i2s Universidad
18 Zaragoza

1542

Trabajo Fin de Grado

Simulacion haptica en tiempo real de contacto
entre solidos deformables.

Autor

Adrian Berges Enfedaque

Directores

Iciar Alfaro Ruiz
Carlos Quesada Granja

Escuela de Ingenieria y Arquitectura de la Universidad de Zaragoza
Ano 2014/2015

MASTER

w
Q
2
U
~
O
3
c
©
W
Q
2
N
W
Q
(%)
O
<
<
=

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. 'RUMy - SI35a 9yiSRH;jizS

7

con n2 de DNI TOJIMCMTI, en aplicacion de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

DlI-R2 , (Titulo del Trabajo)

{Y dzf1-Otsy KALIGOI- Sy iSY Li2 IS I RS 02yiI-0i2 SylliS dsfiR2a RST211Y 1-6£S540

)

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, HC RS liizy12 RS Hmp

A v

Fdo: VRU . SI3SE 9yFSRIMjzS

AGRADECIMIENTOS

A mi familia y amigos, por el apoyo que
han supuesto siempre en mi vida.

A mis compaiieros de carrera, con los que
pasé cuatro afos trabajando codo con
codo para convertirnos en ingenieros.

Y en especial, a mis directores, Carlos
Quesada e Iciar Alfaro, por su inestimable
ayuda y por lo mucho, muchisimo que he
aprendido con ellos.

TABLA DE CONTENIDOS

CAPITULO 1. INTRODUCCION

1.1 RESUMEN

1.2 OBJETIVO Y ALCANCE DEL PROYECTO

1.3 ESTRUCTURACION DEL DOCUMENTO

CAPITULO 2. ASPECTOS TEORICOS DE DISTANCE FIELD Y POINT SHELL
2.1 INTRODUCCION

2.2 ANTECEDENTES

O (00 00 O\ IO\ ik A

CAPITULO 3. DESCOMPOSICION PROPIA GENERALIZADA

10

3.1 INTRODUCCION

10

3.2 ANTECEDENTES

11

3.3 LA DESCOMPOSICION PROPIA GENERALIZADA

12

3.4 UTILIZACION DE PGD PARA LA SIMULACION EN TIEMPO
REAL DE COLISIONES ENTRE SOLIDOS

12

CAPITULO 4. PROGRAMA PARA LA SIMULACION

14

4.1 INTRODUCCION

14

4.2 FICHEROS DE ENTRADA

15

4.3 CLASES AUXILIARES

16

4.4 CLASE SOLID

17

4.5 USO DEL DISTANCE FIELD

21

CAPITULO 5. PROGRAMA PARA EL CALCULO DEL DISTANCE FIELD

26

5.1 INTRODUCCION

26

5.2 CLASE LSMESH

27

5.3 CLASE SOLID

28

5.4 OBTENCION DEL CAMPO DE DISTANCIAS

29

5.5 DETECCION DENTRO-FUERA

29

5.6 SALIDA

30

CAPITULO 6. RESULTADOS

32

CAPITULO 7. CONCLUSIONES

34

7.1 OBJETIVOS DEL PROYECTO

34

7.2 LINEAS FUTURAS

34

REFERENCIAS BIBLIOGRAFICAS

37

ANEXO A. RESOLVIENDO UN PROBLEMA MEDIANTE PGD

38

ANEXO B. CODIGO DEL SIMULADOR

42

ANEXO C. CODIGO DE LA CALCULADORA DE DISTANCE FIELD

77

ANEXO D. HARDWARE Y SOFTWARE EMPLEADO

82

INDICE DE FIGURAS

Figura 1. Ejemplos de simulador MECANICO.uuruuuuueriiiiiiiiiiiiiiiniiiiiiiiiiiinieeeneenenennnnnnnes 4
Figura 2. Ejemplo de un distance field (1) y pointshell (2).ovvveeeeieeeiiiiiiiiiiiieeeeeeeeeees 6
Figura 3. Arbol de clases de la simulacion. La clase que recibe la flecha es usada por la clase
dela que origina 1a flecha.uuiiiiiiiiiiie e 15
Figura 4. Configuracion de 1os dos s01idOS €N T€POSO0.uvvurereeerriiiiiiiiiieeeeeeeeeeiiiieeeeeenan 18
Figura 5. Llamada a funciones en el constructor de la clase Solidccoovvvviieennnn.e. 18
Figura 6. Algoritmo para generacion de la geometria.ceeeevviviiiiiieiieeeeriiiiiiiceeeeennn, 19
Figura 7. Algoritmo de deteccidon de n0do MAS CErCaANO.ccevvvvrrenieieeeerriiiiiiieeeeennnn, 19
Figura 8. Reconstruccion de la solucion por PGD para las condiciones de frontera actuales.
... 21
Figura 9. Punto de R3 en un heXaedro.cc.covivuiiiuiieeeeeieeee e 22
Figura 10. Designacion de 10S VEITICES.uuuuueiieeeeeiiiiiiiieeeeeeeeeeeiiiieee e e e eeeeeearrieeeeeeans 23
Figura 11. DescomposiCiONn de PX €N AX Y 7. .eeveveiiieiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 23
Figura 12. Ejes de coordenadas del elemento................coevvviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee 24
Figura 13. Criterio dentro / fUera.............evvviviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee e 26
Figura 14. Relacién de clases del programa de calculo del distance field 27
Figura 15. Vector que une P CON S.oooiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 29
Figura 16. Deteccién como puntos internos al sélido de nodos que estan fuera realmente.30
Figura 17. Deteccidn correcta en Viga y StandfordBunny............ccccceeeeeeeiiiiiiiiiiiiienneenn, 30
Figura 18. Malla del SOIIAO.uuuuiiieeiiiiiiiiieie e e e e e e e 32
Figura 19. Deformacion de la viga si la carga se coloca en un nodo del extremo.............. 32
FIGUIA 20, ettt e e e e e e e e e e e b aaaaas 33
Figura 21. Contacto entre 10S SOIIAOS.uvveiiiieeiiiiiiiiiiiieeee e e 33
Figura 22. Flujo de la informacién en 1a aplicacion..........ccccceeeevvvviiiiiiiieeeeiiiiiiiieeeeeennn, 36

INTRODUCCION

1 RESUMEN

El contexto en el que se desarrolla el presente Trabajo de Fin de Grado es un proyecto para
desarrollar un simulador de cirugia general por parte del grupo AMB (Applied Mechanics and
Bioengineering) del Departamento de Ingenieria Mecanica de la Universidad de Zaragoza.

El desarrollo de simuladores de cirugia general tiene un especial interés en Medicina, no solo
por su aplicacion en labores docentes (entrenamiento de los futuros cirujanos), sino también
para la planificacién y ensayo de operaciones que aumenta la seguridad del paciente. Los
simuladores pueden clasificarse en dos grandes categorias: simuladores mecanicos y simula-
dores virtuales.

Los simuladores mecanicos trabajan sobre un modelo fisico del problema. Por ejemplo, en
la Figura 1. Ejemplos de simulador mecanico. puede verse un simulador consistente en una
pantalla, una mesa donde se colocara el modelo sobre el que se desarrolla la operacion y dos
instrumentos para manipular el modelo.

,~‘_”§

,;\,.,ﬁﬁ»!
M&%-. N
<

Figura 1. Ejemplos de simulador mecénico.

Estos simuladores pueden ser suficientemente realistas en muchas aplicaciones, y la res-
puesta tactil del modelo es inmediata al tratarse de una construccion sélida; pero plantean

4

dos limitaciones: la primera, el material debe ser, como se ha dicho, suficientemente parecido
al tejido humano. La segunda es que, la complejidad del modelo viene limitada por los me-
dios de fabricacion disponibles en la actualidad.

Por otro lado, los simuladores virtuales como el que desarrolla el AMB tienen igualmente una
pantalla e instrumentos de manipulacién, pero el modelo mecanico se ve sustituido por un
modelo virtual. Las limitaciones de esta familia de simuladores vienen dadas por la potencia
de calculo disponible y la eficiencia de los algoritmos usados.

Uno de las principales retos de los simuladores virtuales es obtener una respuesta haptica (es
decir, tactil). Para ello se usa normalmente un dispositivo con servomotores (brazo haptico)
que el usuario utiliza como entrada al programa, y a su vez el dispositivo devuelve al usuario
las fuerzas calculadas. Sin embargo, asi como el sentido de la vista puede percibir movi-
miento fluido con frecuencias de actualizacidén de 25 Hz, el tacto es mas sensible y es nece-
sario alcanzar los 1000 Hz, lo cual aumenta la velocidad de célculo requerida por el simula-
dor.

Ademas, surge el problema, ubicuo en el mundo de la computacion, de la deteccidon de coli-
sion entre solidos; algo necesario si se pretende lograr un simulador capaz de trabajar con
mas de un 6rgano a la vez.

Para ilustrar la situacion actual, se muestra el sistema para clasificar las capacidades de un
simulador de cirugia (originalmente dada por R. Satava), que define 5 generaciones [1]:

GENERACION I Representacion precisa de la geometria de los 6rganos a nivel
macroscopico.

GENERACIONTI Simulacion realista de la dinamica de los tejidos en tiempo real.
Se incluye respuesta héptica.

GENERACIONIII Se incluye la capacidad fisioldgica del 6rgano en el modelo. Im-
plica simular los mecanismos que regulan el funcionamiento del
organo.

GENERACION IV Anatomia microscopica, es decir, el modelo incluye vasos san-
guineos y sistema nervioso a nivel microscopico (capilares y ter-
minaciones nerviosas respectivamente).

GENERACIONV Descripcion del sistema biologico a nivel bioquimico.

Hoy en dia nos encontramos con simuladores que pertenecen a la generaciéon VI, aunque en
realidad ninguno llega a representar el comportamiento del 6rgano de una forma suficiente-
mente realista.

Por todo ello, se hacen necesarias nuevas metodologias de resolucion numérica de sistemas
de ecuaciones diferenciales, que junto a un disefio inteligente del software, permita cumplir
el reto de simular a 500 Hz un sistema de varios sélidos deformables no lineales, que inter-
actaen entre si y con el usuario de forma visual y haptica — el reto de conseguir un simulador
de cirugia virtual de generacién II completamente funcional.

El presente Trabajo de Fin de Grado se ocupara del postprocesado de una solucién mediante
el método de la Descomposicion Propia Generalizada para dos so6lidos elastico-lineales, lo-
grando la representacion visual y hdptica de su colision, de forma interactiva con un usuario
(esto es, el usuario usara un dispositivo haptico para interactuar con los sélidos, y si la defor-
macion de uno de ellos le llevase a colisionar con el otro, se representard dicha colision).

2 OBJETIVO Y ALCANCE DEL PROYECTO

La labor realizada el presente Trabajo de Fin de Grado es el desarrollo de un programa para
la simulacién en tiempo real de la colision entre dos s6lidos deformables.

El proposito del Trabajo de Fin de Grado es probar que es posible alcanzar una frecuencia
de actualizacion del estado de la simulacién de 500 a 1000 Hz para el caso de dos solidos
deformables que pueden interactuar entre ellos y con el usuario.

Para ello, se ha desarrollado una aplicacién con el lenguaje de programacion C++ en entorno
Microsoft Visual Studio 2010 encargada de realizar la simulacion, haciendo uso de las API!
de OpenGL y OpenHaptics, siendo una parte fundamental de la simulacion lograr una res-
puesta haptica (es decir, tactil) a través de un dispositivo PHANTOM OMNI de la marca
Sensable™. Se parti6 del codigo de una aplicacion anterior que calculaba las deformaciones
de un sélido.

Figura 2. Ejemplo de un distance field (21) y pointshell (22).

La simulacion se basa en la obtencion en tiempo real de soluciones a partir de un problema
resuleto mediante el método de reduccion de modelos conocido como Descomposicién Pro-
pia Generalizada (PGD por sus siglas en inglés, Proper Generalized Decomposition). Para
lograr la colision, se hizo uso de técnicas de distance field. La combinacion de PGD con distance
field resulta fundamental para lograr las frecuencias de calculo necesarias.

Como parte del proyecto se desarrollo un segundo programa, encargado de hacer el calculo
de la discretizacion del distance field usado para la gestion de la colision.

3 ESTRUCTURACION DEL DOCUMENTO

A lo largo de la memoria de este Trabajo de Fin de Grado, el lector podra encontrar:

e Una introduccion a la nocion de distance field y su uso en este Trabajo de Fin de
Grado.

L Acrénimo inglés para Application Programming Interface, designa al conjunto de métodos de una libre-
ria para ser utilizado por otro software como una capa de abstraccion.

6

e Una introduccién al método PGD de resolucion de ecuaciones diferenciales en deri-
vadas parciales.

e Organizacién general de las aplicaciones, describiendo brevemente su diagrama de
flujo.

e Descripcién de los algoritmos utilizados en el programa.

e Resultados de la simulacién de la colision.

Los capitulos que siguen a este primero, que sirve de introduccion, desarrollaran los siguien-
tes aspectos:

CAPITULO IL. Aspectos teoricos del distance field y su aplicacion en el presente
TFG, antecedentes.

CAPITULO III. Aspectos tedricos de la PGD, antecedentes y estado del arte, ejem-
plo de problema resuelto mediante PGD.

CAPITULO V. Dedicado a explicar el funcionamiento del programa de simula-
cion.

CAPITULO V. Dedicado a explicar el funcionamiento del programa de calculo
del Distance field.

CAPITULO VI. Resultados.

CAPITULO VIL. Conclusiones y Lineas Futuras.

ANEXO A. Contiene un ejemplo de solucién de problema mediante PGD.
ANEXO B. Cddigo fuente de la aplicacion dedicada a la simulacion.

ANEXO C. Codigo fuente del programa usado para el calculo del distance field.
ANEXO D. Informacion sobre recursos utilizados: brazo haptico, OpenGL y
OpenHaptics.

DISTANCE FIELDS Y
POINTSHELLS

1 INTRODUCCION

Intuitivamente, parece claro que para cualquier superficie S en el espacio euclideo, puede
definirse una funcién

flxy,x5,x3) =d

tal que d es la distancia mas corta (es decir, la euclidea) a la superficie S. Si dicha superficie
es cerrada, también se puede definir la funcion de forma que tome valores negativos en la
region del espacio que queda delimitada por S, y positivos en el resto. Podria llamarse a esta
funcioén el campo de distancias asociado a S.

Precisamente, 1o que en computacion se conoce como distance field (campo de distancias) no
es mas que una discretizacion de la funcion continua anteriormente descrita. Es decir, se
toma una muestra de puntos del espacio, y se evalua la funcién fen dichos puntos, creando
una estructura de datos formada por elementos de la forma:

(xl,xz,x3,f(x1,x2,x3))

El tener una variable conteniendo informacién de la distancia a una superficie permite aho-
rrar una gran cantidad de calculos de distancia euclidea, y es un recurso muy util en simula-
cion haptica de solidos con geometria no trivial.

Si se quisiera simular unicamente el contacto entre una herramienta quirtrgica (simulada
como el extremo del brazo haptico) y un solido, bastaria con evaluar la posicion dicho ex-
tremo para comprobar si esta dentro o fuera del so6lido. Sin embargo, en la colision entre dos
solidos surge la cuestion de qué nodos van a ser evaluados dentro del distance field. Dichos
nodos se conocen como pointshell, 1a cual consiste en una malla de puntos superpuesta a la
malla modelo del objeto, cada uno con una normal asociada que apunta hacia adentro. Di-
chos nodos pueden o no coincidir con los de la malla, siendo el caso mas simple aquel en el
que el pointshell esta compuesto por todos los nodos de la malla modelo.

Para su uso en la colision, se comprueba para cada ciclo haptico si los puntos del pointshell
estan en el distance field, y se obtiene la distancia para aquellos que estén, lo que detectaria la
colisién en caso de obtener distancia negativa para alguno de ellos.

Finalmente, se define el concepto de voxel (combinacién de las palabras volumen y pixel),
que se debe interpretar como el equivalente tridimensional de un pixel: sencillamente es un

hexaedro regular, pero su funcion es, analogamente a un pixel en una imagen bidimensional,
servir como bloque basico de construccion de un volumen. Por tanto, todos los voxeles deben
ser iguales. En este contexto, un voxel equivale a un “elemento” de la malla del distance field.

2 ANTECEDENTES

El uso de un pointshell es anterior al uso de un distance field en colision haptica. Como se ve
en [2], el nombre dado a la técnica para lograr el contacto entre solidos rigidos es Voxmap-
PointShell (VPS). Para resumir dicho enfoque, los voxeles tenian asociado un campo de 2 bits
(4 valores posibles), que codificaba los posibles estados del volumen: espacio libre, interior
del solido, superficie y proximidad. Esto conformaba el llamado Voxmap.

Bajo este modelo, cuando un nodo del pointshell es detectado en un volumen del interior (con
un cierto offset para evitar interpenetracion), se define un plano que pasa por el centro del
voxel y tiene la direccion de la normal. La distancia entre el nodo y el plano se interpreta
como la distancia de penetracion, y un modelo de muelle-amortiguador calcula la fuerza que
se debe devolver.

Este enfoque implica estar calculando las distancias en tiempo de ejecucion, siendo el voxmap
usado de forma puramente cualitativa.

Posteriormente, J. Barbi¢ y D. L. James usan el enfoque VPS para lograr la simulacion de
solidos deformables [3], cambiando en este caso el campo de 2 bits por valores de punto
flotante con signo, es decir, distancias precalculadas: un distance field que sustituye al anterior
voxmap. En esta implementacion, se indexan los puntos del pointshell segin un arbol jerar-
quico, de forma que se pueda comprobar la penetracion progresivamente, y cortar la com-
probacién de puntos para lograr la velocidad de computacion necesaria en un entorno hap-
tico, a costa de perder exactitud.

La fuerza en este caso es calculada con fuerzas de “penalizacién”, de la forma:
F = _kch,

donde k. es la rigidez de la fuerza de contacto, de valor arbitrario, d < 0 es la distancia de
penetracion (obtenida directamente del distance field), y N es la normal del nodo del pointshell.
En este modelo, la direccion de la fuerza estd determinada unicamente por el sélido que tiene
el pointshell. Esta aproximacion ha sido usada en trabajos mas recientes como [4]. La aplica-
cion aqui desarrollada calcula, en cambio, una fuerza proporcional a la deformacion obte-
nida por PGD.

Finalmente, en la colision de solidos deformables, el pointshell debera ser deformable, y en
general también lo tendra que ser el campo de distancias. Como se explica en el capitulo 5
de esta memoria, en este Trabajo de Fin de Grado se usa un pointshell deformable, pero no
un distance field deformable a pesar de tener dos solidos deformables.

3

DESCOMPOSICION PROPIA
GENERALIZADA

1 INTRODUCCION

En el resumen que abria el presente Trabajo de Fin de Grado se habl6 de la necesidad de
desarrollar nuevos métodos de calculo para superar los retos que plantea un simulador de
cirugia virtual de segunda generacion. En general, lo mismo puede decirse de varios grupos
de problemas de computacion:

e Modelos de alto numero de dimensiones, en los cuales, los métodos tradicionales
basados en malla alcanzan tamafos de malla completamente inabordables por cual-
quier ordenador disponible actualmente, ya que el nimero de ecuaciones del sistema
algebraico a resolver es MP | siendo M el namero de nodos por eje y D el niimero de
dimensiones (grados de libertad del problema).

e Modelos paramétricos, en los cuales dichos parametros deben suponerse o medirse.
Un modelo paramétrico puede, en la practica, asumirse como un modelo multidi-
mensional si se trata cada parametro como una dimension extra.

e Aplicaciones de datos dinamicos (DDDAS, Dynamic Data-Driven Application Sys-
tems), en las cuales, las condiciones de frontera del problema varian durante la simu-
lacién (por ejemplo en un simulador de cirugia, variara el nodo en el que se aplica la
carga en el solido segin mueva el dispositivo el usuario). La variacion de los datos
puede asumirse como parametros de la simulacion.

Es evidente que los tres grupos mencionados estan muy relacionados, por lo que es esperable
que la misma estrategia pueda servir para todos ellos, con minimas variaciones.

Sin embargo, atacar dichos problemas por fuerza bruta simplemente no es una opcion. Para
entenderlo, podria ponerse de ejemplo un modelo con 30 grados de libertad, algo que se
considera incluso simple [5], y una malla grosera de 1000 nodos por dimension. La malla
resultante contiene 10°° nodos. El superordenador mas rapido que existe en la actualidad (el
Tianhe-2, situado en el Centro Nacional de Supercomputacion, Guangzhou, China) tiene 3
millones de procesadores y es capaz de una velocidad de célculo de 33.86 PFLOP/s. Incluso
aunque pudiéramos resolver un nodo de la malla en una unica operaciéon de punto flotante
(FLOP), el tiempo de calculo seria:

10°° [FLOP]

=295-1073
33.86 - 1015 [FLOP/s] S

10

El tiempo total de vida del Universo desde el Big Bang hasta su hipotético final se estima en
4.32 - 103* 5. Serian necesarias las vidas de varios sextillones (!) de universos como el nuestro
para obtener la solucién (y eso bajo el supuesto de resolver un nodo con una sola operacion,
algo que en la practica no se da, ni mucho menos).

