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Introduccion

Uno de los principales retos en el campo de la computacién cuantica el la
fabricacién de un ordenador cudntico escalable. La posibilidad de crear una
generalizacion cudntica de un ordenador clasico fue famosamente propuesta por
R. Feynman en 1982 [1] cuando discutia el problema de la simulacion eficiente
de sistemas cuénticos. En un ordenador cuéntico, la unidad de informacién de
los ordenadores clésicos, el bit, es sustituido por su andlogo cuantico, el qubit.
Mientras un bit clasico solo puede estar en uno de dos estados, 0 o 1, un bit
cuantico puede almacenar cualquier superposicion cuantica de estos, como por
ejemplo a|l) + £|0). La naturaleza cuéantica de los qubits los hace los hace
componentes ideales para la simulacién de sistemas cudnticos reales donde sis-
temas de computacion clasicos experimentarfan una ralentizaciéon exponencial
al aumentar el numero de sistemas interactuantes. Ademads, la habilidad de
poder manejar estados superposicién permite una especie de procesamiento
paralelo que permite la implementacién de algoritmos y procedimientos que
serfan imposibles con tecnologfas clésicas.

Mas de tres décadas han pasado desde la propuesta original de Feynman y
mucho trabajo, tanto teérico como aplicado, se ha hecho en el intento de hacer
realidad esta propuesta. Los principales obstaculos que han de ser superados
si se ha de construir un ordenador cuantico son lo siguientes

1. Encontrar sistemas fisicos con propiedades adecuadas que les permitan
almacenar bits cudnticos. El sistema en cuestion debe en algin régimen
comportarse como un sistema cudntico de dos niveles. Hay muchos sis-
temas fisicos que de forma natural ya presentan esta caracteristica, como
por ejemplo espines nucleares, atémicos o moleculares o sistemas dipo-
lares eléctricos. Por otra parte, muchos sistemas artificiales pueden ser
fabricados con las cualidades deseadas. Algunos ejemplos propuestos de
qubits sintéticos son los conocidos como circuitos cuénticos, como qubits
superconductores de flujo o de carga, o sistemas de dots cudnticos semi-
conductores.

2. Encontrar mecanismos para inicializar, leer, escribir y manipular qubits



2 Introduccion

individuales ademas de acoplar miltiples qubits produciendo entrelaza-
miento y puertas logicas cuénticas. Ademas de almacenar informacion,
los qubits deben ademés permitir que esta informacién sea manipulada de
forma efectiva. Debe ser posible transferir esta informacion entre difer-
entes regiones de un sistema a través de lo que se conoce como un bus
cuantico. Uno de los métodos més directos para cumplir estos requisitos
es usar radiacion electromagnética. Los fotones son de forma natural
objetos cuanticos y proporcionan un medio excelente para transferir in-
formacién cuantica.

3. Mantener la coherencia del qubit. Los fen6menos cuanticos son tremen-
damente fragiles y son muy sensibles a perturbaciones externas. Incluso
pequenias interacciones con el entorno pueden rapidamente destruir la
coherencia cuéntica del sistema y producir un comportamiento clasico.
Este factor compite directamente con la facilidad de manipulacion del
qubit ya que cuanto mas aislado tenga que estar el sistema, més dificil
serd interaccionar coherentemente con él.

En este contexto, tiene especial importancia el estudio de la interaccidon
de fotones individuales con sistemas cuénticos candidatos a ser qubits. El
ejemplo arquetipico para el estudio de esta interaccién son los sistemas de
electrodinamica cuantica de cavidades (Cavity Quantum Electrodynamics o
CQED en inglés)[2]. Estos consisten en un sistema cuéntico de dos niveles
acoplado a unico modo de la radiaciéon electromagnética, por ejemplo, a fo-
tones almacenados en una cavidad. La intensidad del acoplo fotén-qubit ha
de superar las frequencias de decoherencia ambos subsistemas. Este régimen
de acoplo fuerte permite que, durante el tiempo de vida del sistema, se pueda
realizar un numero suficientemente elevado de operaciones.

Con el objeto de aumentar el acoplo entre los fotones de una cavidad y un
qubit, se han investigado distintos tipos de cavidades y qubits que permiten
alcanzar el régimen de acoplo fuerte 3, 4, 5, 6, 2]. Uno de los mas intere-
santes es lo que ahora se conoce como electrodinamica cuéntica de circuitos
(Circuit QED), que consiste en usar tecnologias de circuitos integrados y su-
perconductores para fabricar cavidades y qubits adaptados para aplicaciones
en el procesado cuantico de informacion [7]. Uno de los sistemas mas utilizados
en Circuit QED es el qubit de carga [8] (Cooper pair box) acoplado a través
de la componente eléctrica del campo a un resonador coplanar superconduc-
tor [9](superconducting coplanar waveguide resonator). La geometria de una
guia de ondas coplanar permite aumentar la densidad de energfa electromag-
nética (y por consiguiente el acoplo) con respecto a una cavidad tridimensional
estandar. Este sistema presenta acoplo fuerte y permite la realizacién de op-
eraciones sobre el qubit e incluso entrelazar multiples qubits acoplados a la



misma cavidad [10, 11, 12, 13].

Sistemas candidatos a qubits que se acoplan al campo magnético, como por
ejemplo sistemas de espines de estado sélido, tambien son interesantes por sus
posibles aplicaciones para el almacenamiento de informacién cuantica y para
proporcionar una interconexiéon entre fotones de radio-frecuencias con fotones
opticos [14, 15, 16]. Experimentos realizados en los ultimos anos demuestran
la posibilidad de acoplar coherentemente centros NV y P1 de diamante con
circuitos cuanticos como resonadores superconductores [17, 18, 19] o qubits de
flujo [20]. Estos defectos en diamante actuan como sistemas de espin 1 y se
acoplan colectivamente al circuito proporcionando un aumento en el acoplo
proporcional a la raiz cuadrada de numero de espines. El acoplo fuerte se
consigue gracias a este factor junto con la alta coherencia de los centros mag-
néticos (tiempos de coherencia de 1-2 ms a temperatura ambiente). También
se ha demostrado acoplo fuerte magnético, incluso a temperatura ambiente,
entre radicales paramagnéticos de spin 1/2 y cavidades de microondas tridi-
mensionales.

El uso qubits de espin abre también la posibilidad a otros sistemas algo mas
complejos. Los “single molecule magnets” (moleculas iman 6 SMMs) [21, 22, 23]
son moléculas organometalicas formadas por un nicleo de alto espin rodeado de
ligandos organicos que, de forma natural, se organizan en cristales moleculares.
El alto valor de su espin puede permitir que el régimen de acoplo fuerte sea
més fécil de alcanzar y podria llevar a su aplicacién como memorias cuénticas
[14, 15, 16]. Los SMMs son también iteresantes por que permiten manipular
quimicamente sus propiedades para distintas aplicaciones. Si nos restringimos
solo al campo de la informacién cuéntica, estos sistemas pueden actuar no
s6lo como qubits individuales |24, 25| sino que se pueden disefiar para que
una tnica molécula contenga multiples qubits débil o fuertemente entrelazados
[26, 27, 28], para actuar como puertas logicas [29] o como simuladores cuanticos
[30].

Muchas de las aplicaciones de SMMs mas sofisticados requieren acoplar
moléculas individuales al campo magnético de un resonador, un reto atn més
complicado que el acoplo a cristales macroscopicos. Si este limite fuera alcanz-
able, se podrian utilizar circuitos supercondutores para manipular y transferir
coherentemente informaciéon entre qubits de espin, proporcionando una arqui-
tectura adecuada para implementar un procesador cuantico de spines. Si nos
inspiramos en los sistemas de Circuit QED, podemos imaginar construir un
sistema similar al representado en la figura 1. Se colocarian moléculas indi-
viduales en las posiciones de la cavidad donde haya méximo campo magnético
para el modo deseado de las microondas. Los espines podrian entonces sin-
tonizarse individualmente utilizando campos magnéticos locales para ponerlos
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Figure 1: Posible arquitectura para un procesador cuantico de spin. Los qubits de
spin se colocarian a lo largo de una guia de ondas coplanar superconductora en las
posiciones donde el campo magnético es maximo para el modo de la cavidad consider-
ado. Cada spin se podria sintonizar para estar en resonancia o no mediante un campo
magnetico aplicado localmente utilizando un cable o micro-bobina. Entrelazamiento
entre disntintos qubits en una misma cavidad tambien seria viable.

en resonancia con la cavidad e intercambiarian informacion.

El principal objetivo en esta tesis, es comprobar la viabilidad de propuestas
como la descrita en la figura 1 y dar los primeros pasos hacia su realizacién.
Los acoplos alcanzables en la actualidad para espines individuales son todavia
demasiado bajos como para superar sus los limites inmpuestos por sus tiempos
de coherencia. Esto nos deja con dos alternativas para mejorar el acoplo:

1. Encontrar sistemas de espin con mejores propiedades (tanto acoplo més
fuerte como mejor coherencia)

2. Modificar las cavidades para aumentar el campo magnético y, por tanto,
el acoplo.

Teniendo esto en cuenta, los objetivos concretos de la tesis son:

1. Establecer que caracteristicas deben tener los sistemas de espin para
acoplarse fuertemente con un circuito cuéntico

2. Estudiar las propiedades de diferentes familias de SMMs y ver si cumplen
con las condiciones requeridas para el acoplo fuerte, tento en forma de
cristales moleculares como de moléculas individuales.



3. Disenar nuevos resonadores de Circuit QED para concentrar el campo
de microondas en regiones, optimizando asi la interaccién con pequeiios
grupos de espines o moléculas magnéticas. Explorar también si estas
modificaciones cambian de forma sustancial las propiedades bésicas del
resonador.

La organizacion de esta tesis se detalla a continuacion:

e Primeramente, en el capitulo 2, presentamos un resumen de las técnicas
experimentales principales utilizadas a lo largo de este trabajo.

o En el capitulo 3 introducimos los conceptos basicos involucrados en la
electrodinamica cuantica de cavidades y circuitos y resumimos como
pueden ser aplicados a la computacién cudntica. Presentamos una prop-
uesta para un procesador cudntico de espin y discutimos los principales
obstaculos para su realizacion.

e En el capitulo 4 introducimos las moléculas iman (Single Molecule Mag-
nets, SMMs) como posibles candidatos para ser qubits de espin. Explo-
ramos su Hamiltoniano de espin y discutimos las cualidades deseables
que deben tener para su aplicacién como qubits. Utilizando métodos
numéricos simulamos el campo rf generado por un resonador coplanar y
estimamos su acoplo a sistemas de SMM conocidos.

e Un tipo especifico de SMM se introduce en el capitulo 5, los imanes de
un solo i6n (Single Ton Magnets, SIMs). Se discuten las propiedades es-
pecificas que hacen que esta familia sea atractiva para la computacién
cuantica y dos ejemplos, GAW;, y TbW,, se estudian en detalle. Final-
mente, los acoplos esperados y condiciones de operacién de estos SIMs
son comparados con los de SMM convencionales.

e Después, en el capitulo 5, discutimos el disenio y fabricacion de reson-
adores coplanares superconductores y damos detalles sobre el rendimiento
y caracteristicas de los resonadores fabricados para este trabajo. Tam-
bién fabricamos y medimos los efectos de constricciones nanométricas en
la linea central de nuestros resonadores y estudiamos sus efectos sobre
los parametros de transmision.

e En el capitulo 7 presentamos medidas de espectroscopia sobre las distin-
tas muestras magnéticas utilizando ambos resonadores y guias de onda
coplanares y comparamos las medidas con los valores esperados segin
los modelos teéricos. Finalmente comprobamos el rendimiento de una
constriccién nanométrica a la hora de hacer espectroscopia de muestras
micrométricas.
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Chapter 1

Introduction

One of the main challenges in the field of quantum information is the fabri-
cation of a scalable quantum computer. The possibility to realize a quantum
generalization of a classical computing system was proposed in 1982 by R.
Feynman [1] when addressing the issue of the efficient simulation of quantum
systems. In a quantum computer the classical unit of information, the bit, is
substituted by its quantum analogue, the qubit. While a classical bit can be in
one of two states, 0 or 1, a quantum bit can store any quantum superposition
state, such as a|l) + 5]0). The quantum nature of qubits would make them
ideal building blocks for the simulation of real quantum systems where classical
systems would experience exponential slowdown when scaling up the number
of interacting systems. Also, the ability to manage superposition states gives
rise to a kind of parallel processing allowing the implementation of algorithms
and procedures that would be impossible with classical technologies.

Over three decades have passed since Feynman’s original proposal and
much work has been done, both theoretical and applied, attempting to make
this proposal a reality. The main obstacles that need to be overcome if a
quantum computer is to be built can be broadly summarized as follows:

1. Find physical systems with suitable properties to store quantum bits. In
a general sense, the system in question should be, in some regime, equiv-
alent to a quantum two level system. There are many physical systems
that naturally already present this characteristic, such as nuclear, atomic
or molecular spins or electric dipole systems. On the other hand, many
artificial systems can be fabricated with the desired qualities. Some ex-
amples of proposed synthetic qubits are those known as quantum circuits,
like superconducting charge or flux qubits, or semiconducting quantum
dots.
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2. Find mechanisms to initialize, read-out, write and manipulate individual
qubits as well as to couple multiple qubits producing entanglement and
creating quantum logic gates. Besides storing information, qubits must
also allow this information to be manipulated effectively. Also, it must
be possible to transfer information between different areas of the system
through what is known as a quantum bus. One of the more natural
methods to achieve many of these requirements is to use electromag-
netic radiation. Photons are naturally quantum objects and provide an
excellent means for transferring quantum information.

3. Maintain the qubit quantum coherence. Quantum phenomena are ex-
tremely fragile and very sensitive to external pertubations. Even small
interactions with the surrounding environment can quickly destroy the
quantum coherence of the system and produce a classical behavior. This
factor competes directly with the ease of manipulation of a qubit since
the more isolated the system needs to be from the environment, the
harder it will be to coherently interact with the system.

With these obstacles in mind, the study of the interaction of individual
photons with candidate qubit sytems is of special importance. The archetypical
example for this type of interaction are systems based on Cavity Quantum
Electrodynamics (CQED) [2]. These consist of a quantum two level system
coupled to a single mode of electromagnetic radiation, for instance, the photons
stored in a cavity. For a system of this type to be useful for quantum conputing,
the photon-qubit coupling intensity must surpass the decoherence rates of both
the qubit and the cavity. This is known as the strong coupling regime and
would allow a large number of quantum operations to be performed in the
system’s lifetime.

With the objective of attaining larger and larger couplings between cavity
photons and qubit systems, many different cavity and qubit combinations have
been studied, some of which allow the strong coupling regime to be reached.
[3, 4, 5, 6, 2]. One of the more promising approaches is the field known as
Circuit Quantum Electrodynamics (Circuit QED). This approach consists in
using microwave integrated circuit technologies and superconductors to fab-
ricate cavities and qubits specially adapted to the quantum processing of in-
formation [7]. One of the more successful systems is the charge qubit [8] (or
Cooper pair box) coupled to a superconducting coplanar waveguide resonator
through the electric component of the electromagnetic field [9]. The geometry
of a coplanar waveguide allows the electromagnetic energy density (and conse-
quently the coupling) to be increased when compared to a three dimensional
microwave cavity. This system presents strong coupling and allows operations
to be performed on a qubit as well as establishing coupling between multiple
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qubits and entanglement through the cavity [10, 11, 12, 13|.

Candidate qubit systems that couple to the magnetic field component, such
as solid state spin ensembles, are also interesting for their possible applications
for quantum information storage and because they can provide an interconnect
between radio frequency and optical photons [14, 15, 16]. Experiments per-
formed in recent years have demonstrated the possibility of coherently coupling
ensembles of NV and P1 centers in diamond to superconducting resonators
[17, 18, 19] or flux qubits [20]. These diamond defects act as S = 1 spins and
collectively couple to the quantum circuit providing a v/N enhancement to the
coupling, N being the number of spins. The strong coupling regime is achieved
in this case thanks to this enhancement and to the excellent coherence time of
these magnetic centers (up to 1-2ms at room temperature). Strong magnetic
coupling has also been demonstrated between spin 1/2 paramagnetic radicals
and three dimensional microwave cavities [21, 22|.

The use of spin qubits also opens up the possibility of using somewhat
more complex magnetic systems. Many magnetic systems present important
qualitative differences from the usual qubit candidates and could provide inter-
esting possibilities for quantum information processing. In particular, Single
Molecule Magnets (SMMs) [23, 24, 25| are a type of organometallic molecule
consisting of a high spin magnetic core surrounded by organic ligands that
naturally form molecular crystals. The high spin value should contribute to
attain stronger coupling regimes and allow these crystals to be used as quan-
tum memories [14, 15, 16]. SMMs are also interesting because they can be
chemically engineered to fulfill many different roles. Restricting ourselves to
quantum information applications, these molecules could not only act as in-
dividual qubits |26, 27|, but also be designed to embody multiple weakly or
strongly coupled qubits [28, 29, 30] performing as quantum logic gates [31] or
quantum simulators [32].

Many of these more elaborate applications of SMMs to quantum informa-
tion require the coupling of individual molecules to a resonator’s magnetic field,
an even greater challenge than the coupling to macroscopic crystals. If this
limit were achievable, it would be possible to use superconducting circuits to
coherently manipulate and transfer information between spin qubits therefore
providing an adequate architecture to implement an all-spin quantum proces-
sor. Taking inspiration from Circuit QED systems, we can imagine building a
system similar to the one presented in figure 1.1. Individual molecules would
be placed at cavity locations with maximum magnetic field for the desired
mode. Each spin could be tuned into and out of resonance with the cavity
using local magnetic fields applied using wires or microcoils thus selectively
allowing the transfer of information between molecules and cavity photons.
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Chapter 1. Introduction

Figure 1.1: Possible architecture for an all-spin quantum processor. Each spin would
be placed along a coplanar waveguide resonator at locations where microwave the
magnetic field is maximum for the desired cavity mode. Each spin could be tuned into
and out of resonance using locally applied magnetic fields through wires or microcoils.
Entanglement between multiple qubits in the same cavity would also be viable.

The main objective of this thesis is to test the viability of proposals like the
one presented in figure 1.1 and take the first steps towards its realization. The

currently achievable couplings for single spins are still too small to overcome

the limits given by their coherence times. This leaves us two alternatives to

improve the coupling:

1.

Find spin systems with better properties, both with better coupling and
better coherence.

. Modify the cavities used to increase the magnetic field, and therefore,

the coupling.

With this in mind, this thesis will address the following points:

1.

Establish what characteristics spin systems should have in order to op-
timize their coupling to a quantum circuit.

. Study the properties of different families of SMMs and check if they fulfill

the required conditions for strong coupling, both as crystalline ensembles
and as individual molecules.

Design new resonators for application in Circuit QED schemes to concen-
trate the microwave magnetic field in small regions. This would optimize
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the coupling to small groups of spins or magnetic molecules. Explore
also whether or not these modifications introduce substantial changes to
the basic resonator properties.

Following this logical sequencye, this thesis is organized as follows:

e Firstly, in chapter 2, we present a review of the main experimental tech-
niques involved in this work.

e In chapter 3 we introduce the basic concepts involved in Cavity and
Circuit QED and review how they can be applied to quantum computing.
We present a proposal for an all-spin quantum information processing
and summarize the main obstacles for it.

e In chapter 4 we introduce Single Molecule Magnets (SMMs) as possible
candidates to realize spin qubits. We explore their spin Hamiltonian and
discuss the desirable qualities for their application in quantum comput-
ing. Using numerical methods we simulate the rf fields that are generated
by a superconducting coplanar waveguide resonators and estimate their
coupling to well known SMM systems.

e A specific type of SMM is introduced in chapter 5, namely Single Ion
Magnets (SIMs). The specific properties that make this type of system
attractive for quantum computation are discussed and two examples,
GdW,, and TbW,,, are studied in detail. Finally, the expected couplings
and operating conditions of these SIMs are compared to those of standard
SMMs.

e In chapter 6 we discuss the design and fabrication of superconducting
coplanar waveguide resonators and give details on the performance and
characteristics the resonators fabricated for this work. We then fabricate
and measure the effects of nanometric constrictions in the center line
of our resonators and study the effect they have on the transmission
parameters.

e In chapter 7 we present spectroscopy measurements of different magnetic
samples using both resonators and open transmission lines and compare
the measurements to the values predicted using theoretical models. We
test the performance of nanoscale constrictions in resonators when it
comes to performing spectroscopy on micro-metric samples.

e Finally, chapter 8 is dedicated to summarizing our conclusions.
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Chapter 2

Experimental Techniques

2.1 Introduction

In this chapter we summarize the main experimental techniques and equipment
used throughout this thesis. They can be broadly divided into the following
categories:

e General magnetic sample characterization

Lithography and circuit fabrication techniques

RF circuit measurement

Local scanning probe systems

Software and computational techniques

2.2 General magnetic sample characterization

2.2.1 Electron Paramagnetic Resonance

Paramagnetic resonance is a form of spectroscopy in which an oscillating mag-
netic field induces magnetic dipole transitions between energy levels of a system
of spins [1]. These resonances are usually in the radio frequency (RF) (1 MHz
to 1 GHz) or microwave frequency range (1 GHz to 100 GHz). Electron para-
magnetic resonance (or EPR) is restricted to the study of magnetic dipoles
of electronic origin, usually in the microwave range. It is conceptually very
similar to nuclear magnetic resonances (NMR) with the difference that NMR
works with nuclear spins and, hence, much lower frequencies. Most materials
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do not exhibit electronic paramagnetism and hence do not produce an EPR
signal (although they generally produce NMR signals). The electronic shells
are usually filled and have no resultant electronic angular momentum or mag-
netic moment. This makes EPR less widely used than NMR but it also means
that, when its use is possible, it can offer very clear signals and a great deal of
information on the sample.

The typical EPR setup consists of a resonant cavity that can be irradiated
with a fixed frequency microwave source. The paramagnetic sample is then
placed inside the cavity and can be subjected to an external DC magnetic
field, usually applied perpendicular to the cavity microwave field using large
electromagnets. In general, a paramagnetic ion or molecule has discrete energy
levels usually characterized by an angular momentum quantum number. In
the absence of magnetic field, the energy levels will be degenerate save for
possible zero-field splitting effects given by the relevant spin Hamiltonian. The
application of an external magnetic field further splits the energy levels through
the Zeeman effect, making the level separations change as the field changes.
When the level splitting equals the photon energy of the cavity photons, a
net absorption is observed. The exact position and number of the absorption
lines gives information on the zero-field Hamiltonian, its gyromagnetic ratios,
as well as how the paramagnet interacts with its environment, such as nuclear
spins (hyperfine splitting).

In this work we are specifically interested in paramagnetic rare earth ions.
These ions have incomplete 4f electronic shells, giving rise to a net atomic
angular momentum and magnetic moment. A typical energy level spectrum is
shown in figure 2.1 along with a simulated EPR spectrum. The characteristic
shape of the absorption lines in the EPR spectrum is due to the fact that most
EPR systems use a small harmonic field modulation. This allows greater sen-
sitivity by using lock-in detection to reduce noise but produces the derivative
instead of the absolute value of the absorption.

The EPR spectrum shown in figure 2.1 is an example of a continuous wave
EPR experiment. In this type of measurement, the background DC field is
swept slowly while the cavity is constantly irradiated. A set of small coils
apply the field modulation and a spectrum like that shown in figure 2.1 is
recorded. In this scheme, the application of the RF field and the measurement
are simultaneous. Unless the field modulation has a very high frequency, this
method only provides the splittings of the energy levels of the spin system, but
doesn’t give us any information of the spin dynamics or relaxation.

Information on the relaxation and coherence of a spin system can be ob-
tained using pulsed EPR methods [4]. The prototypical experiment consists
of measuring the signal emitted by the spin system after a series of microwave
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Figure 2.1: Example of a continuous wave (CW) EPR spectrum. Graph A shows the
energy levels of a GAW 3, polioxometalate molecule [2, 3] as a function of an applied
magnetic field (y-axis direction). At high fields, the levels approximately correspond
to well defined values of S,,. Graph B shows the simulated CW EPR spectrum for the
same molecule. The absorption lines coincide with magnetic fields for which there are
level separations of 9.864 GHz, the chosen EPR cavity frequency (X-band). Graph C
shows the modulated magnetic field measurement scheme for CW EPR. The signal
recorded is the derivative (or slope) of the absorption curve.

pulses. The measured signal depends on the dynamics of the state the spin
system was prepared in by the microwave pulses. Pulsed EPR signals con-
tain spectral information as well as spin relaxation information that can be
extracted by further processing. During the signal acquisition there are no mi-
crowaves applied but the pulse timing and the resonator bandwidth are critical
factors.

There are many pulse sequences used in pulsed EPR, but one of the most
common is the two-pulse echo, shown in figure 2.2. For this sequence, the
background field of the EPR system is tuned to the transition we wish to
study. At equilibrium, the spin system will have its magnetization aligned
with this DC magnetic field which we assume is along the 7 direction. Then,
by applying an RF 7/2 pulse, the spins can be rotated onto the XY plane.
The spins then precess at the transition Larmor frequency (w = wrp = 7B,
where 7 is the gyromagnetic ratio). The induced magnetization produces low
intensity microwaves (~ nW) that can be monitored, but the signal decays
(known as free induction decay) as each individual spin precesses at slightly
different speeds than the rest. After a time 7 a m pulse is applied that inverts
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all the spins directions, thus placing the spins with higher precession speeds
behind the ones with a slower precession speed. After a further 7 period, the
spin system produces an echo when the faster spins catch up with the slower
spins. The intensity of the echo is studied for different values of 7. From this
measurement, information on the 75 decoherence time can be extracted [4].
This procedure is schematically represented in figure 2.2.

T

T
/2 ™
Pulses I t
t=20 T 2T
FID FID Echo

Signals 4H_vﬁnv\r— t

Figure 2.2: Diagram of a spin echo procedure. Fistly a 7/2 pulse rotates the mag-
netization M onto the XY plane. After a time 7 the spin package will have spread
according to its relaxation dynamics. Then, a 7w pulse is applied that reverses the
spins placing the faster rotating components behind the slower components. At time
27 the faster precessing spins catch up with the slower precessing spins generating
the spin echo.

Elexsys E-580 spectrometer

The EPR system used for the measurements presented in this work is an
Elexsys E-580 spectrometer by Bruker Corporation [5] property of the Uni-
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versity of Zaragoza (figure 2.3). It is capable of taking EPR measurements
in both X-band (8-10 GHz) and Q-band (35 GHz) and in either continuous
wave and pulsed modes. For anisotropic samples, the microwave cavity can be
fitted with a rotating stage mechanism that allows the automatic acquisition
of spectra for different orientations. It is also equipped with a helium flow
cryostat that can cool the samples down to 5 K. The electromagnet used for
the DC fields can apply fields of up to 1.4 T.

Figure 2.3: Elexsys E-580 EPR spectrometer at the University of Zaragoza

2.2.2 Physical Property Measurement System

The Physical Property Measurement System (PPMS) is a commercial system
by Quantum Design [6] that allows the measurement of different physical prop-
erties (such as resistivity, heat capacity, magnetic properties, heat transport,
etc.) of samples under variable temperature, magnetic field and pressure con-
ditions. Its architecture allows the use of different sample stages for different
applications and allows for the possibility of custom built accessories. Two
PPMS systems are available for use at the Servicio de Medidas Fisicas at the
Universidad de Zaragoza [7].

The system consists mainly of a liquid helium dewar with a probe inserted
into the helium bath. This probe integrates a *He cryostat [8], sample cham-
ber and superconducting magnet. The cryostat allows the sample chamber’s
temperature to be controlled and varied in the range of 1.9 K-400 K and allows
continuous operation as long as the liquid helium supply is maintained. The
superconducting magnet has a maximum field of 9 or 14 T for our available
models. The sample a chamber also has electrical connections at the bottom



22 Chapter 2. Experimental Techniques
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Figure 2.4: PPMS dewar, model 6000 and PPMS probe schematics

(figure 2.4) which are used to interact with the sample and take the measure-
ments. The different sample holders (or pucks) are made to fit this connection.

The entire system is controlled through an external electronic system (model
6000) that includes all the electronics necessary for the control of the chamber
pressure, temperature and field. Additional modules are installed for each of
the measurement options desired. An external PC and software allow simple
programming of automated measurement sequences.

One of the options we will commonly use is a *He cryostat [8] that can be
inserted into the PPMS probe to achieve temperatures down to 350 mK (figure
2.5). The insert has different electrical connections to samples than the base
system and specific pucks must be used.

We now give some additional details for the two measurement types we
perform on these systems: Resistivity and heat capacity.
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Figure 2.5: *He cryostat insert for PPMS system

DC resistivity measurements on the PPMS system

DC resistivity measurements are the most basic measurements possible and
require no additional options apart from the base PPMS system. The mea-
surement uses a standard 4 point resistance measurement to determine the
resistivity given the sample geometry. A given current is circulated from the
+1 to the —I lead and the voltage across the +V to —V leads is measured.
The resistance on the £V branch is designed to be much higher than that of
the £1 branch, thus guaranteeing that almost all the current circulates from
+1 to —I and that there are no contributions of the connecting wires to the po-
tential difference AV on the £V branch. The resistance is then simply AV/I.
The resistivity of the sample can be obtained knowing the sample length ()
between the £V leads and the sample cross section (S) through the definition
p=RS/L

The different resistivity pucks are shown in figure 2.6. The standard puck
has electrical contacts for up to three samples simultaneously. It also allows
measurement of Hall voltages on a fifth lead (Viay). Samples are attached or
glued to the flat puck surface and usually wire bonded to the contacts. In the
standard configuration the magnetic field is applied perpendicular to the puck
surface. To apply an in plane magnetic field, an adapter can be used to hold
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Mode Current range Voltage range | Frequencies

DC +0.01 — 5000 pA +1 -95mV DC or 50 Hz
ACT 4+0.02pA —2A | £40pV -5V | 1Hz — 1kHz

Figure 2.6: DC resistivity pucks for the PPMS and parameter limits. From left to
right: Standard puck, *He puck, in plane field adapter.

a *He type puck in the correct position. The *He puck is very similar to the
standard puck but is smaller and has only two measurement channels.

The PPMS also includes an optional AC transport module (ACT) can also
be used to apply higher frequencies and currents. It is specifically designed for
measuring critical currents and IV curves for superconductors. The current,
voltage and frequency limits for both DC and ACT are given in figure 2.6.

Heat capacity measurements on the PPMS system

The heat capacity option measures heat capacity at constant pressure C, =

(%) using a relaxation technique [9]. The heat capacity option controls the
P

heat added and removed from the sample while monitoring the temperature
changes. A constant power is applied to the sample for a fixed time followed
by a cooling period of the same duration. A simple model predicts that the
temperature T of the calorimeter block (the calorimeter itself plus the sample)

obeys the equation:

dT
Ctotal% = _Kw(T - Tb) + P(t); (2'1)
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where Ciota1 18 the total heat capacity of the sample and platform, K, is the
thermal conductance of the supporting wires, T} is the thermal bath tempera-
ture (puck temperature) and P(t) the applied heat power (equal to Py during
heating and 0 during cooling). The solution to this equation is given by expo-
nential functions with time constants 7 equal to Cyota1/ Ky Since Ky, is known
from previous calibration experiments, this data enables the determination of
Ctotal and, from it, the sample contribution. This is the model commonly used
by the PPMS and it assumes good thermal contact between the sample and
platform. More complex models with multiple time constants are available for
cases when the thermal contact is poor.

Heater on Heater off

Figure 2.7: Heat capacity puck for *He insert and typical temperature response during
a measurement

The sample is mounted on a small sapphire platform (about 2 mm side) with
a platform heater and a thermometer on the bottom side. The wires connecting
the heater and thermometer provide the only structural support to the platform
and, since measurements are performed in high vacuum, the dominant thermal
connection. Power pulses are set to induce only small excursions from the bath
temperature, of the order of 3 — 5% of T} in order to avoid nonlinear effects.
The complete puck adequate for the 2He system can be seen in figure 2.7
along with a typical response curve while measuring. To correctly evaluate
the sample heat capacity, the heat capacity of the empty platform must be
calibrated (addenda) as well as any adhesive material used (addenda offset).

The system specifications allow us to measure the heat capacity of relatively
flat samples of between 1 and 200 mg mass at temperatures from 0.35 K to
room temperature with or without an applied magnetic field. The sensitivity
is higher than adiabatic methods as it relies on the measurement of the time
constant 7. Our samples are usually small crystals or powders that are pressed
into flat pellets using a hand press (~ 1mm and < 10mg). They are attached
to the platform using Apiezon N grease [10] that provides good thermal contact.
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Figure 2.8: A) MPMS-XL system at Servicio de Medidas Fisicas (Universidad de
Zaragoza). B) Diagram of the superconducting pickup coils of the second degree
gradiometer connected to SQUID electronics

2.2.3 Magnetic Property Measurement System

The Magnetic Property Measurement System or MPMS is another commercial
system by Quantum design [11] that is designed specifically for measuring
both DC and AC magnetic responses of a material. The system used is a
model MPMS-XL also provided by Servicio de Medidas Fisicas (Universidad
de Zaragoza) |7] as in the case of the PPMS system. It is very similar to
the PPMS system (section 2.2.2) except in that the probe contains additional
components intended for the magnetic measurements. It also operates as a ‘He
cryostat and can operate at temperatures from 1.8—300 K. Its superconducting
magnet can apply static fields of up to 5 T and AC magnetic fields of frequencies
in the range 0.1 Hz — 10kHz and up to 4 Oe in amplitude.

The main component of the MPMS system is the SQUID (Superconduct-
ing Quantum Interference Device) magnetometer. SQUIDs are very sensitive
magnetic flux-to-voltage transducers and can be used as low noise current am-
plifiers [13, 14]. This allows them to be used in the detection of very small
magnetic signals by amplifying small currents generated by moving magne-
tized samples through superconducting coils. The maximum sensitivity that
can be achieved in our system is of 2 - 107® emu. A basic schematic of the
SQUID magnetometer can be found in figure 2.8. The sample is mounted at
the end of a thin rod that is attached to the sample motor. This allows the
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Figure 2.9: AC susceptibility and DC magnetization of polycrystalline magnetofer-
ritin [12]. Graphs A and B show the AC susceptibility as a function of temperature
and for different AC field frequencies. The AC field amplitude (h..) used was 4 Oe.
The graph A shows the real component (x’ = m'/h,.) and graph B shows the imag-
inary component (x” = m/ /hac). The inset shows a fit of the blocking temperature
(maximum value of x’ for filled circles and x” for open circles) as a function of the
AC frequency to an Arrhenius Law, logw = A+ B/T where A and B fitted constants
related to the attempt time and the anisotropy energy barrier preventing the flipping
of magnetoferritin magnetic moments. The triangle in the inset is the value for the
DC blocking temperature. Graph C shows the DC magnetization as a function of
H/T for different temperatures while the inset shows the saturation magnetization as
a function temperature. Graph D shows hysteresis cycles for a collection of temper-
atures. The insets show the cohercive field and remanent magnetization for all the
measured hysteresis cycles.
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sample to be moved vertically through a system of superconducting (NiTi)
second-order gradiometer coils, i.e., four coils placed one above the other with
the two central coils spooled in the opposite direction as the two external coils.
This configuration suppresses any contribution to the flux from external uni-
form fields. If the sample on the other hand has a net magnetization, it will
produce a current signal as is passes through each coil. This current is then
amplified using a pickup circuit that incorporates an rf-SQUID. The voltage
signal is proportional to the sample magnetization. When operating in AC
mode, a coil generates an AC magnetic field and a lock-in detection system is
used to extract the real and imaginary components of the signal.

As in the PPMS case, the MPMS is controlled through external electronics
and computer software that can automate many of the standard measurements
and tasks. Sequences of commands and measurements may be pre-programmed
and run unattended.

As an example measurement we present measurements of samples of poly-
crystalline magnetoferritin done in the MPMS at the University of Zaragoza
[12]. Ferritin is a protein with the approximate shape of a spherical cage that
provides a confined vessel where guest species can enter and react to give a
core with a defined shape and size. In the case of magnetoferritin, the interior
is filled with a maghemite core with an average diameter of 5.7 nm for our
samples. Figures 2.9AB show measurements for an AC magnetic field while
figures 2.9CD show DC magnetization and hysteresis cycles. The experiments
provide information on basic parameters, such as the magnetic moment and
its distribution, as well as the spin lattice relaxation time scales.

Rotating Sample Stage

When measuring the magnetic properties of crystals it is often important to
measure the response when the fields are applied along different directions with
respect to the sample. When working with powders or isotropic samples, these
are usually placed in capsules inside a plastic tube that can be easily attached
to the rod that the MPMS moves through the magnetometer coils (see figure
2.8). The tube is chosen to be uniform and long enough to occupy all 4 coils
giving a very low background contribution. This setup however does not allow
us to rotate the sample. A different stage must be used when we wish to study
anisotropic effects.

The rotating sample stage allows us to rotate a sample with respect to an
axis perpendicular to the field direction (teh magnetic field is vertical and the
rotation axis horizontal in the laboratory frame). It is shown schematically in
figure 2.10. The stage consists of a small copper platform within a copper tube
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Figure 2.10: Rotating sample stage for MPMS

(oxigen free). The platform has a pulley attached to a thin wire that allows it
to be rotated by motors at the head of the rod in 0.1° steps. The sample is
usually attached to the platform using a thin layer of Apiezon N grease [10].

The copper platform contributes a relatively small signal to measurements
of magnetization. However, when measuring AC signals at high frequencies (1
kHz and higher), the complex or reactive component of the magnetization has
a characteristic contribution from the platform (see figure 2.11). The signal
is due to induction currents in the platform and they are maximum when
the platform is perpendicular to the applied field. Assuming our sample has
small contributions at these frequencies, this allows us to easily find a reference
position from which to measure the rotation angles.

2.3 Lithography and circuit fabrication techniques

2.3.1 Ultra-Violet Photolithograpy

The microwave resonators and waveguides we study in later chapters are fabri-
cated mainly through a standard ultra-violet (UV) photolithograpy procedure.
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Figure 2.11: Contribution of rotating sample stage to MPMS AC magnetization mea-
surements at 976 Hz and 7" = 300K and T = 4.8 K. Top graphs correspond to the
real component (in phase) magnetization while the lower graphs correspond to the
imaginary (reactive) component.

Here we detail the basic procedure and materials that were used in this phase.
The fabrication was done almost entirely using the facilities at the Instituto
de Nanociencia de Aragon (Universidad de Zaragoza).

