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Abstract

In Security and Defense, the identification and quantification of live explosives is an unresolved
technological challenges. Nowadays, the most useful and efficient method is the smell of dogs,
but they have clear limitations. This is why there are efforts in developing innovative, fast
and effective platforms multi-sensors to ensure early detection of explosives. These systems
are called “nanoSNIFFER” and they are made by a lot of sensors.

The main purpose of this work is to develop a method to encode a family of curves in
R? depending on a set of parameters (maximum 10). These curves correspond to different
experimental tests with different amounts of explosive obtained through electrical signals of
“nanoSNIFFER”. Each of them has between 300 and 320 points. The curve with 25 ppm
(parts per million) will be the curve example.

Global encoding

Data Encoded Vector

Local encoding

Figure 1: Encoding process.

As shown in Figure 1, for each curve, it showns a comparison between the global encoding
and the local one, taking into account the physical meaning of each piece.

Global encoding

For global encoding, the following generic nonlinear functions are used to adjust data.

Parameters | Method | Function

2 expl ap exp(a1z)

4 exp2 expl + azexp(azx)

143 foul ap + ay cos(wz) + by sin(wz)

145 fou2 foul + agcos(2wz) + by sin(2wx)
147 fou3 fou2 + agcos(3wz) + b3 sin(3wx)
3 gaussl | agexp (—(z — a1)?/b7)

6 gauss2 | gaussl + agexp (—(z — ag)?/b3)
9 gauss3 | gauss2 + agexp (—(z — as)?/b3)

vii
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For all curves, the best method is fou3 obtaining a value of R? > 0.9964 for the smoothed
data and for the original ones of R? > 0.9544. This method uses 8 parameters which is below
the set threshold.

Thus, the encoding of the curve example with fou3 is:

(83.08,0.00269, 0.003321, —0.0001061, 0.001823, 0.0003441, 0.0007918, 0.503)

with a goodness of fit R? = 0.9982.

Local encoding

Each curve can be divided in three pieces taking into account the physical meaning: the first
piece corresponds to the heating of the sensor, the second one corresponds to the introduction
of the explosive and the actual experiment. The last one correspond to the removal of the
explosive and sensor recovery. See Figure 3.5.

If each piece is encoded separately with previous methods, 24 parameters are required for
coding with a value of R? > 0.99 (smoothed data). Therefore, this encoding does not improve
the global one.

However, the idea of dividing the curves is quite interesting because the central piece is
actually the important one, so only this piece will be encode. This one is encoded with a
custom function called “particularizada” which is:

f(x,0) = aexp(—bx) + csin(dzx), b > 0.

As noted, this function has half the parameters as fou3, i.e. only 4 parameters: (a,b,c,d).
In addition, it provides a goodness of fit of all curves higher than that obtained with other
methods of four parameters like foul and exp2.

So, the encoding of the curve example is:

(83.09,1.871 - 107, 0.000978, 0.8789)

and R? = 0.9959.

Therefore, it has found a function that encodes each curve with only 4 parameters with
a value of R? > 0.9864 (smoothed data) which is clearly advantageous to global encoding
because it uses half the parameters.

Identificacion de sustancias explosivas
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Capitulo 1

Introduccion

En el ambito de la Seguridad y Defensa, la identificacién y cuantificacién de explosivos
«in-situ» y en tiempo real es uno de los retos tecnologicos pendientes de resolver. Los desafios
en este ambito estdn relacionados con la amplia variedad de sustancias explosivas existentes,
incluyendo los artefactos explosivos improvisados (IED). Si bien los fabricantes de explosivos
incorporan en la formulacién de los mismos sustancias relativamente volétiles o «taggants»
que facilitan su identificacion para controlar su trafico ilegal, los cada vez mas frecuentes IED
caen fuera de esta categoria. En teoria, cualquier esquema de andlisis quimico podria ser uti-
lizado, y de hecho, casi todos los métodos instrumentales conocidos ya han sido investigados
para la deteccién de explosivos. Sin embargo, muchos de los andlisis clasicos no son aplicables
debido al tiempo requerido, y solamente son usados como ensayos de confirmacién a posterio-
ri, a su coste o a la formacion especializada del usuario final. A dia de hoy, podemos concluir
que no existe una soluciéon que resuelva los requerimientos de sensibilidad, selectividad, repro-
ducibilidad, fiabilidad, sencillez, rapidez y coste para detecciéon de IED en todas sus variantes
y escenarios posibles.

En el ambito de este proyecto y en relacién a la aplicacion de técnicas matematicas para
la automatizacion de procesos para la deteccién de compuestos quimicos, se encuentran dos
areas de investigacion bien diferenciadas:

e Estimacion de la localizacion de la fuente de un determinado compuesto.

e Identificaciéon de un determinado compuesto a partir de senales eléctricas de uno o mas
sensores.

En este trabajo, se da la informacién necesaria para la codificaciéon de las sustancias para la
posterior identificaciéon mediante senales eléctricas de uno o mas sensores.

Esta introduccién asi como el desarrollo del presente trabajo estd enmarcado dentro
del proyecto Microsistemas basados en nanoestructuras con propiedades especificas de absor-
cion y plasmdn superficial, para deteccion de explosivos ocultos y agentes de guerra quimica
(CTQ2013-49068-C2-2-R) cuyo investigador principal es Miguel Angel Urbitzondo Castro del
CUD.

1.1 Motivacion

En la actualidad, el método mas 1util y eficiente para la identificacién y cuantificacién de
explosivos es el olfato de los perros adiestrados, pero tienen limitaciones obvias, de ahi los
esfuerzos en el desarrollo de plataformas multisensoras innovadoras, rdpidas y eficaces, con un
principio de funcionamiento similar al olfato de los perros para garantizar la deteccion tem-
prana de explosivos. Estos sistemas se denominan «narices electronicas» y estan constituidos
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por multitud de sensores donde se combinan principios de transducciéon muy variados con el
mismo fin.

1.2 Objetivo

El objetivo principal de este trabajo es obtener un método para codificar una familia de curvas
en R? dependiendo de un conjunto de pardmetros, de tal modo que en caso de presentarse
una nueva curva, el modelo sea capaz de codificarla segin las curvas anteriormente dadas.

Para cada una de las sustancias explosivas, se dispone de varias curvas correspondientes a
las diferentes pruebas experimentales con distintas cantidades de explosivo obtenidas gracias
a los multiples sensores que componen las llamadas «narices electronicas».

La idea es mostrar para cada una de estas curvas planas, una comparacién entre la pa-
rametrizacion global y la parametrizacién por trozos, teniendo en cuenta el sentido fisico de
cada uno de ellos.

Para ello, realizaremos lo que se llama un «bombardeo fit» con diferentes funciones de ajus-
te intentando encontrar un equilibrio entre el nimero de pardmetros utilizados y el coeficiente
de correlacién entre la curva plana dada y la curva de ajuste, es decir, se intentara encontrar
un coeficiente de correlacién lo mas préximo a la unidad pero, minimizando el nimero de
parametros que definen la curva.

1.3 Metodologia

Para la codificacion de tales curvas se han utilizado dos vias, regresiéon mediante funciones no
lineales genéricas y regresiéon mediante una funcién particularizada para el trozo central de la
curva que es el més representativo. Se ha obtenido con cada una de estas vias el coeficiente
de correlacién entre los datos obtenidos experimentalmente y los datos regresionados, que
nos indicard lo buena que es la caracterizacion, junto con el vector de pardmetros que la
caracteriza. El proceso completo viene dado en la Figura 1.1.

Como se observa en dicha figura, se realizard un primer estudio sobre el suavizado y el
troceado de las curvas para después proceder a la posterior codificacién de la curva mediante
las dos vias citadas.

Notar que se sitiia en diez el niimero maximo de parametros puesto que estos datos serviran
para una posterior clasificacion de las curvas incrementandose el tiempo de identificacion
notablemente si se supera tal méaximo.

Identificacion de sustancias explosivas



1.3. Metodologia

Codificacion Particularizada

Codificacién global

Funcién parametrizada

Figura 1.1: Vias utilizadas para la caracterizacién de la curva.

(R%; Vector de pardmetros)

3
Datos
Suavizado Suavizado
No
Si
Trozos — Trozos S EE—
No

Autor: Alejandro Gracia Benito







Capitulo 2

Suavizado y Regresion

En este capitulo se exponen las herramientas matematicas utilizadas en el proceso de codifi-
cado de nuestras curvas. Dichas herramientas son de cardcter general y no solo sirven para
dicho trabajo. La estructura del capitulo se divide en dos partes: suavizado y regresiéon. En
la parte de regresién el proceso a seguir es el estudio del modelo tedrico general seguido por
el estudio del caso lineal para finalmente terminar con el caso no lineal.

2.1 Swuavizado

En esta seccién, vamos a hablar de diferentes filtros digitales utilizados en el proceso de
suavizado: sgolay, loess, lowess, rloess y rlowess.

