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Simulacion por elementos finitos del ensayo de
nanoindentacion para la caracterizacion de
materiales biologicos

RESUMEN

Uno de los ensayos mas utilizados para la caracterizacion de las propiedades
mecénicas de materiales es el de traccién uniaxial. Sin embargo, estos ensayos no
permiten caracterizar determinados materiales muy blandos, como por ejemplo los
materiales biolégicos. Para determinar correctamente las propiedades de estos
materiales, se han desarrollado otros métodos basados en indentacion, como el que
utiliza el microscopio de fuerza atémica (AFM).

Con este trabajo se pretende investigar, utilizando modelos de simulacién basados en
elementos finitos, el comportamiento de algunos materiales, entre ellos los biolégicos.
De esta manera, mediante la obtenciébn de determinadas propiedades, se puede
entender y definir el modo en el que se van a comportar estos materiales ante
determinados esfuerzos.

Para ello se ha llevado a cabo la simulacién de ensayos de nanoindentacion, mediante
el programa de simulacion por elementos finitos Abaqus/CAE 6.12, de tal forma que se
ha desarrollado un modelo paramétrico, que permite la simulacion de cualquier
casuistica de ensayo con un microscopio de fuerza atémica.

Para la simulacion de este tipo de ensayos, se han utlizado modelos de
comportamiento con distintas propiedades mecanicas, empezando por los materiales
mas sencillos (material elastico lineal) para llegar a los mas complejos (material
hiperelastico anisétropo fibrado).

Los resultados obtenidos muestran el fuerte comportamiento no lineal que tienen estos
materiales hiperelasticos, el cual se intensifica conforme aumenta la profundidad de la
indentacion, y por tanto la deformacion. En el caso del modelo de comportamiento del
material hiperelastico anisétropo fibrado, se ha observado la enorme influencia que
tienen las direcciones de las familias de fibras que lo forman.

Por dltimo, se han analizado los resultados comparandolos con el modelo te6rico de
Hertz, que es el mas utilizado para determinar experimentalmente las propiedades
mecénicas en este tipo de ensayos. Se ha observado cémo se comporta la ley de
Hertz para los modelos de comportamiento simulados, y se ha concluido, que para
poderse utilizar la ley de Hertz, es necesario aplicar una correccién. Sin esta
correccion, las predicciones del modelo tedrico distan sustancialmente de las de
elementos finitos, especialmente para materiales con comportamiento fuertemente no
lineal.
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1 Introduccién

Uno de los ensayos mas utilizados, para obtener las propiedades mecanicas de los
materiales, son los ensayos uniaxiales. Sin embargo, con estos ensayos resulta muy
dificil la caracterizacion de materiales blandos, entre ellos los biolégicos, debido a que la
escala necesaria para medir magnitudes, es mucho menor que la que un ensayo uniaxial
puede proporcionar. Por ello se ha comenzado a utilizar otros métodos, como es el AFM
(Atomic Force Microscopy).

1.1 Nanoindentacion y AFM

Un ensayo de indentacién consiste, esencialmente, en hacer incidir un material cuyas
propiedades mecanicas son conocidas en otro cuyas propiedades mecanicas nos
interesa conocer.

La nanoindentacion es una variedad de los ensayos de dureza que se caracteriza por ser
aplicada a pequefios volumenes, ya que la escala utilizada es a nivel nanométrico. Por lo
tanto, se diferencia principalmente del resto de ensayos de dureza en que el tamafio del
indentador y el de la huella aplicada, son de unos pocos micrometros.

El fin del ensayo de naoindentacién es determinar el médulo de Young y la dureza del
material ensayado a partir de las cargas y desplazamientos medidos. De esta forma, es
posible estimar las propiedades mecéanicas de dicho material.

Los ensayos por AFM presentan diferencias frente a los ensayos de dureza tradicionales,
ya que inicialmente en un ensayo de dureza se aplica una carga y cuando ésta es
retraida se mide la huella que el indentador ha impreso. Sin embargo, en los ensayos de
nanoindentacién la profundidad de penetracion debe ser medida conforme la carga es
aplicada. Este tipo de ensayos se han podido llevar a cabo recientemente debido al
desarrollo de esta tecnologia en las Ultimas décadas. El instrumento mas utilizado para
realizar este tipo de ensayos es el microscopio de fuerza atémica [1]. Se trata de un
microscopio capaz de medir fuerzas del orden de los nanonewtons en tiempo real. Como
se puede observar en la Figura 1, esta formado por un voladizo de silicio de unos 200 pm
con una punta en su extremo. Las interacciones entre la punta y la muestra quedan
registradas y las deflexiones del voladizo se detectan mediante un rayo laser, que se
refleja en el extremo del voladizo sobre un detector.

