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Abstract

In Security and Defense, the identification and quantification of live explosives is an unresolved
technological challenges. Nowadays, the most useful and efficient method is the smell of dogs,
but they have clear limitations. This is why there are efforts in developing innovative, fast
and effective platforms multi-sensors to ensure early detection of explosives. These systems
are called “nanoSNIFFER” and they are made by a lot of sensors.

The main purpose of this work is to develop a method to encode a family of curves in
R2 depending on a set of parameters (maximum 10). These curves correspond to different
experimental tests with different amounts of explosive obtained through electrical signals of
“nanoSNIFFER”. Each of them has between 300 and 320 points. The curve with 25 ppm
(parts per million) will be the curve example.

Data

Global encoding

Local encoding

Encoded Vector

Figure 1: Encoding process.

As shown in Figure 1, for each curve, it showns a comparison between the global encoding
and the local one, taking into account the physical meaning of each piece.

Global encoding

For global encoding, the following generic nonlinear functions are used to adjust data.

Parameters Method Function

2 exp1 a0 exp(a1x)
4 exp2 exp1 + a2 exp(a3x)
1+3 fou1 a0 + a1 cos(wx) + b1 sin(wx)
1+5 fou2 fou1 + a2 cos(2wx) + b2 sin(2wx)
1+7 fou3 fou2 + a3 cos(3wx) + b3 sin(3wx)
3 gauss1 a0 exp

(
−(x− a1)2/b21

)
6 gauss2 gauss1 + a2 exp

(
−(x− a3)2/b22

)
9 gauss3 gauss2 + a4 exp

(
−(x− a5)2/b23

)
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For all curves, the best method is fou3 obtaining a value of R2 ≥ 0.9964 for the smoothed
data and for the original ones of R2 ≥ 0.9544. This method uses 8 parameters which is below
the set threshold.

Thus, the encoding of the curve example with fou3 is:

(83.08, 0.00269, 0.003321,−0.0001061, 0.001823, 0.0003441, 0.0007918, 0.503)

with a goodness of fit R2 = 0.9982.

Local encoding

Each curve can be divided in three pieces taking into account the physical meaning: the first
piece corresponds to the heating of the sensor, the second one corresponds to the introduction
of the explosive and the actual experiment. The last one correspond to the removal of the
explosive and sensor recovery. See Figure 3.5.

If each piece is encoded separately with previous methods, 24 parameters are required for
coding with a value of R2 ≥ 0.99 (smoothed data). Therefore, this encoding does not improve
the global one.

However, the idea of dividing the curves is quite interesting because the central piece is
actually the important one, so only this piece will be encode. This one is encoded with a
custom function called “particularizada” which is:

f(x, θ) = a exp(−bx) + c sin(dx), b ≥ 0.

As noted, this function has half the parameters as fou3, i.e. only 4 parameters: (a, b, c, d).
In addition, it provides a goodness of fit of all curves higher than that obtained with other
methods of four parameters like fou1 and exp2.

So, the encoding of the curve example is:(
83.09, 1.871 · 10−5, 0.000978, 0.8789

)
and R2 = 0.9959.

Therefore, it has found a function that encodes each curve with only 4 parameters with
a value of R2 ≥ 0.9864 (smoothed data) which is clearly advantageous to global encoding
because it uses half the parameters.

Identificación de sustancias explosivas
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Caṕıtulo 1

Introducción

En el ámbito de la Seguridad y Defensa, la identificación y cuantificación de explosivos
«in-situ» y en tiempo real es uno de los retos tecnológicos pendientes de resolver. Los desaf́ıos
en este ámbito están relacionados con la amplia variedad de sustancias explosivas existentes,
incluyendo los artefactos explosivos improvisados (IED). Si bien los fabricantes de explosivos
incorporan en la formulación de los mismos sustancias relativamente volátiles o «taggants»
que facilitan su identificación para controlar su tráfico ilegal, los cada vez más frecuentes IED
caen fuera de esta categoŕıa. En teoŕıa, cualquier esquema de análisis qúımico podŕıa ser uti-
lizado, y de hecho, casi todos los métodos instrumentales conocidos ya han sido investigados
para la detección de explosivos. Sin embargo, muchos de los análisis clásicos no son aplicables
debido al tiempo requerido, y solamente son usados como ensayos de confirmación a posterio-
ri, a su coste o a la formación especializada del usuario final. A d́ıa de hoy, podemos concluir
que no existe una solución que resuelva los requerimientos de sensibilidad, selectividad, repro-
ducibilidad, fiabilidad, sencillez, rapidez y coste para detección de IED en todas sus variantes
y escenarios posibles.

En el ámbito de este proyecto y en relación a la aplicación de técnicas matemáticas para
la automatización de procesos para la detección de compuestos qúımicos, se encuentran dos
áreas de investigación bien diferenciadas:

• Estimación de la localización de la fuente de un determinado compuesto.

• Identificación de un determinado compuesto a partir de señales eléctricas de uno o más
sensores.

En este trabajo, se da la información necesaria para la codificación de las sustancias para la
posterior identificación mediante señales eléctricas de uno o más sensores.

Esta introducción aśı como el desarrollo del presente trabajo está enmarcado dentro
del proyecto Microsistemas basados en nanoestructuras con propiedades especificas de absor-
ción y plasmón superficial, para detección de explosivos ocultos y agentes de guerra qúımica
(CTQ2013-49068-C2-2-R) cuyo investigador principal es Miguel Ángel Urbitzondo Castro del
CUD.

1.1 Motivación

En la actualidad, el método más útil y eficiente para la identificación y cuantificación de
explosivos es el olfato de los perros adiestrados, pero tienen limitaciones obvias, de ah́ı los
esfuerzos en el desarrollo de plataformas multisensoras innovadoras, rápidas y eficaces, con un
principio de funcionamiento similar al olfato de los perros para garantizar la detección tem-
prana de explosivos. Estos sistemas se denominan «narices electrónicas» y están constituidos

1



2 Caṕıtulo 1. Introducción

por multitud de sensores donde se combinan principios de transducción muy variados con el
mismo fin.

1.2 Objetivo

El objetivo principal de este trabajo es obtener un método para codificar una familia de curvas
en R2 dependiendo de un conjunto de parámetros, de tal modo que en caso de presentarse
una nueva curva, el modelo sea capaz de codificarla según las curvas anteriormente dadas.

Para cada una de las sustancias explosivas, se dispone de varias curvas correspondientes a
las diferentes pruebas experimentales con distintas cantidades de explosivo obtenidas gracias
a los múltiples sensores que componen las llamadas «narices electrónicas».

La idea es mostrar para cada una de estas curvas planas, una comparación entre la pa-
rametrización global y la parametrización por trozos, teniendo en cuenta el sentido f́ısico de
cada uno de ellos.

Para ello, realizaremos lo que se llama un «bombardeo fit» con diferentes funciones de ajus-
te intentando encontrar un equilibrio entre el número de parámetros utilizados y el coeficiente
de correlación entre la curva plana dada y la curva de ajuste, es decir, se intentará encontrar
un coeficiente de correlación lo más próximo a la unidad pero, minimizando el número de
parámetros que definen la curva.

1.3 Metodoloǵıa

Para la codificación de tales curvas se han utilizado dos v́ıas, regresión mediante funciones no
lineales genéricas y regresión mediante una función particularizada para el trozo central de la
curva que es el más representativo. Se ha obtenido con cada una de estas v́ıas el coeficiente
de correlación entre los datos obtenidos experimentalmente y los datos regresionados, que
nos indicará lo buena que es la caracterización, junto con el vector de parámetros que la
caracteriza. El proceso completo viene dado en la Figura 1.1.

Como se observa en dicha figura, se realizará un primer estudio sobre el suavizado y el
troceado de las curvas para después proceder a la posterior codificación de la curva mediante
las dos v́ıas citadas.

Notar que se sitúa en diez el número máximo de parámetros puesto que estos datos servirán
para una posterior clasificación de las curvas incrementándose el tiempo de identificación
notablemente si se supera tal máximo.

Identificación de sustancias explosivas



1.3. Metodoloǵıa 3

Datos

Suavizado Suavizado

TrozosTrozos

Codificación globalCodificación Particularizada

Función parametrizada

(R2; Vector de parámetros)

No

Śı

Śı

No

Figura 1.1: Vı́as utilizadas para la caracterización de la curva.

