (M™, g). Para ello,
supongamos una particula de masa m con carga ¢ que se mueve con una velo-
cidad v(t) en una regién del espacio R* donde existe un campo magnético uni-
forme (de intensidad constante) y estacionario (independiente del tiempo), por
ejemplo, B = (0,0, h) con h una contante no nula. Supondremos también la au-
sencia de campo eléctrico, ¥ = 0. Recordemos que el momento de la particula

P(t
es P(t) = mw(t) y se verifica entonces que F'(t) = di ) por lo que podemos
escribir
dP(t
F() =0 ey « B,
dP(t) d|| P@)|I* _

y de aqui se tiene que es ortogonal a P(t) y por tanto =0,lo

dt
que implica que || v(t) || es constante.
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Tenemos entonces que F' = ma viene dada por

dv(t) _ dP(1)

F f—
L7 dt

=q(v(t) x B), (3.3)

donde v(t) = (v1(t),va(t),v3(t)) es el vector velocidad de la particula y B el
campo uniforme B = (0, 0, h). Escribiendo 3.3 en componentes cartesianas tene-
mos

dv
_tl = qua(t)h
m% = —qui(t)h
U3 B

De la tercera ecuacion es v3 = cte y definiendo
V = vy + 1v,,

(¢ es la unidad imaginaria) al multiplicar la segunda ecuacién por ¢ y sumar las
dos primeras tenemos

v
 — _iah
mdt 1qhV,

cuya solucién es
V = Ve mt.

Si suponemos que para t = 0 el vector velocidad de la carga es v(0) = (0,09, 05),
entonces Vy = iv), y tenemos entonces que la solucién del sistema anterior es

vi(t) = vgsen(@t)
h
q

ve(t) = vgcos(at)

v3(t) = o3

que integradas nos permiten obtener las componentes de la curva (magnética)
v(t) = (z1(t), z2(t), x3(t)) descrita por la particula:

vdm qh

z1(t) = x1(0) %—hCOS(Et)
oo(t) = x2(0)+13—21sen(%t)

z3(t) = x3(0) + vit,
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que resulta ser una parametrizacion de una hélice circular con eje la direccién de
x3 (direccién del campo magnético B) y radio r, = % (denominado radio
de Larmor) (v, representa la magnitud de la velocidad perpendicular al campo
magnético, v; = /v? + v3) [14]. En particular si v{ = 0, la trayectoria que
describe particula es un circulo contenido en el plano z3 = x3(0), con centro en

(21(0), 22(0), z3(0)) y radio ry.

3.4. Campos Magnéticos en una Variedad Rieman-
niana

Volvamos ahora a considerar el ejemplo modelo de la seccién anterior, pero
desde un nuevo punto de vista. Para ello sea II el plano de R? de ecuacién x5 = (
provisto de la métrica inducida de la usual de R3, B = (0,0, h) el campo magné-
tico y definamos en II la siguiente 2-forma F:

F(X,Y)= (X xB,Y), X,Y € x(II),

donde ( , ) es el producto escalar inducido en II. Se comprueba facilmente que
en coordenadas, si la 2-forma F la expresamos F' = f(z!, 2%)dz' A dz? entonces
f = —2h, y el campo magnético tiene la expresiéon F' = —2hdx; A dxs, que
naturalmente es una forma cerrada y proporcional al elemento de drea de II. Fi-
nalmente definimos el operador antisimétrico & mediante (®(X),Y) = F(X,Y),
es decir, ®(X) = X x B. En consecuencia, la ley de Lorentz puede escribirse en
términos de esta forma por medio de:

dv(t)
dt

= B(u(t)). (3.4)

Esta interpretacion del modelo clasico puede ser extendida de forma obvia a una
situacion mds general. En efecto, parece natural definir ahora un campo magnético
en una variedad Riemanniana del siguiente modo:

Definicion 3.4.1. Un campo magnético en una variedad Riemanniana (M™, g)
(n > 2) es una 2-forma cerrada F' en M™. La fuerza de Lorentz del campo mag-
nético es el operador antisimétrico Y dado por

9(®(X),Y)=F(X,Y), (3.5)

para cada par de campos vectoriales X, Y de M". Observemos que ¢ es métri-
camente equivalente a F', por lo que no se pierde informacion alguna cuando se
considera ¢ en lugar de F'. En la terminologia clasica se suele decir que P se
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obtiene de F' subiendo su segundo indice. Por otro lado el operador &’ definido
g(X,®'(Y)) = F(X,Y), se ve claramente que es ¢’ = — .