2.1.1 Filtro sgolay (Savitzky-Golay)

El filtro de Savitzky-Golay (codificado como sgolay) fue descrito por primera vez en 1964 por
Abraham Savitzky y Marcel J. E. Golay: Smoothing and differentiation of data by simplified
least squares procedures [13]. Este método se basa en el célculo de una regresién polinomica
local (de grado k), con al menos k + 1 puntos equiespaciados, para determinar el nuevo valor
de cada punto (ver Figura 2.1). El resultado serd una funcién similar a los datos de entrada,
pero suavizada. Existen métodos para calcular desde la primera a la quinta derivada. En la
Figura 2.2 se muestra el suavizado para una funcién con dicho filtro mediante un polinomio
de grado 4.

04 04

0.35 0.35

03 03

0.5 0.15

0.1 014

0.05 o W/\/f 0.05 4 M’
P el & “9’5""3‘"’6\3&
UEE DIQ

a

-0.05

T T T T T 005

T T T T T T T
o7 1 11 12 13 14 oF oe o8 1 11 12 13 14

Figura 2.1: Ejemplo regresion local por un polinomio de grado 3.
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La principal ventaja de esta aproximacién es que tiende a preservar caracteristicas de la
distribucién inicial tales como los extremos relativos o el ancho de los picos, que normalmente
desaparecen con otras técnicas como la media desplazadal.

o Original .
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©
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@
o
=
200 B T T T T 3
< Diff
e] - u
g 100 S-G
o 0
©
g —100F .
400 420 440 460 480 500

Figura 2.2: Suavizado de una funcién, de su primera y segunda derivada con el filtro sgolay.

2.1.2 Filtros lowess y loess (locally weighted scatter plot smooth)

El proceso de suavizado se considera local porque, al igual que el método de media desplazada,
cada valor suavizado se determina por los datos vecinos. El proceso se pondera por una funciéon
de regresion que se define para dichos puntos. Ademas de esta funcién de ponderacién, se puede
utilizar una funcién de peso robusto, lo que hace que el proceso sea resistente a los « outliers».
Finalmente, los métodos se diferencian por el modelo utilizado en la regresion: lowess utiliza
un polinomio lineal, mientras que loess utiliza un polinomio cuadratico.

Métodos robustos: rlowess y rloess

Si los datos contienen «outliersy», los valores suavizados pueden distorsionarse, y no reflejar
el comportamiento de la mayor parte de los puntos vecinos. Para evitar este problema, se
pueden suavizar los datos utilizando un procedimiento robusto que no esta influenciado por
una pequena fraccién de los «outliers».

En la Figura 2.3 se puede observar que los valores suavizados no quedan distorsionados
por los «outliers» al utilizar el método robusto, reflejando mejor el comportamiento de todo
el conjunto de puntos.

1 , . . . ..
Para saber mds sobre el funcionamiento del proceso de la media desplazada visitar:

Identificacion de sustancias explosivas
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T T
3r c o - Original
Suavizado usando loess

T T
3r © ot - Original
Suavizado usando rloess

Figura 2.3: Comparacion entre el método loess y rloess.

Se puede encontrar mas informacién sobre estos filtros en numerosos libros. A continuacién
se citan algunos de ellos: An Evaluation of Smoothing Filters for Gas Sensor Signal Cleaning
[2], Data Filtering Technique for Neural Networks Forecasting [15] y Filters for RSSI-based
measurements in a Device-free Passive Localisation Scenario [4].

En la siguiente seccién se va a proceder al andlisis de la regresién tanto lineal como no
lineal. Aunque existe numerosa literatura clasica como por ejemplo Introduction to Mathe-
matical Statistics [7], dicho andlisis se basard en el libro Introduccion a la Estadistica [10].

2.2 Regresion

Antes de comenzar con el estudio del modelo tedrico general se dard una breve resefia historica
sobre el término. Para mas informacién consultar Hereditary Genius, An Inquiry Into Its Laws
and Consequences [5].

El término «regresion» fue acunado por Francis Galton en el siglo XIX para describir
un fenémeno biolégico. Galton observé que las alturas de los descendientes de ancestros altos
tienden a regresar hacia un promedio normal de altura (un fenémeno conocido como regresién
a la media). Para Galton, la regresién solo tenia este significado biol6gico, pero su trabajo se
extendié mas tarde por Udny Yule y Karl Pearson a un contexto estadistico mas general.

http://es.mathworks.com/help/curvefit/smoothing-data.htm#lbs50jev

Autor: Alejandro Gracia Benito
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Se denomina regresién al proceso general de ajustar una funcién a unos datos. El criterio
de minimizacién empleado para tal ajuste es fundamental a la hora de determinar la curva
de regresion, siendo habitual utilizar el método de minimos cuadrados. Segin que la funcién
a ajustar sea lineal o no lineal en los parametros hablaremos de regresién lineal o regresién
no lineal, respectivamente. En ambos casos, el objetivo es el mismo: encontrar las mejores
estimaciones de los parametros y cuantificar la precisién de los mismos.

Matematicamente, se puede describir un modelo de regresién entre las variables X e Y
como:

Y = f(X,60)+¢(0)

donde 6 es un vector de pardmetros del modelo de regresién que se estima con los valores de
los elementos de la muestra y £(f) es un término de error cometido al explicar la variable Y
con la curva dada por la funcién f(X,6).

El correspondiente muestral de este modelo tedrico de regresion estd dado por una curva
de regresién de Y sobre X definida como:

Yi = f(.%’z, 9*) + 61(9*)

donde 6* define la curva que minimiza la distancia entre los puntos (z;,y;) v la curva. Los
elementos e;(0*) se denominan residuos y estan definidos por:

€ = Yi — Yi, Z:17"'7n

donde y; es la ordenada e §; = f(x;,0*) denota la observacién estimada correspondiente al
modelo de regresion establecido.

Como se ha expuesto al principio de la seccion, el criterio de minimizacién empleado
para ajustar la curva a los datos es fundamental para determinar la curva de regresién. Nos
centraremos en el estudio del criterio de minimos cuadrados.

Minimos cuadrados

Al igual que antes, se comenzara con unos datos histéricos. Para saber méas sobre Gauss y su
aportacion a la Estadistica consultar Gauss y la Estadistica [8].

El método de minimos cuadrados tiene una larga historia que se remonta a los principios
del siglo XIX. En junio de 1801, Zach, un astrénomo que Gauss habia conocido dos anos
antes, publicaba las posiciones orbitales del cuerpo celeste Ceres, un nuevo pequeno planeta
descubierto por el astronomo italiano G. Piazzi en ese mismo afio. Desafortunadamente, Piazzi
solo habia podido observar 9 grados de su érbita antes de que este cuerpo desapareciese tras
el sol. Zach publicé varias predicciones de su posicién incluyendo una de Gauss que diferia
notablemente de las demés. Cuando Ceres fue redescubierto por Zach en diciembre de 1801
estaba casi exactamente donde Gauss habia predicho. Aunque todavia no habia revelado
su método, Gauss habia obtenido el método de minimos cuadrados. El francés Legendre
desarrollé el mismo método de forma independiente en 1805.

Como su nombre indica, el objetivo del método es obtener los valores de las componentes
del vector de parametros 6* que minimicen la suma de los cuadrados de los residuos:

n

> (i — i)

=1

Identificacion de sustancias explosivas



2.2. Regresion 9

Sustituyendo el valor de g; en la expresion anterior se obtiene:

n n
> i =907 = (i — fli,00))°
i=1 i=1
Dado que el objetivo es minimizar esta funcién con respecto a las componentes del vec-
tor 6%, el siguiente paso es calcular la primera derivada con respecto a cada una de las com-
ponentes.
Supongamos el vector 6% = ( f, 05 € R*. Asfi, se tiene la siguiente expresion:

F; = jg: 89* yi — flzi,0°)%,  j=1,... k.

Para obtener los valores de H; hay que resolver el sistema, posiblemente no lineal:
F;=0,j=1,...,k (2.1)

que recibe el nombre de ecuaciones normales.

Bondad de ajuste

Una vez obtenida la curva de regresién queda por determinar la calidad del ajuste. Para
realizar esto, se define el coeficiente de determinacién R?. Este término es funcién del cociente
de la variabilidad de los residuos y la variabilidad total de los datos de la muestra yi, ..., yn.

Definicién 2.2.1. Se define el coeficiente de determinacion R? como:

2
2_1_5R
R =1- 2
Y
que representa la proporcion de la variacion de 'Y explicada por el modelo de regresion, donde:

Ze U5

i=1
Proposiciéon 2.2.2. El coeficiente de determmaczon satisface las siguientes propiedades:

e 0 <R?>< 1.
e SiR? =1, el ajuste de la curva a los datos es perfecto.

e Si R? =0, el ajuste es nulo, es decir, la variacion de X no explica, en absoluto, la
variacion de 'Y .

e R?= rgfy, donde TE(Y es el coeficiente de correlacion muestral.

Finalmente, también se puede definir el coeficiente de determinacién ajustado.

o oo . . ., . 2
Definicion 2.2.3. Se define el coeficiente de determinacion ajustado, R~, como:

donde:

SR_n—kZ ¢ = n—k

Esta medida es de utilidad en modelos de regresion donde el nimero de variables expli-
catorias es mayor que uno. En el andlisis de regresiéon simple no tiene mayor relevancia y es
reemplazado por R

En lo que sigue, se detallard cémo resolver el sistema (2.1) para el caso lineal y el no lineal.

