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El concepto de simetría es de gran relevancia en la física, de manera que las 

interacciones fundamentales en el universo pueden dictarse según estas. La importancia de las 

simetrías radica en que conducen  a leyes de conservación, consecuencia del teorema de 

Noether, que dice que a cada simetría de la naturaleza se le asocia una ley de conservación y 

viceversa [1,2]. 

Matemáticamente, una simetría está asociada a una transformación que deja 

invariante la función de ondas de un sistema físico. Desde el punto de vista físico, la existencia 

de una simetría implica que una cantidad física no puede medirse de forma absoluta. 

 Concretamente, todas las interacciones entre partículas pueden explicarse a través de 

las llamadas simetrías locales de gauge. Este hecho está íntimamente ligado con la idea de que 

ciertas cantidades físicas se conservan en regiones locales del espacio, es decir, no lo hacen 

globalmente (en todo el espacio). Trabajaremos la conexión entre simetrías y leyes de 

conservación en el marco de la teoría de campos para estudiar después la relación existente 

entre el lagrangiano de un sistema y las reglas de Feynman que nos explican las interacciones 

existentes en él. 

Una transformación gauge es una transformación de fase: 

                                                                                                                                                         

Este caso corresponde a una transformación de gauge global ya que la transformación 

es la misma para todos los puntos del espacio. En cambio, si α depende de la coordenada 

espacio-temporal estaremos hablando de una transformación de gauge local, esto es: 

                                                                                                                                                       

Como se ha explicado, la invariancia bajo transformaciones gauge implica que la fase 

no puede determinarse de forma absoluta, pudiendo elegirse su valor en el espacio-tiempo de 

forma arbitraria. Es importante el hecho de que la elección de este parámetro no cambiará los 

resultados físicos obtenidos. La familia de transformaciones          donde el parámetro α 

pertenece a los números reales  forma el grupo abeliano conocido como  grupo       Si  se 

reemplaza dicho parámetro por una matriz unitaria     se habla del grupo      . Cuando 

los elementos del grupo no conmutan se habla de grupo no abeliano. 

La teoría de electrodinámica cuántica (QED) es una teoría invariante gauge local bajo el 

grupo     , es decir, se requiere la invariancia del lagrangiano al realizar transformaciones 

                   Como veremos, este hecho nos hace incluir de forma natural un nuevo 

campo: el bosón mediador de la fuerza electromagnética, el fotón. En el caso de la teoría 

electrodébil del modelo estándar (simetría            , además del fotón, se incluyen los 

bosones    y  . Bajo esta imposición de simetría no se permite que los bosones de gauge 

adquieran masa ya que los términos de masa (términos cuadráticos del campo) no son 

invariantes bajo este tipo de transformación. Aunque este hecho parece no ser un problema 

en QED debido a que el bosón de gauge asociado a esta teoría no tiene masa, el mismo 
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problema aparece en el modelo electrodébil  para los bosones W y Z, partículas que sabemos 

que son masivas. De la misma forma, no se permiten términos de masa en el lagrangiano para 

los fermiones, debido a que no son invariantes gauge [3]. 

Tenemos que buscar ahora una solución que mantenga la teoría invariante local gauge 

y que nos permita obtener bosones de gauge y fermiones masivos. Esta consiste en introducir 

un término de potencial en el lagrangiano que provoque que el sistema no sea invariante en 

torno al estado de mínima energía (vacío) pero de forma que se siga manteniendo la 

invariancia inicial requerida. Esta solución es lo que se conoce como ruptura espontánea de 

simetría de una teoría invariante local gauge, o mecanismo de Higgs.  
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Antes de aplicar el mecanismo de Higgs en el modelo electrodébil con el cual 

obtendremos la masa de los bosones de gauge, vamos a ver las consecuencias de aplicarlo al 

caso más sencillo posible, la teoría invariante gauge bajo el grupo     , conocida como QED, 

en la cual se conserva la carga eléctrica debido a la existencia de dicha simetría.  

La imposición de que el lagrangiano de             sea invariante bajo 

transformaciones                  requiere la introducción de la derivada covariante: 

                                                                                                                                                        

Donde hemos introducido el campo de gauge    o campo del fotón, que transforma 

de la siguiente manera: 

                                                                         
     

 

 
                                                                        

El lagrangiano invariante para un campo complejo escalar   
 

  
         queda de 

la siguiente forma: 

                                                               
 

 
    

                                                          

donde se ha incluido un potencial que preserve la invariancia del lagrangiano de la forma:    

                                                                                                                                          

Impondremos que el parámetro λ sea positivo para garantizar un mínimo de energía y 

estudiaremos las consecuencias de que    sea positivo o negativo.  

En primer lugar, si        se observa en el término del potencial que existe un 

mínimo de energía en el origen y que el lagrangiano es invariante en torno a ese punto. 

 Desarrollando: 

                        
 

 
    

                 

                                    
 

 
      

  
 

 
      

  
 

 
    

  
 

 
    

                                

                                               
  

 
  

   
  

  

 
  

   
  

 

 
  

  
 

 
  

  
 

 
  

   
                                       

Centrándonos en los cuatro primeros términos del lagrangiano vemos que este 

describe a dos partículas masivas    y    cada una con masa µ. El resto de términos en (7) nos 

describen las posibles interacciones de ambas partículas, entre las partículas y el fotón, y las 

autointeracciones de estas partículas. 
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Si se considera ahora el caso en el cual       puede verse que no existe un mínimo 

en el origen como en el caso anterior, sino que hay un punto crítico no estable: 

                                            
     

  
                                                                   

                                                      
      

   
                                                                

Al anular la primera derivada del potencial se comprueba que existe otro extremo 

relativo en:  

                                                                                   
  

  
                                                   

Efectivamente, en este caso la segunda derivada confirma que tenemos un mínimo de 

energía cuando el módulo del campo complejo cumple la anterior igualdad.  