Autor: Alejandro Gracia Benito





Caṕıtulo 2

Suavizado y Regresión

En este caṕıtulo se exponen las herramientas matemáticas utilizadas en el proceso de codifi-
cado de nuestras curvas. Dichas herramientas son de carácter general y no solo sirven para
dicho trabajo. La estructura del caṕıtulo se divide en dos partes: suavizado y regresión. En
la parte de regresión el proceso a seguir es el estudio del modelo teórico general seguido por
el estudio del caso lineal para finalmente terminar con el caso no lineal.

2.1 Suavizado

En esta sección, vamos a hablar de diferentes filtros digitales utilizados en el proceso de
suavizado: sgolay, loess, lowess, rloess y rlowess.

2.1.1 Filtro sgolay (Savitzky-Golay)

El filtro de Savitzky-Golay (codificado como sgolay) fue descrito por primera vez en 1964 por
Abraham Savitzky y Marcel J. E. Golay: Smoothing and differentiation of data by simplified
least squares procedures [13]. Este método se basa en el cálculo de una regresión polinomica
local (de grado k), con al menos k+ 1 puntos equiespaciados, para determinar el nuevo valor
de cada punto (ver Figura 2.1). El resultado será una función similar a los datos de entrada,
pero suavizada. Existen métodos para calcular desde la primera a la quinta derivada. En la
Figura 2.2 se muestra el suavizado para una función con dicho filtro mediante un polinomio
de grado 4.

Figura 2.1: Ejemplo regresión local por un polinomio de grado 3.

5



6 Caṕıtulo 2. Suavizado y Regresión

La principal ventaja de esta aproximación es que tiende a preservar caracteŕısticas de la
distribución inicial tales como los extremos relativos o el ancho de los picos, que normalmente
desaparecen con otras técnicas como la media desplazada1.
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Figura 2.2: Suavizado de una función, de su primera y segunda derivada con el filtro sgolay.

2.1.2 Filtros lowess y loess (locally weighted scatter plot smooth)

El proceso de suavizado se considera local porque, al igual que el método de media desplazada,
cada valor suavizado se determina por los datos vecinos. El proceso se pondera por una función
de regresión que se define para dichos puntos. Además de esta función de ponderación, se puede
utilizar una función de peso robusto, lo que hace que el proceso sea resistente a los «outliers».
Finalmente, los métodos se diferencian por el modelo utilizado en la regresión: lowess utiliza
un polinomio lineal, mientras que loess utiliza un polinomio cuadrático.

Métodos robustos: rlowess y rloess

Si los datos contienen «outliers», los valores suavizados pueden distorsionarse, y no reflejar
el comportamiento de la mayor parte de los puntos vecinos. Para evitar este problema, se
pueden suavizar los datos utilizando un procedimiento robusto que no está influenciado por
una pequeña fracción de los «outliers».

En la Figura 2.3 se puede observar que los valores suavizados no quedan distorsionados
por los «outliers» al utilizar el método robusto, reflejando mejor el comportamiento de todo
el conjunto de puntos.

1Para saber más sobre el funcionamiento del proceso de la media desplazada visitar:

Identificación de sustancias explosivas



2.2. Regresión 7
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Figura 2.3: Comparación entre el método loess y rloess.

Se puede encontrar más información sobre estos filtros en numerosos libros. A continuación
se citan algunos de ellos: An Evaluation of Smoothing Filters for Gas Sensor Signal Cleaning
[2], Data Filtering Technique for Neural Networks Forecasting [15] y Filters for RSSI-based
measurements in a Device-free Passive Localisation Scenario [4].

En la siguiente sección se va a proceder al análisis de la regresión tanto lineal como no
lineal. Aunque existe numerosa literatura clásica como por ejemplo Introduction to Mathe-
matical Statistics [7], dicho análisis se basará en el libro Introducción a la Estad́ıstica [10].

2.2 Regresión

Antes de comenzar con el estudio del modelo teórico general se dará una breve reseña histórica
sobre el término. Para más información consultar Hereditary Genius, An Inquiry Into Its Laws
and Consequences [5].

El término «regresión» fue acuñado por Francis Galton en el siglo XIX para describir
un fenómeno biológico. Galton observó que las alturas de los descendientes de ancestros altos
tienden a regresar hacia un promedio normal de altura (un fenómeno conocido como regresión
a la media). Para Galton, la regresión solo teńıa este significado biológico, pero su trabajo se
extendió más tarde por Udny Yule y Karl Pearson a un contexto estad́ıstico más general.

http://es.mathworks.com/help/curvefit/smoothing-data.htm#lbs5ojev

Autor: Alejandro Gracia Benito



8 Caṕıtulo 2. Suavizado y Regresión

Se denomina regresión al proceso general de ajustar una función a unos datos. El criterio
de minimización empleado para tal ajuste es fundamental a la hora de determinar la curva
de regresión, siendo habitual utilizar el método de mı́nimos cuadrados. Según que la función
a ajustar sea lineal o no lineal en los parámetros hablaremos de regresión lineal o regresión
no lineal, respectivamente. En ambos casos, el objetivo es el mismo: encontrar las mejores
estimaciones de los parámetros y cuantificar la precisión de los mismos.

Matemáticamente, se puede describir un modelo de regresión entre las variables X e Y
como:

Y = f(X, θ) + ε(θ)

donde θ es un vector de parámetros del modelo de regresión que se estima con los valores de
los elementos de la muestra y ε(θ) es un término de error cometido al explicar la variable Y
con la curva dada por la función f(X, θ).

El correspondiente muestral de este modelo teórico de regresión está dado por una curva
de regresión de Y sobre X definida como:

yi = f(xi, θ
∗) + ei(θ

∗)

donde θ∗ define la curva que minimiza la distancia entre los puntos (xi, yi) y la curva. Los
elementos ei(θ

∗) se denominan residuos y están definidos por:

ei = yi − ŷi, i = 1, . . . , n

donde yi es la ordenada e ŷi = f(xi, θ
∗) denota la observación estimada correspondiente al

modelo de regresión establecido.
Como se ha expuesto al principio de la sección, el criterio de minimización empleado

para ajustar la curva a los datos es fundamental para determinar la curva de regresión. Nos
centraremos en el estudio del criterio de mı́nimos cuadrados.

Mı́nimos cuadrados

Al igual que antes, se comenzará con unos datos históricos. Para saber más sobre Gauss y su
aportación a la Estad́ıstica consultar Gauss y la Estad́ıstica [8].

El método de mı́nimos cuadrados tiene una larga historia que se remonta a los principios
del siglo XIX. En junio de 1801, Zach, un astrónomo que Gauss hab́ıa conocido dos años
antes, publicaba las posiciones orbitales del cuerpo celeste Ceres, un nuevo pequeño planeta
descubierto por el astrónomo italiano G. Piazzi en ese mismo año. Desafortunadamente, Piazzi
solo hab́ıa podido observar 9 grados de su órbita antes de que este cuerpo desapareciese tras
el sol. Zach publicó varias predicciones de su posición incluyendo una de Gauss que difeŕıa
notablemente de las demás. Cuando Ceres fue redescubierto por Zach en diciembre de 1801
estaba casi exactamente donde Gauss hab́ıa predicho. Aunque todav́ıa no hab́ıa revelado
su método, Gauss hab́ıa obtenido el método de mı́nimos cuadrados. El francés Legendre
desarrolló el mismo método de forma independiente en 1805.

Como su nombre indica, el objetivo del método es obtener los valores de las componentes
del vector de parámetros θ∗ que minimicen la suma de los cuadrados de los residuos:

n∑
i=1

(yi − ŷi)2

Identificación de sustancias explosivas



2.2. Regresión 9

Sustituyendo el valor de ŷi en la expresión anterior se obtiene:
n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − f(xi, θ0))
2

Dado que el objetivo es minimizar esta función con respecto a las componentes del vec-
tor θ∗, el siguiente paso es calcular la primera derivada con respecto a cada una de las com-
ponentes.

Supongamos el vector θ∗ = (θ∗1, . . . , θ
∗
k) ∈ Rk. Aśı, se tiene la siguiente expresión:

Fj =
n∑
i=1

∂

∂θ∗j
(yi − f(xi, θ

∗))2 , j = 1, . . . , k.

Para obtener los valores de θ∗j hay que resolver el sistema, posiblemente no lineal:

Fj = 0, j = 1, . . . , k (2.1)

que recibe el nombre de ecuaciones normales.

Bondad de ajuste

Una vez obtenida la curva de regresión queda por determinar la calidad del ajuste. Para
realizar esto, se define el coeficiente de determinación R2. Este término es función del cociente
de la variabilidad de los residuos y la variabilidad total de los datos de la muestra y1, . . . , yn.