Autor: Alejandro Gracia Benito
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2.2.1 Regresion lineal

La regresion lineal es aquella cuya curva de regresion y = f(X,0) + () viene dada por una
funcién f(X,0) lineal en los pardmetros y cuyo objetivo es estudiar la relacién causal lineal
entre dos variables.

Asi, el modelo de regresion lineal simple viene dado por:

Y = B0+ 51X +e(bo, Br)

En tal caso, se llega a:
Yi =bo+biz; + €;, i=1,....n

donde by y by definen la recta que minimiza la distancia entre los puntos de la muestra y la
recta.
En el caso de la regresion lineal la solucién del problema de minimos cuadrados es tnica.
Partiendo de la ecuacién:

n n

> (i —9)? = (i — (bo+b1z;))?

i=1 i=1

y resolviendo las ecuaciones normales se llega a la solucién exacta:

bp =9y — biZ

1 n
( E %%) —yz
n
_ 1=1

SXY
b; =

2
1 < Sx
(g 1:12 — 72
n
=1

donde sxy y S?X son la covarianza y varianza muestral de X, respectivamente.

Numéricamente es mejor resolverlo mediante la factorizacion QR ya que este es un algo-
ritmo estable (Algorithms for the QR-Decomposition [6]). A continuacién ilustraremos con un
ejemplo sencillo el porqué de tal afirmacion:

Ejemplo 2.2.4. Considerar la matriz:

11
A=16 0
0 9

510 < 0 << 1, las dos columnas de A son casi idénticas pero linealmente independientes. Las
ecuaciones normales hacen que la situacion se empeore, ya que la matriz de coeficientes es:

T, (1+6 1
AA_( 1 149062

y si |0] < 1078, la matriz anterior es singular en aritmética de doble precision.

Una vez encontrados los valores de los parametros que minimizan la distancia entre los
puntos y la recta de regresién para el caso lineal, se abordaré el problema no lineal.

Identificacion de sustancias explosivas



2.2. Regresion 11

2.2.2 Regresion no lineal

La regresién no lineal es aquella cuya curva y = f(X,0) + €(0) de regresién viene dada por
una funcién f(X,0) no lineal respecto a #. A diferencia de la regresion lineal, el problema
de encontrar los parametros éptimos ya no tiene por qué tener una solucién tnica ni de tipo
explicito puesto que el sistema (2.1) es no lineal. En su lugar, hay que utilizar métodos itera-
tivos, que tratan de buscar con diferentes estrategias el minimo de la suma de los cuadrados
de los residuos.

Método de Newton

Considerar el sistema de n-ecuaciones no lineales con n-incégnitas en notacién vectorial:

F(x) = (Fi(z), Fa(x),...,Fy(x)) =0 (2.2)

La solucién de este sistema de ecuaciones implica encontrar o € R™ tal que F(«) = 0. Sea x,
una aproximacién a la misma. Linealizando en z, y suponiendo que F(z,4+1) = 0:

0~ F(xy) + J(xp) (2 — 2py1) (2.3)

define el vector x,1, donde J(z,) es la matriz Jacobina de F' evaluada en x,.
Resolviendo el sistema lineal (2.3) se obtiene:

-1
Trp1 = xp — J 7 (2) F(y)
que es el método de Newton para n-variables. La formula anterior proporciona una relacién
de recurrencia a partir de un vector de partida xg, que convergerd a la raiz si g se encuentra

en la regién de convergencia de la misma y, si ademads, la matriz J(x,) es regular Vr .
En general, se procede actualizando el valor de x, por &,

Trr1l = Tp+ & (2.4)
siendo &, solucién del sistema lineal:

J(xp)& = —F () (2.5)
Observacién 2.2.5. Las propiedades mds notables del método de Newton son:

e Cuando converge, suele ser muy rdpido (convergencia cuadrdtica,).

e FEs adecuado para problemas con matriz jacobiana «sparse.

Sin embargo, el método de Newton no esta libre de inconvenientes. Un punto clave es
la eleccién del valor inicial zo de manera que esté «suficientemente cerca» de la solucién
buscada. En la préctica, dicha semilla inicial no esta disponible por lo que se buscan maneras
de alargar el dominio de atraccién del método de Newton. Ademds, en cada iteracién del
método se requiere una evaluacién de la matriz jacobiana, J(z,), y resolver el sistema de

ecuaciones lineales (2.3).
Se realizard a continuacién un estudio sobre el primero de los inconvenientes.
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12 Capitulo 2. Suavizado y Regresion

Aumentando la convergencia local del método de Newton

Dada una semilla inicial zo, se obtiene una sucesiéon de aproximaciones {z;} en a la raiz o
mediante las ecuaciones (2.4) - (2.5).

El sistema lineal (2.5) define una direccién £ € R™ llamada direccién de Newton y, entonces
en (2.4) se da un paso en esta direccién para actualizar el punto z, al punto x,.

Si x no esta suficientemente cerca de la raiz «, pueden surgir dos dificultades: bien que el
paso en la direccién de Newton sea demasiado grande (ver método de Newton amortiguado),
o bien, que la direccién de Newton no sea buena. Se procederd a profundizar més sobre esta
segunda circunstancia.

Que la direccién de Newton no sea buena conduce a que el punto z; no esté suficientemente
cerca de «. Esto puede ser debido a que la matriz jacobiana sea numéricamente singular (ver
Definicién (2.2.6)). En muchos problemas, se puede encontrar una matriz jacobiana numéri-
camente singular, debido a que x( estd lejos de . Para intentar solucionar este obstaculo,
habra que alterar la direcciéon de Newton.

Se sigue dando unas breves ideas del método de Newton amortiguado necesarias para
el desarrollo de la alteracion de la direccion de Newton. Para mayor informacién consultar
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations [1].

Método de Newton amortiguado

La idea de este método es controlar el tamano del paso tomado en la direccién de Newton £.
Por tanto, con ¢ dado como solucién de (2.5), se modifica (2.4) como sigue:

Trr1 =Tr + N&r, 0< A <1 (2.6)

Es claro que tanto A, como &, dependen de la iteracién en la que se encuentran. Asi, se sigue
de (2.3) que:
& = —J (@) F(ar) (2.7)

Ahora, el problema esta en cémo escoger el factor de amortiguacion \,.. Para este propdsito,
se introduce la funcién objetivo g : R — R definida por:

o) = 2| F(a)]2 = ZF (2.8)

que satisface las condiciones:

e 9@) =0y g(a) = 0 F(a) = 0.
Luego o minimiza g(x) si F(«) = 0, lo que implica que el valor de A\ es mejor cuanto
menor sea g(x + ).

e La direccién de Newton es de descenso respecto de g(x), es decir:
¢'Vvg <0
donde £ es la direccién de Newton y Vg es el gradiente de la funcién objetivo.

Veamos que nuestra funcién objetivo g definida en (2.8) satisface estas dos condiciones.
Dado que Vg = JTF, la funcién ¢ satisface:

Vgle=—-29<0 (2.9)

es estrictamente menor a menos que z = «. El significado de tomar una direcciéon de descenso
es que, para A > 0 suficientemente pequeno, la serie de Taylor da:

9(zr + ) = g(z) + AT Vg(z,) + ON|E?) < () (2.10)

Identificacion de sustancias explosivas



2.2. Regresion 13

Luego en la siguiente iteracién, x,41 dado por (2.6), debe satisfacer:

9(xr41) < g(xr) (2.11)

es decir, se requiere que g sea mondtona decreciente hacia la solucién a.
Asi, el problema del método de Newton amortiguado es decidir qué punto de la semirrecta
xr + A debe ser escogido para la siguiente iteracion.

Una vez vistas estas breves ideas del método de Newton amortiguado, se procede al anélisis
de la alteracion de la direccion de Newton.

Alteracién de la direccién de Newton

Definicion 2.2.6. Se dice que una matriz A es numéricamente singular si su condiciona-
miento verifica K(A)e ~ 1 siendo € la unidad de redondeo.

Para cuantificar de un modo realista la singularidad numérica, es conveniente usar la
funcién objetivo. Primero se escribe la serie de Taylor para F(z 4+ A{) con & como en (2.7)
como sigue:

A
Flz +X) = (1 - N F(z) + /0 [J(z + t€) — J(x)] &dt (2.12)

En el caso en el cual J(z,) es numéricamente singular, la direccién de Newton no es 1til,
y hay que buscar maneras para alterarla.

El enfoque maés sencillo es considerar la minimizacién de la funcién objetivo (2.8) direc-
tamente, es decir, incrustar el problema de la ecuacién no lineal en un problema no lineal de
minimos cuadrados. El método de maxima pendiente sugiere entonces una alternativa para
la direccién de Newton generalizada, elegir &, como la direccién de maxima pendiente:

& =—JL'F, (2.13)

en r = x,, y entonces usar una busqueda por semirrectas para determinar la siguiente ite-
racion. Este método también aprovecha la posible estructura «sparse» de J. Desafortunada-
mente, se sabe que la convergencia es més lenta. La experiencia dice que donde la direccion
de Newton falla, el método de méxima pendiente no es de mucha ayuda.