Recordando que   
 

  
        , podemos expresar la condición de mínimo como: 

                                                                              
    

                                                                        

Siendo ahora: 

                                                                                 
  

 
                                                                          

Para analizar el espectro de partículas se estudia el lagrangiano mediante pequeñas 

perturbaciones en torno al vacío. De los infinitos mínimos de energía posibles elegimos 

arbitrariamente       y      sin perder generalidad en el cálculo debido a la simetría del 

sistema. A partir de esta elección definimos dos nuevos campos de forma que el vacío se sitúe 

en nuestro nuevo origen:         y     .  

A partir de   y   el vacío queda expresado de la siguiente manera: 

                                                               
 

  
                                                                  

donde      y      representan fluctuaciones en torno al mínimo. 

Se desarrolla  el lagrangiano en torno al vacío en función de los nuevos campos 

haciendo uso  de las siguientes relaciones: 
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Despreciando términos de alto orden e interacciones entre campos: 

           
 

 
     

 
       

 

 
     

 
 

 

 
    

   
 

 
      

        
                   

Identificamos en el lagrangiano las siguientes partículas: una partícula escalar masiva 

 , una partícula sin masa   y lo más importante, un fotón de masa    (para un campo   

cualquiera, el término de masa correspondiente es de la forma 
 

 
       , por lo que en 

nuestro lagrangiano el término perteneciente al fotón es  
 

 
      

 ). Esto se debe a que 

aunque el lagrangiano mantiene su simetría original en    y en   , no lo hace para los campos 

  y   (en torno al vacío): se ha provocado la ruptura espontánea de simetría. Sin embargo 

existe el inconveniente de que para dotar a nuestro bosón de gauge de masa hemos 

provocado la existencia de otro bosón no masivo (bosón de Goldstone), además de un término 

cruzado entre    y   de difícil interpretación:        
     Este bosón no masivo es 

consecuencia directa del teorema de Goldstone el cual explica que al romper 

“espontáneamente” una simetría global aparece un bosón no masivo. 

Para solucionar estos problemas buscamos una transformación de gauge que elimine 

uno de los campos en el lagrangiano, concretamente el campo ξ. Esto es, buscamos un valor 

del parámetro de fase   tal que   y    se transformen de manera que eliminemos el campo 

no deseado. 

Mirando a los términos que involucran este campo además del término de masa del 

fotón, se observa que podemos reescribirlos de la siguiente forma: 

            
 

 
     

 
       

    
 

 
      

  
 

 
        

 

  
      

 

 
 

 
      

  
                

Recordamos que al imponer la condición de invariancia en el lagrangiano original, 

habíamos exigido que el campo    transformara de la siguiente manera: 

                                                                         
     

 

 
                                                                       

Comparando las dos últimas expresiones, podemos ver que al realizar la elección 

       eliminamos el campo ξ sin influir en el resultado físico ya que como sabemos la 

elección de   es completamente arbitraria. Esta elección de gauge se conoce como gauge 

unitario e implica aplicar el mecanismo de ruptura espontánea de simetría sobre una simetría 

local de gauge ya que       . 

Volviendo a la definición de nuestro nuevo campo definido al desplazar el origen al 

mínimo de energía se observa lo siguiente: 
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Elegido ahora el parámetro de gauge, el campo   se transformará según: 

                                               
   
    

   
 

 

  
      

  
  

 

  
                                           

Hemos introducido en la última igualdad un campo real  . Al aplicar el mecanismo de 

Higgs sobre una teoría local de gauge observaremos que los términos con ξ desaparecen 

manteniendo el bosón de gauge masivo y apareciendo a su vez una partícula escalar masiva: el 

bosón de Higgs.  

Se desarrollan los términos del lagrangiano en el gauge unitario:  

Término              

         
 

  
              

 

  
        

 
 

 
                                           

                                       
 

 
            

 

 
    

        
    

 

 
    

                                      

Para llegar a la última igualdad se ha utilizado la condición       

Tomando ahora el término del potencial     :  

       
 

 
        

 

 
       

Hacemos uso de la relación     
  

 
 para su desarrollo: 

      
   

 
            

 

 
                               

                                                          
   

 
 

   

 
                                                                 

Despreciando el factor constante  
   

 
 en el término del potencial obtenemos finalmente: 

  
 

 
     

 
 

 

 
      

       
    

 

 
      

  
 

 
                

 

 
    

           

Satisfactoriamente el bosón de Goldstone ya no aparece en nuestro lagrangiano, que 

describe dos partículas masivas en interacción: un bosón de gauge    (fotón) y una partícula 

escalar   (Higgs). Además de los términos de masa del fotón y del bosón de Higgs, aparecen en 

el lagrangiano términos de interacción entre ambos y del campo   consigo mismo. Todo esto 

es consecuencia del mecanismo de Higgs. Así pues, el lagrangiano del sistema nos proporciona 

información sobre las partículas existentes en la teoría que describe y las interacciones 

existentes entre ellas. 
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A partir de los términos de masa en el lagrangiano obtenemos una expresión para la 

masa del fotón (distinta de cero en este modelo) y del bosón de Higgs: 

            
 

 
      

                                                                                                                             

                                                                                                                                               

Analizamos ahora los términos de interacción entre el fotón y el Higgs. A partir del 

lagrangiano vemos que el modelo nos dice que existen dos formas posibles de interacción 

entre estos dos bosones: 

1)     
              interacción de dos fotones con un bosón de Higgs 

2) 
 

 
      

         interacción de dos fotones con dos bosones de Higgs 

El factor de proporcionalidad en cada uno de los términos anteriores nos indica el 

acoplamiento de la interacción existente y es denominado vértice de interacción. Podemos ver 

que en ambos casos, este factor es proporcional a la masa del fotón siendo     y   
       

respectivamente, lo que nos indica que la masa del fotón está íntimamente relacionada con 

como interacciona este con el bosón de Higgs. 