UV photolithography is a microfabrication technique that allows patterns
to be transferred from a mask to a photosensitive resin or photoresist on a
substrate. Our mask patterns were designed using standard CAD software
and provided to the company Delta Mask b.v. that produced the finished
photomasks. An example mask is shown in figure 2.12. Different chemical and
physical procedures then allow the pattern to be engraved in some way on the
underlying substrate. The minimum feature size depends on the desired depth
of the pattern and on the materials and procedures involved. However, under
optimal conditions, the minimum feature sizes achievable are of the order of
1 pm.

As an example we will explain what procedures were used during the fab-
rication of our devices. The process is shown schematically in figure 2.13. Our
devices are fabricated on 4 inch in diameter and 500 pm thick C-plane sapphire
wafers. Our objective is to print superconducting niobium circuits onto these
wafers with a minimum feature size of around 4 pm.
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Figure 2.12: UV photolithography mask CAD design and finished mask

The first step involves covering one side of the sapphire wafer with a 150 nm
layer of Nb using ion-beam sputtering (IBS). Many other metals do not require
IBS to create layers and some of our tests used layers of copper and gold which
are deposited by evaporation using electron beam physical vapor deposition
(EBPVD) (for gold) or even thermal evaporation with a high power resistor (for
copper). In any case, after the metal layer is deposited, the wafer is processed
under clean room conditions to avoid dust and impurities from damaging the
final patterns. The following steps are then carried out in sequence.

e The wafers are thoroughly cleaned using ultrasound baths in acetone,
isopropanol and de-ionized (DI) water. They are then heated at 120 °C
degrees for 10 minutes to remove humidity.

o After the wafer has cooled, a spin coater is used to apply a thin layer
of adhesion promoter (TI prime) and a 2.4um layer of photoresist (AZ
6624).

e The wafer is then soft baked at 110°C for 50s

e [t is loaded into the mask aligner for irradiaton. The mask aligner holds
the mask and mercury UV lamp necessary to imprint the patterns onto
the resin. The photomask with the circuit patterns is aligned with the
resin covered wafer and put into close contact by applying vacuum. The
wafer is then irradiated through the mask for 10-20 seconds (calculated
to get a dose of about 154 mJ cm~—2).

e Once imprinted, the wafer is bathed in a 1:1 solution of photoresist de-
veloper (AZ developer) and DI water for about 50-60s to remove the
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Figure 2.13: Two UV photolithography procedures.

exposed areas of resin. The wafer is then inspected under a microscope.
If the patterns are defective in some way, the resin can be removed using
ultrasound and acetone an the process can be repeated.

e If the patterns are well reproduced, the wafer is hard baked at 125 °C for
2min to harden the photoresist.

e The next step involves etching the exposed niobium using reactive ion
etching (RIE). The wafer is loaded into the RIE chamber and attacked
using SF gas preceded by 1 minute of 02 plasma. The base standard
parameters are 200 Watts of RF power, 0.19 mbar gas pressure and a 20
scem gas flux and an attack time of 10 minutes.

e The remaining resin is finally removed using an acetone bath leaving the
finished devices.

It is worth noting that the typical procedure to fabricate a photolithography
magk is very similar to the procedure detailed here, with the exception of the
exposure step. Instead of illuminating the sample (in the mask case a layer
of chromium on fused quartz) through a mask, an electron beam or a laser is
used to irradiate the desired areas of the resin.
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Instead of RIE etching, lift-off lithography was also used in some cases.
The procedure is also very similar but involves using different resins and a few
additional steps. The resin patterning is done directly on the bare sapphire
wafer using a negative resin (TT 35 ES). This resin is first exposed through
the same photomask (for a 200m.Jcm~2 radiation dose) and then a reversal
bake (at 130 °C for 2min) is applied. This makes the exposed areas resistant
to to UV radiation and to the photoresist developer. After it cools, the entire
wafer is flooded in UV light (no photomask) which will now affect only the
initially unexposed parts. The wafer is then developed leaving an inverted
resin pattern. Niobium is then sputtered on top of this pattern in a uniform
layer. The niobium resting on the resin covered areas is lifted off by bathing
the wafer in acetone while the niobium deposited on the bare sapphire areas is
maintained leaving the same patterns as in the RIE case. Both the RIE and
the lift-off procedures are schematically represented in figure 2.13.

Figure 2.14: UV photolithography clean room with the mask aligner (foreground) and
the spin coater and hot plate (background).

As a final step in both the RIE and lift off cases, the wafer must be diced
to separate the different devices (there are about 30 different devices on ev-
ery wafer). This is done using a diamond saw and is usually the lengthiest
(and often the most critical) part of the whole procedure. Given the mechan-
ical properties of sapphire, the cuts must be done very slowly (no more than
2mmmin~!) and with an adequate saw. The wafers easily shatter if cut too
quickly.
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2.3.2 Scanning Electron Microscopy (SEM) and Focused Ion
Beam (FIB)

Scanning electron microscopy (SEM) and focused ion beam (FIB) are two
techniques that we use in the fabrication of nanoscale features in our super-
conducting circuits.

SEM is a microscopy technique that consists in bombarding a sample with a
high energy electron beam (~keV). These electron can be either backscattered
or transmitted through the sample and can produce secondary electrons as a
result of ionization (~eV). In SEM, these secondary electrons are collected to
obtain information on the sample and its topography. This technique allows
very high resolution images (down to 1 nm) and has a large depth of field
allowing images with a characteristic 3D appearance.

FIB is similar to SEM but the electrons are replaced with a beam of accel-
erated ions (in our case Ga™ at 30 kV). Although imaging is possible with an
ion beam, it is inherently destructive to the sample surface. This makes sample
etching the beam’s primary use. Nanoscale (as small as ~ 10 nm) structures
and designs can be etched into a wide variety of substrates and samples. This
same ion beam can also be used to build structures by injecting a precursor gas
close to the sample surface in a process known as focused ion beam induced
deposition (FIBID)[15]. The molecules of a precursor gas are injected close to
the sample surface and are adsorbed to the surface. The incoming ions decom-
pose these molecules and remove the volatile components leaving a deposit
composed of non-volatile elements of the precursor gas with implanted ions
from the beam. Materials that can be deposited include tungsten, platinum,
cobalt, carbon and gold. In the specific case of tungsten, the combination the
the Ga™ ions allows the fabrication of superconducting wires [16, 17].

Helios NanoLab DualBeam

The SEM/FIB system we use in this work is a Helios Nanolab DualBeam by
FEI [18](see figure 2.15). It is provided by the Laboratorio de Microscopias
Avanzadas (LMA) [19] at the Instituto de Nanociencia de Aragon (INA) [20]
clean room. There are three dualbeam systems (model 650, 600 and a older
nova 200 model). The DualBeam designation refers to the fact that these
systems combine two columns, one for the electron beam and, at 52°, another
for the Ga' ion beam. This allows the sample to be imaged (by SEM) and
processed (with FIB or FIBID) simultaneously.

Our samples are usually loaded into the Nanolab chamber taped onto a
sample holder using copper or carbon tape to ensure good electrical contact to
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Figure 2.15: Helios 650 system in clean room at Instituto de Nanociencia de Aragon

ground. This is necessary to avoid the accumulation of charges in the sample
since these charges can deflect the beams, reduce our resolution and induce
drift in the images and etched patterns. After the chamber is at vacuum
(approximately 106 mbar), the electron beam is used to image the sample
and look for the area we wish to pattern. Once it is located, the sample is
rotated to align it with the ion column and a brief image is taken of the area.
The patterns to be etched are then overlaid on the image and the beam is
swept over the designated areas to create the desired structures.

One of the main parameters to adjust is the ion beam current. The beam
current determines the spot size and the minimum resolvable structures as
well as the time required to produce the patterns. High beam currents (up
to 21 nA) allow fast (1-10 minutes) patterning or cutting of large areas (up
to 100 pm) but reduce the resolution. The lowest current (~ 1pA) has a spot
size of about 5 nm for etching fine details but requires longer etching times.
Very long etching times can be problematic as sample drift and charging can
also limit the resolution of our structures. The currents and patterns have to
therefore be adjusted such that the patterning times do not exceed 10 minutes
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on average to avoid this issue. In some cases, several steps at different currents
may be necessary to generate all the features.

2.4 RF circuit measurement

2.4.1 Vector Network Analyzer

A network analyzer is an instrument that measures the transmission and re-
flection properties of electrical networks in the radio-frequency (RF) regime.
The device uses a RF source to send a known wave into the electrical system
through transmission lines and measures the reflected and transmitted waves
at the device’s ports [21].

It is helpful to think of these electrical waves using an optical analogy and
to replace the electrical network with a system of lenses. We can imagine
incident light striking the optical system and having part of the wave reflected
and part transmitted. If the lenses are lossy, for example, some of the light
will be absorbed by the lenses. If the system includes mirrors, large amounts
of light might also be reflected. These lenses might also behave differently at
different wave frequencies if the materials are dispersive. These concepts are
still valid when working with RF signals except that the electromagnetic energy
lies in the RF /microwave range instead of the optical range. Network analysis
is concerned with the accurate measurement of the ratios of the reflected and
transmitted signals to the incident signal.

It is important to note that a network analyzer, although similar in some
respects, has substantial differences with a spectrum analyzer. Network ana-
lyzers are designed to study the properties of electrical networks and include
the signal source in the device. They measure the response of the system to
a known signal with, for example, a specific frequency. On the other hand,
spectrum analyzers are designed to determine the properties of a received sig-
nal (signal or carrier level, sidebands, harmonics, phase noise, etc.). They are
usually configured as a single channel receiver without a signal source.

Network analyzers come in both scalar and vector models. A scalar network
analyzer only measures the relative amplitude of the reflected and transmitted
signals to the source. This is sufficient in many cases. However, in other cases
the phase differnce is also necessary to get a complete characterization of the
system. This information is obtained using a vector network analyzer that
measures both the phase difference and amplitude of the signals.

A generalized block diagram of a network analyzer is given in figure 2.16.
The four main components are:
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Figure 2.16: Block diagram of a network analyzer [21].

e A signal source - It provides the stimulus for our system and can usually
be programmed to sweep either frequency or power.

e Signal separation devices - This block is usually called the test set and
serves two primary functions. The first is to measure a portion of the
input signal to provide a reference for ratioing. The second is to separate
the incident and reflected traveling waves at the input of our electrical
device under test (DUT). Both these tasks are achieved using different
components such as splitters, directional couplers and bridges.

e Receivers to detect the signals - Can be diode detectors (scalar and broad-
band) or tuned receivers (magnitude and phase information). Vector net-
work analyzers use tuned receivers. These use a local oscillator (LO) to
mix the RF down to a lower intermediate frequency (IF). The IF signal
is then bandpass filtered which greatly improves sensitivity and dynamic
range. Modern analyzers then use an analog-to-digital converter (ADC)
and digital signal processing (DSP) to extract the amplitude and phase
data from the IF signal.

e A processor and display system to show the results - The results are pro-
cessed and displayed so that they are easy to interpret. Some systems also
allow for automated measurements to be programmed (Programmable
Network Analyzer or PNA).

Modern commercial network analyzers like the ones used in this thesis have
all these components integrated into a single instrument that includes a full
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operating system and graphical interface. They can also have 2 or more mea-
surement ports allowing the analysis of multi-port networks. The excitation
can be applied to any of the ports while measuring the response on all of them
simultaneously.

In most cases when performing measurements, network analyzers are cal-
ibrated using a calibration standard connected at the location of the device
under test including all the connecting wires that will be used in the final mea-
surement. A full two port calibration requires measuring a series of different
connections:

e An open connection at each port

e A shorted connection at each port

A matched load at each port (usually a 50 € resistance)

A thru connection between the two ports

An isolation connection between the two ports (usually optional)

With these measurements, the network analyzer will compensate for effects
arising from the connecting wires and measure the response of the DUT only.
On most modern network analyzers these calibrations can be saved and re-
used without having to remeasure the calibration standard. There are also
electronic calibration standards that allow some systems to perform automatic
calibrations.

2.4.2 Rohde & Schwarz, ZVB14 Vector Network Analyzer

The specific model used for most measurements in this thesis is a R&S ZVB14
Vector Network Analyzer [22]. A photograph and the basic specifications can
be seen in figure 2.17. Each of the devices 4 ports has an independent measure-
ment receiver and reference receiver as well as an independent signal generator.
It uses an internal computer to run the measurements and can be programmed
remotely either using remote desktop systems or included NI LabView drivers
[23].

Our network analyzer ports use 3.5mm (male) connectors which are com-
patible with the more widespread SMA connectors. In measurements per-
formed throughout this work, we use only ports 1 and 2 wired to our system
via two 1 meter long coaxial cables (SMA to SMA). We however do not use any
calibration standard to remove these wires from the measurement. Our actual
DUTs (described in chapter 6) are usually at cryogenic temperatures and have
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Number of Ports 4
Frequency range 10 MHz to 14 GHz
Power range -45 to 13 dBm
Dynamic range (at 10 Hz IF bandwidth) >120 dB
IF bandwidths 1 Hz to 500 kHz
Measurement points per trace 1 to 60001
Operating system and internal PC Windows XP
Port connector type 3.5mm male

Figure 2.17: Rohde and Schwarz, ZVB14 Vector Network Analyzer

longer wires attached which have much larger losses than these 1 m wires. We
do not have a calibration standard that is adequate for connection at those
temperatures. Therefore our measurements will include the contributions of
all these connecting cables.

2.4.3 4K probe for RF measurements

A simple 4 K probe was build to submerge superconducting microwave circuits
into liquid helium and measure RF transmission through it. As we detail in
section 6.3, our circuits are mounted on 4 ¢m long fiberglass holders equipped
with SMP [24] connectors. These holders are screwed onto a copper box that
in turn is attached to a celotex board. This board is at the end of a 2 m steel
tube that holds two cryogenic coaxial cables (figure 2.18). The cables are model
SC-086/50-SB-B by COAX CO. (Japan) [25] and their basic characteristics are
shown in figure 2.18. The cables join the circuit on the fiberglass holders to
bulkhead SMA connectors at the other end of the tube that allow them to be
connected to external electronics. The probe dimensions and flange allow it
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Figure 2.18: 4K probe for RF measurements and diagram of semi-rigid coaxial cable.
Out of the 4 visible SMA connectors on the probe head, only two are actually wired.

to be used by directly inserting it in one of our 100 L liquid helium transport
dewars or in the cryostat holding our superconducting vector magnet (section
2.4.4).

2.4.4 Vector Magnet

The Low Temperature Lab at the Instituto de Ciencia de Materiales de Aragon
is equipped with a superconducting vector magnet manufactured by Oxford
Instruments. This is one of the pieces of equipment used in some EPR-like
experiments detailed in chapter 7.

Superconducting magnets [26] allow large magnetic fields to be generated
in laboratory scale cryostats without the kW or MW power supplies necessary
for conventional electromagnets. In most cases, the cost of cooling a super-
conducting magnet is lower than that of the power required for a resistive
electromagnet.

Superconducting magnets consist of a number of coaxial solenoid sections
wound using multifilamentary superconducting wire. One of the main advan-
tages of superconducting magnets is the ability to work in persistent mode.
In this mode, the superconducting circuit is closed of using a superconducting
switch, keeping the current circulating in a continuous loop. The power supply
can then be switched off leaving the magnet at field. The field then decays very
slowly (about 1 part in 10* per hour or lower).

There are three separate superconducting coils that apply magnetic fields
in three perpendicular directions. The largest coil applies field in the vertical
(or Z) direction in the laboratory reference frame and can maintain fields of
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‘

Figure 2.19: Vector magnet and power supplies at the Low Temperature Laboratory
(ICMA).

up to £9T. The remaining two coils apply fields in the horizontal laboratory
plane (directions X and Y) and can reach up to £1T. Each magnet has an
independent power supply that provides the current to maintain the fields in
each magnet. The Z and X magnets use model IPS120-10 power supply while
the Y magnet uses an older IPS120-3 model which can not reverse the polarity
of the field (only 0 to +1T).

The magnet is contained inside a 90 L capacity liquid helium dewar that
keeps the magnet below the superconducting critical temperature. Any sample
that is inserted into the magnet will also be submerged in this liquid helium
bath. The dewar includes a liquid nitrogen cooled radiation shield and an outer
vacuum chamber to insulate the liquid helium reservoir and prevent losses.

This magnet system is used in this work for different types of measurements
that require external magnetic fields. In chapter 6 it is used to measure the
performance of superconducting coplanar waveguide resonators in the presence
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Figure 2.20: Screenshot of Labview program for coordinated control of the supercon-
ducting magnets and the vector network analyzer

of magnetic field and in chapter 7 it is used in EPR-like experiments to tune
level separations into resonance. The magnets are controlled by a computer
through a RS232 interface and an Labview [23] driver from Oxford Instruments.
The magnet driver is incorporated into custom Labview programs to coordinate
the magnetic field with data acquisition from our network analyzer allowing
the automation different measurement sequences (figure 2.20).

2.5 Local scanning probe systems

2.5.1 Atomic and Magnetic Force Microscopy (AFM/MFM)

Atomic force microscopy is a type of scanning probe microscopy that consists
in sweeping a sharp tip over a sample surface and detecting changes in its
deflection [27, 28, 29]. Typically the tip is at the end of a cantilever and
the position of the cantilever is monitored with a laser and photodiode (figure
2.21). The sample and tip movements are usually controlled using piezoelectric
actuators to precisely control their positions. AFM has been demonstrated to
be able to achieve topographies with atomic resolution. Although the most
common AFM measurements are of sample topographies, other magnitudes
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can also be measured by coating the tip with different materials sensitive to
other interactions. The tip can be made to register magnetic domains, electric
charge, conductivity, etc.
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Figure 2.21: Atomic Force Microscopy (AFM). Graph A shows a schematic of an AFM
measurement system. Graphs B and C show a tapping mode topography measurement
of Gd,-ac droplets deposited on a SiO, substrate by dip-pen nanolithography [30] (see
section 2.5.2)

There are several different operating modes for AFM systems and most
systems can switch between these modes.

e Contact mode consists in bringing the tip into direct contact with the
sample surface and measuring the deflection of the tip. As the tip is swept
over the surface the deflection changes depending on the topography
and a feedback loop adjusts the sample height to keep the deflection
constant. This feedback provides a topography signal which is recorded.
This technique is the most direct way of measuring AFM but is somewhat
aggresive for both the tip and sample. To minimize damage to the tip
and sample, the cantilevers used are usually soft in the sense that the
have a low elastic constant.

e Semi-contact or tapping mode consists in actively exciting a vibration
resonance in the tip while it is swept over the surface. The tip is po-
sitioned above the surface at such a distance that the tip touches the
surface at the end of its oscillation. The feedback system monitors the
vibration amplitude and uses it as the feedback signal to produce the to-
pography. This method is less aggressive than contact mode since contact
only occurs for a fraction of the oscillation and is the most widely used in
standard measurements. Cantilevers have higher elastic constants than
in contact mode to get higher quality resonances.
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e Non-contact or frequency modulated mode is similar to semi-contact
mode but the tip is kept out of contact with the surface. The surface
is detected by monitoring changes in the tip vibration phase and reso-
nant frequency. The resonance is established when the tip is far from
the surface and the phase used as a feedback variable. Deviations from
the central value are corrected by shifting the excitation frequency. This
frequency shift is recorded as the tip is swept at constant height over the
sample. This method can obtain the highest resolution and can achieve
atomic resolution under adequate conditions. Since the tip never actu-
ally touches the surface, it can be made much sharper than in the other
modes where the contact with the surface quickly would wear down the
tip. It can however only be used with relatively flat surfaces since it
requires scanning at a constant height and abrupt topography changes
can easily crash the tip into the surface.

In this work we are particularly interested in an AFM technique known
as magnetic force microscopy (MFM). In MFM, the AMF tip is coated in a
magnetic material (usually Co based compounds) so that the measurement
is sensitive to magnetic interactions. This allows the mapping of magnetic
domains and detecting stray field from magnetic regions. There are two main
methods of measuring MFM:

e The two-pass method involves first taking a topography profile of each
of the lines in the image. In close contact (as in tapping-mode), the
tip is only sensitive to the topography since at close range it is much
larger than any magnetic contribution. After this scan the tip is moved
up (~ 100nm) and rescanned over the same line following the measured
topography profile. This allows us to suppress the topography contri-
bution from the final image. Since magnetic interactions have a much
longer range than the interactions due to topography, the second scan
height can be adjusted to leave only a magnetic signal and a negligible
topography signal.

e To measure high resolution MFM images, non-contact techniques must
be used. Non-contact MFM is very similar to standard non-contact AFM,
but the distance needs to be adjusted to a regime where the topography
is invisible and only the long range magnetic contributions are visible.
Again there are limitations how rough the surface can be to get a clean
measurement.



2.5. Local scanning probe systems 45

MFM signal — L| —
A ( ?_L_‘
—Scan 2

Surface
topography

Opm 10 20 30 40

60.3 nm 0.8

40.0
30.0 0.0

20.0

Topography
MFM phase (°)

10.0
0.0

-10.0
-16.3

0.9
0.5

MFM phase (°)
T
L L

0 1 2 3 4 5 6 7 8

MFM phase (°)

~05 10 F — Profile 1
£ o]
-1.0 >
-10 7
T s L T T
-1.4 0 1 2 3 4 5 6 7 8

x [pm]

Figure 2.22: Magnetic force microscopy (MFM. Graph A shows a diagram of a two-
pass MFM measurement scheme. Graph B and C are the topography and MFM passes
(100 nm lift) in a two-pass MFM measurement of a hard disk. Magnetic features can
clearly be seen and are not visible on the flat topography (within ~ 70nm over a
region of 50 x 50um). Graph D shows a 12 x 12um close up of graph B. Graphs E
and F show the MFM phase and topography of the 8 pm profile marked in graph D.

NT-MDT AFM system

The system used in this work is a general purpose commercial AFM system by
NT-MDT [31] (figure 2.23). The NTEGRA model available at the Instituto de
Ciencia de Materiales de Aragon (ICMA) allows many different measurement
types. Apart from standard contact, semi-contact and non-contact modes, it
can perform lateral force microscopy, adhesion force imaging, MFM (see fig-
ure 2.22 for an example), electrostatic force microscopy, scanning capacitance
microscopy, kelvin probe microscopy, spreading resistance imaging, some ba-
sic lithography procedures (force and current) and basic scanning tunneling
microscopy.
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Figure 2.23: NT-MDT NTEGRA system at Instituto de Ciencia de Materiales de
Aragon.

Different modules and options also allow measurements to be performed in
vacuum (10~2mbar), in a liquid cell, applying an external magnetic field or
with temperature control (Room temperature to 150 °C). The available scan
heads also allow scanning by sample (usually more stable but samples sizes
and weights are limited) or scanning by the tip (usable for larger samples).
Its maximum scan range is 100 by 100 pm and its typical scanner resolution
is 0.2 nm in the XY scan plane and 0.05 nm in the Z vertical direction al-
though different combinations of probes, scanners and measurement schemes
can improve upon this limit.

2.5.2 Dip-Pen Nanolithography

A related technique to AFM that is touched upon in this work is Dip-Pen
nanolithography [32]. On a basic level, it involves using an AFM tip as a pen
to transfer a sample to a substrate creating a specific pattern. Patterns with
features in the sub 100 nm range can be achieved depending on the sample
and substrate [33].

The highest resolution DPN patterns have been achieved using molecular
inks that have a specific affinity for a substrate. These inks are coated onto
AFM tips and then brought into contact with the substrate. The molecules
then diffuse through a water meniscus. Different sizes can be achieved control-
ling the ambient humidity and dwell time of the tip. Although high resolutions
can be achieved with these inks, they are usually limited to a single type of
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substrate per molecular ink.

It is also possible to work with liquid inks that allow for a greater variety
of samples and substrates. A solid sample can be dissolved in an appropriate
solvent and this ink be transferred with an AFM tip to the substrate. De-
pending on the ink properties, the minimum feature sizes are somewhat larger
than in the molecular ink case and are of the order of pm. This method also
allows bio-molecules such as proteins or DNA as well as inorganic molecules
to be patterned.

Water meniscus

Liquid ink

Figure 2.24: Dip-pen nanolithography. Nanoink DPN 5000 System at Instituto de
Nanociencia de Aragon.

A couple of examples of DPN depositions using liquid inks are shown in
figure 2.25. In one example we show droplets of magnetoferritin on a SiO,
substrate. The diameter of a magnetoferritin molecule is of about 10-12 nm so,
according to the profile, the droplets consist of about two layers of molecules.
The other example shows a microscope image of Mn,,-benzoate molecular
nanomagnets [34] droplets just after being deposited by the DPN tip on a
30 um diameter p-SQUID sensor [35]. As a further example, the sample seen
previously in the AFM image in figure 2.21 was also fabricated using DPN [30].
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Figure 2.25: Dip-pen nanolithography. Graphs A and B show an AFM images and
profile of droplets of magnetoferritin deposited using DPN. Graph C shows a y-SQUID
sensor immediately after droplets of Mn,,-benzoate have been deposited inside its
30um loop as well as the DPN tip (black triangle). Graph D shows a SEM image of
the p-SQUID and Mn,, droplets (viewed at a 52° angle).
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2.6 Software and computational techniques

2.6.1 COMSOL Multiphysics®

COMSOL Multiphysics [36] is a commercial software package that provides
numerical simulations for a wide range of physics problems. It includes a
number of different modules for thermal, mechanical, electrical, fluid flow and
chemical simulations. These different modules can also be cross coupled. For
example, a problem may simultaneously involve fluid flow and heat flow. The
system allows the flow and thermal variables to be coupled and solved as a

single problem.
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Figure 2.26: Screenshot of Comsol 4.4. Mesh of a stripline resonators to be simulated
using the Electromagnetic Waves module.

At its heart, COMSOL numerically solves systems of partial differential
equations using a finite element methods. Many common sets of equations are
included in the predefined packages, but custom physics are possible. Different
types of elements and solvers can be selected for different types of problems
and both stationary and time domain solutions can be found. A typical sim-
ulation begins defining the geometry (1, 2 or 3D) and physical structure of
the problem. Then the physics involved are chosen and applied to the geom-
etry (boundary conditions, applicable domains, etc). The next step involves
meshing the geometry such that the desired features can be resolved. Finer
meshes can resolve more details but of course require additional memory and
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computation time. Finally the desired solver is executed and attempts to find
a solution. If the solution converges, the solved variables and other derived
variables can then be represented and processed.

The modules used in this work are limited to different electrical and mag-
netic models. In particular we use the “Magnetic and Electric fields” module
(mef), the “Magnetic fields” with and without currents modules (mf and mfnc)
and the “Electromagnetic waves” (emw) module. All these modules implement
different combinations of the Maxwell equations applying different simplifica-
tions.
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Figure 2.27: Comsol simulation of magnetic flux density through a superconducting
(SQUID) loop [35]. The diameter D; is 26 pm. The color scale for graphs A and B
corresponds to the magnetic flux absolute value. Graph B shows a cross section of
the SQUID loop along a diameter and calculated magnetic field lines. Graph C shows
simulated flux generated by the sample (in units of the flux quanta ¢g) as a function
of the number of molecules of Mn,,-benzoate present. The points are experimental
measurements.

In this thesis work, we have been mostly concerned with the simulation
of rf waves propagating via coplanar waveguides and resonators (figure 2.26
and chapter 6). As a further example we show in figure 2.27 results of a
Comsol calculation of the magnetic flux density generated by a magnetic layer
that fills a SQUID loop [35]. The SQUID loop is meant to model a micro-
susceptometer that converts the flux through the loop to voltage. The SQUID
wire is superconducting and can be modelled as a magnetic insulator that
does not allow the magnetic field lines to enter the domain and will deform
the stray field generated by the magnetized sample. This simulation is used
to estimate the minimum amount of a given magnetic sample and applied DC
field necessary to generate sufficient flux through the SQUID to be detected
by the SQUID electronics. It also allows us to approximate the dependence of
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our signal with the amount and size of the sample since not all areas of the
cylinder contribute equally. Results of these calculations are compared with
data measured on layers of Mn ,-benzoate deposited onto a p-SQUID loop
(figure 2.27C).

2.6.2 Other programs and libraries

Most data processing and analysis has been done using has been done using
custom programs written in ¢+ [37] and compiled using the GNU Compiler
Collection (GCC) [38|. Additional libraries were also used to perform standard
tasks. These include:

e ROOT - An object oriented framework for large scale data analysis de-
veloped at CERN [39].

e Armadillo - A C++ linear algebra library [40].

e GNU Scientific Library - A numerical library for C and C++. The library
provides a wide range of mathematical routines such as random number
generators, special functions and least-squares fitting [41].

Other commercial and open source software packages used include

e Wolfram Mathematica (version 7) [42]

e Mathworks MatLab R2013a [43] and the Easyspin EPR simulation pack-
age [44].

e OriginLab OriginPro 8 [45]
e NI LabView 2011 [23]
o LibreCad [46]

e Clewin 3 [47]
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Chapter 3

Towards a quantum computing
architecture with spins

3.1 Cavity Quantum Electrodynamics and the Jaynes-
Cummings Hamiltonian

The field of cavity quantum electrodynamics (QED) studies the interaction
of photons in resonant cavities with quantum mechanical systems, for exam-
ple atoms or other systems with a discrete energy level spectrum, that couple
either to electric or magnetic fields (or both). The classical example of a cav-
ity QED system is an optical cavity driven by a laser where the transmission
intensity through the cavity is monitored as one drops atoms through it (fig-
ure 3.1). Intuitively, changes will be observed when the atom couples to or
absorbs radiation from the cavity giving us information on the nature of the
atom and its energy levels. These levels can be tuned with an external electric
or magnetic field such that a certain level splitting coincides with the cavity
photon energy. If the coupling is strong enough and the excitation power is
such that there is only one photon stored in the cavity, the atom will oscillate
coherently between two quantum states in the phenomenon known as Rabi
oscillations [1]. The oscillation frequency is known as the Rabi frequency Qg
and is proportional to the interaction energy of the atom with the photon elec-
tromagnetic field. If the atom involved can be described in first approximation
as a two level quantum system, the Hamiltonian for the composite system is
the Jaynes-Cummings Hamiltonian [2]:

1 Q
H = hw, <aTa + 2> + %JZ +hg(a'o™ 4+ 0" a) + H, + H,, (3.1)

where w, is the cavity resonance frequency (typically controlled by the geom-
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Figure 3.1: A. Basic Cavity QED system and parameters [3]. B. Energy level spectrum
of the coupled cavity-qubit system in the zero detuning case (w, = ). The states
in the left and right columns represent the undressed (or uncoupled) states while the
center column shows the dressed states. C. Energy level spectrum of the coupled
cavity-qubit system in the large detuning case (A = Q — w, > ¢). The solid lines
represent, the undressed states while the dotted lines represent the dressed states. The
level spacing is different depending on the state of the qubit.
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Figure 3.2: Simple cylindrical microwave cavity



3.1. Cavity Quantum Electrodynamics and the Jaynes-Cummings Hamiltonian 57

etry of the cavity and the materials used), A2 is the energy difference between
the atom energy levels, g is the coupling rate of the two systems (dependent on
the strength of the electric or magnetic field at the atom’s location as well as
the atom’s properties such as electric dipole moment or spin), H,; describes the
losses of the cavity (decay rate x = w,/Q) and H, contains the decoherence
or decay of the atom into other channels (related to the Ty decay time). The
Jaynes-Cummings Hamiltonian assumes that the rotating wave approximation
(essentially g < wy,Q and w, ~ Q) and the dipole approximation hold [3, 4].

In the absence of damping, the Hamiltonian (3.1) can be readily diagonal-
ized. We define the detuning parameter as A = Q) — w,, the qubit eigenstates
as | 1),] 1), and the cavity eigenstates as |n) for n = 0,1,2,.... The energy
eigenvalues and eigenstates for the joint system are then:

h
Brm = (n+1)hw, + 5\/492(71 +1) + A? (3.2)
hA
Ero = T (3.3)
|+,n) = cosby|l,n)+sinb,| T,n+1) (3.4)
|—,n) = —sinb,|},n)+cosby| T,n+1) (3.5)
tan2p, — 29vntl VZH (3.6)

with | 1,0) being the ground state of the system. These states are repre-
sented schematically in figure 3.1 for both the zero detuning (A = 0) and large
detuning (A > g) cases.

If A =0, each pair of states with n + 1 quanta (n photons in the cavity
and a qubit in the excited state | |) or n+1 photons and the qubit in its
ground state | 1)) would be degenerate for g = 0. Any finite coupling lifts this
degeneracy by 2gv/n + 1. In the case of a single excitation, the states are the
maximally entangled atom-cavity states |[£,0) = (| 1,1)+| |,0))/V/2 separated
2¢g in energy. This means that a qubit initially in the | state coupled to an
empty cavity will coherently oscillate into a cavity excitation and back with
an angular frequency 2g.

The large detuning (or dispersive) case corresponds to A > g (but still
Q ~ w,). Expanding to first order, the one excitation space becomes:

-9
+,0) ~ [40)+ 5] 1,1) (3.7)

The states are approximately the undressed states but have small mixings with
other states within the manifolds with the same number of excitations. Also,
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as seen in figure 3.1C, the energy level separation between states with n and

n + 1 cavity excitations depends on the state of the qubit with the cavity
2

frequency being pulled by +£% as can be seen expanding expression (3.2) for

the energy eigenvalues.

3.1.1 Energy density and limits on the coupling

The previous analysis illustrates how the value of g sets the speed at which
quantum operations can be performed in this setup. Therefore, for applications
in quantum information processing, the goal is to maximize the coupling g/,
while keeping it much larger than the two main dephasing rates of the system
g > k,7. This strong coupling limit allows for a large number of operations
to be performed during the lifetime of the quantum state and is necessary
for a system to have practical applications in quantum computing. A simple
computation can give us the order of magnitude for the coupling to a 3D cavity
of a single electric or magnetic dipole [5]. As a first approximation, the coupling
g is given by the field strength at the atom site times its dipole moment:
_dEp 2z

—— (Electric =
\@h( ) g Jah

where Fy and By are the electric and magnetic field amplitudes. Given a

(Magnetic) (3.8)

typical cylindrical cavity geometry (figure 3.2), we can estimate the average
(spatial) field strength remembering that the integral of the field amplitude
over the cavity volume is equal to the zero point energy of the cavity [6]:

1 1 Byl? oy
/ e|Eo|?dV = / dez — (3.9)
2 \% 2 \% /L 2

Taking a space average and setting e = ¢p and p = pg gives:

ho, 1
27 = §€0E§V

1
2410

BV (3.10)
The cavity dimensions give us V = 7r2\/2. Rearranging terms leads to:

1 | hw? 1 [hw?
Fo= |-, By= -1/ ko (3.11)
T T=€QC T mw=C

These equations show that the field in the cavity (and therefore the coupling g)
can be increased by reducing the cavity radius or by increasing the operating

frequency, both of which have the effect of increasing the energy density. Since
increasing the cavity frequency may not be an option since the atom energy
levels may not be suited to the higher frequencies and higher frequencies are
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Figure 3.3: Coplanar waveguide cross-section

also harder to work with, the most direct way to improve the cavity field
is to reduce the lateral dimension r of the cavity. For electric systems, and
specially for quantum circuits (cooper pair boxes), the electric dipole can be
approximated by d = eL where e is the electron charge and L is the dipole’s
characteristic lateral dimension. Introducing this approximation into (3.8) and
then using (3.10) we get:

9 _ L 2 (3.12)

W rV w

where a = €2 /(4meghc) is the fine structure constant. We see then that g/w,
depends only on how well the atom “fills” the cavity (L/r) and on fundamental
constants. This reiterates our previous point that reducing the cavity size to
match the system size is a good way to improve the coupling. For magnetic
systems the same principle applies although the magnetic moment is not in
general proportional to the system size so the expression for g doesn’t reduce
to the simple form of equation (3.12). However, reducing the cavity size to the
system size is not possible in all cases. For instance, for 3D microwave cavities,
the lateral dimension may also be limited by the wavelength of the radiation
mode making the development of different cavity geometries necessary to im-
prove the coupling. This is the approach taken in what has come to be known
as circuit QED.

3.1.2 Circuit Quantum Electrodynamics

In circuit QED, the 3D resonant microwave cavities are replaced by certain
types of integrated circuits that are essentially sections of microwave transmis-
sion lines. The prime example of this type of cavity is a coplanar waveguide
(CPW) resonator, i.e., a section of a coplanar waveguide capacitively coupled
to external feed lines. A diagram showing the structure of a coplanar waveg-
uide is shown in figure 3.3 as well as the relevant dimensions (see section 6.2
for more details). For thick substrates the transmission parameters for CPW
depend only on the materials used and the ratios of widths of the centerline
and gaps [7|. This means that the lateral dimension can be made of the order
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of pm using simple photolithograpy techniques while keeping the transmission
properties constant. As a first approximation, these systems may be considered
1D resonators where the resonant frequency is controlled by the length of the
transmission line segment. The photon energy is concentrated in and around
the center line, thus the field strengths achieved can be much larger than in
typical 3D cavities [3]. Furthermore, if superconducting materials such as Nb
or Al are used for the circuit, the resistive losses can be suppressed to achieve
quality factors of up to 10° [8, 9] meaning that, in these cases, the losses and
dephasing of the system would be limited only by the atom properties.

3.2 Early Experiments and applications in Quantum
Computing

Examples of strong coupling to atoms have been achieved previously. For op-
tical photons, the vacuum Rabi splitting was first observed in 1992 in Caesium
atoms [10] and, in the microwave regime, strong coupling was also observed
using highly excited atomic states known as Rydberg atoms [11, 12, 13, 14]
with transitions of the order of ) = 50 GHz. The first instance of a single
quantum system coupled to a CPW resonator was a superconducting charge
qubit or Cooper-pair box [15]. The latter can be approximated by a quantum
two level system and is fabricated directly in the CPW resonator gap area. The
strong coupling regime in this system has enabled the realization of many other
experiments demonstrating single qubit operations [16], its use as a quantum
bus [17], or multiple qubit gates [18]. These applications, which form the basis
of the most promising architectures for quantum information processing, are
succinctly described below.

3.2.1 Signatures of strong coupling

When a qubit is strongly coupled to a cavity according to the Hamiltonian
(3.1) it produces a specific signature when tuned into resonance (i.e. A =
Q — w, = 0). Observing figure 3.1B, if the cavity is excited with powers such
that there is only a single excitation or photon in the cavity the typical cavity
transmission peak of width x splits into two peaks separated 2¢g each of width
(k+7)/2 (see figure 3.4) given by the transitions from the ground state | 1, 0)
to either |£,1). Also, the fact that the energy level separation scales as v/n + 1
makes the spectrum anharmonic and could lead to non-linear effects at high
drive powers (where n > 1) [19].
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Figure 3.4: Single photon transmission spectrum for a strongly coupled cavity-qubit
system with zero detuning.