Una estrategia mas flexible es tomar una combinacién de la direccién de Newton y de la
de maxima pendiente. La direcciéon de Newton se expresa primero en términos de un paso de
Gauss-Newton, asi llamada para el problema de minimos cuadrados minimizando (2.8). Esto
es, si J tiene rango maximo entonces las ecuaciones normales para el problema de minimos
cuadrados:

min | J(z,)¢ + F(z,)* (2.14)
dan:
tE=—JT N UTE (2.15)
Entonces, si el rango de J no es méximo se toma una combinacién de (2.15) y de (2.13):
E=—(J'T+ul)JTF (2.16)

en x = x,, con u un parametro de control positivo. Este se conoce como el método de
Marquardt. Notar que una matriz semidefinida positiva J?.J se convierte en definida positiva
anadiendo pl, p > 0.

La gran cuestion con respecto al método de Marquardt es como controlar el pardmetro
u. Un enfoque eficaz es usar un modelo «trust-regiony», donde la solucién de (2.14) se elige
sujeta al requisito de que su norma no sea demasiado grande. Por tanto se requiere:

€l <o (2.17)
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14 Capitulo 2. Suavizado y Regresion

donde ¢ es un parametro de control que representa la regién en la cual el modelo cuadrético,
cuyo minimo estd dado por la solucién de (2.14), modela adecuadamente la funcién objetivo.
Este enfoque también proporciona una manera natural de decidir cuando se altera la direccion
de Newton, es decir, cuando la direccién de Newton no satisface (2.17).

Identificacion de sustancias explosivas



Capitulo 3

Codificacion de las curvas

En este capitulo se muestra una codificacién de las curvas planas correspondientes a la sus-
tancia nitrotolueno haciendo uso del método de Marquardt descrito en el capitulo anterior
para la resoluciéon de ecuaciones no lineales.

3.1 Caso de estudio

Para la elaboracion del presente trabajo se dispone de un total de 16 curvas correspondientes
a la sustancia nitrotolueno con diferentes partes por millén (ppm de aqui en adelante), empe-
zando con 25 ppm y terminando con 100 ppm con una diferencia de 5 ppm entre cada curva.
El tamano de cada una de las muestras estd comprendido entre 300 y 320 puntos.

En todo el capitulo se tomara como curva ejemplo la correspondiente a 25 ppm mostrada
en la Figura 3.1. La codificacién del resto de las curvas se puede ver en el Anexo.

83.094

83.092 b

83.09 b

83.088 b

83.086 [ b

83.084 | b

83.082 b

83.08 ! ! ! ! ! !
0 50 100 150 200 250 300 350

Figura 3.1: Curva correspondiente a 25ppm Nitrotolueno.
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16 Capitulo 3. Codificacién de las curvas
3.2 Suavizado de la curva

Se han estudiado diferentes filtros para la realizaciéon del suavizado de la curva, codificados
como sgolay, rlowess y rloess. Para estudiar cudl es el mejor para nuestras curvas se se
tomara aquel que mayor valor de R? proporcione. En la siguiente tabla se muestran los datos
obtenidos con cada uno de los filtros anteriormente citados para la curva ejemplo:

Filtro R?

sgolay | 0.9752
rlowess | 0.9446
rloess 0.9518

A continuacién, se muestra un grafico con el valor del R? obtenido al suavizar todas las
curvas con los diferentes filtros. Los datos numéricos se encuentran en el Anexo.

1 T

sgolay
rlowess
rloess

0.99

0.98

& 097+

0.96

0.95

0.94 ! ! ! ! ! ! !
20 30 40 50 60 70 80 90 100

ppm

Figura 3.2: Suavizado con diferentes filtros.

Puede observarse en la figura anterior que para todas las curvas consideradas, el mejor
filtro es el codificado de sgolay. En lo que sigue, cuando se hable de datos suavizados se
entiendera que han sido suavizados con este filtro.

3.3 Codificacién global

Primero, se abordara la codificacién global de nuestras curvas mediante la primera de las dos
vias, la regresién mediante funciones no lineales genéricas. Para esta codificacion global, se
realizard un «bombardeo fit» con las funciones mostradas en la siguiente tabla:
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3.3. Codificacion global 17

Pardametros | Método | f(X,0)

2 expl ap exp(a1x)

4 exp2 expl + agexp(asx)

143 foul ag + a; cos(wx) + by sin(wz)

1+5 fou?2 foul + agcos(2wx) + by sin(2wx)
147 fou3 fou2 + agcos(3wz) + b3 sin(3wx)
3 gaussl | agexp (—(z —a1)?/b3)

6 gauss2 | gaussl + azexp (—(z — a3)?/b3)
9 gauss3 | gauss2 + agexp (—(z — a5)?/b3)

Estas funciones han sido escogidas puesto que son estandar en el software utilizado (Matlab).

Se muestra la calidad del ajuste con cada una de las funciones anteriores para la curva
ejemplo, mediante el coeficiente de correlacién entre los datos suavizados y los datos proce-
dentes de la regresién, R?. No hay que olvidar que el objetivo del presente trabajo es encontrar
un equilibrio entre dicho coeficiente de correlacion y la dimensién del vector de pardametros 6.

Método | R? R?

expl 0.8046  0.8040
exp2 0.8994 0.8984
foul 0.9503  0.9499
fou2 0.9941  0.9940
fou3 0.9982| 0.9981
gaussl | 0.7838 0.7824
gauss2 | 0.9920 0.9918
gauss3 | 0.9895 0.9892

Se observa que el mejor ajuste se corresponde con el método de funcién foud, es decir, con:
f(X,0) = ag+ ay cos(wz) + by sin(wx) + ag cos(2wx) + be sin(2wz) + ag cos(3wx) + bz sin(3wx)

donde 6 = (ag, a1, ..., w). Dicho método utiliza un total de 8 pardmetros que esté por debajo
del umbral fijado inicialmente en un maximo de 10 pardmetros. Graficamente, el ajuste es el
mostrado en la Figura 3.3.

Como se ha expuesto en el capitulo anterior, no se puede dar un valor exacto para los
parametros que componen el vector @, por lo que a continuacién se muestran los valores de
los parametros junto con su intervalo de confianza al 95 %.

Asi, con la semilla inicial 6, = (83.08,0,0,0,0,0,0,0.3136), se obtienen los siguientes
resultados para los pardmetros (ag, a1, b1, as, be, as, bs, w):

ap = 83.08
a; = 0.00269 € [0.002647,0.002734]

b1 = 0.003321 € [0.003287,0.003355]

as = —0.0001061 € [~0.0001556, —5.654 - 107]
by = 0.001823 € [0.001701, 0.001944]

az = 0.0003441 € [0.0002716, 0.0004165]

by = 0.0007918 € [0.0007568, 0.0008268]

w = 0.503 € [0.495,0.5109]

Por tanto, la codificacién para esta curva sera la siguiente:

(R2,6) = (0.9982; (83.08,0.00269,0.003321, —0.0001061, 0.001823, 0.0003441, 0.0007918, 0.503))

Autor: Alejandro Gracia Benito



18 Capitulo 3. Codificacién de las curvas

83.094 T

+  Datos
— global fou3
83.092 |

83.09

83.088 |

83.086

83.084

83.082

83.08 . . . . .
0 2 4 6 8 10 12

Figura 3.3: Ajuste con fou3.

Se refleja el ajuste de la curva ejemplo con el método codificado como gauss1l. Como este
método es el que menor valor de R? proporciona, la relacién entre los datos suavizados y la
curva de ajuste no parece adecuada (ver Figura 3.4).

83.092 T

/ - Datos
— global gauss1

83.09 [
83.088 [

83.086

83.084 |-

83.082

83.08

83.078 L L L L L
0 2 4 6 8 10 12

Figura 3.4: Ajuste con gaussi.

Los valores de los parametros se obtienen mediante métodos iterativos. En estos métodos,
la semilla inicial juega un papel muy importante a la hora de hallar la solucién buscada. Si
se cambia la semilla inicial y se parte de 8y = 0, los valores de los parametros varian de
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3.4. Codificacion global por trozos 19

manera significativa:

ap = 1.224 - 10'! € [-5.576 - 10'2,5.821 - 10'?]
a1 =0.00 € [-8.077 - 10'1,8.077 - 10™]

by =0.00 € [—8.62-10',8.62 - 10'8]

az = 0.00 € [—4.331 - 10'2,4.331 - 10'?]

by =0.00 € [—6.831-10'8,6,831 - 10'%]

az = —1.224 - 10" € [-4.462 - 10'2,4.217 - 10'?]
b3 = —5.178 - 10* € [-1.823-10'%,1.823 - 10'*]
w=1,49-10"% € [-2.761-1077,3.059 - 10~

Ademds, el valor de R? que se obtiene partiendo del vector nulo como semilla inicial es 0.8738.
Luego, tanto el valor de R? como los intervalos de confianza de cada uno de los pardmetros
indican que este ajuste no es lo suficientemente bueno.

3.4 Codificacion global por trozos

Se puede dividir cada una de las curvas en tres trozos como se muestra en la Figura 3.5. Estos
tres trozos se rigen por el sentido fisico del problema:

e El primer trozo corresponde con el encendido y calentamiento de la «nariz electronica».

e El segundo trozo corresponde a la introduccién de la sustancia y al comienzo real del

experimento.

e El tercer y tultimo trozo corresponde a la retirada de la sustancia y la recuperacion de
la «nariz electronica».