En Fisica, se puede encontrar una definicién de campo magnético como una
2-forma cerrada (Differential forms approach), donde se introduce una 2-forma F
(que denominan tensor de Maxwell) en un espacio-tiempo 4-dimensional. El cam-
po eléctrico /'y magnético B se describen conjuntamente por £}, en el espacio
de Minkowski como

F=> %ijdx“/\dx” = BydyNdz+ Bydz Ndx + B,dx Ndy + Edx A dt +
+ Eydy AN dt + E.dz A\ dt,
que es ademads la diferencial del potencial 4-dimensional A,

F=dA =) 0,A,dx" Ndz".
En particular [27], en R3 y en ausencia de campo eléctrico E (que es nuestro
caso), si identificamos B = (B,, B,, B,) con una 2-forma B = B,dy A dz +
Bydz N\ dz + B.dx A dy, se deduce inmediatamente que la condicion V - B = 0
es equivalente a exigir que dB = 0.

Definicion 3.4.2. Una curva v en (M", g) se dice que es una curva magnética
del campo magnético F (o de (M", g, F)), si su vector velocidad ~', satisface la
siguiente ecuacion diferencial (ecuacion de Landau-Hall):

V' =o(vy), (3.6)
donde V es la conexion de Levi-Civita de g (comparar con la ecuacion (3.4)).

Estas definiciones nos llevan a las siguientes consecuencias:

1. Si el campo magnético es trivial, es decir, /' =0 <= & = (0, entonces la
ecuacién de Landau-Hall de las curvas magnéticas queda V.,.v' = 0, lo que
equivale a decir: en ausencia de campos eléctricos y magnéticos, una par-
ticula cargada sigue una curva geodésica, es decir, las curvas magnéticas
son las geodésicas de la variedad (M™, g).

2. Sabemos que las geodésicas son curvas de velocidad constante 1. Las cur-
vas magnéticas también satisfacen la siguiente ley de conservacion: las par-
ticulas cargadas se mueven a velocidad constante, y por tanto con energia
constante a lo largo de sus trayectorias magnéticas. En efecto, de (3.5) te-
nemos que g(®(X),Y) = —g(X, ®(Y)) y por tanto

d
7907 =Vog(r ) = g(Var ') +9(v' Vay ) =

=29(®(v'),7") =0.
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3. El teorema de existencia y unicidad de curvas geodésicas es también cierto
para las curvas magnéticas ([26], p.91). En efecto, para cadap € M" y
v € T,M" existe una curva magnética maximal v : (—e,e) — M", de
(M"™, g, F), tal que v(0) = pand v'(0) = v.

4. El sistema de ecuaciones diferenciales satisfecho por las curvas geodésicas
sabemos que tiene la siguiente propiedad de homogeneidad: si (), t €
(—e,¢e) es una geodésica, entonces para toda constante ¢ # 0, la curva
v(ct) es también una geodésica con t € (—¢/c,e/c). Las curvas magné-
ticas no satisfacen esta propiedad. En efecto, si () es una curva magnética
de (M", g, F') determinada por los datos iniciales (p, v), la curva 3, defini-
da por () = 7(ct), ¢ € R\{0}, es una curva magnética de (M", g,cF)y
también, si ¢ > 0,de (M™, (1/c) g, F'), en ambos casos determinada por los
datos iniciales (p, cv) ([15]). Ademds, la familia de todas las curvas magné-
ticas de (M™, g, F)y (M™, cg, cF) coincide, para toda constante ¢ > 0.

5. Como es bien conocido, las geodésicas son puntos criticos de un funcional
(de la energia), y localmente son curvas que minimizan la distancia. Las cur-
vas magnéticas se ha probado que localmente también son puntos criticos
de un funcional ([4]): existe U C M" tal que F' = dw en U, y si denotamos
por I' al espacio de las curvas de p a ¢, en U entonces

e = [+ [wir

v v

y la ecuacién de Lorentz es la ecuacién de Euler-Lagrange asociada a £

Dado un campo magnético F' en una variedad Riemanniana (M™, g), el objeti-
vo fundamental es determinar sus correspondientes curvas magnéticas. En el caso
2-dimensional, es decir, superficies Riemannianas, podemos utilizar la geometria
de las ecuaciones de Frenet para determinar la curvatura de dichas curvas. En al-
gunos casos especiales, como el de las superficies de curvatura constante podemos
determinarlas completamente.

