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1.Introduccidn.

El concepto de simetria es de gran relevancia en la fisica, de manera que las
interacciones fundamentales en el universo pueden dictarse segln estas. La importancia de las
simetrias radica en que conducen a leyes de conservacidn, consecuencia del teorema de
Noether, que dice que a cada simetria de la naturaleza se le asocia una ley de conservacion y
viceversa [1,2].

Matemdticamente, una simetria estd asociada a una transformacion que deja
invariante la funciéon de ondas de un sistema fisico. Desde el punto de vista fisico, la existencia
de una simetria implica que una cantidad fisica no puede medirse de forma absoluta.

Concretamente, todas las interacciones entre particulas pueden explicarse a través de
las llamadas simetrias locales de gauge. Este hecho estd intimamente ligado con la idea de que
ciertas cantidades fisicas se conservan en regiones locales del espacio, es decir, no lo hacen
globalmente (en todo el espacio). Trabajaremos la conexion entre simetrias y leyes de
conservacién en el marco de la teoria de campos para estudiar después la relacién existente
entre el lagrangiano de un sistema y las reglas de Feynman que nos explican las interacciones
existentes en él.

Una transformacion gauge es una transformacion de fase:

P(x) > e P(x) (D

Este caso corresponde a una transformacién de gauge global ya que la transformacién
es la misma para todos los puntos del espacio. En cambio, si o depende de la coordenada
espacio-temporal estaremos hablando de una transformacién de gauge local, esto es:

P(x) > @ P(x) (2)

Como se ha explicado, la invariancia bajo transformaciones gauge implica que la fase
no puede determinarse de forma absoluta, pudiendo elegirse su valor en el espacio-tiempo de
forma arbitraria. Es importante el hecho de que la eleccion de este pardmetro no cambiara los
resultados fisicos obtenidos. La familia de transformaciones U(a) = e'* donde el parametro a
pertenece a los nimeros reales forma el grupo abeliano conocido como grupo U(1). Si se
reemplaza dicho pardmetro por una matriz unitaria NxN se habla del grupo SU(N). Cuando
los elementos del grupo no conmutan se habla de grupo no abeliano.

La teoria de electrodindmica cuantica (QED) es una teoria invariante gauge local bajo el
grupo U(1), es decir, se requiere la invariancia del lagrangiano al realizar transformaciones
P(x) - e @™ y(x). Como veremos, este hecho nos hace incluir de forma natural un nuevo
campo: el bosén mediador de la fuerza electromagnética, el fotén. En el caso de la teoria
electrodébil del modelo estandar (simetria SU(2) X U(1)), ademas del fotdn, se incluyen los
bosones W* y Z. Bajo esta imposicién de simetria no se permite que los bosones de gauge
adquieran masa ya que los términos de masa (términos cuadraticos del campo) no son
invariantes bajo este tipo de transformacion. Aunque este hecho parece no ser un problema
en QED debido a que el bosén de gauge asociado a esta teoria no tiene masa, el mismo



problema aparece en el modelo electrodébil para los bosones W y Z, particulas que sabemos
qgue son masivas. De la misma forma, no se permiten términos de masa en el lagrangiano para
los fermiones, debido a que no son invariantes gauge [3].

Tenemos que buscar ahora una solucién que mantenga la teoria invariante local gauge
Yy que nos permita obtener bosones de gauge y fermiones masivos. Esta consiste en introducir
un término de potencial en el lagrangiano que provoque que el sistema no sea invariante en
torno al estado de minima energia (vacio) pero de forma que se siga manteniendo la
invariancia inicial requerida. Esta solucidn es lo que se conoce como ruptura espontdnea de
simetria de una teoria invariante local gauge, o mecanismo de Higgs.



2. Toy Model.

Antes de aplicar el mecanismo de Higgs en el modelo electrodébil con el cual
obtendremos la masa de los bosones de gauge, vamos a ver las consecuencias de aplicarlo al
caso mas sencillo posible, |a teoria invariante gauge bajo el grupo U(1), conocida como QED,
en la cual se conserva la carga eléctrica debido a la existencia de dicha simetria.

La imposicion de que el lagrangiano de QED, Lggp, sea invariante bajo

transformaciones Y(x) — €™ 1)(x) requiere la introduccién de la derivada covariante:
D, =0, —ieA, 3)

Donde hemos introducido el campo de gauge A, o campo del foton, que transforma
de la siguiente manera:

1
A=A+ Eaua 4)

El lagrangiano invariante para un campo complejo escalar ¢ = % (¢p1 + i¢p,) queda de

la siguiente forma:

= (D ") (Dyo) ——F VY =V (), Q)
donde se ha incluido un potencial que preserve la invariancia del lagrangiano de la forma:

V(p) = 12 (¢°d) + A" ¢)? (6)

Impondremos que el pardmetro A sea positivo para garantizar un minimo de energia y
estudiaremos las consecuencias de que p? sea positivo o negativo.

En primer lugar, si u? >0 se observa en el término del potencial que existe un
minimo de energia en el origen y que el lagrangiano es invariante en torno a ese punto.

Desarrollando:

1
L= (0% +ieA")¢" (9, — ied, )¢ — 7 B FH = wol? — Al =

1 1 1 1
= 5(5,@1)2 + E(auﬁ‘bz)z - Eﬂzfﬁ - 5#245% +

2 2

A
+ A2¢1 + A2¢2 ——¢1 ——¢2 —E(ﬁ%d’% 7

Centrandonos en los cuatro primeros términos del lagrangiano vemos que este
describe a dos particulas masivas ¢, y ¢, cada una con masa (. El resto de términos en (7) nos
describen las posibles interacciones de ambas particulas, entre las particulas y el fotén, y las
autointeracciones de estas particulas.



Si se considera ahora el caso en el cual u? < 0 puede verse que no existe un minimo
en el origen como en el caso anterior, sino que hay un punto critico no estable:

av

%z 202|p| + 4ABI* = |I(2u2 + 421 p|2) (8)
2
ddl;fj))=2uz+12/1|¢|2<0 eng =0 )

Al anular la primera derivada del potencial se comprueba que existe otro extremo
relativo en:

2
|p| = v siendo V' = —';—/1 (10)

Efectivamente, en este caso la segunda derivada confirma que tenemos un minimo de
energia cuando el médulo del campo complejo cumple la anterior igualdad.

Recordando que ¢ = \/% (¢1 + i¢p,), podemos expresar la condicién de minimo como:

¢i+¢3 =v? (11D

Siendo ahora:

Vi = —— (12)

Para analizar el espectro de particulas se estudia el lagrangiano mediante pequenas
perturbaciones en torno al vacio. De los infinitos minimos de energia posibles elegimos
arbitrariamente ¢, = v y ¢, = 0 sin perder generalidad en el calculo debido a la simetria del
sistema. A partir de esta eleccion definimos dos nuevos campos de forma que el vacio se situe
en nuestro nuevo origen: n = ¢, —vy¢é = ¢,.