Enumeramos el resto de términos de interacción, que corresponden a la existente entre 3 

y 4 bosones de Higgs: 

3)                     interacción entre tres bosones de Higgs 

4) 
 

 
                   interacción entre cuatro bosones de Higgs 

Los vértices de interacción para estos dos términos son    y     respectivamente. 

Finalmente, podemos obtener más información sobre el bosón de Higgs generado a 

partir del lagrangiano como lo es su espín.  Esta propiedad puede obtenerse a partir de los 

términos que lo describen: 

                                                                     
 

 
     

 
                                                                

Al aplicar las ecuaciones de Euler-Lagrange obtenemos la siguiente ecuación del 

movimiento para el campo h: 

                                                                           
                                                                      

Este resultado indica que el bosón de Higgs cumple la ecuación de Klein-Gordon que 

describe campos escalares (de espín cero) en teoría cuántica de campos. Podemos intuir, por 

tanto, que esta partícula tendría espín cero. 

En esta sección hemos desarrollado un           que nos ha ayudado en la 

comprensión del mecanismo de generación de masas. En este modelo la masa del fotón, a 

diferencia de cómo veremos posteriormente, no es nula. 
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 Una vez comprendido cómo funciona el mecanismo de Higgs,  vamos a aplicarlo a un 

caso real: la teoría electrodébil del modelo estándar. Esta teoría está basada en la simetría 

            , la cual implica la conservación del isospín y la hipercarga débil.  El modelo 

estándar se basa en la conjunción de esta simetría junto con la simetría de color        en la 

cual se basa la cromodinámica cuántica (   ). Al producir ruptura espontánea de simetría a la 

simetría              conseguiremos generar masa en los bosones    y   además de 

mantener el fotón no masivo. 

Para conseguir la generación de masas deseada, podemos centrarnos en la parte 

escalar del lagrangiano electrodébil, esto es: 

                                                                                                                                          

Donde      tiene la misma forma que en (6)  con      y    . 

Al igual que en el          , tenemos que introducir una derivada covariante y un 

campo tales que garanticemos la invariancia gauge del lagrangiano respecto de este campo. 

La derivada covariante asociada a la simetría              es: 

                                                                  
 

 
      

          
 

 
                                                    

En (29) se han introducido 4 campos de gauge:          y   . 

Debemos buscar  ahora la forma de elegir cuatro campos reales escalares, uno por 

cada bosón incluido en el modelo. Para mantener la simetría del lagrangiano solo podemos 

incluirlos como multipletes de             . La elección tomada es organizar estos cuatro 

campos en un doblete de isospín (agrupación de los campos en dos estados de tercera 

componente de isospín débil distintos:     ) con hipercarga débil    , de la forma: 

                                                
  

                        
              

              
                                   

Estas elecciones fueron de hecho las tomadas originalmente por Weinberg en 1967 y 

de esta forma se especifica completamente el modelo estándar de interacciones 

electrodébiles.  

Como en el apartado anterior, nos encontramos que existe un extremo relativo no 

estable en el origen para el potencial en función de los campos definidos. Por ello elegimos 

arbitrariamente un vacío de todas las elecciones posibles a fin de desplazar el origen a este y 

poder realizar un análisis perturbativo que nos muestre correctamente el espectro de 

partículas. Elegimos el vacío de forma que            y     . Análogamente a 

como habíamos trabajado antes, trasladamos nuestro origen al mínimo de energía y 
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realizamos la elección de gauge adecuada (gauge unitario). El vacío queda expresado de la 

siguiente manera: 

                                                                               
 

  
 

 

   
                                                               

 Como hemos explicado anteriormente, además de dotar de masa a los bosones    y 

 , mantendremos el fotón no masivo. Este hecho se debe a que si al trabajar sobre el vacío 

existe un subgrupo de transformaciones para el cual este todavía sigue invariante, el bosón 

asociado con dicho subgrupo no obtendrá masa a través del mecanismo de Higgs (no se rompe 

la simetría). Concretamente vamos a ver que el subgrupo de transformaciones para el cual el 

vacío se mantiene invariante es el grupo        por el cual la carga eléctrica se conserva. Es 

precisamente por la búsqueda de este resultado que se ha elegido un doblete de isospín con 

hipercarga     y una elección del vacío como está dada en (31). 

 Vamos a comprobar de una forma rápida si las simetrías asociadas a los bosones de 

gauge han sido o no rotas. Como ya sabemos, la invariancia gauge implica que          , 

siendo   el generador del grupo de simetría correspondiente. Para una transformación 

infinitesimal se cumple                    . Vemos pues que se cumple esta 

condición para        mientras que no lo hace para        y      : 

      :         

                           
  
  

   
 

  
   

 
   

     
 

  
 
   

 
                                    

                           
   
  

  
 

  
   

 
   

    
  

  
 
   

 
                                   

                           
  
   

 
 

  
   

 
   

  
  

  
 

 
   

                                     

       

                                            
 

  
   

 
   

  
 

  
 

 
   

                                    

El generador de la simetría        es: 

                                                                                     
 

 
                                                                    

Donde identificamos    como la tercera componente del isospín. Debido a la elección 

del  mínimo de energía realizada anteriormente en la cual     
 

 
  y     , obtenemos que 

el vacío es neutro, es decir,       

En consecuencia: 

                                                                                                                                 

Lo que hemos visto significa que los cuatro bosones de gauge asociados a los campos 

         y    adquirirán  masa a través del mecanismo de Higgs. Por la teoría electrodébil, 
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sabemos que los campos    y    forman los bosones    mientras que    y    se mezclan 

para formar los bosones neutros   y el fotón de forma que la mezcla entre estos campos 

mantiene   no masivo (ver (98)). 