3.2.2 Quantum Non-Demolition Measurement in Cavity or
Circuit QED

The dispersive or large detuning regime, where A > g, is in general more
interesting for applications in quantum computing as it can allow quantum
non-demolition (QND) measurements of the state of the qubit as well as its
coherent manipulation [3].

On a basic level, the possibility of doing QND measurements of the qubit
state is based on the fact that the qubit state pulls the cavity frequency by
2 2
+% or —% depending on whether the qubit is in the | |) or | 1) state. A
driving radiation field of frequency w’ acting on the qubit-resonator system
can be modelled by the following time dependent Hamiltonian|20]:

Hdrive(t) = hf(t)(aTe_iw,t + CL@int) (313)

Observing figure 3.1C, we expect that, if the qubit is initially in its ground
state | 1), there will be transmission peaks at w, — % and at Q+ %. However,
if we compute the transition matrix elements of the drive (in a frame rotating
at the drive frequency):

<T70’Hdrive‘_an> ~ € (314)
<T50‘Hdrive|+an> ~ % (315)

This shows how the peak at Q4 g2/A corresponding approximately to a qubit
flip (see equations (3.7)) will be suppressed by the factor g/A < 1 as compared
to the w, — g?/A peak that does not flip the qubit. The qubit flip transition
from an excited qubit state is similarly suppressed. The expected transmission
spectra for each case are shown in figure 3.5. Since qubit flips by the driving
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field are suppressed in either case, this allows us to probe the qubit state by
monitoring the cavity transmission at a fixed frequency without altering the
state of the qubit. If we probe, for instance, at the pulled frequency w, —g2/A,
we should observe high transmission if the qubit is in the | 1) state but a very
small transmission if it is in the | |) state. The situation is reversed if we probe
at wy+¢g%/A. If the phase of the signal is measured, it is also possible to probe
the state by probing the cavity at the bare frequency w,. According to figure
3.5 a positive or negative phase shift is observed if the qubit is in the | |) or
| 1) state respectively.
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Figure 3.5: Cavity transmission and phase shift in the large detuning or dispersive
regime for a strongly coupled cavity-qubit system. The cavity peak frequency and
phase shift depend on the qubit state.

3.2.3 Coherent manipulation in Cavity or Circuit QED

In the large detuning limit, irradiating at the qubit frequency €2 can be used
to coherently manipulate the qubit. When irradiating at the cavity frequency
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wy, a sizable photon population is introduced in the cavity. The states of these
photons become entangled with the qubit states and can be used to probe the
latter. When irradiating at the qubit frequency, the cavity is only virtually
populated (with (n) < 1) and most of the photons are reflected from the cavity
input. The effect of this driving can be modelled by combining the Hamiltonian
(3.1), (3.13) and the unitary transformation,

U = exp (%(a(fr - aTJ_)). (3.16)
This leads to the following effective single-qubit Hamiltonian in the frame
rotating at the drive frequency w':

h g° 1
H = —(Q+2Z (qf R
off 2< + A(aa—l—2> w)a

+hg€A(t)U"” + Wwr — w')ala + he(t)(a’ + a). (3.17)
If, for instance, we drive at a frequency w’ = Q + (2n + 1)g%/A, the first term
in the previous equation cancels out and the Hamiltonian generates rotations
of the qubit about the x axis with frequency ge/A. Different drive frequencies
produce different types of rotations. It can be shown that these are sufficient to
perform any one-qubit logical operation. Here we see that the rotation speed
is proportional to the coupling g and enhancing this value allows for more
operations to be performed before the system loses its quantum coherence.

3.3 Coupling to magnetic systems: proposal for an
all spin quantum processor

The examples in the previous section deal with systems that couple electri-
cally to the cavity mode. Systems that couple to the magnetic field, such as
solid-state spin ensembles, are also seen as promising media to store quantum
information as well as to interconnect radio-frequency and optical photons
[21, 22, 23]. Experiments performed in the last few years have shown the
feasibility of coherently coupling NV or P1 centres in diamond to either super-
conducting resonators [24, 25, 26| or flux qubits [27]. These diamond defects
effectively act as anisotropic spin 1 systems and can be collectively coupled to
a CPW resonator providing a v/N enhancement to the coupling. Strong cou-
pling is achieved thanks to this enhancement of the coupling in conjunction
with the very low dephasing rate of the magnetic centers (with T ~ 1-2ms at
room temperature [28]). Evidences for strong magnetic coupling have also been
found, even at room temperature, between spin-1/2 paramagnetic radicals and
three-dimensional microwave cavities [29, 30].
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Figure 3.6: Possible architecture of an all-spin quantum processor. Spin qubits would
be placed along a superconducting coplanar waveguide resonator at positions where
there is a magnetic field maximum for the cavity mode considered. Each spin could be
tuned into and out of resonance using a wire or microcoil to appliy a local magnetic
field. Entangling between qubits at the different sites would also be feasable.

Coherently coupling to individual spins is more challenging. Provided this
limit can be attained, on-chip superconducting circuits could be used to coher-
ently manipulate and transfer information between spin qubits, thus providing
a suitable architecture to implement an all-spin quantum processor [31]|. Taking
inspiration from circuit QED systems, we can imagine constructing a quantum
computing system such as that shown in figure 3.6. Single spins would be
placed at locations along the cavity where the magnetic field is maximum for
the desired rf mode. The spins could then be individually addressed by locally
applying magnetic fields to bring them into and out of resonance with the cav-
ity. This architecture also would allow entangling multiple qubits in the same
cavity as described in [17, 18].

Our objective throughout this thesis is to test the feasibility of this pro-
posal. As it has been made clear in the previous sections, the main pa-
rameter that needs to optimized is the coupling g. If we assume a typical
operating frequency of 10 GHz, a CPW resonator with an effective volume
V = A/2-(101um)?, a spin system with magnetic moment y = pg and use
equations (3.8) and (3.10), we arrive at a value of g ~ 20Hz. This value is
far too small to overcome the best dephasing rates known for molecular spin
qubits (v = 0.1 MHz [32]) or even resonators (k > 5kHz if Q ~ 10° at 10
GHz). Observing equation 3.8, this limitation leaves us with basically two



REFERENCES 65

possibilities to explore if we wish to improve the coupling of single atom or
molecule spins and allow their use in quantum computing:

1. Exploring different spin systems with higher magnetic moments (u) and
transition matrix elements.

2. Increasing the field strength By felt by each spin.

In chapter 4 we will address the first approach and explore what desirable
qualities a magnetic system should have in order to strongly couple to a quan-
tum circuit. We will simulate the field distribution in a CPW resonator and in-
vestigate what changes in design can be made in order to increase the magnetic
field at the spin site. We also investigate a different family of magnetic mate-
rials: single molecule magnets (SMMs) (33, 34, 35]. These are organometallic
molecules formed by a high-spin magnetic core surrounded by organic ligands
that naturally organize into molecular crystals. In SMMs with strong uniaxial
magnetic anisotropy, such as Mnjs or Feg, the magnetization shows hysteresis
(i.e. magnetic memory) near liquid Helium temperatures [36]. In addition,
SMMs show intriguing quantum phenomena such as resonant spin tunneling
[37, 38, 39, 40] and Berry phase interferences between different tunneling paths
[41].

Later, in chapter 6 we will address the second approach and give more
details on CPW resonators and describe a practical method for optimizing
their coupling to spin systems. In broad terms, the optimization can be done
by optimizing the positioning of the magnetic molecule by fixing it in a higher
field area of the cavity and by engineering the cavity to have higher field
intensities. These results show that improvements in the cavity architecture
and in the choice of spin qubit that are within the reach of current state of
the art, could eventually make the realization of the spin processor sketched
in figure 3.6 feasible.
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Chapter 4

Theoretical basis for the
coupling of Quantum Circuits to

Spin Qubits

4.1 Introduction

As mentioned in section 3.3, Single Molecule Magnets (SMMs) are attractive
candidates to act as either spin qubits [1, 2, 3, 4, 5, 6] or spin-based quantum
memories. Several characteristics make the particularly attractive: the ability
to tune their properties, e.g. spin, magnetic anisotropy, resonance frequen-
cies, etc, by chemical design and their high spins (e.g. S = 10 for both Feg
and Mnis), large densities (typically ~ 1020 — 102! spins/cm?®), and the fact
that, in many SMM crystals, the anisotropy axes of each magnetic centre are
aligned parallel to each other, which might enable the attainment of stronger
couplings than those previously achieved with other natural spin systems. In
this chapter we study from a theoretical perspective the possibility that strong
coupling to single molecules might be achieved in the near future with available
technologies and, on the other, what new physics, or new physical regimes, can
be expected from the coupling of SMMs crystals to these devices.

The chapter in organized as follows. Section 4.2 describes the basic features
and the spin Hamiltonian of SMMs. A generic framework to calculate the
magnetic coupling to electromagnetic rf fields is introduced, and then applied to
discuss how such a coupling depends on molecular properties, such as spin and
anisotropy, as well as on the intensity and orientation of the external magnetic
field. The following section 4.3 gives realistic estimates of the coherent coupling
of some well known SMMs to superconducting coplanar resonators as a function
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of their dimensions and geometries. The final section 4.4 gives the conclusions
for this chapter which provide guidance for the experiments carried out in the
course of this thesis work.

4.2 Coupling of single molecule magnets to quantum
radiation fields

4.2.1 Basic properties and spin Hamiltonian of a SMM

A magnetic spin with no anisotropy in an external magnetic field has a Hamil-
tonian defined by the Zeeman interaction:

H=—jiB = —gupSB (4.1)

where [[ = gup S /h is the magnetic moment of the spin system, g is the g-factor
(related to the gyromagnetic ratio v = gup/h) and S are the spin matrices
(without the h factor). Since the system is isotropic, at zero field there is no
preferred spin direction and there will be 25 4+ 1 degenerate quantum states
which correspond to the possible values of the spin projection along any given
direction. When a field is applied along an arbitrary axis, which for simplicity
can be chosen to be the Z axis, the Hamiltonian eigenstates are also eigenstates
of the S, spin operator with their energies split evenly according to their S,
quantum number, E,, = mgugB with m = —-S5,(-=S+1),...,(S—-1),S.

In the case of a more complex system where anisotropies have important
contributions, a zero field splitting term must be added to the Zeeman interac-
tion energy (see figure 4.1). The zero field Hamiltonian usually has a preferred
axis direction (which we commonly identify with the molecular Z axis) and the
spin along this axis (S,) approximately determines the eigenstate. The level
spacing is uneven in general and, in addition, mixing among levels is possible
(associated to terms containing spin operators transverse to the quantization
axis, i.e., Szy).

To illustrate such mixing effects, we use a very simple effective spin 1/2
Hamiltonian as an example (figure 4.2):

H = —AS, +£S., (4.2)

where & is a bias energy (arising, for example, from an external field applied
along Z) and A corresponds to the quantum tunnel splitting. This system can
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A Isotropic 1—5) A Anisotropic

| -S+1)
Zero field splitting

Degeneracy

Energy
Energy

[S—1)

|S)

Magnetic Field Magnetic Field
(along anisotropy axis)

Figure 4.1: Energy levels of an isotropic and an anisotropic spin in a magnetic field.
In the case of the anisotropic spin, there is a single anisotropy axis and the field is
applied along this direction.

be solved analytically and the energy eigenvalues and eigenstates are given by

By = i% Ay €2 (4.3)
1

+) = ﬁ(’ﬂ—a\ ). (4.4)

=) = ——— (D +al 1), (4.5)

V1+a?

where o = 7”&15275 and | 1) and | |) are the S, eigenstates. For & > A,
we have @ ~ 0 and | 1),| |) become approximate energy eigenstates with
energies +£/2, basically recovering the isotropic case. However, if & < A,
«a ~ 1 and the eigenstates are symmetric and antisymmetric superpositions of
| 1), }) separated in energy by the anisotropy energy or tunnel splitting A. If
A = 0 these two states would simply cross over as the bias was swept through
& = 0 and be degenerate at this point. However, this splitting introduces
an anticrossing effect when there is a strong tunnel splitting A. This level
anticrossing in often seen between nearly degenerate levels of high spin systems
with strong quantum tunneling effects [7, 8, 9, 10, 11, 12, 13].

In general, anisotropic contributions are necessary to describe the case of
single molecule magnets (SMMs). These systems are organometallic molecules
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Figure 4.2: Energy levels of an effective spin 1/2 with a transverse anisotropy. The
graph shows the tunnel splitting (A) at low bias (€).

Nwy  gpp hwis O13

2 105 1=6)

Figure 4.3: Energy level scheme of the [(C4H,5N3)sFegO,(OH),,] single molecule
magnet (neglecting off-diagonal terms), shown in the inset and referred to in shorthand
as Feg [14]. Two possible selections of states for the use of this SMM as qubit are
schematically shown. In particular Feg has S = 10 and the following anisotropy
parameters: B = —9.8 x 102K, B3 =4.63 x 102K and Bf = —5.84 x 1079 K [11]
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with a high spin magnetic core usually formed by one or several magnetic
ions held in place by different types of organic (non-magnetic) ligands. Their
magnetic configuration is mainly determined by exchange couplings between
the ions in this core and by their interactions with the crystal field. The former
give rise to multiplets with well-defined spin values, while the latter generate
a magnetic anisotropy, thus also a zero-field splitting within each multiplet
lifting the degeneracy of the states. Here, we consider only the ground state
multiplet with spin .S and neglect its quantum mixing with excited multiplets.
These multiplets are assumed to be sufficiently far away energetically from
the ground multiplet that their contributions can be safely neglected. This
approximation, widely used to describe the physics of SMMs, is known as the
"giant spin approximation"[15]. The effective spin Hamiltonian of a SMM in
an adequate molecular reference frame (i.e. with the coordinate axes aligned
with the anisotropy axes) reads then as follows

’HS = Z _B]lc()fC — gsUB (B){SX + BYSY + BZSZ) (46)
k,l

where the first term describes the zero-field splitting contribution and the sec-
ond is a Zeeman interaction term, where gg is the g-factor for the SMM spin
and By, By, and By are the components of the external magnetic field along
the molecular axes X, Y, and Z. The zero-field splitting term is written in
terms of the Stevens effective spin operators Ol (see table 4.1) while the Bi’s
are the corresponding magnetic anisotropy parameters. The molecular symme-
try and structure determine which anisotropy parameters are nonzero as well
as their relative intensities. In some simple cases, where only the second order
parameters BY and B3 are non-zero, this Hamiltonian is commonly rewritten
as:

1 Lo
Hs=D (s% —=S(S + 1)) + FB(S8% — S%) —gsusB - S, (4.7)

3

where D = 3BY and E = B? are the “traditional” second-order zero-field
splitting parameters. In the large magnetic field limit (gsugB > (25 — 1)D)
the Zeeman term becomes the dominant contribution and we recover the evenly
separated energy levels and spin eigenstates of the isotropic case.

One of the simplest situations corresponds to a spin with Ising-like second
order anisotropy, which corresponds to BY < 0 and all other terms being zero,
i.e. to a spin Hamiltonian

Hs = BY [35% — S(S+1)] — gsus (Bx Sx + By Sy + BzS7) (4.8)

As figure 4.3 shows, such a diagonal anisotropy splits the S multiplet into a
series of doublets, associated with eigenstates | =m) of S,. As a function of m,
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kg O}

2 0 3525l
1 cx[S., 84 £5],
+2 ey (5?2 £82)

4 0 3551 —(30s—25)S% + (352 — 65)]
+1 ey [752 — (3s+1)5., 54 iS_]+
42 e [TS2 = (s +5)1,57 £52]
43 cx [S., 81 £ 82,
+4  ca(SEESY)
6 0 23155 — (3155 — 735)S% + (10552 — 5255 + 294)S2 — (55 — 4052 + 60s)]
+1 ¢4 [3392 — (305 — 15)S2 + (55° — 105 +12)5,, 54 £ 5]
cx [3352 — (185 +123)52 + (52 + 105 + 102)1, 53 + 52 ]
+3  cp [118% - z’)g_fs+59)5z,53 +53],
e [1182 = (s +38)1, 91 £ 51]
45 e[S, ST £ 50
+6 ¢ (S8 £59)
Here [A,B]; = (AB+ BA)/2,and s =S(S+1), ¢4 =1/2, ¢ =1/2i.

Table 4.1: Extended Stevens Operators O} [16, 17]

the energy then shows a characteristic double-well potential landscape shown
in figure 4.3. Off-diagonal anisotropy terms (i.e. those having [ # 0 in equation
(4.6) that connect states with different m) can induce quantum tunneling across
the magnetic anisotropy barrier, between states | +m) and | —m). The energy
eigenstates become symmetric and antisymmetric superpositions of | +m) and
their initial degeneracy is removed by a quantum tunnel splitting A,,(0). For
energy levels where the tunnel splitting is very small or zero, the degeneracy
can also be removed by the application of an external magnetic field B. Energy
splittings can be tuned, to some extent, by varying the intensity and orientation
of B (see figures 4.4 and 4.5 below). In particular, close to Bz = 0, the splitting

~ 12
between the first excited and ground states hwis ~ \/[AS(B)] + &%, where

As(g) is the ground doublet field-dependent quantum tunnel splitting and
s = 2gsupBzS is the magnetic bias. The magnetic field also allows the
initialization of the SMM state when the temperature is sufficiently low. In
particular, for S = 10, and at T' = 0.1 K, the thermal population of the ground
state becomes 2> 99.99 % for By = 34 mT.

It is worth mentioning here that equation (4.6) applies also to, e.g., NV
centres in diamond, which have S = 1 and a zero-field splitting determined by
second-order anisotropy terms with BY ~ 2.88 GHz (0.144 K) and B3/BY <
3.5 x 1073 [18]. Therefore, the theoretical framework that follows will enable
us to compare both situations.
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4.2.2 Coupling of a SMM to a quantum electromagnetic radi-
ation field

The coupling between a spin, described by the Hamiltonian Hg, and a su-
perconducting quantum circuit, described by H,, is governed by the Zeeman
interaction,

M= Hq+ Hs — (W@Vq) 5 (4.9)

where W@ = ggugé(q) is proportional to the oscillating magnetic field B@
generated by the superconducting circuit at the spin position and V; is an
operator acting on the circuit’s variables. This operator depends on the actual
nature of the circuit but will basically involve raising (or lowering) the circuit
state at the expense of lowering (or raising) the qubit state.

In the case of a spin 1/2 system, there is no ambiguity in the choice of the
quantum computational basis. Spin states are split by an external field. The
low energy state can then be labelled as |G) (ground or |0)) and the high energy
state can be labeled as |E) (excited or |1)). However, when working with
higher spin systems there are several possible choices for the computational
basis. These higher spins can be treated as two-level systems by focusing only
on those two spin levels whose energy difference is in (near) resonance with the
circuit’s transition frequency hw. More specifically, we choose the spin ground
state |G) and one excited state |E). Two possible choices, relevant to real
SMMs, are shown in figure 4.3. For either choice we define the spin transition
frequency as the energy difference between the two levels.

hwa k= (E|Hs|E) — (G| Hs|G) (4.10)
and the transition matrix element or interaction strength is defined as:

hg = ‘<G|VT/(‘1)§|E> (4.11)

= |W(CISxIE) + WP (GISy |E) + WS (GIS2|E)

Achieving strong coupling requires that the SMMs can be tuned to resonance
with the circuit, i.e. that fwgp ~ hw for a given |E), and that the relevant
matrix element of the Zeeman interaction is sufficiently large. In the remainder
of this section, we discuss how matrix elements (G|S7|E), with I = XY, Z,
thus also g, depend on the choice of state |F) as well as on the magnetic
anisotropies and experimental conditions that can be met with real SMMs.
The actual coupling g depends also on the magnetic field generated by a given
circuit, thus on its design and geometry. These aspects will be considered in
section 4.3 below.
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4.2.3 Calculation of transition matrix elements
Isotropic spin 1/2 system

In the case of an isotropic spin 1/2 system, analogous to a single electron
spin, the situation is very simple. The Hamiltonian contains only the Zeeman
interaction given in equation (4.1). By applying an external DC magnetic in
the Z direction, the spin transition frequency (4.10) is tuned as (taking gs = 2):

hwae = (L [Hs| L) — (T [Hs| 1) =
= gspupBz = (1.342KTY)By = (28GHzT 1By, (4.12)

where K and GHz have been used as units of energy in the tuning rate values.
The spin matrices Sx y,z are directly the spin 1/2 Pauli matrices and their
matrix elements (G|Sx,y,z|E) can be easily calculated:

(M1Sxl =5 (ISl =5 (1152]1) =0 (113

In this case, the transition matrix elements are constant and independent of
the applied DC field. Since the S, matrix element is zero, the quantum cir-
cuit’s magnetic field must be applied in the plane perpendicular to the tuning
magnetic field. The value of the coupling strength from (4.12) will then be
simply:
(a) 1 ()
hg = gsuB 5= up B (4.14)

Higher spin isotropic systems may not be suitable as quantum computing
systems. This is due to the fact that all spin states will be equally spaced
along the applied field axis. This makes addressing a single transition with
an external excitation impossible. If, for example, we choose the two lowest
lying states as the computational basis (|S) and |S — 1)) and populate only
the lowest energy level, we would be able to rotate this system into the excited
state using an external rf field tuned to the desired frequency. However, if it
were necessary to rotate it back to the ground state, the applied rf field would
rotate from the excited state |S —1) into both |S —2) and |S) since they would
both be separated from |S — 1) by the same energy splitting, namely gsupB..
Therefore, the presence if finite non-linear anisotropy terms is necessary to
single out the pair of desired energy levels and to allow the use of systems with
S > 1/2 as qubits.

Transitions between zero-field split levels

In this and the next subsection, we consider the case of anisotropic high spin
systems. We will use a generic S = 10 SMM with Hg described by equation
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(4.6) with only second order anisotropy terms as a prototype for this type
of systems. This situation applies to some of the best known SMMs, such
as Feg, shown in the inset of figure 4.3, or even the archetypical Mnjs and
allows some first order estimates to be made even for more complex anisotropy
configurations.

A possible choice of the computational basis, reminiscent of the situation
met with NV centres in diamond, is to identify |E) with state |3), as shown in
figure 4.3. Out of the two second order terms in (4.6), we can neglect B in
this case since it usually plays a minor role in the determination of the zero
field splitting hw;3 unless it is comparable to BY. With Bz ~ 0 (see figure 4.4),
this situation corresponds to |G) ~ |+ S) and |E) ~ |+ S — 1) for B} < 0 and
to |G) ~ |0) and |E) ~ | + 1) for BY > 0. For larger fields applied along the
Z direction, the energy splitting changes to hwis = hw13(0) + gup Bz, where
hwy3(0) = 3(28 — 1)BY in the former case and fw3(0) = 3BY in the latter
case. The field is chosen to be applied in the direction of the anisotropy axis
Z since it will produce the largest changes to the energy levels (approximately
eigenstates of the S, operator if B3 ~ 0). The relevant transition matrix
elements will then correspond to transverse spin components Sx and Sy and
can be calculated analytically using the identities Sx = (ST + 57)/2 and
Sy = (S* — §7)/(2i):

g o (IS |B) = 5 /(S —mgs) (S + mgs + 1) (4.15)

where mygg is the Sz eigenvalue of the ground state. Depending on the sign of
the anisotropy, equation (4.15) gives

1

BY>0 = mgs = 0= g < 5/ S(S +1)
1

BY<0 = mgS:+S:>go<§\/2S

Enhancements of the order of S or v/S (depending on the sign of BY can there-
fore achieved for high-spin S materials compared to the spin 1/2 case where the
matrix element has a fixed value of 1/2 (see equation (4.13)). Furthermore, g
is but weakly affected by external magnetic fields (see figure 4.4C). A difficulty
associated with this choice of basis is that the zero-field splittings of high-spin
SMMs, such as Feg or Mnj9, are often very large (e.g. fuv13(0) ~ 114 GHz for
Feg, see figure 4.4B) as compared with the typical resonance frequencies of ei-
ther superconducting resonators [19, 20| (w/27 ~ 1 to 40 GHz) or gap-tunable
flux qubits [21] (for which w/2m ~ 1 — 10 GHz). As we mentioned previously,
the effect of B3 on the transition matrix elements is expected to be small. This
is confirmed in figures 4.4C and 4.4D where we see that the addition of a B3
term only slightly changes the value of these matrix elements. According to
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4.4D its effect is to slightly raise the (G|Sy|E) value while slightly lowering
the (G|Sx|E) value.

From these calculations we can conclude that if we chose the pair [1),|3) as
the qubit basis, SMM systems should engineered to preferably have low values
for the BY parameter in order to have the zero field splitting Awis within
the operating range of the desired quantum circuits (1 — 40 GHz in our case).
Ideally we would desire a low anisotropy and a high spin since, as we have
seen, the spin controls the value of the matrix elements (higher S gives larger
matrix elements, equation 4.15) while the anisotropy controls the zero field
splitting. This means that high spin multi-ion SMMs may not be the ideal
systems for this approach since, although they have high spins, they tend to
have very high BY anisotropy values [22, 23]. In chapter 5 we will investigate
an alternate type of SMM that is more convenient for this application

Transitions between ’spin-up’ and ’spin-down’ states: photon in-
duced quantum tunneling

A second natural choice is to use, as “computational” basis for the spin qubit,
the two lowest-lying eigenstates of Hg at zero field, which we denote here (see
figure 4.3) by |1) and [2). For B2 = 0, these states correspond to degener-
ate 'up’ and 'down’ spin orientations, thus all matrix elements vanish unless
S = 1/2. Off-diagonal anisotropy terms give rise to a finite fwia = Ag(0),
analogous to the tunnel splitting from the example in equation (4.2) and fig-
ure 4.2. As we saw in that example, at zero-field (or £ = 0 in equation
(4.2)), [G) = (1/V2)(| + S) + | — $) and |E) = (1/v2)(| + S) — | - S),
thus (G|Sz|E) ~ S, the other elements being close to zero. This is confirmed
by numerical results shown in figure 4.5. Considering the high spin of SMMs,
this transition can therefore give rise to potentially strong couplings. However,
Ag(0) often lies in the region of micro-Kelvins or even smaller. For instance,
Ag~ 10" K (1071 K) or barely 2.1 kHz (0.2 Hz) for Feg (Mnj). Therefore,
a magnetic field needs then to be applied in order to tune wio to the circuit
frequencies.

Maximum energy changes are obtained when B is oriented along the easy
magnetization axis Z (figure 4.5AC). However, any bias £ 2 Ag(0) effectively
suppresses the overlap between the wavefunctions of |1) and |2) states (that
effectively become | +.5) and | — S) states) resulting in a dramatic decrease of
g with increasing Bz. In our simple example from equation (4.2), this applied
field would lead to a bias £ ~ 2g5SupByz. Since the splitting A is on the order
of nK energies, fields larger than Akp/upg ~ pT will eventually suppress the
mixing effect. Also, none of the spin matrix elements can connect the | + .5)
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Figure 4.4: Energy levels and transition matrix elements of a generic SMM. Graph
A shows the energy levels (for S = 10, BY/kg = —0.1 K, and B3/kg = 0.1 K) as a
function of the external field parallel to the easy axis (Bz). The thick black and red
lines highlight the zero-field split energy levels (i.e., the states |G) = [1) and |E) = |3)
of figure 4.3), the chosen computational basis for which the transition matrix elements
are calculated. The two blue lines show the energy levels for an isotropic spin 1/2
with gg = 2 for comparison. Graph B shows the level separation for the chosen energy
levels from graph A and the separation for the spin 1/2 case. The green shaded area
corresponds to the 1-40 GHz band where superconducting resonators and gap-tunable
flux qubits can operate comfortably. Graph C shows the transition matrix elements
associated with transitions between the levels highlighted in graph A for two values
of B2 compared to the value for a spin 1/2 system. Graph D shows the transition
matrix elements for all three components of S as a function B2
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Figure 4.5: Energy levels and matrix elements of a generic SMM (with the same
parameters as in figure 4.4). Graph A shows the energy levels as a function of the
external field parallel to the easy axis (Bz). The thick black and red lines highlight
the tunnel split energy levels (i.e., the states |G) = |1) and |E) = |2) of figure 4.3), the
chosen computational basis for which the transition matrix elements are calculated.
Graph B shows the energy levels as a function of the external field transverse to the
easy axis (By). The thick lines again highlight the same basis as in graph A. The
inset shows the energy separation between |1) and |2). Graph C shows the transition
matrix elements for this basis for two different values of B3 as a function of By.
Graph D shows the transition matrix elements for two values of B as a function
of By. The inset shows the same matrix element as a function of Bz with a fixed
By =2T.
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states so all the matrix elements become negligible. Indeed, in figure 4.5C, the
matrix elements show narrow peaks at those values of B that induce level anti-
crossings. These resonances can be interpreted as photon induced tunneling
processes between the quasi-degenerate spin states. Resonances occur only at
every even numbered level crossings (i.e. for By ~ nBj, with By = 3BY/gsus
and n = 0,2,...) because B503 only mixes states |m) and |m’) such that
m —m/ is even (B2 only contains second powers of S according to table 4.1).
The width of each resonance (thus also the field region of potential interest for
coupling to a circuit) can be increased by enhancing the off-diagonal parameter
B2, although it nevertheless remains very narrow even for the maximum B3 =
B,

Alternatively, Awis can also be tuned, while retaining a strong overlap
between |1) and |2), thus a high (G|Sz|E) (see figure 4.5BD), by a transverse
magnetic field By. This is a highly nonlinear effect (see the inset of figure
4.5B), meaning that strong magnetic fields are required to make wjo close to
w. The use of stronger magnetic fields also imposes stringent conditions to
the alignment of B to avoid the presence of a sizable Bz component. As
follows from the data shown in the inset of figure 4.5D, B cannot deviate more
than about 0.5 deg (with By = 2T) from the XY plane, which can be an
experimentally difficult task.

In order to use the tunnel split states of a SMM as the basis for a quan-
tum bit, it is therefore desirable to have a large (as compared to the magnetic
bias) tunnel splitting A between these levels. This would make the matrix
elements more robust when applying the necessary magnetic fields to tune the
system into resonance with the quantum circuit. However, from the calcula-
tions presented here, archetipical examples like Feg do not have strong enough
tunnel splittings to easily allow these levels to be used as a quantum basis
since even very small errors in the applied magnetic field direction can sup-
press the tunneling effect. However, as we shall see in chapter 5, different types
of SMMs have sizable higher order anisotropy terms that can greatly enhance
the zero-field tunnel splitting making them interesting candidates as qubits.

4.3 Coupling to superconducting coplanar waveguide
resonators

4.3.1 Device description and parameters

Coplanar waveguide resonators (see chapter 6 for more details) are microwave
devices that consist of a A\/2 section of a coplanar waveguide (CPW) that is
coupled to external feed lines via gap capacitors. A schematic diagram of such
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: width

Sample

Sapphire (Al,03) S :WE S

|B| ~sinmz/L

Resonator dimensions Sample dimensions
s 25 nm to 7Tnm Width 40 pm
w 50 nm to 14 pm Length 40 pm
L | ~0.5—65mm with fo =100 — 1GHz || Height | 0.1 to 75pm
t 150 nm
H 75 m

Figure 4.6: Basic geometry and dimensions of the CPW resonator and the magnetic
samples used for the calculations in this chapter. The larger values for s and w are
used as the starting values in simulations and are scales easily accesible by standard
photolithography techniques. The top graph shows a cross section while the bottom
graph shows the length of the resonator and the fundamental mode magnetic field.

a device is shown in figure 4.6. The fundamental mode resonant frequency is
determined by the length of the resonator through the equation fy = \/eLeTf?ll
Here eog is the effective dielectric constant of the CPW and depends on the
waveguide geometry and the dielectric constants of the surrounding media [24].
As with transmission lines, the electromagnetic mode is described as a voltage
and current wave where the current in the centre line is equal and opposite to

the current in the ground plates.

Making the resonator out of superconducting materials, such as Nb or
NbTi, and using low loss dielectric substrates, such as sapphire, helps to reduce
the losses in the system and allows the reduction of the resonator cross section
down to the micrometer level while maintaining quality factors of up to 10° —
109 [25, 26, 27].
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4.3.2 Coherent coupling to individual SMMs and SMM en-
sembles

We now must introduce the Hamiltonian for a resonator as the superconducting
circuit contribution M, into equation (4.9) and set the corresponding interac-
tion term. The Hamiltonian for the resonator corresponds to that of a quantum
harmonic oscillator and can be written in terms of creation and annihilation
operators, a and a. The interaction term is given by the Zeeman interac-
tion term ﬂéq, i.e., the product of the dipolar magnetic moment operator of
the spin qubit times the field operators for the resonator. The spin system is
reduced to a two level system and projected onto the chosen |G), |E) basis.
Using the rotating wave approximation to cancel anti-rotating terms afot and
ac~ [28], equation (4.9) reduces to the Jaynes-Cummings equation (3.1) [29]:

H = He+Hq—fi-BY
_ t 1 L N
= 50 + hw, <a a+ 2> + hg(rj)(a'c™ + 0" a) (4.16)
where we have projected onto the basis formed by the two relevant SMM states
|G) and |E), h€) is the energy separation between these states and w, = 27 fy
is the resonator frequency. o, . are (spin 1/2) Pauli matrices acting on the
spin basis and the coupling strength:

g(7) = gj’;B (GIb(7)S|E) (4.17)

with I;(f’]) the value of the field b generated by the vacuum current (see below).
The matrix element is calculated for the full spin system (as in section 4.2.3).
The position 7; matches the spin location. Through this section we will assume

that the magnetic sample is centered at the position of maximum magnetic
field generated by the resonator. For the fundamental mode this position
corresponds to the midpoint of the resonator as seen in figure 4.6.

In order to calculate the collective coupling of SMMs to a single photon,
one needs to evaluate the magnetic field generated by the vacuum current
fluctuations, Iy. Considering the resonator as an electrical RLC oscillator (see
chapter 6), this current can be found considering that the zero point energy of
the resonator is equal to the peak energy stored in the magnetic (or electric)

fields:
hw 1 hm
— = _LI? Ip=wy/~ 4.18
B 510 = 0=w 270 ( )

where L = 2Zy/(7mw) is the lumped inductance of the resonator [30] and Zj
is the characteristic impedance of the transmission line segment that forms
the resonator. Then, taking a standard value of Zy ~ 502, we find that the
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vacuum current fluctuations Iy ~ 11.4nA GHz~!. With this value for the
vacuum current we can now make quick estimate of the average value for the
coupling to a single spin. Assuming that the field can be approximated by that
of a straight wire, we would have Byire = ’;‘;179 ~ 0.28nT GHz! for r ~ 10um
(using the dimensions from figure 4.6). Then using equation (4.17) with matrix
elements ~ 1, we find that the coupling per spin will usually be small (of the

order of 100 Hz depending on the operating frequency). With this coupling

value, the losses both from the qubit and the resonator can easily prevent the
attainment of the the coherent coupling limit.

To explore the possibility of getting higher couplings we will first consider
the coupling of a resonator to an ensemble, e.g. a crystal, of N spins. For this,
we sum (4.17) over each spin at position 7j. It is convenient to introduce the
collective spin operator

N
1
b= —> g0t (4.19)
e J
Ng 5

where g is the average coupling, defined as g? = > |gj]2 /N. In the low po-
larization level () 0;0;> < N these operators approximately fulfill bosonic

commutation relations, [b,b'] ~ 1 [31]. Equation (4.16) then becomes approx-
imately equal to the Hamiltonian of two coupled resonators,

H = hQb'b + hw,a'a + lign (a'd + bla) (4.20)

with an effective coupling given by,

gy = g\‘/‘gh\/n/v s 51E>)2dv (4.21)

where we have replaced the sums by integrals and assumed a uniform density

n. Let us emphasize that equation (4.21) leads to a v N enhancement of the
effective coupling with respect to that of a single spin (as can be seen by taking
an average field and integrating over the interacting sample volume).

To get more accurate estimations of the coupling strength, we use the Com-
sol Multiphysics AC/DC module to calculate the field distribution given the
resonator geometry and currents (see section 2.6.1). This module numerically
solves for the magnetic vector potential and electric potential using Ampere’s
law and current conservation. We use a 2D geometry where we model only a
cross section of the resonator. This means that the the calculated fields are
approximated by those generated by an infinite conductor length. This approx-
imation holds as long as the SMM crystals are placed close to the resonator
center and the crystal length is much shorter than that of the resonator itself,
which ranges from around 0.5 to 65 mm for the frequencies of relevance here.
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Figure 4.7: Simulated field distribution on a CPW cross-section. The white profile
is the field value calculated at a constant distance from the substrate y = ¢, that is,
right at the surface of the superconducting regions. The actual simulation volume
and the ground planes extend far beyond the figure limits.

More accurate results for larger crystals would require taking into account the
variation of the current amplitude along the resonator length (approximately
a sine wave). The conductor cross sections are modelled by “single-turn coil”
domains with a fixed current perpendicular to the cross section of Iy for the
center line and —1j/2 for each of the ground planes.

Even for DC currents, the current density distribution in a superconductor
is not uniform and different from that of a normal conductor. In real super-
conductors, the superconducting current density decays exponentially with the
distance to its surface and the decay constant is the London penetration depth
AL [32]. For Nb, A;, ~ 80 nm at 4 K and increases as temperature increases
toward the critical temperature (7. ~ 9 K) [33|. Since the thickness of the
superconducting lines we consider (see figure 4.6) is of this order or smaller,
we need to simulate the current distribution carefully to take this effect into
account. As a simple approximation and one that is already implemented in
the Comsol package, we use the skin effect of standard conductors to produce
the current profiles in the superconducting regions. This means we use al-
ternating currents in our simulation and tune the frequency w,. and material
parameters (conductivity o) in the simulation to make the skin depth of the
conductor

2

OWaclh

Askin = (4.22)

equal to A, = 80 nm. This procedure will generate current profiles similar to
those expected to be seen in a superconducting wire.

Taking all this into account, we simulate the magnetic field distribution
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for the geometry shown in figure 4.6. A typical magnetic field distribution is
shown in figure 4.7 (current profiles can be seen in figure 4.9A below). As
expected, the superconducting current and magnetic field concentrate near
the edges of the centre line and the inner edges of the ground planes. Using
these magnetic field distributions and the matrix element values calculated for
different samples, it is possible to obtain the coupling strength from equation
(4.21) for crystals of varying dimensions. Writing (4.21) explicitly and using
the resonator coordinate system (z,y, z) (see figure 4.6) we obtain!

vnl
gn = g 12 (G S |E) | / b2 dS + (G| S, | E) | / b2 dS,  (4.23)
V2h S S

where [ is the crystal length along the resonator direction. (G|S,,|E) will
correspond to a certain combination of (G|Sx y,z|E) given by the rotation be-
tween the molecular coordinate system (X,Y, Z) and the resonator coordinate
system (x,y,z). As we noted before, we simulate only a cross section so this
dependence is only valid for small [ compared with the resonator wavelength
(see figure 4.6). Larger [ will of course give larger couplings, but it will always
increase slower than /1.

