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CAPÍTULO 1

Resumen

Este trabajo está basado en una serie de artículos publicados por un grupo
de investigadores de los Departamentos de Geometría y Topología de Sevilla y
Granada, que compartieron Proyectos Coordinados del Ministerio a partir del año
2004 y en el que se fijaban varios objetivos orientados al estudio de problemas
de la Física desde un punto de vista Geométrico. Así, según el resumen de la
propuesta del Proyecto MTM2004-04934-C04-04 se dice:
Es bien conocida la existencia tanto en Matemáticas como en Física, de una am-
plia gama de problemas y fenómenos no lineales, en los cuáles las teorías de
curvas y superficies (y más generalmente, la de subvariedades) juegan un papel
fundamental ........ la teoría de geodésicas y curvas nulas, de elásticas generales,
de superficies de Willmore y subvariedades de Willmore-Chen ........ las teorías bo-
sónicas de cuerdas ........ así como el de las trayectorias de partículas relativistas
con curvatura y torsión en espacios de curvatura constante (Riemannianos y Lo-
rentzianos) ........ el problema de Landau-Hall para campos magnéticos sobre
una superficie y encontrar su relación con los modelos de partículas relativistas,
etc. ([4, 7, 8, 9, 10, 11]).

Hemos estructurado esta memoria de la siguiente forma: tras ésta breve in-
troducción, abrimos el Capítulo 2 observando el lugar destacado que ocupan las
formaciones helicoidales en la Naturaleza, consecuencia de una ley de la propia
Naturaleza que indica el cumplimiento de un principio de economía: el crecimien-
to se realiza con el coste mínimo de espacio. Así, tanto en el mundo microscópico
como el macroscópico encontramos formaciones helicoidales naturales, e incluso
podemos añadir el uso de dicha estructura helicoidal en gran cantidad de objetos
y obras realizadas por el hombre. La hélice aparecerá también como la trayectoria
que sigue una partícula cargada en presencia de un campo magnético.
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6 CAPÍTULO 1. RESUMEN

Tras éstas consideraciones damos una pequeña introducción histórica del mag-
netismo, la electricidad y el electromagnetismo en la Sección 2.2 y a continuación
recordamos los conceptos más simples asociados, como el campo magnético crea-
do por un imán, visualizando sus líneas de campo (cerradas) mediante limaduras
de hierro. Una corriente eléctrica a través de un hilo produce también un campo
magnético del que Oersted obtuvo su dirección.

En el Capítulo 3 abrimos la Sección 3.1 recordando conceptos matemático-
físicos que nos serán necesarios para la descripción de los operadores sobre fun-
ciones y campos más elementales, como son el gradiente de una función, la di-
vergencia y rotacional de un campo con la notación utilizada en Física, menos
rigurosa que la matemática, pero muy intuitiva y práctica.

A continuación presentamos las cuatro ecuaciones de Maxwell [22] (origi-
nalmente 20) en su versión diferencial de 1884, que Oliver Heaviside junto con
Willard Gibbs agruparon y reformularon en la notación vectorial más reconocible
de la actualidad. La gran contribución de James Clerk Maxwell fue reunir en estas
ecuaciones largos años de resultados experimentales, debidos a Coulomb, Gauss,
Ampere, Faraday y otros, introduciendo el concepto de campo, y unificando los
campos eléctricos y magnéticos en un solo concepto: el campo electromagnéti-
co. Estas ecuaciones describen los fenómenos electromagnéticos, de las que nos
interesa destacar la segunda, la Ley de Gauss para el campo magnético, que se
puede interpretar como una ley (no probada) de la no existencia de monopolos.

En la Sección 3.2 exponemos la Ley de la fuerza de Lorentz, que nos indica
cómo se moverá una partícula cargada en presencia de un campo magnético (sin
campo eléctrico presente). Esta ley es la base fundamental del estudio de las cur-
vas magnéticas asociadas a un campo magnético, y ha sido muy contrastada con
lo observado en la realidad. Hendrik Antoon Lorentz introduce las teorías atomis-
tas en la teoría de Maxwell y crea modelos que explicaran la interacción entre la
radiación y la materia, convencido de que esta última tenía una estructura atómica.
Fruto de estos trabajos enmarcó la teoría de Maxwell en una teoría microscópica
del electromagnetismo considerando los campos existentes en el interior de la ma-
teria en los espacios vacíos entre las partículas. Todo esto le llevó al que sería uno
de los mayores éxitos de su carrera como físico teórico, la predicción exacta del
efecto Zeeman normal por el cual recibió el premio Nobel de Física en 1902 junto
con Pieter Zeeman (el efecto es descrito como la división de una línea espectral
en varios componentes cuando el elemento se coloca en la presencia de un campo
magnético).

En la Sección 3.3 estudiamos un sencillo ejemplo modelo en R3 consideran-
do un campo estático con la dirección del eje OZ y su efecto mediante la Ley
de Lorentz sobre una partícula cargada moviéndose con una dirección dada. Con
éste ejemplo en mente, disponemos de una motivación para definir lo que será un
campo magnético en una variedad Riemanniana de dimensión arbitraria m, que
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será introducido en la Sección 3.4. Se define entonces el concepto de campo mag-
nético F en una variedad Riemanniana (Mm, g), donde g es la métrica enMm. La
fuerza de Lorentz asociada a un campo magnético F se define de forma natural y
por fin, el concepto de curva magnética del campo F.Algunas propiedades funda-
mentales de las curvas magnéticas son obtenidas y convenientemente comparadas
con las propiedades de las curvas geodésicas de la variedad.

En el Capítulo 4 abrimos la Sección 4.1 describiendo cómo es un campo mag-
nético F en una superficie Riemanniana. Se define a continuación la fuerza de
Lorentz Φ de dicho campo, lo que nos permitirá calcular la curvatura de una cur-
va magnética correspondiente a F. A continuación se considera el caso particular
de los campos uniformes en una superficie, para los que damos la caracterización
de las curvas magnéticas en el caso de que nuestra superficie sea de curvatura K
constante distinguiendo los casos de curvatura cero, positiva y negativa.

Como una aplicación, en la Sección 4.2 terminamos estudiando un caso prácti-
co: planteamos encontrar las superficies de revolución cuyos paralelos son curvas
magnéticas correspondientes a un determinado campo magnético uniforme dado.
Veremos que la superficie no trivial que cumple tal propiedad es necesariamente
la pseudo-esfera.

Finalmente, presentamos los campos magnéticos en variedades Riemannianas
de dimensión 3, en las que brevemente exponemos la correspondencia biunívoca
entre el campo magnético F considerado como una 2-forma cerrada y el campo
vectorial B asociado a la misma, y que tiene además divergencia nula, como se
exige en la segunda ley de Maxwell.

Summary

This study is based on some results obtained by a team of researches from
the University of Granada and Sevilla which collaborate in a Coordinate Research
Project from 2004 to 2007. In fact, the application for the Projects starts,

“It is well known the existence, in Mathematics and Physics, of a large series
of nonlineal problems strongly related with the theories of curves, surfaces and
more generally submanifolds. Most of them involve the extrinsic geometry of the
submanifolds and in particular, the tension or mean curvature. Some well known
examples are the theory of minimal surfaces and the theory of capillary surfaces.
However, other with higher projection in physics are: the theory of geodesics and
null curves, the general elatica, Willmore surfaces and Willmore-Chen submani-
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folds in its more wide sense. These topics provide interesting nonlineal models of
physics phenomena, relativistic particles (massive or massless), membranes and
vesicles, gravitatory waves and Cauchy hypersurfaces, bosonic string theories, su-
perstring theories, branes and M-theory."

We have structured this work on three chapters. After this summary, in Chapter
2 we note that helical configurations are structures that occur very often in nature.
They appear in microscopic systems (biomolecules, bacterial fibers, nanosprings,
protein chains in particular DNA, etc.), as well as in macroscopic phenomena
(brussels sprouts, snail shells, coiled springs, vortices, etc.). The helix is usually
defined as a curve that makes a constant angle with a given vector. These cur-
ves are called generalized helices, and can be characterized by the constancy of
the ratio between torsion and curvature. Then we give a brief historical review
of electricity and magnetism. A connection between electricity and magnetism
was discovered (accidentally) by Orsted over 100 years ago, who noticed that a
compass needle is deflected when brought into the vicinity of a current carrying
wire. A further connection between electricity and magnetism was discovered by
Faraday, who found that changing magnetic fields though loops of wire will cau-
se currents to be induced. Now we give a review of necessary mathematical and
physical concepts, such as the gradient, divergence and rotational operators.

Maxwell’s equations are a set of four partial differential equations that, toget-
her with the Lorentz force law, form the foundation of classical electrodynamics,
classical optics, and electric circuits. Maxwell’s first major contribution to science
was his extension and mathematical formulation of Michael Faraday’s theories of
electricity and magnetic lines of force. In his research, conducted between 1864
and 1873, Maxwell showed that a few relatively simple mathematical equations
could express the behaviour of electric and magnetic fields and their interrelated
nature; that is, an oscillating electric charge produces an electromagnetic field.
These four partial differential equations first appeared in fully developed form in
Electricity and Magnetism (1873). Since known as Maxwell’s equations they are
one of the great achievements of 19th-century physics.