A partir de n y € el vacio queda expresado de la siguiente manera:

30 == ((v + 1) +i£00), (13)

donde n(x) y £(x) representan fluctuaciones en torno al minimo.

Se desarrolla el lagrangiano en torno al vacio en funcidn de los nuevos campos
haciendo uso de las siguientes relaciones:

B2 =5 @+mE+e) ; vi=-b aw=0 (a4)

1
L=(0"+ ieA”)‘b*(au - ieAu)(l) - ZFMVFHV - .uzld)lz - /1|¢|4 = (15)

1 1 2 A 1
= 3049 (8} + 93) + 5 €2 A AN DF + $3) = - (87 + 93) — T (@2 + §D)? — L Fu PV



Despreciando términos de alto orden e interacciones entre campos:

1 2 1 2 1 1
L= E(aun) - Wn? + > (0,6)" - ZP;WF”V + EeszAﬁ —evA, (0%¢) + otros  (16)
Identificamos en el lagrangiano las siguientes particulas: una particula escalar masiva

71, una particula sin masa ¢ y lo mas importante, un fotdn de masa ev (para un campo V

. . . . 1
cualquiera, el término de masa correspondiente es de la forma Emasanz, por lo que en

. . . . 1
nuestro lagrangiano el término perteneciente al fotén es Eezvaﬁ). Esto se debe a que

aunque el lagrangiano mantiene su simetria original en ¢, y en ¢, no lo hace para los campos
ny & (en torno al vacio): se ha provocado la ruptura espontdnea de simetria. Sin embargo
existe el inconveniente de que para dotar a nuestro bosén de gauge de masa hemos
provocado la existencia de otro bosén no masivo (bosén de Goldstone), ademds de un término
cruzado entre A, y ¢ de dificil interpretacion: evA,(9"$). Este bosén no masivo es
consecuencia directa del teorema de Goldstone el cual explica que al romper
“espontdneamente” una simetria global aparece un bosén no masivo.

Para solucionar estos problemas buscamos una transformacion de gauge que elimine
uno de los campos en el lagrangiano, concretamente el campo &. Esto es, buscamos un valor
del parametro de fase a tal que ¢ y A, se transformen de manera que eliminemos el campo
no deseado.

Mirando a los términos que involucran este campo ademads del término de masa del
fotén, se observa que podemos reescribirlos de la siguiente forma:

1 2 1 1 1 21 ,
5 (0,6)" — evA,(0%) + EeZUZAﬁ = Zezv2 [Au — a(aug)] = EeszAﬁ (17)

Recordamos que al imponer la condicién de invariancia en el lagrangiano original,
habiamos exigido que el campo 4, transformara de la siguiente manera:

1
= Ay + =00 (18)

Comparando las dos ultimas expresiones, podemos ver que al realizar la eleccidon
a = —&/v eliminamos el campo § sin influir en el resultado fisico ya que como sabemos la
eleccién de a es completamente arbitraria. Esta eleccion de gauge se conoce como gauge
unitario e implica aplicar el mecanismo de ruptura espontanea de simetria sobre una simetria
local de gauge ya que a = a(§).

Volviendo a la definicién de nuestro nuevo campo definido al desplazar el origen al
minimo de energia se observa lo siguiente:

_i(( + )+‘)zi( + )% 19
¢—ﬁvnlf—ﬁvne (19)



Elegido ahora el pardametro de gauge, el campo ¢ se transformara segun:
P eV = —(rnes =—u+h (20)
—> e v =e v — (VD ev = — (v
2T TR

Hemos introducido en la dltima igualdad un campo real h. Al aplicar el mecanismo de
Higgs sobre una teoria local de gauge observaremos que los términos con & desaparecen
manteniendo el bosdn de gauge masivo y apareciendo a su vez una particula escalar masiva: el
bosdn de Higgs.

Se desarrollan los términos del lagrangiano en el gauge unitario:
Término (D*¢*)(D,¢):

1 1
(o* + ieA“)ﬁ(v +h)(9, — ieAH)ﬁ(v +h) =

1
= E(G”v + 0*h + ieA* (v + h)) - (auv + 0,h —ied, (v — h) =

1 1 1
=3 (@*h)(9,h) — EezAﬁvz +e2A%hv + EezAﬁhz (21)
Para llegar a la Gltima igualdad se ha utilizado la condicién d,v = 0

Tomando ahora el término del potencial V (h):

1 1
V(h) =y25(v+h)2 +AZ(v+h)4

2

Hacemos uso de la relacién v? = —”7 para su desarrollo:
vzﬂ' 2 2 A 4 4 21,2 2,,2 3 3
V(h) :—T(v +h +2vh)+Z(v + h* + 4v°h* + 2h*v* + 4v°h + 4vh>) =
vt Ah* 3 -
=—T+T+Uh/1+vh/1 (22)

. Av* L . .
Despreciando el factor constante — —en el término del potencial obtenemos finalmente:

1 2 1 1 1
L= E(auh) + Eezvaﬁ+ e?A%hv + Eezthﬁ —=

1
7 M = vh*A—v?h22 — 2 F FYY (23)

Satisfactoriamente el bosdn de Goldstone ya no aparece en nuestro lagrangiano, que
describe dos particulas masivas en interaccion: un bosén de gauge A, (fotén) y una particula
escalar h (Higgs). Ademas de los términos de masa del fotdn y del bosén de Higgs, aparecen en
el lagrangiano términos de interaccion entre ambos y del campo h consigo mismo. Todo esto
es consecuencia del mecanismo de Higgs. Asi pues, el lagrangiano del sistema nos proporciona
informacidn sobre las particulas existentes en la teoria que describe y las interacciones
existentes entre ellas.



A partir de los términos de masa en el lagrangiano obtenemos una expresion para la
masa del fotdn (distinta de cero en este modelo) y del bosdn de Higgs:

1
1) EeZVZAﬁ m, = ev (24)
2) v2h22 my, =+ 2v21 (25)

Analizamos ahora los términos de interaccidon entre el foton y el Higgs. A partir del
lagrangiano vemos que el modelo nos dice que existen dos formas posibles de interaccién
entre estos dos bosones:

1) e*A%hv interaccion de dos fotones con un bosén de Higgs

2) %ezthﬁ interaccién de dos fotones con dos bosones de Higgs

El factor de proporcionalidad en cada uno de los términos anteriores nos indica el
acoplamiento de la interaccidn existente y es denominado vértice de interaccién. Podemos ver
que en ambos casos, este factor es proporcional a la masa del foton siendo em,, y m}z,/Zv2
respectivamente, lo que nos indica que la masa del fotén estd intimamente relacionada con
como interacciona este con el bosén de Higgs.