Definición 2.2.1. Se define el coeficiente de determinación R2 como:

R2 = 1− s2R
s2Y

que representa la proporción de la variación de Y explicada por el modelo de regresión, donde:

s2R =
1

n

n∑
i=1

e2i =
1

n

n∑
i=1

(yi − ŷi)2

Proposición 2.2.2. El coeficiente de determinación satisface las siguientes propiedades:

• 0 ≤ R2 ≤ 1.

• Si R2 =1, el ajuste de la curva a los datos es perfecto.

• Si R2 =0, el ajuste es nulo, es decir, la variación de X no explica, en absoluto, la
variación de Y .

• R2 = r2XY , donde r2XY es el coeficiente de correlación muestral.

Finalmente, también se puede definir el coeficiente de determinación ajustado.

Definición 2.2.3. Se define el coeficiente de determinación ajustado, R̃
2
, como:

R̃
2

= 1− s̃2R
s̃2Y

,

donde:

s̃2R =
1

n− k

n∑
i=1

e2i =
1

n− k

n∑
i=1

(yi − ŷi)2

Esta medida es de utilidad en modelos de regresión donde el número de variables expli-
catorias es mayor que uno. En el análisis de regresión simple no tiene mayor relevancia y es
reemplazado por R2.

En lo que sigue, se detallará cómo resolver el sistema (2.1) para el caso lineal y el no lineal.

Autor: Alejandro Gracia Benito
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2.2.1 Regresión lineal

La regresión lineal es aquella cuya curva de regresión y = f(X, θ) + ε(θ) viene dada por una
función f(X, θ) lineal en los parámetros y cuyo objetivo es estudiar la relación causal lineal
entre dos variables.

Aśı, el modelo de regresión lineal simple viene dado por:

Y = β0 + β1X + ε(β0, β1)

En tal caso, se llega a:

yi =b0+b1xi + ei, i = 1, . . . , n

donde b0 y b1 definen la recta que minimiza la distancia entre los puntos de la muestra y la
recta.

En el caso de la regresión lineal la solución del problema de mı́nimos cuadrados es única.

Partiendo de la ecuación:

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − (b0+b1xi))
2

y resolviendo las ecuaciones normales se llega a la solución exacta:

b0 = ȳ − b1x̄

b1 =

(
1

n

n∑
i=1

xiyi

)
− ȳx̄(

1

n

n∑
i=1

x2i

)
− x̄2

=
sXY
s2X

donde sXY y s2X son la covarianza y varianza muestral de X, respectivamente.

Numéricamente es mejor resolverlo mediante la factorización QR ya que este es un algo-
ritmo estable (Algorithms for the QR-Decomposition [6]). A continuación ilustraremos con un
ejemplo sencillo el porqué de tal afirmación:

Ejemplo 2.2.4. Considerar la matriz:

A =

1 1
δ 0
0 δ


Si 0 < δ << 1, las dos columnas de A son casi idénticas pero linealmente independientes. Las
ecuaciones normales hacen que la situación se empeore, ya que la matriz de coeficientes es:

ATA =

(
1 + δ2 1

1 1 + δ2

)
y si |δ| < 10−8, la matriz anterior es singular en aritmética de doble precisión.

Una vez encontrados los valores de los parámetros que minimizan la distancia entre los
puntos y la recta de regresión para el caso lineal, se abordará el problema no lineal.

Identificación de sustancias explosivas
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2.2.2 Regresión no lineal

La regresión no lineal es aquella cuya curva y = f(X, θ) + ε(θ) de regresión viene dada por
una función f(X, θ) no lineal respecto a θ. A diferencia de la regresión lineal, el problema
de encontrar los parámetros óptimos ya no tiene por qué tener una solución única ni de tipo
expĺıcito puesto que el sistema (2.1) es no lineal. En su lugar, hay que utilizar métodos itera-
tivos, que tratan de buscar con diferentes estrategias el mı́nimo de la suma de los cuadrados
de los residuos.

Método de Newton

Considerar el sistema de n-ecuaciones no lineales con n-incógnitas en notación vectorial:

F (x) = (F1(x), F2(x), . . . , Fn(x)) = 0 (2.2)

La solución de este sistema de ecuaciones implica encontrar α ∈ Rn tal que F (α) = 0. Sea xr
una aproximación a la misma. Linealizando en xr y suponiendo que F (xr+1) = 0:

0 ' F (xr) + J(xr)(xr − xr+1) (2.3)

define el vector xr+1, donde J(xr) es la matriz Jacobina de F evaluada en xr.

Resolviendo el sistema lineal (2.3) se obtiene:

xr+1 = xr − J−1(xr)F (xr)

que es el método de Newton para n-variables. La formula anterior proporciona una relación
de recurrencia a partir de un vector de partida x0, que convergerá a la ráız si x0 se encuentra
en la región de convergencia de la misma y, si además, la matriz J(xr) es regular ∀r .

En general, se procede actualizando el valor de xr por ξr,

xr+1 = xr + ξr (2.4)

siendo ξr solución del sistema lineal:

J(xr)ξr = −F (xr) (2.5)

Observación 2.2.5. Las propiedades más notables del método de Newton son:

• Cuando converge, suele ser muy rápido (convergencia cuadrática).

• Es adecuado para problemas con matriz jacobiana «sparse».

Sin embargo, el método de Newton no esta libre de inconvenientes. Un punto clave es
la elección del valor inicial x0 de manera que esté «suficientemente cerca» de la solución
buscada. En la práctica, dicha semilla inicial no está disponible por lo que se buscan maneras
de alargar el dominio de atracción del método de Newton. Además, en cada iteración del
método se requiere una evaluación de la matriz jacobiana, J(xr), y resolver el sistema de
ecuaciones lineales (2.3).

Se realizará a continuación un estudio sobre el primero de los inconvenientes.

Autor: Alejandro Gracia Benito
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Aumentando la convergencia local del método de Newton

Dada una semilla inicial x0, se obtiene una sucesión de aproximaciones {xj}j∈N a la ráız α
mediante las ecuaciones (2.4) - (2.5).

El sistema lineal (2.5) define una dirección ξ ∈ Rn llamada dirección de Newton y, entonces
en (2.4) se da un paso en esta dirección para actualizar el punto xr al punto xr+1.

Si x0 no esta suficientemente cerca de la ráız α, pueden surgir dos dificultades: bien que el
paso en la dirección de Newton sea demasiado grande (ver método de Newton amortiguado),
o bien, que la dirección de Newton no sea buena. Se procederá a profundizar más sobre esta
segunda circunstancia.

Que la dirección de Newton no sea buena conduce a que el punto xj no esté suficientemente
cerca de α. Esto puede ser debido a que la matriz jacobiana sea numéricamente singular (ver
Definición (2.2.6)). En muchos problemas, se puede encontrar una matriz jacobiana numéri-
camente singular, debido a que x0 está lejos de α. Para intentar solucionar este obstáculo,
habrá que alterar la dirección de Newton.

Se sigue dando unas breves ideas del método de Newton amortiguado necesarias para
el desarrollo de la alteración de la dirección de Newton. Para mayor información consultar
Numerical Solution of Boundary Value Problems for Ordinary Differential Equations [1].

Método de Newton amortiguado

La idea de este método es controlar el tamaño del paso tomado en la dirección de Newton ξ.
Por tanto, con ξ dado como solución de (2.5), se modifica (2.4) como sigue:

xr+1 = xr + λrξr, 0 < λr 6 1 (2.6)

Es claro que tanto λr como ξr dependen de la iteración en la que se encuentran. Aśı, se sigue
de (2.3) que:

ξr = −J−1(xr)F (xr) (2.7)

Ahora, el problema está en cómo escoger el factor de amortiguación λr. Para este propósito,
se introduce la función objetivo g : Rn −→ R definida por:

g(x) =
1

2
‖F (x)‖22 =

1

2

n∑
j=1

Fj(x)2 (2.8)

que satisface las condiciones:

• g(x) ≥ 0 y g(α) = 0⇔ F (α) = 0.
Luego α minimiza g(x) si F (α) = 0, lo que implica que el valor de λ es mejor cuanto
menor sea g(x+ λξ).

• La dirección de Newton es de descenso respecto de g(x), es decir:

ξT∇g < 0

donde ξ es la dirección de Newton y ∇g es el gradiente de la función objetivo.