Resulta claro que la clave para solventar estas dificultades esta en el desarrollo de metodolo-
gias mas eficientes.

2 ANTECEDENTES

Si se presta atencion a la historia de la ingenieria, se vera como ante la escasez de recursos
computacionales, siempre se ha recurrido a la reduccion de modelos. En efecto, aun hoy, el
modelo de barra unidimensional, en el que se calcula un sélido tridimensional utilizando
como variables el desplazamiento y giro de la directriz, esta presente en muchos calculos
estructurales.

El ejemplo de la barra unidimensional ilustra bien la filosofia de la reduccion de modelos:
“extraer” la mayor cantidad de informacién de la solucién mediante el modelo mas sencillo
posible.

Los solucionadores generalizados que se han desarrollado en la mayor parte de los campos
cientificos han venido a llamarse Proper Orthogonal Decomposition (POD) o también Prin-
cipal Component Analysis (PCA) entre otros muchos nombres. El objetivo de este tipo de
métodos es obtener (resolviendo problemas similares al que uno quiere resolver) una serie de
funciones que contengan la mayor informacién posible de la solucion. Se confia en que di-
chas funciones encontradas no difieran mucho de la solucion exacta del problema.

En general, lo que se pretende en POD/PCA, para un problema de D dimensiones, es obtener
una aproximacion del tipo:

N N D
u@ =~) o) - R0) =) [[k
i=1

i=1 k=1

Donde ¢¥(x;) son funciones dependientes unicamente de la variable correspondiente. Es
importante notar que pueden agruparse variables en vectores, si resulta conveniente. Es de-
cir, no es necesaria una separacion total de las variables.

El algoritmo encargado de hacer el analisis POD/PCA calcula las funciones como base de un
espacio funcional, de modo que los vectores (funciones) estén ordenados de mayor a menor
segun alguna norma definida sobre el espacio (normalmente en problemas de fisica sera la
energia).

La solucién de casos particulares del problema multidimensional formulado, denominados
snapshots, puede hacerse mediante alguin método de solucién numérica exacta como FEM o
pueden ser, sencillamente, resultados experimentales. De dichas soluciones similares se ex-
traen los vectores propios, que van conformando un espacio funcional, ordenado de mayor
a menor valor propio.

Para intentar solventar la necesidad de solucion a priori de snapshots, P. Ladeveze desarrolld
un método denominado como LArge Time INcrements (LATIN) que no necesita de inspeccion
de soluciones para construir la reduccién del modelo [6] [7]. En concreto, fue desarrollado
para la descomposicion de la solucion en dominios de espacio y de tiempo (estando las tres
coordenadas espaciales agrupadas en un vector).

11

Mas recientemente, F. Chinesta generaliz6 de manera independiente esta aproximacion,
orientandola al problema multidimensional (parametrizacion), obteniendo asi el método
Proper Generalized Descomposition (PGD), que es la técnica usada en este proyecto.

3 LA DESCOMPOSICION PROPIA GENERALIZADA

La metodologia de la PGD es una generalizacion de POD/PCA, y al igual que en dicho mé-
todo, se busca obtener una forma separada de la solucién:

N D

N
@~) X0 XEG) - XPOp) = Y | [XEe) (3D
i=1 i=1 k=1
Sin embargo, se difiere del método anterior en que no se resuelve a priori ningin suapshot,
sino que las bases se calculan sobre la marcha.

Puede comprobarse que, en esta forma, parametros del problema (pl.j) que puedan tener un
rango continuo de valores se pueden tratar como variables del problema:

DI

u(£P1:---:Ps)~Z HX (xx) - np (P] =i Xik(xk)

i=1 k=1

Donde D’ = D + S y los distintos p; se han asumido como nuevas variables y por tanto re-
nombrados como x;,.

Como se dijo anteriormente, las variables no tienen por qué ser escalares, sino que se pueden
agrupar en vectores, siendo por tanto algunas funciones dependientes de varias variables.
Para formalizar esto, sea el hiperdominio £ en el que esta definido el problema, la separacion
de variables que mas convenga se traduce en una division del dominio tal que: O = Q4 X -+ X
Qy, siendo cada subdominio de dimension D; y por tanto D = dim(Q2) = dim(Q,) + -+
dim(Qy) = D; + -+ + Dy, = Y™, D;. Al separar el dominio, se reduce el nimero de solucio-
nes de MP a N - M - D [8], clave para conseguir la reduccién de tiempo de célculo necesaria
en este tipo de problemas.

4 UTILIZACION DE PGD PARA LA SIMULACION EN TIEMPO REAL DE COLISIO-
NES ENTRE SOLIDOS

El simulador desarrollado en este trabajo de fin de grado utiliza como datos de entrada solu-
ciones calculadas mediante PGD.

Cuando dos solidos contactan, en sus superficies aparecen fuerzas de contacto que deforman
los s6lidos. Como el contacto puede ser en cualquier posicion, o en cualquier regidn, en el
planteamiento PGD del problema se ha introducido como parametro la posicion de esas fuer-
zas. Se propone una separacion en la que el desplazamiento depende del punto considerado
y de la posicion del contacto o, equivalentemente, la posicion de la fuerza de contacto, de-
nominada s.

Uy Y1 F(x,y,2) - Fy(s)
u(x) = uy P} E,(x,y,2) - F(s)
\ZlF&%@ (@/

12

La ventaja de usar este método es que una vez resuelto el problema se obtiene un vademecum
con la informacion del desplazamiento de cualquier punto para cualquier posicion de carga
separada en dos funciones. En la simulacion del contacto hay que detectar qué puntos estan
en contacto (coordenadas s) y calcular, mediante la ecuacion anterior, la deformada corres-
pondiente a cada soélido y los valores de las distintas fuerzas que aparecen en el sistema.
Todos estos calculos pueden hacerse en tiempo real.

En el Anexo A se detalla la formulacién PGD para el problema estatico de elasticidad lineal,
que es el mas sencillo. El grupo de investigacion AMB ha desarrollado soluciones PGD en la
que separan el espacio y la posicion de la carga para problemas estaticos y dinamicos, y
planteamientos lineales y no lineales. El codigo de programacion desarrollado en este trabajo
puede utilizarse para simular la colision de cualquiera de los problemas estaticos formulados
por el grupo AMB.

13

PROGRAMA SIMULADOR

1 INTRODUCCION

Dado que la tarea principal del TFG ha sido el desarrollo de las aplicaciones, el presente
capitulo es especialmente importante, ya que en él se detalla el funcionamiento de las mis-
mas. En este apartado se dara un repaso a la evolucion del codigo durante el TFG, sin preten-
der dar los detalles del codigo anterior (que no tiene sentido explicar ya) ni del codigo de la
implementacion final (para lo cual se usan los otros apartados del capitulo)

Inicialmente, el disefio del programa era imperativo, esto es, un unico fichero contenia todas
las funciones’ y variables necesarias para hacer la simulacion. Los problemas de este tipo de
enfoque eran:

e Fichero de una extension enorme, dificil de navegar.

e Poca abstraccion de los procesos. Como consecuencia, era facil incurrir en soluciones
ad hoc que restaban reusabilidad al codigo.

e En general resultaba complicado entender qué hacia el codigo y la correccion de
errores podia volverse muy costosa en tiempo.

Por ello, en seguida se pasé a un enfoque mas moderno, basado en el paradigma de la pro-
gramacion orientada a objetos (OOP por sus siglas en inglés). En ella, la funcionalidad del
codigo se separa en diversas clases que se encargan de unas pocas tareas. Esto hace que sea
mucho mas fécil la abstraccion de procesos, y que sea mas facil entender el funcionamiento
del programa en un vistazo.

La relacion entre ellas se puede ver en el diagrama de la Figura 3.
Arbol de clases de la simulacion..

Como c++ exige una funcion main, se usa el archivo Programa para contener esa funcién y
ser el nexo de union del resto de clases (por asi decirlo, en Programa se define la escena a
simular). También cuenta con gran parte de las funciones graficas y hapticas, asi como la
gestion de la interaccion con el usuario.

2 En el sentido informatico, es decir, rutina o método.

14

Hay que tener en cuenta que el estudiante es Ingeniero Mecanico, no Informatico, y por
tanto sus conocimientos en materia de disefio de software fueron adquiridos durante el pro-
yecto. Con ello se quiere decir que el disefio del programa todavia puede ser mejorado (sin
ir mas lejos, la clase Solid tiene una extension de 365 lineas, contrastando con la mayoria
de clases usadas en el programa que tienen extensiones en torno a las 100 lineas, lo que indica
que el codigo no es suficientemente abstracto y podria ser separada en clases mas pequefias
y de menor extension).

Programa
Y Y
Vector3 |« Solid
A A |
Y Y
RotM < LSMesh
|
¥
LSData
Figura 3.
Arbol de clases de la simulacion. La clase que recibe la flecha es usada por la clase de la que origina la
flecha.

2 FICHEROS DE ENTRADA

La solucioén del problema mediante PGD se almacena en cuatro ficheros (uno para cada va-
riable, ya que en esta simulacién la solucion depende de las tres variables espaciales y una
extra para el parametro de la posicion de la carga): Fx.h, Fy.h, Fz.h, Fs.h.

El fichero malla.h contiene datos sobre la malla del modelo tridimensional del s6lido defor-
mable.

En parametros.h se guarda informacion acerca de la solucion, tal como el nimero de modos
de la PGD o el valor de la carga puntual que se aplicaba sobre los nodos.

La salida del programa que calcula el distance field, el fichero LSData.h, contiene la malla del
mismo, asi como las distancias calculadas.

2.1 Malla

Los datos de la malla del s6lido estan almacenados en forma de matrices. Se hace una dis-
tincion entre la superficie haptica® y la superficie total del s6lido, donde la matriz CoorSup es
la que contiene las coordenadas de cada vértice de la superficie total del sélido, y CoorS la

3 La superficie haptica es la regién que puede tocarse con el brazo haptico o contactar con otros soli-
dos, es decir, la regién en la que puede estar aplicada la carga. Esa region puede coincidir con la
superficie total o ser una region de la misma.

15

que contiene las coordenadas de los vértices de la superficie haptica. En general la nomen-
clatura del programa usa el sufijo “Sup” para la superficie total y “S” para la haptica.

Esta separacion es para evitar el renderizado en OpenHaptics de toda la superficie del sélido,
algo costoso y no muy util pues sélo es necesario representar en el espacio haptico los nodos
parametrizados en la solucién de PGD (y que por tanto son tocables durante la simulacion).

Las dos matrices ConnectSup y ConnectS definen los tridangulos de la superficie. Contienen
ternas de nimeros enteros, que son indices para la matriz Coor correspondiente. Por ejemplo,
{1, 2, 57} significa que el primer triangulo esta formado por los vértices 1, 2 y 57 (el orden
influye en el sentido de la normal, lo cual es muy importante ya que OpenGL tiene una
opcidn para pintar unicamente los triangulos visibles desde la camara, es decir aquellos cuyas
normales estén orientadas hacia la camara).

LoadedNodesSup relaciona los vértices de la superficie total con los de la superficie haptica.

Aunque pueda parecer que se esta duplicando informacién dentro de este fichero, la razén
es que tal y como funciona OpenHaptics, es mejor tener la malla de la superficie haptica
como una entidad separada, para agilizar el calculo en el thread de alta prioridad que usa la
API del brazo. Si pasamos toda la geometria del sélido, podriamos estar renderizando miles
de vértices cuando en realidad s6lo interesan unas pocas decenas, aquellos que estaban car-
gados en la soluciéon PGD.

2.2 Ficheros solucion PGD y parametros

En el Capitulo 3 se decia que en la practica, la solucién mediante PGD sobre la malla que
discretiza el dominio era un producto de funciones. Los ficheros Fx.h, Fy.h, Fz.h y Fs.h
contienen cada una de esas matrices.

En parametros.h se guardan dos variables, la fuerza usada en el problema paramétrico, y el
numero de modos del PGD (numero de sumandos de la aproximacion).

2.3 Fichero de resultados de Distance field

El fichero LSData.h contiene dos matrices: LSVertices contiene las coordenadas de cada
nodo de la malla del Distance field, vértices de los voxeles y LSMatrix la distancia que hay
desde cada uno de los puntos de la malla del distance field hasta el nodo mas cercano de la
superficie indeformada del solido a simular.

Para un punto de la matriz de vértices, LSVertices[i], la distancia que corresponde a dicho
punto es LSMatrix[i].

3 CLASES AUXILIARES
Se hace uso de dos clases auxiliares, que se encargan de facilitar la manipulacion de ciertos

datos geométricos (puntos en el espacio y direcciones en el caso de Vector3, y rotaciones en
el caso de RotM).

16

3.1 Vector3

Esta clase fue creada para la gestion de ternas de nimeros que representen tanto puntos como
vectores. Actualmente el codigo opera casi por completo usando éstos vectores, simplifi-
cando mucho la escritura de operaciones tipicas de la computacion geométrica, como suma
de puntos o productos vectoriales.

Es importante notar que esta clase hace uso de la caracteristica de plantilla de C++, lo que le
da la versatilidad de poder ser definido como un vector de double (valor que toma por de-
fecto), o de int, o float, o cualquier otro tipo o clase definido (incluso se podria definir
una matriz de 3x3 como un Vector3<Vector3<..>>).

Los siguientes operadores han sido sobrecargados para facilitar el uso de la clase:

o = Asigna un Vector3 a otro (copia elemento por elemento).

o + Suma dos vectores elemento a elemento.

o - Resta dos vectores elemento a elemento.

o * Producto escalar entre dos vectores.

o A Producto vectorial entre dos vectores.

® +=, -= Asignacién con suma y asignaciéon con resta.

o ==, I= Operadores 16gicos de comparacion (“igual a” y “no igual a”).
e [] Operador subindice. Permite acceder a los elementos del vector.

Adicionalmente, se han definido la funcién GetModulus, que devuelve el modulo del vector.

En el Capitulo 7 se recogen algunas ideas de mejora que podrian implementarse en un futuro,
aunque la clase ya cumple su funcion.

3.2 RotM

Esta clase tiene la funcion de almacenar la matriz de rotacion y su inversa. Para ello cuenta
con dos variables, comp (valores de la matriz de rotacion) e inv (valores de la matriz de rota-
cion inversa), y las funciones SetRotation, Rotation e InvRotation.

El constructor? de la clase inicia una matriz identidad, es decir, no hay giro.

Mediante la funcion SetRotation(a, b, c) donde a, b y ¢ son los angulos de rotacion 6y,
Oy vy 0, respectivamente. LLa composicidén de rotaciones es como sigue: primero se rota en
torno al eje X, después en torno al eje Y, y finalmente respecto al Z. En esta misma funcién
se calcula la rotacion inversa.

Las funcién Rotation(Vector3<> v) multiplica el vector que se le pase como argumento
por la matriz de rotacion, efectuando el giro. De forma analoga, InvRotation(Vector3<>
v) realiza la multiplicacién por la matriz inversa.

4 CLASE SOLID

Laclase Solid ha sido desarrollada para gestionar la geometria del sélido, tanto como sélido
rigido (es decir, traslacion y rotacion) como solido deformable (usando PGD para calcular el
campo de desplazamientos). La ventaja de separar el codigo de la gestion del sélido en una

4 En informatica, se llama constructor a la funcién que se llama cuando se crea la clase, inicializando
las variables.

17

clase es que se pueden crear multiples instancias de la clase en una misma escena, permi-
tiendo, por ejemplo, colocar dos solidos en una determinada configuraciéon con mucha faci-
lidad.

Figura 4. Configuracion de los dos solidos en reposo.

En este apartado se va a hacer hincapié en la funciéon de deformacion, aunque se explicardn
otras funciones importantes.

4.1 Representacion y movimientos como sélido rigido.

Cuando se llama al constructor de la clase, se desarrolla la siguiente llamada de funciones:

SetRotation [- 4

Constructor - —» Transform

SetTranslation| . I

Figura 5. Llamada a funciones en el constructor de la clase Solid

La linea discontinua representa una relacion indirecta, ya que SetRotation y SetTransla-
tion no llaman a ninguna funcién mas, simplemente modifican la matriz de rotacion y el
vector de traslacion.

La funcion Transform recorre todos los vértices y les aplica la matriz de rotacién actual y les
suma la traslacion:

_globalCoords[node] = rotation.Rotation(Vector3<>(CoorSup[node][@], Coor-
Sup[node][1], CoorSup[node][2])) + _centerPosition;

La variable _globalCoords[node] guarda los nodos en las coordenadas globales del espacio
de trabajo y es la que se usa para representar el solido.

Para la representacion del so6lido, hay que tener en cuenta que se debe generar una superficie
poliédrica y luego pasarla a OpenGL o a OpenHaptics. Se ha separado la funciéon que genera
la superficie de las funciones para la llamada haptica.

18

La funcién Geometry se encarga de generar éstos triangulos en OpenGL. El funcionamiento
del algoritmo esta representado en el diagrama de la Figura 6. Algoritmo para generacion de
la geometria..

Esta funcién es llamada por las funciones DrawGL y DrawHL, usadas en el cuerpo del programa
principal para representar tanto la escena grafica como la héptica.

——<::£Egéngulo « 1 hasta NumElem%EE::><—

¥

Obtener vértices del triangulo

v

Obtener normal al triangulo

v

Definir triangulo en
OpenGL

Figura 6. Algoritmo para generacién de la geometria.

4.2 Deteccion del nodo mas cercano

Aungque sencilla, la funcion GetClosestNode es clave para todo el proceso, ya que permite
conocer, dado un punto cualquiera P del espacio, qué nodo de la superficie haptica es el mas
cercano a é€l.

Su principal uso en la simulacién es averiguar qué nodo usar para calcular los desplazamien-
tos del solido con la funcion Deform, a partir de la posicion del cursor del brazo haptico.

Se puede observar el algoritmo en la Figura 7. Algoritmo de deteccién de nodo mas cercano..

19

minDist := dist(P, globalCoords[e])
loadedNodeS := ©

v

node « 1 hasta NumNodesS -«

v

d := dist(P, globalCoords[node])

d < minDist

d := minDist
loadedNodeS := node

I
v

(: return loadedNodeS j)

Figura 7. Algoritmo de deteccion de nodo més cercano.

4.3 Deformacion

La funcion Deform calcula el campo de desplazamientos que hay que aplicar a los vértices
del solido indeformado, dado un desplazamiento de uno de los nodos de la superficie hap-
tica.

Para ello, necesita saber el nodo que ha sido cargado (se sabra gracias a la funcion GetClo-
sestNode) y la distancia en Z recorrida por dicho nodo, desde el estado inicial hasta el que
tenga en el frame actual (para ello se ha calculado el distance field). La Figura 8. Reconstruc-
cion de la solucion por PGD para las condiciones de frontera actuales. muestra el diagrama
del algoritmo.

La primera tarea es inicializar a cero los desplazamientos (de lo contrario se irfan sumando
y el calculo seria erroneo). A continuacion se comprueba que la deteccion del nodo mas
cercano no dio ningun error.

Los ficheros Fx.h, Fy.h, Fz.h y Fs.h tienen almacenada una solucion para cada nodo de la
superficie haptica del solido, a la que se le ha aplicado una carga F. Si se reconstruye la
soluciodn para una posicion de la carga, se obtendrén las deformaciones de los nodos bajo esa
hipotesis (se obtiene la viga completamente deformada).

Como en la simulacién la deformacion puede (y debe) tomar estados intermedios entre el
estado indeformado y el completamente deformado, es necesario escalar esos desplazamien-
tos en funcidén del empuje que haya realizado el usuario sobre el sélido mediante el brazo
haptico. En este escalado se ha supuesto un comportamiento lineal del problema, asumiendo
que cuando el problema sea no lineal se cometera un cierto error que es asumible en el en-
torno de la simulacién en tiempo real.

20

Para ello, se obtiene la distancia de penetracidn respecto a la superficie (dada por el distance
field tomando como entrada la posicion del brazo haptico, ver §4.5) y se divide por el despla-
zamiento en Z (llamado RefDisp) del nodo que se esté tocando en ese momento.

Asi se obtiene un factor de carga, _ScaleFactor, que se usara tanto para escalar la respuesta
héptica como para escalar las deformaciones de los nodos.

Finalmente, una vez se tiene esta solucion escalada, se le aplican las transformaciones perti-
nentes para que esté en coordenadas globales, ya que la reconstruccion de la solucion da los
desplazamientos en coordenadas locales del solido.