Enumeramos el resto de términos de interaccidn, que corresponden a la existente entre 3
y 4 bosones de Higgs:

3) vh32 interaccion entre tres bosones de Higgs

1 . L .
4) " Ah* interaccion entre cuatro bosones de Higgs

Los vértices de interaccién para estos dos términos son vAy 1/4 respectivamente.

Finalmente, podemos obtener mas informacién sobre el bosén de Higgs generado a
partir del lagrangiano como lo es su espin. Esta propiedad puede obtenerse a partir de los
términos que lo describen:

L(h) = %(auh)2 — Jw?h? (26)

Al aplicar las ecuaciones de Euler-Lagrange obtenemos la siguiente ecuacion del
movimiento para el campo h:

(0,0" +2v*A )R =0 (27)

Este resultado indica que el bosén de Higgs cumple la ecuacién de Klein-Gordon que
describe campos escalares (de espin cero) en teoria cuantica de campos. Podemos intuir, por
tanto, que esta particula tendria espin cero.

En esta seccion hemos desarrollado un toy model que nos ha ayudado en la
comprension del mecanismo de generacidn de masas. En este modelo la masa del fotén, a
diferencia de cémo veremos posteriormente, no es nula.



3.Ruptura espontdnea de simetria y

mecanismo de Higgs.

Una vez comprendido cdmo funciona el mecanismo de Higgs, vamos a aplicarlo a un
caso real: la teoria electrodébil del modelo estandar. Esta teoria esta basada en la simetria
SU(2);, X U(1)y, la cual implica la conservacién del isospin y la hipercarga débil. El modelo
estandar se basa en la conjuncidén de esta simetria junto con la simetria de color SU(3). en la
cual se basa la cromodinamica cuantica (QCD). Al producir ruptura espontanea de simetria a la
simetria SU(2), x U(1)y conseguiremos generar masa en los bosones W y Z ademas de
mantener el fotén no masivo.

Para conseguir la generacién de masas deseada, podemos centrarnos en la parte
escalar del lagrangiano electrodébil, esto es:

L= D ¢")(Dup) — V() (28)
Donde V (¢) tiene la misma forma que en (6) con u?> < 0y A > 0.

Al igual que en el toy model, tenemos que introducir una derivada covariante y un
campo tales que garanticemos la invariancia gauge del lagrangiano respecto de este campo.

La derivada covariante asociada a la simetria SU(2), X U(1)y es:

1. 1
Du=(3u+l‘gzT-Wu+lg’5YBu (29)

En (29) se han introducido 4 campos de gauge: Wy, W,, W5y B,,.

Debemos buscar ahora la forma de elegir cuatro campos reales escalares, uno por
cada bosén incluido en el modelo. Para mantener la simetria del lagrangiano solo podemos
incluirlos como multipletes de SU(2); X U(1)y. La eleccién tomada es organizar estos cuatro
campos en un doblete de isospin (agrupacion de los campos en dos estados de tercera
componente de isospin débil distintos: +1/2) con hipercarga débil Y = 1, de la forma:

b= <¢+> siendo ¢ = (1 +i¢2)/V2 30)

¢° P0 = (3 + ids)/V2

Estas elecciones fueron de hecho las tomadas originalmente por Weinberg en 1967 y
de esta forma se especifica completamente el modelo estandar de interacciones
electrodébiles.

Como en el apartado anterior, nos encontramos que existe un extremo relativo no
estable en el origen para el potencial en funcidn de los campos definidos. Por ello elegimos
arbitrariamente un vacio de todas las elecciones posibles a fin de desplazar el origen a este y
poder realizar un andlisis perturbativo que nos muestre correctamente el espectro de
particulas. Elegimos el vacio de forma que ¢, = ¢, = ¢, =0 y ¢p; = v. Andlogamente a
como habiamos trabajado antes, trasladamos nuestro origen al minimo de energia y
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realizamos la eleccidon de gauge adecuada (gauge unitario). El vacio queda expresado de la
siguiente manera:

o :%(v-(l)-h) (1)

Como hemos explicado anteriormente, ademas de dotar de masa a los bosones W y
Z, mantendremos el fotén no masivo. Este hecho se debe a que si al trabajar sobre el vacio
existe un subgrupo de transformaciones para el cual este todavia sigue invariante, el bosén
asociado con dicho subgrupo no obtendra masa a través del mecanismo de Higgs (no se rompe
la simetria). Concretamente vamos a ver que el subgrupo de transformaciones para el cual el
vacio se mantiene invariante es el grupo U(1),,, por el cual la carga eléctrica se conserva. Es
precisamente por la busqueda de este resultado que se ha elegido un doblete de isospin con
hipercarga Y = 1 y una eleccién del vacio como estd dada en (31).

Vamos a comprobar de una forma rapida si las simetrias asociadas a los bosones de
gauge han sido o no rotas. Como ya sabemos, la invariancia gauge implica que e'*2¢, = ¢,,
siendo Z el generador del grupo de simetria correspondiente. Para una transformacion
infinitesimal se cumple (1 +iaZ)py = ¢y = Z¢p, = 0. Vemos pues que se cumple esta
condicién para U(1),,, mientras que no lo hace para SU(2), y U(1)y:

SU(2),:
74 L T1¢hg = (2 é) % (v _?_ h) = %(v -(I)_ h) # 0 - simetria rota (32)
w, Ty = ((1) _Ol) \/—17 (v -(l)- h) = %(U -(l)_ h) # 0 - simetria rota (33)
W3 T3¢0 = ((1) _01)% (v -(I)- h) = _T;(v -(I)- h) # 0 - simetria rota (34)
U(y:
B, Y Yo = Y % (v _?_ h) = %(v -(l)- h) # 0 - simetria rota (35)
El generador de la simetria U(1),,, es:

Q=T>3 +§ (36)

Donde identificamos T3 como la tercera componente del isospin. Debido a la eleccién
. , . . 1
del minimo de energia realizada anteriormente en la cual T3 = -5V Y =1, obtenemos que

el vacio es neutro, es decir, Q@ = 0.
En consecuencia:
Q¢ = 0 - no se rompe la simetria (37)

Lo que hemos visto significa que los cuatro bosones de gauge asociados a los campos
Wi, W, W3y B, adquiriran masa a través del mecanismo de Higgs. Por la teoria electrodeébil,
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sabemos que los campos W, y W, forman los bosones W* mientras que W5 y B, se mezclan
para formar los bosones neutros Z y el fotén de forma que la mezcla entre estos campos
mantiene ¥ no masivo (ver (98)).