In Section 3.2 we show the Lorentz force law, which explain how a charged
particle moves in the presence of a uniform magnetic field. This law is the basic
tool in order to study the magnetic curves, which has been widely confirmed by
laboratory experiments. Lorentz shows the interactions between matter and radia-
tion that allowed him to predict the normal Zeeman effect. As a consequence was
awarded with the Nobel Prize in Physics jointly with to Pieter Zeeman in 1902.

In Section 3.3 we study a particular example of a magnetic field in R3 which
we assume with direction of the Ox3-axis. Then, we consider a charged particle
moving in the x1x2 plane and apply the Lorentz law to obtain a cylindrical helix
as magnetic trajectory. With this example as a model, we introduce the notion of
magnetic fiel on a Riemannian manifold (Mn, g) with metric g as a closed 2-form
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F on Mn. The Lorentz force associated to a magnetic field F is introduced, and
then the magnetic curves of F. Some basic properties of these curves are obtained
and compared with those of the geodesic curves.

In Chapter 4 we start by studying magnetic fields F on a Riemannian surface
(M2, g). Then we introduce the Lorentz force Φ of this magnetic field, which will
allows us to obtain the curvature of the magnetic curves. In particular, uniform
magnetic fields are considered and their corresponding magnetic curves are obtai-
ned when the surface is as constant curvature surface. As an exercise, we probe
that for a given revolution surface in R3 such that all their parallel curves are the
magnetic curves corresponding to a uniform magnetic field F, then the surface is
necessarily the Pseudosphere.

Finally, we present a short introduction to magnetic fields on 3- dimensio-
nal manifolds, where magnetic fields can be considered as closed 2-forms or as
divergence-free vector fields.
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CAPÍTULO 2

Campos magnéticos

2.1. Configuraciones helicoidales

En 1939 Paul Dirac escribió: El investigador, en su esfuerzo por expresar las
leyes fundamentales de la Naturaleza en forma matemática, debería preocuparse
principalmente por la belleza matemática. Ocurre a veces, que los requerimien-
tos de simplicidad y belleza son los mismos, pero cuando ambos se enfrentan, el
segundo debe prevalecer.

Las configuraciones helicoidales son estructuras muy abundantes en la Natu-
raleza. En particular, su interés en Biología está estrechamente relacionado con
el bien conocido (en la comunidad de biólogos), Teorema de Pauling (Nobel de
Química, 1954): objetos idénticos, regularmente ensamblados, forman una hélice.

Parece que el éxito de la configuración helicoidal, como una forma popular en
las moléculas, se debe a que la naturaleza trabaja de la mejor manera contra las
restricciones existentes. La forma espiral del ADN viene dictada por el espacio
disponible en una célula, así como la forma de una escalera de caracol obedece al
tamaño de un apartamento.

Figura 2.1: ADN, óxido de zinc sobre óxido de indio y la proteína Miosina
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12 CAPÍTULO 2. CAMPOS MAGNÉTICOS

Así ocurre también en fenómenos macroscópicos naturales: ciclones, cuernos de
animales, plantas,...

Figura 2.2: Tornado, cuerno, girasol...

Podemos observar también formaciones helicoidales en distintos ámbitos de la
vida cotidiana producidos por el hombre, como en la arquitectura, maquinaria,...

Figura 2.3: Parque Güell, edificio en Taipei, escalera,...

Y de una forma especial el Campo Magnético Terrestre actuando sobre partícu-
las cargadas que son atrapadas por el campo B,

Figura 2.4: Campo Magnético Terrestre

La actuación del campo magnético Terrestre sobre la lluvia de partículas cargadas
que caen sobre la Tierra desde el espacio exterior es extraordinaria: las partícu-
las cargadas (electrones y protones) provenientes de ese espacio exterior, prin-
cipalmente del sol, son enviadas hacia la superficie terrestre por el viento solar,
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y quedan milagrosamente atrapadas en su mayor parte por este campo (Ley de la
Fuerza de Lorentz), forzando a éstas a girar en espiral alrededor de las líneas de di-
cho campo llevándolas hacia el polo norte, y evitando así que caigan directamente
sobre nuestra superficie. Esto significa que disponemos de una protección natural
sobre las mismas, de modo que la mayor parte de ellas en su camino de acerca-
miento a los polos girando a alta velocidad son expulsadas de nuevo al exterior
por el aumento de concentración de las líneas de campo en esa zona. En la zona
ecuatorial se observa que se mantienen dos bandas toroidales que rodean la Tie-
rra a diferentes alturas con alta concentración de estas partículas cargadas recién
atrapadas. Estas dos bandas se denominan los cinturones de Van Allen. Fueron
descubiertos en 1958 por el físico americano James van Allen, que era respon-
sable de un experimento confiado al primer satélite artificial americano Explorer
1. Los cinturones son evitados por las misiones espaciales tripuladas, ya que su
radiación puede dañar el organismo humano. Estas regiones se extienden desde
algunos cientos de kilómetros sobre la Tierra hasta unos 48.000 a 64.000 km. La
mayor parte de los protones de alta energía (mayor de 10 MeV) se encuentran en
el cinturón interior a una altitud de 3.200 km; los electrones están más concen-
trados en un cinturón exterior que se extiende a muchos radios de la Tierra en el
espacio.

Ha sido también de gran interés una noticia publicada primero en la prensa
([1],[2], etc.) y después en revistas científicas ([30],[20], etc.) el 1 de abril de
2013 sobre la conocida SuperNova 1987A (descubierta en 1987): A team of as-
tronomers led by the International Centre for Radio Astronomy Research (ICRAR)
have succeeded in observing the death throws of a giant star in unprecedented de-
tail: "Supernova remnants are like natural particle accelerators, the radio emis-
sion we observe comes from electrons spiralling along the magnetic field lines
and emitting photons every time they turn", said Professor Lister Staveley-Smith,
Director of ICRAR.

Figura 2.5: SN1987A



14 CAPÍTULO 2. CAMPOS MAGNÉTICOS

Bajo nuestro punto de vista, estas observaciones confirman que la Ley de Lorentz
se cumple tanto en nuestro entorno próximo (con el campo magnético terrestre
actuando sobre las partículas cargadas) como con en el caso de la Supernova 1987
que ocurrió aproximadamente a 168.000 años luz de la Tierra, y las partículas
cargadas atrapadas por el campo magnético de la estrella en explosión giran des-
cribiendo hélices alrededor del eje que representan las líneas de los campos mag-
néticos generados. La supernova está situada en la Gran Nube de Magallanes.
Fue la supernova más cercana observada desde SN 1604, que apareció en la Vía
Láctea.

A pesar de ser la hélice un tipo de curva bastante simple en Geometría Dife-
rencial, muy detalladamente estudiada por Lancret [18], en la actualidad se siguen
publicando artículos en los que son protagonistas en espacios más generales que
el Euclídeo, y que a veces resultan ser soluciones a ciertos problemas ([5],[6] [29],
etc.)

2.2. Los orígenes del electromagnetismo

Hacemos a continuación un breve repaso histórico del magnetismo, la electri-
cidad y electromagnetismo.

El Magnetismo.
El origen del conocimiento de la interacción magnética hay que buscarlo varios
siglos antes de Cristo, cuando el hombre observó que existen ciertos minerales de
hierro, cobalto o manganeso que tienen la propiedad de atraer pequeños trozos de
hierro. A esta propiedad se le dió el nombre de magnetismo. La palabra magne-
tismo viene de la región griega de Magnesia la cual forma parte de la periferia
de Tesalia (Grecia), lugar donde se encontraban esos minerales, en particular la
magnetita. El naturalista Plinio El viejo nos habla de su existencia en el siglo I de
nuestra era. Un material de esta clase recibe el nombre de imán, siendo el efec-
to de atracción más pronunciado en ciertas zonas del imán denominadas polos
magnéticos.

En China también existen referencias sobre este fenómeno, la primera alusión
se encuentra en un manuscrito del siglo IV a.C. titulado Libro del amo del valle
del diablo: La magnetita atrae al hierro hacia sí o es atraída por éste. La primera
mención sobre la atracción de una aguja aparece en un trabajo realizado entre los
años 20 y 100 de nuestra era: La magnetita atrae a la aguja.

Según escribió Tales de Mileto alrededor del 600 a.C., una forma de electri-
cidad ya fue observada por los antiguos griegos que podía causar una particular
atracción por frotamiento de piel sobre varias sustancias, como el ámbar. Tales de
Mileto escribió sobre el efecto actualmente conocido como electricidad estática.
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Figura 2.6: Magnesia

Los griegos notaron que los botones de ámbar podrían atraer objetos ligeros como
el pelo y que si ellos se frotaba el ámbar durante bastante tiempo podría incluso
saltar una chispa. Durante esta época en la alquimia y la filosofía natural, se pen-
saba que podría existir un medio material llamado «éter», una sustancia que llena
el espacio o campo.