An appealing aspect of many SMMs crystals (including those considered in
this work) is that the magnetic anisotropy axes of all molecules can be aligned
with respect to each other. This enables orienting the crystal so that the fields
from the resonator induce the desired transitions for all the spins. Comparing
to the case of NV centers, for example, there are 4 different orientations for the
spin centers which means that each of these four subgroups couples differently
to the magnetic field. Each sample and each choice of computational basis
can potentially have different optimal orientations of the magnetic anisotropy
axes (X, Y, Z) with respect to the resonator coordinate system (z,y, z). In our
simulations, the axis with the largest absolute value of the transition matrix
element points along the z-axis of the resonator (i.e. horizontal, see figures 4.6
and 4.7) while the second largest is placed along the y-axis (i.e. perpendicular
to the resonator). The b% and b? integrals entering in equation (4.23) are
almost equal for the given geometry? so rotations that keep the axes with
large transition matrix elements in the x, y resonator plane produce very small

"When expanding the squared absolute value, a crossed term proportional to J. g babydS
also appears. However, symmetry considerations will force by(z,y) = —by(—z,y) and
bz(z,y) = by(—z,y) making the integrand antisymmetric with respect to the resonator y
axis. Since we assume that our integration domain is centered on this axis we will have
fs bzbydS = 0 and we can thus ignore this term.

2If the centerline is made wider, the main contribution comes from the b% term. This
can be intuitively understood by noting that the flatter geometry will leave the vertical (by )
fields around the edges mostly unchanged while they will produce horizontal fields (bx) in
more of the sample volume)
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Figure 4.8: Coupling of 40pm x 40 pum x height SMM and diamond crystals to a
CPW resonator as a function of crystal thickness. On the left we show the total
coupling strength and on the right we show the coupling strength normalized by
the resonator frequency. For each sample, w;; denotes the transition used and the
operating frequencies are detailed in the table above. The spin densities for each
sample are also shown [11, 34, 18].

changes to the overall coupling. We also calculate the collective coupling of NV
centres in diamond crystals, averaging over the four different orientations of
their magnetic anisotropy axes. In all these calculations, we consider crystals
of fixed length and width (both equal to 40 nm, see figure 4.6) and study how
gn depends on the crystal thickness (thus also the number of spins), from 100
nm up to 100 pm. We also assume that the temperature is low enough to have
all spins initialized in the ground state. At higher temperatures the signals
will be weaker due to the population of higher energy levels and the signal will
be suppressed according to the Boltzmann distribution.

The results are shown in figure 4.8 for Feg and different choices of its
computational basis |G) and |E). We also show the values for the DPPH
(2,2-diphenyl-1-picrylhydrazyl) free radical [35] as well as for NV centers in
diamond [36]. The DPPH system is commonly used in EPR as a calibration
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sample since it is a very pure isotropic spin 1/2 system (analogous to the
spin 1/2 in figure 4.4). As would be expected, the dependence on the crystal
thickness is essentially the same for all samples. We see that the coupling first
increases with crystal thickness and then saturates once the crystal is thicker
than about 10 — 15 um. This behavior reflects the decay of b with the distance
y from the resonator surface and shows that the fields are confined to a volume
around the center line up to a height similar to the gap size. Only the spins
within this volume significantly contribute to gn since the fields are negligible
further away. This emphasizes the importance of carefully placing the sample
on top of the device within the active volume.

When increasing the resonator size, although the field strengths will be
lower since the fields are spread over a larger volume, a larger sample volume
will feel the magnetic field and more spins will contribute. For larger crystals
or with samples with an appreciable roughness, it is therefore generally better
to use larger resonators. The reason for this can be illustrated by remembering
that, for a given frequency w,, the energy per photon is constant and indepen-
dent of the mode volume. This energy Fep, is contained in the electromagnetic
energy density given by either the magnetic or electric fields:

! B% = L<B2>VV (constant for different V). (4.24)

Fom = —
T 2u0 Jy 210

From (4.21) we see that gy o< 1/ [, B2 = \/(B?)yV, the same integral ap-
pearing in ey, and will hence also be constant if we change the active volume
V' as long as this volume is filled with spins. This means that, for many spins,
there should be no coupling gain when using smaller resonators since the gain
in field intensity is offset by the reduction in the number of interacting spins.
However, using smaller resonators has the added difficulty of placing and fixing
the sample within the active volume. This may be inefficient or impossible if
the sample has high roughness (compared to the circuit dimensions) or if it
can not be adequately attached, since there will be areas with high field that
are not adequately filled by the sample. In contrast, for small samples (again
compared to the waveguide gaps) or single spins, the coupling will always be
better for smaller devices since the peak field values are much more important
than the field spread.

As can be seen in figure 4.8, because of their specific characteristics, the
coupling to SMM crystals can be very large, much larger indeed than the
coupling to NV centres in diamond crystals of equivalent size. The largest
couplings gy ~ 2 — 3 GHz are found for transitions between states 1 and 3 of
Feg. Yet, this transition is characterized by a very high resonance frequency
wig ~ 114 GHz. Very large couplings (gny ~ 0.5 GHz) are also found for
transitions between tunnel split states of e.g. Feg, for which wis can be tuned
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by applying transverse magnetic fields (see figure 4.5). However, one then
has to deal with rather strong (2 2 T) and very accurately aligned (typically
within less than 0.5 deg.) magnetic fields (see figure 4.5). We also note that
much of this gain is due to the higher achievable densities of molecular systems
as compared with NV centers (see table in 4.8), the higher matrix elements
(see section 4.2.3) as well as the higher vacuum currents associated with higher
operating frequencies (see 4.18).

The couplings need to be compared with spin decoherence frequencies ~
1/T5, where T; is the phase coherence time. Experiments performed on crystals
of Feg |37| show that 75 < 500 ns at liquid helium temperatures and under the
best conditions, thus much shorter than 75 ~ 1 — 2 ms of NV centres [36] at
room temperature. Still, the strong coupling limit gyT5/27 > 1 should also be
accessible for these molecular materials. Furthermore, for some of the examples
given in figure 4.8, gy can in fact become a sizeable fraction of the resonator
frequency, thus opening the possibility to reach and explore the ultra-strong
coupling limit with a spin ensemble where the rotating wave approximation no
longer holds.

4.3.3 Nanoscale resonators

The simulations described in the previous section also allow one to estimate
the coupling to a single SMM at any location with respect to the device. For a
molecule placed in between the ground and central lines, we find that g ranges
between 100 Hz and a few kHz, depending on the particular sample. Notice,
however, that the magnetic field is enhanced, up to a factor 5 or so, in narrow
regions close to the edges of these lines (figure 4.7 and 4.9). Two distinctive
aspects of SMMs, which are not easily found in other qubit realizations, is
that they are sufficiently small, with lateral dimensions of the order of 1 nm,
to fit inside these regions and that they can be delivered from a solution with
very high spatial accuracy by, e.g. using the tip of an atomic force microscope
[38]. The magnetic field generated near the central line edges, thus also the
coupling to molecules or molecular ensembles located near them, can be further
enhanced by fabricating narrow constrictions. Superconducting circuits with
dimensions well below 100 nm can be fabricated, and even repaired, by either
etching with a focused ion beam or by using the same ion beam to induce the
growth of a superconducting material from a gas precursor [39]. Provided that
these constrictions are much shorter than the photon wave length, they are
expected to have very little effect on the general resonator characteristics as
we will investigate in chapter 6.

In order to explore this possibility, we have repeated the above simulations
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Figure 4.9: Graph A shows the absolute value of the current density for a niobium
superconducting CPW for different center line widths. The geometry is that given in
figure 4.6. The ground planes have been kept fixed and the center line width w has
been given several values. The profile has been taken at a height of half the thickness
of the superconducting layer (marked by the lower dotted line in the inset). The inset
shows a 2D map of the current density for the largest center line width. The arrows
show the dimension that is changed for each profile. Figure B shows profiles of the
absolute value of the magnetic field B at the upper surface of the superconductor
layer (shown by the upper dotted line in the inset in graph A) for the same center
line widths.

for varying center line widths, down to 50 nm, while keeping the current con-
stant. Field and current profiles can be seen in figure 4.9. We then evaluate the
coupling to a single SMM located at the point of maximum field on the surface
of the centre line and oriented in such a way as to maximize the transition
matrix element. The results are shown in figure 4.10. The two possibilities
shown correspond to the values obtained by reducing the centerline width but
keeping the total width between the ground planes constant or by scaling both
the center line width and gaps. The latter case would correspond to shrinking
the line while keeping the characteristic line impedance constant (see chapter
6 for details). However, we see only very small differences between the two
cases since, although scaling the whole geometry further confines the field, the
actual peak field value does not increase substantially as compared to the for-
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mer case. We see that reducing the width from 14pum to 50 nm can lead to
enhancements of an order of magnitude in the coupling strength. Again, the
dependence on the geometry is the same for all samples. NV centers have not
been included since it is technically inviable to isolate a single NV center and
place it on a transmission line since it is an entity that only exists within a
diamond crystal.
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Figure 4.10: Coupling of a single SMM to a CPW resonator as a function of centre
line width. The SMM is located at the point of maximum field on the surface of
the centre line. For each sample, w;; denotes the transition used and the operating
frequencies are detailed in figure 4.8. The dashed lines correspond to scaling both the
center line and the gaps while for the solid line only the center line width was scaled
(and the gaps increased accordingly).

The actual location of the maximum field is close to the edges of the cen-
terline where the highest currents can be found. However, the exact location
is less important when the centerline cross section becomes smaller than the
London penetration depth for niobium. The currents in this limit are essen-
tially uniform and the field distribution is similar to that seen from a thin
wire. Figure 4.9 shows the different field intensities for the different geometries
considered.

The conclusion here is that achieving strong coherent coupling of a sin-
gle SMM to such nanoresonators requires that that the decoherence time Th
of an individual molecule grafted to a superconducting device can be made
significantly longer than 10 us. Despite the lack of T data for truly isolated
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molecules, it seems that such coherence times can be reached under adequate
conditions, i.e. for molecules having a very low concentration of nuclear spins
[40] and/or adequate molecular structures [41].

It is also worth mentioning here that the potential applications of supercon-
ducting resonators or transmission wave guides that maximize the magnetic
coupling to very small spin ensembles, or eventually enable detecting single
spins, extends well beyond the quantum information research field. For in-
stance, these designs might contribute to the optimization of on-chip electron
paramagnetic resonance spectrometers for the characterization of magnetic ma-
terials |42].

4.4 Conclusions: why SMMs?

The results described in previous sections confirm that, because of their high
spins and spin densities, SMMs have the potential to attain very high cou-
plings with superconducting circuits. In addition, the great variety of magnetic
molecules enables a vast choice of resonance frequencies. However, for many
of the best-known SMMs, such as Feg or Mnq, there are significant obstacles
that could prevent their use as quantum bits. Although their transition matrix
elements have large values, these SMMs have a very large magnetic anisotropy
due to the fact that their magnetic core consists of multiple magnetic ions.
This introduces several technical difficulties for their coupling to quantum cir-
cuits by making the zero field splitting very large (~ 100 GHz) and the tunnel
splitting A very small. The high zero field splitting makes the design of the
quantum circuits much more difficult since the typical operating frequencies
(S 40 GHz for CPW resonators and < 10 GHz for flux-qubits) are much lower
than the the zero field split energy level separation. The low tunnel splitting
also makes it difficult to use the tunnel split energy levels as a quantum basis
since their use would require the application of strong (above 2 T) and very
accurately alligned (within 0.5 deg.) magnetic fields. This leads us to the con-
clusion that we need to search for SMMs that have lower anisotropy values or
stronger tunnel splitting. For this reason, it will probably be more adequate to
work with other species of SMMs such as single ion magnets (molecules with
just one magnetic ion) which we will discuss and study in chapter 5.

Yet, it seems natural to inquire whether SMMs might bring some new pos-
sibilities, not easily achievable with other spin systems. A first, quantitative
answer to this question is given by the couplings of SMMs crystals to supercon-
ducting resonators. The collective coupling attains significant fractions, ~ 10
%, of the natural circuit frequency, much larger than those observed so far for,
e.g., NV centres in diamond. Under these conditions, the combined system en-
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ters the "ultra-strong" coupling limit, meaning that perturbative treatments
are no longer applicable to describe the underlying physics.

From a more practical point of view, the attainment of strong coupling
conditions might also confer to these systems interest as quantum memories
[43, 44, 45]. A major difficulty arises though from the short lived spin co-
herence of these molecular systems. Decoherence times measured on SMMs
crystals [37] are still orders of magnitude shorter than those found for, e.g.,
NV centres [36]. Therefore, SMMs cannot be considered for such applications
unless coherence times are enhanced significantly. However, chemistry also
provides suitable means to minimize the main sources of decoherence. For in-
stance, isotopically purified molecules can be synthesized, in order to decrease
the number of environmental nuclear spins [46]. Also, decoherence caused by
nuclear spin diffusion can be reduced by using sufficiently rigid ligand molecules
[40]. Pairwise decoherence caused by dipolar interactions [47] can be reduced
by either dissolving the molecules in appropriate solvents [40, 46, 48, 49| or by
growing crystals in which a fraction of molecules is replaced by nonmagnetic
ones [50]. Working with magnetically diluted samples has, however, a cost
in terms of coupling. Therefore, a gain in performance (i.e. a net enhance-
ment of gyT5/27) can only be achieved provided that T» grows faster than
1/4/(N), a condition that seems to hold in the very low temperature limit
kT < hw, when magnon-mediated decoherence is expected to dominate [47].
For a given spin density, the strength of dipolar interactions also decreases
with S, thus it can be reduced by working with low-spin molecules, e.g. sin-
gle ion magnets containing lighter lanthanide ions (Ce3t Sm3*, or Gd3T) or
S = 1/2 molecules, e.g. paramagnetic radicals [51, 52|, CryNi molecular rings
[3, 40, 46] or Cu complexes [41]. The material of choice will therefore largely
depend upon the attainment of an optimum tradeoff between maximizing gn
and TQ.

But probably the main interest of SMMs is that they are also qualitatively
different to most other spin systems in that they can be chemically engineered
to fulfill very diverse functionalities. Restricting ourselves to the field of quan-
tum information, magnetic molecules can be much more than single spin qubits
[53, 3]. Some molecular structures |54, 55, 56] embody several weakly coupled,
or entangled, qubits which can provide realizations of elementary quantum
gates [57] or act as quantum simulators [58]. In addition, their multilevel mag-
netic energy structure can be used to encode multiple qubit states or even to
perform quantum algorithms [1]. Coupling to quantum circuits can provide a
method to experimentally realize these ambitious expectations and build ar-
chitectures similar to the one proposed in figure 3.6, provided that one is able
to strongly couple, and thus coherently manipulate and read-out, individual
molecules. In this respect, the fact that most SMMs are stable in solution
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opens the possibility to deposit them, in the form of monolayers or even in-
dividually, onto solid substrates [59] or at specific locations of a given device
that maximize g [38, 60]. Our simulations show also that it is then possible
to reach significantly larger couplings g, which can be further enhanced (up
to g/2m ~ 100 — 200 kHz, see figure 4.10) by the fabrication of narrow con-
strictions in the centre line of superconducting nanoresonators. These results
suggest that the strong coupling limit is attainable for individual molecules,
using state-of-the art technologies, provided that decoherence times can be
made longer than 10 — 20 us. Considering the available experimental evidences
[40, 46], this limit, thus the realization of quantum technologies based on SMMs
coupled to quantum circuits, seems definitely within reach.

In the following chapters we will further explore if these objectives are
feasible by searching for better qubits (chapter 5) and investigating optimized
circuit architectures (chapter 6).
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Chapter 5

Single Ion Magnets as Qubits

5.1 Introduction

In chapter 4 we ound that classical SMMs (such as Feg [1]) could potentially
couple strongly to circuit QED systems and have applications in the context
of quantum computation. We also found that, depending on the choice of the
qubit basis, there are certain properties that are desirable in a spin system.
If the zero field split energy levels are used, an SMM with a relatively low
anisotropy is desired to keep the operating frequencies in a comfortable range
(section 4.2.3). If, on the other hand, the tunnel split energy levels are used, the
tunnel splitting must be large enough to make the matrix elements resistant to
pertubations such as dipolar and hyperfine interactions and to the unavoidable
magnetic fields required to tune the frequencies of the qubit.

In order to address these two points, we now turn our attention to a spe-
cific family of SMMs known as single ion magnets (SIMs) [2, 3, 4, 5]. These
types of molecules are polyoxometalates (POMs) consisting of a single lan-
thanoid ion encased in a metal oxide structure that form molecular crystals.
This 4f-magnetic ion is subjected to a crystal field given by the interaction
with surrounding ligands that modifies the free-ion anisotropy. By choosing
an adequate ligand structure and ion, these complexes allow a rational design
of the spin Hamiltonian of the system. This allows the optimization of the
system to fulfill either of the two previously mentioned requirements for their
application as spin qubits. Also, a crystal or powder sample can be magneti-
cally diluted by replacing the lanthanide ion at the center of the molecule with
a non-magnetic Y ion. This does not change the overall crystal structure and
allows a reduction in the dipolar interactions among neighboring molecules,
thus enhancing the quantum spin coherence.
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NagLnW;q03¢-nH,0 K12LnW300110'nH,0
(LnW10) : (LnW3,)

Ln =Y, Gd, Tb, Dy, Ho, Er, Tm, Yb

Figure 5.1: Molecular structure of the generic LnWs, (A) and LnW,, (B) compounds.
Only the central lanthanide ion and the W shell atoms are shown for visibility. The
Ln ion can be any lanthanide. The LnW,, case also shows the five-fold coordination
symmetry structure of the ligands.

If an intrinsically isotropic ion such as, Gd®>", is chosen, the magnetic
anisotropy, and in particular the parameter BY, will be entirely determined
by the local coordination. Figure 5.1 shows two possible structures and their
corresponding generic formulas. The axial GdW,, structure induces larger
anisotropy values while the GdW, is more planar and results in a lower BY
value. The Hamiltonian parameters for both molecules were previously deter-
mined from powder EPR experiments in [5]. All the energy levels are found
to be within 1K, thus making it an interesting spin qubit candidate since all
levels are accessible with relatively low microwave frequencies. In section 5.2
we will study this molecule both in powder and in crystalline form to refine
the Hamiltonian parameter values, find the magnetic system anisotropy axes
relative to the crystal structure and test its viability as a spin qubit. Also,
measurements of the coherence time using pulsed EPR methods are presented.

Adequate symmetries in the ligand structure can also lead to very high tun-
nel splitting terms in the spin Hamiltonian. In particular, the LnW,, structure
has an unusual 5-fold symmetry structure that gives rise to B3Og terms in the
crystal field Hamiltonian. The presence of these terms can introduce a very
large tunnel splitting if the ground state of the ion is | £ 5), since Of contains
terms proportional to (ST)% that can connect these states in only two steps.
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Figure 5.2: GdW,, Powder X-band EPR spectra (9.475 GHz) for different tempera-
tures. Changes in the spin Hamiltonian for different temperatures are evidenced by
the spectrum changes.

We therefore expect the TbW,, molecule to have clearly separated tunnel split
energy levels. Section 5.3 will be dedicated to the measurements performed on
this sample in order to confirm the presence of this large tunnel splitting and,
therefore, its potential as a robust spin qubit.

In remainder of the chapter (section 5.4) we will evaluate the couplings
expected for SIMs to CPW resonators (with and without constrictions) and
compare them to those found other spin systems and for more complex SMMs
using the same procedures described in section 4.3.2. Finally, section 5.5 sum-
marizes our conclusions for this chapter.

52 K,GdW,,

In this section we will characterize the SIM sample K,,GdP,W;,0,,, (referred
to as GdW,,). Its basic molecular structure corresponds to that shown in
figure 5.1B. The Gd*" ion has spin 7/2 and an isotropic gyromagnetic g-factor
gs = 1.99. Its molecular weight is Mgaw,, = 8058.25gmol ! Crystals of
this compound are obtained by making an over-saturated solution in deionized
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B 294MHz  86MHz 396 MHz,
ABY 110MHz - -
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w  3.0mT 12.1mT -

Figure 5.3: Measured and EasySpin simulated spectra for 10 K and room temperature
(295 K) X-band cw-EPR experiments on GAdW 4, powder. The given parameters pro-
vide reasonably good fits to the experimental data. The low temperature spectrum
requiered strains in BY and B3 (AB{ ) as well as an equal peak to peak linewidth w.
Considerable changes in the parameters are observed from room temperature to low
temperature.

water and allowing the mixture to set overnight. The crystals grow up to a
few millimeters in size.

5.2.1 Powder cw-EPR experiments: Temperature dependence
of the magnetic anisotropies

For an initial determination of the crystal field Hamiltonian parameters, X-
band cw-EPR (see section 2.2.1) experiments were performed on powder sam-
ples. Diluted Y, Gd W, crystals, with x = 0.01, obtained from an over-
saturated solution are ground to powder and then placed into a quartz EPR
tube for the experiment. The spectra obtained are shown in figure 5.2 where
we see changes in the spectrum for different experimental temperatures.

From previous studies [5] we expect this sample to have contributions to
BY0Y and B303 terms from the crystal field Hamiltonian (4.6) with no other
higher order terms playing an important role. The values reported previously
in [5] were BY = B3 = 0.019K = 396 MHz at T = 10K. Using EasySpin
[6], we fit the measured spectra at room temperature and 10K to this type
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of Hamiltonian containing only these two terms and a common transition line
width (w, peak to peak). These three parameters are sufficient to provide
a reasonable fit for the room temperature spectrum. However, reproducing
the low temperature spectrum also requires the inclusion of strains in BY and
B2 to reproduce the spectrum (referred to as ABZJ). The fits and the values
obtained for each set of parameters are shown in figure 5.3. For our subsequent
simulations we will use our fitted values for 10 K. These values also differ
from the values reported in [5] although not radically. The somewhat large
temperature dependence of the parameters and the high strain values could
be due to the large size of the molecule (over 150 atoms). It may be the
case that, when cooling, each molecule is strained in slightly different ways as
the lattice vibrations are suppressed giving rise to the parameter distribution
measured. On the other hand, at high temperatures fast molecular vibrations
could average out these local differences thus leading to a uniform linewidth,
sufficient to reproduce the data.

5.2.2 Single crystal X-ray diffraction

Previous studies on K;,LnW,, compounds |7, 2, 3| reported their crystalline
structure. A unit cell is shown in figure 5.4 along with the cell parameters
determined by x-ray diffraction. The crystal structure is orthorhombic with one
long axis (c, 28.9 A) and two shorter axes of almost equal length (a,b of 21.567 A
and 20.9080 A respectively) and is the same for all the possible lanthanide ions.
This allows different species of lanthanide to be present in a single crystal
and, as mentioned before, gives the possibility of growing magnetically dilute
crystals by replacing the lanthanide species by a non-magnetic ion (such as Y)
in a certain fraction of sites. The chosen unit cell contains 4 molecules as can
be seen in figure 5.4 each with a flattened sphere shape.

In our case, we perform x-ray diffraction experiments to check the integrity
and confirm crystal structure of our sample. Additionally, we are interested
in finding the crystal axes relative to the physical crystal faces and edges. A
diluted crystal of Y, , Gd, W3, with = 0.01 was taken from a solution of the
compound in deionized water and then encased in an epoxy glue. The use
of this glue is necessary to maintain the crystal integrity since these crystals
contain interstitial water molecules that sustain the structure. These water
molecules are rapidly lost when the crystal is exposed to normal atmospheric
conditions leading to a rapid loss of crystallinity. The crystals that form in
the saturated solution are generally elongated with a roughly rectangular cross
section that we will approximte to a cuboid with one long edge. The chosen
crystal (of about 1.1 x 0.31 x 0.27mm) is mounted in a commercial x-ray
difractometer.
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Figure 5.4: Unit cell structure of LnW, [7]. The chosen unit cell contains 4 LnW
molecules. Many surrounding atoms (including the 12 K atoms) have been hidden
for visibility.

The main difractometry results are shown in figure 5.5 where we find that
the crystal structure is clearly resolved and is compatible with the expected
values from figure 5.4. The formation of the solid solution does not lead to
important structural changes. The crystal is of good quality and an almost
complete Ewald sphere can be measured (figure 5.5B). With regards to the
orientation of the crystal axes (a,b,c) relative to the crystal edges, we find that
the long edge of the crystal corresponds to the long crystal axis (c or [001]),
while the lateral faces approximately correspond to the (1-10) and (110) crystal
planes. From the full structure in figure 5.4, we also conclude that the long edge
is in the molecular plane defined by the flattened sphere shape of the molecule.
The measurements were repeated for several crystals and this assignment was
found to be consistent in all crystals checked. This information forms the basis
to determine, through magnetic measurements, the position of the magnetic
axes relative to the crystal structure and to the molecule.
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A.Z'.ZZ.. Tl a=20825A
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Figure 5.5: Results of x-ray difractometry on Y, ¢qGdg g3 Wso- Graph A shows the
measured reciprocal lattice and the lattice parameters measured. We find good agree-
ment with the orthorhombic structure described in figure 5.4. Graph B shows the
measured Ewald sphere. Graph C and D show several crystal axes determined from
the measurements relative to the physical crystal.

5.2.3 Angle dependent magnetic susceptibility

We perform angle dependent magnetization measurements in a commercial
MPMS system (see section 2.2.3). A undiluted crystal of GdW,, was taken
from a deionized water solution and placed on the MPMS rotation stage as
shown in figures 5.6B and 5.6C. Its magnetization was then measured as a func-
tion of the rotation angle at a temperature of 2 K. The crystal was covered by
Apiezon N grease to avoid interstitial water loss. A fracture in the crystal was
detected after the measurement. After a first rotation, the crystal is rotated
90° clockwise on the stage (figure 5.6C) and a second rotation measurement is
performed. The results are shown in figure 5.6.

With the Hamiltonian parameters derived from EPR experiments at 10 K
(figure 5.3), the crystal field Hamiltonian can be numerically solved and any
observable computed. Since we are in the linear regime (low field), the following
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Figure 5.6: Magnetization measured in the MPMS SQUID as a function of rotation
angle for GdW;,. The magnetization along the direction of the DC magnetic field is
measured for a field value of 0.01 T. 0° corresponds to the rotation platform being
perpendicular to the DC magnetic field. Rotation 1 and 2 correspond to the config-
urations seen in graph B and C respectively. A small fracture in the crystal can be
seen in the photographs. The continuous lines are fits to the theoretical model with
the fitted parameters given in the table above. The meanings of each parameter are
described in the text and summarized in figure 5.7.

equation for the magnetization holds:

. . Xez O 0 B
M =xH = 0 Xy O H, (5.1)
N N

where the susceptibility matrix y is diagonal in the reference system set by
the principal anisotropy axes XYZ. The (molar) values of xzz, Xyy, X2- can be
directly obtained from the Hamiltonian (4.6) and, at 2K, turn out to be:

Xexz = 47-3.95cm”mol .
4r - 3.95cm® mol ™! 5.2

Xyy = 4m-4.31 cm? mol ™!

Xzz = 4m-3.44 em?® mol ™!

With these parameters fixed and using equation (5.1), the magnetization for
any given direction can be calculated'. Tt is therefore possible to fit the rotation

!The full Hamiltonian was also used to directy calculate the magnetization, but there
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A L h Experimental setup
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A
Parameter Meaning
0 Inclination spherical coordinate of 7 in the magnetic reference frame
10} Azimuth spherical coordinate of 7 in the magnetic reference frame
o) Initial rotation of A around
15} Rotation of A around h for second rotation curve
Co Constant added background.

Figure 5.7: Parameters, definitions and configuration for theoretical fits to the mag-
netic rotation data shown in figure 5.6. Graph A shows the rotation stage and the
relevant axes. Graph B shows these axes in the magnetic reference frame and the
angles chosen as parameters to be fitted.

dependence of the magnetization shown in figure 5.6A, and obtain from it the
orientation of the rotation axes relative to the magnetic XYZ axes. Since from
x-ray diffraction we have a good idea of where the crystalline axes are relative
to the crystal geometry and the rotation axes, we can also deduce the directions
of the magnetic axes relative to the the crystal structure.

In the fitting, we follow the definitions shown in figure 5.7. We label the
rotation axis direction 7 with the spherical coordinates 6, ¢ in the magnetic
reference frame. The DC magnetic field direction, il, is perpendicular to this
rotation axis and rotates around this axis with the angular coordinate a. If
these coordinates are set to § = 0 and ¢ = 0, 7 is aligned along the magnetic Z

are no significant differences with the linear response approximation for this experimental
regime.
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axis, while the v = 0 position of & is along the magnetic X axis. For non-zero
values of 6 and ¢, both n and h are rotated firstly around the Y axis an angle
6 (inclination) and then around the Z axis an angle ¢ (azimuth). We also note
that the initial position of h may not correspond to o = 0 in the experiment,
so a angular shift aq is also introduced. A simulated rotation curve, similar
to the experimental ones in figure 5.6, is then obtained by sweeping « through
the desired angles. The second rotation curve from figure 5.6 is obtained by
rotating n an angle 8 around h at its initial angle ag. With these definitions,
we end up with the parameters shown in figure 5.7 and the fit results from
figure 5.6.

Through symmetry considerations we can make some educated guesses at
where the magnetic anisotropy axes should lie relative to the molecular struc-
ture and compare these predictions to the fit results. Since Gd3'T has no
intrinsic anisotropy, the magnetic configuration will be determined mostly by
the molecular structure (a flattened sphere or disc, figure 5.4). Given the
Hamiltonian parameters, we know that the two easy axes (higher suscepti-
bility) have similar susceptibility values while the hard axis susceptibility lies
further away. By symmetry then, the magnetic hard axis, i.e. the axis with
the lowest magnetization response (Z in this case), is expected to be perpen-
dicular to the molecular plane. The other two axes (X,Y) should lie somewhere
in the molecular plane in which no large differences in susceptibility are ex-
pected. This seems to be compatible with the results obtained from the fit
to the magnetization data. The direction of the axis for the first rotation is
close to the [001], a direction that lies in the molecular plane (the long edge
of the crystal was aligned with the rotation axis). If the magnetic Z axis is
perpendicular to the molecular plane, this rotation axis should approximately
have 6 = 90°. The fitted value is close to this value (116°) making our original
guess plausible. The deviation is explainable by the fact that the crystal is
aligned by hand and, as can be seen in figure 5.6B, the wedge shape makes
it unclear which crystal edge is parallel to [001]. Also, a rotation around an
axis in the molecular plane should have a larger variation in the magnetization
since it includes magnetizations along both the hard axis and the easy plane.
This is also confirmed by the data where we see a much smaller variation when
the axis is placed in a different direction in the second measurement. We will
further refine the magnetic axis orientations using angle dependent cw-EPR
experiments in the next section.

5.2.4 Crystal EPR experiments

We now measure a dilute crystal of Y, Gdg gy W3, using X-band cw-EPR and
a rotating stage. The crystal was encased in an epoxy glue after being removed



5.2. K,,GdWy, 109

Figure 5.8: Y g4Gdg gy W5, crystal on the rotating EPR stage. cw-EPR spectra were
obtained as a function of angle for the three sucessive crystal orientations (A,B,C). n
labels the rotation axis while & labels the DC magnetic field direction (for a certain
angle). In C, the rotation axis is parallel to the crystal axis ¢

from its original solution and checked with x-ray diffraction (see section 5.2.2).
Having confirmed its crystal structure, a room temperature cw-EPR measure-
ment for three different orientations of the crystal on the rotating stage was
done (figure 5.8). The measured spectra can be seen in figures 5.9A, 5.9C, and
5.9E.

To compare these measurements to the theory and to obtain the positions
of the magnetic axis (similar to the previous section), we use the room tem-
perature Hamiltonian parameters from figure 5.3 and the EasySpin package
to generate simulated spectra. Two dimensional representation analogous to
those obtained from the measurement (figures 5.9A, 5.9C and 5.9E) were gen-
erated for a large number of rotation axis directions. The angle definitions are
the same as in the previous section (figure 5.7) with the exception that ag has
always been set to 0 since the EPR rotating stage does not keep its position
once the sample is removed from the cavity. Among the collection of generated
spectra, we have searched for the ones that best reproduce the measured data.
The best fitting simulations are represented in figures 5.9B, 5.9D, and 5.9F
next to their measured counterparts and with the simulated axis directions.
We see good agreement of these simulated spectra with the experiment. Also,
the three directions are very close to forming 90° between each other, as they
should if the crystal positioning (figure 5.8) were perfect.

Assuming that the rotation axes for figures 5.9ACE correspond to the crys-
tal axes [001], [1-10] and [110] respectively (see section 5.2.2), the magnetic
axes can be converted to the crystal structure basis and the position of these
axis relative to each molecule can be obtained. With the numbers shown in
figure 5.9 we get the axis orientations shown in figure 5.10. All three axes
are relatively close to the three crystal directions. Our initial guess is that
the magnetic Z axis should be aligned with the a crystal direction and that
the other two axes should lie in the molecular plane. It may be the case that
they are indeed tilted but we think it is more likely that at least the Z and c
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Figure 5.9: Measured (ACE) and simulated (BDF respectively) X-band cw-EPR spec-
tra for a dilute Y 9Gd, o3 W3, crystal. Graphs ACE correspond to the configurations
shown in figures 5.8 ABC respectively. The simulations are labelled with their corre-
sponding rotation axis according to the conventions from figure 5.7.
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Figure 5.10: Calculated magnetic axes orientation for GdAW,, from angle dependent
cw-EPR experiments. The magnetic hard axis Z is seen to be close to the direc-
tion perpendicular to the molecular plane (a). The two easy axes are close the the
molecular plane.

directions are aligned and that the measured deviation is due to experimental
error. The main source of error is probably the fact that the crystal alignment
in done by hand in all cases except when the crystal is in the x-ray difractome-
ter. We note also that the rotation axis for figure 5.9AB should be the same
as the axis fitted from the magnetization data in figure 5.6. There are however
some differences, again probably due to misalignments. Another factor that
could potentially lead to some error is the possible degradation of the crystal
structure over time.

5.2.5 Pulsed EPR experiments: spin qubit decoherence times

In this section we investigate the dynamic response of the GAW,, system us-
ing pulsed EPR methods, described in section 2.2.1. The same dilute crystal
(Y( 99Gdy g1 W3o) from the previous section is mounted in a X-band pulsed
EPR cavity and oriented as in figure 5.8A and manually rotated into a po-
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sition where the cw-spectrum presents the highest field spread between the
absorption peaks. This is necessary to allow us to excite each individual tran-
sition independently of the others and to study the relaxation dynamics for
each of them. There are several pulse sequences that will be used through-
out this section, each geared towards extracting different information from the
sample. The different sequences used are schematically shown in figure 5.11
along with a description of the parameter each sequence is designed to be sen-
sitive to [8]. All the measurements shown in this section were performed at
T=10K.

The first measurement performed is an ei-EPR experiment at 6 K. This
experiment is necessary to determine the resonant magnetic fields for each
transition in order to perform further measurements on them. The echo in-
tensity as a function of field and as a function of the pulse power is shown in
figure 5.12 along with the room temperature cw-EPR measurement. The tran-
sitions are numbered on the cw-spectrum where the visibility is better. The
ei-spectrum shows that all transitions are still visible at 6 K although their
intensity depends on the microwave power used for the pulses. This is due to
fact that for an ei-EPR measurement, the pulse lengths and intensities are op-
timized for certain transitions (the central one). The differing matrix elements
and Rabi frequencies for each transition do not produce optimal echoes for
the remaining transitions and in general get worse the further the transition
is from the optimized one. Also, we find that some transitions have been dis-
placed from their room temperature positions most likely due to the variation
in the Hamiltonian parameters from room temperature to low temperature.
We note also that there are two peaks at the central IV position (both are
visible when the attenuation is set to 15dB). One of the peaks corresponds to
the sample while the other is most likely due to copper impurities in the cavity
although it is unclear which is which.

The next step is to extract phase coherence relaxation rate To by using
a 2p-ESE (figure 5.11B) sequence. The results and parameters used for each
transition are summarized in figure 5.13. The main result here is that all transi-
tions can be coherently manipulated and have similar coherence times, ranging
from 130 ns to 400 ns. We give the value of T’y for both the IV transitions found
in the ei-EPR spectrum (figure 5.12).

The T relaxation time is extracted from a 3p-ESE decay measurement
(figure 5.11C). The resulting echo intensities for each transition are shown in
figure 5.14. Only transitions III, IV, V, VI, and VII are shown since no echo
was achieved for transitions I and II. Again we find a fairly even value of Ty
for all the measured transitions with its value ranging from 2.2pus to 2.8 ps,
thus much longer that Ty as expected.
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Figure 5.11: Pulsed EPR sequences [8]. Double ended arrows denote the parameter
that is varied for each echo measurement. Sequence A is an echo-induced EPR (ei-
EPR) measurement that produces a signal analogous to a cw-EPR experiment. The
field is swept while the pulse lengths and wait times are kept fixed for each echo.
Sequence B is a two pulse Electronic Spin Echo decay sequence. Here the field is
tuned to the desired transition and a 7/2-7 pulse with a variable wait time 7 is
applied. The dependence of the echo intensity on 7 follows an exponential decay
whose decay constant is the T relaxation time. Sequence C is a three pulse sequence
with a fixed wait time 7 and a variable wait time T". The echo can be shown to decay
exponentially as a function of 7" according to the T; decay time. Finally, sequence D
consists of two pulses where the first pulse is of variable width and the second is a 7
pulse that produces an echo proportional to the out of plane spin component. The
dependence of the echo on the pulse time ¢, is approximately an exponential decay
according to Ty modulated by the sample-cavity Rabi frequency.
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Figure 5.12: X-band 2p ei-EPR of crystalline GAW,,. The top graph shows the room
temperature cw-EPR spectrum for comparison with the pulsed spectra.
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Figure 5.13: X-band 2p ESE decay of crystalline GAW,,. Graphs show the echo
intensity as a function of A7 = 7 — 79 where 7 is the wait time from figure 5.11B
and 79 = 100 ns is a minimum wait time fixed for the experiment. Each set of data is
fitted to an exponential decay function from which the decay time Ts is extracted.
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Figure 5.14: X-band 3p ESE decay of crystalline GAW;,. Graphs show the echo
intensity for 7 = 100ns as a function of AT = T — T, where 7 and T are the
wait times from figure 5.11C and 7y = 100ns is a minimum wait time fixed for the
experiment. Each set of data is fitted to an exponential decay function from which
the decay time T, is extracted.
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5.2.6 Rabi spin oscillations: potential for quantum computa-
tion

Nutation measurements according to the pulse sequence shown in figure 5.11D.
The echo intensity will be proportional to the transverse spin component that
will oscillate when plotted against ¢, according to the Rabi frequency of the
cavity-spin system (analogous to (4.17)):

VRabi X Bre[(n]Sj|n + 1) (5.5)

where |n) are the spin Hamiltonian eigenstates and the matrix element is for
the spin component parallel to the rf magnetic field. The oscillation frequency
can directly provide the spin matrix element if a calibration sample is used to
solve for the pulse field intensity, B, ;. Figure 5.15A shows the echo signal for
transition VI as a function of the pulse length ¢, for different microwave powers
(i.e. values of Byr). We see the expected Rabi oscillations modulated by the
relevant decay time. Performing the Fourier transform of these signals (figure
5.15B), we obtain the Rabi frequency for each value of the attenuation. Lower
attenuations (higher fields) show higher frequencies as expected. If we plot
these frequencies as a function of the field value normalized by the field value
at 10 dB attenuation (Bjg), we find the expected linear dependence of the Rabi
frequency on the rf field strength shown in figure 5.15C. The figure also shows
the same experiment performed on a sample of natural charcoal with a linear
fit to the data. Natural charcoal can be used to calibrate the field strengths
since it behaves as an isotropic spin 1/2 system whose matrix element is well
defined and equal to 1/2. Therefore, the matrix element M =~ [(n|Sp|n + 1)|
for GAW,, for a given field attenuation can be obtained by:

By Byt 1
=(C= MB = Cyo— -B
v Bio X f V0 OBIO X 9 rf
v v By _ Llolo/a’ (56)

T2y 200 B 2Co

where a is the attenuation in dB and C' and Cj are the parameters from the
linear fits in figure 5.15C for GAW,, and charcoal respectively.