Nos centramos en calcular las masas de los bosones de gauge, pudiendo trabajar
Unicamente con la siguiente parte del lagrangiano para obtener estos resultados:

(D” \/_15 (3)) (D“ % (2)) (38)

Desarrollamos el término anterior:

Dﬂl(o)—[a +'1‘W+"1YB]1(0)—
Z\w) T[T T T S PR TE ) T

1 ! 1 /0
= [au + lgz (T Wy + T, W + 13W5) +ig 3 YB”]E(U) =
.10 W 0 —iW, W; 0 N 100\
‘[l%((Wl o) (w, o)+ (o —W3> +ig'; (o y)Buﬁ(l)‘

L’(gWS, +4g'Y B, g(Ww, —iWws,) >(0)
V8

gWy +iW,)  —gWs+g'YB,)\v
i Wy — iw.
=_< gy , 2) ) (39)
VB\—-gWs +g'Y B,
Analogamente:
Dui<0> = __w< g + ”,/VZ) > (40)
V2\w/ 8 \-gWs+g'Y B,

Finalmente llegamos al siguiente resultado:

<DM% <2)> <D"%<2)) - %vz [92(W12 +WH + (—gWs +g'Y Bu)2] (41)

Reescribimos nuestro resultado en funcién de los campos de gauge reales W<, Z yA,.
En primer lugar podemos reescribir el término que contiene a W; y W, en un término que
contenga W utilizando la relacién:

wt = % W, FiW,) (42)

Haciendo uso de esta ultima igualdad:

g WE+ W) = g?(W** + w?) (43)

12



Para reescribir ahora el término que estd en funcién de W5 y B, nos damos cuenta de

gue se cumple la siguiente expresion:

2 —gg’ |74
Comrara) =oms)( 0 NG e
Con esta ultima relacién podemos explicar el por qué de la eleccién del valor de la
hipercarga ¥ = +1. Nos damos cuenta que solo si Y # 0 los campos W3 y B, pueden
mezclarse. Ademads si Y = +1 el determinante de la matriz de mezcla entre ambos campos es
nulo y podemos conseguir que una de las combinaciones genere un bosdn sin masa. Se
calculan los autovalores de la matriz de mezcla y sus correspondientes autovectores:

1 ! 1
/1=0—>—(g>=— '"Ws + gB 45
Jrara) T JErgm Mt o) “
! 1 g 1 !
=@+ 97 > —( ) =———(gW: - g'B,) (46)

De esta manera identificamos el primer autovector con el campo del foton 4, vy el
segundo con el bosén Z. Con estas asignaciones, podemos reescribir el término que involucra
W3y B, de la siguiente manera:

! 2 !
(—gWs+g'YB,) = (9> +9')Z?+0- A% (47)

Finalmente, al sustituir (43) y (47) en (41), obtenemos:

1 (0 10\ 1
(Duﬁ(v» (Dﬂﬁ@) =5V’ [P W + W) + (g% +9™)Z° +0- 4] (48)

Una vez calculado este término del lagrangiano, podemos identificar los términos de
masa de los bosones de gauge y calcular asi sus masas:

1
Mz=5vy (g% +9'%) (49)

1
My + = My,- = Evg (50)

M, =0 (51)

Debido a que los pardmetros g y g’ son pardmetros libres, el modelo estandar no
realiza predicciones absolutas sobre las masas de los bosones W y Z. Si podemos ver de las
expresiones obtenidas que las masas de los bosones cargados W son iguales, y que siempre
se cumplird M, = My, .

Es importante destacar que el modelo ha sido construido bajo el requerimiento de que
la simetria asociada a U(1),,, no sea rota, por lo que M, = 0 es una consistencia de los

calculos y no una prediccion tedrica.
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Podemos relacionar los parametros g y g’ a través del dngulo de Weinberg, el cual se
usa para describir la mezcla entre los campos B, y W5:

!

9 —taney, (52)
9
Haciendo uso de esta igualdad podemos relacionar la masa de los bosones W y Z:

M 0 (53)
—— = cos
M, w
Por tanto vemos que la mezcla entre campos dada por el angulo de Weinberg causa
que exista una diferencia de masas entre los bosones W yZ de manera que en el limite
0y, = 0 obtenemos M, = My,.

De forma andloga a como lo habiamos hecho para el toy model, al desarrollar los
términos del lagrangiano que involucran al campo real h, a través del potencial de Higgs, nos
encontramos una particula escalar: el bosén de Higgs. Si expandimos el término de potencial
V(¢) podemos obtener su correspondiente valor de masa:

my, = 2021 (54)

Al igual que para los bosones de gauge, el modelo no predice un valor absoluto para la
masa del bosén de Higgs ya que A es un parametro libre.

Hemos visto pues que el modelo estdndar no nos predice valores absolutos de la masa
del Higgs y de los bosones W y Z. Sin embargo, podemos realizar algunas acotaciones sobre
estas. Como vemos en los resultados (49), (50) y (54), estos estan en funcion de los parametros
g, g', Ay v, siendo libres los tres primeros. Podemos conocer el valor de v de las relaciones
(49) y (53). Elevando al cuadrado ambas expresiones y sustituyendo la primera en la segunda,
llegamos al siguiente resultado (se hace uso de unidades naturales):

1 g?

- - 55
2v2  8My, (55)
Reescribimos la anterior expresion a partir de la siguiente igualdad:

9* _Gr
8M3,

; (56)

)

donde G es la constante de Fermi. De esta manera:

1
v= |5 (57)

A partir del valor experimental Gr = 1.166 - 107> GeV ~2:
v = 246 GeV (58)
Este valor de energia es conocido como valor esperado del vacio.
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Conocido ahora el valor esperado del vacio, y a partir de la relaciéon e = g senf,, de
QED, donde e es la unidad de carga elemental, podemos expresar las masas de los bosones Z y
W como se muestra a continuacion:

_ 37.3 GeV cq
W™ sen Ow € 9)

_ 746 GeV 60
7 sen 20y, ¢ (60)

Asumiendo que no conocemos el angulo de Weinberg, obtenemos las relaciones:
My, =533GeV vy M, > 74.6 GeV (61)

Se ha obtenido de esta manera un limite inferior a los posibles valores de masa de
ambos bosones. Los valores experimentales medidos son My, = 80.385 + 0.015 GeV vy
M, =91.1876 £+ 0.0021 GeV [4], lo que corrobora las predicciones del modelo.

Hasta el momento hemos visto como el mecanismo de Higgs consigue dotar con masa
a los bosones de gauge a la vez que mantenemos nuestra teoria invariante gauge local,
solucionando asi el problema por el cual los bosones eran no masivos. Vamos a comprobar
ahora como el mecanismo de Higgs soluciona también el otro problema expuesto
inicialmente, la generacidon de masa de los fermiones.