83.094

83.092

83.09

83.088 [

83.086

83.084

83.082

83.08
0

Trozo 1
\\\\\\\ Trozo 2

(,‘ ‘‘‘‘‘ Trozo 3|

Figura 3.5: Trozos en la grafica correspondiente a 25ppm.

Por lo que se puede pensar en una codificaciéon global por trozos ajustando cada uno de

ellos por separado.
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20 Capitulo 3. Codificacién de las curvas

Asi, en la siguiente tabla se muestra el valor de R? para cada uno de los trozos de la curva
ejemplo utilizando los mismos métodos que para la codificacién global.

Método | Trozo 1 Trozo 2 Trozo 3
expl 0.7662  0.9836  0.0200
exp2 0.9704 0.9873  0.8465
foul 0.9736  0.9952  0.8499
fou2 0.9863  0.9977  0.9630
fou3 0.9988  0.9991  0.9945
gaussl | 0.7738  0.9823  0.8561
gauss2 | 0.9737  0.9960  0.9150
gauss3 | 0.9737  0.9960 0.9434

Lo deseable seria que para esta codificacion global por trozos se usase el minimo nimero de
parametros posibles en cada uno de los trozos. Pero como se observa en la tabla anterior, para
obtener un ajuste con una calidad superior a 0.99 en cada uno de ellos se necesita un total
de 8 + 8 + 8 = 24 parametros. Por lo que esta codificacién global por trozos no mejora la
codificacién global obtenida anteriormente puesto que bastaba con 8 parametros para obtener
una calidad de ajuste de 0.9982.

3.5 Codificacién del trozo central

Gracias al sentido fisico del problema descrito con anterioridad, todos los esfuerzos se van
a basar en codificar el trozo central puesto que se corresponde con la introducciéon de la
sustancia.

De la misma manera que en la codificacién global, se mostrard en una tabla la calidad
del ajuste de este tramo central con cada una de las funciones no lineales que hemos ido
describiendo a lo largo de nuestro trabajo. Asi, la tabla seria la siguiente:

Método | R? R?

expl 0.9836  0.9836
exp2 0.9874  0.9872
foul 0.9952  0.9951
fou2 0.9977  0.9976
fou3 0.9991
gaussl | 0.9823 0.9821
gauss2 | 0.9972 0.9971
gauss3 | 0.9979 0.9979

Como se puede observar, todos los ajustes obtienen un valor de R? > 0.98 lo cual es muy alto,
pero el mejor método de ajuste sigue correspondiendo con fou3 (ver Figura 3.6). Se muestra
también el grafico correspondiente al ajuste con gauss1 al igual que en la codificacion global.

En este caso donde solo codificamos el segundo trozo de la curva, con este método de fou3
se necesitan un total de 8 pardmetros, lo cual no proporciona ninguna mejora con respecto a
la codificacion global, puesto que utiliza el mismo ntimero de pardmetros.

3.5.1 Codificaciéon particularizada

Ahora, se podria pensar que cualquiera de los métodos anteriores nos sirve para obtener
una buena codificacién de esta curva, puesto que como se ha indicado, todos los ajustes
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83.094
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Figura 3.6: Ajuste trozo central fou3 y gaussli.

proporcionan un valor de R? > 0.98. A pesar de esto, viendo la forma de la gréifica en
el intervalo central, se intenta obtener una funcién f(x,6) distinta a las anteriores con un
nimero menor de pardmetros que consiga una calidad de ajuste mejor a la que se muestra en
la tabla anterior mediante los métodos clasicos.

Asi, con estas premisas, se busca una funcién f(x, ) con cuatro parametros de forma que
mejora en muchos de los casos la calidad de ajuste obtenida con los métodos ya expuestos.
Tal funcidn es la siguiente:

f(x,0) = aexp(—bx) + csin(dx), b >0

Como se ve, es una combinacién de una funcion trigonométrica y una exponencial con cuatro
parametros, es decir, el vector 0 es (a, b, ¢, d). Dicha funcién se denota funcién particularizada
(por comodidad a la hora de referenciarla).

En la siguiente tabla se muestran los resultados obtenidos comparandolos con los métodos
foul y exp2 (todos ellos con cuatro pardmetros).

Curva Particularizada  foul exp2
25 ppm 0.9959 0.9952 0.9874
30 ppm 0.9970 0.9953 0.9878
35 ppm 0.9952 0.9929 0.9841
40 ppm 0.9916 0.9862 0.9757
45 ppm 0.9928 0.9872 0.9763
50 ppm 0.9907 0.9851 0.9737
55 ppm 0.9911 0.9810 0.9733
60 ppm 0.9891 0.9807 0.9684
65 ppm 0.9893 0.9792  0.9653
70 ppm 0.9882 0.9758 0.9654
75 ppm 0.9885 0.9760 0.9638
80 ppm 0.9872 0.9736  0.9638
85 ppm 0.9879 0.9755 0.9616
90 ppm 0.9868 0.9729 0.9607
95 ppm 0.9866 0.9714  0.9630
100 ppm 0.9864 0.9714 0.9677

Para dichos métodos, la funcién particularizada obtiene una mejora en la calidad de ajuste.
Ademds, se observa que el error relativo es casi lineal en ppm/10 (ver Figura 3.7).
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Figura 3.7: Ajuste tramo central particularizada y error relativo*ppm/10.

Volviendo a nuestra curva ejemplo se obtienen los siguientes valores para los parametros
(a,b,c,d) partiendo de la semilla inicial 8y = (0.5465,0.0902,0.3516,0.9157), indicando los
intervalos de confianza al 95 %:

a = 83.09
b=1.871-10"° € [1.824-107°,1.918 - 1077
¢ = 0.000978 € [0.0008861,0.00107]

d = 0.8789 € [0.8647,0.8931]

Asi, la codificacién para la curva ejemplo es:

(0.9959; (83.09,1.871 - 10~°,0.000978, 0.8789) )

3.6 Codificacion sin suavizado

Hasta ahora, todo el proceso de codificacién de las curvas se ha realizado con los datos
suavizados. En esta secciéon se muestran los datos obtenidos al codificar las curvas con los
datos originales.

Para la parametrizacién global de la curva ejemplo se obtienen los siguientes resultados:

Método | Global
expl 0.7552
exp2 0.8459
foul 0.8939
fou2 0.9423
fou3 0.9544
gaussl | 0.7357
gauss2 | 0.9388
gauss3 | 0.9393

Se observa que el mayor valor de R? lo sigue proporcionando el método fou3 pero este valor
es mucho menor al obtenido en la codificacién global tras el suavizado (0.9982). En general,
para esta curva ejemplo hay una diferencia entre los valores de R? de 0.05 aproximadamente.
Sin embargo, a lo largo de la familia la diferencia va disminuyendo como se puede observar
en la Figura 3.8.
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Para la codificacién del trozo central se han obtenido los siguientes datos:

Método | Central
expl 0.9829
exp2 0.9866
foul 0.9944
fou2 0.9969
fou3 0.9983
gaussl | 0.9815
gauss2 | 0.9952
gauss3 | 0.9968
x107°
1 . . . . . . . 35
_— T —]
0.995 Suavizado |
0991 Sin suavizar | 3r
0.985+
25+
0.98F
& 0.975f 2t
0.97F
15F
0.965
0.96 W
|suavizar—sin suavizar|
0.955
0.95 : : . : . - . 05 - . . : . - -
20 30 40 50 60 70 80 90 101 20 30 40 50 60 70 80 90

ppm

Figura 3.8: Comparacién de R? entre ajuste global con suavizado y sin suavizado. Diferencia
en valor absoluto entre los valores de R? para el trozo central.

RZ

0.998 -

0.996

0.994

0.992

0.991

0.988

0.986

0.984

0.982

T
Suavizado
Sin suavizar ||

20

30

40

50

60
ppm

70

80

90 100

Figura 3.9: R? trozo central ajuste particularizado.

En la Figura 3.8 se muestra la diferencia en valor absoluto entre el valor de R? que se
obtiene al suavizar y el que se obtiene al no suavizar los datos de la familia completa con

Autor: Alejandro Gracia Benito
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24 Capitulo 3. Codificacién de las curvas

fou3. Se observa que dicha diferencia aumenta conforme la curva tiene mayor cantidad de
ppm.

Por tltimo, en la Figura 3.9 se muestra la diferencia entre los valores de R? para el trozo
central pero con el ajuste mediante la funcién particularizada. Al igual que para el ajuste del
trozo central con fou3, a lo largo que crecen las ppm la diferencia entre el valor de R? al
suavizar y no suavizar se acentua.

Identificacion de sustancias explosivas



Capitulo 4

Conclusiones

En vista a los resultados del capitulo anterior en el cual se ha realizado una codificacién
tanto global como por trozos de una serie de curvas en R? correspondientes a la sustancia
nitrotolueno se obtienen las siguientes conclusiones.

La codificacién global de las curvas se obtiene con un total de 8 pardmetros que son los
correspondientes a la funcion de ajuste del método fou3d. Con esta codificacién se obtiene una
calidad de ajuste para la curva ejemplo con los datos suavizados mediante el método sgolay
de R? = 0.9982 (ver Figura 3.3). Si se realiza el ajuste con los datos originales, es decir,
sin suavizar el método foud sigue siendo el que mayor calidad de ajuste proporciona aunque
siendo algo menor (para la curva ejemplo 0.9544). Ademas, en la Figura 3.8 se observa que a
medida que las ppm aumentan, la diferencia en la calidad de ajuste entre los datos suavizados
y los datos originales disminuye aunque siendo mucho mas regular la correspondiente a los
datos suavizados.