En el periodo comprendido entre los años 1000-1200 d.C. se hizo la primera
aplicación práctica del imán. Un matemático chino, Shen Kua (1030-1090) fue el
primero que escribió acerca del uso de una aguja magnética para indicar direccio-
nes, que fue el antecedente de la brújula y mejoró la precisión en la navegación
empleando el concepto astronómico del norte absoluto. Este instrumento se basa
en el principio de que si se suspende un imán en forma de aguja, de tal manera
que pueda girar libremente, uno de sus extremos siempre apuntará hacia el nor-
te. Más tarde, después del año 1100, Chu Yu informó que la brújula se utilizaba
también para la navegación entre Cantón y Sumatra. Hacia el siglo XII los chinos
ya habían desarrollado la técnica lo suficiente como para utilizar la brújula para
mejorar la navegación.

En 1180, el inglés Alexander Neckam (1157-1217) fue el primer europeo que
hizo referencia a esa capacidad del magnetismo para señalar la dirección. Más
tarde la aguja magnética se colocó sobre una tarjeta marcada con distintas direc-
ciones y la aguja se podía mover libremente girando sobre la tarjeta. Al dispositivo
se le dio el nombre de brújula, y en la terminología marinera a la brújula se la lla-
ma compás.

En el año 1600 el inglés William Gilbert (1544-1603), médico de la reina Isa-
bel I, publicó un famoso tratado, De magnete, en el que resumió el conocimiento
que se tenía en su época sobre los fenómenos magnéticos. Analizó las diferentes
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posiciones de la brújula y propuso que la Tierra es un enorme imán, lo que cons-
tituyó su gran contribución. De esta forma pudo explicar la atracción que ejerce
el polo norte sobre el extremo de una aguja imantada. Asimismo, Gilbert se dio
cuenta de que cada imán tiene dos polos, el norte (N) y el sur (S), que se dirigen
hacia los respectivos polos terrestres. Descubrió que polos iguales se repelen, y
que que polos distintos se atraen, y que si un imán se calienta pierde sus propie-
dades magnéticas, las cuales vuelve a recuperar si se le enfría a la temperatura
ambiente.

La Electricidad.
En cuanto a la electricidad, hacia principios del siglo XVIII se inició la inves-
tigación en detalle de los fenómenos eléctricos. De 1729 a 1736 dos científicos
ingleses, Stephen Gray (1696-1736) y Jean Desaguliers (1683-1744) dieron a co-
nocer los resultados de una serie de experimentos eléctricos: encontraron que si
unían por medio de un alambre metálico un tubo de vidrio previamente frotado
con un trozo de corcho, éste se electrificaba, ya que al aproximarle trozos de pa-
pel éstos eran atraídos por él. Este fenómeno persistía aun si el vidrio y el corcho
se separaban a distancias de 300 metros. Si en lugar de efectuar la unión con un
alambre metálico empleaban un hilo de seda, el corcho no se electrificaba. Ade-
más descubrieron que si la línea de transmisión hacía contacto con el suelo, o sea
con la tierra, el corcho dejaba de electrificarse.

Con todos estos experimentos llegaron a la conclusión de que la electrificación
era un efecto que se presentaba en la superficie de los cuerpos, en donde aparecía
lo que llamaron un “fluido” eléctrico al que en la actualidad se le llama carga eléc-
trica. Encontraron que la carga eléctrica podía moverse libremente de un cuerpo a
otro a través de ciertos materiales que llamaron conductores (el cuerpo humano,
los metales, el aire húmedo, etc.). También existen materiales que no conducen
electricidad, a los que se llama aislantes o no-conductores (la madera, la seda, la
cerámica, etcétera).

Un científico francés, François du Fay (1698-1739), hizo otro tipo de experi-
mentos entre 1733 y 1734. Frotó con tela de seda dos tubos de vidrio iguales. Al
acercar los tubos vio que siempre se repelían. Así concluyó que dos materiales
idénticos se repelan cuando se electrifican en formas idénticas. Como cada uno de
los tubos adquiere el mismo tipo de carga se puede afirmar que cargas iguales se
repelen.

Poco después, Benjamín Franklin (1706-1790)) realizó estos mismos descu-
brimientos en Estados Unidos, sin conocer los trabajos del francés. En su opinión,
el vidrio electrificado había adquirido un exceso de fluido (carga) eléctrico, y le
llamó a este estado positivo. Al estado de la seda con la que frotó el vidrio lo llamó
negativo, pues consideraba que había tenido una deficiencia de fluido (carga) eléc-
trico. Esta terminología de Franklin es la que se utiliza hasta hoy en día, aunque
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no se acepten las ideas con que la concibió este científico. En resumen, existen en
la naturaleza dos tipos de cargas eléctricas: positiva y negativa. Además, se puede
concluir de una multitud de resultados experimentales que dos cargas eléctricas
del mismo tipo (negativa-negativa o positiva-positiva) se repelen, mientras que
dos cargas de tipos distintos (positiva-negativa) se atraen.

El ingeniero militar francés Charles Auguste Coulomb (1736-1806), que había
medido las fuerzas entre cargas eléctricas (Ley de Coulomb: F = k q1q2

d2
) midió

también con su balanza las fuerzas entre los polos de dos imanes. Descubrió que
la magnitud de esta fuerza varía con la distancia entre los polos. Mientras mayor
sea la distancia, menor es la fuerza: si la distancia aumenta al doble, la fuerza
disminuye a la cuarta parte; si la distancia aumenta al triple, la fuerza disminuye
a la novena parte y así sucesivamente, igual que en el caso de las cargas eléctricas
que él mismo había descubierto.

Así, en las primeras décadas del siglo XVIII ya existían máquinas que produ-
cían cargas eléctricas por medio de fricción. Funcionaban esencialmente a base de
discos que se hacían girar por medio de manivelas. Al girar se friccionaban con
otra superficie y se cargaban, de la misma forma en que un trozo de vidrio se carga
al frotarlo con un paño. Estas máquinas producían cantidades respetables de carga
eléctrica y al acercarlas a otras superficies se producían chispas. Era muy frecuen-
te encontrar estas máquinas en salones de juegos, pues hacían que los cabellos de
las señoras se pusieran de punta al ser atraídos por las cargas generadas.

Hacia 1746 Pieter van Musschenbroek, en Leiden, Holanda, construyó el pri-
mer dispositivo para almacenar cargas eléctricas. Se trataba de una botella de vi-
drio que estaba recubierta, tanto en sus paredes interiores como exteriores, de una
capa muy delgada de estaño. En esta famosa botella de Leiden se pudieron alma-
cenar considerables cantidades de carga eléctrica, producidas por las máquinas de
fricción. Posteriormente se diseñaron otros dispositivos más prácticos y cómodos
para almacenar carga eléctrica, a los cuales se llamó condensadores.

Electromagnetismo.
El conocimiento del magnetismo se limitaba a los imanes, hasta que Hans Chris-
tian Oersted en 1820 demostró experimentalmente que existía una relación clara
entre los fenómenos eléctricos y magnéticos. No lo demostró hasta 1820, ins-
pirando los desarrollos posteriores de André-Marie Ampère y Faraday, cuando
descubrió la desviación de una aguja imantada al ser colocada en dirección per-
pendicular a un conductor eléctrico, por el que circula una corriente eléctrica,
demostrando así la existencia de un campo magnético en torno a todo conductor
atravesado por una corriente eléctrica, e iniciándose de ese modo el estudio del
electromagnetismo.

Esta relación la puso de manifiesto Oersted al comprobar experimentalmente
que una corriente eléctrica era capaz de desviar una aguja imantada, confirmán-
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Figura 2.7: Hans Christian Oersted, Rudkobing (Dinamarca), 1777 – 1851

dose de esta forma que una corriente eléctrica crea un campo magnético. Oersted
estaba preparando su clase de física en la Universidad de Copenhague, cuando al
mover una brújula cerca de un cable que conducía corriente eléctrica notó que la
aguja giraba hasta quedar en una posición perpendicular a la dirección del cable.
Más tarde repitió el experimento una gran cantidad de veces, confirmando el fe-
nómeno. Por primera vez se había hallado una conexión entre la electricidad y
el magnetismo en un accidente que puede considerarse como el nacimiento del
electromagnetismo. Es decir, una corriente eléctrica produce efectos magnéticos
cambiando la orientación de la varilla imantada. El propio Oersted acuñó el tér-
mino electromagnetismo para la rama de la Física que englobaría desde entonces
la Electricidad y el Magnetismo.