_dispN[][] = e

Hay un nodo
cargado?

RefDisp := GetRefDisp(LoadedNodeS)

v

Obtener factor de carga, _ScaleFactor

Y

Reconstruir PGD para todos los nodos:
_dispN[node][@] = Fx*Fs*_ScaleFactor
_dispN[node][1] = Fy*Fs*_ScaleFactor
_dispN[node][2] = Fz*Fs*_ScaleFactor

Y

Rotar y trasladar el campo
de desplazamientos

Fin

Figura 8. Reconstruccion de la solucion por PGD para las condiciones de frontera actuales.

4.4 Calculo haptico

A través de la variable _ScaleFactor se escala la fuerza que ha de devolver el dispositivo.

Esto se hace en el codigo del archivo Programa, usando la funcion de OpenHaptics h1Ef-
fectd. A dicha funcion se le pasa un parametro definido en la propia libreria de OpenHaptics
y que indica que el efecto a recrear por el brazo debe ser una fuerza vertical, y un segundo
parametro que es la magnitud de dicha fuerza.

La magnitud es calculada como:
|F| = Fpgp - LoadScale

Donde Fpgp es la fuerza usada en el calculo de la solucion por PGD, y su valor equivale a
300 N, como se ve en el Capitulo 6. Se encuentra en el fichero parametros.h.

21

5 USO DEL DISTANCE FIELD

Una vez se tiene el distance field calculado (con el programa descrito en el Capitulo 5), es
necesario definir cbmo se usa para la gestion de la colision entre sélidos.

Se desea saber la distancia que tendrd un punto cualquiera del espacio P € R3, a la superficie
haptica del solido. Para ello se dispone del distance field, el cual contiene puntos de los cuales
se sabe la distancia a dicha superficie. El distance field esta compuesto por hexaedros regula-
res, esto es, la coordenada en un eje X, Y o Z de un punto difiere de la del punto anterior en
una cantidad constante Ax, Ay o Az respectivamente.

Se tienen 3 sistemas de coordenadas: el del mundo, el del elemento, y el de la matriz del
distance field.

e (x,y,2) es el sistema de coordenadas global (mundo).
e (i,j, k) esson los indices de la matriz del distance field.
e (n,&) es el sistema de coordenadas del elemento hexaédrico.

Durante el calculo, los tres sistemas de coordenadas eran coincidentes. No obstante, durante
la ejecucion del programa, el distance field se orientard y trasladara junto con el sélido al que
pertenece, lo que se tendra que tener en cuenta para hallar el hexaedro en el que esta conte-
nido el punto.

5.1 Encontrar los vértices del hexaedro que contiene a un punto

Figura 9.
Punto de R3 en un hexaedro.

La matriz del distance field tiene un ordenamiento interno tal que al recorrer el indice i, se va
incrementando la coordenada x de los puntos almacenados (y lo mismo ocurre para j con y
y k con z), cuando no hay rotacion. Al rotar las coordenadas de los puntos del distance field,

, T . . ., . , s ’ . ’
supongase alrededor del eje Z, dicha relacion cambia, y ahora sera j el indice que varie x.

Por ello, se transformara el punto P del espacio (que esta en coordenadas globales) al sistema
de coordenadas local del distance field (que sera el mismo que el del s6lido). Una vez se tengan
las coordenadas de P en este sistema de referencia, se podran obtener los indices (i, j, k) del
punto de la malla del distance field (llamado a partir de ahora A) que esté mas cercano al origen
(punto (0,0,0) en la malla del distance field).

22

En la Figura 10.
Designacioén de los vértices. Si sumamos (i, j k) a cada uno, se obtienen los indices dentro de
la malla del Distance field. se muestra la indexacion local de un voxel cualquiera del distance
field. Conociendo los indices (i, j, k) de A, el resto de puntos del voxel se pueden obtener
sumando los indices genéricos de la Figura 10.
Designacidn de los vértices. Si sumamos (i, j k) a cada uno, se obtienen los indices dentro de
la malla del Distance field. a los de A, definiendo por completo el voxel que encierra al punto
P. Aunque esto pueda resultar un poco confuso al principio, resulta mas claro para la imple-
mentacion, ya que de lo contrario el codigo se vuelve dificil de leer. En cambio, una vez
comprendida esta figura, el codigo es claro.

0,11

(1,1,1)

(0,0,1)

(1,1,0)

(1,0,0)

Figura 10.
Designacion de los vértices. Si sumamos (i, j k) a cada uno, se obtienen los indices dentro de la malla del
Distance field.

Para obtener los indices enteros (i,], k) de A en la matriz del distance field, se debe separar
cada una de las tres componentes del punto P del espacio en su parte entera y decimal.

P

X

|
|
\

—

|
o
—

Il
—
—

n 3
N
—

n 3
w

AX

(el L

Figura 11. Descomposicién de P, en A, y r.

Para simplificar la explicacion el procedimiento, se va a tomar la componente x de P, y la
descomponemos en una suma de dos términos:

Po=Ax-i+r=A,+r
De la Figura 11. Descomposicién de P, en A, y r. se desprende que:

P . T

—— =i+
Axle

23

Donde i es la componente homénima del punto A en la matriz del distance field.

Evidentemente, no se conoce a priori ni i nir/Ax, luego hay que encontrar alguna manera
de obtener la parte entera de P,/Ax. Afortunadamente, en c++ se puede truncar un numero
real en su parte entera haciendo una conversion de tipo:

i = int (P[@] / Dx); //Ahora i es la parte entera de la divisioén.

Haciendo lo propio con el resto de componentes de P, se obtendran j y k.

5.2 Obtencion de las coordenadas del punto en el sistema de coordenadas del ele-
mento

El distance field s6lo contiene la distancia a la superficie para algunos puntos del espacio, por
lo que es necesario interpolar los valores en el resto. Esta interpolacién se ha decidido hacer
con las funciones de forma usadas en FEM, para un elemento hexaédrico lineal de lado dos.

Como se aprecia en la Figura 12.

Ejes de coordenadas del elemento., el elemento tiene un sistema de coordenadas local de ejes

H, £, M. Normalmente, para cambiar las coordenadas globales del punto P, del cual se quiere

saber la distancia a la superficie, a coordenadas en el elemento se usa la ecuacion:
2x—a—D>

i (5.1)

Figura 12.
Ejes de coordenadas del elemento.

Donde a y b designan los extremos del lado del voxel en el eje que corresponda.

Sin embargo, ya que en el paso anterior del algoritmo se obtuvo la parte entera de cada com-
ponente del punto del espacio P, se puede aprovechar para tener la parte decimal de la com-
ponente normalizada dentro del elemento.

double r = (P[@] / Dx) - i; //Elimina la parte entera ya calculada.

Ahora, esta coordenada que esta entre [0, 1] debe pasar al rango [—1, 1] (puesto que el ele-
mento es de lado dos y tiene el origen en el centro). Simplemente se hace la operacién:

n=2-(r—0.5) (5.2)

24

Que, repetido con el resto de componentes del punto, despeja las coordenadas (n, ¢, u) de
P en el elemento.

Las ecuaciones (5.1) y (5.2) son equivalentes, ya que a =i-Axy b = (i + 1) - Ax, por lo
que:

2x—a—b 2x—i-Ax—(i+1) Ax

b—a (i+1)-Ax—i-Ax
_2x—2i-Ax—Ax
B Ax
x
=2(E—1)—1
= 2(r, — 0.5)

5.3 Distancia

Una vez conocidas las coordenadas (1, &, p) del punto del espacio P, se usan las funciones
de forma mencionadas en el apartado anterior para obtener una aproximacion de la distancia
al punto de la superficie S. En un elemento tridimensional, la funcion de forma en cada nodo

del elemento Ni(e) es [9]:

N = 21 +m) (1 +) (1 + €8) (5.3)
donde:
Nodo Ni ¢ J25
(0,0,0) —1 —1 —1
(1,0,0) +1 —1 —1
(1,1,0) +1 +1 —1
(0,1,0) ~1 +1 -1
(0,0,1) ~1 —1 +1
(1,0,1) +1 —1 +1
(1,1,1) +1 +1 +1
(0,1,1) ~1 +1 +1

La distancia de P a S serd entonces la suma de los valores ponderados en cada nodo del

elemento:
8
d= 2 diNi
i=1

donde d; es el valor de distancia correspondiente al i-ésimo vértice del voxel, y N; el valor
que toma la funcién de forma en dicho vértice, calculado segin la Ec. (5.3).

25

PROGRAMA PARA EL
CALCULO DEL DISTANCE
FIELD

1 INTRODUCCION

La informacion que se debe almacenar en la matriz del distance field corresponde a la distancia
del punto P de la matriz, a la superficie del s6lido deformable.

Por tanto, la funcién principal del programa es obtener dichas distancias, ademas de poder
determinar si la distancia corresponde a un punto interior al sélido o a uno exterior, de ma-
nera que en la fase de simulacion sea facil determinar si un punto cualquiera del espacio ha
entrado en el volumen del sélido.

Adicionalmente, debe ser capaz de escribir un fichero de salida con el formato adecuado,
para que la simulacion pueda usar la informacion obtenida en este programa.

La idea en la que se basa el algoritmo es la siguiente:

Supongamos una superficie cerrada S diferenciable en todo punto (de modo que sabemos la
normal a la superficie en cada punto) y un punto P en el espacio euclideo R3.

Entonces, si llamamos s € S a la proyeccion ortogonal de P en S, y v al vector que une P
con s, siendo n el vector normal a S en s; tenemos que el producto escalar v - n nos da la
distancia de P a la superficie. Ademas, si su signo es negativo, el punto esta fuera.

S P S .

Figura 13.
En el caso (a.), tenemos el punto fuera. Como podemos ver, n y v tienen la misma direccién pero sentido
opuesto. En el caso (b.), el punto esta dentro, ny v tienen el mismo sentido.

26

Esto mismo, trasladado a una superficie poliédrica como la que tenemos, la aproximacién a
la proyeccion ortogonal es obtener el vértice mas cercano.

Para todo ello, el programa hace uso de algunas clases directamente relacionadas con el pro-
grama de simulacion.

La relacion entre las clases usadas puede verse en la figura siguiente:

LevelSetCalculator
Y Y
Solid LSMesh
) 4) 4
Vector3 |« RotM

Figura 14. Relacion de clases del programa de célculo del distance field

El fichero LevelSetCalculator es el que contiene la funcién main, ademas de las funciones
de calculo de distancia, deteccion dentro-fuera, y escritura del fichero de salida. Las clases
incluidas son necesarias para que el archivo principal pueda realizar su tarea y, en algunos
casos, pueden ser diferentes de las clases con el mismo nombre en el programa dedicado a la
simulacion. Dichas diferencias se explicaran en el apartado que resulte necesario.

2 CLASE LSMESH

El papel de la clase LSMesh es definir una matriz del tamafio necesario para contener todos
los puntos del distance field y almacenar las distancias que se vayan calculando, para su pos-
terior acceso en la funcion de escritura del fichero de salida.

Debido a su funcidn, tiene importantes diferencias con la clase LSMesh usada en la simula-
cion: obviamente, no incluye funciones para interpolacion de la distancia, ya que so6lo es
necesario en la simulacion, cuando ya esta calculado el distance field. No se puede rotar, ya
que tampoco lo va a hacer el s6lido en este caso; aunque si puede trasladarse para ajustarlo
a la malla del solido.

Sin embargo, la diferencia mas notable esta en los campos que contiene. Esta version de
LSMesh tiene tres variables para definir el espaciado de los puntos en x, y y z, otras tres para
definir el nimero de puntos por eje, y finalmente un vector (en el sentido de la standard library
de C++) de tipo double que se encarga de la gestion dinamica de la memoria.

Observaciones.

Esta implementacion final de la clase surgi6 fruto del trabajo sobre otros enfoques interme-
dios, que se considera pertinente plasmar para dar una visioén global del proceso de desarrollo
de este programa.

Inicialmente, esta gestion de la memoria dinamica usada por el programa se intent6é hacer
mediante asignacién manual, tal y como se hacia en C, pero resulté en una gran cantidad de
problemas de gestién de la memoria.

27

Parte del problema estaba en que inicialmente se considerd hacer un distance field para cada
estado de carga del problema. La idea era que se necesitaba hacer esto para interpolar la
distancia que tendria el punto cuando la barra estaba deformada e indeformada. Sin em-
bargo, tal y como opera la funcion de calculo de desplazamientos, se vio que no era necesario
hacer esto, y que simplemente eran necesarias las distancias relativas al sélido indeformado
(ya que se calculan los desplazamientos respecto al caso indeformado).

Intentar calcular un distance field para cada estado de carga, junto al uso de un indice de para
cada direccion (i, j y k), daba una array dinamica de cuatro indices. El uso de una asignacion
manual de memoria dinamica daba problemas de compilacién, ya que era necesario definir
una serie de vectores de punteros interrelacionados que producian inconsistencia de tipos
(por ejemplo, Visual Studio intentaba convertir punteros tipo double* a double**).

Antes incluso de eliminar el indice dedicado a los estados de carga, se decidid constrefir los
tres indices de la matriz distance field en uno solo, y usar una funcién para mimetizar el acceso
a elementos que tendria con tres indices. De esta manera reduciamos el numero de capas de
punteros a dos. La funcién en cuestion, llamada Coor2N, realiza la siguiente operacion:

i+ j*_Nx + k*_Nx*_Ny;

Siendo i, j, k los indices del elemento al que queremos acceder, y Ny, N,, son el numero de

elementos en x y en y. Esta funcién, que es la que usa internamente C/C++ cuando se define
un array con mas de un indice, asegura el acceso al bloque de memoria buscado.

Posteriormente se dejo la asignacion manual de la memoria dinamica, que seguia dando
problemas al intentar liberar la memoria, en favor de la clase vector proporcionada por la
standard library. Dicha clase gestiona la memoria dinamica de la que hace uso y la libera ella
misma sin que el programador tenga que preocuparse. Esta funcionalidad, conocida en in-
formatica como colector de basura (donde la basura es la memoria dinamica que una vez usada,
ocupa espacio inutilmente en la RAM), eliminaba los problemas que daba la asignacion ma-
nual. Cuando se determind que solo era necesario el distance field de un estado (el indefor-
mado), la variable dedicada a almacenar las distancias calculadas se redujo a un simple vec-
tor<double>.

3 CLASE SOLID

En el caso de Solid, las diferencias respecto a la version usada en la simulacion son menores,
principalmente se suprimen las funciones de dibujo ya que no se va a pintar la viga (al menos
en principio, versiones mas avanzadas del programa podrian incluir una interfaz grafica).

Aunque pudiera parecer que no es necesario incluir esta clase, sino simplemente el fichero
malla.h, lo cierto es que facilita la obtencion de normales a las caras de la superficie (nece-
sario para distinguir entre el volumen interno y el externo al solido), y ademas, en caso de
querer calcular un distance field respecto a algin estado de carga en concreto, es necesario
tener la clase para calcular las deformaciones.

28

4 OBTENCION DEL CAMPO DE DISTANCIAS

Conceptualmente, se trata de obtener la distancia euclidea de cada punto del distance field al
punto mas cercano del sélido. Ademas, hay que tener en cuenta la traslacion que se da al
distance field para ajustarlo al sélido.

Como ya se coment6 en la introduccion al capitulo, se debe encontrar el vértice S de la su-
perficie del s6lido que sea mas cercano al punto P de la malla del distance field. En concreto,
el algoritmo recorre todos los nodos del distance field en un bucle y en cada iteraciéon i de
dicho bucle se obtiene el vector que une el origen de coordenadas O con el punto P; del
distance field. Después, se obtiene el vector que une el origen con el punto de la superficie S
mas cercano a P;. El vector que une P; con S se llamarda v = p — S y es el que contiene la
distancia del P; a la superficie, como se ve en la figura.

P

Figura 15. Vector que une P con S.

El valor que toma el distance field sera el méddulo de v, ||7]|.

5 DETECCION DENTRO-FUERA

Inicialmente, la deteccion dentro-fuera se hacia usando las normales a los vértices. Pueden
obtenerse a partir de las normales a las caras, haciendo la suma de las normales a todas las
caras a las cuales pertenece el vértice, y normalizando la resultante. Al multiplicar la normal
en el vértice por U, se obtiene la distancia con signo.

Debido a incoherencias en el calculo de las normales en puntos pertenecientes a esquinas,
esta forma de trabajar detectaba algunos puntos del distance field como internos al solido,
cuando en realidad estaban fuera. En ciertas geometrias no hay problema, pero sélidos con
angulos entre aristas rectos (o0 agudos), como un prisma, resultan afectados.

29

Figura 16. Deteccion como puntos internos al sélido de nodos que estan fuera realmente.

Se decidi6 pasar a un enfoque similar, aunque menos refinado: simplemente, se comprueban
las normales a todos los triangulos que contienen al nodo mas cercano. El criterio que decide
la pertenencia al interior del solido es el siguiente: si todos los productos 71 - ¥ son < 0 (cri-
terio que se sigue para determinar que P esta dentro del s6lido), se interpreta que esta dentro.
En caso de que un producto fuese positivo, P estd fuera del s6lido.

Con ello, se obtiene correctamente la pertenencia.

a. b.

Figura 17. Deteccion correcta en (a) Viga y (b) StandfordBunny

Asi se completa el calculo del distance field.

6 SALIDA

La funcién WriteFile genera un archivo de cabecera de C/C++, denominado LSData.h, con
la siguiente informacion:

e Numero de elementosen x, y y z.

e Espaciado entre elementos en cada direccion.

e Una matriz llamada LSVertices que contiene las coordenadas de cada nodo de la
malla del distance field (con la traslacion que se deba dar para ajustarlo al sélido).

30

¢ Una matriz llamada LSMatrix que contiene las distancias calculadas con el signo
correspondiente.

La variable LSVertices se considera pertinente para hacer mas facil el acceso a la informa-
cion geométrica sin rotar. Esto se usa principalmente para dos cosas: en la interpolacion con
funciones de forma y para calcular una variable, vertices, que contiene las coordenadas de
los vértices con la rotacion y traslacion que corresponda.

31

6

RESULTADOS

En éste capitulo se presentan los resultados de la simulacion. El material usado para el ana-
lisis mediante PGD era elastico lineal, bajo hipotesis de Kirchoff—Saint Venant, con un mo-
dulo elastico E = 2 - 10® N/m? y coeficiente de Poisson v = 0.3.

La carga es igual para todos los nodos y tiene un valor de 300 N.

En la siguiente figura se representa la malla del s6lido. Los puntos que aparecen en rojo estan
empotrados.

Figura 18. Malla del sélido.

Como se puede ver, las medidas del s6lido son 1.5 m X 0.2 m X 0.2 m.

Figura 19. Deformacién de la viga si la carga se coloca en un nodo del extremo.

32

En la siguiente se representa la configuracién inicial de los dos sélidos, tal y como se vio en
el Capitulo 5.

Figura 20.

Al tocar la cara superior del prisma, se aplica una deformacion sobre la viga. Cuando ésta
entra en conctacto con el segundo prisma también se deforma.

Figura 21. Contacto entre los sélidos.

CONCLUSIONES Y
LINEAS FUTURAS

1 OBJETIVOS DEL PROYECTO

Como se dijo en la introduccion, el proposito del TFG es probar que es posible alcanzar una
frecuencia de actualizacion del estado de la simulacion de 500 a 1000 Hz para el caso de dos
solidos deformables que pueden interactuar entre ellos.

A la luz de las simulaciones realizadas, se considera que, efectivamente, se logran dichas
tasas de actualizacion. Aunque en este trabajo no se ha medido exactamente la velocidad de
respuesta, se ha comprobado que el usuario percibe la respuesta haptica sin los saltos tipicos
que se dan cuando la respuesta es demasiado lenta, no percibe una respuesta discreta sino
continua.

El método PGD demuestra su potencial para éste tipo de aplicaciones, y se abre la puerta a
problemas de mas alta dimensionalidad (por ejemplo: incluir comportamiento plastico).

2 LINEAS FUTURAS

En éste apartado se indican posibles areas de mejora y sugerencias sobre donde enfocar tra-
bajos futuros sobre el cddigo.

2.1 Clase Vector3

Ya que la funcionalidad de Vector3 es principalmente geométrica, podrian hacerse algunos
cambios que lo optimizarian a este respecto y, haciendo uso de la herencia, obtener tanto
una clase “Vector” (que efectivamente represente un vector en el sentido estricto) como una
clase “Punto”.