With the information from the power dependent nutation experiment, we
now perform the same experiment on different transitions at a fixed attenua-
tion. The results are shown in figure 5.16 along with the Fourier transforms.
We find that for the four transitions measured have very similar Rabi frequen-
cies (around 10 MHz). Using equation (5.6) we can obtain the corresponding
measured matrix element values. These values can be compared to those ob-
tained from the Hamiltonian (4.6) and the parameters from figure 5.3 (10K).
The direction chosen for the calculation is one compatible with the orientation
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Figure 5.15: Power dependent Rabi oscillations for transition IV of GAW3,. The pulse
sequence used is shown in figure 5.11D an a value of 7 = 100ns was used. Graph
A shows the echo intensity as a function of the initial pulse length ¢, for different
attenuation values. Graph B shows the Fourier transform of the measurements from
graph A along with the value of the frequency at the maximum (Rabi frequency).
Graph C shows the measured frequency values as a function of the field (normalized
by the field at 10 dB attenuation, Byg. The filled dots are for GAW 4, while the empty
dots are for a sample of natural charcoal and used for calibration. The Rabi frequency
for both samples was fitted using a linear equation.
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of the crystal on the EPR sample stage (the same as in figure 5.8C). Looking
back at the results and simulations from figure 5.9EF, we choose a direction
that gives the maximum field spread for the absorption features (field along the
spherical coordinate direction § = 170° and ¢ = 70° in the molecular reference
frame) and calculate the maximum absolute value of the matrix elements for
the spin components transverse to the DC magnetic field. The results are as

follows:
Transition | Measured matrix element Simulated matrix element
VI - 1.44
VI - 1.85
111 2.3 2.03
v 2.08 2.02
V 2.08 1.91
VI 1.89 1.75
VII - 1.37

Considering the uncertainties in orientation and in Hamiltonian parameter
values, we find that the transition matrix elements are in good agreement with
our measured Rabi frequencies. This is a good indication that our theoretical
model and parameters for this system are, a the very least, close to its real
values.

In summary, we have indeed found that this system has energy levels easily
accessible with relatively low microwave frequencies. Each transition can used
to define a qubit. Furthermore, the frequencies needed lie in the ranges of a
few GHz for moderate magnetic fields. These properties make GdW,, a very
attractive canditate to couple to circuit QED systems. Another important
conclusion may be drawn from these pulsed EPR experiments. We have also
found that the system has seven transitions that are individually addressable by
either varying the DC magnetic field and using a constant frequency or by using
different frequencies at a fixed field. The frequencies also within ranges easily
accessible with standard microwave electronics (below 10 GHz). Although the
T, and Ty coherence times are not extraordinary, these times are relatively
consistent for all transitions. Also, at least for the transitions measured, these
have matrix elements in line with our theoretical model. This means it is
hypothetically possible to encode 3 full qubits on a single GdW;, molecule.
The scheme would be similar to what is shown in figure 5.17. There, we
show a Zeeman diagram of the GdW, energy levels for a given field direction
and the position of the transitions if a frequency of 9.7GHz is used. We
have labelled each of the spin levels with a three qubit state. Since all the
transitions can be individually addressed, a rotation from the ground state
into any other combination of states should be possible. Therefore, GAW;,
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Figure 5.16: Rabi oscillations for transitions III-VI of GdW,,. The pulse sequence
used is shown in figure 5.11D an a value of 7 = 100 ns was used. Graph A shows the
echo intensity as a function of the initial pulse length ¢, for different transitions.

can be used as a three-qubit universal quantum processor. The possibility of
using this scheme, at least in the context of circuit QED, would of course be
dependent on improving both the coherence times for this type of molecule
and on the attainment of higher coupling to microwave cavities and circuits.

5.3 K;,TbW,,

In this section we turn our attention to the compound ThW,,, another sample
from the LnWy, series. As mentioned in the introduction, the five-fold sym-
metry of the molecular structure coupled with the fact that the non-kramer
Tb3" ion has a S, = £5 ground state in this coordination, is expected to give
this species an extraordinarily high tunnel splitting. The ground | £5) doublet
will split into its symmetric and antisymmetric superpositions with a large
tunnel energy gap A between them thus leading to a situation analogous to
that described by a simple two level system (equation (4.2)). Unlike the case
of Feg (section 4.2.3) for which A ~ 1077 K at zero magnetic field, the tunnel
splitting in this case should be large enough to survive sizable magnetic fields,
therefore making the tunnel split states suitable as a quantum computing ba-
sis. Our aim in this section is to experimentally verify the existence of this



5.3. K,,ThWy, 121

80 [111)
602— |101)
401~

E (GHz)
N
o o
T
, \
S
= o
o S

TTT
=)
)
=)

_80\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

B (T) (6 = 170°, ¢ = 70°)

o

Figure 5.17: Zeeman diagram for GdW,, and possible level assingment for an equiv-
alent 3-qubit processor. The vertical lines are the magnetic fields for the seven tran-
sitions measured with pulsed EPR methods (see figure 5.13).

gap in our samples, previously predicted in [4] and to determine its magnitude.
Unfortunately, the anisotropy of the sample and the value of A are expected
to be so large that X-band EPR can not be used to determine the energy level
spectrum and the full Hamiltonian parameters as in the case of GAW;,. We
will therefore use other methods to characterize the ground state and tunnel
gap.

The full crystal field Hamiltonian (4.6) was determined [4] from simultane-
ous the fit of the powder susceptibilities of K;,LnW, with Ln3t = Tb, Dy, Ho, Er, Tm, Yb
using the method suggested in [10]. The Hamiltonian contains only terms pro-
portional to Bg,Bg,Bg,Bg. A diagram showing the classical spin potential
and the quantum energy levels at zero field using these parameters is shown
in figure 5.18. The critical parameter that induces the tunnel splitting and
also the one that is most difficult to determine by the above method is BgOg.
It contains terms proportional to Si (see table 4.1) and is therefore able to
connect the S, = £5 states in only two steps [9]. Using the reported values for
these parameters, the full Hamiltonian can be seen to have a single magnetic
easy axis (Z) and two equal hard axes (X,Y). Taking into consideration the
symmetry of the molecule (see figure 5.4), we will assume that the easy axis 7
lies perpendicular to the molecular plane while the two hard axes are assumed
to lie within this plane. Since, given the temperatures we will be operating at
(below 2K), the population of the higher energy levels will be negligible (the
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Figure 5.18: Classical potential and quantum energy levels of the K;,TbW 3, molecule
for the magnetic anisotropy parameters given in [4]. The tunnel splitting of the ground
state |+) doublet is schematically shown as well how the BZOZ term induces this
splitting [9].

first excited doublet lies about ~ 8 K away from the ground state doublet ac-
cording to [4]), the thermal and magnetic properties will mostly depend on to
the two tunnel split energy states. In this regime it therefore seems reasonable
to describe the system with an effective spin 1/2 Hamiltonian with a zero field
tunneling gap and an anisotropic gg factor [11, 12, 13]:

gez 0 O

A = =
Hett = —=(Se + Sy) + upSgB g = 0 gy O y (5.7)
V2 0 0 g.

where S = 1/2 and the § matrix is considered diagonal for the chosen set of
axes XYZ. Using low temperature specific heat and angle dependent magnetic
susceptibility measurements we will determine the values of gz, gyy, 9.. and
A for our TbW,, sample and use these values to obtain the transition matrix
elements and level separations for different applied magnetic fields.

5.3.1 Specific heat: Determination of the tunneling gap

In order to confirm the existence of the expected tunnel energy gap in TbW,,
and determine its magnitude, we perform a series of low temperature specific
heat measurements in the PPMS 3He refrigerator (section 2.2.2). Experiments
were performed on successive dilutions of the sample, i.e., the Th3" ions are
replaced with non magnetic Y** ions in different proportions. The samples
measured had 5%, 10%, 25% and 100% Tb content. The dilutions are used
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Figure 5.19: Low temperature specific heat for Y, ,Tb,W,. The solid lines are fits
using the Schottky anomaly formula (5.8) and a (truncated) gaussian distribution of
gaps A with dA width.

to more clearly distinguish the magnetic contribution to the specific heat from
other possible contributions (lattice, dipole-dipole interactions). Also, a pure
YW,, sample was measured to get a direct measurement of the lattice con-
tribution. As mentioned in section 5.2.2, the entire LnW,, series is expected
to have the same crystal structure and, since most of the mass is due to the
ligand shell, the lattice vibrations and associated specific heat should be the
same for different central ions. The result of all these measurements is plot-
ted in figure 5.19. A broad low temperature anomaly is clearly visible below
2K for all Tb concentrations. Therefore, the anomaly is not associated with
from intermolecular interactions, but arises from the energy splitting of each
individual molecule.

The magnetic contribution for a two-level system with an energy gap A is
the well known Schottky anomaly, given by:

C, [(A\? AT
2=(7) aromy 58

The experimental data do not follow the behavior predicted by equation (5.8).
As in the case of GAW,,, we expect there to be strains on the Hamiltonian
parameters for TbW,,. We will therefore fit the low temperature specific heat
dependence with a gaussian (truncated at 0 since A can not be negative)
distribution of gap parameters of width §A. The magnetic contribution will
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then be a weighted average of the Schottky anomaly equation (5.8). To this
fit we then add the lattice contribution from the YW,, measurement and
obtain the solid lines from figure 5.19. We fit only the 100% Tb curve and use
scaling to obtain the corresponding fits for lower concentrations. The central
value of the level gap is A = 0.848 + 0.028 K while the distribution width is
0A =1.01£0.08 K. The deviations for lower concentrations are small and most
likely due to inaccuracies in the actual concentrations of the samples. Also,
the relatively large A distribution width leads us to the conclusion that, as in
the case of GAW,;,, the Hamiltonian parameters may present large strains.

This experiment therefore confirms that a large energy gap exists at low
temperature, of the order of 1 K. This is in line with what is predicted in [4]
although our measured value is somewhat lower than the value reported, lead-
ing us to believe that there may be some differences in the actual Hamiltonian
parameters for our sample and the ones reported previously.

5.3.2 Angle dependent magnetic susceptibility

As we did for GAW; in section 5.2.3, we now proceed to measure the magneti-
zation of a pure TbW,, crystal on the MPMS rotating sample stage described
in section 2.2.3 in order to determine the orientation of the magnetic axes XYZ.
The chosen crystal is taken from a deionized water solution and placed on the
the rotating stage as seen in figure 5.20BC. The crystal is covered in Apiezon
N grease to avoid loss of crystallinity. Measurements were performed in the
two configurations shown in figure 5.20B and 5.20C. The results are shown in
figure 5.20A.

The angles definitions are the same as in section 5.2.3 and figure 5.7 and the
model used to obtain the simulated curves is given in equation (5.1). However,
in this case we will not fix the values of the susceptibility matrix elements to
the ones given by the full spin Hamiltonian, since EPR data for this sample
are currently unavailable. We will instead use symmetry considerations to fix
some of the angular parameters and use the data to obtain the susceptibility
matrix elements. As mentioned previously, we assume that the magnetic Z
axis almost perpendicular to the molecular plane (see figure 5.4) and that the
X and Y axes are close to the molecular plane. Taking into account that the
crystallography of all LnW s, is the same (section 5.2) and that the first rotation
is done with the rotation axis aligned with a long crystal edge, we can therefore
conclude that the theta angle is close to 90°. Also, the rotation angle g is fixed
to 90° (corresponding to the 90° rotation between figures 5.20B and C) and
the background level is assumed to be negligible. Under these conditions, the
fit results are given in the table from figure 5.20.
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Figure 5.20: Magnetization measured in the MPMS SQUID as a function of rota-
tion angle for TbW,,. The magnetization along the direction of the DC magnetic
field is measured for a field value of 0.05T. 0° corresponds to the rotation platform
being perpendicular to the DC magnetic field. Rotation 1 and 2 correspond to the
configurations seen in graph B and C respectively. The continuous lines are fits to
the theoretical model with the fitted parameters given in the table above. These pa-
rameters are defined in section 5.2.3 and their physical meaning summarized in figure
5.7.

With principal values of the susceptibility matrix determined from the
fit, we can now obtain the remaining parameters for our effective Hamilto-
nian model (equation (5.7)). Through specific heat measurements we have
already established a gap value A = 0.848 K. By calculating the susceptibili-
ties (Xazs Xyys Xz=) for this Hamiltonian making these values correspond to the
fitted values, we get the necessary values of (gza, Gyy, 922):

gzz = 9.6
Gyy = 1.8
g:. = 114
A = 0.848K (5.9)

With these parameters we can now use equation (5.7) to calculate any observ-
ables and matrix elements in the low temperature and low field regimes as
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long as the contributions from higher energy levels are negligible. The energy
levels under an applied field are represented in figure 5.21 along with the tran-
sition matrix elements between the two states. The calculated matrix elements
can be seen to be much larger than those of, for instance, a spin 1/2 system
(|{0]S|1)| = 1/2, see section 4.2.3), a good indication of its applicability as a
quantum bit.

We note also that the measured susceptibilities are not compatible with the
original Hamiltonian parameters reported in [4]. The values reported for the
crystal field coefficients would give gz, = gyy < g... Therefore, if the molecu-
lar symmetry was not disturbed, there should be a hard magnetic plane with
all directions within this plane being magnetically equivalent. This is clearly
not the case as seen in figure 5.20. A rotation around any axis would have
the field in the hard plane at some point and, therefore, the minimum mag-
netization for any rotation curve should have the same value. The minimum
magnetizations found for different rotation axes give an indication that there
must exist an in-plane anisotropy not previously taken into account for the
undistorted molecules (for instance a term B303). As for GdW,,, this effect
likely originates from strain effects present within the crystal.

5.3.3 Low temperature magnetic susceptibility

After characterizing the effective Hamiltonian of the system, very low tem-
perature ac magnetic susceptibility measurements were performed using a p-
SQUID susceptometer [14, 15| similar to that shown in figure 2.25 placed inside
the mixing chamber of a *He—*He dilution fridge [16]. The susceptibility was
measured for frequencies ranging from 0.23 Hz to 107 kHz and for temperatures
ranging from 14mK to 2K. A sample of the measured data points is shown
in figure 5.22 (as a function of temperature) and in figure 5.23 (as a function
of frequency). The actual susceptibility values are obtained by matching the
SQUID output voltages to the magnetization measurements from section 5.3.2
at the angle corresponding to the correct crystal orientation (in this case 0°
in figure 5.20 since in both configurations the field is applied perpendicular to
the substrate with the crystal oriented in the same way).

The frequency dependence of the complex ac susceptibility, x* = x' — ix”,
can be adequately modeled by a Cole-Cole equation [17] that describes the
spin relaxation dynamics:

XT — XS

T+ Gor)? (5.10)

X = xs+

This model reduces to the Debye equation when 8 = 1 and describes a system
with a single relaxation time 7 with a certain broadening related to 8. xg is the
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Figure 5.21: Effective Hamiltonian for the ground state double of TbW,,. Graph A
shows the energy levels as a function on an applied magnetic field in the Z direction.
Graph B shows the matrix elements of the three spin matrices normalized by the
factor g;;/gs where g;; are each of the g-factor matrix elements from equation (5.7)
and gg = 1.5 is the g-factor of Tbh. This is done so that the effective model matrix
elements can be directly compared to matrix elements calculated in full crystal field
model.

adiabatic or high frequency limit of the susceptibility while xr is the equilib-
rium low frequency limit. xg is usually small since at very high frequencies the
spins do not have time to relax and do not contribute to the susceptibity while
the value of x7 typically follows the Curie law where y7 o< 7!, The typical
behavior of a system following the Cole-Cole law is shown in figure 5.24 where
we see that the in phase component has a step when the frequency w ~ 1/7
and the out of phase component has a peak at the same frequency. Observ-
ing our measurements however, it seems evident that there are characteristic
two relaxation times and that, therefore, it will be necessary to use a double
Cole-Cole equation to fit the frequency dependence at each temperature:
(1) (1) (2) (2)
* 1 2 X7 — Xg Xt — Xg
=P 4@+ T Gor P T T4 Gon )P (5.11)

The fits to this double Cole-Cole equation are shown in figure 5.23 (solid
lines). The values of xg in the fits have both been taken equal to 0. From
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Figure 5.22: Complex ac susceptibility measured along the [1-10] axis of TbWy, at
very low temperatures. The susceptibility is shown as a function of temperature for
different excitation frequencies. The SQUID output voltage values are normalized to
match the susceptibility values obtained at 2 K in the angle dependant magnetization
measurements (section 5.3.2). The solid black line in the real component graph rep-
resents the equilibrium value derived from fits to a double Cole-Cole law (see figure
5.23).

these fits we can obtain the temperature dependence of the two relaxation
times (7] = Tt and 7o = Tgow), shown in figure 5.25, as well as the equi-
librium susceptibility (solid line in figure 5.22). At the higher temperatures,
the equilibrium susceptibility value can usually be read directly off the graph,
but for the lower temperatures the fit is necessary to correctly extrapolate the
susceptibility to w — 0.

From the Cole-Cole fits we see that there is a well defined 74,5 that remains
constant at lower temperatures and falls off slightly at higher temperatures.
It is of the order of ps and we presume corresponds to the usual Ty electronic
spin relaxation which, at very low temperatures, corresponds to the lifetime
of the excited spin state of the doublet. There is however a second much
slower relaxation process. This process becomes observable only at very low
temperatures. The characteristic time, 740w, decreases rapidly with increasing
temperature and becomes of the order of ms at T'— 14mK. The origin of this
relaxation is unclear but we speculate that it may be due to the relaxation
of nuclear spins through the hyperfine interaction. Tb has a relatively large
hyperfine interaction and, although it has been unnecessary to consider up
till now, it may be the case that it plays an important role in the relaxation
dynamics at low temperatures. In any case, more work is necessary to fully
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Figure 5.23: Complex ac susceptibility for TbW;, at very low temperatures. The
susceptibility is shown as a function of excitation frequency for different temperatures.
The SQUID voltage values are normalized to match the susceptibility values obtained
at 2K in the angle dependant magnetization measurements (section 5.3.2). The filled
markers correspond to the real component and the empty markers correspond to the
imaginary component of the ac susceptibility.

understand this effect.

We can now compare the measured equilibrium susceptibilities to predic-
tions of our effective model, derived in the previous sections. Calculating the
equilibrium susceptibility in the direction of the applied ac magnetic field (the
direction of the field corresponds to 0° in figure 5.20 close to the [1-10] crystal
axis), we obtain the xT' curve shown along with the measured values in figure
5.26.

In order to discuss these results, we find it illustrative to review here the
physical origin of the different terms that contribute to the magnetic suscep-
tibility in a generic spin system. By definition, the expectation value of the
magnetization along direction h is given by:

n

nye PEn, (5.12)

K

where 8 = (kgT)~ !, wy, = MBS_':&IA) is the magnetic moment operator, b is the
unitary vector in the direction of the magnetic field, and the sum is over the
Hamiltonian eigenstates |n) with energies E,. The susceptibility is defined as
the derivative of the magnetization with respect to the magnitude of the field
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Figure 5.24: Cole-Cole equation for the complex ac susceptibility with 8 = 0.8 (equa-
tion (5.10)).
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Figure 5.25: Fitted values of the spin relaxation times as a function of temperature
for TbWy,,.
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Figure 5.26: Equilibrium xT" for TbW,, at very low temperatures. The solid curve
represent the simulated values using the effective model (5.7) and the parameters
from equation (5.9). We see Curie law behavior for high temperature but a slower
that T—! decay of x for low temperatures with xT' — 0 as T — 0.

applied in the b direction:

OM;
OB’
Assuming that the field enters in the spin Hamiltonian through a Zeeman term
—/ﬂ? , and applying first order pertubation theory we have that the changes in
the energy and wavefunctions are:

Xj = (5.13)

E, ~ E(O)—<n(0) V0B, (5.14)
{n'©) \u In @)
In) ~ 532 R A L 7 In O, (5.15)
/;ﬁn n n/

where §B is a pertubation in the field and the (0) superscript denotes the un-
perturbed energy levels and states. With this in mind, it is now straightforward
to compute x; by explicitly differentiating (5.12):

= [0 -]+ Z X WolisletF oo (310

where the the averages are all thermal.? The first two terms are proportional to
T~ and give rise to the Curie law behavior and originate from the variations
of the energy levels due to changes in the field (proportional to OE, /0B). The
last term, on the other hand, originates from changes in the eigenstates of
the Hamiltonian (proportional to d|n)/0B) and corresponds to the Van Vleck

H1d) = & X, (nlgln) e
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susceptibility. In a sense, the Curie terms represent the contribution from
classical thermal fluctuations while the Van Vleck term represents the changes
in the quantum wavefunction.

In a system with an effective Hamiltonian as in equation (5.7) we find that
the terms proportional to 7! are both zero at zero field and temperatures
where the population of the excited state are negligible (temperatures smaller
than A). This can be seen by simply solving the Hamiltonian and calculat-
ing (u7) and (u2) or, more intuitively, by looking at the shape of the energy
curves in figure 5.21 whose derivative vanishes at zero field. This effect directly
arises from the large quantum tunnel splitting of this system and suppresses
the T~ terms for kgT < A leaving the much weaker temperature dependence
that characterizes the Van Vleck term. This agrees with the measured behav-
ior shown in figure 5.26 where at high temperatures we see a constant value
for xT' corresponding to a Curie law, while at low temperatures the classical
contributions are suppressed and x7' — 0. There is good agreement with the
effective model predictions and the relatively small deviations are likely due to
the presence of the aforementioned strains in the Hamiltonian parameters.

These results serve to further confirm the presence of large tunnel gap
and to reaffirm that the TbW,, system is an interesting spin qubit candidate
with the computational basis defined as the two tunnel split states. Its large
tunnel gap allows tuning fields to be applied without destroying the matrix
elements of photon induced transitions connecting these states. Beyond its
possible applications as a quantum bit, this sample provides the rather unique
opportunity of studying a pure quantum two level spin system, where the
ground state and magnetic response is determined fully by tunnel effects. The
ground state of TbW,, is a superposition of up and down spin states with
no net magnetization, unlike most other spin systems where the ground state
ends up being either | + S) as a result of the action of perturbations such as
dipole-dipole or hyperfine interactions.

5.4 Coupling SIMs to CPW resonators

After studying two model SIM systems in detail, we now wish to evaluate their
coupling to quantum circuits. The calculation of the coupling of these systems
to superconducting coplanar waveguide resonators is completely analogous to
the calculation presented for generic SMMs in section 4.3.2. In fact, the same
field simulations and integrals apply and the only change that has to be made
is to input the correct operating frequencies and matrix elements in equations
(4.17), (4.21) and (4.23). These parameters are readily derived from the Hamil-
tonians deduced in the previous sections allowing us to directly compare the
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Figure 5.27: Coupling of 40 pm x 40 pm X height SIM, SMM and diamond crystals
to a CPW resonator as a function of crystal thickness. On the left we show the total
coupling strength and on the right we show the coupling strength normalized by the
resonator frequency. For each sample, w;; denotes the transition used (w12 denotes
tunnel split energy levels while w3 refers to zero-field split energy levels) and the
operating frequencies are detailed in the table above. The spin densities for each
sample are also shown [1, 18, 19, 7]. The GdW;, and DPPH lines overlap in the right
hand graph.
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Figure 5.28: Coupling of a single spin to a CPW resonator as a function of centre line
width. The spin is located at the point of maximum field on the surface of the centre
line. For each sample, w;; denotes the transition used and the operating frequencies
are detailed in figure 5.27.

couplings and operating conditions to those of polynuclear SMMs studied in
section 4.3.2.

Figure 5.27 shows the calculated collective coupling of a resonator to a
crystal with a base size of 40 pm x 40 pm placed at the center of the resonator
for different crystal heights. We see again that the coupling saturates when the
height of the crystal is larger than the gap sizes (14 um center line and 7pm
gaps in this case). In all cases we see that the coupling is much higher that
the values found for NV centres in diamond and, in many cases, can amount
to a sizable fraction of the operating frequency.

In the case of GAW,, we see that the values obtained are similar to those
for DPPH. This may seem somewhat disappointing but we must keep in mind
that DPPH requires the application of a relatively large magnetic field (almost
0.5T) in order to operate at a frequency similar to GdW,, which can be a
technical issue when working with superconducting circuits (sensitive to back-
ground fields). GdW,, can operate in this regime without the need of high
tuning fields which generally is favorable for the resonator performance.

For TbW,, we find that the coupling values are close to the values obtained
when using the tunnel split energy levels of Feg. As in that case, the coupling
values are very high (hundreds of MHz) but the operating conditions for TbW
are much more favorable. As discussed in section 4.3.2, tuning the tunnel
splitting A of Feg to the operating regime a strong and very precisely aligned
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magnetic field, while TbW,, does not requiere a tuning field to obtain the
same performance. Even higher values of the coupling for Feg when using its
zero field split energy levels. However, this requires working at extremely high
frequencies of the order of 200 GHz. In comparison, TbW,, offers an attractive
option because of the much more manageable operating frequency although its
coupling is somewhat smaller.

Figure 5.28 shows the coupling calculated for a single spin placed at the
maximum rf field location as a function of the center line width. As discussed in
section 4.3.2, we observe an order of magnitude enhancement in the coupling
when narrowing the center line down from 10pm to 100nm. The relative
coupling intensities of the different samples are in line with what has been
found for crystal samples and the same considerations about the SIMs favorable
operating conditions apply. It seems possible, that single or small ensembles
of SIMs could potentially present strong coupling to this type of circuits.

5.5 Conclusions

In the field of quantum computation, Single lon Magnets provide many inter-
esting possibilities since they can allow a rational design of their spin Hamilto-
nian. The provide a good way to fulfill the two criteria outlined in 4 regarding
the desirable qualities of spin systems as qubits: A relatively low anisotropy
or a strong tunnel splitting. The fact the molecular structure can be tuned
and that the ion chosen can be any lanthanide, gives a broad range of possible
Hamiltonian parameters. In this chapter, we have studied two examples in
detail each one fulfilling one of the two desired qubit qualities.

Because of its low magnetic anisotropy, GdW,, is found to have all its
energy levels within a 1K energy range, meaning that the energy any of the
spin transitions lie within a comfortable range for their coupling to quantum
circuits. The Hamiltonian parameters have been found to depend on temper-
ature and to have considerable strains in their specific values probably due to
the large molecule size and to the relative fragility of the molecular crystals.
Through angle dependent EPR and susceptibility experiments, the magnetic
hard axis has been found to be approximately perpendicular to the molecular
plane defined by the flattened sphere shape of the molecule, while the easy
axes are found to be close to this plane. We have also found that all the possi-
ble spin transitions can be excited independently while the spin Ty coherence
time is found to be of the order of 300 ns for all the spin transitions. This not
only makes GAW,, interesting as a qubit, but also could allow for up to three
qubits to be encoded on a single molecule potentially making it a universal
three qubit processor.
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The case of TbW;, has been found to have a very large tunnel splitting of
the order of 1K thanks to the characteristics of the Tb?" ion and the five-fold
symmetry of the TbW,, structure. Contrary to the case Feg studied in chapter
4, this makes the transition matrix elements between these two levels resis-
tant to applied magnetic fields which retain high values for high tuning fields.
The existence of the the tunnel gap has been confirmed with low temperature
specific heat measurements and an equivalent model for the two tunnel split
energy levels has been deduced. The model correctly describes the low temper-
ature susceptibility data that further confirm the existence of the large tunnel
gap. Beyond the quantum computing applications, TbW,, presents interest-
ing physics in its own right. At very low temperatures (T' < A/kp, its larger
tunneling gap, as compared to both dipolar and hyperfine interactions, makes
it a model realization of a simple quantum two level system. This system gives
a unique opportunity to study quantum effects on the magnetic properties.
Under these conditions the Van Vleck contributions to the zero field suscepti-
bility dominate over the classical thermal fluctuations (Curie law) making it
purely quantum in nature. Further study of this system could also provide in-
sight into a new kind of spin liquids, induced by zero point fluctuations of each
spin and not, as is the case for other realizations, by the topology of spin-spin
interactions [20, 21].

Finally, we compare the coupling of SIMs to coplanar waveguide resonators
to the couplings obtained for other SMM samples in chapter 4. In both in crys-
tal form and as individual molecules, the couplings for SIMs are found to be in
line with those found for typical SMM systems but with the advantage of hav-
ing much more convenient and technologically accessible operating conditions.
The operating frequencies lie well within the range of current technologies while
the necessary tuning fields can be kept within the necessary limits for the ade-
quate operation of superconducting circuits. With these results it seems clear
that strong coupling to this type of systems should be achievable in the near
future.
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Chapter 6

Superconducting Coplanar
Waveguide Resonators and
Constrictions

6.1 Introduction

In chapter 4 we introduced spin systems and single molecule magnets as pos-
sible candidates for quantum bits and discussed the problem of coupling sin-
gle spins to quantum circuits. Although strong coupling of quantum circuits
to spin ensembles should be readily achievable, the coupling to single spins
presents a bigger challenge. We discussed that the coupling could be increased
by either improving the spin transition matrix elements or by increasing the
magnetic field generated by the quantum circuit. We have explored the former
approach in chapter 5. In this chapter, we discuss the latter approach and
explore the possibility of narrowing down the wires in a coplanar waveguide
(CPW) resonator to concentrate the current and therefore getting enhanced
field strengths in the vicinity of this constriction. As detailed in chapter 4, the
coupling to individual molecules can be greatly enhanced by making the center
conductor width w of the order of nm. In some cases, the coupling for a single
molecule can be as high as ¢ ~ 1MHz. In section 6.2 we present the basic
concepts involved in the design of CPW resonators. Section 6.3 has details on
the fabrication and testing of our own resonators while section 6.4 explores the
effects of introducing nanoconstrictions into these systems. Finally, section 6.5
summarizes the conclusions.
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6.2 Coplanar Waveguide Resonators

6.2.1 Basic CPW properties

A coplanar waveguide consists of a dielectric substrate with conductors on the
upper surface (figure 3.3). The conductors form a center strip of width w sur-
rounded by two narrow gaps of width s and two ground planes on either side
which are assumed to be infinite. As transmission lines, they carry electromag-
netic radiation in current and voltage waves while the magnetic and electric
fields are concentrated in the gaps between the conductors. The basic param-
eters describing any transmission line are its capacitance and inductance per
unit length (C’, L), its characteristic impedance (Zp), and the wave velocity
(v). These parameters are related by [1]:

| L' 1 c
Z = —_ v = = 61
0 c’ vIL'C' \/ €Eeff ( )

where e is defined as the effective relative dielectric constant of the structure
and is used when there are different dielectric domains in the structure. The
parameters L' and C’ depend on the electric and magnetic material proper-

ties and on the waveguide geometry. For CPW, using quasi-static conformal
mapping techniques [2], we can arrive at expressions for the transmission line
parameters which in the case of a single layer infinitely thick substrate sur-
rounded by air and for thin metal layers (¢ < s) reduce to:

€eff = HTE’ C" = 2¢p(er + 1)?%22% L' = %K(%)

_ 9% K(kp) ~ 307 K(kp) _ c
%0 = \/s<ef+1> Kko) = V(e +1)/2 Kioy (Ohm) v = (ert1)/2 (6.2)

where K (x) denotes the complete elliptic integral of the first kind, €, is the
substrate relative electrical permittivity and:

_w I )
ko= o k=1 R (6.3)

Observing these equations, it is clear that all transmission parameters depend

on the geometry only through ko. Therefore the absolute value of the gaps
and center line width can in principle be made arbitrarily small as long as this
ratio is kept constant. For our fabrication method, it is convenient to take these
values of the order of 10 pm since it is a comfortable size for photolithography
techniques.

6.2.2 Distributed circuit model

From the point of view of electrical circuit theory, a transmission line can
be described using voltage and intensity waves propagating according to a
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Figure 6.1: Distributed circuit model of a general transmission line

distributed circuit model [1]. In this model, a waveguide is modelled as a series
impedance and shunt admittance per unit length and then applying Kirchoff’s
circuit laws (figure 6.1). The values of these impedances and admittances can
be derived using Maxwell’s equations and the geometric and electric properties
of the waveguide and are different for each type of transmission line. This
analysis results in the well known Telegrapher’s equations [1]:

%(2) = —Z'I(z) = —(R' + jwL)I(2) (6.4)
g(z) = —Y'V(z) = —(G'+jwC)V(2) (6.5)

Where L' and C" were defined in the previous section as the inductance and
capacitance per unit length and we have also introduced R’ and G’ as the series
resistance and shunt admittance per unit length (see figure 6.1). This pair of
coupled differential equations can be readily solved. The most general solution
has the form of forward and backward travelling current and voltage waves:

V(z) = Vie P 4V elP (6.6)
I(z) = i(v+e*j52—v_ejﬁz) (6.7)
Zo
Where
B = —jV(R +jwl) (G + jwC) (6.8)

[R + jwL
Zo = = JE2 .
0 G’ + jwC’ (6.9)

In the case of a lossless line, R’ = 0 and G’ = 0, so the previous equations
reduce to:

B = w/LC (6.10)

L/
Z =\ (6.11)
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The wave impedance Z and refection response I' of a waveguide at position z
are defined by

V() Vi(z)+ V() oo )
O T e ey Y e O
It can easily be seen that these two properties are related by
Z(z) = Zoi?éz;, I'(z) = %12 (6.13)

Using these definitions and the solutions to the Telegrapher’s equations, we
can find expressions for Z and I' at different points (I = zo — 21) along the
waveguide, as well as the voltage at the second point in terms of the voltage
at the first point:

Zy + jZy tan(pl)

Z
! 0Z0 + j Za tan(Bl)
[ = DA (6.14)
_igl+T9
Vo = Ve P2
2 1€ 111,

If we want to include small losses (R’ < wL’ and Y/ < wC"), it is sufficient to
consider a lossless line and to replace in 3 in (6.14) with a complex propagation
constant S, = 8 — ja where, in a first order approximation, « is given by:

L& +Y'Z + (6.15)

a=—|— =a.+ o .
9 ZO 0 c d

and a. and agy represent the resistivity and dielectric losses respectively. In

broad terms, the resistivity losses are proportional to the surface resistance

Rs; = \/% x y/w and the dielectric losses are proportional to Stand o w
where tan ¢ is the loss tangent of the insulator. Expressions of . 4 as a function
of the material properties and geometry for CPW can be found in the literature
[2, 1, 3]. However, if we are working with superconducting resonators, radiative
losses are expected to be small [4] and resistive losses should be negligible at
temperatures well below the critical temperature for the superconductor [5]
leaving dielectric losses as the main contribution. According to [2], dielectric

losses in a CPW with an infinite dielectric susbstrate can be expressed as:

w €r

?Cm tan & (6.16)

Qg =

Using equations (6.14) it is now straightforward to obtain circuit properties
such as S-parameters for circuits involving waveguides. S-parameters are called
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Figure 6.2: Scattering parameter definitions for signal applied to port 1
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scattering parameters to convey the idea that they describe how a signal scat-
ters off a device under test. The usual setup where S-parameters are applied
is shown in figure 6.2. Iere, two identical transmission lines are connected to
the device under test and a signal is applied to one of the ports. The two-port
S-parameters are then defined as:

[y

S = (%)a2:0 So1 = (b—2>a2:0 (Input on port 1) (6.17)

Sio = (%) . S = <b—§) . (Input on port 2) (6.18)
a1= a1=!

To illustrate an S-parameter calculation, we analyze the case of our copla-
nar waveguide resonator capacitively coupled to the external feedlines (figure
6.3). This circuit can be fabricated by simply making two narrow cuts in the
center line of a CPW leaving a waveguide segment of length L. The equivalent
impedance seen at the output Z» is a series combination of Zy and Cgap. We
can then use equation (6.14) to obtain the impedance seen at the start of the
waveguide segment Z7 in terms of Z3. Then we can obtain the impedance at
the circuit input Zj, and the refection response at the input I'j,:

1
Zy = = + 2y (6.19)
JwCgap
Zs+ 329 tan(ﬁL)

7, = 6.20
! OZO + jZytan(BL) ( )

1 Zin — 2y
in = - +7Z7 = Tihw=——-—-— 6.21
JwCgap ! Zin + Zy ( )

The definition of S11 = (V_/V} )iy implies that S1; = I'j,. Using the above
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Figure 6.3: Circuit model for a CPW resonator. The image shows the general struc-
ture of a CPW resonator while the lower diagrams show the circuit equivalents. Close
to the resonance condition, the waveguide structure can be exchanged for a lumped
element RLC circuit as long as Cgyp, is such that R < 1/(wCigap)-

equations and defining s = CgapZow gives

2s + tan(SL)
2s(14js) + (1 +2js — 2s?) tan(SL)

Si1 = (6.22)

To obtain the So1 = (Vi )out/ (Vi )in transmission coefficient we again use
(6.14) to obtain the voltage Vous at the output:

‘/in = (V+)in(1+rin) (623)
7Z
Vi = Vi Z_1 (6.24)
_igr 1+ T
= JBL_ T~ 2 6.25
Va Vie 5T, (6.25)

Z
‘/out = ‘/270 = (V—i-)out (626)
2
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Figure 6.4: Transmission (S»21) and reflection (S11) for an ideal CPW resonator. The
table shows the parameters used in equations (6.27) and (6.22).