Veamos que nuestra función objetivo g definida en (2.8) satisface estas dos condiciones.
Dado que ∇g = JTF , la función g satisface:

∇gT ξ = −2g < 0 (2.9)

es estrictamente menor a menos que x = α. El significado de tomar una dirección de descenso
es que, para λ > 0 suficientemente pequeño, la serie de Taylor da:

g(xr + λξ) = g(xr) + λξT∇g(xr) +O(λ2|ξ|2) < g(xr) (2.10)

Identificación de sustancias explosivas
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Luego en la siguiente iteración, xr+1 dado por (2.6), debe satisfacer:

g(xr+1) < g(xr) (2.11)

es decir, se requiere que g sea monótona decreciente hacia la solución α.
Aśı, el problema del método de Newton amortiguado es decidir qué punto de la semirrecta

xr + λξ debe ser escogido para la siguiente iteración.

Una vez vistas estas breves ideas del método de Newton amortiguado, se procede al análisis
de la alteración de la dirección de Newton.

Alteración de la dirección de Newton

Definición 2.2.6. Se dice que una matriz A es numéricamente singular si su condiciona-
miento verifica K(A)ε ≈ 1 siendo ε la unidad de redondeo.

Para cuantificar de un modo realista la singularidad numérica, es conveniente usar la
función objetivo. Primero se escribe la serie de Taylor para F (x + λξ) con ξ como en (2.7)
como sigue:

F (x+ λξ) = (1− λ)F (x) +

∫ λ

0
[J(x+ tξ)− J(x)] ξdt (2.12)

En el caso en el cual J(xr) es numéricamente singular, la dirección de Newton no es útil,
y hay que buscar maneras para alterarla.

El enfoque más sencillo es considerar la minimización de la función objetivo (2.8) direc-
tamente, es decir, incrustar el problema de la ecuación no lineal en un problema no lineal de
mı́nimos cuadrados. El método de máxima pendiente sugiere entonces una alternativa para
la dirección de Newton generalizada, elegir ξr como la dirección de máxima pendiente:

ξr = −JTr Fr (2.13)

en x = xr, y entonces usar una búsqueda por semirrectas para determinar la siguiente ite-
ración. Este método también aprovecha la posible estructura «sparse» de J . Desafortunada-
mente, se sabe que la convergencia es más lenta. La experiencia dice que donde la dirección
de Newton falla, el método de máxima pendiente no es de mucha ayuda.

Una estrategia más flexible es tomar una combinación de la dirección de Newton y de la
de máxima pendiente. La dirección de Newton se expresa primero en términos de un paso de
Gauss-Newton, aśı llamada para el problema de mı́nimos cuadrados minimizando (2.8). Esto
es, si J tiene rango máximo entonces las ecuaciones normales para el problema de mı́nimos
cuadrados:

mı́n |J(xr)ξ + F (xr)|2 (2.14)

dan:
ξ = −(JTJ)−1JTF. (2.15)

Entonces, si el rango de J no es máximo se toma una combinación de (2.15) y de (2.13):

ξ = −(JTJ + µI)−1JTF (2.16)

en x = xr, con µ un parámetro de control positivo. Este se conoce como el método de
Marquardt. Notar que una matriz semidefinida positiva JTJ se convierte en definida positiva
añadiendo µI, µ > 0.

La gran cuestión con respecto al método de Marquardt es como controlar el parámetro
µ. Un enfoque eficaz es usar un modelo «trust-region», donde la solución de (2.14) se elige
sujeta al requisito de que su norma no sea demasiado grande. Por tanto se requiere:

|ξ| ≤ δ (2.17)

Autor: Alejandro Gracia Benito



14 Caṕıtulo 2. Suavizado y Regresión

donde δ es un parámetro de control que representa la región en la cual el modelo cuadrático,
cuyo mı́nimo está dado por la solución de (2.14), modela adecuadamente la función objetivo.
Este enfoque también proporciona una manera natural de decidir cuando se altera la dirección
de Newton, es decir, cuando la dirección de Newton no satisface (2.17).

Identificación de sustancias explosivas



Caṕıtulo 3

Codificación de las curvas

En este caṕıtulo se muestra una codificación de las curvas planas correspondientes a la sus-
tancia nitrotolueno haciendo uso del método de Marquardt descrito en el caṕıtulo anterior
para la resolución de ecuaciones no lineales.

3.1 Caso de estudio

Para la elaboración del presente trabajo se dispone de un total de 16 curvas correspondientes
a la sustancia nitrotolueno con diferentes partes por millón (ppm de aqúı en adelante), empe-
zando con 25 ppm y terminando con 100 ppm con una diferencia de 5 ppm entre cada curva.
El tamaño de cada una de las muestras está comprendido entre 300 y 320 puntos.

En todo el caṕıtulo se tomará como curva ejemplo la correspondiente a 25 ppm mostrada
en la Figura 3.1. La codificación del resto de las curvas se puede ver en el Anexo.
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Figura 3.1: Curva correspondiente a 25ppm Nitrotolueno.
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16 Caṕıtulo 3. Codificación de las curvas

3.2 Suavizado de la curva

Se han estudiado diferentes filtros para la realización del suavizado de la curva, codificados
como sgolay, rlowess y rloess. Para estudiar cuál es el mejor para nuestras curvas se se
tomará aquel que mayor valor de R2 proporcione. En la siguiente tabla se muestran los datos
obtenidos con cada uno de los filtros anteriormente citados para la curva ejemplo:

Filtro R2

sgolay 0.9752
rlowess 0.9446
rloess 0.9518

A continuación, se muestra un gráfico con el valor del R2 obtenido al suavizar todas las
curvas con los diferentes filtros. Los datos numéricos se encuentran en el Anexo.
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Figura 3.2: Suavizado con diferentes filtros.

Puede observarse en la figura anterior que para todas las curvas consideradas, el mejor
filtro es el codificado de sgolay. En lo que sigue, cuando se hable de datos suavizados se
entienderá que han sido suavizados con este filtro.

3.3 Codificación global

Primero, se abordará la codificación global de nuestras curvas mediante la primera de las dos
v́ıas, la regresión mediante funciones no lineales genéricas. Para esta codificación global, se
realizará un «bombardeo fit» con las funciones mostradas en la siguiente tabla:
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Parámetros Método f(X, θ)

2 exp1 a0 exp(a1x)
4 exp2 exp1 + a2 exp(a3x)
1+3 fou1 a0 + a1 cos(wx) + b1 sin(wx)
1+5 fou2 fou1 + a2 cos(2wx) + b2 sin(2wx)
1+7 fou3 fou2 + a3 cos(3wx) + b3 sin(3wx)
3 gauss1 a0 exp

(
−(x− a1)2/b21

)
6 gauss2 gauss1 + a2 exp

(
−(x− a3)2/b22

)
9 gauss3 gauss2 + a4 exp

(
−(x− a5)2/b23

)
Estas funciones han sido escogidas puesto que son estándar en el software utilizado (Matlab).

Se muestra la calidad del ajuste con cada una de las funciones anteriores para la curva
ejemplo, mediante el coeficiente de correlación entre los datos suavizados y los datos proce-
dentes de la regresión, R2. No hay que olvidar que el objetivo del presente trabajo es encontrar
un equilibrio entre dicho coeficiente de correlación y la dimensión del vector de parámetros θ.

Método R2 R̃2

exp1 0.8046 0.8040
exp2 0.8994 0.8984
fou1 0.9503 0.9499
fou2 0.9941 0.9940

fou3 0.9982 0.9981
gauss1 0.7838 0.7824
gauss2 0.9920 0.9918
gauss3 0.9895 0.9892

Se observa que el mejor ajuste se corresponde con el método de función fou3, es decir, con:

f(X, θ) = a0 +a1 cos(wx)+ b1 sin(wx)+a2 cos(2wx)+ b2 sin(2wx)+a3 cos(3wx)+ b3 sin(3wx)

donde θ = (a0, a1, . . . , w). Dicho método utiliza un total de 8 parámetros que está por debajo
del umbral fijado inicialmente en un máximo de 10 parámetros. Gráficamente, el ajuste es el
mostrado en la Figura 3.3.

Como se ha expuesto en el caṕıtulo anterior, no se puede dar un valor exacto para los
parámetros que componen el vector θ, por lo que a continuación se muestran los valores de
los parámetros junto con su intervalo de confianza al 95 %.