Un segundo camino (y complementario del anterior) para cualquier variedad
(M™, g) seria considerar una inmersién en algtn espacio Euclideo R™, m < n
(Nash embedding theorem [24]). Si ahora escribimos la ecuacién de Landau-Hall
en R™ y usamos las férmulas de Gauss-Weingarten para separar esta ecuacion
en su parte tangente y su parte normal a la variedad, la geometria intrinseca de
(M™, g) puede ser utilizada para obtener las curvaturas de la curva magnética. Asi,
dependiendo del caso particular de nuestra variedad, la curva magnética podria ser
completamente determinada.

El concepto de campo magnético puede ser igualmente estudiado en varieda-
des complejas, en particular de Kaehler (ver por ejemplo [17],[21]).
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CAPITULO 4

Curvas Magnéticas en Superficies

4.1. Campos magnéticos en superficies

Sea (M?, g) una superficie Riemanniana orientada con estructura compleja J
y elemento de drea (2 tal que 2(X, JX) = 1 para X campo vectorial unitario
X € X(M?). Dadauna curvayen M? paralacudle = g(y’,7') > 0 es constante,
su referencia de Frenetes {1 = \/iéﬁy ' N = JT'}. Si k es su curvatura (geodésica)
sus ecuaciones de Frenet son:
VA,/T = \/EFLN
{ VN = —y/exT

Como un campo magnético F' en una superficie M? es una 2-forma (cerrada),
claramente se puede expresar por medio de una funcién f diferenciable definida
en M? del modo F' = f(,,. La funcién f se denomina la fuerza del campo
magnético F. Por tanto, haciendo uso de

g(®X, X) =0, g(®X, JX) = F(X,JX) = fQ(X, JX) = [.

se tiene que la matriz de ® respecto cualquier base ortonolmal { X, J X } estd dada

por
_ (0 -1
@:(f O)'

En el caso particular de que v sea una curva magnética de (M?, g, F') con energia
e = 1, es decir, parametrizada por el arco (que se denominan curvas magnéticas
normales), se verificard que
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y por tanto,
VT =®(T) = kN = fN,

de donde se tiene que f = k. Por tanto, la expresién de ® a lo largo de una curva
magnética v de (M2, g, F) con energfa e = 1 y relativa a {T', N} esta dada por

q>;(g—g).

Asi hemos obtenido el siguiente resultado.

Proposicion 4.1.1. La curvatura de las curvas magnéticas normales (e = 1) estd
dada por k = f. Por tanto, la curvatura de las curvas magnéticas normales
determina por completo la fuerza de Lorentz, siendo f = k a lo largo de tales
curvas.

Un campo magnético en M? para el cual la fuerza de Lorentz f = p € R,
se denomina campo magnético uniforme. Estos tipos de campos magnéticos han
sido muy estudiados en la literatura ([3, 21, 28], etc.) desde diferentes puntos de
vista. En virtud de la proposicién anterior tenemos la siguiente consecuencia.

Corolario 4.1.1. Sea F' = 11y un campo magnético uniforme en una superficie
Riemanniana (M?,g). Una curva v en M?, es una curva magnética normal de
(M?, g, F) siy solo si tiene curvatura constante r = [u.

Como consecuencia de los resultados anteriores podemos considerar el tipo de
superficies mds simples a fin de determinar las curvas magnéticas de sus campos
uniformes, es decir, las superficies de curvatura constante /. Las siguientes afir-
maciones son evidentes (comparar los resultados sobre curvas magnéticas con los
de curvas geodésicas).

Teorema 4.1.1. Sea (M?, g) una superficie con curvatura de Gauss Ky = 0 (flat
surface). Las curvas magnéticas de un campo uniforme F' de fuerza f = p # 0
son circulos geodésicos de radio (geodésico) 1/|u|. En particular, si M? es un
plano las curvas magnéticas son circunferencias de radio 1/|p| (en el caso del
cono o cilindro no son circulos planos).

Si Ky > 0, Ko = 1/r? entonces (M?, g) es una superficie esférica S*(r) de
radio r > 0, y se tiene:

Teorema 4.1.2. Sea S*(r) la superficie esférica de curvatura Ko = 1/r?. Las
curvas magnéticas de un campo uniforme F de fuerza f = jen S?(r) son circulos
geodésicos (planos) con radio (plano) p = r/+/1 + r?u? < r. En consecuencia,
ningiin circulo mdximo de S*(r) puede ser una curva magnética de F = 1),
(por otro lado, sabemos que constituyen la familia completa de geodésicas).
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Figura 4.1: Curvas magnéticas de F' uniforme en un plano, cilindro, cono