Experimentos posteriores realizados por Ampère demostraron que también
dos corrientes eléctricas interactúan, atrayéndose o repeliéndose los respectivos
conductores. El físico escocés James Clerk Maxwell (1831-1879) desarrolló la
teoría electromagnética clásica, sintetizando todas las anteriores observaciones,
experimentos y leyes sobre electricidad, magnetismo y aun sobre óptica, en una
teoría consistente. El Electromagnetismo continuó desarrollándose en el siglo XX,
siendo incorporado en las teorías más fundamentales como la Teoría de campo de
gauge, en la electrodinámica cuántica y en la teoría electro débil.

El electromagnetismo ilustra la relación entre la ciencia y la tecnología. Una
vez realizados los descubrimientos científicos tuvieron un rápida aplicación prác-
tica y viceversa. El conocimiento de la relación directa entre electricidad y mag-
netismo permitieron obtener aplicaciones importantes, como el telégrafo o los
motores eléctricos y generadores de electricidad. El hecho de disponer de fuentes
de electricidad de gran intensidad cambió la vida de la humanidad, principalmente
debido a la iluminación eléctrica y al teléfono. De otra parte James Clerk Max-
well realizó una síntesis de los trabajos de Ampère y Faraday sobre electricidad y
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magnetismo que le llevó a descubrir que la luz era de origen eléctrico y magnético.
Maxwell predijo las ondas electromagnéticas y Hertz llevó a cabo experimentos y
quedó verificada la hipótesis de Maxwell.

A principios dell siglo XX los trabajos de Marconi dieron como resultado el
teléfono inalámbrico, y poco después de entender el funcionamiento de los tubos
de vacio apareció la radio, y con el tiempo la televisión y el radar, que al parecer
fue determinante en la victoria de los ingleses en la llamada Batalla de Inglaterra.
Para mejorar su funcionamiento y reducir su tamaño se trabajó con microondas
generadas por el magnetrón. Hacia 1940 se inventa el transistor (los fundamentos
de física cuántica fueron indispensables para entender la estructura microscópi-
ca de los sólidos). En 1946 se termina de construir un dispositivo definitivo: la
computadora electrónica.

Desde 1950 la cadena de descubrimientos y aplicaciones ha sido contínua. Así,
una aplicación basada en en un mecanismo que Einstein propuso en 1917 para
explicar la distribución de la radiación encontrada por Planck en 1900 permitió
construir el láser.

Finalmente, los avances de los últimos años de la actualidad utilizan la fotó-
nica, es decir, transmisión de señales, pero ahora por medio de ondas electromag-
néticas y usando fibras ópticas, con posibilidades de reemplazar a los dispositivos
electrónicos, sustituyendo los aparatos electrónicos for fotónicos.

Durante la segunda mitad del siglo XIX los resultados de los trabajos de Fara-
day, Maxwell y Hertz condujeron al desarrollo de la física moderna, a la creación
de nuevos conceptos que constituyen una nueva imagen de la realidad distinto del
anterior o mecánico. Entre estos conceptos está el concepto de campo.

Los Campos
Para familiarizarnos con el concepto de campo vamos a recordar cómo son las lí-
neas de fuerza del campo gravitatorio, con el objetivo de facilitar la visualización
de las líneas de fuerza de los campos magnéticos, las cuales, a pesar de represen-
tarse de forma parecida son algo más complejas.

Sabemos por la ley de la Gravitación Universal que dos partículas se atraen
mutuamente con una fuerza inversamente proporcional al cuadrado de la distancia.
Podemos representar este hecho como se hace en siguiente figura.

El pequeño círculo del gráfico representa el cuerpo atrayente, en nuestro caso
por ejemplo el Sol. En realidad este diagrama debe imaginarse en el espacio y
no como figura plana, de manera que el círculo representa entonces a una esfera.
La flecha dibujada sobre cada una de las líneas indica que la fuerza es atractiva y
que por tanto todo cuerpo próximo a la esfera es atraido por ella. Estas rectas, se
llaman líneas de fuerza del campo gravitacional y nos indica cómo se comportaría
un cuerpo colocado en la proximidad de la esfera, es decir, la trayectoria que
seguirá dicho cuerpo. Dado que esas líneas se reúnen en el centro de la esfera,
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Figura 2.8: Representación de las líneas de fuerza sobre un cuerpo atrayente.

es evidente que su densidad es mayor en la proximidad de ella y disminuye a
medida que se alejan. Esta densidad indica como varía la fuerza en relación con
la distancia.

Al igual que hemos hecho con la gravitación podemos hacerlo con el magne-
tismo y visualizar las líneas de fuerza de un campo magnético. Por ejemplo, las
líneas del campo magnético creado por un imán pueden visualizarse con ayuda de
limaduras de hierro distribuidas alrededor del mismo sobre un cartón (figura 2.9).

Figura 2.9: El campo magnético se representa mediante el vector tangente a la línea de
campo.

El campo magnético B es una magnitud vectorial. Puede estar producido por
una carga puntual en movimiento o por un conjunto de cargas en movimiento,
es decir, por una corriente eléctrica. Para visualizar las líneas del campo magné-
tico creado por un hilo conductor rectilíneo podemos colocar a su alrededor un
gran número de agujas imantadas que nos indiquen en cada punto la dirección del
campo magnético.

Se comprueba que a una distancia pequeña del conductor respecto a su longi-
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tud, existe un patrón de líneas de campo consistente en circunferencias centradas
en el conductor, contenidas en planos perpendiculares al mismo (figura 2.10).

Figura 2.10: El campo magnético creado por un conductor rectilíneo.

Además se demuestra experimentalmente que si el sentido de la corriente se
invierte, las agujas dan media vuelta, mostrando esto que el sentido del campo
magnético también se invierte.

Para determinar cuál es el sentido de las líneas del campo a partir del sentido
de la corriente se utiliza la regla de la mano derecha o de avance de un tornillo
en su giro: cogiendo el hilo conductor con la mano derecha y extendiendo el dedo
pulgar en el sentido de circulación de la corriente, el sentido de los demás dedos
es el que nos indica el sentido de las líneas de campo.

Si queremos aumentar la intensidad del campo magnético creado por una co-
rriente eléctrica en un punto del espacio sin tener que incrementar la intensidad
de corriente podemos enrrollar el conductor alrededor de dicho punto formando
una espira. De esta manera, las líneas se superponen en el entorno del punto,
provocando esto un aumento del campo magnético en la región determinada por
la espira (figura 2.11).

Figura 2.11: Líneas de campo magnético en el entorno de un punto interior a una espira.

Consideremos ahora el caso de una corriente que circula por un solenoide, lla-
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mando así a un conductor en forma de espiral, como el de la figura 2.12. Las líneas
de campo magnético son perpendiculares a las espiras y su sentido es el del avance
de un tornillo que gira siguiendo el sentido de la intensidad de corriente. En dicha
figura se ve como las líneas de fuerza son curvas cerradas que rodean al solenoide.
Si comparamos las líneas del campo magnético generado por el solenoide (figura
2.12) con las líneas del campo magnético generado por un imán (figura 2.9) se
puede comprobar que el solenoide induce un campo magnético muy similar al del
imán:

Figura 2.12: Estructura del campo magnético de una corriente solenoidal.

La unidad de campo magnético en el Sistema Internacional es el tesla (T). Un
tesla se define como el campo magnético que ejerce una fuerza de 1 N (newton)
sobre una carga de 1 C (culombio) que se mueve a velocidad de 1 m/s dentro del
campo y perpendicularmente a las líneas de campo.

El tesla es una unidad muy grande, por lo que a veces se emplea como unidad
de campo magnético el gauss (G) que, aunque no pertenece al Sistema Internacio-
nal sino al sistema CGS (cegesimal: centímetro, gramo, segundo) tiene un valor
más acorde con el orden de magnitud de los campos magnéticos que habitualmen-
te se manejan: 1 T = 10.000 gauss.
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Campo Magnético en una variedad Riemanniana

3.1. Las ecuaciones de Maxwell

Figura 3.1: James Clerk Maxwell (1831-1879)

Las ecuaciones de Maxwell representan una de las formas más elegantes y
concisas de establecer los fundamentos de la Electricidad y el Magnetismo. A
partir de ellas, se pueden desarrollar la mayoría de las fórmulas de trabajo en este
campo. Debido a su breve declaración, encierran un alto nivel de sofisticación
matemática.

23
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Son un conjunto de cuatro ecuaciones (originalmente 20) que describen por
completo los fenómenos electromagnéticos. La gran contribución de James Clerk
Maxwell fue reunir en estas ecuaciones largos años de resultados experimentales,
debidos a Coulomb, Gauss, Ampere, Faraday y otros, introduciendo los conceptos
de campo y corriente de desplazamiento, y unificando los campos eléctricos y
magnéticos en un solo concepto: el campo electromagnético. La historia es aún
confusa, debido a que el término “ecuaciones de Maxwell” se usa también para un
conjunto de ocho ecuaciones en la publicación de Maxwell de 1865, A Dynamical
Theory of the Electromagnetic Field, y esta confusión se debe a que seis de las
ocho ecuaciones son escritas como tres ecuaciones para cada eje de coordenadas,
así se puede uno confundir al encontrar veinte ecuaciones con veinte incógnitas.