Para ello, se definira un cuarto indice, no accesible mediante subindice, que tendra el valor
0 si es un vector y 1 si es un punto. Esta forma se usa mucho en graficos por ordenador, ya
que las operaciones de traslacidén y rotacién se fusionan en una matriz 4x4 de la forma:

34

T Tz T3 4

A=|T1 T2 T3 L
T31 T3z T33 U3
0 0 0 1

De esta forma, podemos rotar un vector v = (x 'y z 0) al multiplicarlo por A, pero no
sera trasladado (algo 16gico, ya que un vector es basicamente una direccion y una magnitud
en el espacio, por lo que no tiene sentido hablar de trasladar vectores), y un punto PT =
(x 'y z 1)sufrira ademas de la rotacion, la traslacion guardada en la cuarta columna de
A. En las siguientes ecuaciones se ponen los resultados de multiplicar A por un punto y por
un vector, respectivamente.

1 T2 Tz G\ /X X111ty Tp+zZ-1r3tt
A.p=|T1 T2z T2 LY | X TatY T2tz T3t
31 T32 733 t3 [\ 2 X131ty T32+2-133+¢;
0 0 0 1 1 1
1 Tz Tz b\ /X XT1+y Tig+2z2-T3
A.p=|T1 Tz T2 LY || X "1ty T2t Z-Ty3
T31 T3z T33 t3 [\ Z X131ty 13, +2Z 133
0 0 0 1 0 1

Esta clase es usada por todas las demads, por lo que cualquier cambio en ella tendréd profundo
impacto en el cddigo.

2.2 Clase RotM

En relacion a los cambios sugeridos en Vector3, la clase seria reformulada para incluir tras-
laciones, es decir, contendria un array 4 X 4 de forma que sus componentes fuesen:

1 T2 Tz 4
T21 Tz T3 G2
T31 T3z T33 I3

0 0 0 1

2.3 Clase Solid

Como ya se dijo en el Capitulo 4, ésta clase probablemente pueda ser separada en varias. Lo
que se propone es, principalmente, eliminar el cédigo encargado de la parte grafica y pasarlo
todo bien a funciones del archivo Programa, bien (la opcion preferida) a una clase nueva que
oculte el funcionamiento de OpenGL (por ejemplo, una clase llamada GL_Interface)y cu-
yas entradas sean entidades a representar. Lo mismo puede decirse de la parte haptica del
codigo.

Con ello, la clase Solid se convertiria en un contenedor de geometria, PGD y distance field
(las tres entidades que definen un so6lido en el modelo de simulacion, como se expuso en el
Capitulo 4), y sus funciones serian exclusivamente de calculo de deformaciones.

Para su representacion, un método GetGeometry devolveria los vértices y normales (ya de-
formados), y éstos serian los datos de entrada (junto con una traslacién y rotacion) a la clase
GL_Interface, la cual haria las operaciones necesarias para el renderizado en pantalla.

35

2.4 Més encapsulacion

Un aspecto fundamental de la encapsulacion del codigo es que permite la especializacion del
programador, asi como eliminar las “distracciones” que puede provocar la mezcla de diver-
sas funcionalidades en un mismo archivo.

Evidentemente, encapsular todas las funciones de gestion grafica y haptica en una o dos
clases separadas permitiria a los ingenieros mecanicos concentrarse en la parte de modelado
del sistema fisico, es decir el calculo de las deformaciones y el comportamiento del sélido en
general.

Para lograr la encapsulacion, es necesario representar los flujos de informacién de la aplica-
cion y agruparlos segun la funcion que tienen en la ejecucion. El siguiente diagrama es un
esquema de los flujos de informacién mas importantes.

SALIDA DE DATOS

r—- - — — 1 r — — — — 7
| || |
Malla del
Pantalla OpenGL <
s6lido
3 .
| % g |
= U
@ B~
[=
| 5 H |
% £ .
& Calculo de
?ra;o OpenHaptics | | deformaciones
haptico
= — — — < |
distance Penetracion |
Posicion del field
brazo L

= — — — = = — 4

PROCESAMIENTO DE DATOS DE ENTRADA

Figura 22. Flujo de la informacion en la aplicacion.

36

REFERENCIAS

[1]
2]

[3]

[4]

[8]

R. Satava, «Medical Virtual Reality: the current status of the future,» 1996.

W. A. McNeely, K. D. Puterbaugh y J. J. Troy, «Six Degree-of-Freedom Haptic
Rendering Using Voxel Sampling.».

J. Barbicy D. L. James, «Six-DoF Haptic Rendering of Contact between Geometrically
Complex Reduced Deformable Models,» IEEE TRANSACTIONS ON HAPTICS, vol. 1,
n° 1, pp. 39-52, 2008.

I.A.C. Q. E.C.F. C. David Gonzalez, «Computational vademecums for the real-time
simulation of haptic collision between nonlinear solids.,» Computer methods in applied
mechanics and engineering, n° 283, pp. 210-223, 2014.

A. Ammar, B. Mokdad, F. Chinesta y R. Keunings, «A new family of solvers for some
cases of multidimensional partial differential equations encountered in kinetic theory
modeling of complex fluids,» Journal of Non-Newtonian Fluid Mechanics, n° 139, pp. 153-
176, 2006.

P. Ladeveze, «Nonlinear Computational Structural Mechanics-New Approaches and
Non-Incremental Methods of Calculation,» p. 220, 1999.

P. Ladeveze, J. C. Passieux y D. Neron, «The latin multiscale computational method
and the proper generalized decomposition,» Computer Methods in Applied Mechanics and
Engineering, vol. 199, n° 21-22, pp. 1287-1296, 2010.

F. Chinesta, R. Keunings y A. Leygue, «The Proper Generalized Decomposition at a
Glance,» de The Proper Generalized Decomposition for Advanced Numerical Simulations: A
Primer, Springer, 2014, pp. 10-12.

Department of Aerospace Engineering Sciences of the University of Colorado, «11
Hexahedron elements,» de Advanced Finite Element Methods for Solids, Plates and Shells,
pp. 11-5.

37

ANEXO A

RESOLVIENDO UN PROBLEMA
MEDIANTE PGD

En el presente Anexo se desarrolla en mayor profundidad la metodologia de resolucion de
un problema mediante PGD. En concreto, se ha elegido el ejemplo propuesto en [4].

Como punto de partida, se considera el caso de un vademécum en el que interesa almacenar
el campo de desplazamientos u(x) de un sélido (2 bajo la accién de una fuerza (que se asume
unitaria y siempre de direccion —Z para simplificar el problema) en cualquier punto s de la

frontera T.

Esto deja el problema definido en general en R> (u = u(x, s)), aunque si s se interpola por
el vecino mas cercano, puede verse como un parametro unidimensional (el nodo donde acttia
la carga), dejando el problema en R*.

Por simplicidad, y para mostrar con mayor claridad las particuaridades de la Proper Orthogo-
nal Decomposition, se va a presentar la formulacion del problema elastico lineal, ignorando
los términos de inercia.

Bajo dichas suposiciones, la formulacion débil del problema, extendida al solido Q1 y a la

porcion de la frontera accesible a la carga, I' c I, consiste en encontrar el desplazamiento
u € ! tal que para todo u* € HJ se cumpla la siguiente ecuacion:

ffvsu*:adndf=f f u*-tdlrdr (4)
T Ja T Iy

donde I' =T, U I}; representa la frontera del s6lido, dividida en regién esencial y natural, y
donde I'; =T} UT}, , es decir, regiones con condiciones de frontera homogéneas y no-ho-
mogéneas, respectivamente. Aqui el vector tension no es un dato, como suele ser tradicio-
nalmente en este tipo de formulacones, sino que es el vector tension en cualquier punto s de

la frontera T, por lo que su expresion es t = —ey, - §(x — s), donde § representa la delta de
Diracy ey el vector unidad en el eje Z.

La delta de Dirac es regularizada y normalizada mediante una serie truncada de funciones
separables, segtn la filosofia del método PGD.

5=) f@gs)
i=1

donde m representa el orden del truncado y fjl, g]l- representan la j-ésima componente de
funciones vectoriales en el espacio y en la posicidn en la frontera, respectivamente.

38

Las técnicas PGD permiten construir de forma eficiente el vademécum computacional de
u(x, s) construyendo, de forma iterativa, una aproximacion a la funcién solucién en la forma
de una suma finita de funciones separables.

Supongamos que mediante pgd se ha llegado a la siguiente aproximacion en la iteracion #:
n
W 5) =) XE@ V)
k=1

donde el término u; se refiere a la j-€ésima componente del vector de desplazamientos, j =
1,2,3 y las funciones X]-k X))y)j-k (s) representan las funciones separadas usadas para aproxi-

mar el campo desconocido, obtenidas en iteraciones previas del algoritmo de PGD. El obje-
tivo de PGD es proveer una solucién mejorada dada por el término n + 1 de la aproximacion.

ul*t(x,s) = ul(x,5) + R;(x) - S;(s)

donde R;(x) y S;(s) son funciones que mejoran la aproximacion, incognitas del problema
para esta iteracion.

De forma anéloga, las variaciones admisibles en el campo de desplazamientos vendrdn dadas
por:

W (x,5) = R} (x) - S;(s) + R;(x) - S} (5)

Introduciendo las separaciones de la carga, del desplazamiento y de su variacion admisible
en la formulacion débil del problema, y teniendo la relacion lineal ¢ = C:V,u , donde C es
el tensor de comportamiento, se obtiene la siguiente expresion:

jf fﬂ Vs (R7(x) - S(s) + R (%) - 87 (5)) : €: ¥, (! (%, 5) + Ry (%) - 55(5)) ddT

= ff fr (R;(x)-s,-(s)+Rj(x) -5,-*(s))-<z f,-i(x)g;i(s)> drdT
tz i=1

Como se puede apreciar, incluso aunque el problema de partida es lineal, PGD necesita solu-
cionar un problema no lineal, es decir, determinar un producto de funciones R;(x) - S;(s). A

éste efecto, podria usarse cualquier metodologia de linealizacidn, pero se elige el método de
punto fijo por su sencillez y velocidad.

El algoritmo de punto fijo procede de forma iterativa enriqueciendo la solucién. En cada
paso n del enriquecimiento (para n = 1), los primeros n — 1 términos de la aproximaciéon
PGD descrita ya se suponen calculados:

n-1

n-—1 —
W@ s) =) XK@ K
j=1
A continuacién, se desea calcular el siguiente término de la aproximacion:

n—-1

un(x,5) = u"L(x,5) + R(x) - S(s) = Z X;(%) - Y;(s) + R(x) - S(s)
i=1

39

Tanto R(x) como S(s) son funciones desconocidas en el paso actual n del enriquecimiento.
Puesto que aparecen en forma de producto, el problema resultante es no lineal y requiere de
un esquema de linealizacion adecuado.

El algoritmo de punto fijo permite obtener la R(x) de la iteracion actual p a partir de la S(y)
de la iteracion anterior p — 1 para, a continuacion, obtener la S(y) de la iteracién actual a
partir de la R(x) que se acaba de calcular.

Xx) Y@

: N :
p Rp(x)<p0’)
p-1| Ry(x)—S(y)

A A

™~
1 [Rx)—S0)

Para que comience el proceso iterativo, se debe especificar un valor inicial arbitrario Sy(y).
Las iteraciones se sucederan hasta alcanzar un punto fijo, delimitado por una tolerancia €
previamente especificada, es decir:

IRy (x) - Sp(¥) = Rp—1 (%) - Spea || -
Rp—l(x)) Sp—1(}’)

Donde [|-|| es una norma adecuada.

Una vez halladas las funciones, el paso n del enriquecimiento termina identificando R(x)
con X, (x) y S(¥) con Y, (y).

El proceso de enriquecimiento se detiene cuando se obtiene una determinada medida del
error e(n) lo bastante pequeia, es decir e(n) < €.

2.1 Calculo de S(s) asumiendo que R(x) es conocida.
En este caso, tenemos:

uj (x,s) = R;j(x) - S (s)

”
“0

0, equivalentemente, u*(x,s) = R o §*, donde el simbolo es el producto de Hadamard,
o producto término a término de matrices. Una vez sustituido en la Ec. (4), da

n
f_f vS(Ros*):c:vs(Zxk-Y"+Ros>deF:
r Q

k=1

fo thZ(RoS*)-(Zf-g) dr df

0, equivalentemente:

40

f_fVS(RoS*):C:VS(RoS)defz
r Q

sz th(Ros*)(Z:lf-g)drdf—fF Lvs(Ros*)-:RndeF

donde R™ = C:V,u".

Como el gradiente simétrico s6lo opera en variables espaciales, se tiene:

f_L(VSROS*):C:(VSRos)def:
r
:L th(RoS*)-(Zf-g)dFdf—ff L(VSR°S*)-R”deF

Todos los términos dependientes de x son conocidos por lo que es posible obtener el valor
de s que cumple la ecuacion para cualquier variacién admisible S*.

Generalmente se utiliza una aproximacion de elementos finitos en las variables R y S para
resolver la ecuacion de manera aproximada.

2.2 Calculo de R(x) asumiendo que S(s) es conocida.
Equivalentemente, en éste caso se tiene:

ui (x,s) = R; (x) - S;(s)

Que, una vez mas, al ser sustituida en la Ec. (4) da:

fffﬂVS(R*°S):C:VS(;Xk'Yk+R°S>deF=
=_L (R*°S)-(kzlf-g)dl*df

Ttz

En este caso todos los términos dependientes de s (posicidon de la carga) pueden ser integra-

dos sobre T, lo que lleva a un problema elastico generalizado para calcular R(x) que se re-
suelve de manera similar al caso anterior.

Este desarrollo asume pequeiias deformaciones. Para las ecuaciones generales de hiperelas-
ticidad, los tensores de grandes deformaciones (usualmente el tensor de Green-Lagrange E)
debe ser igualmente linealizado.

41

ANEXO B

CODIGO DEL SIMULADOR

1 ARCHIVO Programa.cpp

[k kot sk ok sk ok sk sk ok sk sk ok sk ok sk st R sk ok sk ok sk sk sk sk ok ok sk sk sk sk sk ok sk sk ok sk ok stk stk ok sk ok sk sk sk ok ok sk ok sk ok sk sk ok

Copyright (c) 2004 SensAble Technologies, Inc. All rights reserved.

OpenHaptics(TM) toolkit. The material embodied in this software and use of
this software is subject to the terms and conditions of the clickthrough
Development License Agreement.

For questions, comments or bug reports, go to forums at:
http://dsc.sensable.com

sk st ok ok ok sk o sk sk sk s ok sk o sk sk sk sk ok sk ok sk ok sk sk sk ok R sk sk sk ok sk sk ok sk ok sk sk ok sk sk K sk ok sk ok sk sk R ok sk sk sk sk Rk ok

#include <stdlib.h>
#include <math.h>
#include <assert.h>
#include <vector>
#include <iostream>

#if defined(WIN32)
#include <windows.h>
#endif

#if defined(WIN32) || defined(linux)
#include <GL/glut.h>

#telif defined(__APPLE_)

#include <GLUT/glut.h>

#tendif

//data files

#include "Vector3.h"
#include "Solid.h"
#include "mysettings.h"

#include <HL/hl.h>

#include <HD/hd.h>

#include <HDU/hduMath.h>
#include <HDU/hduMatrix.h>
#include <HDU/hduQuaternion.h>

42

#include <HDU/hduError.h>
#include <HLU/hlu.h>
#include <HDU/hduVector.h>

#define FORCE 1000

//NOTA: LAS FUNCIONES CON k3 ks sk sk sk ook ok ok sk ok ok ok ok ok ok sk ok sk sk sk skok skok skok skok sk sk skoskokskok skokskokokoskokskok GON

LAS QUE HAY QUE TOCAR EN PGD

/* Haptic device and rendering context handles. */
static HHD ghHD = HD_INVALID_HANDLE;
static HHLRC ghHLRC = @;

/* Shape id for shape we will render haptically. */
HLuint gHapticShapeld;

/* desplazamientod de todos los nodos de la superficie */
//GLdouble displSup[3][NumNodesSup] = {0.0};

/* desplazamiento de la superficie cargada. */

//GLdouble displS[3][NumNodesS] = {0.0};

/* Cursor constants */

#define CURSOR_SIZE_PIXELS 20

static double gCursorScale;

static GLuint gCursorDisplaylist = ©;

//listado de funciones, por orden de aparicion

/* Function prototypes. Se las llama en main*/

void glutDisplay(void);//manda pintar drawSceneHaptics y drawSceneGraphics

void glutReshape(int width, int height);//ajusta la vista cuando cambiamos el ta-
mafio de la ventana

void glutIdle(void);//Brazo haptico. Llama a GestionaToque
3k skosk skoskoskoskosk sk skoskskokok ok

void glutMouse(int button, int state, int x, int y);//detecta si hay boton de raton
pulsado y activa las tareas de zoom, traslacion o rotacion

void glutMotion(int x, int y);//realiza zoom, traslacion y rotacion

//resto de funciones

double projectToTrackball(double radius, double x, double y);//usada en glutMotion
para la rotacion

void updateCamera();//actualiza la posicion de la camara

void updateHapticMapping();//??? usada en updateCamera

void exitHandler(void);//cierra, limpia y sale del programa

void initScene();//1llama a initGL e initHL

void initGL();//inicializa propiedades de la escena grafica (luces, ...)

void initHL();//inicializa propiedades de la escena haptica (fuerzas, ...)

void drawSceneGraphics();//pinta la escena grafica: viga deformada y cursor

void drawSceneHaptics();//"pinta" la escena haptica y devuelve la fuerza al brazo
haptico sk sk sk sk skosk skosk sk skosk skoskoskoskskoskoskok skokskok skok skok skk skk sk kk skk kk skk kk kk kk kk kok

//void drawObject();//pinta la viga deformada. El calculo del campo de desplaza-
mientos ya se ha hecho en getObjectDisplacement

//void drawLoadedSurface();//pinta la superficie de contacto en configuracion de-
formada

43

void drawCursor();//pinta un cono para el cursor en la posicion del brazo haptico
void DrawAxis(); //Pinta los ejes de coordenadas.

//gestiona el contacto entre el brazo y el objeto. Comprueba si se toca y en que
nodo. Calcula el

//desplazamiento de ese nodo y de todos los nodos de la viga. Llama a getClosestNode
y a getObjectDisplacement

Void GestionaTque();// 3k 3k skosk sk sk skoskoskosk skok sk

void GestionaColision();

//funcion auxiliar que gestiona la sensacion haptica cuando se ha dejado de tocar
la viga

VOid Descapga(int);// Sk 3k 3k ok 3k 3k ok sk 3k sk sk 3k sk sk sk sk sk sk 3k sk Sk 3k sk Sk 3k sk ok 3k 3k ok Sk 3k sk sk >k sk sk sk sk sk sk sk sk sk k sk sk kok k

void DescargaOK(int);

//busca el nodo mas cercano al proxi y la posicion del proxi. -1 significa que ha
habido algun error

//VOid getclOSEStNOde();// Sk 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skosk sk sk skosk skok skok skok sk ok skok skok sk sk k sk k sk ok k ok k ok k ok kok
//para un determinado desplazamiento de un nodo cargado, calcula el desplazamiento
de todos los nodos de la viga

//void getObjectDisplacement();//

3k 3k 3k 3k 3k 3k 3k >k 5k 3k 3k 5k 3k %k >k 3k 3k >k 3k 3k %k >k 3k 5k >k 3k 3k >k 3k 3k %k 5k 3k 3k 5k 3k 3k >k 3k 3k >k >k 3k %k K %k kK k >k

//Variables globales

HLboolean isTouching = false;//obtenida en GestionaToque y usada en GestionaToque
y drawSceneHaptics

HLboolean islstTimeHere = true;//usada en drawSceneHaptics. Para inicializar la
fuerza solo la primera vez

HLboolean firstContact = true;

GLdouble InitialProxyPosition[3];//posicion del brazo haptico. Calculada en Ges-
tionaToque

GLdouble proxyPos[3];

GLdouble displacement=0;//desplazamiento del nudo cargado en direccién -Z (posi-
tivo si va en -z)

GLdouble LoadScale;//displacement and load scale factor

//int loadedNodeS = -1;//nodo, de la superficie cargada S, donde se aplica la
carga. La numeracion empieza en ©. Calculada en getClosestNode

/* Effect ID */
HLuint gEffect;

static hduVector3Dd gCameraPosWC;
static int gWindowWidth, gWindowHeight;

/* Variables used by the trackball emulation. */

//0Originalmente la vista era desde el eje z positivo, plano xy. El eje x quedaba
hacia la derecha, el y hacia arriba, y el 0,0,0 en el centro de la pantalla
/*static hduMatrix gCameraRotation;//se inicializa por defecto como matriz identi-
dad

static double gCameraTranslationX = 0;

static double gCameraTranslationY = 0;

static double gCameraScale = 1.0;*/

//Modifico esta vista para que quede algo inclinada. Para obtener esos valores he
descomentado los valores iniciales y los comandos de imprimir que hay al principio
de la funcion upateCamera. Comienzo con la vista desde el eje z y voy girando y
trasladando hasta que tengo una vista que me gusta. Cada vez que modifico algo se

44

escriben en pantalla las matrices de rotacidn, la traslacién y la escala. Cuando
tengo la vista deseada, copio los valores de pantalla aqui debajo.

static hduMatrix gCameraRotation(0.818974, -0.378723, 0.431104, 0, 0.56948,
0.444069, -0.691734, 0, 0.0705358, 0.812017, 0.579356, 0, 0, 0, 0, 1);

static double gCameraTranslationX =-0.771429;

static double gCameraTranslationY = 0.114286;

static double gCameraScale = 1.1318;

//vista desde y negativo, plano xz

/*static hduMatrix gCameraRotation(1,0,0,0,90,0,-1,0,0,1,0,0,0,0,0,1);
static double gCameraTranslationX = 0;

static double gCameraTranslationY = 0;

static double gCameraScale = 1.0;*/

static bool gIsRotatingCamera = false;
static bool gIsScalingCamera = false;
static bool gIsTranslatingCamera = false;
static int glastMouseX, glLastMouseY;

//Solid beaml(©.0, 0.0, 0.0, 0.0*kPI, 0.0*kPI, 0.0*kPI);
//Solid beam2(1.3, 1.5, -0.3, 0.0*kPI, 0.0*kPI, 1.5*kPI);
//

//#define USING_API ©

//#define COLLISION_ENABLED ©

[k ok sk ok sk ok sk sk ok ok sk ok sk ok sk ok stk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk ok sk ok sk sk ok sk sk ok sk sk sk ok sk ok ok sk ok ok sk sk sk ok ok ok

Initializes GLUT for displaying a simple haptic scene.
stk sk sk o sk sk ok ok sk ok sk sk sk sk stk ok sk ok stk ok sk ok sk skl sk skl sk skl sk skl skl ok skl skl sk skl sk ok sk ok sk ok sk sk ok stk ok sk ok sk ok /
int main(int argc, char *argv[])
{
// Inicializa la biblioteca GLUT
glutInit(&argc, argv);

// Configura el modo de visualizacin inicial
// ventana con doble buffer, GFBA y buffer depth
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);

// Tamagno inicial de la ventana
glutInitWindowSize (700, 500);

// Crea la ventana
glutCreateWindow("PGD App Beam");

// Set glut callback functions.