Aśı, con la semilla inicial θ0 = (83.08, 0, 0, 0, 0, 0, 0, 0.3136), se obtienen los siguientes
resultados para los parámetros (a0, a1, b1, a2, b2, a3, b3, w):

a0 = 83.08
a1 = 0.00269 ∈ [0.002647, 0.002734]
b1 = 0.003321 ∈ [0.003287, 0.003355]
a2 = −0.0001061 ∈

[
−0.0001556,−5.654 · 10−5

]
b2 = 0.001823 ∈ [0.001701, 0.001944]
a3 = 0.0003441 ∈ [0.0002716, 0.0004165]
b3 = 0.0007918 ∈ [0.0007568, 0.0008268]
w = 0.503 ∈ [0.495, 0.5109]

Por tanto, la codificación para esta curva será la siguiente:(
R2, θ

)
= (0.9982; (83.08, 0.00269, 0.003321,−0.0001061, 0.001823, 0.0003441, 0.0007918, 0.503))

Autor: Alejandro Gracia Benito
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Figura 3.3: Ajuste con fou3.

Se refleja el ajuste de la curva ejemplo con el método codificado como gauss1. Como este
método es el que menor valor de R2 proporciona, la relación entre los datos suavizados y la
curva de ajuste no parece adecuada (ver Figura 3.4).
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Figura 3.4: Ajuste con gauss1.

Los valores de los parámetros se obtienen mediante métodos iterativos. En estos métodos,
la semilla inicial juega un papel muy importante a la hora de hallar la solución buscada. Si
se cambia la semilla inicial y se parte de θ0 = 0̄, los valores de los parámetros vaŕıan de
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manera significativa:

a0 = 1.224 · 1011 ∈
[
−5.576 · 1012, 5.821 · 1012

]
a1 = 0.00 ∈

[
−8.077 · 1011, 8.077 · 1011

]
b1 = 0.00 ∈

[
−8.62 · 1018, 8.62 · 1018

]
a2 = 0.00 ∈

[
−4.331 · 1012, 4.331 · 1012

]
b2 = 0.00 ∈

[
−6.831 · 1018, 6,831 · 1018

]
a3 = −1.224 · 1011 ∈

[
−4.462 · 1012, 4.217 · 1012

]
b3 = −5.178 · 104 ∈

[
−1.823 · 1018, 1.823 · 1018

]
w = 1,49 · 10−08 ∈

[
−2.761 · 10−7, 3.059 · 10−7

]
Además, el valor de R2 que se obtiene partiendo del vector nulo como semilla inicial es 0.8738.
Luego, tanto el valor de R2 como los intervalos de confianza de cada uno de los parámetros
indican que este ajuste no es lo suficientemente bueno.

3.4 Codificación global por trozos

Se puede dividir cada una de las curvas en tres trozos como se muestra en la Figura 3.5. Estos
tres trozos se rigen por el sentido f́ısico del problema:

• El primer trozo corresponde con el encendido y calentamiento de la «nariz electrónica».

• El segundo trozo corresponde a la introducción de la sustancia y al comienzo real del
experimento.

• El tercer y último trozo corresponde a la retirada de la sustancia y la recuperación de
la «nariz electrónica».
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Figura 3.5: Trozos en la gráfica correspondiente a 25ppm.

Por lo que se puede pensar en una codificación global por trozos ajustando cada uno de
ellos por separado.
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Aśı, en la siguiente tabla se muestra el valor de R2 para cada uno de los trozos de la curva
ejemplo utilizando los mismos métodos que para la codificación global.

Método Trozo 1 Trozo 2 Trozo 3

exp1 0.7662 0.9836 0.0200
exp2 0.9704 0.9873 0.8465
fou1 0.9736 0.9952 0.8499
fou2 0.9863 0.9977 0.9630
fou3 0.9988 0.9991 0.9945
gauss1 0.7738 0.9823 0.8561
gauss2 0.9737 0.9960 0.9150
gauss3 0.9737 0.9960 0.9434

Lo deseable seŕıa que para esta codificación global por trozos se usase el mı́nimo número de
parámetros posibles en cada uno de los trozos. Pero como se observa en la tabla anterior, para
obtener un ajuste con una calidad superior a 0.99 en cada uno de ellos se necesita un total
de 8 + 8 + 8 = 24 parámetros. Por lo que esta codificación global por trozos no mejora la
codificación global obtenida anteriormente puesto que bastaba con 8 parámetros para obtener
una calidad de ajuste de 0.9982.

3.5 Codificación del trozo central

Gracias al sentido f́ısico del problema descrito con anterioridad, todos los esfuerzos se van
a basar en codificar el trozo central puesto que se corresponde con la introducción de la
sustancia.

De la misma manera que en la codificación global, se mostrará en una tabla la calidad
del ajuste de este tramo central con cada una de las funciones no lineales que hemos ido
describiendo a lo largo de nuestro trabajo. Aśı, la tabla seŕıa la siguiente:

Método R2 R̃2

exp1 0.9836 0.9836
exp2 0.9874 0.9872
fou1 0.9952 0.9951
fou2 0.9977 0.9976

fou3 0.9991 0.9991
gauss1 0.9823 0.9821
gauss2 0.9972 0.9971
gauss3 0.9979 0.9979

Como se puede observar, todos los ajustes obtienen un valor de R2 > 0.98 lo cual es muy alto,
pero el mejor método de ajuste sigue correspondiendo con fou3 (ver Figura 3.6). Se muestra
también el gráfico correspondiente al ajuste con gauss1 al igual que en la codificación global.

En este caso donde solo codificamos el segundo trozo de la curva, con este método de fou3
se necesitan un total de 8 parámetros, lo cual no proporciona ninguna mejora con respecto a
la codificación global, puesto que utiliza el mismo número de parámetros.

3.5.1 Codificación particularizada

Ahora, se podŕıa pensar que cualquiera de los métodos anteriores nos sirve para obtener
una buena codificación de esta curva, puesto que como se ha indicado, todos los ajustes
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Figura 3.6: Ajuste trozo central fou3 y gauss1.

proporcionan un valor de R2 > 0.98. A pesar de esto, viendo la forma de la gráfica en
el intervalo central, se intenta obtener una función f(x, θ) distinta a las anteriores con un
número menor de parámetros que consiga una calidad de ajuste mejor a la que se muestra en
la tabla anterior mediante los métodos clásicos.

Aśı, con estas premisas, se busca una función f(x, θ) con cuatro parámetros de forma que
mejora en muchos de los casos la calidad de ajuste obtenida con los métodos ya expuestos.
Tal función es la siguiente:

f(x, θ) = a exp(−bx) + c sin(dx), b ≥ 0

Como se ve, es una combinación de una función trigonométrica y una exponencial con cuatro
parámetros, es decir, el vector θ es (a, b, c, d). Dicha función se denota función particularizada
(por comodidad a la hora de referenciarla).

En la siguiente tabla se muestran los resultados obtenidos comparándolos con los métodos
fou1 y exp2 (todos ellos con cuatro parámetros).

Curva Particularizada fou1 exp2

25 ppm 0.9959 0.9952 0.9874
30 ppm 0.9970 0.9953 0.9878
35 ppm 0.9952 0.9929 0.9841
40 ppm 0.9916 0.9862 0.9757
45 ppm 0.9928 0.9872 0.9763
50 ppm 0.9907 0.9851 0.9737
55 ppm 0.9911 0.9810 0.9733
60 ppm 0.9891 0.9807 0.9684
65 ppm 0.9893 0.9792 0.9653
70 ppm 0.9882 0.9758 0.9654
75 ppm 0.9885 0.9760 0.9638
80 ppm 0.9872 0.9736 0.9638
85 ppm 0.9879 0.9755 0.9616
90 ppm 0.9868 0.9729 0.9607
95 ppm 0.9866 0.9714 0.9630
100 ppm 0.9864 0.9714 0.9677

Para dichos métodos, la función particularizada obtiene una mejora en la calidad de ajuste.
Además, se observa que el error relativo es casi lineal en ppm/10 (ver Figura 3.7).
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Figura 3.7: Ajuste tramo central particularizada y error relativo*ppm/10.

Volviendo a nuestra curva ejemplo se obtienen los siguientes valores para los parámetros
(a, b, c, d) partiendo de la semilla inicial θ0 = (0.5465, 0.0902, 0.3516, 0.9157), indicando los
intervalos de confianza al 95 %:

a = 83.09
b = 1.871 · 10−5 ∈ [1.824 · 10−5, 1.918 · 10−5]
c = 0.000978 ∈ [0.0008861, 0.00107]
d = 0.8789 ∈ [0.8647, 0.8931]

Aśı, la codificación para la curva ejemplo es:(
0.9959;

(
83.09, 1.871 · 10−5, 0.000978, 0.8789

))
3.6 Codificación sin suavizado

Hasta ahora, todo el proceso de codificación de las curvas se ha realizado con los datos
suavizados. En esta sección se muestran los datos obtenidos al codificar las curvas con los
datos originales.