’ Detector
Laser e :

O i

L Voladizo y punta
Muestra S — ’

Escéaner piezoeléctrico

Figura 1: Diagrama de un microscopio de fuerza atémica.
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1.2 Materiales biolégicos

Los ensayos de nanoindentacion son aplicados a materiales con médulos de Young muy
pequeiios, es decir, materiales blandos. Entre este tipo de materiales se encuentran los
tejidos biologicos (pulmones, musculo esquelético, corazén, arterias, ligamentos,
tendones, piel...). Estos materiales se caracterizan por tener un comportamiento no
lineal, que genera grandes desplazamientos y deformaciones, y hace que su
comportamiento sea muy complejo. Esto es debido a que las propiedades estructurales y
el comportamiento de estos materiales estan definidos por la relacion entre los
desplazamientos y deformaciones generados, o lo que es equivalente, la relacion entre
tension y deformacion.

Si se habla de materiales ideales, hay que tener en cuenta que su comportamiento es
is6tropo y homogéneo, es decir, tienen las mismas propiedades en todas las direcciones
y la composicion del material es la misma en su totalidad. Sin embargo, en el caso de los
materiales biol6gicos, se trata con materiales anisétropos y no homogéneos, lo que
dificulta mas su estudio; ademas de lo anterior, tienen un comportamiento viscoelastico,
esto es, que exhiben propiedades viscosas, asi como elasticas, cuando se deforman [2,
3.

1.3 Definicién del modelo de Hertz

El modelo de Hertz, es el modelo mas utilizado para analizar las fuerzas microscépicas
en un ensayo de nanoindentacion en relacion con la profundidad aplicada.

1.3.1 Hipdtesis del modelo

Las hipétesis en las que se basa el modelo de Hertz son [4]:

- Material isétropo, que se caracteriza por tener las mismas propiedades fisicas y
mecanicas en todas las direcciones.

- Material homogéneo, que tiene las mismas propiedades fisicas y mecanicas en
todo su volumen.

- Material elastico lineal, este material se caracteriza por la recuperacion del
material a su estado original una vez hayan cesado las tensiones aplicadas en él.

- Pequenas deformaciones, de forma que se eviten las no linealidades geométricas.

- Muestra semi-infinita, para suprimir los efectos debidos a las condiciones de
contorno.

- Superficie de contacto entre el indentador y la muestra sin friccién, asi como se
asume que el indentador no sufre deformaciones.

1.3.2 Ecuacioén Hertz
La geometria de las puntas de los ensayos de nanoindentacién puede ser esférica,
conica [5, 6] o piramidal [7, 8].

En indentacién esférica, la relacion entre la fuerza aplicada y profundidad de indentaciéon
() viene dada por la siguiente expresion [1, 4, 9, 10, 11, 12]:
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donde E y v son respectivamente el modulo de Young y el coeficiente de Poisson de la
muestra y R hace referencia al radio del indentador (Figura 2).

Figura 2: Contacto entre un indentador rigido y una muestra. Definicion parametros Ry 0.

1.4 Estudios previos

Existen estudios en los que se han analizado los ensayos de nanoindentacion esférica,
mediante experimentacion y simulacion en elementos finitos. En Lin et al., [9] establecen
las funciones de densidad de energia de varios modelos hiperelasticos y posteriormente,
las comparan con los resultados que obtienen de dichos modelos en simulaciones de
elementos finitos y a la vez con el modelo de Hertz. Este trabajo concluye que los
resultados del modelo de Hertz son aceptables para un limite de 8/R=0.2.

Por otro lado, en el capitulo 3 de la tesis “Computational Modelling of Single Cell Probing”
[13], se estudia un material hiperelastico mediante el modelo de Ogden, que es
comparado con el modelo de Hertz con el fin de establecer cuando es valido dicho
modelo y bajo qué condiciones. Para finalizar el estudio, aplican una serie de
correcciones al modelo de Hertz basdndose en otro estudio similar (Dimitriadis et al.,
[12]).

Del mismo modo, Long et al., [11] analiza las limitaciones del modelo de Hertz,
concluyendo que éste sobreestima el médulo de Young y por lo tanto, ve necesario
aplicar una serie de correcciones para poder ser utilizado.