Podemos escribir dichas ecuaciones en forma diferencial (más conveniente
para nuestro interés que la forma integral) teniendo en cuenta la definición del
operador nabla en R3 como

∇ ≡ ∂

∂x
e1 +

∂

∂y
e2 +

∂

∂z
e3 = (

∂

∂x
,
∂

∂y
,
∂

∂z
)

donde {e1, e2, e3} son los vectores unitarios en las direcciones de los ejes coorde-
nados. Si se aplica a una función diferenciable ϕ(x, y, z), ϕ : R3 −→ R, se define

∇ϕ =

(
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

)
, que se denomina gradiente de ϕ, que es obviamente un

campo vectorial.
Podemos pensar en aplicar∇ a un campo vectorial diferenciable V = (V1, V2, V3)

de R3, y abusando de la notación al poner el punto de producto escalar entre am-
bos (∇ · V ) definir la divergencia de V como la función:

div(V ) = ∇ · V =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (V1, V2, V3) =

∂V1

∂x
+
∂V2

∂y
+
∂V3

∂z

Finalmente, el rotacional de V es el campo vectorial que se construye (abusando
de nuevo de la notación) realizando el producto vectorial del operador∇ con V :

rot(V ) = ∇∧ V =

(
∂V3

∂y
− ∂V2

∂z

)
e1 +

(
∂V1

∂z
− ∂V3

∂x

)
e2 +

(
∂V2

∂x
− ∂V1

∂y

)
e3

Pues bien, las cuatro ecuaciones de Maxwell en su forma diferencial son las cuatro
siguientes:
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∇ · E =
ρ

ε0

Ley de Gauss para el campo eléctrico E

∇ ·B = 0 Ley de Gauss para el campo magnético B (no monopolos)

∇∧ E = −∂B
∂t

Maxwell-Faraday

∇∧B = µ0J + µ0ε0
∂E

∂t
Ley de Ampère

donde E es el campo eléctrico, B el campo magnético, ρ la carga total, ε0 la
constante eléctrica, µ0 la constante magnética, J densidad de corriente.

A continuación comentamos algunos algunos aspectos de las dos primeras
ecuaciones con la intención de sacar conclusiones para el desarrollo de este traba-
jo.
La Ley de Gauss para el campo eléctrico se trata de la generalización de una Ley
más básica, la Ley de Coulomb, decubierta por Charles-Augustin de Coulomb, y
que básicamente afirma que “dos cargas eléctricas se atraen o repelen con una
fuerza que es directamente proporcional al producto de ambas e inversamente
proporcional al cuadrado de la distancia que las separa”

Para comprender la Ley de Gauss para el campo eléctrico observemos que la
expresión de la parte izquierda de la ecuación,∇ ·E, es la divergencia del campo
vectorial E, que nos permite saber dónde “nacen” y dónde “mueren” las líneas
de campo y cómo de intenso es el proceso de “nacimiento” o “muerte” de líneas.
De manera que si en un punto la ∇ · E = 0 esto significa que ninguna línea de
campo “muere” ni “nace” en el entorno de este punto. Dicho de otro modo, toda
línea que entra en el entorno de este punto sale otra vez de él, y toda línea que sale
de aquí entró antes.

Si la divergencia en un punto es negativa,∇·E < 0, eso significa que en un en-
torno muy pequeño alrededor de ese punto “mueren” líneas del campo eléctrico,
siendo por tanto el flujo entrante de dicho entorno. Si la divergencia en un punto
es positiva,∇ ·E > 0, significa que en un entorno muy pequeño alrededor de ese
punto “nacen” las líneas del campo eléctrico, siendo por tanto el flujo saliente en
dicho entorno.

En el lado derecho de la Ley de Gauss tenemos ρ
ε0

, donde ε0 es una constante
física positiva. Por tanto, obtenemos las siguientes conclusiones a partir de la Ley
de Gauss para el campo eléctrico:
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Figura 3.2: Líneas de campo eléctrico en el entorno de un punto donde el campo tiene
divergencia 0.

Figura 3.3: Líneas de campo con divergencia negativa ó positiva

Si en el entorno de un punto no hay cargas, todas las líneas de campo eléc-
trico que entran salen otra vez como si nada. Véase figura 3.2.

Si en el punto que estamos mirando hay carga positiva, es decir, ρ > 0,
entonces la divergencia será positiva y por tanto estarán naciendo líneas de
campo eléctrico de la carga.

La segunda ecuación de Maxwell es la Ley de Gauss para el campo mag-
nético, como veremos a continuación es la más importante para el desarrollo de
nuestro trabajo, pues es la que nos permite considerar la no existencia del mono-
polo magnético. Al igual que ocurría con la Ley de Gauss para el campo eléctrico,
esta Ley describe el comportamiento del campo magnético a través de su diver-
gencia∇ ·B. Ya que dicha divergencia es cero, el significado de la Ley de Gauss
para el campo magnético está claro: las líneas del campo magnético no “nacen”
ni “mueren” en ninguna parte de manera neta, por tanto, son cerradas.

A partir de la Ley del Gauss para el campo eléctrico sabíamos que las líneas
del campo eléctrico nacen en las cargas positivas y mueren en las cargas negativas
pero de la Ley de Gauss para el campo magnético no podemos sacar estas con-
clusiones, no es posible observar un punto determinado y ver que se produce un
fenómeno u otro, sólo es posible ver ambas cosas a la vez.
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Si volvemos al campo eléctrico vemos que las cargas se pueden separar y ver-
las por separado, pero en el caso del campo magnético no ocurre lo mismo ya que
la divergencia del campo magnético siempre es cero, por tanto, nunca podremos
conseguir que sus líneas no sean cerradas. Es por esto que al cortar un imán por
la mitad, por ejemplo, para intentar quedarnos con el polo norte en una mano y
el polo sur en la otra, veríamos que cada uno de los dos pedazos es un imán más
pequeño con su polo norte y su polo sur. Por tanto, la Ley de Gauss para el campo
magnético supone la no exitencia de monopolos magnéticos. Sin embargo, no
podemos olvidar que las ecuaciones de Maxwell son la representación matemá-
tica de principios físicos, no verdades absolutas. Es teóricamente posible que sí
existan los monopolos magnéticos.

No obstante, hasta ahora todos los intentos de crear un monopolo magnético
en aceleradores de partículas han fracasado. Es interesante destacar que el 16 de
Octubre de 2009 se publicaron en Nature [12] unos resultados obtenidos por C.
Castelnovo, R. Moessner y S. L. Sondhi en el Rudolf Peierls Centre for Theoreti-
cal Physics, (Oxford University, Oxford OX1 3NP, UK), Max-Planck-Institut für
Physik komplexer Systeme, 01187 Dresden (Germany), y PCTP and Department
of Physics, Princeton University, Princeton, New Jersey 08544 (USA) donde se
informa de la observación por primera vez un monopolo magnético en un estado
de la materia que se daría a partir de una disposición especial de los momentos
magnéticos dentro de un cristal a baja temperatura. Si este experimento confirma
la existencia de monopolos magnéticos entonces tendríamos que modificar las
leyes de Maxwell, cambiando la ecuación que hemos visto antes por esta otra:
∇ · B = µ0ρ0, donde ρ0 es una constante no nula que representaría, si existe, la
densidad de carga magnética.

Por otra parte, en la celebración de la International Conference on Neutron
Scattering 2009 (May 7, 2009; ICNS2009 C9.2), un trabajo conjunto de H. Ka-
dowaki, N. Doi, Y. Aoki (Dep. of Physics, Tokyo Metropolitan Univ.), Y. Tabata,
(Dep. of Materials Science and Engineering, Kyoto Univ.), T. J. Sato (NSL Insti-
tute for Solid State Physics, Univ. Kyoto), J. W. Lynn (NIST Center for Neutron
Research, National Inst. of Standards and Technology, Gaithersburg, Maryland),
K. Matsuhira (Dep. of Electronics, Fac. Engineering, Kitakyushu) and Z. Hiroi
(Institute for Solid State Physics, Univ. Tokyo), posteriormente publicado en el J.
Phys. Soc. Japan [16] se explica que,

“From the symmetry of Maxwell’s equations of electromagnetism as well as
field theoretical arguments, magnetic charges or monopoles would be expected to
exist. But magnetic monopoles have never been observed despite longstanding ex-
perimental searches. Recently, attention has turned to condensed matter systems
where tractable analogs of magnetic monopoles might be found, and one predic-
tion is for an emergent elementary excitation in the spin ice compound, where
the strongly competing magnetic interactions exhibit the same 1 type of frustra-
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tion as water ice. We directly probe the monopoles in spin ice using neutrons, and
show that they interact via the magnetic Coulomb force. Specific heat measure-
ments show that the density of monopoles can be controlled by temperature and
magnetic field, with the density following the expected Arrhenius law."