Para la parametrización global de la curva ejemplo se obtienen los siguientes resultados:

Método Global

exp1 0.7552
exp2 0.8459
fou1 0.8939
fou2 0.9423

fou3 0.9544
gauss1 0.7357
gauss2 0.9388
gauss3 0.9393

Se observa que el mayor valor de R2 lo sigue proporcionando el método fou3 pero este valor
es mucho menor al obtenido en la codificación global tras el suavizado (0.9982). En general,
para esta curva ejemplo hay una diferencia entre los valores de R2 de 0.05 aproximadamente.
Sin embargo, a lo largo de la familia la diferencia va disminuyendo como se puede observar
en la Figura 3.8.
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Para la codificación del trozo central se han obtenido los siguientes datos:

Método Central

exp1 0.9829
exp2 0.9866
fou1 0.9944
fou2 0.9969

fou3 0.9983
gauss1 0.9815
gauss2 0.9952
gauss3 0.9968
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Figura 3.8: Comparación de R2 entre ajuste global con suavizado y sin suavizado. Diferencia
en valor absoluto entre los valores de R2 para el trozo central.

20 30 40 50 60 70 80 90 100
0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

ppm

R
2

 

 
Suavizado
Sin suavizar

Figura 3.9: R2 trozo central ajuste particularizado.

En la Figura 3.8 se muestra la diferencia en valor absoluto entre el valor de R2 que se
obtiene al suavizar y el que se obtiene al no suavizar los datos de la familia completa con
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fou3. Se observa que dicha diferencia aumenta conforme la curva tiene mayor cantidad de
ppm.

Por último, en la Figura 3.9 se muestra la diferencia entre los valores de R2 para el trozo
central pero con el ajuste mediante la función particularizada. Al igual que para el ajuste del
trozo central con fou3, a lo largo que crecen las ppm la diferencia entre el valor de R2 al
suavizar y no suavizar se acentúa.
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Caṕıtulo 4

Conclusiones

En vista a los resultados del caṕıtulo anterior en el cual se ha realizado una codificación
tanto global como por trozos de una serie de curvas en R2 correspondientes a la sustancia
nitrotolueno se obtienen las siguientes conclusiones.

La codificación global de las curvas se obtiene con un total de 8 parámetros que son los
correspondientes a la función de ajuste del método fou3. Con esta codificación se obtiene una
calidad de ajuste para la curva ejemplo con los datos suavizados mediante el método sgolay
de R2 = 0.9982 (ver Figura 3.3). Si se realiza el ajuste con los datos originales, es decir,
sin suavizar el método fou3 sigue siendo el que mayor calidad de ajuste proporciona aunque
siendo algo menor (para la curva ejemplo 0.9544). Además, en la Figura 3.8 se observa que a
medida que las ppm aumentan, la diferencia en la calidad de ajuste entre los datos suavizados
y los datos originales disminuye aunque siendo mucho más regular la correspondiente a los
datos suavizados.

Esta codificación inicial se realiza sin tener en cuenta el sentido f́ısico de la curva. Si se
tiene en cuenta, se pueden diferenciar tres trozos en cada una ellas (ver Figura 3.5), por lo que
se procede a realizar una codificación de cada uno de los trozos para posteriormente unirlos y
obtener aśı una codificación global. Para obtener una codificación global de esta manera cuya
calidad de ajuste esté por encima de 0.99 se necesitan 8 parámetros en cada uno de los trozos.
Con lo cual, esta codificación global por trozos no es lo suficientemente buena puesto que
utiliza el triple de parámetros que la codificación global. Sin embargo esta idea de trocear la
curva gracias al sentido f́ısico ha sido de gran ayuda para la codificación de las curvas puesto
que gracias a ello solo se codifica el trozo central.

Inicialmente, para dicha codificación del trozo central se utilizan los mismos métodos que
para la codificación global. Con esta estrategia la codificación de las curvas mantiene el mismo
número de parámetros que en la codificación global puesto que el método que mejor ajustaba
a las curvas sigue siendo fou3. Citar también que la diferencia en la calidad de ajuste entre los
datos suavizados y originales crece a medida que aumentan las ppm (ver Figura 3.8). Esto no
supone una mejoŕıa respecto a la codificación global puesto que aunque el ajuste de la curva
es más correcto al codificar solo el trozo central se necesitan el mismo número de parámetros.
Por tanto, se busca una función de ajuste f(x, θ) con un número menor de parámetros de
manera que no se pierda calidad en el ajuste. Esa función es:

f(x, θ) = a exp(−bx) + c sin(dx), b ≥ 0

Con esta función, llamada función particularizada, se obtiene una codificación de las curvas
con un total de 4 parámetros con una calidad en el ajuste por encima de 0.9864 superando
a los métodos utilizados en el presente trabajo con el mismo número de parámetros (fou1,
exp2). Se observa la diferencia entre los valores de R2 obtenidos al ajustar los datos suavizados
y sin suavizar en la Figura 3.9.
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Esta codificación particularizada del trozo central tiene una clara ventaja frente a la
codificación global: se obtiene una codificación con una calidad muy semejante con la mitad
de los parámetros. Por tanto, se puede concluir que gracias a la codificación particularizada
se obtiene una codificación de las curvas con un número total de 4 parámetros para cada una
de las curvas.

En una visión más general del proyecto, puesto que este presente trabajo solo se centra en
la codificación de las curvas, se exponen las posibles ĺıneas futuras para la continuación del
mismo:

• Elaboración de un estudio de tales caracteŕısticas con nuevos datos de la misma sustancia
obtenidos con sensores más eficientes.

• Codificación de más sustancias además de la estudiada en este trabajo.

• Búsqueda de mejores funciones particularizadas para tal codificación descrita en el punto
anterior.

• Clasificación de las curvas para el estudio mediante redes neuronales.
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Anexo

En este anexo, se presentan los resultados obtenidos para las 16 curvas de la sustancia nitro-
tolueno gracias al potencial de la metodoloǵıa conseguida en el presente trabajo. De la misma
manera que en el Caṕıtulo 3, se muestra una codificación global, global por trozos y local del
trozo central de cada curva indicando el R2 entre los datos obtenidos experimentalmente y
los datos regresionados.

A.1 Suavizado

A continuación se presenta el valor de R2 correspondiente al suavizado global de todas las
curvas con los filtros digitales codificados de sgolay, rlowess y rloess. Se hace uso de los
métodos robustos para hacer frente a los posibles «outliers».

Curva sgolay rlowess rloess

25 ppm 0.9752 0.9446 0.9518
30 ppm 0.9811 0.9547 0.9640
35 ppm 0.9788 0.9501 0.9619
40 ppm 0.9847 0.9540 0.9768
45 ppm 0.9864 0.9583 0.9782
50 ppm 0.9960 0.9834 0.9931
55 ppm 0.9950 0.9724 0.9922
60 ppm 0.9949 0.9703 0.9911
65 ppm 0.9923 0.9577 0.9854
70 ppm 0.9933 0.9610 0.9853
75 ppm 0.9935 0.9584 0.9813
80 ppm 0.9937 0.9583 0.9807
85 ppm 0.9953 0.9652 0.9821
90 ppm 0.9946 0.9617 0.9836
95 ppm 0.9933 0.9545 0.9788
100 ppm 0.9944 0.9564 0.9810

Para todas ellas, el mejor filtro, entendido como el que mayor valor de R2 proporciona es
sgolay (ver Figura 3.2).