Esta codificacion inicial se realiza sin tener en cuenta el sentido fisico de la curva. Si se
tiene en cuenta, se pueden diferenciar tres trozos en cada una ellas (ver Figura 3.5), por lo que
se procede a realizar una codificacién de cada uno de los trozos para posteriormente unirlos y
obtener asi una codificacién global. Para obtener una codificacion global de esta manera cuya
calidad de ajuste esté por encima de 0.99 se necesitan 8 pardametros en cada uno de los trozos.
Con lo cual, esta codificacién global por trozos no es lo suficientemente buena puesto que
utiliza el triple de parametros que la codificacién global. Sin embargo esta idea de trocear la
curva gracias al sentido fisico ha sido de gran ayuda para la codificacién de las curvas puesto
que gracias a ello solo se codifica el trozo central.

Inicialmente, para dicha codificacion del trozo central se utilizan los mismos métodos que
para la codificacién global. Con esta estrategia la codificacién de las curvas mantiene el mismo
nuimero de parametros que en la codificacién global puesto que el método que mejor ajustaba
a las curvas sigue siendo fou3. Citar también que la diferencia en la calidad de ajuste entre los
datos suavizados y originales crece a medida que aumentan las ppm (ver Figura 3.8). Esto no
supone una mejoria respecto a la codificacién global puesto que aunque el ajuste de la curva
es mas correcto al codificar solo el trozo central se necesitan el mismo ntimero de parametros.
Por tanto, se busca una funcién de ajuste f(x,6) con un nimero menor de pardmetros de
manera que no se pierda calidad en el ajuste. Esa funcién es:

f(z,0) = aexp(—bx) + csin(dz), b >0

Con esta funcién, llamada funcién particularizada, se obtiene una codificacién de las curvas
con un total de 4 pardmetros con una calidad en el ajuste por encima de 0.9864 superando
a los métodos utilizados en el presente trabajo con el mismo nimero de parametros (foul,
exp2). Se observa la diferencia entre los valores de R? obtenidos al ajustar los datos suavizados
y sin suavizar en la Figura 3.9.
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26 Capitulo 4. Conclusiones

Esta codificacion particularizada del trozo central tiene una clara ventaja frente a la
codificacién global: se obtiene una codificaciéon con una calidad muy semejante con la mitad
de los parametros. Por tanto, se puede concluir que gracias a la codificacién particularizada
se obtiene una codificacion de las curvas con un nimero total de 4 parametros para cada una
de las curvas.

En una visién més general del proyecto, puesto que este presente trabajo solo se centra en
la codificacién de las curvas, se exponen las posibles lineas futuras para la continuacién del
mismo:

Elaboracién de un estudio de tales caracteristicas con nuevos datos de la misma sustancia
obtenidos con sensores més eficientes.

Codificacién de més sustancias ademas de la estudiada en este trabajo.

Busqueda de mejores funciones particularizadas para tal codificacién descrita en el punto
anterior.

Clasificacién de las curvas para el estudio mediante redes neuronales.

Identificacion de sustancias explosivas



Bibliografia

U.M. Ascher, T.M.M. Mattheij, R.D. Russell; Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations, Classics in Applied Mathematics, STAM,
1995.

E. Bassey, J. Whalley, P. Sallis; An Fvaluation of Smoothing Filters for Gas Sensor
Signal Cleaning, IARIA, 2014.

R.L. Burden, J.D. Faires; Andlisis numérico, International Thomson Editores, 2002.

G. Deak, K. Curran, J. Condell; Filters for RSSI-based measurements in a Device-free
Passive Localisation Scenario, 2010.

F. Galton; Hereditary Genius, An Inquiry Into Its Laws and Consequences, Cosimo
Classics, 2005.

W. Gander; Algorithms for the QR-Decomposition, 2003.

R.V. Hogg, J.W. McKean, A. Craig; Introduction to Mathematical Statistics, Pearson
Education Limited, 7* Edicion, 2013.

P. Ibarrola; Gauss y la Estadistica.

D. Kincaid, W. Cheney; Andlisis Numérico: Las Matemdticas del Cdlculo Clientifico,
Addison-Wesley Iberoamericana, 1994.

J. Martinez, J. Olmo, M. Rodriguez, A. Fiasconaro; Introduccion a la Estadistica, Centro
Universitario de la Defensa, 2012.

M. Penkova; Métodos iterativos eficientes para la resolucion de sistemas no lineales,
Universidad Politécnica de Valencia, 2011.

S. Plaza, J.M. Gutiérrez; Dindmica del método de Newton, Universidad de La Rioja,
Servicio de Publicaciones, 2013.

A. Savitzky, M.J.E. Golay; Smoothing and differentiation of data by simplified least
squares procedures, Analytical Chemistry 36, 1964.

R.W. Schafer; What is a Savitzky-Golay Filter?, 2011.

W. Wettayaprasit, N. Laosen, S. Chevakidagarn; Data Filtering Technique for Neural
Networks Forecasting, 2007.

27






Anexo

En este anexo, se presentan los resultados obtenidos para las 16 curvas de la sustancia nitro-
tolueno gracias al potencial de la metodologia conseguida en el presente trabajo. De la misma
manera que en el Capitulo 3, se muestra una codificacién global, global por trozos y local del
trozo central de cada curva indicando el R? entre los datos obtenidos experimentalmente y
los datos regresionados.

A.1 Suavizado

A continuacién se presenta el valor de R? correspondiente al suavizado global de todas las
curvas con los filtros digitales codificados de sgolay, rlowess y rloess. Se hace uso de los
métodos robustos para hacer frente a los posibles «outliers».

Curva sgolay rlowess rloess
25 ppm | 0.9752  0.9446 0.9518
30 ppm | 0.9811  0.9547 0.9640
35 ppm | 0.9788  0.9501 0.9619
40 ppm | 0.9847  0.9540 0.9768
45 ppm | 0.9864  0.9583 0.9782
50 ppm | 0.9960 0.9834 0.9931
55 ppm | 0.9950  0.9724 0.9922
60 ppm | 0.9949  0.9703 0.9911
65 ppm | 0.9923  0.9577 0.9854
70 ppm | 0.9933  0.9610 0.9853
75 ppm | 0.9935  0.9584 0.9813
80 ppm | 0.9937  0.9583 0.9807
85 ppm | 0.9953  0.9652 0.9821
90 ppm | 0.9946  0.9617 0.9836
95 ppm | 0.9933  0.9545 0.9788
100 ppm | 0.9944  0.9564 0.9810

Para todas ellas, el mejor filtro, entendido como el que mayor valor de R? proporciona es
sgolay (ver Figura 3.2).

A.2 Comparaciéon codificacion global para todas las curvas

En la siguiente tabla se muestra el valor de R? obtenido con todos los métodos descritos en el
Capitulo 3 para la familia de curvas correspondientes a la sustancia nitrotolueno. Notar que
estos valores se han obtenido con los datos suavizados mediante el filtro codificado de sgolay
(observar apartado anterior).
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30 Capitulo A. Anexo

Curva expl exp2 foul fou2 fou3 gaussl gauss2 gauss3
25 ppm | 0.8046 0.8994 0.9503 0.9941 0.9982 0.7838 0.9920 0.9895
30 ppm | 0.7573 0.9044 0.9540 0.9948 0.9985 0.7566 0.9926  0.9912
35 ppm | 0.7059 0.8859 0.9465 0.9932 0.9984 0.7052 0.9903 0.9886
40 ppm | 0.6271 0.8752 0.9389 0.9913 0.9982 0.6257 0.9876  0.9891
45 ppm | 0.5992 0.8821 0.9447 0.9916 0.9982 0.5983 0.9885  0.9886
50 ppm | 0.5746 0.9059 0.9539 0.9902 0.9964 0.5738 0.9894 0.9895
55 ppm | 0.5437 0.9065 0.9546 0.9893 0.9966 0.5431 0.9870 0.9875
60 ppm | 0.4857 0.8843 0.9478 0.9882 0.9973 0.4771 0.9859 0.9866
65 ppm | 0.4952 0.8802 0.9439 0.9878 0.9978 0.4942 0.9857 0.9895
70 ppm | 0.4815 0.8863 0.9439 0.9859 0.9979 0.4810 0.9836 0.9895
75 ppm | 0.4734 0.8852 0.9440 0.9848 0.9985 0.4728 0.9821 0.9892
80 ppm | 0.4595 0.8879 0.9468 0.9846 0.9984 0.4590 0.9823  0.9888
85 ppm | 0.4656 0.8937 0.9487 0.9855 0.9978 0.4508 0.9831  0.9890
90 ppm | 0.4603 0.8932 0.9487 0.9835 0.9984 0.4448 0.9813 0.9895
95 ppm | 0.4667 0.8861 0.9437 0.9836 0.9986 0.4664 0.9814 0.9912
100 ppm | 0.4524 0.8884 0.9465 0.9834 0.9984 0.4367 0.9812  0.9939

Para todas ellas, el mejor método de ajuste global es el correspondiente con fou3 ob-
teniendose valores extremos para R? en las curvas correspondientes a 30 y 50 ppm. Estos
valores son: 0.9985 (max) y 0.9964 (min), respectivamente. El resultado gréfico de dichos
ajustes correspondientes a los casos extremos es el mostrado en la Figura A.1. Ambos ajustes,
incluyendo el correspondiente al de valor minimo de R?, son muy buenos, puesto que el valor
minimo, que es 0.9964, es un valor muy cercano a 1 encontrando asi el equilibrio buscado
entre el niimero de pardmetros y el valor de R.
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83.088

83.09

83.084 -

83.088;
83.082

83.086 83.08]

83.084 - 83.078

83.076 |-
83.082
83.074

83.08 -
83.072

+  data + data
fitted curve 83.086 fitted curve ||

83,078 ‘ ‘ ‘ ‘ ‘ 83,07 ‘ ‘ ‘ ‘ ‘
) 2 4 6 8 10 12 0 2 4 6 8 10
(a) Ajuste correspondiente a 30ppm. (b) Ajuste correspondiente a 50ppm.