// Callback de visualizacin para la ventana actual
glutDisplayFunc(glutDisplay);

// Callback de reshape para esta ventana
glutReshapeFunc(glutReshape);

// Callback idle
glutIdleFunc(glutIdle);

glutMouseFunc(glutMouse);
glutMotionFunc(glutMotion);

// Provide a cleanup routine for handling application exit.
atexit(exitHandler);

initScene();

glutMainLoop();

45

return 0;

}

[R AR KA A KA KA KA KA A KA KA KK K K K K KKK KK S KK KK K K o KoK oK K oK oK o

GLUT callback for redrawing the view.
stk sk ok skl sk ok ok skl sk s kb skl sk ok skl kol sk skl skl sk skl sk sk skl sk skl sk ok skl sk sk ok skok stk sk sk kokokok sk

void glutDisplay()

{
drawSceneHaptics();
drawSceneGraphics();
glutSwapBuffers();

}

/***

GLUT callback for reshaping the window. This is the main place where the
viewing and workspace transforms get initialized.
***/
void glutReshape(int width, int height)
{

static const double kFovY = 20;

static const double kCanonicalSphereRadius = 1;

glViewport(@, 0, width, height);
gWindowWidth = width;
gWindowHeight = height;

// Compute the viewing parameters based on a fixed fov and viewing
// sphere enclosing a canonical box centered at the origin.

double nearDist = kCanonicalSphereRadius / tan((kFovY / 2.9) * kPI / 180.9);
double farDist = nearDist + 2.0 * kCanonicalSphereRadius;
double aspect = (double) width / height;

glMatrixMode (GL_PROJECTION);
glLoadIdentity();
gluPerspective(kFovY, aspect, nearDist, farDist);

// Place the camera.

//la vista inicial es desde z positivo (x hacia la derecha, y hacia arriba de
la pantalla del ordenador

gCameraPosWC[@] = 0;

gCameraPosWC[1] = 0;

gCameraPosWC[2] nearDist + kCanonicalSphereRadius;

updateCamera();

}

/***

GLUT callback for idle state. Use this as an opportunity to request a redraw.
Checks for HLAPI errors that have occurred since the last idle check.
***/
void glutIdle()
{

// Haptic error.

HLerror error;

while (HL_ERROR(error = hlGetError()))

{

fprintf(stderr, "HL Error: %s\n", error.errorCode);

46

if (error.errorCode == HL_DEVICE_ERROR)

{
hduPrintError(stderr, &error.errorlnfo,
"Error during haptic rendering\n");
}
}
GestionaToque();

#if COLLISION_ENABLED ==
GestionaColision();
#tendif

//if(isTouching) std::cout << loadedNodeS << " isTouching" << std::endl;
else std::cout << loadedNodeS << std::endl;

glutPostRedisplay();
}

/**

GLUT callback for responding to mouse button presses. Detect whether to

initiate a point snapping, view rotation or view scale.
**/

void glutMouse(int button, int state, int x, int y)

{
if (state == GLUT_DOWN)
{
if (button == GLUT_LEFT_BUTTON)
{
gIsRotatingCamera = true;
else if (button == GLUT_RIGHT_BUTTON)
{
gIsScalingCamera = true;
}
else if (button == GLUT_MIDDLE_BUTTON)
{
gIsTranslatingCamera = true;
}
glLastMouseX = Xx;
glLastMouseY = y;
}
else
{
gIsRotatingCamera = false;
gIsScalingCamera = false;
gIsTranslatingCamera = false;
}
}

/***

GLUT callback for mouse motion, which is used for controlling the view

rotation and scaling.
***/

void glutMotion(int x, int y)

{
if (gIsRotatingCamera)

{
static const double kTrackBallRadius = 0.8;

47

hduVector3Dd lastPos;

lastPos[@] = glLastMouseX * 2.0 / gWindowWidth - 1.0;

lastPos[1] (gWindowHeight - glLastMouseY) * 2.0 / gWindowHeight - 1.0;
lastPos[2] = projectToTrackball(kTrackBallRadius, lastPos[@], lastPos[1]);

hduVector3Dd currPos;

currPos[@] = x * 2.0 / gWindowWidth - 1.0;

currPos[1] (gWindowHeight - y) * 2.0 / gWindowHeight - 1.9;

currPos[2] = projectToTrackball(kTrackBallRadius, currPos[@], currPos[1]);

currPos.normalize();
lastPos.normalize();

hduVector3Dd rotateVec = lastPos.crossProduct(currPos);

double rotateAngle = asin(rotateVec.magnitude());
if (!hduIlskEqual(rotateAngle, ©.0, DBL_EPSILON))

{
hduMatrix deltaRotation = hduMatrix::createRotation(
rotateVec, rotateAngle);
gCameraRotation.multRight(deltaRotation);
updateCamera();
}
}
if (gIsTranslatingCamera)
{

gCameraTranslationX += 10 * double(x - glLastMouseX)/gWindowWidth;
gCameraTranslationY -= 10 * double(y - glLastMouseY)/gWindowWidth;

updateCamera();

else if (gIsScalingCamera)

{
float yl = gWindowHeight - glLastMouseY;
float y2 = gWindowHeight - y;
gCameraScale *= 1 + (yl - y2) / gWindowHeight;
updateCamera();
}
gLastMouseX = Xx;
glLastMouseY = y;

}

/***

This routine is used by the view rotation code for simulating a virtual
trackball. This math computes the z height for a 2D projection onto the
surface of a 2.5D sphere. When the input point is near the center of the

sphere, this routine computes the actual sphere intersection in Z. When
the input point moves towards the outside of the sphere, this routine will
solve for a hyperbolic projection, so that it still yields a meaningful answer.

***/
double projectToTrackball(double radius, double x, double y)

{
static const double kUnitSphereRadius2D = sqrt(2.0);

double z;

double dist = sqrt(x * x +y * y);

48

}

if (dist < radius * kUnitSphereRadius2D / 2.0)
{

// Solve for sphere case.
z = sqrt(radius * radius - dist * dist);

}

else
// Solve for hyperbolic sheet case.
double t = radius / kUnitSphereRadius2D;
z =1t *t / dist;

}

return z;

[R KA A KA KA KA KK KA KK KA KK K K K K KKK KK S KK KK K o KoK Sk K oK oK o

Use the current OpenGL viewing transforms to initialize a transform for the

haptic device workspace so that it's properly mapped to world coordinates.
***/

void updateCamera()

{
/*

//descomentar estas lineas si se quieren imprimir los datos de rotacion, traslacion
y escala para ajustar una nueva vista

std::cout << "gCameraRotation" << std::endl;

std::cout << gCameraRotation[@][@] << ", " << gCameraRotation[@][1]
gCameraRotation[@][2] << ", "

std::cout << gCameraRotation[1][@] << ", " << gCameraRotation[1][1]
gCameraRotation[1][2] << ", " << gCameraRotation[1][3] << std::endl;
std::cout << gCameraRotation[2][@] << ", " << gCameraRotation[2][1]
gCameraRotation[2][2] << ", "

std::cout << gCameraRotation[3][@] << ", " << gCameraRotation[3][1]

gCameraRotation[3][2] << ", << gCameraRotation[3][3] << std::endl;

std:
std:

std:
std:

*/

}

" "

:cout << "gCameraTranslation" << std::endl;

:cout << gCameraTranslationX << ", << gCameraTranslationY << std

:cout << "gCameraScale" << std::endl;
:cout << gCameraScale << std::endl;

glMatrixMode (GL_MODELVIEW);
glLoadIdentity();

gluLookAt (gCameraPosWC[@], gCameraPosWC[1], gCameraPosWC[2],

@, 9, o,
0, 1,0);

glTranslatef(gCameraTranslationX, gCameraTranslationY, 9);
glMultMatrixd(gCameraRotation);
glScaled(gCameraScale, gCameraScale, gCameraScale);

updateHapticMapping();

glutPostRedisplay();

, << gCameraRotation[@][3] << std::endl;

<< gCameraRotation[2][3] << std::endl;

<< ",
< "y
<< ",
<< ",
::endl;

<<

<<

<<

<<

/***

Use the current OpenGL viewing transforms to initialize a transform for the

haptic device workspace so that it's properly mapped to world coordinates.
***/

void updateHapticMapping(void)

GLdouble modelview[16];

49

GLdouble projection[16];
GLint viewport[4];

glGetDoublev(GL_MODELVIEW_MATRIX, modelview);
glGetDoublev (GL_PROJECTION_MATRIX, projection);
glGetIntegerv(GL_VIEWPORT, viewport);

hlMatrixMode (HL_TOUCHWORKSPACE) ;
hlLoadIdentity();

// Fit haptic workspace to view volume.
hluFitWorkspace(projection);

// Compute cursor scale.
gCursorScale = hluScreenToModelScale(modelview, projection, viewport);
gCursorScale *= CURSOR_SIZE_PIXELS;

}

[sk kot sk ok sk ok sk ok sk ok ok sk ok sk ok sk stk stk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk ok sk ok sk sk sk sk ok sk sk stk sk ok ok sk ok sk sk sk ok ok ok ok

This handler is called when the application is exiting. Deallocates any state

and cleans up.
***/

void exitHandler()

{

// Deallocate the sphere shape id we reserved in initHL.
hlDeleteShapes(gHapticShapeld, 1);

// Deallocate the effect id we reserved in initHL.
hlDeleteEffects(gEffect, 1);

// Free up the haptic rendering context.
hlMakeCurrent (NULL);

if (ghHLRC != NULL)

{

}

hlDeleteContext(ghHLRC);

// Free up the haptic device.
if (ghHD != HD_INVALID_HANDLE)

hdDisableDevice(ghHD);
}

}

/***

Initializes the scene. Handles initializing both OpenGL and HL.
***/

void initScene()

{
initGL();
initHL();
}

/***

Sets up general OpenGL rendering properties: lights, depth buffering, etc.
***/
void initGL()

{
static const GLfloat light_model_ambient[] = {0.3f, 0.3f, 0.3f, 1.0f};
static const GLfloat light@ diffuse[] = {0.9f, 0.9f, 0.9f, 0.9f};

50

static const GLfloat light® direction[] = {@.0f, 0.4f, 1.0f, 0.0f};

// Enable depth buffering for hidden surface removal.
glDepthFunc(GL_LEQUAL);
glEnable(GL_DEPTH_TEST);

// Cull back faces.
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);

// Setup other misc features.
glEnable(GL_LIGHTING);
glEnable(GL_NORMALIZE);
glShadeModel (GL_SMOOTH);

// Setup lighting model.

glLightModeli(GL_LIGHT _MODEL_LOCAL_VIEWER, GL_FALSE);
glLightModeli(GL_LIGHT MODEL_TWO_SIDE, GL_FALSE);
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, light_model ambient);
glLightfv(GL_LIGHTO, GL_DIFFUSE, lighte diffuse);
glLightfv(GL_LIGHTO, GL_POSITION, lighte direction);
glEnable(GL_LIGHTO);

}

/***

Initialize the HDAPI. This involves initing a device configuration, enabling

forces, and scheduling a haptic thread callback for servicing the device.
***/

void initHL()
{

HDErrorInfo error;

ghHD = hdInitDevice(HD DEFAULT DEVICE);
if (HD_DEVICE_ERROR(error = hdGetError()))

{

hduPrintError(stderr, &error, "Failed to initialize haptic device");
fprintf(stderr, "Press any key to exit");
getchar();
exit(-1);
}

ghHLRC = hlCreateContext(ghHD);
hlMakeCurrent (ghHLRC);

// Enable optimization of the viewing parameters when rendering
// geometry for OpenHaptics.

hlEnable(HL_HAPTIC_CAMERA_VIEW);

// Generate id for the shape.
gHapticShapeId = hlGenShapes(1);

hlTouchableFace(HL_FRONT);

// Effects
gEffect = hlGenEffects(1);

}

/***

The main routine for displaying the scene. Gets the latest snapshot of state

51

from the haptic thread and uses it to display a 3D cursor.
stk sk ok skl sk ok ok sk ok sk s sk sk sk sk sk sk ok stk sk sk stk sk sk sk skl kol skl ok sk skl ok skl ko sk skl sk skoskokok ok

void drawSceneGraphics()

{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glClearColor(0,0,0,0);

// Draw 3D cursor at haptic device position.
drawCursor();

// Draw the Axis
DrawAxis();

// Dibujo de la barra
beaml.DrawGL(0.2, 0.3, 0.7, 1.0f);
beaml.DrawlLS();

// Dibujo de la barra 2
beam2.DrawGL(0.7, 0.3, 0.2, 1.0f);
//beam2.DrawlLS();

}

/***

The main routine for rendering scene haptics.

stk st ok ok ok sk ook sk sk sk ok sk o sk sk sk sk ok sk ok sk R sk ok sk sk ok ok sk sk sk sk sk ok sk sk sk sk sk ok sk ok sk sk stk sk kR skok sk sk kR Kok ok ook /

void drawSceneHaptics()

{
// Start haptic frame. (Must do this before rendering any haptic shapes.)

hlBeginFrame();
if (islstTimeHere)

hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 0);
hlStartEffect(HL_EFFECT_CONSTANT, gEffect);
islstTimeHere = false;

}

else if (isTouching)
{
#if HAPTIC_ENABLED
//la direccion de la fuerza que se devuelve al brazo haptico debe ser en el
eje +z, ya que el desplazamiento es en -z
hduvVector3Dd initialDirection(0,0,1);
//esta fuerza hay que rotarla, multiplicandola por la transpuesta de la
matriz gCameraRotation
hduVector3Dd finalDirection;
hduMatrix matAux = gCameraRotation.getTranspose();
matAux.multMatrixVec(initialDirection,finalDirection);
hlEffectdv(HL_EFFECT_PROPERTY_DIRECTION, finalDirection);

//E1l valor de la fuerza que se devuelve al brazo haptico. Debe estar escalado
entre © (ON) y 1 (300N), por eso divido entre 300.
hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, FORCE*(beaml.GetLoad() +

beam2.GetlLoad() / 2)/3000); //Va mal pero va.
std::cout << beaml.GetLoad() << std::endl;

hlUpdateEffect(gEffect);
#tendif

}

else

{

52

hlEffectd(HL_EFFECT_PROPERTY_MAGNITUDE, 0);
hlUpdateEffect(gEffect);

}

// Set material properties for
hlMaterialf(HL_FRONT_AND_BACK,
hlMaterialf(HL_FRONT_AND_BACK,
hlMaterialf(HL_FRONT_AND_BACK,
hlMaterialf(HL_FRONT_AND_BACK,

the shapes to be drawn.
HL_STIFFNESS, 0.0f);
HL_DAMPING, ©.0f);
HL_STATIC_FRICTION, ©.0f);
HL_DYNAMIC_FRICTION, ©0.0f);

hlMaterialf(HL_FRONT_AND_BACK, HL_POPTHROUGH, @.0f);

h1Hintb(HL_SHAPE_DYNAMIC_SURFACE_CHANGE, HL_TRUE);

// Start a new haptic shape.

Use the feedback buffer to capture OpenGL

// geometry for haptic rendering.

hlBeginShape (HL_SHAPE_FEEDBACK_

BUFFER, gHapticShapelId);

// Use OpenGL commands to create geometry.
beaml.DrawHL();//hay que "pintarlo" para poder tocarlo. Represento solo
superficie que se puede contactar

//beam2.DrawHL () ;

// End the shape.
hlEndShape();

// End the haptic frame.
hlEndFrame();

void drawCursor()

{

static const double kCursorRadius
static const double kCursorHeight

static const int kCursorTess =
HLdouble proxyxform[16];

GLUquadricObj *qobj = 0;

L}
o
(S0,]

-

“e

15;

glPushAttrib(GL_CURRENT BIT | GL_ENABLE_BIT | GL_LIGHTING BIT);

glPushMatrix();

if (!gCursorDisplaylList)
{

gCursorDisplayList = glGenLists(1);
glNewList(gCursorDisplayList, GL_COMPILE);

gobj = gluNewQuadric();

gluCylinder(qobj, 0.0, kCursorRadius, kCursorHeight,
kCursorTess, kCursorTess);
glTranslated(0.0, 0.0, kCursorHeight);

gluCylinder(qobj, kCursorRadius, 0.0, kCursorHeight / 5.0,
kCursorTess, kCursorTess);

gluDeleteQuadric(qobj);
glEndList();

}

// Get the proxy transform in world coordinates.
hlGetDoublev (HL_PROXY_TRANSFORM, proxyxform);

glMultMatrixd(proxyxform);

53

la

// Apply the local cursor scale factor.
glScaled(gCursorScale, gCursorScale, gCursorScale);

glEnable(GL_COLOR_MATERIAL);
glColor3f(e.0, 0.5, 1.0);

glCallList(gCursorDisplaylList);

glPopMatrix();
glPopAttrib();

void GestionaToque()

{

int loadedNodeTouch = -1;
#if USING_API ==

hlGetDoublev(HL_DEVICE_POSITION, proxyPos);

//GLdouble devicePosition[3];//punto de la superficie cargada mas proximo
al brazo haptico (no tiene porqué coincidir con un nodo ni es la posicion del brazo
haptico)

Vector3<> proxy(proxyPos[@],proxyPos[1],proxyPos[2]);

if (beaml.levelSet.InMesh(proxy))

{
double a = beaml.GetDistance(proxy); //Get the distance
if (a < 9)
{
loadedNodeTouch = beaml.GetClosestNode(proxy);
beaml.Deform(loadedNodeTouch, -a);
isTouching = true;
}
else
{
isTouching = false;
}
}
else

DescargaOK(loadedNodeTouch);
#tendif
#if USING_API ==
GLdouble devicePosition[3];
// Proxy touching or not the shape.
hlGetShapeBooleanv(gHapticShapeId, HL_PROXY_IS_TOUCHING, &isTouching);
hlGetDoublev(HL_PROXY_POSITION, proxyPos);

if (isTouching){
loadedNodeTouch = beaml.GetClosestNode(Vector3<>(proxyPos[@], proxyPos[1],
proxyPos[2]));//nodo mas cercano al proxi
if (loadedNodeTouch != -1){//por si acaso hay algun error

//0Opcion 1: uso InitialProxyPosition de la primera que toco vez como posi-
cion inicial para calcular el desplazamiento del brazo
//calculo cada vez el devicePosition menos la InitialProxyPosition inicial
if (firstContact){
hlGetDoublev(HL_PROXY_POSITION, InitialProxyPosition);
firstContact = false;

}
hlGetDoublev(HL_DEVICE_POSITION, devicePosition);

54

displacement = InitialProxyPosition[2] - devicePosi-
tion[2];//carga y desplazamiento en eje z

if (displacement > 0){
beaml.Deform(loadedNodeTouch, displacement);
}

}

else Descarga(loadedNodeTouch);//toca un nodo que no pertenece al dominio

de las posibles posiciones de carga

}

else Descarga(loadedNodeTouch); //no toca el objeto
#endif
/*if(isTouching) std::cout << loadedNodeS << "
std::endl;
else std::cout << loadedNodeS << std::endl;*/

isTouching" << displacement <<

}

void GestionaColision()

{

int loadedNodeCollision = ©; //nota mental: NUNCA hay que usar variables
globales.