Nos centramos en calcular las masas de los bosones de gauge, pudiendo trabajar 

únicamente con la siguiente parte del lagrangiano para obtener estos resultados: 

                                                                     
 

  
 
 

 
     

 

  
 
 

 
                                                       

 

Desarrollamos el término anterior: 

  
 

  
 
 

 
        

 

 
      

          
 

 
     

 

  
 
 

 
   

       
 

 
                     

 

 
     

 

  
 
 

 
   

    
 

 
   

   

   
   

     

    
   

   
    

      
 

 
   

  
  

    
 

  
 
 

 
   

 
 

  
 
                     

                    
  

 

 
   

                                                                 
 

  
 

         

           
                                                         

Análogamente: 

                                                           
 

  
 
 

 
  

   

  
 

         

           
                                        

Finalmente llegamos al siguiente resultado: 

               
 

  
 
 

 
     

 

  
 
 

 
   

 

 
        

    
                

 
                 

Reescribimos nuestro resultado en función de los campos de gauge reales      y   . 

En primer lugar podemos reescribir el término que contiene a    y    en un término que 

contenga    utilizando la relación: 

                                                                        
 

  
                                                                     

Haciendo uso de esta última igualdad: 
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Para reescribir ahora el término que está en función de    y     nos damos cuenta de 

que se cumple la siguiente expresión: 

                                             
 
         

       

          
  

  
                      

Con esta última relación podemos explicar el por qué de la elección del valor de la 

hipercarga     . Nos damos cuenta que sólo si     los campos    y    pueden 

mezclarse. Además si      el determinante de la matriz de mezcla entre ambos campos es 

nulo y podemos conseguir que una de las combinaciones genere un bosón sin masa. Se 

calculan los autovalores de la matriz de mezcla y sus correspondientes autovectores: 

                                           
 

       
 
  
 
  

 

       
                                          

                                       
 

       
 

 

     
 

       
                                

De esta manera identificamos el primer autovector con el campo del fotón    y el 

segundo con el bosón  . Con estas asignaciones, podemos reescribir el término que involucra 

   y    de la siguiente manera: 

                                                           
 
                

                                       

Finalmente, al sustituir  (43) y (47) en (41), obtenemos: 

           
 

  
 
 

 
     

 

  
 
 

 
   

 

 
                                  

         

Una vez calculado este término del lagrangiano, podemos identificar los términos de 

masa de los bosones de gauge y calcular así sus masas: 

                                                                    
 

 
                                                                           

                                                                            
 

 
                                                                  

                                                                                                                                                                 

Debido a que los parámetros   y    son parámetros libres, el modelo estándar no 

realiza predicciones absolutas sobre las masas de los bosones   y  . Si podemos ver de las 

expresiones obtenidas que las masas de los bosones cargados    son iguales, y que siempre 

se cumplirá       .  

Es importante destacar que el modelo ha sido construido bajo el requerimiento de que 

la simetría asociada a        no sea rota, por lo que       es una consistencia de los 

cálculos y no una predicción teórica.  
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Podemos relacionar los parámetros   y    a través del ángulo de Weinberg, el cual se 

usa para describir la mezcla entre los campos    y   : 

                                                                                 
  

 
                                                                        

Haciendo uso de esta igualdad podemos relacionar la masa de los bosones   y  : 

                                                                                
  

  
                                                                      

Por tanto vemos que la mezcla entre campos dada por el ángulo de Weinberg causa 

que exista una diferencia de masas entre los bosones   y   de manera que en el límite 

     obtenemos      . 

De forma análoga a como lo habíamos hecho para el          , al desarrollar los 

términos del lagrangiano que involucran al campo real  , a través del potencial de Higgs, nos 

encontramos una partícula escalar: el bosón de Higgs. Si expandimos el término de potencial 

     podemos obtener su correspondiente valor de masa:  

                                                                                                                                                          

Al igual que para los bosones de gauge, el modelo no predice un valor absoluto para la 

masa del bosón de Higgs ya que   es un parámetro libre. 

Hemos visto pues que el modelo estándar no nos predice valores absolutos de la masa 

del Higgs y  de los bosones   y  . Sin embargo, podemos realizar algunas acotaciones sobre 

estas. Como vemos en los resultados (49), (50) y (54), estos están en función de los parámetros 

        y  , siendo libres los tres primeros. Podemos conocer el valor de   de las relaciones 

(49) y (53). Elevando al cuadrado ambas expresiones y sustituyendo la primera en la segunda, 

llegamos al siguiente resultado (se hace uso de unidades naturales): 

                                                                              
 

   
 

  

   
                                                                       

Reescribimos la anterior expresión a partir de la siguiente igualdad: 

                                                                               
  

   
  

  

  
                                                                       

donde    es la constante de Fermi. De esta manera: 

                                                                                 
 

    

                                                                      

A partir del valor experimental                    : 

                                                                                                                                                           

Este valor de energía es conocido como valor esperado del vacío.  
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Conocido ahora el valor esperado del vacío, y a partir de la relación           de 

QED, donde   es la unidad de carga elemental, podemos expresar las masas de los bosones   y 

  como se muestra a continuación: 

                                                                           
    

      
                                                                  

                                                                           
    

       
                                                                 

Asumiendo que no conocemos el ángulo de Weinberg, obtenemos las relaciones: 

                                                                                                                                   

Se ha obtenido de esta manera un límite inferior a los posibles valores de masa de 

ambos bosones. Los valores experimentales medidos son                     y 

                      [4], lo que corrobora las predicciones del modelo. 

Hasta el momento hemos visto como el mecanismo de Higgs consigue dotar con masa 

a los bosones de gauge a la vez que mantenemos nuestra teoría invariante gauge local, 

solucionando así el problema por el cual los bosones eran no masivos. Vamos a comprobar 

ahora como el mecanismo de Higgs  soluciona también el otro problema expuesto 

inicialmente, la generación de masa de los fermiones. 