Figura A.1: Ajuste de los casos extremos de R2.

A.3 Comparacion codificacién global, global por trozos y local
para cada curva

Ahora, se presenta una comparacién entre el ajuste global, global por trozos y local para cada
una de las curvas indicando el vector de caracterizacién para cada una de ellas en la seccion
final.
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A.3. Comparacién codificacion global, global por trozos y local para cada curva

A.3.1 25 ppm

31

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.8046 || 0.7662  0.9836  0.0200 || 0.9836
exp2 0.8994 || 0.9704 0.9873  0.8465 || 0.9873
foul 0.9503 || 0.9736  0.9952  0.8499 || 0.9952
fou2 0.9941 || 0.9863  0.9977  0.9630 || 0.9977
fou3d 0.9982 || 0.9988  0.9991  0.9945 || 0.9991
gaussl 0.7838 || 0.7738  0.9823  0.8561 || 0.9823
gauss?2 0.9920 || 0.9737  0.9960  0.9150 || 0.9960
gauss3 0.9895 || 0.9737  0.9960  0.9434 || 0.9960
Particularizado - - - - 0.9959
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T T
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global fou3
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(a) Ajuste global.
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T T T
+ Data
particularizada

83.08
0

(b) Ajuste particularizado.

Figura A.2: Comparacién ajuste global y particularizado 25 ppm.

A.3.2 30 ppm

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.7573 || 0.7917 0.9796  0.2813 || 0.9796
exp2 0.9044 || 0.9719  0.9878  0.6112 || 0.9878
foul 0.9540 || 0.9746  0.9953  0.8048 || 0.9953
fou2 0.9948 || 0.9864  0.9984  0.9796 || 0.9984
fou3 0.9985 || 0.9986  0.9993  0.9947 || 0.9993
gaussl 0.7566 || 0.7980  0.9786  0.8230 || 0.9786
gauss2 0.9926 || 0.9746  0.9982  0.9436 || 0.9982
gauss3 0.9912 || 0.9746  0.9985  0.9862 || 0.9985
Particularizado - - - - 0.9970
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Figura A.3: Comparacién ajuste global y particularizado 30 ppm.

A.3.3 35 ppm

T T T
+ Data
particularizada |

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.7059 || 0.7716  0.9731 0.5379 || 0.9731
exp2 0.8859 || 0.9682 0.9842 0.8809 || 0.9842
foul 0.9465 || 0.9713 0.9929  0.8977 || 0.9929
fou2 0.9932 || 0.9845 0.9976  0.9962 || 0.9976
fou3 0.9984 || 0.9981 0.9988  0.9989 || 0.9988
gaussl 0.7052 || 0.7792 0.9717  0.8986 || 0.9717
gauss?2 0.9903 || 0.9714 0.9970  0.9840 || 0.9970
gauss3 0.9886 || 0.9714 0.9984  0.9936 || 0.9984
Particularizado - - - - 0.9952
83.096 T T 83.098
83.094F , 83.0961"
83.002| 83.004r
83.00l 83.092
e 83.09+
83.088
> > 83.088
83.086
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83.078 : : : ‘ . 83.078 : :
0 2 4 6 8 10 12 0 2 4 5

(a) Ajuste global.

(b) Ajuste particularizado.

Figura A.4: Comparacién ajuste global y particularizado 35 ppm.
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A.3. Comparacién codificacion global, global por trozos y local para cada curva

A.3.4 40 ppm

33

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.6271 || 0.6516  0.9546  0.5979 || 0.9546
exp2 0.8752 || 0.9441 0.9758  0.8898 || 0.9758
foul 0.9389 || 0.9489 0.9862  0.9211 || 0.9862
fou2 0.9913 || 0.9912  0.9971  0.9977 | 0.9971
fou3d 0.9982 || 0.9989  0.9983  0.9993 || 0.9983
gaussl 0.6257 || 0.9493 0.9535 0.9211 || 0.9535
gauss?2 0.9876 || 0.9493  0.9947  0.9931 || 0.9947
gauss3 0.9891 || 0.9493 0.9979  0.9978 || 0.9979
Particularizado - - - - 0.9916
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(b) Ajuste particularizado.

Figura A.5: Comparacién ajuste global y particularizado 40 ppm.

A.3.5 45 ppm

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.5992 || 0.7737 0.9554  0.6567 || 0.9554
exp2 0.8821 || 0.9688  0.9763  0.9241 || 0.9763
foul 0.9447 || 0.9730 0.9872  0.9480 || 0.9872
fou2 0.9916 || 0.9855  0.9964  0.9941 || 0.9964
fou3 0.9982 || 0.9973  0.9980  0.9993 || 0.9980
gaussl 0.5983 || 0.7812  0.9544  0.9482 || 0.9544
gauss2 0.9885 || 0.9731  0.9949  0.9895 || 0.9949
gauss3 0.9886 || 0.9731  0.9926  0.9976 || 0.9926
Particularizado - - - - 0.9928
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T T
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Figura A.6: Comparacién ajuste global y particularizado 45 ppm.
A.3.6 50 ppm
Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.5746 || 0.8090 0.9520 0.6791 || 0.9520
exp2 0.9059 || 0.9715 0.9737  0.9249 || 0.9737
foul 0.9539 || 0.9736 0.9851 0.9412 || 0.9851
fou2 0.9902 0.9852 0.9958 0.9965 || 0.9958
fou3 0.9964 || 0.9992 0.9973 0.9993 || 0.9973
gaussl 0.5738 || 0.8180 0.9513 0.9413 || 0.9513
gauss?2 0.9894 || 0.9490 0.9932 0.9909 || 0.9932
gauss3 0.9895 0.9725 0.9966 0.9968 || 0.9966
Particularizado - - - - 0.9907
83.088 T T 83.088
. Data
83.086 - ’ 83.086
83.084 83.084
83.082f 83.082f
83.08 83.08
- 83.078 - 83.078
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(a) Ajuste global.

(b) Ajuste particularizado.

Figura A.7: Comparacién ajuste global y particularizado 50 ppm.
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A.3. Comparacién codificacion global, global por trozos y local para cada curva

A.3.7
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A.3.8

55 ppm
Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.5437 || 0.5339  0.9339  0.7273 || 0.9339
exp2 0.9065 || 0.8508  0.9733  0.9340 || 0.9733
foul 0.9546 || 0.8683  0.9810  0.9449 || 0.9810
fou2 0.9893 || 0.9995  0.9967  0.9933 || 0.9967
fou3d 0.9966 || 0.9998  0.9971  0.9994 || 0.9971
gaussl 0.5431 || 0.5763  0.9331  0.9450 || 0.9331
gauss?2 0.9870 || 0.8691  0.9850  0.9874 || 0.9850
gauss3 0.9875 || 0.8691  0.9970  0.9990 || 0.9970
Particularizado - - - - 0.9911

+ Data
global fou3 |4

X

(a) Ajuste global.
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(b) Ajuste particularizado.

Figura A.8: Comparacién ajuste global y particularizado 55 ppm.

60 ppm
Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4857 || 0.7359  0.9373  0.7640 || 0.9373
exp2 0.8843 | 0.9091 0.9684  0.9624 || 0.9684
foul 0.9478 || 0.9103  0.9807 0.9733 || 0.9807
fou2 0.9882 || 0.9508  0.9963  0.9993 || 0.9963
fou3 0.9973 || 0.9899  0.9972  0.9995 || 0.9972
gaussl 0.4771 || 0.7564  0.9362  0.9734 || 0.9362
gauss2 0.9859 || 0.9101  0.9930 0.9974 || 0.9930
gauss3 0.9866 || 0.9102 0.9971  0.9974 || 0.9971
Particularizado - - - - 0.9891
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Figura A.9: Comparacién ajuste global y particularizado 60 ppm.
A.3.9 65 ppm
Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4952 || 0.8090 0.9301  0.7807 | 0.9301
exp2 0.8802 || 0.9725  0.9653  0.9647 || 0.9653
foul 0.9439 || 0.9761  0.9792  0.9737 || 0.9792
fou2 0.9878 || 0.9868  0.9952  0.9990 || 0.9952
fou3 0.9978 || 0.9982  0.9968  0.9997 || 0.9968
gaussl 0.4942 || 0.8135 0.9292  0.9739 || 0.9292
gauss?2 0.9857 || 0.9761  0.9917  0.9969 || 0.9917
gauss3 0.9895 || 0.9761  0.9949  0.9983 | 0.9949
Particularizado - - - - 0.9893
83.092 T T 83.092 T T T
83.088 83.088
83.086 :"'. 83.086
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> 83.082 > 83.082
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(a) Ajuste global. (b) Ajuste particularizado.