A.2 Comparación codificación global para todas las curvas

En la siguiente tabla se muestra el valor de R2 obtenido con todos los métodos descritos en el
Caṕıtulo 3 para la familia de curvas correspondientes a la sustancia nitrotolueno. Notar que
estos valores se han obtenido con los datos suavizados mediante el filtro codificado de sgolay

(observar apartado anterior).
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Curva exp1 exp2 fou1 fou2 fou3 gauss1 gauss2 gauss3

25 ppm 0.8046 0.8994 0.9503 0.9941 0.9982 0.7838 0.9920 0.9895
30 ppm 0.7573 0.9044 0.9540 0.9948 0.9985 0.7566 0.9926 0.9912
35 ppm 0.7059 0.8859 0.9465 0.9932 0.9984 0.7052 0.9903 0.9886
40 ppm 0.6271 0.8752 0.9389 0.9913 0.9982 0.6257 0.9876 0.9891
45 ppm 0.5992 0.8821 0.9447 0.9916 0.9982 0.5983 0.9885 0.9886
50 ppm 0.5746 0.9059 0.9539 0.9902 0.9964 0.5738 0.9894 0.9895
55 ppm 0.5437 0.9065 0.9546 0.9893 0.9966 0.5431 0.9870 0.9875
60 ppm 0.4857 0.8843 0.9478 0.9882 0.9973 0.4771 0.9859 0.9866
65 ppm 0.4952 0.8802 0.9439 0.9878 0.9978 0.4942 0.9857 0.9895
70 ppm 0.4815 0.8863 0.9439 0.9859 0.9979 0.4810 0.9836 0.9895
75 ppm 0.4734 0.8852 0.9440 0.9848 0.9985 0.4728 0.9821 0.9892
80 ppm 0.4595 0.8879 0.9468 0.9846 0.9984 0.4590 0.9823 0.9888
85 ppm 0.4656 0.8937 0.9487 0.9855 0.9978 0.4508 0.9831 0.9890
90 ppm 0.4603 0.8932 0.9487 0.9835 0.9984 0.4448 0.9813 0.9895
95 ppm 0.4667 0.8861 0.9437 0.9836 0.9986 0.4664 0.9814 0.9912
100 ppm 0.4524 0.8884 0.9465 0.9834 0.9984 0.4367 0.9812 0.9939

Para todas ellas, el mejor método de ajuste global es el correspondiente con fou3 ob-
teniendose valores extremos para R2 en las curvas correspondientes a 30 y 50 ppm. Estos
valores son: 0.9985 (max) y 0.9964 (min), respectivamente. El resultado gráfico de dichos
ajustes correspondientes a los casos extremos es el mostrado en la Figura A.1. Ambos ajustes,
incluyendo el correspondiente al de valor mı́nimo de R2, son muy buenos, puesto que el valor
mı́nimo, que es 0.9964, es un valor muy cercano a 1 encontrando aśı el equilibrio buscado
entre el número de parámetros y el valor de R2.
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(a) Ajuste correspondiente a 30ppm.
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(b) Ajuste correspondiente a 50ppm.

Figura A.1: Ajuste de los casos extremos de R2.

A.3 Comparación codificación global, global por trozos y local
para cada curva

Ahora, se presenta una comparación entre el ajuste global, global por trozos y local para cada
una de las curvas indicando el vector de caracterización para cada una de ellas en la sección
final.
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A.3.1 25 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.8046 0.7662 0.9836 0.0200 0.9836
exp2 0.8994 0.9704 0.9873 0.8465 0.9873
fou1 0.9503 0.9736 0.9952 0.8499 0.9952
fou2 0.9941 0.9863 0.9977 0.9630 0.9977
fou3 0.9982 0.9988 0.9991 0.9945 0.9991
gauss1 0.7838 0.7738 0.9823 0.8561 0.9823
gauss2 0.9920 0.9737 0.9960 0.9150 0.9960
gauss3 0.9895 0.9737 0.9960 0.9434 0.9960

Particularizado - - - - 0.9959
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(a) Ajuste global.
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Figura A.2: Comparación ajuste global y particularizado 25 ppm.

A.3.2 30 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.7573 0.7917 0.9796 0.2813 0.9796
exp2 0.9044 0.9719 0.9878 0.6112 0.9878
fou1 0.9540 0.9746 0.9953 0.8048 0.9953
fou2 0.9948 0.9864 0.9984 0.9796 0.9984
fou3 0.9985 0.9986 0.9993 0.9947 0.9993
gauss1 0.7566 0.7980 0.9786 0.8230 0.9786
gauss2 0.9926 0.9746 0.9982 0.9436 0.9982
gauss3 0.9912 0.9746 0.9985 0.9862 0.9985

Particularizado - - - - 0.9970
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(a) Ajuste global.
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(b) Ajuste particularizado.

Figura A.3: Comparación ajuste global y particularizado 30 ppm.

A.3.3 35 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.7059 0.7716 0.9731 0.5379 0.9731
exp2 0.8859 0.9682 0.9842 0.8809 0.9842
fou1 0.9465 0.9713 0.9929 0.8977 0.9929
fou2 0.9932 0.9845 0.9976 0.9962 0.9976
fou3 0.9984 0.9981 0.9988 0.9989 0.9988
gauss1 0.7052 0.7792 0.9717 0.8986 0.9717
gauss2 0.9903 0.9714 0.9970 0.9840 0.9970
gauss3 0.9886 0.9714 0.9984 0.9936 0.9984

Particularizado - - - - 0.9952

0 2 4 6 8 10 12
83.078

83.08

83.082

83.084

83.086

83.088

83.09

83.092

83.094

83.096

x

y

 

 
Data
global fou3

(a) Ajuste global.
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(b) Ajuste particularizado.

Figura A.4: Comparación ajuste global y particularizado 35 ppm.
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A.3.4 40 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.6271 0.6516 0.9546 0.5979 0.9546
exp2 0.8752 0.9441 0.9758 0.8898 0.9758
fou1 0.9389 0.9489 0.9862 0.9211 0.9862
fou2 0.9913 0.9912 0.9971 0.9977 0.9971
fou3 0.9982 0.9989 0.9983 0.9993 0.9983
gauss1 0.6257 0.9493 0.9535 0.9211 0.9535
gauss2 0.9876 0.9493 0.9947 0.9931 0.9947
gauss3 0.9891 0.9493 0.9979 0.9978 0.9979

Particularizado - - - - 0.9916
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(a) Ajuste global.
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(b) Ajuste particularizado.

Figura A.5: Comparación ajuste global y particularizado 40 ppm.

A.3.5 45 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.5992 0.7737 0.9554 0.6567 0.9554
exp2 0.8821 0.9688 0.9763 0.9241 0.9763
fou1 0.9447 0.9730 0.9872 0.9480 0.9872
fou2 0.9916 0.9855 0.9964 0.9941 0.9964
fou3 0.9982 0.9973 0.9980 0.9993 0.9980
gauss1 0.5983 0.7812 0.9544 0.9482 0.9544
gauss2 0.9885 0.9731 0.9949 0.9895 0.9949
gauss3 0.9886 0.9731 0.9926 0.9976 0.9926

Particularizado - - - - 0.9928
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(a) Ajuste global.
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(b) Ajuste particularizado.

Figura A.6: Comparación ajuste global y particularizado 45 ppm.

A.3.6 50 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.5746 0.8090 0.9520 0.6791 0.9520
exp2 0.9059 0.9715 0.9737 0.9249 0.9737
fou1 0.9539 0.9736 0.9851 0.9412 0.9851
fou2 0.9902 0.9852 0.9958 0.9965 0.9958
fou3 0.9964 0.9992 0.9973 0.9993 0.9973
gauss1 0.5738 0.8180 0.9513 0.9413 0.9513
gauss2 0.9894 0.9490 0.9932 0.9909 0.9932
gauss3 0.9895 0.9725 0.9966 0.9968 0.9966

Particularizado - - - - 0.9907
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(a) Ajuste global.
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Figura A.7: Comparación ajuste global y particularizado 50 ppm.
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A.3.7 55 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.5437 0.5339 0.9339 0.7273 0.9339
exp2 0.9065 0.8508 0.9733 0.9340 0.9733
fou1 0.9546 0.8683 0.9810 0.9449 0.9810
fou2 0.9893 0.9995 0.9967 0.9933 0.9967
fou3 0.9966 0.9998 0.9971 0.9994 0.9971
gauss1 0.5431 0.5763 0.9331 0.9450 0.9331
gauss2 0.9870 0.8691 0.9850 0.9874 0.9850
gauss3 0.9875 0.8691 0.9970 0.9990 0.9970

Particularizado - - - - 0.9911

0 2 4 6 8 10 12
83.07

83.072

83.074

83.076

83.078

83.08

83.082

83.084

83.086

83.088

83.09

x

y

 

 
Data
global fou3

(a) Ajuste global.

0 1 2 3 4 5 6 7 8
83.07

83.072

83.074

83.076

83.078

83.08

83.082

83.084

83.086

83.088

83.09

x

y

 

 
Data
particularizada

(b) Ajuste particularizado.