En el lagrangiano del modelo estándar, los términos       están prohibidos por 

invariancia gauge: si descomponemos este término en estados quirales, es decir        

               , se puede comprobar que los términos de izquierdas y de derechas no 

transforman de la misma manera ya que los fermiones de izquierdas forman dobletes de 

isospín mientras que los de derechas forman singletes. Este problema puede ser resuelto 

introduciendo “a mano” un término que incluye el campo de Higgs:                     

donde    es el denominado acoplamiento de Yukawa. El campo de Higgs incluido es el mismo 

doblete que habíamos utilizado al aplicar la ruptura de simetría al modelo electrodébil por lo 

que al aplicar la ruptura de simetría, el valor elegido del vacío es de la forma expuesta en (31). 

Vamos a centrarnos en los leptones, concretamente en el electrón (para el resto de 

leptones el procedimiento es el mismo). El término incluido en el lagrangiano  es: 

                                           

 

  
           

 
   

              
 
 
 
 
                                 

Desarrollando el término anterior: 

                                                                

 

  
       

 

  
                                                           

Vemos que el término introducido en el lagrangiano nos da un término de masa para 

el electrón y otro  que describe la interacción entre este y el bosón de Higgs.  
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Por inspección del término de masa del electrón: 

                                                                                   
   

  
                                                                        

De igual manera que para el resto de casos en los cuales hemos aplicado la ruptura de 

simetría, la masa del electrón no es predicha de forma absoluta en el modelo al ser    un 

parámetro libre.  

En cuanto al acoplamiento entre el Higgs y el electrón  podemos ver que es 

proporcional a la masa del último (    ). 

Hemos conseguido a través de la introducción de un nuevo término en el lagrangiano 

que los leptones sean dotados de masa. Sin embargo, a través de este mecanismo solo los 

leptones “down” del doblete de isospín la adquieren, de forma que al aplicar este mecanismo 

para las familias de quarks no todos ellos serán masivos en el modelo. A fin de conseguir dar 

masa a los quarks  ,   y   (la teoría predice masa nula para los neutrinos) necesitamos incluir 

otro término más en el lagrangiano. Por suerte, es posible incluir un nuevo término haciendo 

uso del mismo campo de Higgs que en el caso anterior y que mantenga la simetría original: 

                                                              
                                                              

donde:  

                                                                       
   

 

  
 
   

 
                                                     

La parte del lagrangiano correspondiente a la expresión más general posible que dota 

de masa a los fermiones se denomina lagrangiano de Yukawa, el cual se muestra a 

continuación (omitiendo la parte compleja conjugada): 

                                                 
             

       
        

                                     

El lagrangiano anterior nos da todas las posibles combinaciones entre campos 

fermiónicos, resumidos en la Tabla 1. En la representación de los campos se incluye el 

subíndice   que representa  las tres familias posibles. 

Campo   

Quarks                  
Quarks               tipo        

Quarks              tipo          
Leptones                  
Leptones                  
Tabla 1.  Representaciones de los distintos campos fermiónicos. 

En (67) el primer término es el añadido para obtener las masas de los quarks down 

mientras que el segundo nos daría las de los  quarks up y el tercero las de los leptones.  

Como vimos para el caso de los leptones, el acoplamiento de Yukawa utilizado era un 

escalar, sin embargo,  en (67), que representa el caso más general posible, los acoplamientos 
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entre los campos de los quarks vienen dados por las matrices     de forma que introducimos 

términos de mezcla entre dos familias   y   distintas. La inclusión de estos términos cruzados 

dificulta la interpretación de los distintos campos al no tener una masa bien definida. A fin de 

solucionar este problema se realiza un cambio de base en la cual las matrices de acoplamiento 

entre distintas familias sean diagonales. Este cambio de base provocará también un cambio en 

los términos de interacción de forma que aparecerán términos entre campos de distintas 

familias (            ). 

De esta forma hemos presentado de forma ampliada el mecanismo de ruptura 

espontánea de simetría o mecanismo de Higgs, y la generación de masas de de bosones de 

gauge y fermiones en el Modelo Estándar de la física de partículas. Así mismo, hemos obtenido 

masas y  vértices de interacción a partir del lagrangiano correspondiente. Estos vértices se 

utilizarán en los cálculos que presentamos en la siguiente sección. 
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Hasta ahora se ha visto en qué consiste la ruptura espontánea de simetría de una 

teoría gauge local y cuáles son sus consecuencias. La inclusión del mecanismo de Higgs en 

nuestra teoría provoca que aparezcan una serie de términos en el  lagrangiano que describen 

una nueva partícula escalar, el bosón de Higgs, la cual interacciona con el resto de partículas 

del sistema estudiado. La interacción del Higgs con otras partículas puede ser descrita en base 

a su acoplamiento, el cual sabemos que podemos obtener a partir del término del lagrangiano 

que describe dicha interacción.  

Si analizamos todos los acoplamientos que hemos obtenido en casos anteriores, 

podemos ver que estos son función de la masa de la partícula que interacciona con el Higgs. 

Concretamente, el acoplamiento entre el Higgs y dos fermiones es directamente proporcional 

a la masa del fermión como pudimos ver en el caso de la interacción Higgs-electrón-electrón.  

Se estudia a continuación posibles casos de desintegración del bosón de Higgs: a dos 

fermiones (quarks                  y el leptón      ) y dos bosones gauge (  y   ). 

Primero, calculamos la anchura de desintegración en estos procesos. Luego estimamos la 

razón de desintegración y, finalmente, resumimos los canales posibles de producción de la 

partícula de Higgs. 

 

 Desintegración del Higgs a dos fermiones         

 

Para analizar este proceso se hace uso de las reglas de Feynman sobre el diagrama 

correspondiente al proceso estudiado, el cual se muestra a continuación: 

 

 

 

 

 

 

 

En el vértice de interacción se muestra el acoplamiento de Higgs a fermiones 

generalizado del acoplamiento al electrón discutido anteriormente. En este caso la regla de 

Feynman del vértice es:        

Ilustración 1. Diagrama de Feynman de un proceso       
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 La probabilidad de que ocurra un proceso de desintegración de una partícula en un 

sistema de referencia en el cual la partícula está en reposo y va a parar a otras dos partículas 

de igual masa viene dada por la siguiente fórmula [2,3]: 

                                                                         
  

  
 

    

     
                                                                    

En (68) se hace uso del elemento de matriz de dispersión (          )   que 

calcularemos a partir de las reglas de Feynman, del momento de las partículas producidas en la 

desintegración   , de la variable de Mandelstam   y de la cantidad       , siendo   el 

número de partículas idénticas en el proceso. 