Substituting all these expressions into the definition of Sa; we finally get:
45%eIPL
1+ e2BL(5 — 25)2

So1 (6.27)
Setting some typical parameters and plotting |Sii| and |S21| as functions of
the wave frequency, we see the typical resonance pattern with harmonics at
regular intervals (figure 6.4). The transmission shows peaks while the reflection
is suppressed when the resonance condition is met:

L~ (n+1)\,/2 (6.28)
or in terms of frequency f = w/2m:

fn = (n;Ll)v (6.29)

where n labels the harmonic and n = 0 corresponds to the fundamental mode.
The losses are higher and hence the peaks are wider and have lower quality
factors at higher harmonics. These losses are due mainly to the fact that the
coupling impedance decreases with increasing frequency (Zgap o< w™1), thus
making the system more strongly coupled.

When working close to resonance it is sometimes convenient to replace the
first circuit shown in figure 6.3 with an equivalent lumped RLC element. The
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values of the lumped capacitance (C}), resistance (R;) and inductance (L;) are

given by [6]
2L'L
L, = o) (6.30)
C'L
C = 5 (6.31)
2o
= 2 32
Ry o (6.32)

These expressions can be obtained taking the limit w ~ 77 and aL < 1 and
assuming large coupling impedances, i.e., very small coupling capacitances.
With this equivalence we can obtain the loaded quality factor Q7 in terms of

its internal Qiny and external Qex contributions [1]:
L1,
QL Qint Qext .

Qint takes into account only losses that occur inside the resonator such as the

(6.33)

conductor resistivity and dielectric losses. On the other hand, Qext contains
losses through the coupling capacitances Cgap to the external feedlines. It can
be shown that they have the following expressions:

Rt = wRC (6.34)
Qus = “OIF O (6.35)
2 Wi, 7%

From a measurement point of view, only @)y, is directly accessible while the Qint
contribution can not be immediately separated. It can however be estimated
by also measuring the insertion loss Ly, defined as the deviation from unity of
the peak transmission value:

Lo = = [521(fn)] (in dB) (6.36)

Defining the coupling factor as ¢ = Qint/Qext, the insertion loss Ly and g are
then related by:

g
Lo =-201 —— | dB. 6.37
0 og <g T 1> ( )

This then allows us to separate the quality factor contributions Qint and Qext
using (6.33),(6.37) and measurements of Ly and Qp:

10;L0
20
1—10"20"
Qnt = (1+9)QL (6.39)
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6.2.3 Design and fabrication

Using equations (6.2) we can set the design dimensions and parameters for our
resonators. We design them to have a resonance frequency around 1.5 GHz and
lateral dimensions in the 10pum range. The devices are fabricated by optical
lithography on sapphire wafers following the procedures detailed in chapter 2.
Sapphire is chosen as the substrate because of its excellent insulating properties
and low dielectric losses (tand ~ 107° — 1079 [7] at room temperature and
tand ~ 1078 — 10'9 at liquid helium temperature [8]). The mask designs
consist of large feedlines with 400 pm center lines separated from the ground
by 200 pm gaps that narrow down to a 14pm centerline and 7 pm gaps after
going through the gap capacitors. Several types of gap capacitors with a finger
design (see figure 6.5B) were fabricated to allow for over and under-coupled
systems depending on the number of fingers. The finger separation and width
are 4pm and they are 96 pm long. The length of the cavity is chosen to be
44 mm by making the waveguide meander across the surface. Even though
sapphire is anisotropic, for our purposes it is sufficient to take an average
dielectric constant of €, = 10 [9]. Assuming no losses and using (6.2) we get
the following values for the resonator parameters:

€ = 11/2

Zo = 5290

L' = 0414pHm™!

C' = 0.148nFm™!

fo = 1.454GHz (Unloaded)

Our devices are fabricated on 500 pm thick C-plane sapphire wafers by
optical lithography followed by either reactive ion etching (RIE) or by lift-off.
The details of the lithography techniques are covered in chapter 2. An image
of a finished resonator is shown in figure 6.5A.

The finished circuit dimensions differ somewhat from the mask specifica-
tions especially in the cases that RIE is used (figure 6.6 top). The RIE pro-
cedure usually over etches the niobium layer leading to lateral size errors of
about 1-2pm. Although these differences are fairly large, the devices generally
work acceptably well. The reproducibility of the mask is better using lift-off.
However, when using lift off, there are often remains of the resin forming high
walls on the edges of structures (figure 6.6 bottom). These resonators are also
still usable but it is as yet unclear whether and how these structures could
affect the transmission properties.
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‘ Nb (ground)

‘ Sapphire
Coupling gaps Ground Bridge

Pt

Constrictions

Figure 6.5: Coplanar waveguide resonator. A) Optical microscope image of a CPW
resonator. The chip is 2 cm in length, by 0.5 cm in width. B) Different coupling
gaps with different numbers of fingers. Larger numbers of fingers give overcoupled
resonators. C) Center region of CPW resonator. D) Platinum bridge deposited by
focused ion beam induced deposition. This bridge is removed after FIB processing and
allows the center line to be grounded adequately during nanoconstriction fabrication.
E) Different nanoconstrictions fabricated at the center of the resonator

6.3 Tests at T'=4.2K

6.3.1 Frequency dependence: resonant behavior

The resonators are first glued to a fiberglass printed circuit board (FR4 or
similar [10]) shown in figure 6.7 and wire bonded with aluminum thread to
copper pads. Typically there are between 6 and 10 wire bonds for the center
line while the ground planes have between 40 and 60 wire bonds. The circuit
board has SMP type connectors [11] to connect to external semi-rigid cryogenic
coaxial cables. The wires and PCB are inserted into a simple 4 K probe that
consists of essentially a steel tube with SMA connectors at one end, to connect
to our measurement electronics, and the PCB with the resonator at the other
(figure 6.7).

Once mounted on our 4 K probe, the probe is inserted into a helium bath
and the devices are then characterized using a programmable network analyzer
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Before RIE After RIE

e
10 um

Figure 6.6: Lithography defects. The top images show microscope images of the
differences between the resin pattern and the final etched Nb pattern when RIE was
used for fabrication. The bottom image shows an SEM image of the resin remains on
Nb feature edges when liftoff was used for fabrication.

Figure 6.7: Coplanar waveguide resonator mounted on 4 K probe. The resonator is
glued to a PCB and wire bonded to copper pads. The PCB is then screwed into a
copper box and wired with semi-rigid coaxial cables to the 4 K probe.
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Figure 6.8: Fundamental mode resonances for differently coupled resonators. The
graphs on the left shows the transmission S2; and reflection S1; as functions of the
microwave frequency. The graphs on the right show the changes in resonant frequency,
loaded Q-factor, fitted gap capacity and transmission peak value for different numbers
of fingers.

[12] (see also section 2.4.1). One batch of resonators fabricated by optical
lithography and RIE were found to have the fundamental mode resonances
shown in figure 6.8. In general for all our transmission measurements, the
excitation power is set to the minimum value of -45 dBm at the signal source
to avoid any peak distorsions. We see that the resonances move to higher
frequencies and have higher Q factors the less coupled they are to the feed
lines. Each peak can be fitted to a lorentzian line shape (in dB scale):

Ao
(f = fo)> +of?/4°
where fy is the peak position, Jf is the full width at half maximum and Ag is
a multiplicative constant that sets the peak height. From these fits it is simple

F(f) = (6.40)

to obtain the loaded Q-factor Qr, = fo/df for each resonator. It is interesting
to isolate the internal quality factor Qiyt to evaluate the internal losses of this
series resonators. In principle, the internal losses should be the same for the
entire series and they all should have similar Qiy. To obtain this value we
need to use equation (6.39) and (6.37) to obtain Qin from the insertion loss
Lg. This method is not adequate to obtain this value in very overcoupled cases
as the formula is extremely to very small changes in Ly and will have large
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errors in these instances. In any case, Ly is evaluated by comparing the peak
transmission with that of a thru connection (see 6.8B). As can be seen, the
transmission peak surpasses the thru value and can not give a value for Q. To
partially correct this error, the entire thru curve is shifted so that the 8 finger
case has Ly = 0 (and an indeterminate Q). This new curve is then used as
the reference for the remaining cases to estimate Qint and plotted as a function
of the number of fingers (figure 6.8D). The error is smaller for lower couplings,
i.e., fewer fingers and should have very small effects in the low coupling cases.
We see the calculated values converge on a value of around Qing ~ 4- 10* which
we will take to be our standard value for the series. Figure 6.8 also shows the
peak transmission values and resonance frequencies (6.8C and 6.8F). The figure
6.8E shows an approximation of the gap capacitance (which are determine the
external losses) assuming the internal losses are given by our calculated value
of Qint ~ 4-10*. This is done taking the absolute value of equation (6.27) and
using it to fit the peak data via the Cgap, L and a multiplicative constant to
account for the losses in our connecting wires. The resulting values of Cgap, are
similar to those reported in [6]). It is worth noting that although most of the
results shown are for transmission measurements (So1, S12), much of the same
behavior can be seen in the reflection signals (S11, S22).

6.3.2 Magnetic field dependence
Niobium thin film properties

As well as being perfect electrical conductors, superconductors are perfect dia-
magnetics meaning they expel magnetic field lines that would ordinarily pass
through them [13, 14]. However, if the applied fields are strong enough the
superconducting properties end up being suppressed and the material becomes
a normal conductor. There are in general two types of superconductor that
show different field dependence near the critical field.

e Type I superconductors are generally pure metals (Aluminum, Lead,
Mercury) and abruptly lose their superconducting properties when the
critical field is reached. These fields are generally much smaller (B, <
50mT) than for type II superconductors and also have lower critical
temperatures (7T, < 1K).

e Type II superconductors are characterized by two critical fields and in
general can withstand much higher magnetic fields before becoming re-
sistive. The first critical field is the minimum field capable of creating
vortices in the superconducting domain. These vortices are microscopic
areas that allow the magnetic field to pass through them while the rest
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of the material remains superconducting. When higher fields are applied
up to the second critical field, the density of vortices increases until all
the material becomes a normal conductor.

Here we work only with niobium which is a type II superconductor [15].
Using the MPMS and PPMS systems (see sections 2.2.3 and 2.2.2 respectively)
we have measured some of the magnetic and DC conduction properties of
our niobium thin films. These properties can give us approximations of the
values for the different critical fields and currents and their dependence on the
direction of the applied field.

Firstly, using a simple 4 point resistance measurement pattern, we have
obtained the DC behavior of our niobium circuits including the critical fields,
critical temperatures and currents. The resistivity pattern is fabricated in the
same process as the resonators (in the wafer margins) and has a separation
of 400 um between the voltage leads while the wire has a cross section of 150
nm by 10pum. This system is mounted on a vertical stage (see chapter 2)
so that the magnetic field is applied in the wafer plane and perpendicular to
the wire. The results are shown in figure 6.9. We see from the resistivity
measurement that the critical temperature is 8.15 K, close to values found in
the literature for niobium thin films [16] and for bulk niobium (7, = 9.15K
[15]). The critical field H.o (approximately when the zero resistivity state is
lost) depends strongly on temperature and can be higher than 1.5T at 4.2K
and even higher (in excess of 2 T') at 2 K. However, these values of H, are only
for the in plane field case and we expect the critical fiends to be very small if
the field were applied perpendicular to the film.

To check the magnetic properties of the niobium films, we placed a small
piece of sapphire wafer with a 150 nm Nb layer on the rotating stage of the
MPMS system (chapter 2). We then measure the AC susceptibility and DC
magnetization as functions of the film orientation and magnetic field. The
results are shown in figure 6.10. From figure 6.10A, we see that, as expected,
the diamagnetic response is much stronger when the magnetic field is applied
perpendicular to the niobium film (close to 0° and 180°) and very small when
the field is in plane (around 90° and 270°). Also, the reactive component
of the susceptibility x”, although small, is also larger in the perpendicular
orientation. Figure 6.10 shows hysteresis cycles for different field orientations.
In the § = 175° case and starting from an unmagnetized state, applying the
field in the positive direction gives a strong diamagnetic response that starts
to decay at about H. ~ 35 Oe (inset). After that the magnetization continues
to decay until the material no longer has a magnetic response. The magnetic
flux through the film is trapped when the applied field is removed and the
superconducting state is restored leaving a positive magnetization at zero field.
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Figure 6.9: DC resistivity performace of Nb resistivity patterns. The wire measured
was 400 1m long and had a cross section of approximately 10 pm by 150 nm (1.5 pm?).
Graph A shows the temperature dependence of the resistivity at zero field with a
critical temperature of about 8.15 K. Graph B shows the critical current density as a
function of the temperature obtained from measuring I-V curves at each temperature.
Graph C shows the dependence of the resistivity on the in plane magnetic field at
several temperatures. Graph D shows the geometry of the circuit

The cycle then repeats in the opposite field direction. It is interesting to note
that the original state is never restored during the cycle. The cycles are smaller
at intermediate angles and in the parallel direction while the effective value of
H, increases (~ 75 Oe at 230° and not visible at 85°).

The hysteresis and the nonzero x” susceptibility indicates the presence of
vortices at relatively low magnetic fields, whose effect becomes especially im-
portant when the field has a non-zero component perpendicular to the film. On
the other hand, these results also show that we should be able to apply mod-
erate magnetic fields without breaking the superconductivity of our circuits.
This is important because, as we can see in chapter 4 and 5, most candidates
for magnetic qubits require magnetic fields fields to tune the level separation
into resonance with our circuits. Applications in micro and nano-EPR exper-
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Figure 6.10: Niobium susceptibility and magnetization measurements at 7" = 4.5 K.
Figure A shows the angle dependence of the AC susceptibility for a 4 Oe driving field
and 15 Hz frequency. The colored arrows correspond to the three orientations shown
in figure B. Figure B shows hysteresis cycles at different orientations. Starting from
a non-magnetized state the field was swept successively to 2 Tesla, -2 Tesla and 2
Tesla. The arrows label the up-sweep and down-sweep curves and the inset shows the
initial response when applying the field. Figure C shows the fragment of niobium on
sapphire measured on the MPMS rotation stage and the direction of the applied field
(AC and DC).

iments would also require applied fields. The next step is therefore to study
the behavior of our resonators at their operating frequency in the presence of
magnetic fields to analyze the possible limitations.

Effects of magnetic fields on resonators characteristics

The appearance of trapped Abrikosov vortices in our wires can alter their
transmission properties and hence, the properties of our resonances as well
as, according to [17] and our susceptibility measurements, introduce hysteresis
effects. We use our setup to insert a 1.409 GHz resonator into our vector
magnet (see chapter 2) and study its fundamental mode for magnetic fields
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applied in different directions. We measure the transmission for each field, fit
a lorentzian line shape to the resonance in each case, and extract the resonance
characteristics (resonant frequency, @ and transmission value).

521 (dB)

10000 |

1000
-0.2

-0.1 0.0 0.1 0.2
B (Tesla)

Figure 6.11: Resonator performance in the presence of magnetic fields. In the absence
of field, the original resonant frequency of the resonator is 1.409 GHz with a Q-factor
of about 19000 and a transmission value of -16 dB. Graph A shows the orientation
of the magnetic field directions. Graphs B,C and D show the transmission, resonant
frequency and quality factor as a function of the applied magnetic field in the three
axis directions. For the in plane directions B, and B, a full hysteresis cycle was
performed (0 T, 0.5 T, -0.5 T, 0.5 T, 0 T) while the out of plane field B, was only
swept from 0 T to 0.5 T and back to 0 T. The arrows in graph B show the typical
route for the hysteresis cycles for all the graphs.

The measurements shown in figure 6.11 reveal clear signs of hysteresis in
the resonance characteristics. According to [17], these effects are due to the
appearance of Abrikosov vortices in the niobium film that alter the conductions
characteristics. Also, we find that the original state before the application of
any magnetic field is never recovered in the cycle, an effect we already expected
from the results of previous susceptibility measurements (figure 6.10). After
each cycle, the magnetic field is oscillated to 0 to reduce the trapped field and
to avoid remanent fields in the superconducting magnets. However, the effect
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is never entirely removed and causes each cycle to start at a different point. In
any case, we see that this specific resonator ceases to have a usable resonance
at about 0.2 T and 0.02 T for the in plane and out of plane field directions
respectively. We also note that when applying the field in the B, direction we
get some noise in the low field region, possibly due to some complex vortex
dynamics. It is important to note that this noise is not time dependent in the
sense that it only appears when changing the field. If the field is kept fixed
the transmission signal is stable but its evolution is noisy when the field is
moved to different values. In any case, the impact of these hysteresis effects
can be minimized performing measurements preferably on the first upsweep.
It is also worth noting that resonators with lower QQ factors are somewhat less
susceptible to these effects and their original characteristics can be approxi-
mately recovered without having to heat the resonator above T,.. Also, higher
Q-factors are usually accompanied with a higher transmission value meaning
that the resonance can be tracked up to higher fields without being lost. As an
example, figure 6.12 shows the histeresis cycles for a 2500 Q-factor and 1.387
GHz resonator. We again see noise in the B, curve at low fields.
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Figure 6.12: Resonator performance in the presence of magnetic fields. At zero field
of field, the original resonance frequency of the resonator is 1.387 GHz with a Q-
factor of about 3500 and a transmission value of -8.7 dB. Graphs A B and C show
the transmission, resonance frequency and quality factor as a function of the applied
in plane magnetic field in the B, and B, axis directions (see figure 6.11A). A full
hysteresis cycle was performed for each orientation (0 T, 0.5 T, -0.5 T, 0.5 T, 0 T)
The arrows in graph A show the typical route for the hysteresis cycles for all the
graphs.
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6.4 Nanometric constrictions in superconducting copla-
nar waveguide resonators

6.4.1 Fabrication

After the basic characteristics of the devices were measured, the center line
is narrowed down from around 10pm to minimum widths of 50 nm along
distances of up to 15 pm at the center of the resonator length (see figure 6.5E).
The constriction was made using a focused ion beam (FIB) system like those
described in section 2.3.2. A narrow beam of gallium ions (down to a few nm
in diameter) is focused onto the niobium layer and swept over the area to be
etched away leaving only a small nanowire. Although it is possible to extend
the constriction length up to 50 pm, they are harder to make and would likely
induce greater changes in the resonator properties. Once the constrictions
are made, special care must be taken both with the device manipulation and
scanning electron microscope imaging since electrostatic buildup and discharge
can easily vaporize the nanowires. To avoid this during FIB processing and
SEM imaging, a short to ground is made by depositing a small platinum bridge
by FIB induced deposition (figure 6.5D). This allows the beam current used
to etch the center line or to image the area to be dissipated continually from
the resonator center conductor instead of as a sudden electrostatic discharge.
After the processing is complete, the bridge is removed with the ion beam.

Phase 1
(High current)

Phase 2
(Low current)

Figure 6.13: Two-phase FIB etching process. Firstly the red areas are etched using
a high beam current. Finally the blue areas are etched using a small beam current
resolve fine features.

In most cases, the etching process is done in two phases (figure 6.13).
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Firstly, the larger areas are etched with a large beam current to save time.
This allows the center line to be narrowed down to about 1pm in a couple of
minutes. In the second phase we remove the remaining material and create
the finished geometry using small beam currents (around 20 pA beam current)
that allows for finer details. The entire procedure, once the sample is loaded
and the chamber prepared, takes no more than 10-15 minutes.

6.4.2 Effects of constrictions on the resonator properties

Figure 6.14: Different length constrictions. The microwave performance of this set of
constrictions is compared in figure 6.17B

To check the changes to the resonance when making a constriction, we
study two series of three identical resonators. In each series we make constric-
tions varying either the length § or the width w and keeping the other constant.
The first series has constrictions of 100nm width and lenghts of 1 pm, 5pm
and 15um to explore the length dependence (figure 6.14) with original values
for fo ~ 1.35 GHz and @ ~ 800. Similarily, the second series keeps a constant
length of 1pm while the width is varied through 300nm, 100nm and 50 nm
(figure 6.15) with original values for fy ~ 1.31 GHz and @ ~ 250. In order
to show that other geometries can also be attained, we show the results for
a single case of a loop constriction (see 6.16 and 6.17A) instead of a straight
nanowire (original parameters, fy = 1.378 GHz and Q1 = 2700). The results
are analyzed by comparing the resonant frequencies, quality factors and trans-
mission values measured before and after the constrictions were made. The
changes found are shown in figure 6.17. As we can see, although there are
some changes in the resonator properties, they remain broadly the same af-
ter having the constriction made. The resonant frequency is altered only very
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Figure 6.15: Different width constrictions. The microwave performance of this set of
constrictions is compared in figure 6.17C

Figure 6.16: Loop constriction The microwave performance of this set of constriction
is shown figure 6.17A
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slightly while the loaded quality factor changes less than 10% in all cases giving
us an indication that there are some extra losses induced in the system by the
constriction. These are possibly due to the fact that the constriction consti-
tutes a defect for the radiation propagation and reflects some extra radiation
from the source. Since these additional losses must be internal, the effect on
Qint 18 more dramatic (up to 60%). These losses also seem to only depend on
the width for the studied geometries.
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Figure 6.17: Resonator performance for different constriction geometries. A) Res-
onance comparison parameters for the specific case of the nanoloop constriction
(see figure 6.16). Afy, AQr, AQin and ASs; are the variations in resonance fre-
quency, loaded quality factors, internal quality factors and transmission value (in lin-
ear scale) respectively. In particular, the case of the nanoloop has Afy/fo = —0.25%,
AQL/QL = —22.7%, AQint/Qint = —54% and ASQ]/SQ]_ = —36%. B) Variation of
resonance parameters for a 100 nm wide constriction and different lengths (see figure
6.14). Longer constrictions induce larger variations in the parameters. C) Variation
of resonance parameters for a 1 pm long constriction and different widths (see figure
6.15). Narrower constrictions induce larger variations. Qin values are calculated from
insertion losses as in figure 6.8.

The decrease of fy likely results from the enhancement of the inductance
at the constriction. A simple approach is to model the constriction by a region
of length ¢ and effective inductance per unit length, I/, larger than its value [
outside this region. As it is described in [18], this effect makes the center line



6.4. Nanometric constrictions in superconducting coplanar waveguide resonators 161

effectively longer for the propagation of RF currents and leads to a close to
linear decrease of fo with increasing §:

Afo 5 (U
——~——|==-1 6.41
fo L (l (64D
where L is the resonator length. The experimental data shown in figure 6.17B
are compatible with /I = 10.9.

The experimental results can also be modelled using an equivalent circuit
with two additional lumped elements at the center of the resonator (figure
6.18), an inductance Ly that accounts for changes of fy, and a resistance Ra
that accounts for AQ. The fitting procedure consists of first measuring the
unconstricted resonator and fitting its length L and gap capacity Cgap as was
done for figure 6.8. Keeping these values fixed, we then fit the transmission
data after the constriction is made using only the additional lumped elements
L4 and R4. Again for the series of resonators in figure 6.17, we find that La
lies in the range of a few tens of pH, increasing with § as we expected from the
above considerations, whereas the effective resistance Ra is of the order of a
few m’s and fairly independent of .

L
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Figure 6.18: Lumped circuit model for constriction

To see what limits the internal losses may place on fabricating higher @
resonators with constrictions we prepared some 100nm wide by 15pm long
constrictions in higher ) resonators and checked the change in the Qr. The
effects on @) are shown in figure 6.19 where we show the values of ) as a function
of the coupling capacitances for all our studied constrictions. The two high Q
cases measured are on the left end of the graph and actually present higher
Q1 after the constriction is made. It is unclear why this happened but we
assume that it is probably may be due to the resonator being cleaner during
the constriction measurement. This removes some of the internal losses which
play a much more important role in this case since they a much larger influence
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on loaded quality factor than in the strongly coupled cases. In any case this
shows that the addition of constrictions need not dramatically influence the
internal losses. We also note that the high Q resonators were fabricated using
the RIE etching while the low Q are from a batch made by liftoff (see section
2.3.1 for details on these procedures). Even before the constrictions are made,
we usually get lower Q factors in the cases where liftoff is used than when
RIE is used. It may be the case that the lithography defects in the liftoff case
(section 6.2.3), as well as introducing extra losses, make the resonators more
sensitive to the addition of constrictions.
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Figure 6.19: Loaded Q-Factors for different resonators with and without constrictions.
The series studied in figure 6.17 are on the right end of the graph while the additional
higher Q resonators are on the left end. Additional resonators without constrictions
have also been added to the graph (squares with no circles). The coupling capacitance
is obtained using the same procedure as in figure 6.8 and assumed to be equal before
and after a constriction is made.

6.4.3 Power effects and critical current density

One important difference that we observe when adding the constrictions is
the power dependence of the resonances. Figure 6.20 shows the performace of
a 100nm wide and 1pm long constriction at different excitation powers and
for the first three cavity modes. The fundamental mode (6.20B) and second
harmonic (6.20D) break down when the microwave power is increased. This
can be explained by noting that, since both the fundamental mode and second
harmonic have a standing wave with a current maximum at the center (as
shown by figure 6.20A) where the cross section has been drastically reduced,
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it is possible that the current density at the constriction exceeds the critical
current for niobium and hence it is becoming resistive. We find that there is
no such effect in the case of the first harmonic. This is understandable along
the same lines mentioned above, since there is then almost zero current at
the constriction (for this mode, the current has a node at the center). These
experiments directly show evidence for the current flow through the nanowire
and for the corresponding enhancement of the current density (thus also the
magnetic field).
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Figure 6.20: Power effects on different resonator modes. Diagram A schematically
shows the centerline of the resonator and the different standing current waves for the
first three resonant modes. Graphs B,C and D graphs show the transmission spectra
in a constricted resonator (1 pm long and 100 nmn wide) for these three resonant modes
and for increasing excitation power (-45,-30,-20,-10 and 0 dBm). Modes with a current
maximum at the constriction position (The fundamental and second harmonic) show
a loss of resonance when the power is increased while modes with no current at the
constriction (first harmonic) show very small changes in the resonance.

We can make an estimate of the critical current density in the nanowire
by applying the definition of the Q-factor and the formulas (6.30) for the
equivalent RLC circuit for the resonator.

E
Q —w stored (642)

The stored energy can be related to the circulating current considering the
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lumped RLC model for the resonator and remembering that the energy stored
in an RLC circuit on resonance is equal to the maximum magnetic energy
stored in the inductor:

1
Fatored = 5LJC? (6.43)

Solving for I., substituting L; from equation (6.30) and using the definition of
Q from (6.42) we get an expression for the critical current in the nanowire:

TrQHOSS
Io= ] =0 44
Z (6.44)

where Pjogs is the power loss from the resonator (dissipated or lost to the
feedlines). Since our measurement is stationary, we assume that the power
arriving at the resonator is equal to the power being dissipated. Since, on
resonance, most of the power is dissipated in 2 equal length wires connecting
the network analyzer to the resonator system (input and output), we assume
that the disspated power is half (in dB) that arriving at the output port of the
network analyzer.

Using the data shown in figure 6.20, we find that the resonance breaks
down at an excitation power of Pyput = —35 dBm and an on resonance trans-
mission of Sp; = —8.71 dB. Therefore Pyiss = S21/2 + Pinput = —38.4 dBm =
0.11pW. Taking the quality factor value of ) = 324 and designed charac-
teristic impedance of Zy ~ 50€) as well as the cross section of the nanowire
(approximately 150 nm thick by 100 nm wide), we get a critical current density
of approximately j. ~ 10 x 10° A cm~2 which agrees with the order of mag-
nitude of the critical current found for niobium thin films [19] and is slightly
larger than the value found in our own measurements (see figure 6.9).

The use of FIB in the fabrication of these constrictions could potentially
implant Ga ions in a thin layer near the constriction edges. This could po-
tentially affect the superconducting properties of our constrictions by making
these layers non-superconducting [20]. However, in our case the ionic currents
used were kept low (around 20 pA) to achieve the maximum resolution in our
structures. According to [21], the regions where the implantation of Ga ions
takes place are about 10-15 nm thick under these conditions. This could re-
duce the effective width of our wires by at most 30 nm in the case that the
Ga ions actually make the Nb a normal conductor. However, in figure 6.21 we
show power sweep data for a 50 nm constriction and find that the calculated
critical current density in this case is essentially the same as in the 100 nm
case (we have in this case Py = —44.34 dBm, @ = 236 and a cross section
of 150nm thick by 50nm wide), with a value of j. ~ 9.8 x 105 A cm~2. This
means that any implanted Ga ions can not be having much of an effect on
conduction properties since the effective section should have been reduced by
up to 50% and should reduced the critical current density.
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Figure 6.21: Power effects on different resonator modes. Diagram A shows the 50 nm
wide constriction used in this case. Graphs B,C and D graphs show the transmission
spectra in a constricted resonator for these three resonant modes and for increasing
excitation power (-45,-30,-20,-10 and 0 dBm). Modes with a current maximum at the
constriction position (The fundamental and second harmonic) show a loss of resonance
when the power is increased while modes with no current at the constriction (first
harmonic) show very small changes in the resonance.

6.4.4 Performance in the presence of magnetic fields

As we did in section 6.3.2 for normal resonators, we now check the field de-
pendence of the new resonators with constrictions. A 15pm long and 110 nm
wide constriction was made in the centerline (figure 6.22D) of a resonator stud-
ied previously (figure 6.11). Hysteresis cycles were performed for the two in
plane axes using the superconducting vector magnet described in section 2.4.4
to correctly align the magnetic field. The results measured at T = 4.2K are
shown in figure 6.22.

We see that the cycles in this case are somewhat more erratic than in the
non-constricted case. The curves are noisier, have asymmetries when inverting
the polarity of the field and, in the B, case, the low field noise in still present.
Also the reproducibility of these curves is poor and there are significant differ-
ences between successive field sweeps.

We believe the reason for these effects is the vortices introduced in or near
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Figure 6.22: Constricted resonator performance in the presence of magnetic fields.
The constriction is 15 pm long and 110 nm wide. In the absence of field, the original
resonant frequency of the resonator is 1.407 GHz with a Q-factor of about 10000 and
a transmission value of -22 dB. Graphs A,B and C show the transmission, resonant
frequency and quality factor as a function of the applied in plane magnetic field in the
B, and B, axis directions (see figure 6.11A). A full hysteresis cycle was performed
for each orientation (0 T, 0.5 T, -0.5 T, 0.5 T, 0 T). Graph D shows an SEM image
of the constriction.

the constrictions have large effects on the circulating currents. If they are
found in this narrow area, the currents are forced to pass through them and
suffer additional dissipation. Also, the exact number of vortices, how they
are pinned in the structure and their possible rearrangement when changing
fields could have large effects in the overall transmission leading to the asym-
metries and noise observed in our measurements. These effects need to be
taken into account when performing sample measurements and steps should
be taken to avoid them. The main precaution is to measure preferably starting
from a non-magnetized state and to reset the system by heating it beyond T,
after each measurement. Also, oscillating the magnetic field to zero after each
measurement is also helpful in restoring the resonator properties. Sweeping
the magnetic field at lower rates and in narrower ranges during measurements
may also be helpful in avoiding vortex movement and rearrangement and make
the response smoother.
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6.4.5 Local MFM measurement of the magnetic field enhance-
ment near a nanoconstriction

As an additional indication that there is an enhancement of the current density,
and hence of the magnetic field, we locally probe the magnetic field generated
by a current flowing through one of these constrictions using a magnetic force
microscope (MFM) described in section 2.5.1. MFM is typically done with a
vibrating AFM tip whose amplitude and phase with respect to the tip excita-
tion are continuously monitored. The tip is coated with a magnetic compound
usually containing cobalt to make it sensitive to stray magnetic fields from the
sample. The actual measurement is done in two passes. During the first pass,
the tip is brought into close contact with the surface and is operated in tapping
mode. In this regime, van der Waals interactions between the tip and the sub-
strate dominate. The tip will then be only sensitive to the topography of the
sample, which is recorded. The second pass is done by lifting the tip a certain
distance from the surface (usually of the order of 100 nm) and then following
the recorded topography profile. On account of the strong dependence of van
der Waals forces on distance, this suppresses the topography signal from the
measurement. The magnetic signal can be seen as phase displacements in the
second pass. To a first approximation, these phase differences are proportional
to the force gradient felt by the tip in the vibration direction (vertical). The
tip-sample interaction energy is approximately proportional to the tip mag-
netic moment times the stray field. The force felt by the tip can then be
obtained as minus the gradient of this energy:

— —

Eint = _ﬁtipé = F = V(ﬁtjpB) (645)

Assuming that the vibration direction is y, we get that the phase signal in
MFM is proportional to second derivatives of the magnetic field:

OF. H? ~ 9%B 9%’B 9*B
Apox= 2 = 2 (ugpB) = prp =2 R 4
¢ o< oy 8yQ(Mtp ) =p oy + py 0y + o (6.46)

Values for these derivatives can be obtained numerically for simple geome-
tries so we can compare the results to experimental MFM signals. We calculate
second derivatives of the magnetic field components generated by 100 nm high
wires. We congsider two different wire widths: 10 um, typical of “normal” res-
onators, and 100 nm, thus of the order of the constrictions made by ion-beam
lithography. Cross sections of the calculated profiles are shown in figure 6.23.
It shows the general behavior of the derivatives of the two non-zero compo-
nents B, and B,. MFM tips are tipically magnetized in the y direction, so

2
the signals should qualitatively be similar to the 68—5;’ profiles, with a signal
featuring positive and negative edges. Also, narrowing the wires increases the
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Figure 6.23: Profiles for second derivatives of the magnetic field in the proximity of
a rectangular wire. The graphs show the derivatives of B, (top) and B, (bottom)
while the graphs on the left are for a 100 nm width wire and the graphs on the right
are for a 10 pm width wire. The lift separations shown are distances from the profile
height to the top of the wire surface (100 nm further from the surface).

simulated signal by a factor of about 100 as can be seen observing the scales
in figure 6.23

For the MFM measurements we fabricate a 1pum long by 100 nm wide
constriction out of a 100nm thick gold layer on sapphire. This constriction
is made on a simple gold circuit with 4 pads, 2 to inject the current and 2
to measure the voltage drop in the wire. The sapphire is glued to a sample
holder with larger copper pads that are wire bonded to the gold circuit. This
whole ensemble is then placed on the AFM stage and connected to a current
source and a voltmeter. A 2.1mA DC current is made to circulate in either
direction along the nanowire while experiments are performed at room tem-
perature. Topography and magnetic phase images are shown in 6.25. These
images qualitatively show an enhancement of the magnetic signal (a magnetic
phase contrast of A¢ = 0.26° from maximum to minimum) in the constriction
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Figure 6.24: Experimental setup for MFM measurement of gold nanowire. The circuit
is mounted on a fiberglass sample holder with copper contacts that are wire bonded
to the gold circuit. The gold circuit (100 nm layer thickness) is constricted at its
center using FIB in the same way as the CPW resonator case. The dimensions of the
constriction are 1 pm long by 100 nm wide.

area and a negligible signal (indistinguishable from background) in the wider
areas of the circuit. The current was reversed three times during the image
aquisition. These correspond to the contrast changes in the phase image, thus
showing that the signal must be magnetic in origin and due to the circulating
current. We also note a constant background signal probably due to an elec-
trostatic potential difference between the metallized and non-metallized areas.
If greater precision were needed, this background could possibly be filtered out
using schemes similar to those detailed in [22] where electric potential nulling
is used. However, our measurements here are sufficient to conclude that there
is a strong field enhancement near the nanowire and that the behavior is qual-
itatively similar that shown in figure 6.23 for a vertically magnetized tip.

6.5 Conclusions

In this chapter we have introduced superconducting coplanar waveguide res-
onators as interesting devices for quantum information processing. We firstly
summarized the distributed circuit model to describe their basic properties
required for their design. We then designed, fabricated and tested resonators
with operating frequencies in the 1.4 GHz range with quality factors ranging
from 100 to 40000. We also studied their performance at 4.2 K with and with-
out applied magnetic fields. We find that magnetic fields can have large effects
on the resonators by introducing extra losses in the resonators and generating
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Figure 6.25: Magnetic force microscopy image of a 1 um by 100 nm constriction. The
circuit is made from a 100 nm thick gold layer on a sapphire substrate and has a 2.1 mA
DC current. The graphs on the left show the wire topography while the images on
the right show the MFM signal and MFM profiles for different locations. We see
that there is a clear magnetic signal in the wire that is not visible in the wider area.
Also, the changes in contrast in the image correspond to flipping the current direction
during the image aquisition. We also note that there is a appreciable electrostatic
background signal.

hysteresis effects related to the appearance of Abrikosov vortices. We also see
these hysteresis effects measuring magnetic susceptibility in Nb thin films.

Once this basic characterization is done, we use FIB to create nanometric
constrictions in the centerline with the objective of concentrating the current
and enhancing the magnetic field. After testing these designs we conclude that
they do in fact concentrate the magnetic field close to the nanoscale constric-
tions in the center line. These devices could potentially be used to achieve
strong coupling to magnetic qubits and for nano-EPR experiments. The res-
onance characteristics remain largely unchanged although some additional in-
ternal losses are added. Although the resonator frequency is relatively low
(1.3to 1.4 GHz), we see no reason why these designs should not also work well
at higher microwave frequencies. Due to the reduced wavelength at higher
frequencies it is possible that there are somewhat larger changes for longer
constrictions since they would be larger compared to the shorter wavelength.
However, the wavelength A remains much larger than our typical constriction
length for frequencies f < 50 GHz. Direct evidence of the current concentra-
tion is seen by the power effects in the different harmonics of the resonator
where we see that for high powers and modes that have current maximums
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at the constriction position, there is a suppression of the superconductivity.
Also, local measurements of DC currents in nanowires show a magnetic field
enhancement directly. We propose that these systems are promising candidates
for further applications in quantum information control and in the characteri-
zation of nanoscopic magnetic samples.
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Chapter 7

Experiments on the coupling of
magnetic samples to Coplanar
Waveguides and Resonators

7.1 Introduction

In the previous chapters we have established that a possible method of build-
ing a quantum processor is to use Single Molecule Magnets (SMMs) and, in
particular, Single Ton Magnets (SIMs) (chapter 5) in conjunction with circuit
QED systems, namely superconducting CPW resonators. The strong coupling
limit is expected to be achievable using SIMs with large enough samples or
using nanometric constrictions (section 4.3).

The next obvious step would the be to measure this strong coupling. How-
ever, technical limitations at our laboratory currently make it difficult to mea-
sure samples in resonators at frequencies beyond about 1.5 GHz. Therefore, the
interesting cases like GAWj3, (section 5.2) and TbWj, (section 5.3) that have
higher operating frequencies are not currently accessible with our hardware
(some transitions between excited states of GdWy, are accessible), although
efforts are being made to improve our systems and such experiments will be
possible in the near future.