Vector3<> punto = beaml.GetCoords(6);
if (beam2.levelSet.InMesh(punto))

{
double a = beam2.GetDistance(punto); //Get the distance
if (a < 9)
{
loadedNodeCollision = beam2.GetClosestNode(punto);
beam2.Deform(loadedNodeCollision, -a);
isTouching = true;
}
else
{
isTouching = false;
}
}
else

DescargaOK(loadedNodeCollision);

//double dispArray[NumContact];
//int loadedNodeArray[NumContact];

//for (int i = ©; i < NumContact; i++)

/74

// dispArray[i] = ©;

// loadedNodeArray[i] = ©;

// Vector3<> punto = beaml.GetCoords(nodosContacto[i]);

// if (beam2.levelSet.InMesh(punto))

// {

// double a = beam2.GetDistance(punto); //Get the distance
// loadedNodeArray[i] = beam2.GetClosestNode(punto);
// if (a < 0)

// dispArray[i] = -a;

// else

// dispArray[i] = 0;

// }

/1}

55

//beam2.Deform(loadedNodeArray, dispArray);
}

void Descarga(int node)
{
//cuando ya no estamos tocando, la variable displacement deberia ser cero, pero
esto produce golpes en el brazo
//debido a que entramos en una situacidén te toco-notoco-toco-notoco... Por eso se
va "descargando" poco a poco
//1la variable displacement hasta dejarla en cero.
firstContact = true;
if (displacement > 0){

displacement -= 0.01;//ajustado a mano
}
else{

displacement = 0;

//loadedNodeS = -1;
}

beaml.Deform(node, displacement);

}

void DescargaOK(int node)

//beaml.Deform(node, 0);
//beam2.Deform(node, 0);

}

void DrawAxis ()

{
glBegin(GL_LINES);

//Eje X
GLfloat matAmbDiff2[] = { 1.ef, @.0f, 0.0f, 1.0f };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, matAmbDiff2);

glVertex3f(0.0f, 0.0f, 0.0f);
glVertex3f(3.0f, 0.0f, 0.0f);

//Eje Y

matAmbDiff2[0] 0.0f;

matAmbDiff2[1] = 1.0f;

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT AND_DIFFUSE, matAmbDiff2);

glVertex3f(0.0f, 0.0f, 0.0f);
glVertex3f(0.0f, 3.0f, 0.0f);

//Eje Z

matAmbDiff2[1] 0.0f;

matAmbDiff2[2] = 1.0f;

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, matAmbDiff2);

glVertex3f(0.0f, 0.0f, 0.0f);
glvertex3f(e.of, 0.0f, 3.0f);

glEnd();

2 CLASE solid

2.1 Cabecera
#pragma once

56

#include <stdlib.h>
#include <math.h>
#include <assert.h>
/*

#include <vector>
#include <iostream>
*/

#if defined(WIN32)
#include <windows.h>
#endif

#if defined(WIN32) || defined(linux)
#include <GL/glut.h>

#telif defined(__APPLE_)

#include <GLUT/glut.h>

#tendif

#include <HL/hl.h>

#include <HD/hd.h>

#include <HDU/hduMath.h>
#include <HDU/hduMatrix.h>
#include <HDU/hduQuaternion.h>
#include <HDU/hduError.h>
#include <HLU/hlu.h>

#include <HDU/hduVector.h>

#include <math.h>

#include "malla.h"
#include "parametros.h"
#include "Fs.h"
#include "Fx.h"
#include "Fy.h"
#include "Fz.h"

#include "Vector3.h"
#include "LSMesh.h"
#include "RotM.h"

class Solid {

Vector3<> _centerPosition;

Vector3<> _globalCoords[NumNodesSup]; //Coordenadas de los puntos respecto
a ejes globales

Vector3<> _dispN[NumNodesSup]; //Desplazamientos de los nodos en un paso
dado

RotM rotation;

double _ScaleFactor;

public:
LSMesh levelSet;
//Constructores y destructor(es)
Solid();
Solid(Vector3<>, Vector3<>);
Solid(double,double,double,double,double,double); //3 primeros argumentos:
coordenadas. 3 ultimos argumentos: angulos de rotaciodn.

57

void initializeGobalCoords(); //Copia las coordenadas de la malla a la va-
riable _globalCoords. S6lo se llama en los constructores.

~Solid();

//GETs y SETs

int GetClosestNode(Vector3<»>); //Dado un punto en el espacio, se devuelve
el nodo de la superficie mas cercano

void SetCenter (double, double, double); // Las coordenadas deben ir respecto
a las globales

void SetRotation (double, double, double); // Los angulos han de ir en
radianes

void SetCoords (int , Vector3<>);

double GetlLoad(); //Devuelve la carga que debe ir al brazo haptico segin se
calcule en deform.

Vector3<> GetCoords(int); //Devuelve un vector con la posicién del punto.

Vector3<> GetDisp(int); //Devuelve un vector con la posicién del punto.

double GetRefDisp(int); //Deforma en Z la viga.

//Movimientos como sélido rigido

void Transform();

void Translate(double, double, double);

void Rotate(double, double, double);

//Deformacidén del sélido

void Deform(int, double); //Pasamos al nodo (int) la distancia (double), se
calcula la deformada y la fuerza a devolver.

void Deform(int [], double []); //Overloaded function

//Representacion del sélido

void Geometry();

void DrawGL(float, float, float, float);//R G B y alpha

void DrawHL(); //

void DrawLS();

//0tro

Vector3<> GetNormal(int, int, int); //Dados tres enteros, devolvemos 1la
normal al triangulo que forman los nodos indicados por dichos enteros.

double GetDistance(Vector3<>);

}s

2.2 Cuerpo
#include "Solid.h"

[17171117177777777777777777777777777777771117717777171177
// VERSION 1.3

//
LIP7TT700 7077777777777 7 7777777777 777777777777777717

Solid :: Solid(){
//initializeGobalCoords();

/* Inicializamos el punto central y la orientacién inicial del sélido a ©

*/

SetCenter(0.0, 0.0, 0.0);

SetRotation(0.0, 0.0, 0.9);

Transform();

levelSet.Transform(Vector3<>(0,0,0), Vector3<>(0,0,0));
}

Solid :: Solid(Vector3<> pos, Vector3<> ori){
//initializeGobalCoords();

58

/* Inicializamos el punto central */
SetCenter(pos[@], pos[1], pos[2]);

/* Inicializa la matriz de rotacién */
SetRotation(ori[@], ori[1], ori[2]);

Transform();
levelSet.Transform(pos, ori);

Solid :: Solid(double x, double y, double z, double a, double b, double c){
//initializeGobalCoords();

/* Inicializa el punto central */
SetCenter(x, vy, z);

/* Inicializa la matriz de rotacioéon */
SetRotation(a, b, c);

Transform();
levelSet.Transform(Vector3<>(x,y,z)
, Vector3<>(a,b,c));

Solid :: ~Solid(){}

//void Solid :: initializeGobalCoords(){

// for (int node = ©@; node < NumNodesSup; node++){
// _globalCoords[node].x = 0;

// }

/1%

/* ___

___ */
void Solid :: SetCenter (double x, double y, double z) {
/* Moidifica los valores del centro geométrico del sélido */
_centerPosition = Vector3<>(x, vy, z);

}

void Solid :: SetRotation (double a, double b, double c) {

/* Modifica los valores de la matriz de rotacidn, segiun los angulos de Euler
introducidos en radianes

Esta matriz es producto de 3 matrices, pero se define explicitamente

Se rota primero en X, luego en Y y luego en Z */

rotation.SetRotation(a,b,c);

}

void Solid :: SetCoords (int node, Vector3<> coor){
_globalCoords[node] = coor;

}

double Solid :: GetLoad(){
return _ScaleFactor;

}

Vector3<> Solid::GetNormal(int verticel, int vertice2, int vertice3)

{

59

//GLmanager necesita normales y vértices. Aqui se calcula la normal.
//Este cdédigo es ultra guarro y espero poder mejorarlo en el futuro.

/* Tenemos los vértices del triangulo, que bdasicamente son coordenadas
locales en la malla del sdlido.
Por tanto, hemos de cambiarlas a globales (incluyendo las deforma-
ciones) */
Vector3<> pointdef[3];
pointdef[@] = _globalCoords[verticel-1] + _dispN[verticel-1];

pointdef[1] = _globalCoords[vertice2-1] + _dispN[vertice2-1];

pointdef[2] = _globalCoords[vertice3-1] + _dispN[vertice3-1];

/* Ahora lo que falta es dar dos aristas del triangulo en forma de vector
yya */

Vector3<> u
Vector3<> v

pointdef[1] - pointdef[0];
pointdef[2] - pointdef[0];

return u”v;

}
Vector3<> Solid :: GetDisp(int node)
{
return _dispN[node];
}s
Vector3<> Solid :: GetCoords(int node)
{
return (_dispN[node] + _globalCoords[node]);
}
int Solid :: GetClosestNode (Vector3<> proxy){
double mindistance = proxy - _globalCoords[0];
int loadedNodeS = 0;
for (int node = @; node < NumNodesS; node++) {
Vector3<> aux = proxy - _globalCoords[LoadedNodesSup[node]];
if (aux.GetModulus() < mindistance) {
mindistance = aux.GetModulus();
loadedNodeS = node;
}
}
return loadedNodeS;
}

//Esto calcula el desplazamiento referencia de la barra, es decir el que ocurre
con la carga de cdlculo que se usé para generar
//el PGD.
double Solid::GetRefDisp(int nodo){
double aux = 0;
for (int jj = 0; jj < NumModosPGD; jj++)
aux += Fz[jj][LoadedNodesSup[nodo]] * Fs[jj]l[nodo];

return aux;

}
double Solid::GetDistance (Vector3<> proxy)
{
return levelSet.DistanceToSurface(proxy);
}
/* ___

SECCION 3 - Métodos de sélido rigido:
-transform
-translate
-rotate

void Solid::Transform() {
/* Esta funcién actualiza las coordenadas globales de todos los puntos
del sélido como sélido rigido.
En caso de que tengamos una traslacién y una rotacidén simultaneas,
se recomienda usar
setCenter(x, vy, z);
setRotation(a, b, c);
transform();
en vez de
translate(x, vy, z);
rotate(a, b, c);
para ahorrar calculos.
*/

for (int node = @; node < NumNodesSup; node++)

{
_globalCoords[node] = rotation.Rotation(Vector3<>(CoorSup[node][©@],

CoorSup[node][1], CoorSup[node][2])) + _centerPosition;

}
}
void Solid::Translate(double x, double y, double z) {
/* Mueve el objeto en el espacio
NOTA: por ahora no compone (suma) traslaciones */
SetCenter(x, vy, z);
Transform();
}
void Solid::Rotate(double a, double b, double c) {
/* Rota el objeto en el espacio
NOTA: por ahora no compone (suma) rotaciones. */
SetRotation(a, b, c);
Transform();
}
/* ___
SECCION 4 - Métodos de deformacién:
-deform
-Deformz
___ */
/* double Solid::SacarDeformacionEnZ(int nodo){
displRef += Fz[jj][LoadedNodesSup[loadedNodeS]] * Fs[jj][loadedNo-
deS];

} */
/*void Solid::Undeform(){
}*/
void Solid::Deform (int loadedNodeS, double disp){

//Inicializar a ©
for (int i = @; i < NumNodesSup; i++){

61

for (int j = 0; j < 3; j++){
_dispN[i][j] = e;

}
}
//Comenzamos comprobando que no hay ningun error.
if (loadedNodeS != -1){
/* Calculo la escala para que el desplazamiento del loadedNodeS

coincida con el desplazamiento del brazo
haptico desplazamiento para la carga dada en los ficheros de entrada
*/
double RefDisp = GetRefDisp(loadedNodeS); //Esto calcula el desplazamiento
en Z del nodo cargado, con la carga con la que se hizo el precalculo

/* A continuacién se compara con el desplazamiento de nuestro
brazo (disp) para calcular el % de la carga

original que habria que aplicar para conseguir una deformacidn
"disp".*/

if (RefDisp == @) _ScaleFactor = 100;

else _ScaleFactor = -(disp / RefDisp); // Creo que esto es el problema
de los trompazos de la respuesta haptica. No puede ser problema de la API si estamos
usando el LevelSet

/* Se calculan los desplazamientos escalados de todos los nodos */
for (int node = @; node < NumNodesSup; node++) {
for (int mode = ©; mode < NumModosPGD; mode++) {
_dispN[node][@] += Fx[mode][node] * Fs[mode][loaded-
NodeS] *_ScaleFactor;
_dispN[node][1] += Fy[mode][node] * Fs[mode][loaded-
NodeS] *_ScaleFactor;
_dispN[node][2] += Fz[mode][node] * Fs[mode][loaded-
NodeS] *_ScaleFactor;

¥
}

/* Por ultimo, se pasan las deformaciones a coordenadas globales
*/
for (int node = @; node < NumNodesSup; node++){
_dispN[node] = rotation.Rotation(_dispN[node]);
}

}

void Solid::Deform (int loadedNodeArray[NumContact], double dispArray[NumContact])
{
//Inicializar a ©
for (int i = @; i < NumNodesSup; i++){
for (int j = 0; j < 3; j++){
_dispN[i][j] = ©;
}
}

int tempLoad[NumContact];

for (int i = @; i < NumContact; i++)

{
//Comenzamos comprobando que no hay ningun error.
if (loadedNodeArray[i] != -1){
/* Calculo la escala para que el desplazamiento del loa-

dedNodeS coincida con el desplazamiento del brazo

62

haptico desplazamiento para la carga dada en los ficheros de
entrada */

double RefDisp = GetRefDisp(loadedNodeArray[i]); //Esto cal-
cula el desplazamiento en Z del nodo cargado, con la carga con la que se hizo el
precdlculo

/* A continuacioén se compara con el desplazamiento de nues-
tro brazo (disp) para calcular el % de la carga

original que habria que aplicar para conseguir una deformaciodn
"disp".*/

if (RefDisp == 0) tempLoad[i] = 100;

else tempLoad[i] = -(dispArray[i] / RefDisp); // Creo que esto
es el problema de los trompazos de la respuesta hdptica. No puede ser problema de
la API si estamos usando el LevelSet

_ScaleFactor += tempLoad[i] / NumContact;

/* Se calculan los desplazamientos escalados de todos los nodos

*/
for (int node = ©; node < NumNodesSup; node++) {
for (int mode = @; mode < NumModosPGD; mode++) {
_dispN[node][©@] += Fx[mode][node] *
Fs[mode][loadedNodeArray[i]] *tempLoad[i] / NumContact;
_dispN[node][1] += Fy[mode][node] *
Fs[mode][loadedNodeArray[i]] *tempLoad[i] / NumContact;
_dispN[node][2] += Fz[mode][node] *
Fs[mode][loadedNodeArray[i]] *tempLoad[i] / NumContact;
}
}
}
}
/* Por ultimo, se pasan las deformaciones a coordenadas globales
*/
for (int node = @; node < NumNodesSup; node++){
_dispN[node] = rotation.Rotation(_dispN[node]);
}
}
/* ___
SECCION 5 - Métodos de salida:
-Geometry
-drawGL
-drawHL

void Solid::Geometry()

{
Vector3<> pointdef[3];
Vector3<> u, v, n;

/* Geometria */
glBegin(GL_TRIANGLES);
for (GLint i_pol = @; i_pol < NumElemsSup; i_pol++){//triangles

for (GLint i_ver = @; i_ver < 3; i_ver++){//vertices
GLint ver = ConnectSup[i_pol][i_ver]-1;
//Creo que esto da la coordenada local del punto en la malla, por asi
decirlo.

63

pointdef[i_ver] = _globalCoords[ver] + _dispN[ver];
//Vale, se definen 3 puntos en coordenadas globales tras deformacion.
/* Basicamente todo lo anterior lo unico que hace es cam-
biar las coordenadas del triangulo de "locales" a "globales" */

}

//calculate normal to the triangle
u = pointdef[1] - pointdef[@];

v = pointdef[2] - pointdef[0];

n = utv; //Calculado como producto vectorial u x v.

//0pcidn 2:

// n = (pointdef[1] - pointdef[@])~(pointdef[2] -
pointdef[0]);

//y pasamos de crear las variables u y v. Lo malo es que se ve menos
claro.

//define triangle
glNormal3f(n[@], n[1], n[2]);
for (GLint i_ver = 0; i_ver < 3; i_ver++){
glVertex3f(pointdef[i_ver][0], pointdef[i_ver][1],
pointdef[i_ver][2]);

}
glEnd();
}

void Solid::DrawGL(float r, float g, float b, float alpha) {

/* Definicidén del material */
matGLfloatAmbDiff2[] = { r, g, b, alpha }; //Definimos el color y 1la
transparencia del sélido segun la defina el usuario.
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, matAmbDiff2);

/* Geometria */
Geometry();

void Solid::DrawHL(){
Geometry();

}

//Dibujo del level set del sélido, uUnicamente para demostraciones o depuracidn
del cddigo.
void Solid::DrawLS() {

int N = levelSet.GetDimension();
/* Creamos Objeto GL */
glPointSize(2.0f);
glBegin(GL_POINTS);

for (int i = 0; 1 < N; i++)

{
if (levelSet.GetDistance(i) <= 9)

{
//Red if distance < ©

GLfloat matAmbDiff2[] = { 0.7, 0.1, 0.1, 1.0f };

64

glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, mat-
AmbDiff2);
}
else
{
//Green if distance > ©
GLfloat matAmbDiff2[] = { @.1, ©.5, 0.1, 0.0 };
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, mat-
AmbDiff2);
}
Vector3<> punto = levelSet.GetVertex(i);
glVertex3f(punto[@], punto[1], punto[2]);
//std::cout << "Punto " << i << ": " << punto[i][@] << ", " <«

punto[i][@] << ", << punto[i][2] << endl;

}
glEnd();
}
2.3 Archivo malla.h
// malla.h

#if !defined(MALLA_H)
#define MALLA_H 1

// se definen dos mallas, la de superficie para vision y la de posiciones de carga
para sensacién
const int NumNodesSup = 130;

const int NumElemsSup = 256;

const int NumNodesS = 48;

const int NumElemsS = 60;

const int NumContact = 9;

const double CoorSup[NumNodesSup][3] = {{1.500000, ©.100000, ©.100000}, {1.500000,
0.200000, ©0.200000}, {0.000000, ©.100000, ©0.200000}, {0.000000, ©.000000,
0.200000}, {0.300000, ©0.000000, ©.100000}, {0.400000, ©0.200000, ©.000000},
{1.500000, ©0.100000, ©0.000000}, {0.300000, ©.100000, ©.200000}, {0.100000,
0.000000, ©.100000}, {0.100000, ©.100000, ©.000000}, {0.500000, ©.100000,
0.200000}, {0.600000, ©0.200000, ©.000000}, {0.200000, ©.100000, ©.200000},
{0.100000, ©0.200000, ©0.000000}, {0.000000, ©.200000, ©.100000}, {1.000000,
0.200000, ©0.000000}, {0.900000, ©.100000, ©0.200000}, {1.000000, ©.000000,
0.200000}, {1.000000, ©0.100000, ©.200000}, {1.100000, ©.200000, ©.200000},
{1.100000, ©0.200000, ©.100000}, {0.800000, ©0.200000, ©.200000}, {1.000000,
0.200000, ©.200000}, {1.500000, ©.200000, ©0.000000}, {1.400000, ©.100000,
0.000000}, {0.700000, ©0.200000, ©.000000}, {0.200000, ©.100000, ©.000000},
{1.200000, ©0.100000, ©0.000000}, {0.100000, ©.200000, ©.200000}, {1.000000,
0.000000, ©.100000}, {1.100000, ©.000000, ©0.000000}, {1.200000, ©.200000,
0.100000}, {0.100000, ©0.100000, ©.200000}, {1.500000, ©.000000, ©.100000},
{0.100000, ©0.000000, ©0.000000}, {0.100000, ©.000000, ©0.200000}, {1.200000,
0.000000, ©0.000000}, {1.200000, ©.100000, ©0.200000}, {1.200000, ©.000000,
0.100000}, {1.300000, ©0.000000, ©.200000}, {1.200000, ©.000000, ©.200000},
{0.300000, ©0.000000, ©0.200000}, {0.300000, ©.200000, ©.100000}, {90.200000,
0.000000, ©0.000000}, {0.300000, ©.200000, ©0.200000}, {0.200000, ©0.000000,
0.200000}, {0.900000, ©0.000000, ©0.000000}, {0.400000, ©0.000000, ©.000000},
{0.700000, ©0.200000, ©0.200000}, {0.500000, ©.000000, ©0.200000}, {0.400000,
0.100000, ©.000000}, {0.500000, ©.200000, ©0.100000}, {0.400000, ©.100000,
0.200000}, {0.100000, ©0.200000, ©0.100000}, {0.000000, ©.200000, ©0.200000},
{0.200000, ©0.200000, ©.200000}, {1.500000, ©.100000, ©.200000}, {1.500000,
0.000000, ©.200000}, {1.400000, ©0.200000, ©0.000000}, {1.300000, ©.100000,
0.200000}, {1.400000, ©0.100000, ©.200000}, {1.400000, ©0.000000, ©.000000},
{0.800000, ©0.000000, 0©0.000000}, {0.700000, ©.000000, ©.100000}, {0.800000,
0.000000, ©0.200000}, {0.900000, ©.200000, ©0.200000}, {0.700000, ©.100000,
0.200000}, {0.700000, ©0.000000, ©.000000}, {0.800000, ©.100000, ©.200000},
{1.100000, ©0.100000, ©0.000000}, {0.800000, ©.000000, ©.100000}, {1.100000,
0.100000, ©.200000}, {1.400000, ©.200000, ©0.200000}, {1.500000, ©.000000,