3.2. La ley de la fuerza de Lorentz

El problema de Landau–Hall es el estudio del movimiento de una partícula
cargada en presencia de un campo magnético estático y constante B en una su-
perficie Riemanniana [19]. Consideremos que existe un campo magnético en cada
punto del espacio. El campo magnético B se puede expresar en téminos de la
fuerza magnética que se ejerce sobre un objeto de prueba apropiado. El objeto de
prueba para expresar el campo magnético B en téminos de la fuerza magnética
será una carga puntual q de masa m que se mueve con una velocidad v.

Ya sabemos que cuando colocamos una carga en reposo en un campo mag-
nético no actúa sobre ella fuerza alguna, pero cuando la carga eléctrica se mueve
en una región donde hay un campo magnético, se observa una nueva fuerza sobre
la carga. Los experimentos realizados sobre el movimiento de diversas partícu-
las cargadas que se desplazan en un campo magnético están de acuerdo con la
siguiente ecuación denominada Ley de la Fuerza de Lorentz para la fuerza F
actuante sobre la partícula de carga q que se mueve con velocidad v en una región
con presencia del campo magnético B,

F = q (v ×B).

A partir de esta expresión se tiene fácilmente que:

|F | = q|v||B| sen θ.

La dirección de F es perpendicular al plano que forman los vectores v y B.

El sentido de F es el del producto vectorial qv × B teniendo en cuenta el
signo de la carga q.

La fuerza es máxima cuando v y B son perpendiculares, y la fuerza es nula si los
vectores v y B tienen la misma dirección.

Cuando la partícula se mueve en una región donde hay un campo eléctrico E
y uno magnético B, la fuerza total es la suma de la fuerza eléctrica qE y la fuerza
magnética qv ×B, es decir:

F = q (E + v ×B). (3.1)
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Figura 3.4: Albert Einstein visitando a H. A. Lorentz en 1921

Esta expresión se denomina Ley de Lorentz para campo eléctrico y magnético. En
este trabajo consideraremos que estamos en ausencia de campo eléctrico, siendo
por tanto E = 0 y quedando la fuerza de Lorentz reducida a:

F = q (v ×B). (3.2)

La ecuación 3.2 nos ha servido hasta el momento para definir el campo magné-
tico B a partir de la fuerza a la que se ve sometida una carga q la cual se mueve
con velocidad v en presencia de dicho campo magnético. Sin embargo, esta ecua-
ción también nos permite determinar la trayectoria magnética que describe dicha
partícula.

3.3. Ejemplo modelo

Consideremos a continuación un ejemplo que nos permitirá generalizar el con-
cepto de campo magnético a cualquier variedad Riemanniana (Mn, g). Para ello,
supongamos una partícula de masa m con carga q que se mueve con una velo-
cidad v(t) en una región del espacio R3 donde existe un campo magnético uni-
forme (de intensidad constante) y estacionario (independiente del tiempo), por
ejemplo, B = (0, 0, h) con h una contante no nula. Supondremos también la au-
sencia de campo eléctrico, E = 0. Recordemos que el momento de la partícula

es P (t) = mv(t) y se verifica entonces que F (t) =
dP (t)

dt
por lo que podemos

escribir

F (t) =
dP (t)

dt
= q (v(t)×B),

y de aquí se tiene que
dP (t)

dt
es ortogonal a P (t) y por tanto

d ‖ P (t) ‖2

dt
≡ 0, lo

que implica que ‖ v(t) ‖ es constante.
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Tenemos entonces que F = ma viene dada por

F = m
dv(t)

dt
=
dP (t)

dt
= q (v(t)×B), (3.3)

donde v(t) = (v1(t), v2(t), v3(t)) es el vector velocidad de la partícula y B el
campo uniforme B = (0, 0, h). Escribiendo 3.3 en componentes cartesianas tene-
mos 

m
dv1

dt
= qv2(t)h

m
dv2

dt
= −qv1(t)h

m
dv3

dt
= 0

De la tercera ecuación es v3 = cte y definiendo

V ≡ v1 + iv2,

(i es la unidad imaginaria) al multiplicar la segunda ecuación por i y sumar las
dos primeras tenemos

m
dV

dt
= −iqhV,

cuya solución es

V = V0e
− qht

m
i.

Si suponemos que para t = 0 el vector velocidad de la carga es v(0) = (0, v0
2, v

0
3),

entonces V0 = iv0
2, y tenemos entonces que la solución del sistema anterior es

v1(t) = v0
2 sen(

qh

m
t)

v2(t) = v0
2 cos(

qh

m
t)

v3(t) = v0
3

que integradas nos permiten obtener las componentes de la curva (magnética)
γ(t) = (x1(t), x2(t), x3(t)) descrita por la partícula:

x1(t) = x1(0)− v0
2m

qh
cos(

qh

m
t)

x2(t) = x2(0) +
v0

2m

qh
sen(

qh

m
t)

x3(t) = x3(0) + v0
3t,
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que resulta ser una parametrización de una hélice circular con eje la dirección de
x3 (dirección del campo magnético B) y radio rL = v⊥m

|q|‖B‖ (denominado radio
de Larmor) (v⊥ representa la magnitud de la velocidad perpendicular al campo
magnético, v⊥ =

√
v2

1 + v2
2) [14]. En particular si v0

3 = 0, la trayectoria que
describe partícula es un círculo contenido en el plano x3 = x3(0), con centro en
(x1(0), x2(0), x3(0)) y radio rL.

3.4. Campos Magnéticos en una Variedad Rieman-
niana

Volvamos ahora a considerar el ejemplo modelo de la sección anterior, pero
desde un nuevo punto de vista. Para ello sea Π el plano de R3 de ecuación x3 = 0
provisto de la métrica inducida de la usual de R3, B = (0, 0, h) el campo magné-
tico y definamos en Π la siguiente 2-forma F :

F (X, Y ) = 〈X ×B, Y 〉, X, Y ∈ X(Π),

donde 〈 , 〉 es el producto escalar inducido en Π. Se comprueba fácilmente que
en coordenadas, si la 2-forma F la expresamos F = f(x1, x2)dx1 ∧ dx2 entonces
f = −2h, y el campo magnético tiene la expresión F = −2hdx1 ∧ dx2, que
naturalmente es una forma cerrada y proporcional al elemento de área de Π. Fi-
nalmente definimos el operador antisimétrico Φ mediante 〈Φ(X), Y 〉 = F (X, Y ),
es decir, Φ(X) = X ×B. En consecuencia, la ley de Lorentz puede escribirse en
términos de esta forma por medio de:

dv(t)

dt
= Φ(v(t)). (3.4)

Esta interpretación del modelo clásico puede ser extendida de forma obvia a una
situación más general. En efecto, parece natural definir ahora un campo magnético
en una variedad Riemanniana del siguiente modo:

Definición 3.4.1. Un campo magnético en una variedad Riemanniana (Mn, g)
(n ≥ 2) es una 2-forma cerrada F en Mn. La fuerza de Lorentz del campo mag-
nético es el operador antisimétrico Φ dado por

g(Φ(X), Y ) = F (X, Y ), (3.5)

para cada par de campos vectoriales X, Y de Mn. Observemos que Φ es métri-
camente equivalente a F , por lo que no se pierde información alguna cuando se
considera Φ en lugar de F . En la terminología clásica se suele decir que Φ se
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obtiene de F subiendo su segundo índice. Por otro lado el operador Φ′ definido
g(X,Φ′(Y )) = F (X, Y ), se ve claramente que es Φ′ = −Φ.

En Física, se puede encontrar una definición de campo magnético como una
2-forma cerrada (Differential forms approach), donde se introduce una 2-forma F
(que denominan tensor de Maxwell) en un espacio-tiempo 4-dimensional. El cam-
po eléctrico E y magnético B se describen conjuntamente por Fµν en el espacio
de Minkowski como

F =
∑

1
2
Fµνdx

µ∧dxν = Bxdy∧dz+Bydz∧dx+Bzdx∧dy+Exdx∧dt+
+ Eydy ∧ dt+ Ezdz ∧ dt,
que es además la diferencial del potencial 4-dimensional A,

F = dA =
∑
∂µAνdx

µ ∧ dxν .
En particular [27], en R3 y en ausencia de campo eléctrico E (que es nuestro
caso), si identificamos B = (Bx, By, Bz) con una 2-forma B = Bxdy ∧ dz +
Bydz ∧ dx + Bzdx ∧ dy, se deduce inmediatamente que la condición ∇ · B = 0
es equivalente a exigir que dB = 0.

Definición 3.4.2. Una curva γ en (Mn, g) se dice que es una curva magnética
del campo magnético F (o de (Mn, g, F )), si su vector velocidad γ ′, satisface la
siguiente ecuación diferencial (ecuación de Landau-Hall):

∇γ ′γ
′ = Φ(γ ′), (3.6)

donde∇ es la conexión de Levi-Civita de g (comparar con la ecuación (3.4)).