Figura 4.2: Curvas magnéticas en la esfera

Finalmente, el caso de superficies con Ky < 0 fue estudiado por A. Comtet,
en un articulo publicado en 1987 en Ann. Phys. ([13]), donde tomando el modelo
del semiplano de Poincaré con curvatura Ky < 0, podemos resumir asi:

Teorema 4.1.3. Sea (H?, gy2) el semiplano de Poincaré de curvatura Ky < 0y
F un campo magnético uniforme con fuerza . (a): Si || > /—Ko, el campo
tiene fuerza sufciente para atrapar a las particulas que se mueven en circulos
geodésicos (curvas cerradas); (b): Si |u| < +/—Koy, son curvas no cerradas
que cortan la frontera de H?; (c) Cuando || = /=Ky las curvas magnéticas
correspondientes son tangentes a dicha frontera, y por lo tanto son horociclos.
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Q _
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Figura 4.3: Curvas magnéticas en el semiplano de Poincaré

4.2. Ejemplo de campo magnético uniforme

Una vez estudiados los campos magnéticos uniformes en superficies Rieman-
nianas con curvatura constante y obtenido como son sus curvas magnéticas, como
un ejemplo-aplicacién nos proponemos resolver el siguiente problema: ;existe
un campo magnético uniforme definido en una superficie de revolucién M, de
modo la familia de todos los paralelos de la superficie sean curvas magnéticas del
campo dado?

Para ello sea a(s) = {(x(s),0,2(s)), s € (a,b), x(s) > 0} una curva para-
metrizada regular, s su longitud de arco y que se encuentra contenida en el plano
OX Z de R3. Girando « alrededor del eje OZ obtenemos la superficie parametri-
zada de revolucién M, en R3 dada por:

X(s,v) = (z(s)cosv, z(s)senv, z(s)), donde 0 < v < 2.
Consideremos que M, estd equipada con la métrica g inducida de la usual del
espacio Euclideo R?. Cada punto de « describe un paralelo,

vs(v) = (z(s) cosv, z(s) sinv, z(s)) , v € (0,27),

el cudl puede ser reparametrizado por su longitud de arco ¢ como

Vs(t) = (x(s) cos L, x(s) sen t z(s)) donde 0 < t < 27x(s).

x(s) z(s)’
La curvatura x4 de 7, en nuestra superficie M, estd dada por
'(s)
z(s)’
donde T, = v’y V es la conexién de Levi Civita en M,. En particular, s, es
constante a lo largo de 7, y por tanto esta curva es buena candidata para ser una
curva magnética de un campo uniforme adecuado sobre M.

En efecto, si /' = uf)y es un campo magnético sobre M, con p constante,
entonces 7y, es curva magnética de (M, g, F') siy solo si ks = p. Por tanto, el

ks = Vo Toll = (7675 N)| =
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conjunto de paralelos magnéticos de (M, .g, F') pueden ser identificados con el
siguiente subconjunto del intervalo (a, b) :

L,={s€ (ab):2'(s) = px(s)}.

Para determinar aquellas superficies de revolucion cuyos paralelos son todos
curvas magnéticas normales de un determinado campo magnético uniforme es
decir, aquellas para las cuales I',, = (a, b), necesitamos resolver la ecuacién dife-
rencial 2/(s) = px(s).

Hay dos posibilidades: para el caso de un campo magnético trivial (p = 0),
las curvas magnéticas son entonces geodésicas y siendo en este caso la superficie
de revolucion correspondiente un cilindro circular recto. En el caso p # 0, /(/16'51d>0
x"(s

w(s)

que la curvatura de una superficie de revolucién estd dada por K (s,t) = —

tenemos que

e ) p(s) o pta(s) s
K(s.1) x(s) z(s) z(s) a

y por tanto la superficie tiene curvatura constante y negativa. En particular se tiene,

Proposicion 4.2.1. Los paralelos de una superficie de revolucion M, son todos
curvas magnéticas de un campo magnético uniforme, F' = uS)y , siy solo si:

» M, es un cilindro recto circular (cuando i = 0), o bien,

» M, es una pseudo-esfera con curvatura de Gauss — >

Figura 4.4: Pseudoesfera
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4.3. Campos magnéticos en variedades de dimen-
sion 3

Los campos magnéticos en variedades Riemannianas de dimensién 3 pueden
considerarse también un caso bastante especial de estudio. En efecto, hay varios
hechos clave que hacen su tratamiento muy particular.