A partir del diagrama expuesto anteriormente obtenemos: 

                                                                        
   

 
                                                                  

                                                                         
    

 
                                                                

donde      es el espinor asociado al fermión y      es el del antifermión, cada uno en función 

de su correspondiente momento. 

Haciendo el producto de (69) y (70) y teniendo en cuenta el espín de las partículas: 

                              
  

 
 
 

             
        

       
     

     

                          

                                            
  

 
 
 

    
        

                  
     

    

                                

Para desarrollar la expresión anterior, hacemos uso de las siguientes relaciones de diracología:  

 

     

     

De esta manera obtenemos:  
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Para llegar a (74) se ha hecho uso de la siguiente propiedad: 

                                                                                                                                                    

Para reescribir (74) hacemos uso de la masa invariante del sistema, la variable de 

Mandelstam  , que en nuestro caso cumple las siguientes relaciones: 

                                                                                    
                                                                              

                                                                
    

    
                                                                

Además: 

                                                                            
     

    
                                                                      

Las relaciones anteriores nos llevan a la siguiente igualdad: 

                                                             
  

 
 
 

   
  

 
 
 

   
                                                          

donde: 

                                                                            
   

 

  
                                                                        

Llevando nuestro resultado a la ecuación (68), incluyendo el número de color    (para 

quarks) y sabiendo que    
 

 
    y    : 

                                                                    
  

  
 

    

    
   

  

 
 
 

                                                             

Integrando sobre el ángulo sólido        obtenemos finalmente: 

                                                                       
  

    
  

    
                                                       

siendo    la masa del fermión,    la masa del bosón de Higgs y   viene dada por (80). 

Vemos en este resultado que la desintegración del Higgs a dos fermiones es 

proporcional al cuadrado de la masa del fermión a considerar, lo que indica que serán más 

probables los procesos que involucran fermiones pesados. Hay que tener en cuenta también 

que el proceso producido debe ser energéticamente posible, de forma que el bosón de Higgs 

no podrá nunca desintegrarse en fermiones cuya suma de masas exceda la del propio Higgs. 

Este es el caso del quark top en el Modelo Estándar cuya masa es           . 
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 Desintegración del Higgs a dos bosones de gauge        

 

Ilustración 2. Diagrama de Feynman de un proceso            

 

Leyendo el vértice del diagrama anterior: 

                                           
   

 

  
 

 

       
  

      
  

    

   

      
      

 
                                 

En este caso, los bosones  de gauge se representan a partir de vectores de polarización 

que describen los estados de helicidad de los mismos (  y   respectivamente). Se les ha 

asignado a los bosones momentos   y   respectivamente. 

Desarrollamos la expresión anterior sabiendo que se cumple la siguiente relación: 

                                                                   
  

  
       

    

  

 

                                                          

De esta manera: 

                                                                
   

 

  
 

 

   
      

  
                                                        

Como en el caso anterior, hacemos uso de la variable   para reescribir la ecuación 

anterior: 

                                  
  

   
    

      
 

 
               

   
 

  
                                   

Una vez calculado el elemento de matriz correspondiente, sustituimos este en (68), 

obteniendo la siguiente expresión para la desintegración del Higgs a dos bosones de gauge: 

                           
     

     
   

       
 

 
                            

 

 
                

y donde   
   

 

  
 ,             es la masa del bosón    y    es la masa del bosón de 

Higgs. 
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 Una vez calculadas las amplitudes de desintegración del bosón de Higgs, se realiza un 

estudio de las razones de desintegración, o                 , definidas como la fracción de 

la amplitud de desintegración del proceso deseado entre todos los demás. En nuestro trabajo 

estudiamos la variación de las razones de desintegración en función de la masa del Higgs. 

Nótese que las amplitudes de desintegración a dos bosones y a dos fermiones, calculadas 

previamente, son función de la masa del bosón de Higgs. Para los casos estudiados, la 

expresión a calcular en cada desintegración es: 

             
       

         
 

       

                                   
                    

 En el denominador de esta expresión debería aparecer un sumatorio de todos los 

procesos de desintegración del bosón de Higgs. Sólo se incluye en (88) los casos calculados 

anteriormente, en concreto           con       y  , y         con        

Para realizar la representación gráfica se consideran valores de la masa del Higgs entre 

   y        , además de los siguientes valores para el resto de partículas: 

                     
Bosón W        
Bosón Z        

Tau       
Botton       
Charm       
Tabla 2. Masa de las partículas utilizadas en el plot BR vs. Masa Higgs. 

A continuación presentamos el resultado obtenido:  

 

Figura 1. Resultado gráfico obtenido para las razones de desintegración estudiadas del bosón de Higgs. 
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Este resultado nos muestra de forma clara cómo la desintegración del bosón de Higgs a 

cualquiera de los canales estudiados depende de su masa. Para valores de la masa del Higgs 

menores de         , los únicos canales existentes son los correspondientes a los quarks 

       y       y al leptón     siendo     el canal dominante con una razón de 

desintegración de aproximadamente    . En torno a los         los canales         y    

decaen rápidamente mientras que los canales referidos a  los bosones   y el   aumentan 

hasta ser los únicos con razones de desintegración apreciables. Aunque el bosón   tiene mayor 

masa que el bosón   vemos en la gráfica como este es un proceso menos favorecido, hecho 

que podíamos haber deducido también de la expresión (87). 

Estos resultados para las razones de desintegración han sido ampliamente discutidos 

en la literatura [4, 5]. A continuación presentamos un resultado más completo, que muestra 

varios canales de desintegración posibles que no se han analizado en este trabajo: 

 

Figura 2. Representación de las razones de desintegración del Higgs. 