65

0.000000}, {0.000000, ©.100000, ©.100000}, {0.300000, ©.100000, ©.000000},
{0.300000, ©0.000000, 0.000000}, {0.400000, 0.000000, ©0.200000}, {0.600000,
0.000000, 0.100000}, {0.600000, ©.100000, ©0.200000}, {0.500000, ©.000000,
0.100000}, {0.800000, ©.200000, ©0.000000}, {0.300000, ©.200000, ©.000000},
{0.700000, ©0.000000, ©0.200000}, {0.900000, ©0.200000, ©0.000000}, {0.800000,
0.100000, ©0.000000}, {0.200000, ©.200000, ©0.100000}, {0.900000, ©.100000,
0.000000}, {0.500000, ©.200000, ©0.200000}, {0.700000, ©.200000, ©.100000},
{1.000000, ©0.100000, ©0.000000}, {0.000000, 0.100000, ©.000000}, {0.900000,
0.000000, ©0.100000}, {1.300000, ©0.200000, ©0.200000}, {1.400000, ©0.000000,
0.100000}, {1.300000, ©.000000, ©.100000}, {1.400000, ©.000000, ©.200000},
{1.100000, ©0.000000, ©0.100000}, {1.100000, ©0.000000, ©.200000}, {0.000000,
0.200000, 0.000000}, {0.500000, ©.000000, ©0.000000}, {0.400000, ©0.000000,
0.100000}, {0.500000, ©.100000, ©.000000}, {1.500000, ©.200000, ©.100000},
{1.300000, ©0.000000, ©0.000000}, {1.300000, ©0.200000, ©.100000}, {1.200000,
0.200000, ©0.000000}, {1.300000, ©.100000, ©0.000000}, {1.000000, ©.200000,
0.100000}, {0.500000, ©.200000, 0.000000}, {0.200000, ©.200000, ©.000000},
{0.200000, ©0.000000, ©0.100000}, {1.000000, ©.000000, ©.000000}, {1.200000,
0.200000, ©0.200000}, {0.600000, ©.100000, ©0.000000}, {1.300000, ©.200000,
0.000000}, {1.100000, ©.200000, ©.000000}, {0.800000, ©0.200000, ©0.100000},
{0.600000, ©0.200000, ©0.200000}, {0.400000, ©0.200000, ©0.100000}, {0.900000,
0.200000, 0.100000}, {0.600000, ©0.200000, ©.100000}, {0.600000, ©.000000,
0.000000}, {0.000000, ©.000000, ©.100000}, {0.400000, ©.200000, ©.200000},
{0.000000, ©0.000000, ©0.000000}, {0.900000, ©0.000000, ©0.200000}, {0.700000,
0.100000, 0.000000}, {0.600000, ©.000000, ©.200000}, {1.400000, ©0.200000,

0.100000}};

const int ConnectSup[NumElemsSup][3] = {{1, 2, 57}, {2, 1e4, 73}, {3, 4, 33}, {4,
124, 36}, {5, 78, 42}, {6, 51, 76}, {7, 62, 25}, {8, 125, 45}, {8, 53, 125}, {9,
126, 35}, {1e, 126, 92}, {11, 80, 119}, {11, 119, 89}, {12, 115, 103}, {12, 110,
52}, {13, 56, 33}, {14, 100, 15}, {15, 1@, 75}, {16, 121, 109}, {17, 23, 66}, {17,
19, 23}, {18, 93, 30}, {19, 127, 18}, {20, 19, 72}, {21, 23, 20}, {22, 121, 118},
{23, 21, 109}, {24, 104, 7}, {25, 59, 24}, {26, 128, 115}, {26, 12, 122}, {27, 10,
111}, {28, 70, 107}, {29, 54, 55}, {20, 72, 114}, {21, 117, 109}, {30, 99, 18},
{31, 113, 70}, {31, 98, 113}, {32, 21, 20}, {33, 29, 3}, {7, 1, 74}, {34, 62, 74},
{13, 36, 46}, {35, 1o, 27}, {36, 13, 33}, {37, 31, 28}, {37, 39, 31}, {38, 60, 94},
{39, 96, 40}, {40, 60, 41}, {28, 31, 70}, {41, 60, 38}, {42, 46, 112}, {5, 44, 77},
{43, 56, 45}, {8, 46, 42}, {44, 27, 76}, {42, 112, 5}, {45, 13, 8}, {46, 8, 13},
{47, 63, 88}, {47, 93, 63}, {17, 65, 127}, {6, 120, 110}, {16, 85, 121}, {48, 103,
101}, {49, 80, 67}, {50, 11, 78}, {51, 48, 77}, {52, 125, 89}, {53, 78, 11}, {53,
11, 89}, {54, 14, 15}, {54, 15, 55}, {55, 3, 29}, {27, 44, 35}, {15, 75, 3}, {56,
29, 33}, {22, 69, 66}, {57, 58, 34}, {58, 57, 97}, {34, 1, 57}, {59, 116, 106},
{60, 61, 73}, {61, 40, 97}, {10, 14, 111}, {59, 25, 108}, {62, 95, 105}, {63, 68,
86}, {63, 71, 68}, {64, 71, 65}, {65, 69, 84}, {66, 121, 22}, {67, 22, 49}, {67,
69, 22}, {67, 129, 84}, {42, 78, 53}, {52, 120, 125}, {49, 119, 80}, {68, 123,
128}, {68, 64, 123}, {69, 67, 84}, {70, 113, 91}, {17, 127, 19}, {69, 17, 66}, {71,
127, 65}, {72, 19, 18}, {18, 99, 72}, {38, 94, 114}, {61, 60, 40}, {73, 130, 94},
{2, 73, 61}, {74, 62, 7}, {57, 61, 97}, {35, 44, 112}, {75, 4, 3}, {36, 124, 9},
{55, 15, 3}, {75, 124, 4}, {76, 83, 6}, {4, 36, 33}, {77, 44, 76}, {78, 1082, 50},
{79, 81, 101}, {50, 102, 81}, {80, 50, 129}, {5, 102, 78}, {79, 129, 81}, {81, 129,
50}, {79, 84, 129}, {79, 123, 64}, {82, 85, 86}, {83, 111, 87}, {64, 84, 79}, {80,
129, 67}, {84, 64, 65}, {85, 82, 118}, {86, 68, 128}, {29, 56, 87}, {87, 54, 29},
{88, 63, 86}, {18, 127, 93}, {82, 26, 90}, {89, 122, 52}, {90, 119, 49}, {83, 87,
43}, {91, 47, 88}, {30, 98, 99}, {72, 99, 38}, {92, 126, 124}, {39, 41, 98}, {39,
98, 31}, {41, 99, 98}, {93, 127, 71}, {30, 93, 47}, {94, 130, 106}, {41, 39, 40},
{95, 34, 58}, {96, 97, 40}, {96, 105, 95}, {97, 95, 58}, {57, 2, 61}, {95, 97, 96},
{1, 7, 104}, {37, 108, 105}, {98, 30, 113}, {28, 108, 37}, {99, 41, 38}, {100, 92,
75}, {81, 102, 48}, {101, 115, 123}, {77, 48, 102}, {1e1, 81, 48}, {102, 5, 77},
{103, 48, 51}, {77, 76, 51}, {92, 124, 75}, {11, 50, 80}, {104, 130, 73}, {69, 65,
17}, {7, 25, 24}, {105, 96, 37}, {94, 60, 73}, {106, 116, 32}, {32, 107, 21}, {37,
96, 39}, {43, 87, 56}, {106, 130, 59}, {24, 130, 104}, {107, 116, 28}, {107, 32,
116}, {108, 28, 116}, {88, 16, 91}, {93, 71, 63}, {71, 64, 68}, {43, 120, 6}, {109,
66, 23}, {110, 51, 6}, {90, 26, 122}, {82, 86, 128}, {103, 115, 101}, {46, 9, 112},

66

{46, 36, 9}, {45, 56, 13}, {9, 124, 126}, {43, 45, 120}, {76, 27, 83}, {111, 54,
87}, {14, 92, 1ee}, {35, 126, 10}, {14, 1@, 92}, {24, 59, 130}, {188, 25, 105},
{70, 91, 117}, {85, 88, 86}, {53, 8, 42}, {85, 16, 88}, {106, 114, 94}, {52, 110,
120}, {103, 51, 110}, {111, 83, 27}, {111, 14, 54}, {112, 9, 35}, {43, 6, 83}, {5,
112, 44}, {16, 117, 91}, {16, 109, 117}, {113, 47, 91}, {113, 30, 47}, {114, 106,
32}, {115, 128, 123}, {26, 82, 128}, {114, 32, 20}, {116, 59, 108}, {20, 23, 19},
{90, 118, 82}, {117, 107, 7@}, {117, 21, 107}, {105, 25, 62}, {34, 74, 1}, {12,
26, 115}, {118, 49, 22}, {119, 9@, 122}, {1, 104, 2}, {72, 38, 114}, {120, 45,
125}, {121, 66, 109}, {110, 12, 103}, {118, 121, 85}, {122, 12, 52}, {90, 49, 118},
{123, 79, 101}, {122, 89, 119}, {89, 125, 53}, {34, 95, 62}};

const double CoorS[NumNodesS][3] = {{0.000000, ©.000000, ©.200000}, {0.000000,
0.200000, 0.200000}, {1.500000, ©0.200000, ©0.200000}, {1.500000, ©.000000,
0.200000}, {0.000000, 0.100000, ©.200000}, {0.100000, ©.200000, ©.200000},
{0.200000, ©0.200000, 0.200000}, {0.300000, 0.200000, ©.200000}, {0.400000,
0.200000, 0.200000}, {0.500000, ©0.200000, ©0.200000}, {0.600000, ©.200000,
0.200000}, {0.700000, 0.200000, ©.200000}, {0.800000, ©.200000, ©.200000},
{0.900000, ©0.200000, ©0.200000}, {1.000000, ©0.200000, ©.200000}, {1.100000,
0.200000, 0.200000}, {1.200000, ©0.200000, ©0.200000}, {1.300000, ©.200000,
0.200000}, {1.400000, 0.200000, 0.200000}, {1.400000, ©.000000, ©.200000},
{1.300000, ©0.000000, ©0.200000}, {1.200000, 0.000000, 0.200000}, {1.100000,
0.000000, 0.200000}, {1.000000, ©0.000000, ©0.200000}, {0.900000, ©.000000,
0.200000}, {0.800000, 0.000000, 0.200000}, {0.700000, ©.000000, ©.200000},
{0.600000, ©0.000000, 0.200000}, {0.500000, 0.000000, ©.200000}, {0.400000,
0.000000, 0.200000}, {0.300000, ©0.000000, 0.200000}, {0.200000, ©.000000,
0.200000}, {0.100000, 0.000000, ©.200000}, {1.500000, ©.100000, ©.200000},
{1.400000, ©0.100000, ©0.200000}, {1.300000, ©0.100000, ©.200000}, {1.200000,
0.100000, 0.200000}, {1.100000, ©0.100000, ©0.200000}, {1.000000, ©.100000,
0.200000}, {0.900000, ©0.100000, ©.200000}, {0.800000, ©.100000, ©.200000},
{0.700000, ©0.100000, ©0.200000}, {0.600000, ©0.100000, ©.200000}, {0.500000,
0.100000, 0.200000}, {0.400000, ©0.100000, ©0.200000}, {0.300000, ©.100000,
0.200000}, {0.200000, 0.100000, 0.200000}, {0.100000, 0.100000, ©.200000}};

const int ConnectS[NumElemsS][3] = {{12, 11, 42}, {5, 33, 48}, {1e, 9, 44}, {39,
15, 14}, {37, 21, 36}, {17, 36, 18}, {24, 39, 40}, {36, 35, 18}, {37, 22, 21}, {21,
20, 36}, {20, 4, 35}, {44, 45, 29}, {43, 1e, 44}, {44, 29, 28}, {45, 46, 30}, {47,
6, 48}, {27, 43, 28}, {9, 8, 45}, {32, 48, 33}, {8, 46, 45}, {46, 31, 30}, {46,
47, 31}, {33, 5, 1}, {48, 2, 5}, {32, 47, 48}, {32, 31, 47}, {48, 6, 2}, {47, 7,
6}, {47, 46, 7}, {7, 46, 8}, {28, 43, 44}, {29, 45, 30}, {44, 9, 45}, {42, 43, 27},
{11, 1o, 43}, {42, 11, 43}, {26, 41, 42}, {40, 39, 14}, {41, 13, 12}, {42, 41, 12},
{40, 14, 13}, {35, 19, 18}, {35, 34, 19}, {38, 16, 15}, {37, 36, 17}, {16, 38, 37},
{19, 34, 3}, {35, 4, 34}, {23, 22, 38}, {16, 37, 17}, {38, 22, 37}, {27, 26, 42},
{40, 13, 41}, {41, 26, 25}, {38, 15, 39}, {40, 41, 25}, {40, 25, 24}, {39, 24, 23},
{39, 23, 38}, {36, 20, 35}};

const int LoadedNodesSup[NumNodesS] = {3, 54, 1, 57, 2, 28, 55, 44, 124, 88, 118,
48, 21, 65, 22, 19, 113, 93, 72, 96, 39, 40, 98, 17, 126, 64, 83, 128, 49, 77, 41,
45, 35, 56, 60, 59, 37, 71, 18, 16, 68, 66, 79, 10, 52, 7, 12, 32};

const int nodosContacto[NumContact] = {143, 135, 167, 120, 104, 145, 9, 147, 12};

#endif

3 CLASE LSMesh

3.1 Cabecera
#pragma once

#include <cmath>

#include "Vector3.h"
#include "LSData.h"

67

#include "RotM.h"
#include <vector>

using namespace std;

class LSMesh
{
Vector3<> vertices[Nx*Ny*Nz];
RotM rotation;
Vector3<> translation;
Vector3<> D;
public:
//Constructors
LSMesh();
//Default constructor. It takes the data directly from LSdata.h. This con-
structor is intended for use in the real time simulation.

//Get & Set

double GetDistance(int, int, int); //Returns the
stored distance of the (i,j,k) point of the level set.

double GetDistance(int); //Returns the

stored distance of the (i) point of the level set.
int GetDimension();
Vector3<> GetVertex(int, int, int);
Vector3<> GetVertex(int);
int GetLoadStates();
//void SetDistance(int, int, double); //
//0ther
Vector3<int> N2Coor(int);
//Transforms 1 integer into the (i,j,k) 3D location
int Coor2N(int, int, int);
//Transforms 3 integers (i,3j,k), into the location in the array m

Vector3<int> WCoor2TCoor(double, double, double); //Transforms (x,y,z)
world coordinates into (i,j,k) tensor coordinates

Vector3<> TCoor2WCoor(Vector3<int>); //Transforms
(i,j,k) tensor coordinates into (x,y,z) world coordinates

bool InMesh (Vector3<>); //Tells us if a point is in-

side the mesh. If it's inside, it puts the 8 nodes in the array of Vector3

//bool InMesh (Vector3<>, double&);

//Tells us if a point is inside the mesh. If it's inside, it gives us the
interpolated distance to the surface.

void Transform (Vector3<>, Vector3<>); //Uh summa
lumma dooma lumma you assuming I'm a human What I gotta do to get it through to
you I'm superhuman

double DistanceToSurface(Vector3<>);

}s

3.2 Cuerpo
#include "LSMesh.h"

//VERSION
#define VER 2

/117171771777 /CONSTRUCTORS/////////1111]

LSMesh: :LSMesh()

{
for (int i=0; i<Nx*Ny*Nz ; i++)
{
for (int j= ©; j<3 ; j++)
{
vertices[i][]] = ©;
}

68

}

D = Vector3<>(Dx, Dy, Dz);

}
/11711171117171////GET&SET//////111111/1111]

double LSMesh::GetDistance(int i)

{
return LSMatrix[i];
}
double LSMesh::GetDistance(int i, int j, int k)
{
return LSMatrix[Coor2N(i,j,k)];
}
Vector3<> LSMesh::GetVertex(int i, int j, int k)
{
return vertices[Coor2N(i,j,k)];
}
Vector3<> LSMesh::GetVertex(int n)
{
return vertices[n];
}

int LSMesh::GetDimension(){
return Nx*Ny*Nz;

}

/17171117177777//0THER///////11111111111]]]

// Since we store a three-dimensional mesh into a one-dimensional array,
// we need this function to transform the position of the array into a
// set of 3 integers (which work as "in-mesh coordinates").

Vector3<int> LSMesh::N2Coor(int n){

Vector3<int> answer;

[1177771717777171717717

int i = n % Nx;

int aux = (n-i)/Nx; //integer division

int j = aux % Ny;

int k = (aux - j)/Ny;
[11771717177771717177717

answer[@] = i; answer[1] = j; answer[2] = k;
return answer;

}

// This fucntion is the inverse of the previous one,

// i.e. transforms "in-mesh coordinates" into an actual array location
// (or basically, mimics a 3-D array allocation).

int LSMesh::Coor2N(int i, int j, int k){
return i + j*Nx + k*Nx*Ny;

}
// Transforms WORLD coordinates (i.e. a point in euclidean space)
// into MESH coordinates (i.e. the indexes that point would have in the array)

Vector3<int> LSMesh::WCoor2TCoor(double x, double vy, double z){
Vector3<int> answer(int(x / Dx), int(y / Dy), int(z / Dz));
return answer;

69

// Inverse of the previous function.