However, we can test the spectroscopic capabilities of these devices with
other samples allowing us to also test whether the nanometric constrictions
described in section 6.4 improve the coupling for very small samples. Addi-
tionally, broadband measurements up to 14 GHz can be performed with our
systems using Coplanar Waveguide (CPW) transmission lines instead of res-
onators. Although the coupling is much lower than in the resonator case,
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absorption can be detected in a much wider range of frequencies. This allows
the direct mapping of the energy level separation as the magnetic field is swept

[1].

We will present results for three different samples:

e DPPH (2,2-diphenyl-1-picrylhydrazyl)|2], an EPR calibration sample pre-
viously introduced in section 4.3.2.

e A Gd fluoride, Ca; (Gd Fy, . Rare earth ions doped into fluoride crys-
tals are one of the basic systems originally used for study of rare earth
paramagnetic properties [3] in crystal environments. They exhibit a well
known crystal structure and have good stability.

o A GdW,, crystal similar to those described in section 5.2.2. Although
the transitions that are most interesting for quantum computation ap-
plications lie beyond our resonator operating frequency, some transitions
could potentially be visible.

The chapter is organized as follows. In section 7.2 we will measure absorp-
tion for the different samples on a superconducting CPW transmission line.
Next, we review the theoretical framework describing a system of coupled spins
to a resonator system in section 7.3. In section 7.4 we investigate the coupling
to standard CPW resonators of different sizes to crystals and droplets. Later,
in section 7.5 we will evaluate the performance of a nanometric constriction in
improving the coupling to a small sample. Finally in section 7.6 we give the
conclusions for this chapter.

7.2 Broadband spectroscopy using superconducting
CPW

One disadvantage of standard EPR measurements is that the use of a cavity
restricts the working frequencies. As described in chapter 2.2.1, EPR setups are
built to work in a specific frequency band given by the cavity geometry and its
microwave source. The cavity allows electromagnetic energy to be accumulated
within and higher rf fields to be attained allowing the measurement of smaller
samples and signals.

It is also possible to measure a sample directly on a transmission line such
as those based on CPW designs (chapter 6). An open waveguide allows trans-
mission through it with, in principle, no frequency limitation' allowing broad-

! At high enough frequencies, the losses would eventually be too high to allow small signals
to be detected.
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band spectroscopy in a single device. This however comes at the cost of a
much reduced energy density in the sample volume as the photons only see
the sample once as they pass through the device. In the cavity setup they are
stored in a certain volume where they have a higher chance of interacting with
the sample before they are dissipated. Hence, all else being equal, the signal
changes associated with absorption of rf photons by a magnetic sample are
much weaker when using a transmission line than when a cavity is used. How-
ever, if the coupling is strong enough or the samples large enough, monitoring
the transmission through such a system while sweeping the source frequency
would allow us to detect an absorption line when the frequency coincides with
an energy transition in the sample. Also, if the transitions depend on an ap-
plied magnetic field for instance, it would be possible to map the changes in
the energy level spectrum.

As an initial test of our spin systems and as a test of our setup, measure-
ments were performed using transmission lines fabricated and mounted using
the same procedures as those used for resonators in chapter 6. These measure-
ments also allow us to work with higher frequencies than our current resonators
can achieve (up to 14 GHz on a waveguide instead of ~ 1.5 GHz for resonators).
All experiments are performed at liquid helium temperatures (4.2 K).

7.2.1 DPPH on a superconducting CPW

As afirst test, a Nb on sapphire CPW with a 200 pm gap and 400 pm centerline
was used. A large amount of DPPH powder mixed with Apiezon N grease was
spread over the surface (figure 7.1A). The DPPH spin density can be found us-
ing its density (p = 1.4gcm™3) and molecular weight (M, = 394.32 gmol 1)
[4] to be 3.55 x 1073 mol cm 3. The device was then mounted on the 4 K probe
and inserted into a superconducting magnet. The transmission is measured
from 10 MHz to 14 GHz while the field B is swept from 0T to 0.57T applied
in the Z direction marked in figure 7.1A. The rf field will be perpendicular to
the DC field which, as discussed in section 4.3.2, is the optimal configuration
to induce transitions in the sample. Since DPPH is an spin 1/2 system with
g ~ 2, there should be absorption at frequency:

Q  gsus

fo=o-

_ _ -1
=5 =" B=(8CHT")B (7.1)

The transmission Soi(f, B) is a function of the drive frequency and of the
DC magnetic field. The background including the connecting wires at 0T
(equivalent to the empty transmission line case) is shown in figure 7.1B. When
compared to the red line representing an ideal waveguide with resistive losses,
we see that the profile is very irregular. However, this noise is stable and
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Figure 7.1: DPPH on a niobium CPW transmission line. Graph A shows a micro-
scope image of the device and sample. Graph B shows the background transmission
spectrum including connecting wires. The red line shows the expected transmission
from a waveguide with only resistive losses (from connecting wires). Graph C shows
a close up of the transmission S3; normalized by the transmission at zero field. Each
color was taken at fields 0.125T, 0.137T, 0.135T, 0.14T, 0.145T, 0.15T, 0.155T,
0.16 T, 0.165 T and 0.17 T respectively. Graph D shows the same spectra but each of
them normalized by the spectrum at a 5mT higher field.

reproducible from one frequency sweep to the next indicating that these irreg-
ularities probably originate from the connections to the device (wire bonds,
intermediate connectors, PCB design and materials, etc.). The sample absorp-
tion is too small to be directly distinguished from this noise at a fixed field.
However, if the field is changed, the background irregularities vary slowly and
do not in general move from their position. On the other hand, the sample
absorption peak does move when the field is changed according to equation
(7.1). Therefore, if we divide each spectrum by, for instance, the signal at
0T, and represent So1(f, B)/S21(f,0T) for different fields we see an absorp-
tion peak that changes its frequency for each field (figure 7.1C). The sample
absorption signal is visible in this case but changes in background signal when
the magnetic field is increased produce artifacts and distorsions in what should
be a flat graph with a dip at the corresponding frequency. Better results can
be obtained if we normalize instead by a spectrum with a field value close to
the current field. For example, figure 7.1D shows So1(f, B)/S21(f, B+ 5mT),
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Figure 7.2: The main graph shows the normalized S3; transmission as a function
of both frequency and magnetic field for DPPH an a niobium CPW transmission
line. An image of the transmission line and the sample is shown in figure 7.1. The
spectrum at each field is normalized by the spectrum at a field 5mT higher. The
peak-dip frequency was extracted and is shown in the inset. The slope gives the g-
factor for DPPH. The measurement was done in two separate sweeps and the blank
areas were not measured.

i.e, the transmission normalized by the signal at a field 5mT higher. We see a
much flatter background and both a peak and a dip. The dip corresponds to
the current field, while the peak corresponds to the spectrum used to normalize.
We will use this last method of normalization in most cases.

Figure 7.2 shows the normalized transmission spectra at different fields.
Using the previously detailed normalization, We clearly see a dip-peak in the
transmission intensity that changes position according to a gg ~ 2 slope. Each
spectrum is fitted to a dip-peak function:

_ v v
'—i(f—fo) T —i(f—fo—9)

Where v is a coupling strength, fy is the energy level separation and ¢ is the sep-
aration between the peak and dip. The fitted fy is shown in the inset of figure
7.2. The fit gives the g-factor of the DPPH sample (g = 2.002). We also find

Sy = |1 7t (7.2)
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Figure 7.3: Thin transmission line (7 pm gaps and 14 um centerline) and a drop of
DPPH placed on top. Only the parts of the drop close (within about 10-20pum)
to the transmission line contribute to the signal. The graph shows the background
transmission (S21). The red line is the behavior of an ideal waveguide with dielectric
and resistive losses (from connecting wires). The dielectric losses are included in this
case to better follow the measured dependence.
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Figure 7.4: The graph shows the normalized S»; transmission as a function of both
frequency and magnetic field. The transmission line and the sample are shown in
figure 7.3. The spectrum at each field is normalized by the spectrum at a field 5mT
higher. The absoption feature is clearly distinguished from the background noise and
distorsions (horizontal bands).
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that the actual signal difference to the background is < 0.05dB, corresponding
to power absorptions of less than about 1% relative to the background.

Another experiment using a superconducting CPW is done with a more
controlled sample size and a thinner transmission line. The device is a trans-
mission line with 7pm gaps and a 14 pym wide center line. The DPPH powder
is used to make a saturated solution in dimethylformamide (DMF) with 5%
glycerol. A drop is placed onto the transmission line using a micropipette
and left to dry (figure 7.3A). The solution is used to more effectively fill the
transmission cross section and get the sample close enough to the currents. As
discussed in section 4.3.2, the fields from the transmission line do not reach far
beyond the gap and center line width and the sample needs to be placed well
within this volume. The background is shown in figure 7.3B and is again very
irregular. The red line represents the behavior of an ideal waveguide with only
resistive and dielectric losses. In contrast with the case in figure 7.1B where
only resistive losses were necessary, here some small dielectric losses need to
be included so that the ideal behavior follows the measured spectrum. This is
probably due to the fact that the CPW is much thinner than in the previous
example and will therefore have much stronger electric fields causing larger
dielectric losses.

Figure 7.4 shows the 2 dimensional normalized transmission spectrum as
a function of frequency and magnetic field. The field is again applied in the
resonator plane, parallel to the transmission line. The absorption feature has
the same dependence as in figure 7.2 and can be fitted in the same way using
equation (7.2). The extracted g-factor is gg = 2.000. The horizontal bands
correspond to background features that change in intensity with the magnetic
field but do not shift their position. The differences with the background
signal were slightly larger in general < 0.1dB. We see that even with the
sample being much smaller than in figure 7.1, we can get similar signals by
choosing a transmission line well adapted to the sample size and by filling the
sensitive areas effectively.

7.2.2 CaGdF on a superconducting CPW

Calcium Fluoride CakF, crystals have been used extensively for basic studies
of rare earth ions in crystalline environments [3] due to their good crystal
qualities (cubic symmetry) and stability for a broad range of temperatures [5].
The crystal unit cell is shown in figure 7.5. These crystals are doped with a
rare earth ion with a fraction of the Ca?" sites being replaced with the dopant.

In the case of our Gd fluoride crystals, The Ca®" ions are substituted with
Gd*" at a concentration of about 0.2% per CaF,, unit. Only 13% of these are



180 Chapter 7. Coupling samples to Coplanar Waveguides and Resonators

¢:7T/4: 0e [Oaﬂ—]

— 3
( [6).]7)

Classical

2r Potential

2,13).14),15)

< W— 10),11)

L=5463A 2 * )
& C?2+ 4 x CaFy per ;mit cell _3_4 _‘3 —‘2 —‘1 6 i 2‘ é 4
@r p=3.18g/cm S.(= Scosb)

Figure 7.5: Left: Unit cell of a CaF, crystal. When doped with Gd, the Gd*" ion
replaces a Ca”" ion. Only Gd®" ions in cubic symmetry sites contribute to EPR
signals [6]. Right: Energy levels of the zero field states for the Gd spin in a CaF,
crystal. Horizontal lines represent the quantum energy levels. The dots represent
the energy levels and the (Sz) expectation value for each. The line at the center has
four degenerate energy levels while the other two have two degenerate levels. The red
curve represents the classical potential for the Hamiltonian in equation (7.3) for the
polar coordinates ¢ = /4 and 6 € [0, 7] represented as a function of Sz.
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Figure 7.6: Energy levels for magnetic fields applied along two different crystal axes
of a GdCaF crystal calculated from Hamiltonian (7.3). Direction [110] (right) corre-
sponds to a crystal edge
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Figure 7.7: The photo shows a CaGdF crystal on a niobium CPW transmission line
(200 pm gaps and 400 pm centerline). The axes approximately show the laboratory
field directions. The red arrow is aligned with the crystal edge corresponding to the
[110] crystal direction. The upper face correspondes to the (111) crystal plane. The
graph shows the background transmission (Ss;). The red line is the behavior of an
ideal waveguide with resistive losses (from connecting wires).

actually in cubic symmetry sites and contribute to EPR signals [6]. Using the
density of CaF,, p = 3.18gcm ™3 and the concentration 0.026%, this works
out to a Gd®>" ion concentration of 1.08 x 10~° molecm™3. We note that this
concentration is about a factor 300 smaller than the spin concentration in
DPPH. The crystals are usually rectangular and the lateral sides correspond
to (111) crystal planes and the edges correspond to [110] crystal directions
(figure 7.7).

The Hamiltonian for the rare earth ion spin is given by a crystal field
Hamiltonian (equation 4.6) similar to those described for SMMs and SIMs in
chapters 4 and 5. In this case we have the following parameters |7, 6]:

Hy = gsba (09 +507%) + 15506 (03 — 2108) — gsupB- S (7.3)
S=1 gs=1992, by=-1453GHz, bs=—0.3MHz,

where Ozj are extended Stevens operators [8, 9] (see table 4.1). This Hamilto-
nian can be readily diagonalized for any given field and we find that the zero
field split energy levels are all within a 5 GHz energy band (figure 7.5). The
strong transverse anisotropy terms induce large mixings between the Sz states
that form the energy eigenstates. For example, the ground state doublet is a
mixture of the | & 1) and | F ) respectively. The zero field level diagram is
shown in figure 7.5 along with the classical potential. Figure 7.6 shows the
effect of the magnetic field on the energy levels for two different orientations.

A crystal is placed on a wide transmission line (200 um gaps and 400 pm
center line) and fixed using a thin layer of Apiezon-N grease with its [110]
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Figure 7.8: The graph shows the normalized S3; transmission of a CaGdF crystal
as a function of both frequency and magnetic field. The field is applied along the Z
laboratory axis which is approximately aligned with the [110] crystal direction. The
transmission line and the sample are shown in figure 7.7. The spectrum at each field
is normalized by the spectrum at a field 4mT higher. Several absorption lines can be
tracked. The horizontal breaks and lines are due to poor and noisy transmission in
specific frequency regions (mostly field independent).
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Figure 7.9: Transmission signals extracted from figure 7.8. The points are extracted
from the absorption peaks (not all are shown for visibility). Solid lines are least
squares fits of transitions derived from the spin Hamiltonian (7.3). This allows an
estimation of the applied field direction relative to the crystal reference frame (7.3).
In this case it approximately corresponds to the [110] or equivalent (cubic symmetry)
crystal direction. The calculated absorption lines are labelled according to the pair
of energy eigenstates connected by the transition. |0) is the ground state and |n) are
the successive excited states. At high fields they approximately correspond to spin
eigenstates in the direction of the applied field, i.e., |0) ~ |m = —=7/2), |1} ~ |m =

—5/2), ., [T) ~ |m = +7/2)
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Figure 7.10: The graph shows the normalized S3; transmission of a CaGdF as a
function of both frequency and magnetic field. The field is applied along the 8 = 45°,
¢ = arctan v/2 ~ 55° laboratory direction which is approximately aligned with the
[100] crystal direction. The transmission line and the sample are shown in figure 7.7.
The spectrum at each field is normalized by the spectrum at a field 4mT higher.
Several absorption lines can be tracked, which are clearly shifted from those seen in
figure 7.8.
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Figure 7.11: Transmission signals extracted from figure 7.10. The points are extracted
from the absorption peaks (not all are shown for visibility). Solid lines are least
square fits of the transitions derived from the spin Hamiltonian (7.3). This allows
an estimation of the applied field direction relative to the crystal reference frame
(7.3). In this case it approximately corresponds to the [100] or equivalent (cubic
symmetry) crystal direction. The green and red experimental points are assumed to
overlap and only the green are visible in the graph. The calculated absorption lines
are labelled according to the pair of energy eigenstates connected by the transition.
|0) is the ground state and |n) are the successive excited states. At high fields they
approximately correspond to the spin eigenstates in the direction of the applied field,
ie, [0) ~|m=—=7/2), |1) ~|m = —=5/2), ..., [T) ~ |m = +7/2)
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direction aligned with the vector magnet (laboratory) Z axis and its (111) face
perpendicular to the Y axis (figure 7.7). The transmission is then measured
following the same procedure used for DPPH in section 7.2.1. The same nor-
malization as in figures 7.2 and 7.4 is again used. The separation between
the normalizing spectra in this case is 4mT. We firstly apply fields in the Z
laboratory axis ([110] crystal direction) and obtain the transmission shown in
figure 7.8. We see multiple transmission lines that change position as the field
is increased. These positions can be extracted and compared to the expected
absorption lines from the Hamiltonian (7.3). With the given Hamiltonian pa-
rameters, the field direction in the crystal reference frame can then be be fitted
and compared to the expected direction. The extracted lines and fits are seen
in figure 7.9. The fit in this case gives § = 42.8 + 0.4 and ¢ = 81.7 + 0.6
in spherical coordinates. This is compatible with the expected [110] result
considering that the crystal was aligned by hand.

Using the other components of the vector magnet we can also apply the field
in the [100] crystal direction, equivalent to the Sz direction in the Hamiltonian
(cubic symmetry). Using the orientation of the crystal seen in figure 7.7, the
magnetic field must be applied in the direction of the unitary vector b =
(1/v/6,1//3,1/4/2), i.e., § = 45° and ¢ = arctan v/2 ~ 55° in the laboratory
frame. The absorption lines in this case, seen in figure 7.10, are clearly different
from those in figure 7.8. We again extract the curves and fit them to the
expected transitions from equation (7.3) (figure 7.11). The fit gives a field
direction 6 = 11.74° £+ 0.08° and ¢ = 45° 4+ 7° in spherical coordinates in the
crystal frame. This is also compatible with the [001] = [100] direction and the
deviation is attributable again to a small misalignment of the crystal.

For this sample we only present results obtained with a wide transmission
line. A thin transmission line (7 pm gaps and 14 num centerline) was also tested
but the signal from the GdCaF crystal was too weak and barely visible. This
was due to the inefficient filling of the sensitive area of the transmission line
and is a demonstration of the issues discussed in section 4.3.2 about the filling
of a CPW resonator by a crystal sample. The same issues apply in the case of
an open waveguide. The layer of grease used to fix the crystal and the surface
roughness both contribute to place the spins too far away from the currents as
to have a sizable interaction.

7.2.3 GdWj;, on a superconducting CPW

The last sample tested using open waveguides was a GdW,, crystal. The
Hamiltonian for this sample is described in section 5.2. A several mm long
crystal was placed on the previously mentioned wide waveguide (200 pm gap
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Figure 7.12: The photo shows a GdW,, crystal on a niobium CPW transmission
(200 pm gaps and 400 pm centerline). The axes approximately show the laboratory
field directions. The red arrow is aligned along the crystal edge corresponding approx-
imately to the [001] crystal direction. The graph shows the background transmission
(S21). The red line is the behavior of an ideal waveguide with resistive losses.

and 400 pm centerline) as shown in figure 7.12. The long edge of the crystal
was aligned with the Z field and with the waveguide direction. As described
in section 5.2.2, these crystals are produced from an oversaturated solution
in deionized water. Once the crystals are removed from the solution, they
rapidly lose interstitial water molecules and the crystal loses its integrity in a
few minutes. In an attempt to avoid this, the crystal was covered in Apiezon
N grease to both conserve the crystal and to fix it to the resonator. The device
was then inserted into the vector magnet and the transmission measured, as
in the previous sections, as a function of frequency and magnetic field.

The normalized spectrum is shown in figure 7.13 again using a 5mT field
separation for the normalization. Unlike the results for the GdCaF case (fig-
ures 7.8 and 7.10), here we see a very wide band instead of well defined peaks.
We interpret this to mean that the crystal lost its integrity in the mounting
and cooling process and that, during the measurement, it behaves close to a
powder. To support this assumption, we use Easyspin [10] to emulate a similar
measurement?. In our case, we use the Hamiltonian parameters and the BY
and B? strains for GAWj, given in section 5.2.1 and do a series of continuous
wave simulations with varying frequencies (from 10 MHz to 14 GHz). We gen-
erate spectra for both crystalline and powder samples with the same sample
parameters. The output is set to direct absorption (instead of first derivative)
and we normalize the results using the same scheme as in our measurement.
The results are shown in figure 7.14 and 7.15. Both graphs are qualitatively
similar to the result of the experiment although our measurement may be in

*EasySpin is a Matlab [11] package that simulates EPR spectra given the sample prop-
erties and experimental variables.
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Figure 7.13: GdW,, crystal on niobium CPW transmission line. The graph shows
the normalized So; transmission as a function of both frequency and magnetic field.
The field is applied along the Z laboratory direction. The transmission line and the
sample are shown in figure 7.12. The spectrum at each field is normalized by the
spectrum at a field 5mT higher. A very wide absorption band is visible probably due
to loss of sample integrity. The horizontal breaks and lines are due to poor and noisy
background transmission in specific frequency regions (mostly field independent).
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between both situations. Also, some features are absent form our measurement
possibly due to having lower sensitivities when using a waveguide than when
using a cavity as in the simulation, as well as to other effects derived from the
sample degradation (differences in strains and broadening, etc.) not taken into
account in the simulations.

This measurement shows that, although the coupling to this type of SIM
can be strong enough to do spectroscopy on a superconducting CPW, more
precautions must be taken to ensure the integrity of the sample.

7.3 Transmission through a resonator coupled to spins
(theory)

The Hamiltonian describing a quantum two level system (or qubit) coupled to a
single mode of the electromagnetic field in a cavity was described in section 3.1.
The detuning A = Q — w,, i.e., the difference between the photon frequency
of the cavity mode w, and the energy splitting of the two level system hS2,
determines when the two systems are in resonance (|A| ~ 0) and when the
systems are far from resonance (|A| > g, where g is the coupling strength).
Far from resonance, the systems (qubit and resonator) have their independent
behavior while, in resonance, the states of the resonator and the qubit are
hybridized being mixtures of both photon and qubit states.

As can be intuitively deduced from figure 3.1, the transmission far from
resonance will consist of a single peak at the resonator frequency w, with a
width given by the cavity decay rate k. When we approach the resonance
condition (A ~ 0), the peak will split into two peaks separated by 2¢ and
reduce its intensity since part of the energy is now transferred to the qubit and
will be lost from the transmission channel (only sensitive to photons). These
peaks can be resolved as long as the coupling g is stronger than both the cavity
decay rate x and the qubit dephasing rate v ~ T3, ! It also requires the driving
to be low enough so as to have at most a single photon stored in the cavity,
so that the transitions will be from the ground state to the first doublet in
figure 3.1. At higher drivings, mostly transitions between excited states will
be induced averaging out to a single peak spectrum.

The situation is further complicated if, as is the case in this work, the cavity
is instead coupled to an ensemble of qubits. As discussed in section 4.3.2, this
broadly leads to a v/N enhancement of the effective coupling, with N being the
number of qubits and assuming they all couple with the same strength g. The
spectrum will display two peaks separated by 2¢v/N if the number of spins is
larger than the cavity photon population. As in the case of a single qubit, if
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Figure 7.14: Easyspin simulation of a GdWj, crystal on a transmission line. The
transmission line is emulated by simulating EPR spectra at many different cavity
frequencies. The simulation parameters were set to 7' = 4.2 K, Sample line width =
16 mT and the field was set along the x molecular axis. The graph shows the normal-
ized signal as a function of both frequency and magnetic field. The spectrum at each
field is normalized by the spectrum at a field 5mT higher to match our experimental
protocol.
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Figure 7.15: Easyspin simulation of a GAW,, powder on a transmission line. The
transmission line is emulated by simulating EPR spectra at many different cavity
frequencies. The simulation parameters were set to T' = 4.2 K, Sample line width =
16 mT. The graph shows the normalized signal as a function of both frequency and
magnetic field. The spectrum at each field is normalized by the spectrum at a field
5mT higher.
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the drive is high enough, the system evolves into a single peak spectrum.

These general remarks on the behavior of the coupled system transmission
can be studied in greater detail [12, 13] using the Tavis-Cummings Hamilto-
nian, a generalized version of the Jaynes-Cummings model, with an additional
driving field of intensity £ [14, 15, 16]:

H = Ho+He (7.4)
N N N

Hy = wTaTa+Q<ZSiZ+N/2>—g<aTZSZ-+CLZS;F> (7.5)

He = E(ale™at 4 geiwat) (7.6)

Here, we have set A = 1 and the qubit or spin ensemble is modelled by N
spin 1/2 systems with spin operators S; for each spin. To reduce the spin
Hilbert space dimension we consider the approximation where only the total
spin couples to the cavity, i.e., we replace:

N

> §=58 (7.7)

(2

where the total spin is N/2. Equation (7.5) then reads:®
Ho = wrala+Q(Sy + N/2) — g(a'S™ +aS™) (7.8)

Under this Hamiltonian the sum of the total Sz and the photon number is
conserved. We call this operator the excitation number:

Nex = Sz +d'a Nex|n,mz) = (n+ my)|n,my) (7.9)

This makes the Hamiltonian block diagonal if the basis |n, m.) (n is the number
of photons and m, is the S, quantum number) is ordered according to the
excitation number. Then it can be systematically diagonalized block by block.
Each block is 1 dimension larger than the previous block up to a maximum
dimension of N 4 1. The energy eigenvalues can be labelled E,; by excitation
number n’ and a second index k that runs from 1 up to each block’s dimension
(the minimum of n’ + 1 and N + 1). Once the Hamiltonian is diagonalized,
we plot the frequencies of the transitions induced induced by the radiation
field operators a or al and the associated matrix elements in figure 7.16 for
the case of zero detuning (A = 0). Note that a and al connect states with
+1 excitation, i.e., (n|k|at|nbk’) = (n)k|a|nfk’) = 0 unless n} = n) + 1. We

therefore only show transitions between states fulfilling this condition.

3The coupling g in equation (7.8) is not to be confused with the g-factor gs appearing in
the Zemman energy in, for instance, equation (7.1).
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Figure 7.16: Transition frequencies for the Hamiltonian (7.5) given by AE = Ep/ 41—
E, 1. The horizontal lines are proportional to the corresponding transition matrix
element |(n/,k|a|n’ +1,k’)]*. The lower graph shows a zoom of the central band
around the bare resonator frequency w,.. The parameters chosen for the representation
were w, =1, ¢ =0.01, A=0(Q2 =w,) and N =10

Observing this figure, we find that different regimes will be visible in the
transmission of microwaves depending on what the number of excitations is.
Firstly we note that the matrix elements are largest in the central band around
wy (shown in the lower graph). If the excitation powers (and temperature) are
low enough, only transitions with n’ = 0 will be visible and will be separated
by an energy 2gv/N. If the driving is stronger, the number of excitations will
shifted towards the right of the graph and the two peaks slowly approach each
other. Once the the number of excitations is above the number of spins, the
larger matrix elements further concentrate in the central band as the two-peak
structure is lost and a classical one-peak spectrum is recovered.

The simulation of the actual lineshapes and widths due to the different
dephasing mechanisms (associated to the cavity or the qubits) requires simu-
lating the driving field as well as the dissipative effects. This is done by first
converting the Hamiltonian (7.4) to a frame rotating at the driving frequency
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wq through the unitary transformation U = exp (iwdt(aTa + SZ)). The dissi-
pation can then be modelled through a Lindblad type master equation [17] for
the density matrix p of the system:

%p = —i[H, p] — k(atap + paTa — 2apal)
—y(8TS p+pSTS™ —28 pST)

—: ((S2)°p + p(Sz)* — 252pSz) (7.10)

The first term in equation (7.10) is the usual time evolution under the Hamil-
tonian (7.4) including the driving term (7.6). The term proportional to x gives
the cavity decay while the terms proportional to v and v, describe the qubit
dephasing and decay. For convenience, the matrix equation can be rewritten
by taking a vectorization of p and defining the superoperator L as follows:

d
—p=Lp. 7.11
P =Lp (7.11)
We are interested in the steady state transmission and cavity population values
so we need to solve the master equation for dg/dt = Lo = 0 or equivalently:

—i[H, p] — K(a'ap + pa'a — 2apa’)
—y(STS p+pSTS™ — 28 pST)

—Yz ((Sz)2p + p(Sz)2 — 2SZpSZ) =0. (7.12)

Solving for p allows us to obtain the expectation values of any observable. In
particular:

Nphotons = <aTa> =Trpa'a (7.13)

Q = Im{a) =Trp(ia' —ia) (7.14)

where @ is proportional to the cavity transmission signal [13].

In resonance (A = 0), there are several regimes that can potentially be
seen in experiments where the driving frequency wg is swept and the cavity
signal is monitored (figure 7.17). For low driving powers, such that the photon
population of the cavity is smaller than the number of spins, the cavity reso-
nance splits into two much lower intensity peaks with their centers separated
by 2gv/N. This is in agreement with figure 7.16 since the low drive only allows
the system to explore the low number of excitation states where the dominant
transition frequencies are separated by this amount. The width of the new
peaks is a combination of v and x since the states are hybrids of both spin and
photon states. They will be resolved as long as the new widths are smaller than
the peak separation (basically g > 7,k). A clearly resolved two-peak trans-
mission spectrum is a signature of strong coupling. If we increase the qubit
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Transmission signal as a function of the driving frequency wy given by
the master equation model (7.12) for different parameter combinations. Each graph
shows the dependence for different values of a single parameter and fixed values for
the rest. The parameter values for each graph are shown in the table. Graph A shows
the dependence when changing the spin dephasing -, graph B varies the coupling
g, graph C varies the cavity dissipation x and graph D shows the dependence for
different drivings £. Graph D only uses a single spin because of computational power
limitations. The normalization used in all cases is such that the cavity transmission
value when g = 0 is 1 when wyg = w,..
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Figure 7.18: Simulated transmission measurement of a weakly coupled resonator-
qubit system using the master equation (7.10). The parameters used were Nypins = 5,
vy/w, = 0.001, k/w, = 1 x 1074, g/w, = 0.001, {/w, = 1 x 107°. Graph A shows
the transmission as a function of both the detuning (A =  — w,) and the driving
frequency (w;). The two dashed lines track the position of the first two transitions
for each detuning value showing an anti-crossing near A = 0. The dots mark the
peak position determined for each vertical profile (A = constant). Graph B shows
the dots from graph A as data points while the curve corresponds to the simple model
(7.15) with v = gv/N and T' = N+v. Graph C shows the simulated cavity decay rate
k' (or equivalently, the resonance width at half height) for each detuning value as
datapoints. The curve represents the Lorentzian lineshape (7.16) with v = gV/'N and
I'=N~.

dephasing rate 7 (figure 7.17A), we see that the two peak structure gradually
degrades until we reach the weak coupling limit where both peaks overlap and
cannot be resolved. The two-peak structure also changes when decreasing g
(figure 7.17B), increasing x (figure 7.17C) and also for higher driving intensi-
ties where the system is forced to sample states with ne > N (figure 7.17D).
This last case is not usually accessible for macroscopic samples and moderate
driving, but for systems with low numbers of spins this effect may potentially
be observed [16].

We note that in cases where g < vy, much of the phenomenology observed
when moving in and out of resonance can be described using classical approxi-
mations for the field and sample. In this case, the cavity resonance peak shifts
as the detuning A is swept through 0 and the peak width dips around A = 0.
It can be shown [18], that the functional dependence of these magnitudes is
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reasonably described by:

v (w, — Q)
(.(.}, = 27Tf/ = Wy m, (715)
v2T
K = /§+m, (716)

where w’ and ' are the modified resonance frequency and decay rates and T’
and v are equivalent (though not exactly equal) to the qubit decay rate v and
qubit-cavity coupling g. The exact correspondence of v and I' to the Hamilto-
nian parameters can be assessed by simulating a transmission spectrum in the
weak coupling case and fitting the results to the phenomenological formula as
seen in figure 7.18. If the (now single) resonance peak is fitted to a Lorentzian
line shape for each detuning value A, and the fitted values are compared to
those obtained through the phenomenological model (7.15),(7.16), the substi-
tution v = ¢gv/N and I’ = yN exactly reproduces the simulated data. The
scaling of the effective coupling with /N is the expected enhancement ob-
tained by using a spin ensemble. However, the increase of I' relative to the
model’s dephasing rate v is an artifact introduced by the approximations of the
model. This scaling of the decay is due to the fact we have replaced the spin
ensemble with a giant spin S = N/2 and, as such, the master equation 7.12
includes superradiance of the sample [19, 20]. This effect does not commonly
apply to real crystal samples where each spin decays independently and not
as a collective mode. From these considerations, for weak coupling cases it is
reasonable to make the assignment v =g and I' = ~.

Figure 7.19 also shows the expected measurement spectrum when the strong
coupling conditions are met. When the detuning approaches A = 0, the sin-
gle cavity peak moves away from w, and reduces in intensity while a second
peak appears. Both peaks reach the same transmission value at A = 0. As
A continues to increase, the first peak gradually disappears and the second
peak becomes the original cavity mode. The position of each of these peaks
coincides with the two transition frequencies from the ground state to the first
two excited states given by the hamiltoninan (7.5) as long as the excitation
power is low enough so that Nex < Ngpins-

7.4 Sample spectroscopy using superconducting CPW
resonators

This section discusses the measurements obtained when replacing the CPW
waveguides used section 7.2 with CPW resonators described in chapter 6. The
samples used are the same as in 7.2: DPPH, CaGdF, and GdWj,. Different
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Figure 7.19: Simulated transmission measurement of a strongly coupled resonator-
qubit system using the master equation (7.10). The parameters used were Ngpins = 5,
vy/wy =2 x 1074, k/w, = 0.001, g/w, = 0.005, {/w, = 1 x 1075, The lines track the
position of the first two transitions for each detuning value given by the theory. The
inset shows two peak structure from the profile taken along the vertical dotted line.

sizes of CPW resonators were used for different samples sizes. All experiments
are performed at liquid helium temperatures (4.2 K).

7.4.1 DPPH on a superconducting CPW resonator
Droplet of DPPH in DMF solution

Asin section 7.2.1, a saturated solution of DPPH powder in dimethyl sulfoxide
(DMF) with and 5% glycerol is prepared and a drop of the solution is placed
on a resonator using a micro-pipette. The resonator has 7pm gaps and a
14 pm center line and has a 1.409 GHz resonance frequency and quality factor
@ ~ 10000, although these values vary when the DC magnetic field is swept.
The resonator and sample along with the background resonance can be seen
in figure 7.20.

The full transmission measurement with varying field and excitation fre-
quency is shown in figure 7.21. The incident power applied from the network
analyzer was —40 dBm. We see the transmission peak of the resonator move
across the spectrum as the field is increased due to the influence of this ap-
plied field. When the resonance condition is met, the peak is suppressed and
becomes much wider (figure 7.22D). The progression of the resonance charac-
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Figure 7.20: Graph A shows a microscope image of a DPPH sample on a niobium
CPW resonator and the laboratory reference frame. Graph B shows the background
transmission spectrum of the resonance including connecting wires. The red line shows
a fit of a Lorentzian line shape to the measured spectrum and the fitted parameters.

teristics (peak intensity, resonant frequency, peak width) can be extracted by
fitting a Lorentzian line shape to the spectrum acquired at each field. The
results of these fits are shown in figure 7.22. Again the resonance feature can
be clearly seen in graphs A,B and C.

Only a single peak was detected in this measurement. We estimate that,
for the powers used and losses detected at the output, the number of photons
stored in the cavity is approximately 10'°. For a rough estimate of the number
of interacting spins we use the dimensions from the photograph in figure 7.20A
(about 1.5mm by 20pm by 20 pm since from section 4.3.2 we see that only
spins within about 10 um of the center line contribute) and assume a sample
density similar to the bulk sample (may be overestimated). Only the excess
of spins in the ground state contribute to the signal so this number must be
reduced by a factor 0.008 (see equation (7.18) below). This gives us about
~ 10" contributing spins to be compared with the 10'° photons. This means
that the hybrid system is probably not saturated (i.e., that nex < N) but that
the coupling was too weak to overcome the dephasing rates of the system.

Taking the graphs in figure 7.22B and 7.22C and fitting them to classi-
cal equations (7.15) and (7.16), we can approximately determine the effective
coupling strength (gegr = v) to the sample and the spin linewidth. The result
of this fit is shown in figure 7.23 with geg ~ 3MHz and I" ~ 8 MHz confirm-
ing that we are in the weak coupling regime (g < I'). The amplitude of the
frecuency change in figure 7.23A is equal to v?/T" while the separation of the
upward and downward peaks is equal to I'. We note that the limiting factor
here is the spin dephasing since the free cavity linewidth & ~ 200 kHz is smaller
than both I' and gef. Also, the fitted values of I' are compatible with those
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Figure 7.21: Transmission intensity of DPPH on a niobium CPW resonator (greyscale)
as a function of the driving frequency and the DC magnetic field applied along the lab-
oratory Z axis (parallel to the transmission line). The dotted line shows the expected
transition frequency for the DPPH sample (fs; = gsupB/h).
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Figure 7.22: Resonance properties as a function of field for the measurement in figure
7.21. Graphs A,B and C show the measured values of peak So1, peak frequency (f')
and peak width at half maximum (FWHM or «’). All three show the absorption
feature at a field value compatible with a sample g-factor gs ~ 2. Graph D shows the
transmission spectrum at two values of the magnetic field, one out of resonance and
another in resonance with the sample. The two chosen fields are marked with arrows
in graph A.
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Figure 7.23: Fit of the phenomenological model from equations (7.15) and (7.16) to
the measured frequency f’ and measured linewidth ' extracted from figure 7.22. The
backgrounds have been removed and the difference to cavity background is shown.
Graph A shows the frequency fit and graph B shows the linewidth fit (both in red).

The error bars correspond to the value of ' for each field.
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found in the literature for DPPH [21, 22, 23]. For comparsion, the blue lines in
figure 7.23A show the positions of the ideal transitions for a strongly coupled
system with the same geg from the fit. They are given by (Exp — E4p) from
equations (3.2) and (3.3):

w, + Q)

h
S+ 5\/492 +(Q —w,)? (7.17)

hwy = (Exg — Ero) =

where Q = gsup/hB is the spin transition frequency.

Additionally, the expected values for geg can be estimated from figure 4.8
and equation (4.23). The coupling scales according to v/nl and is proportional
to the operating frequency (through the rf field values). From figure 4.8 we
have geg ~ 100 MHz for a 40 pm long sample that fills the effective height at a
6 GHz operating frequency and 0 K temperature. Scaling this value using the
measurement conditions we get an estimate of:

1 — e—1.5GHz/4K

= {4 o-15GHI/AK ~ 0.008 (Boltzmann factor) (7.18)
L.

1000 pm 1.5 GHz
40pm 6 GHz

gt~ 100MHz x VB x ~10MHz,  (7.19)
which is reasonably close to the measured value of 3 Mz considering the un-
certainties in the estimation of the sample size and spin density inside the
cavity.