 

Comparando ambas figuras se observan algunas diferencias apreciables. En primer 

lugar, el resultado  obtenido en este trabajo muestra que las razones de desintegración de los 

quarks        y       y del leptón     son prácticamente constantes en el rango de    a 

         mientras que en la representación de la bibliografía se ve claramente que esto no es 

así, de forma que existe una dependencia notable con la masa del bosón de Higgs, que no 

tenemos en nuestros cálculos. Otra diferencia notable es el comportamiento de la razón de 

desintegración a dos bosones  , resultado que peor hemos conseguido reproducir, de forma 
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que existe una gran diferencia tanto en la forma de la curva como en el valor numérico de esta 

a lo largo de su dominio. 

En la figura 2 se muestran además canales no calculados en este trabajo como son la 

desintegración del Higgs a dos muones, a dos fotones, a un bosón Z y un fotón y a dos gluones. 

Claramente el hecho de no incluir estos canales es un factor que provoca que el resultado 

obtenido y el encontrado en la bibliografía difieran.   

Existe otro hecho relevante por el cual el resultado obtenido no presenta el 

comportamiento deseado y que explicamos brevemente a continuación. Al considerar un 

proceso de desintegración, este puede producirse generalmente de distintas maneras siendo 

la amplitud de desintegración la suma de las amplitudes individuales.   Por tanto, aunque 

hemos considerado que las amplitudes de desintegración de los procesos venían dadas 

únicamente por las expresiones calculadas, en realidad estos resultados son solo una 

contribución de todas las posibles. Los procesos estudiados anteriormente se denominan 

procesos a nivel árbol y son la principal contribución a la amplitud total en los procesos que se 

han estudiado en este trabajo. El resto de contribuciones son mucho menores, en 

comparación, y pueden tratarse a través de cálculos perturbativos. El incluir estas nuevas 

contribuciones denominadas también contribuciones a un     , puede provocar un problema: 

la inclusión de infinitos en los cálculos. La solución a este inconveniente se conoce como 

renormalización, proceso por el cual conseguimos desaparecer estas divergencias. En este 

trabajo no trataremos la renormalización. Sin embargo, a fin de reproducir mejor el resultado 

de la figura 2, vamos a tener en cuenta la inclusión de algunas contribuciones a un     . 

 Primero consideramos lo que se denomina “masa        ” de los fermiones. En 

concreto, consideramos que la masa de los fermiones en los cuales se desintegra el Higgs corre 

con la escala. Sin entrar en detalles de su obtención, la expresión considerada es: 

                    
 

  

     

    
   

 

  
                         

  

      
 

         
                  

donde   es la escala considerada (en nuestro caso, la masa del bosón de Higgs, que variamos 

entre        y        ),        es la denominada masa polo, y    se evalúa a través de la 

siguiente fórmula: 

                                                                           
        

 
                                                                

siendo    el número de color y    el número total de fermiones. 

A la hora de recalcular las razones de desintegración vamos a tener en cuenta 

únicamente la              para el quark       . Nótese que su contribución es mucho 

mayor que la del quark       y el leptón     (ver figura 1). Los valores de los parámetros 

utilizados son                   y                     . 

Además de incluir la contribución a un      para la razón de desintegración del quark 

       mediante la masa        , vamos también a tener en cuenta los canales de 

desintegración del bosón de Higgs a dos fotones y a dos gluones, aunque no vamos a deducir 
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las expresiones de sus razones de desintegración en este trabajo. Se muestran a continuación 

estos resultados obtenidos directamente de la bibliografía: 

                                                       
  

       
  

   
 

 
    

    
 

                                             

                                                  
   

 

      
  

      
  

 
 

   

 
 
  

 
  

 

                                   

donde   es la constante de estructura fina,    la constante de acoplamiento fuerte y    la 

carga del quark top. 

Estas ecuaciones tienen en cuenta contribuciones a un orden igual a nivel perturbativo 

que el considerado en la razón de desintegración del quark         al introducir el concepto 

de masa         , que como hemos dicho antes, corresponden a contribuciones a un     . 

Incluyendo estas nuevas contribuciones a nuestros cálculos se obtiene un nuevo 

resultado, el cual se muestra a continuación:  

 

Figura 3.  Resultado obtenido para las razones de desintegración al introducir la masa running del bottom y las 
contribuciones de las desintegraciones a fotones y gluones. 

 

Vamos a ver ahora que mejoras se han producido respecto de nuestro primer 

resultado (figura 1) comparando ambas representaciones con la figura 2. En primer lugar se 

observa que, contrariamente a lo que ocurría en la figura 1, en el rango de energías entre    y 

        existe una dependencia de las razones de desintegración de los fermiones 

                   con la masa del Higgs. Además, comprobamos que los canales del Higgs 

a dos fotones y a dos gluones presentan el comportamiento deseado. Es importante notar que 
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la contribución de la desintegración del Higgs a dos gluones  llega a superar a la del     de 

forma que su inclusión ha sido un factor importante a la hora de mejorar el resultado obtenido 

inicialmente. De forma contraria, la amplitud de desintegración a dos fotones es mucho menor 

que el resto de canales estudiados y no influye prácticamente en las del resto de canales, pero 

como veremos en la siguiente sección del trabajo, es un canal de importancia a la hora de 

detectar el bosón de Higgs en los aceleradores de partículas. 
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 A lo largo del apartado anterior hemos calculado la amplitud de desintegración del 

bosón de Higgs en varios procesos posibles a través de los acoplamientos  de este a fermiones 

y bosones de gauge obtenidos al aplicar la ruptura espontánea de simetría al modelo 

electrodébil. Estas expresiones nos han permitido estudiar el comportamiento de 

desintegración del Higgs en función del valor de su masa. En esta sección se describen 

brevemente  algunos de los procesos por los cuales se produce el Higgs en los colisionadores 

de hadrones, además se comentarán algunos aspectos sobre su detección. Recordemos que el 

Higgs es una partícula inestable y se desintegra a otras partículas según los canales de 

desintegración antes mencionados. 