Estas definiciones nos llevan a las siguientes consecuencias:

1. Si el campo magnético es trivial, es decir, F = 0 ⇐⇒ Φ = 0, entonces la
ecuación de Landau-Hall de las curvas magnéticas queda∇γ ′γ

′ = 0, lo que
equivale a decir: en ausencia de campos eléctricos y magnéticos, una par-
tícula cargada sigue una curva geodésica, es decir, las curvas magnéticas
son las geodésicas de la variedad (Mm, g).

2. Sabemos que las geodésicas son curvas de velocidad constante 1. Las cur-
vas magnéticas también satisfacen la siguiente ley de conservación: las par-
tículas cargadas se mueven a velocidad constante, y por tanto con energía
constante a lo largo de sus trayectorias magnéticas. En efecto, de (3.5) te-
nemos que g(Φ(X), Y ) = −g(X,Φ(Y )) y por tanto

d

dt
g(γ ′, γ ′) = ∇γ ′g(γ ′, γ ′) = g(∇γ ′γ

′, γ ′) + g(γ ′,∇γ ′γ
′) =

= 2g(Φ(γ ′), γ ′) = 0.
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3. El teorema de existencia y unicidad de curvas geodésicas es también cierto
para las curvas magnéticas ([26], p.91). En efecto, para cada p ∈ Mn y
v ∈ TpM

n existe una curva magnética maximal γ : (−ε, ε) → Mn, de
(Mn, g, F ), tal que γ(0) = p and γ ′(0) = v.

4. El sistema de ecuaciones diferenciales satisfecho por las curvas geodésicas
sabemos que tiene la siguiente propiedad de homogeneidad: si γ(t), t ∈
(−ε, ε) es una geodésica, entonces para toda constante c 6= 0, la curva
γ(ct) es también una geodésica con t ∈ (−ε/c, ε/c). Las curvas magné-
ticas no satisfacen esta propiedad. En efecto, si γ(t) es una curva magnética
de (Mn, g, F ) determinada por los datos iniciales (p, v), la curva β, defini-
da por β(t) = γ(ct), c ∈ R\{0}, es una curva magnética de (Mn, g, cF ) y
también, si c > 0, de (Mn, (1/c) g, F ), en ambos casos determinada por los
datos iniciales (p, cv) ([15]). Además, la familia de todas las curvas magné-
ticas de (Mn, g, F ) y (Mn, cg, cF ) coincide, para toda constante c > 0.

5. Como es bien conocido, las geodésicas son puntos críticos de un funcional
(de la energía), y localmente son curvas que minimizan la distancia. Las cur-
vas magnéticas se ha probado que localmente también son puntos críticos
de un funcional ([4]): existe U ⊆Mn tal que F = dω en U, y si denotamos
por Γ al espacio de las curvas de p a q, en U entonces

L(γ) =
1

2

∫
γ

g(γ ′, γ ′)dt+

∫
γ

ω(γ ′)dt

y la ecuación de Lorentz es la ecuación de Euler-Lagrange asociada a L

Dado un campo magnético F en una variedad Riemanniana (Mn, g), el objeti-
vo fundamental es determinar sus correspondientes curvas magnéticas. En el caso
2-dimensional, es decir, superficies Riemannianas, podemos utilizar la geometría
de las ecuaciones de Frenet para determinar la curvatura de dichas curvas. En al-
gunos casos especiales, como el de las superficies de curvatura constante podemos
determinarlas completamente.

Un segundo camino (y complementario del anterior) para cualquier variedad
(Mn, g) sería considerar una inmersión en algún espacio Euclídeo Rm, m < n
(Nash embedding theorem [24]). Si ahora escribimos la ecuación de Landau-Hall
en Rm y usamos las fórmulas de Gauss-Weingarten para separar esta ecuación
en su parte tangente y su parte normal a la variedad, la geometría intrínseca de
(Mn, g) puede ser utilizada para obtener las curvaturas de la curva magnética. Así,
dependiendo del caso particular de nuestra variedad, la curva magnética podría ser
completamente determinada.

El concepto de campo magnético puede ser igualmente estudiado en varieda-
des complejas, en particular de Kaehler (ver por ejemplo [17],[21]).
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CAPÍTULO 4

Curvas Magnéticas en Superficies

4.1. Campos magnéticos en superficies

Sea (M2, g) una superficie Riemanniana orientada con estructura compleja J
y elemento de área Ω2 tal que Ω2(X, JX) = 1 para X campo vectorial unitario
X ∈ X(M2).Dada una curva γ enM2 para la cuál e = g(γ ′, γ ′) > 0 es constante,
su referencia de Frenet es {T = 1√

e
γ ′, N = JT}. Si κ es su curvatura (geodésica)

sus ecuaciones de Frenet son:{
∇γ ′T =

√
eκN

∇γ ′N = −
√
eκT

Como un campo magnético F en una superficie M2 es una 2-forma (cerrada),
claramente se puede expresar por medio de una función f diferenciable definida
en M2 del modo F = fΩ2,. La función f se denomina la fuerza del campo
magnético F. Por tanto, haciendo uso de

g(ΦX,X) = 0, g(ΦX, JX) = F (X, JX) = fΩ2(X, JX) = f,

se tiene que la matriz de Φ respecto cualquier base ortonolmal {X, JX} está dada
por

Φ ≡
(

0 −f
f 0

)
.

En el caso particular de que γ sea una curva magnética de (M2, g, F ) con energía
e = 1, es decir, parametrizada por el arco (que se denominan curvas magnéticas
normales), se verificará que

∇γ ′γ
′ = Φ(γ ′), γ ′ = T,

35
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y por tanto,
∇TT = Φ(T ) =⇒ κN = fN,

de donde se tiene que f = κ. Por tanto, la expresión de Φ a lo largo de una curva
magnética γ de (M2, g, F ) con energía e = 1 y relativa a {T,N} esta dada por

Φ ≡
(

0 −κ
κ 0

)
.

Así hemos obtenido el siguiente resultado.

Proposición 4.1.1. La curvatura de las curvas magnéticas normales (e = 1) está
dada por κ = f . Por tanto, la curvatura de las curvas magnéticas normales
determina por completo la fuerza de Lorentz, siendo f ≡ κ a lo largo de tales
curvas.

Un campo magnético en M2 para el cual la fuerza de Lorentz f = µ ∈ R,
se denomina campo magnético uniforme. Estos tipos de campos magnéticos han
sido muy estudiados en la literatura ([3, 21, 28], etc.) desde diferentes puntos de
vista. En virtud de la proposición anterior tenemos la siguiente consecuencia.

Corolario 4.1.1. Sea F = µΩ2 un campo magnético uniforme en una superficie
Riemanniana (M2, g). Una curva γ en M2, es una curva magnética normal de
(M2, g, F ) si y solo si tiene curvatura constante κ = µ.

Como consecuencia de los resultados anteriores podemos considerar el tipo de
superficies más simples a fin de determinar las curvas magnéticas de sus campos
uniformes, es decir, las superficies de curvatura constante K0. Las siguientes afir-
maciones son evidentes (comparar los resultados sobre curvas magnéticas con los
de curvas geodésicas).

Teorema 4.1.1. Sea (M2, g) una superficie con curvatura de Gauss K0 ≡ 0 (flat
surface). Las curvas magnéticas de un campo uniforme F de fuerza f = µ 6= 0
son círculos geodésicos de radio (geodésico) 1/|µ|. En particular, si M2 es un
plano las curvas magnéticas son circunferencias de radio 1/|µ| (en el caso del
cono o cilindro no son circulos planos).

Si K0 > 0, K0 = 1/r2 entonces (M2, g) es una superficie esférica S2(r) de
radio r > 0, y se tiene:

Teorema 4.1.2. Sea S2(r) la superficie esférica de curvatura K0 = 1/r2. Las
curvas magnéticas de un campo uniforme F de fuerza f = µ en S2(r) son círculos
geodésicos (planos) con radio (plano) ρ = r/

√
1 + r2µ2 < r. En consecuencia,

ningún círculo máximo de S2(r) puede ser una curva magnética de F = µΩ2

(por otro lado, sabemos que constituyen la familia completa de geodésicas).
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Figura 4.1: Curvas magnéticas de F uniforme en un plano, cilindro, cono

Figura 4.2: Curvas magnéticas en la esfera

Finalmente, el caso de superficies con K0 < 0 fue estudiado por A. Comtet,
en un artículo publicado en 1987 en Ann. Phys. ([13]), donde tomando el modelo
del semiplano de Poincaré con curvatura K0 < 0, podemos resumir así:

Teorema 4.1.3. Sea (H2, gH2) el semiplano de Poincaré de curvatura K0 < 0 y
F un campo magnético uniforme con fuerza µ. (a): Si |µ| >

√
−K0, el campo

tiene fuerza sufciente para atrapar a las partículas que se mueven en círculos
geodésicos (curvas cerradas); (b): Si |µ| <

√
−K0, son curvas no cerradas

que cortan la frontera de H2; (c) Cuando |µ| =
√
−K0 las curvas magnéticas

correspondientes son tangentes a dicha frontera, y por lo tanto son horociclos.
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Figura 4.3: Curvas magnéticas en el semiplano de Poincaré

4.2. Ejemplo de campo magnético uniforme
Una vez estudiados los campos magnéticos uniformes en superficies Rieman-

nianas con curvatura constante y obtenido cómo son sus curvas magnéticas, como
un ejemplo-aplicación nos proponemos resolver el siguiente problema: ¿existe
un campo magnético uniforme definido en una superficie de revolución Mα de
modo la familia de todos los paralelos de la superficie sean curvas magnéticas del
campo dado?