Figura A.8: Comparación ajuste global y particularizado 55 ppm.

A.3.8 60 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4857 0.7359 0.9373 0.7640 0.9373
exp2 0.8843 0.9091 0.9684 0.9624 0.9684
fou1 0.9478 0.9103 0.9807 0.9733 0.9807
fou2 0.9882 0.9508 0.9963 0.9993 0.9963
fou3 0.9973 0.9899 0.9972 0.9995 0.9972
gauss1 0.4771 0.7564 0.9362 0.9734 0.9362
gauss2 0.9859 0.9101 0.9930 0.9974 0.9930
gauss3 0.9866 0.9102 0.9971 0.9974 0.9971

Particularizado - - - - 0.9891
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Figura A.9: Comparación ajuste global y particularizado 60 ppm.

A.3.9 65 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4952 0.8090 0.9301 0.7807 0.9301
exp2 0.8802 0.9725 0.9653 0.9647 0.9653
fou1 0.9439 0.9761 0.9792 0.9737 0.9792
fou2 0.9878 0.9868 0.9952 0.9990 0.9952
fou3 0.9978 0.9982 0.9968 0.9997 0.9968
gauss1 0.4942 0.8135 0.9292 0.9739 0.9292
gauss2 0.9857 0.9761 0.9917 0.9969 0.9917
gauss3 0.9895 0.9761 0.9949 0.9983 0.9949

Particularizado - - - - 0.9893
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Figura A.10: Comparación ajuste global y particularizado 65 ppm.
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A.3.10 70 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4815 0.6870 0.9217 0.8035 0.9217
exp2 0.8863 0.9466 0.9654 0.9691 0.9654
fou1 0.9439 0.9559 0.9758 0.9820 0.9758
fou2 0.9859 0.9933 0.9952 0.9987 0.9952
fou3 0.9979 0.9985 0.9964 0.9996 0.9964
gauss1 0.4810 0.7031 0.9208 0.9822 0.9208
gauss2 0.9836 0.9563 0.9902 0.9974 0.9902
gauss3 0.9895 0.9563 0.9802 0.9985 0.9802

Particularizado - - - - 0.9882
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Figura A.11: Comparación ajuste global y particularizado 70 ppm.

A.3.11 75 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4734 0.8382 0.9250 0.8230 0.9250
exp2 0.8852 0.9739 0.9638 0.9663 0.9638
fou1 0.9440 0.9765 0.9760 0.9793 0.9760
fou2 0.9848 0.9866 0.9950 0.9992 0.9950
fou3 0.9985 0.9990 0.9964 0.9998 0.9964
gauss1 0.4728 0.8420 0.9240 0.9796 0.9240
gauss2 0.9821 0.8629 0.9912 0.9974 0.9912
gauss3 0.9892 0.9765 0.9829 0.9993 0.9829

Particularizado - - - - 0.9885
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Figura A.12: Comparación ajuste global y particularizado 75 ppm.

A.3.12 80 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4595 0.6768 0.9166 0.8569 0.9166
exp2 0.8879 0.9474 0.9638 0.9822 0.9638
fou1 0.9468 0.9570 0.9736 0.9869 0.9736
fou2 0.9846 0.9886 0.9951 0.9993 0.9951
fou3 0.9984 0.9985 0.9960 0.9998 0.9960
gauss1 0.4590 0.7015 0.9155 0.9869 0.9155
gauss2 0.9823 0.9573 0.9899 0.9985 0.9899
gauss3 0.9888 0.9573 0.9729 0.9992 0.9729

Particularizado - - - - 0.9872
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Figura A.13: Comparación ajuste global y particularizado 80 ppm.
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A.3.13 85 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4656 0.8465 0.9234 0.8481 0.9234
exp2 0.8937 0.9908 0.9616 0.9802 0.9616
fou1 0.9487 0.9924 0.9755 0.9878 0.9755
fou2 0.9855 0.9966 0.9945 0.9991 0.9945
fou3 0.9978 0.9995 0.9964 0.9998 0.9964
gauss1 0.4508 0.8503 0.9228 0.9880 0.9228
gauss2 0.9831 0.8707 0.9902 0.9973 0.9902
gauss3 0.9890 0.9924 0.9926 0.9977 0.9926

Particularizado - - - - 0.9879
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Figura A.14: Comparación ajuste global y particularizado 85 ppm.

A.3.14 90 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4603 0.8144 0.9197 0.8705 0.9197
exp2 0.8932 0.9739 0.9607 0.9844 0.9607
fou1 0.9487 0.9752 0.9729 0.9891 0.9729
fou2 0.9835 0.9879 0.9941 0.9992 0.9941
fou3 0.9984 0.9991 0.9955 0.9995 0.9955
gauss1 0.4448 0.8189 0.9191 0.9891 0.9191
gauss2 0.9813 0.8440 0.9892 0.9986 0.9892
gauss3 0.9895 0.9752 0.9839 0.9991 0.9839

Particularizado - - - - 0.9868
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Figura A.15: Comparación ajuste global y particularizado 90 ppm.

A.3.15 95 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4667 0.6039 0.9071 0.8698 0.9071
exp2 0.8861 0.9157 0.9630 0.9900 0.9630
fou1 0.9437 0.9276 0.9714 0.9911 0.9714
fou2 0.9836 0.9894 0.9950 0.9986 0.9950
fou3 0.9986 0.9981 0.9957 0.9998 0.9957
gauss1 0.4664 0.9283 0.9066 0.9911 0.9066
gauss2 0.9814 0.9283 0.9886 0.9977 0.9886
gauss3 0.9912 0.9283 0.9954 0.9992 0.9954

Particularizado - - - - 0.9866
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Figura A.16: Comparación ajuste global y particularizado 95 ppm.
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A.3.16 100 ppm

Método Global Trozo 1 Trozo 2 Trozo 3 Central

exp1 0.4524 0.4453 0.8942 0.8783 0.8942
exp2 0.8884 0.8069 0.9677 0.9902 0.9677
fou1 0.9465 0.8133 0.9714 0.9904 0.9714
fou2 0.9834 0.9932 0.9967 0.9992 0.9967
fou3 0.9984 0.9967 0.9980 0.9999 0.9980
gauss1 0.4367 0.8155 0.8782 0.9905 0.8782
gauss2 0.9812 0.8155 0.9870 0.9983 0.9870
gauss3 0.9939 0.8155 0.9755 0.9991 0.9755

Particularizado - - - - 0.9864

0 2 4 6 8 10 12
83.065

83.07

83.075

83.08

83.085

83.09

83.095

83.1

x

y

 

 
Data
global fou3

(a) Ajuste global.

0 1 2 3 4 5 6 7 8
83.065

83.07

83.075

83.08

83.085

83.09

83.095

83.1

x

y

 

 
Data
particularizada

(b) Ajuste particularizado.

Figura A.17: Comparación ajuste global y particularizado 100 ppm.

A.4 Codificación particularizada de cada una de las curvas

El trozo central es el realmente importante en el experimento (ver apartado 3.5 y Figura 3.5).
Luego, podemos codificar cada curva caracterizando el trozo central. Para ello se utiliza la
función particularizada. Aśı, se puede formar la siguiente correspondencia:

25↔ (83.09, 1.871 · 10−5, 0.000978, 0.8789)
30↔ (83.09, 2.224 · 10−5, 0.001054, 0.9416)
35↔ (83.09, 2.599 · 10−5, 0.001334, 0.9594)
40↔ (83.09, 2.773 · 10−5, 0.001585, 1.015)
45↔ (83.09, 2.948 · 10−5, 0.00169, 1.016)
50↔ (83.09, 2.842 · 10−5, 0.001614, 1.034)
55↔ (83.09, 3.273 · 10−5, 0.001942, 1.081)
60↔ (83.09, 2.923 · 10−5, 0.001846, 1.046)

65↔ (83.09, 3.435 · 10−5, 0.002309, 1.059)
70↔ (83.09, 3.728 · 10−5, 0.002422, 1.1)
75↔ (83.09, 3.848 · 10−5, 0.002496, 1.105)
80↔ (83.09, 4.01 · 10−5, 0.002616, 1.117)
85↔ (83.09, 4.063 · 10−5, 0.002719, 1.095)
90↔ (83.09, 4.218 · 10−5, 0.002772, 1.119)
95↔ (83.09, 4.647 · 10−5, 0.003159, 1.117)
100↔ (83.09, 4.753 · 10−5, 0.003214, 1.131)
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