Para empezar, 2-formas y campos vectoriales estdn en correspondencia 1-1.
En efecto, si (M 3, g) es una variedad Riemanniana tridimensional orientada con
forma de volumen €23 y consideramos una 2-forma ' € Ay (M 3), el operador x de
Hodge acttia sobre F' para producir una 1-forma w = x F' € A;(M ?), y entonces
se puede considerar el campo vectorial dual g—equivalente B = (w)* € X(M ?),
que estd bien definido por g(B, X) = w(X) para todo campo X € X(M 3).

De este modo tenemos establecida una correspondencia F' ~~ B. El camino in-
verso B ~~ I funciona de la misma forma: dado un campo vectorial B € X(M 3),
consideramos su 1-forma g-equivalente w = B”. Aplicando el operador + de Hod-
ge obtenemos * w, que es una 2-forma en una variedad 3-dimensional. Ahora bien,
como la contraccién interior ip que viene definida por medio de (i5$23)(X,Y) =
Q3(B, X,Y)), esto nos permite escribirlo como xw = ip {23 = F. Asi dispone-
mos de una correspondencia biunivoca entre campos vectoriales y 2-formas en
(M?,g).

La siguiente proposicion nos muestra que los campos vectoriales X asociados
a campos magnéticos F' del modo natural definido en variedades Riemannianas
3D, necesariamente satisfacen la segunda ley de Maxwell.

Proposicion 4.3.1. Los campos magnéticos en una variedad Riemanniana (M 3, g)
provienen de campos vectoriales con divergencia nula.

Demostracion. Es bien conocido que la divergencia de un campo vectorial B en
una variedad diferenciable puede definirse a partir de la derivada de Lie por medio
de LpQs = d(ipQ3) = div(B)Q3 ([23], p.281) y por tanto, la 2-forma xw =
ip (23 es cerrada si y s6lo si div(B) = 0, i.e., el elemento de volumen es invariante
por el flujo local de B. Esto nos permitird considerar los campos magnéticos en
dimensién 3 como campos de divergencia nula. [

Como consecuencia de la correspondencia entre campos con divergencia nula
By campos magnéticos F'z = i5)3 en (M3, g), para nosotros el campo magnéti-
co es tanto B como Fz. En esta relacion se tiene la siguiente consecuencia.

Proposicion 4.3.2. Campos magnéticos uniformes se corresponden con campos
vectoriales paralelos.
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Demostracion. Sea B un campo vectorial paralelo en M 3, i.e., VB = 0. Con-
sideremos una carta local donde (23 es el elemento de volumen y {e;, €2, €3} es una
referencia local de campos con 23(eq, €3, €3) = 1. Como div(B) = > ¢(V,,B, ¢;)
0 ([25], p.196), se tiene que F' = i (13 es una 2-forma cerrada y por tanto un cam-
po magnético en (M 3, g). Ademds, es claro que VF = 0. Reciprocamente, si F
un campo magnético uniforme en (M 3, g) y B € X(M 3) su campo vectorial aso-
ciado, F' = ip (3, se comprueba que Q3(VxB,Y,Z) = (VxF) (Y, Z) = 0, para
cualesquiera X,Y, Z € X(M 3) lo que prueba que VB = 0. O

Un producto vectorial X A Y de campos vectoriales X,Y € X(M ?) en una
variedad Riemmaniana de dimensién 3 puede definirse del modo siguiente: dados
X, Y campos vectoriales, su producto vectorial X AY es el inico campo vectorial
tal que para todo Z € X(M ?) satisface

Ahora, si {e1, €3, €3} es una base local de campos y X = Y X'¢;, Y = > YVe;,
y Z =" Z¥e, las siguientes propiedades del producto vectorial se prueban facil-
mente.

Proposicion 4.3.3. El producto vectorial en una variedad Riemmaniana orienta-
da M? satisface las siguientes identidades,

paratodo X,Y, 7 € X(M?3).

Teorema 4.3.1. La ecuacién de Landau—Hall en (M 3, g) puede ahora escribirse
como

Vv ' =BAy’. .1

Demostracion. La fuerza de Lorentz ® asociada al campo magnético F' = ig {3
satisface

g<q)(X)7Y) = F(X7 Y) = (iB 93)(X7 Y) = Q3<B,X, Y) = g<U/\X7 Y)7

y por lo tanto,
d(X)=BAX, (4.2)

para todo X € X(M 3) y en consecuencia la ecuacién queda en la forma,
V,y'=®(y")=BAy". 4.3)
[]
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Como una consecuencia inmediata de Eq. (4.1) tenemos,

Corolario 4.3.1. Una curva integral de un campo magnético es una trayectoria
magnética si sy solo si es una geodésica.
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