En el lagrangiano del modelo estdndar, los términos —m) estdn prohibidos por
invariancia gauge: si descomponemos este término en estados quirales, es decir: —myp =
—m(P, P + PrY,), se puede comprobar que los términos de izquierdas y de derechas no
transforman de la misma manera ya que los fermiones de izquierdas forman dobletes de
isospin mientras que los de derechas forman singletes. Este problema puede ser resuelto
introduciendo “a mano” un término que incluye el campo de Higgs: —Af(lﬁqul,bR + PrdY,)
donde Ay es el denominado acoplamiento de Yukawa. El campo de Higgs incluido es el mismo
doblete que habiamos utilizado al aplicar la ruptura de simetria al modelo electrodébil por lo
que al aplicar la ruptura de simetria, el valor elegido del vacio es de la forma expuesta en (31).

Vamos a centrarnos en los leptones, concretamente en el electrén (para el resto de
leptones el procedimiento es el mismo). El término incluido en el lagrangiano es:

1

_ (0 v
L, =—1, ﬁ [(v, é)L (v + h) eg +er(0,v+h) (e)L] (62)
Desarrollando el término anterior:
L A ! e A ! he (63)
= —-A,—vée — A,—hee
e e\/'z 6\/'5

Vemos que el término introducido en el lagrangiano nos da un término de masa para
el electrén y otro que describe la interaccion entre este y el bosdn de Higgs.
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Por inspeccién del término de masa del electrén:

AoV
m, =— (64)

V2
De igual manera que para el resto de casos en los cuales hemos aplicado la ruptura de
simetria, la masa del electrén no es predicha de forma absoluta en el modelo al ser 4, un

pardmetro libre.

En cuanto al acoplamiento entre el Higgs y el electrén podemos ver que es
proporcional a la masa del dltimo (m, /v).

Hemos conseguido a través de la introduccidn de un nuevo término en el lagrangiano
gue los leptones sean dotados de masa. Sin embargo, a través de este mecanismo solo los
leptones “down” del doblete de isospin la adquieren, de forma que al aplicar este mecanismo
para las familias de quarks no todos ellos seran masivos en el modelo. A fin de conseguir dar
masa a los quarks u, ¢ y t (la teoria predice masa nula para los neutrinos) necesitamos incluir
otro término mas en el lagrangiano. Por suerte, es posible incluir un nuevo término haciendo
uso del mismo campo de Higgs que en el caso anterior y que mantenga la simetria original:

Lyy = Af)ZL$C¢R + complejo conjugado (65)
donde:
§e=—ir ¢ =~ (V1 1) (66)
NAN

La parte del lagrangiano correspondiente a la expresion mds general posible que dota
de masa a los fermiones se denomina lagrangiano de Yukawa, el cual se muestra a
continuacién (omitiendo la parte compleja conjugada):

—Lyurawa = Yij*Quipdrj + Vi Quidug, + Yi;' Lidlg, (67)

El lagrangiano anterior nos da todas las posibles combinaciones entre campos
fermidnicos, resumidos en la Tabla 1. En la representacién de los campos se incluye el
subindice i que representa las tres familias posibles.

Campo P
Quarks left handed Qi
Quarks right handed tipo up Ug;
Quarks right handed tipo down dpi
Leptones left handed Ly
Leptones right handed lpi

Tabla 1. Representaciones de los distintos campos fermiénicos.

En (67) el primer término es el afadido para obtener las masas de los quarks down
mientras que el segundo nos daria las de los quarks up y el tercero las de los leptones.

Como vimos para el caso de los leptones, el acoplamiento de Yukawa utilizado era un
escalar, sin embargo, en (67), que representa el caso mas general posible, los acoplamientos
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entre los campos de los quarks vienen dados por las matrices Y;; de forma que introducimos
términos de mezcla entre dos familias i y j distintas. La inclusion de estos términos cruzados
dificulta la interpretacion de los distintos campos al no tener una masa bien definida. A fin de
solucionar este problema se realiza un cambio de base en la cual las matrices de acoplamiento
entre distintas familias sean diagonales. Este cambio de base provocard también un cambio en
los términos de interaccién de forma que aparecerdn términos entre campos de distintas
familias (quark mixing).

De esta forma hemos presentado de forma ampliada el mecanismo de ruptura
espontanea de simetria o mecanismo de Higgs, y la generacion de masas de de bosones de
gauge y fermiones en el Modelo Estandar de la fisica de particulas. Asi mismo, hemos obtenido
masas y Vvértices de interaccién a partir del lagrangiano correspondiente. Estos vértices se
utilizaran en los calculos que presentamos en la siguiente seccion.
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4.Desintegraciones del bosén de Higgs.

Hasta ahora se ha visto en qué consiste la ruptura espontanea de simetria de una
teoria gauge local y cuales son sus consecuencias. La inclusién del mecanismo de Higgs en
nuestra teoria provoca que aparezcan una serie de términos en el lagrangiano que describen
una nueva particula escalar, el bosén de Higgs, la cual interacciona con el resto de particulas
del sistema estudiado. La interaccion del Higgs con otras particulas puede ser descrita en base
a su acoplamiento, el cual sabemos que podemos obtener a partir del término del lagrangiano
que describe dicha interaccion.

Si analizamos todos los acoplamientos que hemos obtenido en casos anteriores,
podemos ver que estos son funcién de la masa de la particula que interacciona con el Higgs.
Concretamente, el acoplamiento entre el Higgs y dos fermiones es directamente proporcional
a la masa del fermidn como pudimos ver en el caso de la interaccién Higgs-electrén-electron.

Se estudia a continuacién posibles casos de desintegracion del bosén de Higgs: a dos
fermiones (quarks bottom b,charmc vy el leptén tau 1) y dos bosones gauge (Z y W1).
Primero, calculamos la anchura de desintegracion en estos procesos. Luego estimamos la
razén de desintegracién vy, finalmente, resumimos los canales posibles de produccién de la
particula de Higgs.

e Desintegracién del Higgs a dos fermiones H — ff

Para analizar este proceso se hace uso de las reglas de Feynman sobre el diagrama
correspondiente al proceso estudiado, el cual se muestra a continuacion:

f

llustracién 1. Diagrama de Feynman de un proceso H — ff

En el vértice de interaccion se muestra el acoplamiento de Higgs a fermiones
generalizado del acoplamiento al electrén discutido anteriormente. En este caso la regla de
Feynman del vértice es: my /v.
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La probabilidad de que ocurra un proceso de desintegracién de una particula en un
sistema de referencia en el cual la particula esta en reposo y va a parar a otras dos particulas
de igual masa viene dada por la siguiente formula [2,3]:

ar  |M|?

an = 32025 171 (68)

En (68) se hace uso del elemento de matriz de dispersidn (Scattering) M que
calcularemos a partir de las reglas de Feynman, del momento de las particulas producidas en la
desintegracion 178 de la variable de Mandelstam s y de la cantidad S = 1/n!, siendo n el

numero de particulas idénticas en el proceso.