Figura A.10: Comparacion ajuste global y particularizado 65 ppm.
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A.3.10 70 ppm

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4815 || 0.6870  0.9217  0.8035 || 0.9217
exp2 0.8863 || 0.9466  0.9654  0.9691 || 0.9654
foul 0.9439 || 0.9559  0.9758  0.9820 || 0.9758
fou2 0.9859 || 0.9933  0.9952  0.9987 || 0.9952
fou3d 0.9979 || 0.9985  0.9964  0.9996 || 0.9964
gaussl 0.4810 || 0.7031  0.9208  0.9822 || 0.9208
gauss?2 0.9836 || 0.9563  0.9902  0.9974 || 0.9902
gauss3 0.9895 || 0.9563  0.9802  0.9985 || 0.9802
Particularizado - - - - 0.9882

83.1

83.1

+ Data
global fou3
83.095 q 83.095

T r r
- Data
particularizada

83.09 - 83.09

> 83.085F > 83.0851
83.08 -

83.08

83.075 83.075

83.07 ! . ! . : 83.07
0

2 4 6 8 10 12 0 1 2 3 4 5 6 7
X X

(a) Ajuste global. (b) Ajuste particularizado.

Figura A.11: Comparacion ajuste global y particularizado 70 ppm.

A.3.11 75 ppm

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4734 || 0.8382 0.9250 0.8230 || 0.9250
exp2 0.8852 || 0.9739  0.9638  0.9663 || 0.9638
foul 0.9440 || 0.9765 0.9760 0.9793 || 0.9760
fou2 0.9848 || 0.9866  0.9950  0.9992 || 0.9950
fou3 0.9985 || 0.9990 0.9964  0.9998 || 0.9964
gaussl 0.4728 || 0.8420 0.9240  0.9796 || 0.9240
gauss2 0.9821 || 0.8629 0.9912  0.9974 || 0.9912
gauss3 0.9892 || 0.9765  0.9829  0.9993 || 0.9829
Particularizado - - - - 0.9885
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Figura A.12: Comparacion ajuste global y particularizado 75 ppm.
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80 ppm
Método Global || Trozo 1 Trozo 2 Trozo 3 || Central

expl 0.4595 || 0.6768 0.9166  0.8569 || 0.9166
exp2 0.8879 || 0.9474 0.9638 0.9822 || 0.9638
foul 0.9468 || 0.9570 0.9736  0.9869 || 0.9736
fou2 0.9846 || 0.9886  0.9951 0.9993 || 0.9951
fou3 0.9984 || 0.9985 0.9960  0.9998 || 0.9960
gaussl 0.4590 || 0.7015 0.9155 0.9869 || 0.9155
gauss?2 0.9823 || 0.9573  0.9899  0.9985 || 0.9899
gauss3 0.9888 || 0.9573  0.9729  0.9992 || 0.9729
Particularizado - - - - 0.9872

T 83.095

. Data
.

83.09+

83.085

> 83.08f

83.075

83.07
2 4‘1 6 é 10 830650 é z‘t 5

(a) Ajuste global.

(b) Ajuste particularizado.

Figura A.13: Comparacion ajuste global y particularizado 80 ppm.




A.3. Comparacién codificacion global, global por trozos y local para cada curva

A.3.13 85 ppm

83.095

83.09

83.085

> 83.08F
83.075
83.07

83.065
0

39

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4656 || 0.8465  0.9234  0.8481 || 0.9234
exp2 0.8937 || 0.9908 0.9616  0.9802 || 0.9616
foul 0.9487 || 0.9924  0.9755  0.9878 || 0.9755
fou2 0.9855 || 0.9966  0.9945  0.9991 || 0.9945
fou3d 0.9978 || 0.9995  0.9964  0.9998 || 0.9964
gaussl 0.4508 || 0.8503  0.9228  0.9880 || 0.9228
gauss?2 0.9831 || 0.8707  0.9902  0.9973 || 0.9902
gauss3 0.9890 || 0.9924  0.9926  0.9977 || 0.9926
Particularizado - - - - 0.9879

+ Data
global fou3

2 4 6
X

8 10

(a) Ajuste global.

12

83.095

83.091

83.085 -

> 83.081

83.075

83.07

T r r
- Data
particularizada

83.065
0

Figura A.14: Comparacion ajuste global y particularizado 85 ppm.

A.3.14 90 ppm

(b) Ajuste particularizado.

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4603 || 0.8144 0.9197  0.8705 || 0.9197
exp2 0.8932 || 0.9739  0.9607  0.9844 || 0.9607
foul 0.9487 || 0.9752  0.9729  0.9891 || 0.9729
fou2 0.9835 || 0.9879  0.9941  0.9992 || 0.9941
fou3 0.9984 || 0.9991  0.9955  0.9995 || 0.9955
gaussl 0.4448 || 0.8189  0.9191  0.9891 || 0.9191
gauss2 0.9813 || 0.8440 0.9892  0.9986 || 0.9892
gauss3 0.9895 || 0.9752  0.9839  0.9991 || 0.9839
Particularizado - - - - 0.9868
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Figura A.15: Comparacion ajuste global y particularizado 90 ppm.

A.3.15 95 ppm

83.1

83.095
83.09
83.085[
83.08 -
83.075
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0

(b) Ajuste particularizado.

T T
+ Data
particularizada

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4667 || 0.6039  0.9071 0.8698 || 0.9071
exp2 0.8861 0.9157  0.9630  0.9900 || 0.9630
foul 0.9437 || 0.9276 09714 0.9911 || 0.9714
fou2 0.9836 || 0.9894  0.9950  0.9986 || 0.9950
fou3 0.9986 || 0.9981 0.9957  0.9998 || 0.9957
gaussl 0.4664 || 0.9283  0.9066  0.9911 || 0.9066
gauss?2 0.9814 || 0.9283  0.9886  0.9977 || 0.98%86
gauss3 0.9912 || 0.9283 0.9954  0.9992 || 0.9954
Particularizado - - - - 0.9866
T T 83.1
. Data
B 83.095
83.09+
83.085
83.08
83.075
83.07
é 4‘1 é é fo 12 83‘0650 é z‘t 5

(a) Ajuste global.

Figura A.16: Comparacion ajuste global y particularizado 95 ppm.
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(b) Ajuste particularizado.



A.4. Codificacién particularizada de cada una de las curvas

A.3.16 100 ppm

41

Método Global || Trozo 1 Trozo 2 Trozo 3 || Central
expl 0.4524 || 0.4453 0.8942  0.8783 || 0.8942
exp2 0.8884 || 0.8069  0.9677  0.9902 || 0.9677
foul 0.9465 || 0.8133 0.9714  0.9904 || 0.9714
fou2 0.9834 || 0.9932  0.9967  0.9992 || 0.9967
fou3 0.9984 || 0.9967  0.9980  0.9999 || 0.9980
gaussl 0.4367 || 0.8155 0.8782  0.9905 || 0.8782
gauss?2 0.9812 || 0.8155 0.9870  0.9983 || 0.9870
gauss3 0.9939 || 0.8155 0.9755  0.9991 || 0.9755
Particularizado - - - - 0.9864
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83.09 -
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(a) Ajuste global.
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Figura A.17: Comparacién ajuste global y particularizado 100 ppm.

(b) Ajuste particularizado.

A.4 Codificacion particularizada de cada una de las curvas

El trozo central es el realmente importante en el experimento (ver apartado 3.5 y Figura 3.5).
Luego, podemos codificar cada curva caracterizando el trozo central. Para ello se utiliza la
funcién particularizada. Asi, se puede formar la siguiente correspondencia:

25 <> (83.09,1.871 - 107°,0.000978, 0.8789)
30 <> (83.09,2.224 - 107°,0.001054, 0.9416)
35 +> (83.09,2.599 - 1075,0.001334, 0.9594)

45 +» (83.09,2.948 - 107°,0.00169, 1.016)

50 < (83.09,2.842 - 107°,0.001614, 1.034)
55 < (83.09,3.273 - 107°,0.001942, 1.081)

(
(
(
40 > (83.09,2.773 - 10~°,0.001585, 1.015)
(
(
(
(

60 <> (83.09,2.923 - 107°,0.001846, 1.046)

65 + (83.09,3.435 - 107°,0.002309, 1.059)
70 <+ (83.09,3.728 - 1075,0.002422, 1.1)
75 < (83.09,3.848 - 107°,0.002496, 1.105)

85 <+ (83.09,4.063 - 10~?, 0.002719, 1.095)

(
(
(
80 +> (83.09,4.01 - 1072,0.002616, 1.117)
(
(

90 < (83.09,4.218 - 107°,0.002772,1.119)
95 <+ (83.09,4.647 - 1075,0.003159, 1.117)
100 < (83.09,4.753 - 107°,0.003214,1.131)
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