Hay esencialmente cuatro mecanismos dominantes de producción del bosón de Higgs 

en los colisionadores de partículas.  Se muestran a continuación los diagramas de Feynman 

correspondientes a  estos procesos: 

  
Fusión gluón - gluón Higgs – Strahlung 

  
Fusión de bosones vectoriales Procesos con quarks pesados 

 

Figura 4. Diagramas de Feynman de los procesos dominantes en los colisionadores de hadrones. 

 El proceso de fusión gluón – gluón es el canal de producción dominante del bosón de 

Higgs en los colisionadores de partículas. Para llevarlo a cabo se provoca la colisión entre dos 

haces de protones, en la cual los gluones producen el Higgs a través de       de quarks, 

siendo dominante la contribución del quark    . Recordamos que el acoplamiento del Higgs a 

fermiones es proporcional a la masa del fermión involucrado en proceso. Es por esto que la 

contribución del     es la más relevante. 

El canal de fusión de bosones vectoriales       es el  segundo proceso más 

importante en la producción del bosón de Higgs. Este proceso se vuelve más importante al 

aumentar la masa del Higgs, pero sin alcanzar la relevancia del canal de fusión gluón – gluón. 
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 En los  procesos de producción conocidos como Higgs – strahlung el Higgs es producido 

en asociación con un bosón de gauge  , con      .  Este proceso es dominante a bajas 

energías y es teóricamente el canal más limpio de todos en la producción del Higgs. 

Por último, vemos que el proceso de producción asociado con quarks pesados (quarks 

top) tiene el mismo estado inicial que la fusión de gluones pero en el estado final no solamente 

se produce el Higgs, sino que este va acompañado de una pareja de quarks pesados, 

        

En cuanto a la detección del Higgs, esta se realiza en base al estudio de sus productos 

de desintegración. Los canales posibles se han estudiado en el apartado anterior (ver figura 2) 

de forma que en función del posible valor de la masa del Higgs se observa que existen canales 

con mayor tendencia que otros. Es importante que en todos los cálculos realizados a lo largo 

de las secciones anteriores no se ha obtenido un valor absoluto de la masa del bosón de Higgs, 

ya que como se mencionó anteriormente, se encuentra en función de parámetros libres. Para 

encontrar su valor es necesario acudir a los colisionadores de hadrones y realizar experimentos 

que se basen en las predicciones teóricas obtenidas del modelo estudiado. La teoría nos 

muestra en que canales podremos encontrar con mayor facilidad la partícula y además en que 

rango de energías debemos buscarla.  

El Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza, fue construido con 

el objetivo principal de encontrar el bosón de Higgs y estudiar sus propiedades. El 4 de julio de 

2012 fue anunciado en el CERN el descubrimiento del bosón de Higgs, presentando los 

resultados de los dos principales experimentos del acelerador (ATLAS y CMS) que revelaban 

una masa del bosón cercana a los                 Para este valor de masa, vemos que la razón 

de desintegración dominante es la correspondiente al proceso      . Sin embargo, este 

canal tiene la dificultad de que no es experimentalmente muy claro debido a que aparecen un 

enorme número de eventos de fondo (          ) conjuntamente a las señales del Higgs. La 

detección del bosón de Higgs se llevó a cabo por primera vez en el LHC en la desintegración del 

Higgs a dos fotones,        para la región de masa pequeñas para el bosón de Higgs, y el 

canal                  en todo el rango de masas. Con el análisis de estos dos canales 

se encontró un exceso de datos alrededor de     –         , valor que ha sido refinado en los 

años posteriores. En las figuras 5 y 6 se muestran los diagramas de Feynman de los procesos 

completos por los cuales se produjo y detectó por primera vez el bosón de Higgs en el LHC: 

 

Figura 5. Producción del Higgs por fusión gluón – gluón y desintegración a dos fotones. 



29 
 

 

Figura 6. Producción del Higgs por fusión gluón – gluón y desintegración a cuatro leptones. 

 Actualmente, se ha completado la búsqueda del bosón de Higgs en otros canales y se 

ha aumentado la precisión en la medida de su masa. El valor de su masa es actualmente [8]: 

                                                                                                                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

Un mecanismo para describir la ruptura de simetría electrodébil está incorporado en el 

Modelo Estándar de la física de partículas. Se introduce un campo escalar complejo que 

adquiere un valor esperado del vacío no nulo a través de sus autointeracciones, rompiendo 

espontáneamente la simetría electrodébil             a la simetría electromagnética 

        Las interacciones de los bosones y los fermiones con el denominado campo de Higgs 

generan las masas de estas partículas. El descubrimiento de la partícula de Higgs y la medida 

de su masa es uno de los mayores éxitos de la física de la era actual. 

En lo que respecta a los vértices de interacción del bosón de Higgs con otras partículas, 

hemos visto en este trabajo que dicha interacción es función de la masa de estas últimas. El 

estudio de la interacción del Higgs con las demás partículas nos ha permitido calcular la 

naturaleza de sus desintegraciones en varios procesos de forma aproximada obteniendo un 

resultado que reproduce las características principales buscadas. En este estudio hemos 

observado como el Higgs tiene una mayor interacción con las partículas más masivas, y hemos 

encontrado la dependencia de la amplitud de desintegración (           ) y la razón de 

desintegración (               ) con la masa del bosón de Higgs. 

Finalmente hemos visto de forma cualitativa los canales de producción del bosón de 

Higgs en los colisionadores de hadrones, y su posterior desintegración en alguno de los 

procesos posibles. Los experimentos en los colisionadores de partículas de altas energías nos 

sirven para corroborar las predicciones teóricas realizadas por el modelo estudiado. Hoy en día 

el bosón de Higgs ha sido descubierto, pero aún se están estudiando sus propiedades e 

interacciones. 
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