A partir del diagrama expuesto anteriormente obtenemos:

. _ lmf
—iM = a(py) —L v(-py) (69)
. _ —lmf
iM = v(—p,) " u(py) (70)

donde u(p) es el espinor asociado al fermion y v(p) es el del antifermién, cada uno en funcidn
de su correspondiente momento.

Haciendo el producto de (69) y (70) y teniendo en cuenta el espin de las particulas:

M2 = (’"Tf) D T, (Pt (00T, (P, (-12) =

51,52

= (mTf) Zusl(pl)ﬂsl(pl) ZﬁSZ(—pz)vSZ(_pz) 71)

S1

Para desarrollar la expresién anterior, hacemos uso de las siguientes relaciones de diracologia:

D e, )T, (1) = Tr(n + my) (72)

S1

D 55, (B2, () = Tr(=p5 —my) (73)

52
De esta manera obtenemos:

< i empicnen-
(L) 1ot - ) =
= (m7f>2 (—4pip; — 4m?) 74)
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Para llegar a (74) se ha hecho uso de la siguiente propiedad:
Tr(n®impary) =0 (75)

Para reescribir (74) hacemos uso de la masa invariante del sistema, la variable de
Mandelstam s, que en nuestro caso cumple las siguientes relaciones:

s=m? (76)
s = (p1 — p2)? = p% + D5 — 2p1P2 (77)

Ademas:
p? =p5 =m} (78)

Las relaciones anteriores nos llevan a la siguiente igualdad:

2 2
= () = (2 o
donde:
B=|1- 4_171}% (80)
my

Llevando nuestro resultado a la ecuacién (68), incluyendo el nimero de color N (para

quarks) y sabiendo que py = %B\/E yS=1:

dr' _ Nymy, (mf)2 e

- = — 1
dn  32m? \v (B1)
Integrando sobre el angulo sélido [ d2 = 4w obtenemos finalmente:
NC 2 3
F(h - ff) i memp 8 (82)

siendo my la masa del fermion, my, la masa del boson de Higgs y 8 viene dada por (80).

Vemos en este resultado que la desintegracion del Higgs a dos fermiones es
proporcional al cuadrado de la masa del fermidén a considerar, lo que indica que seran mas
probables los procesos que involucran fermiones pesados. Hay que tener en cuenta también
que el proceso producido debe ser energéticamente posible, de forma que el bosén de Higgs
no podrad nunca desintegrarse en fermiones cuya suma de masas exceda la del propio Higgs.
Este es el caso del quark top en el Modelo Estdndar cuya masa es m; = 175 GeV.
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e Desintegracion del Higgs a dos bosones de gauge H — VV

llustracion 2. Diagrama de Feynman de un proceso H - VV;V = Z, W

Leyendo el vértice del diagrama anterior:
2
gM% * *
M? = (M_W> Zgw e ) ¥ (@) Gap 5 P)ES (@) (83)
A6

En este caso, los bosones de gauge se representan a partir de vectores de polarizacion
que describen los estados de helicidad de los mismos (A y u respectivamente). Se les ha
asignado a los bosones momentos p y q respectivamente.

Desarrollamos la expresion anterior sabiendo que se cumple la siguiente relacion:

* Pubv
Z 8& 8{} = _gI»W + W (84)
2
De esta manera:
gM3\’ (- q)?
M2 = ( ) (z + ) (85)
My, My
Como en el caso anterior, hacemos uso de la variable s para reescribir la ecuacién
anterior:
2 2
g 3 4My;
M2=—m4(1—x+—x2) con x = —- V=ZW 86
amz, 4 mz 7 (86)

Una vez calculado el elemento de matriz correspondiente, sustituimos este en (68),
obteniendo la siguiente expresion para la desintegracion del Higgs a dos bosones de gauge:

2
9°Syv 3 1
I'(h->VV) = SAMZ, mj (1 —x+ sz) Vi—-x conSywzz = 1,5 (87)
2
y donde x = %, V =2,W), My, es la masa del boson W, y m;, es la masa del boson de
Higgs.
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Una vez calculadas las amplitudes de desintegracion del bosén de Higgs, se realiza un
estudio de las razones de desintegracion, o branching ratios, definidas como la fraccidn de
la amplitud de desintegracion del proceso deseado entre todos los demds. En nuestro trabajo
estudiamos la variacién de las razones de desintegracién en funcidén de la masa del Higgs.
Notese que las amplitudes de desintegracidon a dos bosones y a dos fermiones, calculadas
previamente, son funciéon de la masa del bosén de Higgs. Para los casos estudiados, la
expresion a calcular en cada desintegracion es:

I'(h - ii) ['(h - ii)

BROM) = 5t =D [(bb) +T(cO) + T(t*77) + I(ZZ) + T(W*W™) >

En el denominador de esta expresion deberia aparecer un sumatorio de todos los
procesos de desintegracidon del bosén de Higgs. Sélo se incluye en (88) los casos calculados
anteriormente, en concreto F(h - ff) conf =b,cyt,yI'(h->VV)conV =Z,W.

Para realizar la representacién grafica se consideran valores de la masa del Higgs entre
60y 250 GeV, ademas de los siguientes valores para el resto de particulas:

Particula Masa (GeV)
Bosén W 80.385
Bosén Z 91.188
Tau 1.777
Botton 4.180
Charm 1.275

Tabla 2. Masa de las particulas utilizadas en el plot BR vs. Masa Higgs.

A continuacidn presentamos el resultado obtenido:

0.1

0.01

Branching ratio
T T IIIII|
Ll

0.001

0.0001 1 1 1 1 I | 1 1 1
a0 100 120 140 160 180 200 220 240 260

Masa Higgs (GeV)

[=j]
[ ]

Figura 1. Resultado grafico obtenido para las razones de desintegracion estudiadas del boson de Higgs.
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Este resultado nos muestra de forma clara cdmo la desintegracién del bosén de Higgs a
cualquiera de los canales estudiados depende de su masa. Para valores de la masa del Higgs
menores de 160 GeVl/, los Unicos canales existentes son los correspondientes a los quarks
bottom y charm vy al leptén tau siendo bb el canal dominante con una razén de
desintegracion de aproximadamente 0.8. En torno a los 160 GeV los canales bb,cC y T
decaen rapidamente mientras que los canales referidos a los bosones W y el Z aumentan
hasta ser los Unicos con razones de desintegracidn apreciables. Aunque el bosén Z tiene mayor
masa que el boséon W vemos en la grafica como este es un proceso menos favorecido, hecho
que podiamos haber deducido también de la expresién (87).