Vector3<> LSMesh: :TCoor2WCoor(Vector3<int> intVector){
Vector3<> v(intVector[@]*Dx, intVector[1]*Dy, intVector[2]*Dz);
return v;

}

//Returns true if a point is inside the whole mesh. It also stores the indices of
the LSVertices engulfing the point.
bool LSMesh::InMesh (Vector3<> point)
{
point = rotation.InvRotation(point - translation);
//Basically, if the point x coordinate is between the x coordinate of the
vertice (0,0,0) and (Nx,0,0),
//and the same occurs for y and z, then we consider that the point is INSIDE
the mesh.
return (LSVertices[@][@] < point[@] && point[@] < LSVertices[Coor2N(Nx-
1,8,0)][0]) &
(LSVertices[@][1] < point[1] && point[1l] < LSVerti-
ces[Coor2N(@,Ny-1,0)][1]) &&
(LSVertices[©®][2] < point[2] && point[2] <« LSVerti-
ces[Coor2N(0,0,Nz-1)][2]);
}

double LSMesh::DistanceToSurface(Vector3<> point)

{
point = rotation.InvRotation(point - vertices[0]);
//point -= Vector3<>(LSVertices[0][0], LSVertices[@][1], LSVertices[0][2]);
//point -= vertices[©@];

int i = int (point[@] / D[@]); //Ahora i es la parte entera de la divisiodn.
int j = int (point[1] / D[1]);
int k = int (point[2] / D[2]);

double p = 2*(((point[@] / D[@]) - i)-0.5);
double q = 2*(((point[1] / D[1]) - j)-©.5);
double r = 2*(((point[2] / D[2]) - k)-©.5);

int xi[8] = {-1, 1, 1, -1, -1, 1, 1, -1};
int eta[8] = {-1, -1, 1, 1, -1, -1, 1, 1};
int mu[8] {1, -1, -1, -1, 1, 1, 1, 1};

int i'H:[S][3] = {{0:0.'9}: {610:1}.' {0:1:1}: {911:9}: {1:019}: {1:0)1})
{1,1,1}, {1,1,0}};

double answer = 0;

for (int h = @; h < 8; h++)

{
answer += GetDistance(i+iff[h][@], j+iff[h][1],
k+iff[h][2])*0.125*(1+p*xi[h])*(1+g*eta[h])*(1+r*mu[h]);
}

return answer;

}

void LSMesh::Transform(Vector3<> translation, Vector3<> rot)

{

//Orientation matrix
rotation.SetRotation(rot[@], rot[1], rot[2]);
this->translation = translation;

70

for (int node = ©; node < GetDimension(); node++){

vertices[node] =

rotation.Rotation(Vector3<>(LSVerti-

ces[node][@],LSVertices[node][1], LSVertlces[node][z])) + translation;

D = rotation.Rotation(D);

4 ARCHIVO Vector3

4.1 Cabecera
//version 1.4
#pragma once

#include <cmath>

template <class T = double>
class Vector3 {
public:
T X;
Ty;
T z;
//Constructors
Vector3<T>();
Vector3<T>(T, T, T);
Vector3<T>(const Vector3<T> &);
//Overloaded operators
Vector3<T>& operator= (const Vector3<T> &); //Asignation
Vector3<T> operator+ (const Vector3<T> &); //Sum
Vector3<T> operator- (const Vector3<T> &); //Rest
T operator* (const Vector3<T> &); //Dot product
Vector3<T> operator” (const Vector3<T> &); //Cross product
Vector3<T> operator+= (const Vector3<T> &); //Equal Plus
Vector3<T> operator-= (const Vector3<T> &); //Equal Minus
bool operator== (const Vector3<T> &); //Equal to
bool operator!= (const Vector3<T> &); //Not equal to
T& operator[] (const int &); //Subscript
operator
T operator[] (const int &) const; //Read-only

subscript operator

//0ther functions
double GetModulus();
void Copy(const Vector3<T> &);

¥
#include "Vector3.cpp"

4.2 Cuerpo

//version 1.4
#include "Vector3.h"

///////////////CONSTRUCTORS////////////]/]/
template <class T>

71

Vector3<T>::Vector3()

{

S
@.
0

J

N‘ﬁx
. -

}

template <class T>
Vector3<T>::Vector3 (T a, T b, T c)

{
X = a;
y = b;
zZ = C;
}

template <class T>
Vector3<T>::Vector3 (const Vector3<T> &c)
{

Copy(c);

////////////0PERATOR OVERLOAD////////////
template <class T>
Vector3<T>&
Vector3<T>::operator= (const Vector3<T> &v)
{

if (this != &v)

{

(*this).~Vector3<T>(); //Releases the memory previously occupied

by this vector3

Copy (Vv);

return *this;

}

template <class T>
Vector3<T>
Vector3<T>::operator+ (const Vector3<T> &v)

{

Vector3<T> temp;

temp.x = X + v.X;

temp.y =y + v.y;
temp.z = z + v.z;

return temp;

}
template <class T>
Vector3<T>
Vector3<T>::operator- (const Vector3<T> &v)
{
Vector3<T> temp;
temp.x = X - v.X;
temp.y =y - v.y;
temp.z = z - v.z;

return temp;

72

template <class T>
T
Vector3<T>::operator* (const Vector3<T> &v)

{
}

return x*v.x + y*v.y + z*v.z;

template <class T>
Vector3<T> Vector3<T>::operator”® (const Vector3<T> &v)

{

Vector3<T> temp;

temp.x = y*v.z - z*v.y;
temp.y = z*¥v.x - x*v.z;
temp.z = x*v.y - y*v.x;

return temp;

template <class T>
Vector3<T>
Vector3<T>::operator+= (const Vector3<T> &v)

{

X += V.X;
y += V.y;
Z += v.z;

return *this;

}

template <class T>
Vector3<T>
Vector3<T>::operator-= (const Vector3<T> &v)

{

= V.X;

V.Y
-= Vv.Z;

N < X
1
I

return *this;

template <class T>
bool
Vector3<T>::operator== (const Vector3<T> &v)

{

return (x == v.x && y == v.y && z == v.z);

}

template <class T>
bool
Vector3<T>::operator!= (const Vector3<T> &v)

{

return !(*this == v);

}

template <class T>

73

T&
Vector3<T>::operator[] (const int &nIndex)
{

if (nIndex < 1) return x;

if (nIndex == 1) return y;

if (nIndex > 1) return z;

}

template <class T>
T
Vector3<T>::operator[] (const int &nIndex) const
{
if (nIndex < 1) return x;
if (nIndex == 1) return y;
if (nIndex > 1) return z;

}

/1/711711717177/777////0THER///////1//11/11]//
template <class T>

double

Vector3<T>::GetModulus()

{
Vector3<T> temp (X,y,z);

return sqrt(temp*temp);

}

template <class T>

void

Vector3<T>::Copy(const Vector3<T> &c)
{

X = C.X;
y = c.y;
zZ = cC.z;

5 CLASE RotM

5.1 Cabecera
//version 1.4
#pragma once

#include "Vector3.h"
#include <cmath>

class RotM {
double comp[3][3];
double inv[3][3];

public:
//Constructors
RotM();
RotM(double, double, double);

//0ther functions

Vector3<> Rotation(Vector3<>);

Vector3<> InvRotation(Vector3<>);

void SetRotation(double, double, double);

}s

74

5.2 Cuerpo
#include "RotM.h"

//CONSTRUCTORS
RotM: :RotM()
{

double aux = 0;

for (int row = @; row < 3; row++)

{
for (int col = @; col < 3; col++)
{
if (row == col) aux = 1;
comp[row][col] = aux;
inv[row][col] = aux;
aux = 0;
}
}

}

RotM: :RotM(double a, double b, double c)
{

SetRotation(a,b,c);
}
//FUNCTIONS
Vector3<> RotM::Rotation(Vector3<> c)
{
Vector3<> ans;
for (int i = 0; i < 3; i++)
{
for (int j = 0; j < 3; j++)
{
ans[i] += comp[i][j] * c[]];
}
}
return ans;
}

Vector3<> RotM::InvRotation(Vector3<> c)

{

Vector3<> ans;

for (int i = 0; i < 3; i++)

{
for (int j = @; j < 3; j++)
{
ans[i] += inv[i][3] * c[]];
}
}

return ans;

}

void RotM::SetRotation(double a, double b, double c)
{

comp[@][0] = cos(b)*cos(c);
comp[@][1] = -cos(b)*sin(c);
comp[@][2] = sin(b);

75

comp[1][@] = cos(a)*sin(c) + sin(a)*sin(b)*cos(c); comp[1][1]

cos(a)*cos(c) - sin(a)*sin(b)*sin(c); comp[1][2] = -sin(a)*cos(b);
comp[2][@] = sin(a)*sin(c) - cos(a)*sin(b)*cos(c); comp[2][1]

sin(a)*cos(c) + cos(a)*sin(b)*sin(c); comp[2][2] = cos(a)*cos(b);
inv[e][0@] cos(b)*cos(c);

inv[0@][1] cos(a)*sin(c)+sin(a)*sin(b)*cos(c); inv[0][2]
sin(a)*sin(c)-cos(a)*sin(b)*cos(c);
inv[1][@] = -cos(b)*sin(c);

inv[1][1] = cos(a)*cos(c)-sin(a)*sin(b)*sin(c); inv[1][2]
cos(a)*sin(b)*sin(c)+sin(a)*cos(c);

inv[2][@] = sin(b);

inv[2][1] = -sin(a)*cos(b);

inv[2][2] = cos(a)*cos(b);

76

ANEXO C

CODIGO DE LA CALCULA-
DORA DE
DISTANCE FIELD

1 ARCHIVO LevelSet Calculator.cpp

#include <fstream>

#include <iostream>
#include <cmath>

#include "LS\LSMesh.h"
#include "Vector3\Vector3.h"
#include "Solid\Solid.h"

#define DEBUG 0
#define INSIDE_OUTSIDE 1
#define SHOW 0

using namespace std;

/*E1l level set va a ser una nube de puntos con informacién sobre la distancia a
una geometria, si el centro de la nube
y el de la geometria coincidieran.

Este hecho hace que para su aplicacidén, los datos de Level Set tengan que ser
rotados y trasladados con la misma rotacidén y traslacidn
que tenga el solido */

/* FUNCTION PROTOTYPES */

void WriteFile(LSMesh); //Creates a .h header with the needed
data.

int InOut(Vector3<>, Vector3<>); //Returns -1 if both vectors point in the same
direction, 1 if they have opposite directions.

void Calculate(LSMesh*, Solid);

void GetData(); //Gets the level set parameters.

/* GLOBAL VARIABLES */
//Modify these to change the LSMesh parameters.

double _Dx = .1;
double _Dy = .1;
double Dz = .1;
int _Nx = 16;
int _Ny = 4;
int _Nz = 9;

Vector3<> translation(0.0, -0.065, -0.55); //X, y, z

int main (int argc, char *argv[]){

77

#if DEBUG ==

cout << "baking...
#endif
//GetData(); // For an hypotetical final release, console app.

"

<< endl;

LSMesh mesh(_Dx, _Dy, _Dz,
Solid beam;

Nx, _Ny, _Nz);

Calculate(&mesh, beam); //Se hace un caculo con la viga indeformada

#if DEBUG ==
char end;
int k = 7;
int j = 1;

cout << mesh.GetDistance(®, j, k) << endl;
cout << mesh.GetDistance(1, j, k) << endl;
cout << mesh.GetDistance(2, j, k) << endl;
cout << mesh.GetDistance(3, j, k) << endl;
cin >> end;

#endif

#if DEBUG ==
WriteFile(mesh);
#endif

#if SHOW ==
beam.DrawGL();
beam.DrawLS();
#endif

}

void Calculate(LSMesh *mesh, Solid beam){
int s;

for (int d = @; d < mesh->GetDimension(); d++) {

Vector3<> p = mesh->TCoor2WCoor(mesh->N2Coor(d)) + translation;
//Coordenadas espaciales del nodo del Level Set del que toca calcular la distancia
d.

s = beam.GetClosestNode(p); //Nodo s del sélido mas cercano a p (claro
que aqui ya estamos calculando distancia euclidea entre aux y los nodos del sé6-
lido...)

Vector3<> sVector = beam.GetCoords(s); //Creamos un vector que re-
presenta s en el espacio tridimensional.

Vector3<> v = p - sVector; //Vector que une p con s

int fuera = 0;

#if INSIDE_OUTSIDE ==
// Detecciodn dentro / fuera.

//Para el nodo s del sd6lido, buscamos todos los posibles triangulos
en los que esté

//for (int i = ©; i < NumElemsSup && fuera != 1; i++) {
//Recorre todos los triangulos
// for (int j = 0; j < 3; j++){ //Recorre los vérti-
ces de dicho triangulo
// if (ConnectSup[i][j]-1 == s){ //Si uno de los vér-
tices es el nodo...
// Vector3<> n;

78

// n = beam.GetNormal(ConnectSup[i][@], Con-
nectSup[i][1], ConnectSup[i][2]); //Obtenemos la normal al tridngulo definido por
3 enteros (los 3 j-vértices) del i-triangulo.

// fuera = InOut(v,n);
// }
// ¥
/1}
for (int i = @; i < NumElemsSup && fuera != 1; i++) { //Recorre to-
dos los tridngulos de la superficie haptica.
for (int j = 0; j < 3; j++){ //Recorre los vérti-

ces de dicho triangulo
if (ConnectSup[i][j]-1 == s){ //Si uno de los vér-
tices es el nodo...

Vector3<> n;

n = beam.GetNormal(ConnectSup[i][@], Con-
nectSup[i][1], ConnectSup[i][2]); //Obtenemos la normal al triangulo definido por
3 enteros (los 3 j-vértices) del i-triangulo.

fuera = InOut(v,n);

}
}
}
if (!fuera) fuera = -1;
/* La distancia del nodo del Level Set al nodo del Sélido serd la

magnitud del vector que une los puntos,

multiplicada por el negativo del sentido (recordemos que si esta
dentro, queremos distancia negativa,

pero seglin hemos definido, "sentido" seria 1 en tal caso). */

mesh->SetDistance(d, fuera * v.GetModulus());
#endif

#if INSIDE_OUTSIDE ==
mesh->SetDistance(d, v.GetModulus());
t#tendif

}

void WriteFile(LSMesh mesh){

ofstream file;
file.open ("LSdata.h");

if (file.is_open()){

/* The file will start with the preprocessor data */
file << "#pragma once";
file << endl;

/* Now we write down the data */

file << "//General parameters" << endl;

file << "const int Nx = " << _Nx << ";" << endl;
file << "const int Ny << _Ny << ";" << endl;

file << "const int Nz = " << _Nz << ";" << endl;

file << "const double Dx = " << _Dx << ";" << endl;
file << "const double Dy = " << _Dy << ";" << endl;
file << "const double Dz = " << _Dz << ";" << endl;

file << endl;
//We save The Vertices
file << "//Geometric data" << endl;

79

file << "const double LSVertices[" << mesh.GetDimension() << "J[" <«
3 << "] ={"; //Ya veremos si es double o Vector3<>

for (int i = @; i < mesh.GetDimension(); i++) {
file << "{";
Vector3<> teemo = mesh.TCoor2WCoor(mesh.N2Coor(i)) + transla-
tion;
for (int j = 0; j < 3; j++) {
file << teemo[j];
if (3 !'= 2) file << ", ";

}
file << "}";
if (i !'= mesh.GetDimension()-1) file << ", ";

}

file << "};";
file << endl;

//We save The Distances
file << "//Distance data" << endl;
file << "const double LSMatrix[" << mesh.GetDimension() << "] = {";

for (int d = 0; d < mesh.GetDimension(); d++) {
if ((mesh.TCoor2WCoor(mesh.N2Coor(d))[2] + translation[2])<@)
file << -1*mesh.GetDistance(d); //Esto es una prueba rara.
else file << mesh.GetDistance(d);

if (d < mesh.GetDimension() - 1) file << ", ";

}
file <<"};";

/* Save & Close the file */
file.close();

}

int InOut (Vector3<> v, Vector3<> u) {
double aux = v*u;

if (aux <= 0) { //DENTRO
return 0;
} else { //FUERA
return 1;
}
}
void GetData()
{

cout << "Introduzca Delta X (separacidon en el eje X entre dos puntos del
levelSet consecutivos):" << endl;

cin >> _Dx;

cout << "Introduzca Delta Y (separacién en el eje Y entre dos puntos del
levelSet consecutivos):" << endl;

cin >> _Dy;

cout << "Introduzca Delta Z (separacién en el eje Z entre dos puntos del
levelSet consecutivos):" << endl;

cin >> _Dz;

cout << "Introduzca Nx (numero de puntos que tendrd el levelSet a lo largo

del eje X):" << endl;
cin >> _Nx;

80

cout << "Introduzca Ny (numero de puntos que tendra el levelSet a lo largo
del eje Y):" << endl;

cin >> _Ny;

cout << "Introduzca Nz (numero de puntos que tendrd el levelSet a lo largo
del eje Z):" << endl;

cin >> _Nz;

cout << "Introduzca la traslacidn respecto al objeto:" << endl;

cin >> translation[@];
cin >> translation[1];
cin >> translation[2];

81

ANEXO D

HARDWARE Y SOFTWARE EM-
PLEADO

1 DISPOSITIVOS HAPTICOS

La haptica (del griego haptikos: “perteneciente al tacto”) designa a la ciencia del tacto, por
analogia con la actstica (oido) y la 6ptica (vista). Por tanto, la tecnologia haptica sera aquella
que esté dedicada a la construccion de instrumentos capaces de percibir y recrear sensaciones
tactiles.

Para permitir una respuesta haptica, un dispositivo haptico debe tener algin actuador que
aplique fuerzas sobre la piel, y controladores. El actuador proporciona movimiento meca-
nico en respuesta a un estimulo eléctrico.

Su disefio se puede agrupar por generaciones:

GENERACION 1. La mayoria de los disefios tempranos de respuesta haptica usaban
tecnologias electromagnéticas tales como motores vibratorios. Estos motores electro-
magnéticos tipicamente operan en resonancia y proporcionan una respuesta haptica
fuerte, pero producen una gama limitada de sensaciones y normalmente vibra todo el
dispositivo, en lugar de una seccidon individual. La alerta de vibracioén en un teléfono
movil es un ejemplo de este tipo de actuadores.

GENERACION II. Estos mecanismos se caracterizan por un mejor control de la res-
puesta, permitiendo localizar los efectos hapticos en una posicién sobre un panel de
pantalla tactil, en lugar de todo el dispositivo. Los actuadores de segunda generacion
incluyen polimeros electroactivos, piezoeléctrico, electrostatica y estimulacion de la su-
perficie mediante ondas subsénicas. Estos actuadores permiten no sélo alertar al usuario
como los dispositivos hapticos primera generacion, sino que mejoran la interfaz de usua-
rio con una mayor variedad de efectos hapticos en términos de rango de frecuencia,
tiempo de respuesta y la intensidad. Un actuador tipico de primera generacion tiene un
tiempo de respuesta de 35-60ms, un actuador de segunda generacion tiene un tiempo de
respuesta de 5-15ms.

GENERACION III. Los dispositivos de esta generacién proporcionan tanto respuestas
especificas dependientes de la coordenada como efectos tactiles personalizables. Los
efectos personalizables se crean utilizando chips de control de baja latencia.

GENERACIONTV. Tecnologia en desarrollo, no disponible comercialmente todavia.
Permitiria tener sensibilidad de presion, esto es, que la respuesta cambia segtin la presion
que el usuario ejerza en la interfaz.

82

El dispositivo del cual hace uso la aplicacién aqui desarrollada pertenece a la generacién III,
ya que la respuesta es personalizable (de lo contrario no se podria hacer la simulacion a un
nivel haptico) y depende de las coordenadas del punto.

A continuacién pueden verse diversos tipos de dispositivos de tercera generacion:

El disefio, como puede apreciarse, es muy variado. En el caso del PHANTOM OMNI usado
para el proyecto, los actuadores son servomotores colocados en las articulaciones del brazo
(incluyendo la base), capaces de dar hasta 3,3 N de fuerza en cada eje principal.

2 OPENGL

OpenGL es una libreria multiplataforma con implementacidn en varios lenguajes de progra-
macion para el renderizado de graficos 2D y 3D.

La API cuenta con numerosas funciones que pueden ser llamadas por el programa cliente,
junto con un buen numero de constantes predefinidas. Aunque las definiciones de las fun-
ciones son similares a C, son independientes del lenguaje de programacion, existiendo mu-
chas implementaciones en lenguajes como JavaScript, Java, C y C++.

Al ser multiplataforma, la distribucién de una aplicacién escrita con OpenGL no tendra ba-
rreras de sistema operativo (por ejemplo, el equivalente de MicroSoft, Direct3D, sélo fun-
ciona en Windows).

3 OPENHAPTICS

OpenHaptics es una libreria desarrollada por Sensable para el control de dispositivos hapti-
cos. Entre las herramientas que ofrece se incluyen la micro APl QuickHaptics, la API del dis-
positivo haptico (HDAPI), 1a API de la libreria haptica (HLAPI), controladores para el modelo
de dispositivo, ejemplos de codigo, manual del programador y referencia de la API.

Las diferentes APl tienen distintas capacidades:

e QuickHaptics estd desarrollada para la construccién rapida y sencilla de nuevas apli-
caciones hapticas. Su desventaja es que al gestionar por si misma la mayor parte de
las acciones del brazo, no deja personalizar los efectos hapticos.

e HLAPI est4 disefiada para renderizado héaptico de alto nivel (en el sentido informatico,
es decir, alejado de los detalles de funcionamiento de la libreria haptica). Su nomen-
clatura es muy parecida a OpenGL.

e HDAPI permite el acceso de bajo nivel (es decir, codigo cercano al controlador del
hardware, en este caso el dispositivo). Aunque compleja de usar, permite un control
muy fino sobre los efectos hapticos, y es la que se utiliza en el proyecto.

83

4 VISUAL STUDIO 2010

Entorno de desarrollo desarrollado por MicroSoft principalmente para la programacion en
lenguajes C, C++, C#, VisualBasic y mas recientemente, JavaScript y F#.

El programa est4 especialmente disefiado para el desarrollo de aplicaciones para Windows,
contando con muchas librerias extra para gestion de ventanas y sistemas propios de Win-
dows.

Tiene un editor de codigo con IntelliSense (sugiere opciones de auto-completar segun el co-
digo es escrito por el programador).

También tiene un debugger integrado que trabaja tanto a nivel de codigo fuente como a nivel
de c6digo maquina.

Otras funciones incluyen esquemas de clase, diseiio Web, disefiador de clases y esquemas de
bases de datos.

84

	DD: Adrián Berges Enfedaque
	con n de DNI: 73016174Y
	Grado/Máster: Grado
	Título 1: Simulación háptica en tiempo real de contacto entre sólidos deformables.
	fecha: 26 de Junio de 2015
	Fdo: Adrián Berges Enfedaque