DPPH pellets: experiments in the vecinity of strong coupling

To achieve higher couplings, we perform another experiment using a larger
sample consisting of compressed pellets made of DPPH powder. These pellets
are approximately 3 mm in diameter and can be seen in figure 7.24A on a wide
center line resonator (400 nm line and 200 pm gaps). As before, we show the
background resonance and resonator properties in figure 7.24B. The incident
power applied from the network analyzer is chosen to be —45 dBm. The
meandering structure of the resonator and the sample placement makes it
preferable to apply the tuning field in the X direction since an important
contribution to the coupling will come from the rf field parallel to the resonator
plane. Recalling the calculations from section 4.3.2, we see in figure 7.25, that
the most intense rf magnetic field is concentrated around the edges of the
centerline and ground planes where there are both Z and Y rf field components.
These are the dominant regions that contributing to the [ B_%(’x »dS integrals
appearing in equation (4.23). Since the field has components in both the
Z and Y directions, both contribute approximately equally to the coupling
(i.e. [B%dS ~ [ B%dS) even for very flat samples while the X direction has



7.4. Sample spectroscopy using superconducting CPW resonators 203

fo = 1.523591(3) GHz B
-10F Q = 680.7 + 2.4
K ~ 2.23 MHz

Sy (dB)

b.l T T T[T T T[T T[T T[T TrTT

" PR (T S S S S '
1.51 1.52 1.53 1.54 1.55
Frequency (GHz)

Figure 7.24: Graph A shows a microscope image of DPPH pellets on a niobium
CPW resonator and the laboratory reference frame. Graph B shows the background
transmission spectrum of the resonance including connecting wires. The red line shows
a fit of a Lorentzian line shape to the measured spectrum and the fitted parameters.
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Figure 7.25: Cross-section and simulated field profile for a CPW. The laboratory
(magnet) reference frame corresponding to the experiment is shown along with the
sample

i Bg(dS = 0. The tuning fields for the sample must be applied either in the
Z or X direction since fields in Y rapidly degrade the resonator performance.
However, any spin matrix element for components parallel to the tuning field
are suppressed for a spin 1/2 system. Therefore, from (4.23) we expect a
~ /2 larger coupling when applying the DC field in the laboratory X direction
(which suppresses no contribution) than in the Z direction (which suppresses
the [ BZdS contribution).

Similar experiments to those done on the droplet sample (figure 7.20) give
the transmission spectrum seen in figure 7.26 where large differences can be
seen depending on the direction of the DC magnetic field (Z or X). In 7.26A,
the result is similar to that of figure 7.21 although harder to appreciate with the
scales used. However, in 7.26B, we are much closer to a strong coupling regime.
The spin absorption line can be seen to approach the resonator frequency where
the levels become hybrids of photon and spin states and are split by 2geg. If
we take the profile at the resonance point (figure 7.27B), a two peak structure
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Figure 7.26: Transmission intensity of DPPH pellets on a niobium CPW resonator
as a function of the driving frequency and the DC magnetic field applied along the
laboratory Z axis (graph A) and X axis (graph B).

is clearly distinguishable while in the Z case (figure 7.27A) we see only a single
peak structure. The profiles can be fitted to single and and two Lorentzian lines
from which we can get an estimate of the coupling (table in figure 7.27). We
note also that the resonance in the X direction is displaced from the gg ~ 2 and
appears to be at gg ~ 1.8. Since the resonance appears to be at the expected
field when the field is applied in the Z direction, we assume this is due to an
error in the magnet calibration. We will assume that the sample does in fact
have gs = 2 and correct this error with a field shift as this error is most likely
not an issue with the sample (DPPH has been commonly used as a marker
and for calibration in standard EPR experiments).

As we did in the droplet case, we track the resonance characteristics as the
field is swept in both cases and plot the measured peak positions as a function
of the field. In the Z direction case we fit the behavior to the weak coupling
formula (7.15) while in the X direction case we use the level separations (7.17).
The results are shown in figure 7.28A and 7.28B respectively. From the fit
results we find a value of the coupling gz ~ 6 MHz for the Z direction and
gx =~ 8.2 for the X direction that approximately fulfill the expected relation
9x/9z ~ V2. The differences are probably due to the fact that the resonator
is not perfectly aligned with the fields and that its meandering structure has
areas that are not oriented exactly as in figure 7.25.

The phenomenological model (7.15) provides an estimate of the spin linewidth
for the Z field case while the fit for the X case does not provide the spin
linewidth directly. To estimate this linewidth value we return to the theoreti-
cal model from section 7.3. If we introduce the measured values of g, x, w, and
try different values of v, we can obtain profiles similar to those seen in figure
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Figure 7.27: Transmission profile at Bz = 0.0542 T (graph A) and Bz = 0.06055T
(graph B - average of profiles at Bx = 0.0605T and Bx = 0.0606 T). In graph A, the
red line is a Lorentzian fit to the data. In graph B, a double Lorentzian peak structure
is used to fit the data. The red lines are the individual peaks while the blue line is
the sum of the two peaks. f; 2 and I'; » are the center frequency and peak widths of
each peak respectively. The measured coupling is gegr >~ 7.9 MHz. The green line in
both A and B represents the cavity transmission when the sample is out of resonance.

7.27B. From here we find that the spin linewidth is about v ~ 5 — 7MHz. We
note also that, if we fit the simulated data to a double Lorentzian lineshape,
this fit underestimates the coupling value. This is the same as what we see
in our fits from figure 7.27B and 7.28B. We also see from the two linewidth
values, vz ~ 27MHz > vx ~ 5 — 7TMHz. This is unexpected as the linewidth
should be isotropic and, therefore, probably indicates some field homogeneity
issue present in the Z axis but not in the X axis. This could lead to a larger
inhomogeneous broadening when the magnetic field is applied along Z, possibly
linked to the large sample size. We have therefore achieved conditions close to
strong coupling for DC fields parallel to the X axis, whereas the combination of
a larger linewidth and a weaker coupling lead to a classical behavior for fields
parallel to the 7 axis.
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Figure 7.28: Peak positions as a function of the detuning A = gsup/hBx z — fr.
The positions are fitted to equation (7.15) in graph A and to equation (7.17) in graph
B. The blue lines in graph A represent the behavior from equation (7.17) with the
coupling g from the fit (in red). In both graphs, the dotted line represents the spin
transition energy as a function of the detuning. The error bars have length &/, i.e.

the peak width at each detuning value.
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Figure 7.29: Simulation using parameters similar to those measured (see section 7.3).
A single spin and low excitation power was used. From comparison with the data
measured in figure 7.28B, we can estimate that the spin linewidth in the experiment
was around 5-7 MHz. Also, the double Lorentzian fit to the simulation underestimates

the value of g, which is also observed comparing the results from the fits in figure
7.27B and 7.28B.
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7.4.2 CaGdF on a superconducting CPW resonator

We now test the same high quality CaGdF crystal used in section 7.2.2 on a
wide resonator (200 um gaps and 400 um center line) like the one from figure
7.24. The sample and resonator are shown in figure 7.30. The experiment is
similar to the previous one on DPPH pellets (7.4.1) using appropriate field and
frequency ranges with the magnetic field applied along the Z laboratory axis.
The incident power applied from the network analyzer was —30 dBm. The full
transmission spectrum is shown in figure 7.31.

Since the sample has an anisotropic Hamiltonian and spin 7/2 (see equation
(7.3)), in this case we find multiple features at different transition frequencies.
We fit the lineshape at each field to extract the dependence of the trans-
mission value, resonant frequency and linewidth for each applied field (figure
7.32). This experiment is analogous to a continuous wave EPR experiment
and, as such, the expected transitions can be simulated using the Easyspin
Matlab package [10]. Using the parameters shown in equation (7.3) and taking
into account the orientation of the crystal, we obtain the absorption spectrum
shown in figure 7.33, which is in good agreement with the measured spectrum.

Comparing to the DPPH case from the previous section, it is clear that
the couplings are rather weak in this case. If we observe the scale of the fre-
quency dependence of the resonance (figure 7.27B), we see that the oscillations
associated to each transition (equal to v? /v according to (7.15)) are very small
compared to the DPPH case (see for example, figure 7.22 or 7.28) where the
cavity drift due to the applied field was not readily appreciable compared to
the absorption feature. The values for the coupling are also hard to extract
from the frequency dependence since many of the lines overlap or have large
background drifts compared to the signal. In any case, the coupling value of
one of the more isolated lines can be estimated from the frequency dependence.
Taking the peak at the highest field, we obtain the fit shown in figure 7.34,
with a coupling of g ~ 0.9 GHz, which is indeed small considering the large
sample size.

The cause for this relatively low coupling is likely the fact that the field
is not applied along the optimal direction to induce coupling to the sample.
As mentioned in the previous section (section 7.4.1, DPPH pellets), due to the
geometry of the wide resonator used, it is preferable to apply the tuning field in
the X laboratory direction since the application of the field in the Z direction
suppresses one of the components contributing to the coupling strength (rf
fields parallel to the DC field do not generally contribute to transitions). A
V2 factor enhancement is expected to be attainable if the DC field had been
applied the X direction. Additionally, the spin density of the sample is also
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Figure 7.30: Microscope image of CaGdF crystal on a niobium CPW resonator. The
crystal has the [110] axis paralell to the long crystal edges, while the top face is the
(111) plane. The laboratory (magnet) reference frame is also shown.
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Figure 7.31: Transmission intensity of a CaGdF crystal on a niobium CPW resonator
as a function of the driving frequency and the DC magnetic field applied along the
laboratory Z axis (perpendicular to the transmission line direction and paralell to the
surface).
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Figure 7.32: Peak transmission (A), resonant frequency (f’, B) and peak width (x’,
C) for the experiment in figure 7.31. Up to 7 absorption lines can be distinguished.

3 compared to 2 x 10! cm™3 for

low (spin density of about ps ~ 6.5 x 108 cm~
DPPH) while the dephasing rate is somewhat high due to the interaction of
Gd*" magnetic moments with neighboring fluorine nuclear spins [7]. All these
effects contribute to make it even harder to achieve strong coupling regimes
with this type of sample. Our measured linewidth may be overestimated since
this sample can also be susceptible to the line broadening effects we saw for

the DPPH pellets.

7.4.3 GdW,;, on a superconducting CPW resonator

Even though or resonators are not at the ideal frequency to access GdW,
samples, we attempt a measurement with a diluted crystal (Y 99Gdy o W3g)
placed on the same resonator used for the DPPH pellets and the GdCaF crystal
(figure 7.35). A similar experiment to that done in the case of GdCaF is
performed. The incident power applied from the network analyzer was —20
dBm. The transmission peak properties are extracted for each field by fitting
the frequency dependence to a lorentizan lineshape. The corresponding values
of the peak transmission value, peak frequency and peak width are shown
in figure 7.36. No features were visible on the spectrum except for a small
absorption at about 25mT.
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Figure 7.33: Cavity transmission from figure 7.32A compared to an EasySpin simu-
lated EPR absorption spectrum for Hamiltonian (7.3). The simulation has a cavity
frequency of 1.4956 GHz and a gaussian broadening of 2.3 mT for each transition. The
angular orientation of the field is 6 = 42.25° and ¢ = 0 in the crystal frame, approxi-
mately the expected orientation given the experimental setup (see figure 7.30).
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Figure 7.35: Diluted GdW 3, crystal on a niobium CPW resonator.
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Figure 7.36: Peak transmission properties for the experiment performed on a GAWj,
crystal. The graphs A,B and C show the transmission value, peak frequency and
width respectively. Only a small absorption feature is visible at about 25mT.
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The signal is far too weak to be properly fit, but a rough estimate can
be made by looking at the separation of the upward and downward peak in
the frequency dependence (figure 7.36B, about I' ~ 2mT ~ 120 MHz) and the
height of the peak in the width dependence (figure 7.36C, k' — k ~ 2kHz. At
resonance (A = Q—w, = 0) from equation (7.16) we should have v’ —x = v?/T.
This gives us a coupling of at best v ~ g ~ 490kHz, much lower than in
the other cases. This absorption is most likely associated to the spin +1/2
transition of the Gd3' ion that is probably the only transition accessible at
these frequencies. The value seems to be in line with what may be expected
considering the low spin density (ps ~ 3.07 x 10'® cm™3 since the crystal is
diluted to 1%), even when compared to CaGdF although differences in sample
size and placement makes a direct comparison with the CaGdF experiment
difficult. The high linewidth (I' ~ 120 MHz) indicates a low Ty ~ "1 ~ 10ns
which, when compared to the EPR measurements from section 5.2.5 (Ty ~
300ns), seems to indicate that additional inhomogeneous broadening effects
must be present. The crystal is likely subject to the same kind of BY and B3
strain effects (section 5.2.1) as the sample measured on an open waveguide
(section 7.2.3) as well as to some degradation effects that make the sample
more powder-like than crystalline.

7.5 Measurement of the signal enhancement on a
nanometric constriction

In this section we return to the DPPH sample, but in this case we measure a
small droplet deposited using a dip-pen tip (see section 2.5.2) on a thin CPW
resonator (14pm center line and 7pm gaps) with and without a nanometric
constriction in its center transmission line. The different droplets measured
are shown in figure 7.37 along with the constriction used and the background
transmission spectra. Both droplets were prepared using the same procedure
and taken from a solution of DPPH in DMF and 5% glycerol with a concen-
tration of 10mgml~!. The resulting deposits have about 60 pm diameter and
a thickness of between 50 and 100 nm as determined by AFM microscopy.

The experiments are performed in the same manner as in section 7.4.1 with
our minimum excitation power of -51 dBm output from the network analyzer.
The field, in the Z direction, is swept over the range 0-0.1T at the center
of which the DPPH resonance should be detected. The full measurement
results are shown in figure 7.38 for both cases. The absorption of the droplet
is invisible for the resonator having no constriction. In contrast, when the
droplet is deposited onto the constriction we see an absorption signal at the
expected field. In figure 7.39 we compare the resonance properties for each
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Figure 7.37: DPPH droplets deposited using a dip-pen AFM tip on a niobium CPW
resonator with and without a constriction. Graph A shows a constriction that has
a length of 15um, a width of 100nm and 150 nm thickness. Graphs B and C show
microscope images of two droplets deposited onto a resonator without and with a con-
striction respectively. Both were prepared following the same procedure and should in
principle contain similar sample quantities. Graph D shows the background transmis-
sion spectra for both resonators. We see that both have very similar characteristics.

field value and clearly see that there is an absorption effect in the constriction
case that is absent when a normal resonator is used.

As usual, we fit the frequency dependence from figure 7.39B to the model
equation (7.15) to obtain the measured coupling value and spin linewidth. This
fit is shown in figure 7.40 where we find that the coupling is about g ~ 370 kHz,
about an order of magnitude smaller than in the case of the micropippete drop
(section 7.4.1). The linewidth is found to be about I' ~ 6 MHz, similar to the
previous DPPH measurements.

The low value of the coupling in addition to the large linewidth do not
allow us to see strong coupling in this case. We do however get a significant
enhancement when compared to the non-constricted resonator. The values of
the coupling determined from the experiments agree well with simulated pre-
dictions for this geometry. As described in section 4.3.2, we can simulate the
magnetic fields for cross sections of the waveguide with the geometries and
sample sizes involved in this case. We then find that, taking into account
only the cross section, the ratio between the constriction case and the sample
considered in section 7.4.1 should be about equal to 1. If we then also take
into account that the coupling scales with the square root of the sample length
(1.5mm for the large drop and 15 pm for the current sample) we find approx-
imately the order of magnitude reduction for the constriction sample. On the
other hand, if we do not include the constriction in the simulation we find
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Figure 7.38: Transmission measurement of DPPH droplets on a niobium CPW res-
onator without (A) and with (B) a nanometric constriction. The greyscale shows the
measured transmission intensity as a function of the driving frequency and the DC
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Figure 7.39: Peak transmission (A), resonant frequency (f’, B) and peak width (', C)
for the experiments in figure 7.38. An absorption feature is visible in the constriction

case that is absent in the normal case.
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Figure 7.40: Fit of phenomenological model (7.15) to the absorption of the constricted
resonator system. The frequency deviation from the background value is plotted as
a function of the field detuning A = gsup/hBz — f-. The red line represents the fit
while the blue lines represent the theoretical level positions from equation (7.17) with
the parameters from the fit. The dotted line represents the uncoupled spin transition
energy. The values of the fit parameters are ¢ = 370kHz, g5 = 2.017 and I' = 6 MHz.

about two orders of magnitude reduction in the coupling, which is compatible
with the fact that we are unable to to see any absorption in our non-constricted
resonator.

The minimum number of spin 1/2 systems detectable is hard to ascertain
from this experiment since the drop extends beyond the constriction region
making it hard to evaluate what the active volume is. A drop more confined
to the constriction region could allow us a better estimation. It is however
clear that the enhancement must come from the constriction region meaning
that we could in principle have sample only in a small volume surrounding
the wire. According to our simulations for this device’s geometry, this active
region’s cross section could be reduced down to 1 pm by 200 nm without a sig-
nificant effect on the field integrals contributing to the coupling. Therefore, for
our sample we estimate that a volume of 15pm x 1 pm x 200nm contributes
which, assuming the bulk spin density of DPPH, amounts to ~ 10° — 1010
spins. Taking into account the Boltzmann factor for the experimental tem-
perature (4 K), the actual contributing spin number in this experment could
be around ~ 10% — 107. We now consider the signal and noise levels in our
experiment. The effect is most easily detectable in the linewidth where the
noise level is roughly 4kHz compared to a 35 kHz variation on resonance. This
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variation is proportional, according to equation (7.16), to g? and therefore also
proportional to the sample length. This means that the length of the sample
or constriction could be reduced about a factor 8 (down to around 2pm in
length) and still be able to detect the sample. Therefore, for this sample and
these experimental conditions, our minimum detectable number of spins 1/2
should be of the order of 10° — 10.

The results for couplings for this type of resonator can potentially be im-
proved in several ways. Moving to higher frequencies allows for higher energy
densities in the cavity and therefore higher couplings (geg scales approximately
linearly with the radiation frequency, see equation (4.18) and (4.23)). This in-
crease in frequency also improves the Boltzmann factor by reducing the excited
state population. Ideally, the temperature should be lowered and operating fre-
quency increased such that the exited state is not thermally populated. This
would make almost all spins present contribute to the signal. Narrower con-
strictions, like those shown in chapter 6 can also be used to further increase
the rf magnetic field. To measure even smaller samples care must also be taken
to further reduce the excitation powers and some signal amplification may be
necessary. In this case we estimate that the driven cavity stores about 10°
photons for our input powers, similar to the estimated number of spins. Al-
though it does not seem to be the case here, the sample could be saturated
if the number of spins is reduced and the power is not, producing effects like
those shown in figure 7.17D.

7.6 Summary and Conclusions

In this chapter we have presented results from measurements of several mag-
netic samples on different superconducting devices based on CPW circuits.
The results show that spectroscopy and EPR-like measurements of different
samples can be reliably performed using our setup and devices.

First we present measurements of the sample responses when placed on
an open CPW and observing the transmission value through the system for a
range of magnetic fields. Although the signals are relatively small, measuring
using an open waveguide allows the use of a broad range of frequencies and
fields (in our case frequencies from 10 MHz to 14 GHz and fields of up to 1T).
In this setup, absorptions associated to the different spin transitions can be
detected after adequately normalizing the signal. Both DPPH and GdCaF
crystals give well defined transitions that can be tracked for a large range of
fields. In both cases, the observed lines match well with the lines expected
given the spin Hamiltonians. The GdW,, crystals produce broad absorption
bands that can be explained by the presence of inhomogeneous broadening
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effects due to BY and B3 strains (section 5.2.1) combined with a possible loss
of cystallinity when the sample is not properly protected.

Next we review the theoretical framework used to describe a coupled res-
onator and spin system [12, 13] and present some examples for the expected
transmission signals expected in experiments. We show that, as long as the
number of spins is larger than the number of photons in the cavity, strong
coupling (gef > 7, k) can be detected by observing a two peak transmission
spectrum when the spin transition is tuned to the cavity frequency. These
peaks will be separated 2gv/N = 2ges under these conditions, where N is the
number of spins and g the coupling to each individual spin. We also show that
the phenomenological equations (7.15) and (7.16) provide a good measure of
the coupling and spin decay rates for weak coupling cases (gefr < 7, k).

In the next section, we present measurements of the same three samples on
superconducting CPW resonators with resonant frequencies around 1.5 GHz.
Different resonator designs are chosen depending on the sample size. In the
case of DPPH, both droplets from a solution and pellets were measured and
the single expected g >~ 2 transition is detected. Coupling to both samples was
detected with results in line with the expected couplings from our simulations
(section 4.3.2). In the case of DPPH pellets, experiments show that the strong
coupling regime can be approached and two peaks were distinguishable if the
field is applied along the correct direction given the resonator geometry. The
couplings to the different DPPH samples were of the order geg ~ 1 — 10 MHz
while the spin linewidths were v ~ 5 — 20 MHz. The cavity linewidths s were
always below both of these values (as low as ~ 300kHz in some cases).

When measuring the more complex GdCakF crystal multiple spin transitions
are detected corresponding to the energy levels calculated from the crystal
field Hamiltonian. Also, the simulated EasySpin EPR spectrum is in good
agreement with the observed absorption lines. The coupling and signal in this
case is found to be somewhat weaker than in the DPPH case considering the
sample size. This can be understood considering that the spin density of this
crystal is lower than that of DPPH and that the spin linewidth is increased by
the presence of fluorine atoms.

Although our resonators do not operate at the ideal frequencies for this
sample, an attempt was made to measure a GAW,, crystal. Only a very weak
absorption was detected and associated with the 4-1/2 transition of the Gd3"
ion. However the system appears to suffer the same inhomogeneous broadening
and loss of crystallinity effects as in the waveguide measurement.

Finally, a performance test of a constricted resonator was carried out. A
60 pm diameter drop of DPPH solution was placed on a 15 pm long and 100 nm
wide constriction and an absorption signal was clearly detected. A similar drop
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deposited on a normal resonator did not display any absorption signal. The
measured couplings to the sample are in line with estimations from Comsol sim-
ulations like those done in 4.3.2. This confirmation of the expected couplings is
a promising result for further experiments involving better spin systems, with
higher transition matrix elements and better coherence times. Also, experi-
ments with lower temperatures, higher frequencies and more confined samples
could soon allow the attainment of strong coupling regimes for single spins or
small ensembles.

In conclusion, we have shown that spectroscopy using superconducting cir-
cuits is an interesting tool for sample characterization. They allow EPR-like
experiments with different frequencies and field intensities depending on the
types of waveguides or resonators designed. They also allow the characteri-
zation of samples at very low temperatures and with very small sample sizes.
As well as for sample characterization, testing on devices with constrictions
show promising results for applications in quantum computing architectures.
The expected performance enhancement according to the simulations done in
previous chapters (4) is confirmed at least in the case of a spin 1/2 sample.
This result allows us the prospect that, with improvements to the experimental
conditions and using spin samples with better properties (SMMs and SIMs for
example), an all-spin quantum processor similar to the concept described in
chapter 3 may be feasible.
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Chapter 8

Conclusions

In this final chapter we will give a summary of the main points raised in this
thesis work and give our general conclusions.

In the introduction to this thesis (chapter 1) we have reviewed some of
the different approaches that have been taken in order to achieve the goal of
building a working quantum computer. Although this goal has considerable
technical hurdles to be overcome, much progress has been made in the three
decades since the original proposal. The current consensus is that there are
no fundamental roadblocks barring the way to this goal and that it is only a
matter of investing enough time and money before, at the very least, a basic
working quantum computing system is built. There are many different archi-
tectures and approaches being developed, each with their distinct advantages
and weaknesses. It is entirely possible that a better quantum computing archi-
tecture could be achieved by combining different systems into a single system.
Therefore there is still much value in the development and study of new qubit
systems that may, under certain circumstances, provide better alternatives to
the main candidates currently considered.

In this context we have chosen to study the possibility of combining tech-
niques taken from the field of Cavity and Circuit Quantum Electrodynamics
with the field of molecular magnetism. Molecular magnets and Single Molecule
Magnets (SMMs) provide interesting alternatives to charge qubits because of
their chemical tunability and their potential to serve different roles within a
quantum computing system. They can be designed to act as single qubits or
to encode several qubits on a single molecule or even to act as quantum logic
gates. However, many of these interesting applications depend on the possibil-
ity of coupling single molecules to photons in a microwave cavity, a challenge
that we have endeavored to address and investigate throughout this work.
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A first result of this work is that we have identified those steps that are to
be taken in order to improve the coupling strength of single magnetic entities
(atoms or molecules) to quantum superconducting circuits if they are to be
used in quantum computing. These steps involve both searching for better
spin systems and improving the rf magnetic fields attainable in cavities.

Concerning the former, we have found that, because of their high spin and
high spin densities, Single Molecule Magnet crystals should be able strongly
couple to resonators achieving coupling strengths up to 3 orders of magnitude
stronger that Nitrogen Vacancy centers in diamond. Furthermore, we find that
individual molecules could have coupling strengths of up to hundreds of kHz
provided that resonators with sufficiently narrow central lines, of the order of a
few tens of nm can be fabricated. However, typical SMMs are not without their
drawbacks. Their high anisotropy can make the energy separation between the
|0) and |1) states too large (up to 100 GHz) to be comfortably manipulated
with conventional Circuit QED systems. If tunnel split energy levels are used
as the quantum basis, the low tunnel gap requires an extraordinarily accurate
control of the magnetic fields necessary to tune the SMM into resonance. We
therefore have arrived at the conclusion that SMMs with lower anisotropies or
engineered to have strong spin tunneling effects my provide the most suitable
candidates.

Single Ton Magnets (SIMs) are a family of SMMs that can present these
desired qualities. These consist of a single lanthanide ion encased in a non-
magnetic ligand shell. The presence of only a single ion makes them concep-
tually simpler that their multi-ion counterparts. Also, their anisotropy hamil-
tonian is determined by the lanthanide ion species and the shape of the ligand
shell. We have shown two cases, each fulfilling one of the two desired qualities
(a low anisotropy or a strong tunnel splitting).

e In the case of GdAWj,, the Gd3" ion has no intrinsic anisotropy making
the molecular spin hamiltonian entirely determined by the ligand shell.
The geometry of the shell is such that the 8 eigenstates of the hamiltonian
all lie within an energy range of 1 K. Using a combination of electron
paramagnetic resonance (continuous wave and pulsed) and magnetic sus-
ceptibility measurements we confirm that this is indeed the case and that
each transition can be coherently addressed independently using easily
manageable rf frequencies (~ 10 GHz). This means that not only are the
energy levels such that it is a good qubit candidate, it also means that
it could hypothetically encode three qubits in a single molecule.

e Due to the spin anisotropy of the Th*" ion and the fivefold symmetry of
the ligand shell, TbW, presents an extraordinarily high quantum tunnel

gap that makes the tunnel split states good candidates to be used as a
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quantum basis. Using specific heat and susceptibility measurements we
construct an effective hamiltonian to describe the low energy and low
temperature physics of the system and indeed find a large tunnel gap of
~ 1K. This system is also interesting in its own right as it offers the
rather unique chance to study the magnetic behavior of a pure quantum
two level system. In addition, the fact that the tunnel gap is larger than
any of the perturbation arising from hyperfine or dipolar interactions
should contribute to enchance the quantum spin coherence.

Finally the couplings expected to coplanar waveguide resonators (with and
without constrictions) are found to be very large for both GAW, and ThW,,
thus confirming their potential for quantum computing.

Concerning the quantum circuits and their optimization, we have designed
and fabricated Nb transmission lines and resonators. These resonators are
tested before and after nanometric constrictions (down to 50 nm in width and
up to 15pm in length) in the centerline are made using focused ion beam
etching with no substantial changes in the resonator transmission properties.
These constrictions therefore provide a method to improve the coupling to
very small samples both for quantum computing applications or for micro-
EPR (electron paramagnetic resonance) type experiments.

We have also carried out the first tests of the coupling of magnetic samples
to resonators at T = 4 K. Although the operating frequencies of our resonators
are not adequate to properly measure the SMM samples studied previously,
many tests with other similar samples can be done. We have performed broad-
band spectroscopy using open coplanar waveguides of macroscopic samples.
Broadband spectroscopy measurements were performed on samples of DPPH
(a spin 1/2 free radical), Gd doped fluoride crystals (GdCaF) and GdWj,
crystals using open superconducting transmission lines. The measurements
provide clear signals in a broad frequency and field range (from 1-14 GHz and
0-1T) in line with the given the theoretical models.

Macroscopic samples of DPPH were coupled to superconducting coplanar
waveguide resonators approaching the strong coupling regime. The transmis-
sion is seen to have the double peak structure characteristic of strongly coupled
systems. Also, the direction of the applied magnetic field is seen to have an
important effect on this coupling. Although only they do not achieve strong
coupling, samples of GdCaF and GdW, were also measured with results that
are good agreement with their theoretical models.

Finally, the performance enhancement for small samples when using a con-
striction was also tested. Using a micrometric drop of DPPI deposited using
an AFM tip on a nanometric constriction, an enhancement in the coupling
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relative to that of an unmodified resonator was detected. The enchancement is
in agreement with the predictions derived from our numerical field simulations.

In counclusion, although the results presented here are promising, there is
still much work to be done. There is still a long way to go in order to achieve
the performance necessary to make proposals of all-spin quantum processors,
such as the one given in the introduction, possible. We are already working on
the following steps in this direction such as designing resonators with higher
frequencies in line with the requirements of SMM samples as well as preparing
our systems to measure at very low temperatures. In light of these results, we
hope to have shown that, although the initial proposal of an all-spin quantum
processor (figure 1.1) may have seemed farfetched, quantum processors that
combine spin systems and circuit QED systems could be within reach.
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A continuacién damos un resumen de los principales puntos tratados en esta
tesis y damos nuestras conclusiones generales.

En la introduccion a esta tesis (capitulo 1) hemos revisado algunas de los
diferentes métodos que se han seguido para alcanzar el objetivo de construir un
ordenador cuantico. Aunque este objetivo presenta dificultades técnicas con-
siderables, se ha progresado mucho en las tres décadas que ha pasado desde la
propuesta original. El consenso actual es que no existen barreras fundamen-
tales que impidan que se alcance esta meta y que es solo cuestién de invertir
suficiente tiempo y dinero para conseguir construir, como minimo, un sistema
de computacion cudntica basico. Se estan desarrollando miltiples arquitecturas
siguiendo diferentes metodologias, cada una con sus ventajas e inconvenientes
especificos. Es enteramente posible que la mejor arquitectura de computacién
cuantica sea una combinaciéon de multiples tipos de sistemas en uno tnico. Por
tanto, sigue habiendo gran valor en el desarrollo y estudio de nuevos candidatos
a qubits que pueden, bajo determinadas condiciones, proporcionar alternativas
a los principales qubits que se consideran en la actualidad.

En este contexto hemos elegido estudiar la posibilidad de combinar técni-
cas que provienen del campo de la electrodindmica cuantica de cavidades y
circuitos (CQED y Circuit QED) con las del campo de magnetismo molecu-
lar. Los imanes moleculares (SMMs) proporcionan interesantes alternativas a
los qubits de carga debido a la posibilidad de ajustar quimicamente sus cual-
idades y porque potencialmente pueden desarrollar diversos roles dentro de
un sistema de computacién cudntica. Pueden ser disenados para actuar como
qubits individuales o para codificar multiples qubits en una sola molécula o
incluso para actuar como puertas logicas cuanticas. Sin embargo, muchas de
estas interesantes aplicaciones depende de la posibilidad de acoplar moleculas
individuales a los fotones de una cavidad de microondas, un reto que hemos
intentado abordar a lo largo de este trabajo.

Un primer resultado de este trabajo es que hemos identificado los pasos
necesarios que permitirian mejorar la intensidad del acoplo de entidades mag-
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néticas individuales (atomos o moléculas) a circuitos superconductores cuanti-
cos si se han de poder utilizar en computacién cuéntica. Estos pasos involucran
buscar mejores sistemas de espin y mejorar la intensidad de los campos rf al-
canzables en cavidades.

El lo que respecta al primer punto, hemos encontrado que, gracias a su
alto espin y alta densidad de espines, cristales de SMMs deben poder acoplarse
fuertemente a resonadores alcanzando intensidades de acoplo hasta 3 6rdenes
de magnitud superior que para vacantes de nitrégeno en diamante. Ademas,
encontramos que moléculas individuales podrian tener intensidades de acoplo
de cientos de kHz si se fabrican resonadores con lineas centrales lo suficiente-
mente delgadas, del orden de decenas de nm. Sin embargo, los SMMs tipicos
tienes algunas desventajas. Su alta anisotropia puede hacer que la separacion
energética entre los niveles |0) y |1) sea demasiado grande (hasta 100 GHz) para
ser manipulado cémodamente con sistemas de Circuit QED convencionales. Si
se usan niveles desdoblados por efecto tunel como la base cuantica, la pequenia
separacion asociada al efecto ttnel requeriria un control extraordinariamente
preciso de los campos magnéticos necesarios para llevar al SMM a la condiciéon
de resonancia. Llegamos por tanto a la conclusion que SMMs con anisotropias
menores o disenados para tener un efecto tinel fuerte pueden proporcionar los
candidatos més adecuados para ser qubits de espin.

Los imanes de un solo ion (Single Ton Magnets, SIMs), son una familia de
SMMs que pueden presentar estas cualidades deseadas. Consisten en tnico
i6n de lantanido encapsulado en una estructura no magnética de ligandos.
La presencia de un solo ion hace que sean conceptualmente més sencillos que
los sistemas con multiples iones. Ademas, su Hamiltoniano de anisotropia
magnética estd determinado por la especie de lantdnido utilizada y por la
forma de la estructura de ligandos. Hemos estudiado dos ejemplos, cada uno
de los cuales cumple una de las dos cualidades deseadas (baja anisotropia o
efecto tunel fuerte).

e En el caso de GdW,, el ion Gd3" no tiene anisotropia intrinseca ha-
ciendo que el Hamiltoniano de espin esté completamente determinado
por los ligandos. La geometria de la estructura es tal que los 8 au-
toestados del Hamiltoniano se encuentran todos dentro de un rango de
energia de 1K. Utilizando una combinacién de resonancia paramag-
nética electronica (onda continua y pulsado) y susceptibildad magnética,
confirmamos que efectivamente es el caso y que cada transicién puede
excitarse independientemente de forma coherente utilizando frecuencias
de rf facilmente manejables (~ 10 GHz). Esto significa que, ademés de
tener niveles adecuados para ser un buen qubit, podria hipotéticamente
codificar hasta tres qubits en una sola molécula.
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e Dada la anisotropia del ion de Th*" y la symmetria pentagonal de la
estructura de ligandos, el TbW,, presenta un desdoblamiento por efecto
tunel extraordinariamente alto haciendo que los estados desdoblados sean
buenos candidatos para formar la base cliantica de un qubit. Utilizando
medidas de calor especifico y susceptibilidad magnética construimos un
Hamiltoniano efectivo que describe el limite de baja energia y bajas tem-
peraturas del sistema confirmado la existencia de un desdoblamiento por
efecto tunel del orden de 1K. Est sistema también es interesante en si
mismo ya que ofrece la oportunidad de estudiar el comportamiento mag-
nético de un sistema caantico de dos niveles puro. Adicionalmente, el
hecho de que el desdoblamiento por efecto tinel sea mayor que cualquier
perturbacién que proviene de la interaccién hiperfina o dipolar, debe con-
tribuir a mejorar la coherencia del espin. Finalmente, los acoplos espera-
dos a resonadores coplanares superconductors (con y sin constricciones)
resultan ser grandes para ambos GdW,, y para TbW,,, confirmando asf

su potencial para computacién cuéntica.

En cuanto al diseno de circuitos cuanticos y a su optimizaciéon, hemos dis-
enado y fabricado lineas de transmisién y resonadores coplanares de Nb. Es-
tos resonadores se comprobaron antes y después de practicarles constricciones
nanométricas (hasta 50 nm de ancho y 15um de largo) en la linea central uti-
lizando haz de iones focalizado, no se observandose cambios sustanciales en las
propiedades de transmisién de los resonadores. Estas constricciones proporcio-
nan un método para acoplarse a muestras pequenias tanto para aplicaciones en
computacion cuéntica como para experimentos tipo micro-EPR (Resonancia
paramagnética electronica).

También realizamos las primeras pruebas para acoplar nuestros resonadores
a muestras magnéticas a T = 4K. Aunque las frecuencias de operacion de
nuestros resonadores no son adecuadas para medir correctamente las muestras
de SMMs estudiadas previamente, muchas pruebas con otras muestras similares
se han realizado. Se ha hecho espectroscopia de banda ancha utilizando lineas
de transmisién sobre muestras macroscopicas. Se realizaron medidas de banda
ancha sobre muestras de DPPH (un radical de espin 1/2), sobre cristales de
fluorita dopados con Gd (GdCaF) y sobre cristales de GAW, utilizando lineas
de transmision abiertas. Las medidas dan seniales claras en un amplio rango de
frecuencias y campos magnéticos (de 1-14 GHz y de 0-1T) que estéan en linea
con los resultados esperados dados los modelos tedricos.

Muestras macroscopicas de DPPH se acoplaron a resonadores coplanares
superconductores en régimen cercano al acoplo fuerte. Se observé la estructura
de doble pico en la sefial de transmisién caracteristica del régimen de acoplo
fuerte. Ademas, se ha observado que la direccién del campo magnético aplicado
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tiene un efecto importante sobre el valor de este acoplo. Aunque el régimen
de acoplo fuerte no se consigue en el caso de GdCaF y GdW,, las medidas de
estas muestras estdn de acuerdo con sus modelos tedricos.

Finalmente, la mejora de rendimiento para muestras pequeiias utilizando
constricciones también se comprobé. Utilizando una gota micrométrica de
DPPH depositada utilizando una punta de AFM, una mejora del acoplo re-
specto del de un resonador sin modificar se detect6. La mejora esta de acuerdo
con las predicciones derivadas de nuestras simulaciones numeéricas del campo
magnético.

En conclusién, aunque los resultados presentados aqui son prometedores,
todavia queda mucho trabajo por hacer. Todavia queda mucho camino que
recorrer para conseguir el rendimiento necesario para hacer que las propuestas
de un procesador cudntico de espin, como el presentado en la introduccion, sean
posibles. Ya estamos trabajando en los siguientes pasos disefiando resonadores
que operen a frecuencias mas altas y preparando nuestros sistemas para operar
a muy bajas temperaturas. A la luz de estos resultados, esperamos haber
mostrado que, aunque nuestra propuesta inicial de procesador cudntico de
espin pudiera parecer algo descabellada, procesadores cuanticos que combinen
sistemas de espin con sistemas de Circuit QED puede que estén al alcance.
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