Estos resultados para las razones de desintegracidon han sido ampliamente discutidos
en la literatura [4, 5]. A continuacidén presentamos un resultado mas completo, que muestra
varios canales de desintegracién posibles que no se han analizado en este trabajo:

LHEC HIGGS X5 WG 2013

10"

ggs BR + Total Uncert

—

0-2

1073

I160 I180I I2‘.']0
M, [GeV]

AL ] ! L
1080 100 120 140

Figura 2. Representacion de las razones de desintegracion del Higgs.

Comparando ambas figuras se observan algunas diferencias apreciables. En primer
lugar, el resultado obtenido en este trabajo muestra que las razones de desintegracién de los
quarks bottom y charm y del leptdn tau son practicamente constantes en el rango de 60 a
160 GeV, mientras que en la representacion de la bibliografia se ve claramente que esto no es
asi, de forma que existe una dependencia notable con la masa del bosén de Higgs, que no
tenemos en nuestros cdlculos. Otra diferencia notable es el comportamiento de la razén de
desintegracion a dos bosones Z, resultado que peor hemos conseguido reproducir, de forma
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que existe una gran diferencia tanto en la forma de la curva como en el valor numérico de esta
a lo largo de su dominio.

En la figura 2 se muestran ademas canales no calculados en este trabajo como son la
desintegracidn del Higgs a dos muones, a dos fotones, a un bosdn Z y un fotén y a dos gluones.
Claramente el hecho de no incluir estos canales es un factor que provoca que el resultado
obtenido y el encontrado en la bibliografia difieran.

Existe otro hecho relevante por el cual el resultado obtenido no presenta el
comportamiento deseado y que explicamos brevemente a continuacion. Al considerar un
proceso de desintegracion, este puede producirse generalmente de distintas maneras siendo
la amplitud de desintegracion la suma de las amplitudes individuales. Por tanto, aunque
hemos considerado que las amplitudes de desintegracién de los procesos venian dadas
Unicamente por las expresiones calculadas, en realidad estos resultados son solo una
contribucion de todas las posibles. Los procesos estudiados anteriormente se denominan
procesos a nivel arbol y son la principal contribucién a la amplitud total en los procesos que se
han estudiado en este trabajo. El resto de contribuciones son mucho menores, en
comparacién, y pueden tratarse a través de calculos perturbativos. El incluir estas nuevas
contribuciones denominadas también contribuciones a un loop, puede provocar un problema:
la inclusidn de infinitos en los calculos. La solucidon a este inconveniente se conoce como
renormalizacidn, proceso por el cual conseguimos desaparecer estas divergencias. En este
trabajo no trataremos la renormalizacién. Sin embargo, a fin de reproducir mejor el resultado
de la figura 2, vamos a tener en cuenta la inclusién de algunas contribuciones a un loop.

Primero consideramos lo que se denomina “masa running” de los fermiones. En
concreto, consideramos que la masa de los fermiones en los cuales se desintegra el Higgs corre
con la escala. Sin entrar en detalles de su obtencién, la expresidon considerada es:

4 as(Q) logg ) con ag(Q) = 2 ; (90)

B E 21fy Qo Bo log (W)

donde Q es la escala considerada (en nuestro caso, la masa del bosén de Higgs, que variamos

m(Q) = m(Qo) <1

entre 60 GeV y 260 GeV), m(Q,) es la denominada masa polo, y 8, se evalta a través de la
siguiente formula:

11N, — 2N
Bo=——g—" (91)

siendo N el niumero de color y Ny el nimero total de fermiones.

A la hora de recalcular las razones de desintegracién vamos a tener en cuenta
Unicamente la masa running para el quark bottom. Nétese que su contribuciéon es mucho
mayor que la del quark charm y el leptdn tau (ver figura 1). Los valores de los parametros
utilizados son m(Qy) = Qo = 4.18 GeV' y By = 23/3 (Nc = 3,Nf = 5).

Ademas de incluir la contribucidn a un loop para la razén de desintegracion del quark
bottom mediante la masa running, vamos también a tener en cuenta los canales de
desintegracion del bosén de Higgs a dos fotones y a dos gluones, aunque no vamos a deducir
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las expresiones de sus razones de desintegracion en este trabajo. Se muestran a continuacién
estos resultados obtenidos directamente de la bibliografia:

2 2
__a s |4y 2
Fth—-yy) = Soemzpz Mt §NCet -7 (92)
2 2
__ & s ( (‘lﬂﬁ)ﬁ)
I'(h—-gg) = Tl 2 m;y (1+ 2 e )7 (93)

donde a es la constante de estructura fina, ag la constante de acoplamiento fuerte y e; la
carga del quark top.

Estas ecuaciones tienen en cuenta contribuciones a un orden igual a nivel perturbativo
que el considerado en la razén de desintegracion del quark bottom al introducir el concepto
de masa running, que como hemos dicho antes, corresponden a contribuciones a un loop.

Incluyendo estas nuevas contribuciones a nuestros cdlculos se obtiene un nuevo
resultado, el cual se muestra a continuacion:

1 T T i T P B S— — ]
L h - _‘,r’f Boson W —— |
i Bosdn Z
C | Tau 7
0.1 hY Bottom ———
L ™ Charm i
. Fotdn
r Gludn ]
=] | .
= 0.01 F |
d L j
£
o
c L j
=
P X .
0.0001 .
1e-005 1 1 1 1 | 1 1 1 1
a6l 80 100 120 140 160 180 200 220 240 260

Masa Higgs (GeV)

Figura 3. Resultado obtenido para las razones de desintegracion al introducir la masa running del bottom y las
contribuciones de las desintegraciones a fotones y gluones.

Vamos a ver ahora que mejoras se han producido respecto de nuestro primer
resultado (figura 1) comparando ambas representaciones con la figura 2. En primer lugar se
observa que, contrariamente a lo que ocurria en la figura 1, en el rango de energias entre 60 y
160 GeV existe una dependencia de las razones de desintegracion de los fermiones
tau, charm y bottom con la masa del Higgs. Ademas, comprobamos que los canales del Higgs
a dos fotones y a dos gluones presentan el comportamiento deseado. Es importante notar que
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la contribucién de la desintegracion del Higgs a dos gluones llega a superar a la del tau de
forma que su inclusién ha sido un factor importante a la hora de mejorar el resultado obtenido
inicialmente. De forma contraria, la amplitud de desintegracién a dos fotones es mucho menor
gue el resto de canales estudiados y no influye practicamente en las del resto de canales, pero
como veremos en la siguiente seccidn del trabajo, es un canal de importancia a la hora de
detectar el bosén de Higgs en los aceleradores de particulas.
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5. Produccién y deteccidn del bosén de Higgs.