Para ello sea α(s) = {(x(s), 0, z(s)), s ∈ (a, b), x(s) > 0} una curva para-
metrizada regular, s su longitud de arco y que se encuentra contenida en el plano
OXZ de R3. Girando α alrededor del eje OZ obtenemos la superficie parametri-
zada de revolución Mα en R3 dada por:

X(s, v) =
(
x(s)cosv, x(s)senv, z(s)

)
, donde 0 < v < 2π.

Consideremos que Mα está equipada con la métrica g inducida de la usual del
espacio Euclídeo R3. Cada punto de α describe un paralelo,

γs(v) = (x(s) cos v, x(s) sin v, z(s)) , v ∈ (0, 2π),

el cuál puede ser reparametrizado por su longitud de arco t como

γs(t) =
(
x(s) cos

t

x(s)
, x(s) sen

t

x(s)
, z(s)

)
donde 0 < t < 2πx(s).

La curvatura κs de γs en nuestra superficie Mα está dada por

κs = ‖∇TsTs‖ = |(γ′s, γ′′s , N)| = x′(s)

x(s)
,

donde Ts = γ ′s y ∇ es la conexión de Levi Civita en Mα. En particular, κs es
constante a lo largo de γs y por tanto esta curva es buena candidata para ser una
curva magnética de un campo uniforme adecuado sobre Mα.

En efecto, si F = µΩ2 es un campo magnético sobre Mα con µ constante,
entonces γs es curva magnética de (Mα, g, F ) si y solo si κs = µ. Por tanto, el
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conjunto de paralelos magnéticos de (Mα.g, F ) pueden ser identificados con el
siguiente subconjunto del intervalo (a, b) :

Γµ = {s ∈ (a, b) : x′(s) = µx(s)}.

Para determinar aquellas superficies de revolución cuyos paralelos son todos
curvas magnéticas normales de un determinado campo magnético uniforme es
decir, aquellas para las cuales Γµ = (a, b), necesitamos resolver la ecuación dife-
rencial x′(s) = µx(s).

Hay dos posibilidades: para el caso de un campo magnético trivial (µ = 0),
las curvas magnéticas son entonces geodésicas y siendo en este caso la superficie
de revolución correspondiente un cilindro circular recto. En el caso µ 6= 0, dado

que la curvatura de una superficie de revolución está dada por K(s, t) = −x
′′(s)

x(s)
,

tenemos que

K(s, t) = −x
′′(s)

x(s)
= −µx

′(s)

x(s)
= −µ

2x(s)

x(s)
= −µ2,

y por tanto la superficie tiene curvatura constante y negativa. En particular se tiene,

Proposición 4.2.1. Los paralelos de una superficie de revolución Mα son todos
curvas magnéticas de un campo magnético uniforme, F = µΩ2 , si y solo si:

Mα es un cilindro recto circular (cuando µ = 0), o bien,

Mα es una pseudo-esfera con curvatura de Gauss −µ2.

Figura 4.4: Pseudoesfera
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4.3. Campos magnéticos en variedades de dimen-
sión 3

Los campos magnéticos en variedades Riemannianas de dimensión 3 pueden
considerarse también un caso bastante especial de estudio. En efecto, hay varios
hechos clave que hacen su tratamiento muy particular.

Para empezar, 2-formas y campos vectoriales están en correspondencia 1-1.
En efecto, si (M 3, g) es una variedad Riemanniana tridimensional orientada con
forma de volumen Ω3 y consideramos una 2-forma F ∈ Λ2(M

3), el operador ? de
Hodge actúa sobre F para producir una 1-forma ω = ?F ∈ Λ1(M

3), y entonces
se puede considerar el campo vectorial dual g−equivalente B = (ω)] ∈ X(M 3),
que está bien definido por g(B,X) = ω(X) para todo campo X ∈ X(M 3).

De este modo tenemos establecida una correspondencia F  B. El camino in-
versoB  F funciona de la misma forma: dado un campo vectorialB ∈ X(M 3),
consideramos su 1-forma g-equivalente ω = B[. Aplicando el operador ? de Hod-
ge obtenemos ? ω, que es una 2-forma en una variedad 3-dimensional. Ahora bien,
como la contracción interior iB que viene definida por medio de (iBΩ3)(X, Y ) =
Ω3(B,X, Y )), esto nos permite escribirlo como ? ω = iB Ω3 = F . Así dispone-
mos de una correspondencia biunívoca entre campos vectoriales y 2-formas en
(M 3, g).

La siguiente proposición nos muestra que los campos vectoriales X asociados
a campos magnéticos F del modo natural definido en variedades Riemannianas
3D, necesariamente satisfacen la segunda ley de Maxwell.

Proposición 4.3.1. Los campos magnéticos en una variedad Riemanniana (M 3, g)
provienen de campos vectoriales con divergencia nula.

Demostración. Es bien conocido que la divergencia de un campo vectorial B en
una variedad diferenciable puede definirse a partir de la derivada de Lie por medio
de LBΩ3 = d (iB Ω3) = div(B)Ω3 ([23], p.281) y por tanto, la 2-forma ? ω =
iB Ω3 es cerrada si y sólo si div(B) = 0, i.e., el elemento de volumen es invariante
por el flujo local de B. Esto nos permitirá considerar los campos magnéticos en
dimensión 3 como campos de divergencia nula.

Como consecuencia de la correspondencia entre campos con divergencia nula
B y campos magnéticos FB = iBΩ3 en (M3, g), para nosotros el campo magnéti-
co es tanto B como FB. En esta relación se tiene la siguiente consecuencia.

Proposición 4.3.2. Campos magnéticos uniformes se corresponden con campos
vectoriales paralelos.
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Demostración. Sea B un campo vectorial paralelo en M 3, i.e., ∇B = 0. Con-
sideremos una carta local donde Ω3 es el elemento de volumen y {e1, e2, e3} es una
referencia local de campos con Ω3(e1, e2, e3) = 1.Como div(B) =

∑
g(∇ei

B, ei) =
0 ([25], p.196), se tiene que F = iB Ω3 es una 2-forma cerrada y por tanto un cam-
po magnético en (M 3, g). Además, es claro que ∇F = 0. Recíprocamente, si F
un campo magnético uniforme en (M 3, g) yB ∈ X(M 3) su campo vectorial aso-
ciado, F = iB Ω3, se comprueba que Ω3(∇XB, Y, Z) = (∇XF ) (Y, Z) = 0, para
cualesquiera X, Y, Z ∈ X(M 3) lo que prueba que∇B = 0.

Un producto vectorial X ∧ Y de campos vectoriales X, Y ∈ X(M 3) en una
variedad Riemmaniana de dimensión 3 puede definirse del modo siguiente: dados
X, Y campos vectoriales, su producto vectorialX∧Y es el único campo vectorial
tal que para todo Z ∈ X(M 3) satisface

g(X ∧ Y, Z) = Ω3(X, Y, Z).

Ahora, si {e1, e2, e3} es una base local de campos y X =
∑
X iei, Y =

∑
Y jej,

y Z =
∑
Zkek las siguientes propiedades del producto vectorial se prueban fácil-

mente.

Proposición 4.3.3. El producto vectorial en una variedad Riemmaniana orienta-
da M3 satisface las siguientes identidades,

X ∧ (Y ∧ Z) = g(X,Z)Y − g(X, Y )Z,

g(X ∧ Y,X ∧ Z) = g(X,X) g(Y, Z)− g(X, Y ) g(X,Z),

para todo X, Y, Z ∈ X(M 3).

Teorema 4.3.1. La ecuación de Landau–Hall en (M 3, g) puede ahora escribirse
como

∇γ ′γ
′ = B ∧ γ ′. (4.1)

Demostración. La fuerza de Lorentz Φ asociada al campo magnético F = iB Ω3

satisface

g(Φ(X), Y ) = F (X, Y ) = (iB Ω3)(X, Y ) = Ω3(B,X, Y ) = g(U ∧X, Y ),

y por lo tanto,
Φ(X) = B ∧X, (4.2)

para todo X ∈ X(M 3) y en consecuencia la ecuación queda en la forma,

∇γ ′γ
′ = Φ(γ ′) = B ∧ γ ′. (4.3)
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Como una consecuencia inmediata de Eq. (4.1) tenemos,

Corolario 4.3.1. Una curva integral de un campo magnético es una trayectoria
magnética si sy sólo si es una geodésica.
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