A lo largo del apartado anterior hemos calculado la amplitud de desintegracion del
bosdn de Higgs en varios procesos posibles a través de los acoplamientos de este a fermiones
y bosones de gauge obtenidos al aplicar la ruptura espontdanea de simetria al modelo
electrodébil. Estas expresiones nos han permitido estudiar el comportamiento de
desintegracidon del Higgs en funcidn del valor de su masa. En esta seccidon se describen
brevemente algunos de los procesos por los cuales se produce el Higgs en los colisionadores
de hadrones, ademds se comentardn algunos aspectos sobre su deteccidn. Recordemos que el
Higgs es una particula inestable y se desintegra a otras particulas segin los canales de
desintegracidn antes mencionados.

Hay esencialmente cuatro mecanismos dominantes de produccion del bosén de Higgs
en los colisionadores de particulas. Se muestran a continuacién los diagramas de Feynman
correspondientes a estos procesos:

—n|

f

Higgs — Strahlung

Fusidn de bosones vectoriales Procesos con quarks pesados

Figura 4. Diagramas de Feynman de los procesos dominantes en los colisionadores de hadrones.

El proceso de fusién gluén — gludn es el canal de produccion dominante del bosén de
Higgs en los colisionadores de particulas. Para llevarlo a cabo se provoca la colisién entre dos
haces de protones, en la cual los gluones producen el Higgs a través de loops de quarks,
siendo dominante la contribucién del quark top. Recordamos que el acoplamiento del Higgs a
fermiones es proporcional a la masa del fermidn involucrado en proceso. Es por esto que la
contribucion del top es la mas relevante.

El canal de fusion de bosones vectoriales W o0Z es el segundo proceso mas
importante en la produccidon del bosén de Higgs. Este proceso se vuelve mas importante al
aumentar la masa del Higgs, pero sin alcanzar la relevancia del canal de fusion gluén — gluén.
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En los procesos de produccidon conocidos como Higgs — strahlung el Higgs es producido
en asociacidn con un bosén de gauge V, con V = W,Z. Este proceso es dominante a bajas
energias y es tedricamente el canal mds limpio de todos en la produccién del Higgs.

Por ultimo, vemos que el proceso de produccidn asociado con quarks pesados (quarks
top) tiene el mismo estado inicial que la fusidn de gluones pero en el estado final no solamente
se produce el Higgs, sino que este va acompafiado de una pareja de quarks pesados,
gg — Htt.

En cuanto a la deteccidn del Higgs, esta se realiza en base al estudio de sus productos
de desintegracion. Los canales posibles se han estudiado en el apartado anterior (ver figura 2)
de forma que en funcién del posible valor de la masa del Higgs se observa que existen canales
con mayor tendencia que otros. Es importante que en todos los cdlculos realizados a lo largo
de las secciones anteriores no se ha obtenido un valor absoluto de la masa del bosén de Higgs,
ya que como se menciond anteriormente, se encuentra en funcion de pardmetros libres. Para
encontrar su valor es necesario acudir a los colisionadores de hadrones y realizar experimentos
gue se basen en las predicciones tedricas obtenidas del modelo estudiado. La teoria nos
muestra en que canales podremos encontrar con mayor facilidad la particula y ademas en que
rango de energias debemos buscarla.

El Gran Colisionador de Hadrones (LHC) del CERN en Ginebra, Suiza, fue construido con
el objetivo principal de encontrar el bosén de Higgs y estudiar sus propiedades. El 4 de julio de
2012 fue anunciado en el CERN el descubrimiento del bosén de Higgs, presentando los
resultados de los dos principales experimentos del acelerador (ATLAS y CMS) que revelaban
una masa del bosén cercana a los 125 GeV [6, 7]. Para este valor de masa, vemos que la razén
de desintegracién dominante es la correspondiente al proceso H — bb. Sin embargo, este
canal tiene la dificultad de que no es experimentalmente muy claro debido a que aparecen un
enorme numero de eventos de fondo (background) conjuntamente a las sefiales del Higgs. La
deteccion del boson de Higgs se llevd a cabo por primera vez en el LHC en la desintegracion del
Higgs a dos fotones, H = yy, para la regidn de masa pequeias para el bosén de Higgs, y el
canal H - ZZ* — 4 leptones en todo el rango de masas. Con el analisis de estos dos canales
se encontrd un exceso de datos alrededor de 125 - 127 GeV, valor que ha sido refinado en los
afios posteriores. En las figuras 5 y 6 se muestran los diagramas de Feynman de los procesos
completos por los cuales se produjo y detectd por primera vez el bosén de Higgs en el LHC:

Figura 5. Produccion del Higgs por fusién gluén — gluén y desintegracion a dos fotones.
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Figura 6. Produccion del Higgs por fusion gluén — gludn y desintegracion a cuatro leptones.

Actualmente, se ha completado la busqueda del bosén de Higgs en otros canales y se
ha aumentado la precisién en la medida de su masa. El valor de su masa es actualmente [8]:

my = 125.36 + 0.37(stat) + 0.18 (syst) GeV (92)
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6. Conclusién.

Un mecanismo para describir la ruptura de simetria electrodébil estd incorporado en el
Modelo Estdndar de la fisica de particulas. Se introduce un campo escalar complejo que
adquiere un valor esperado del vacio no nulo a través de sus autointeracciones, rompiendo
espontaneamente la simetria electrodébil SU(2) X U(1)y a la simetria electromagnética
U(1)gy- Las interacciones de los bosones y los fermiones con el denominado campo de Higgs
generan las masas de estas particulas. El descubrimiento de la particula de Higgs y la medida
de su masa es uno de los mayores éxitos de la fisica de la era actual.

En lo que respecta a los vértices de interaccidén del bosdn de Higgs con otras particulas,
hemos visto en este trabajo que dicha interaccion es funcién de la masa de estas ultimas. El
estudio de la interaccién del Higgs con las demads particulas nos ha permitido calcular la
naturaleza de sus desintegraciones en varios procesos de forma aproximada obteniendo un
resultado que reproduce las caracteristicas principales buscadas. En este estudio hemos
observado como el Higgs tiene una mayor interaccidn con las particulas mas masivas, y hemos
encontrado la dependencia de la amplitud de desintegracidon (decay width) y la razén de
desintegracién (branching ratio) con la masa del bosdn de Higgs.

Finalmente hemos visto de forma cualitativa los canales de produccion del bosén de
Higgs en los colisionadores de hadrones, y su posterior desintegracién en alguno de los
procesos posibles. Los experimentos en los colisionadores de particulas de altas energias nos
sirven para corroborar las predicciones tedricas realizadas por el modelo estudiado. Hoy en dia
el bosén de Higgs ha sido descubierto, pero aun se estan estudiando sus propiedades e
interacciones.
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