Otros estudios, como Ladjal et al., [4] utilizan la técnica AFM sobre muestras esféricas.
Ladjal et al., [4] realiza un experimento sobre células madre de embriones de ratén,
comparandolo con una simulacién de elementos finitos y con el modelo teérico de Hertz.
Se concluye que los resultados tedricos y de elementos finitos son sélo validos para
pequeiias deformaciones.
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1.5 Objetivo

El objetivo del proyecto es comprender el comportamiento de distintos materiales,
mediante la simulacion de modelos de comportamiento en un ensayo de nanoindentacion
con el programa Abaqus CAE, y poder ser capaces de entender este tipo de ensayo.
Estos materiales presentan distinto comportamiento mecéanico: elastico lineal,
hiperelastico isétropo e hiperelastico anisétropo. Se prestara especial atencion al material
hipereastico aniso6tropo debido a que los trabajos publicados hasta la fecha, implementan
materiales hiperelasticos isétropos para simular materiales blandos tales como geles. Sin
embargo, no se han utilizado otro tipo de materiales como son los hiperelasticos
anisotropos. Estos materiales estan formados por varias familias de fibras con distinta
orientacion. Este tipo de estructura se encuentra en numerosos tejidos, tales como la piel
o tejidos vasculares.

Por ultimo, se comparara el modelo de Hertz con los resultados de las simulaciones y se
determinard bajo qué condiciones, éste, es aplicable para los modelos de
comportamiento analizados.

2 Metodos y calculos

Para llevar a cabo las simulaciones es necesario conocer las hipétesis del modelo
utilizado, asi como los materiales que van a ser analizados.

2.1 Hipotesis de partida

Para realizar las simulaciones se han utilizado varias hip6tesis de partida de tal forma que
la simulacion quede lo mejor adaptada posible a lo que seria un ensayo real. Se han
simulado indentadores esféricos ya que éstos reducen las deformaciones no lineales
generadas durante el ensayo, permitiendo obtener una estimacion del médulo de Young
mas fiable respecto a otro tipo de geometrias, como pudiera ser un indentador cénico o
piramidal.

El indentador utilizado, tiene un mddulo de Young mucho mayor que la muestra, E=
200000MPa y v=0.3, para que éste no sea deformable.

La altura y la anchura de las muestras son mucho mas grandes que el tamafio del
indentador, ya que de esta forma se suprimen los efectos debido a las condiciones de
contorno (ver Anexo 6.1).

Por ultimo, se ha supuesto que en el contacto entre el indentador y la muestra, no existe
friccion. Si el material a analizar fuesen células, habria que considerar que éstas
disponen de una membrana, que se deberia tener en cuenta en la simulacion [14].

2.2 Materiales analizados

Se ha partido de un material elastico lineal, debido a que es el material mas sencillo de
analizar y es el material base para el que la ley de Hertz se cumple. A partir de este
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material, se han ido complicando los modelos de comportamiento introducidos en las
simulaciones, adaptandolos a materiales que reflejarian un tejido mas real y por tanto con
un comportamiento mucho més complejo y desconocido.

2.2.1 Material elastico lineal

Los materiales elastico lineales se caracterizan por recuperar su forma inicial, una vez se
haya retraido la carga que los deforma. En ellos las tensiones son directamente
proporcionales a las deformaciones.

La rigidez de un material representa la capacidad de éste para resistir las deformaciones,
guedando definida mediante el médulo de Young, el cual es constante en los materiales
elastico lineales. Con el modulo de Young y el coeficiente de Poisson quedarian definidas
las propiedades del material.

Como mddulo de Young se ha tomado E=3kPa, ya que se esta hablando de materiales
blandos, es decir, con modulos de Young no muy elevados [10].

Se ha tomado un coeficiente de Poisson de v=0.5 (material no compresible), que es el
mas utilizado para materiales blandos, en los que puede variar entre 0.3 y 0.5 [15].

2.2.2 Material hipereléastico isétropo

Los materiales hiperelasticos se caracterizan por tener un comportamiento no lineal, es
decir, el material se rigidiza conforme se deforma. Este comportamiento puede
observarse en la Figura 3, donde se representa un ensayo uniaxial de dos probetas, para
comparar las diferencias entre un material elastico y uno hiperelastico neo-Hookeano.

Tensién frente a deformacion

0,9
0,8
a7

0.6

= haterial hipereldstico

— Material elastico lineal
0.5

Tensidn (kPa)

0,3

0 0,05 0,1 0,15 0,2 0,25 03

Deformacion

Figura 3: Tension frente a deformacion de un ensayo uniaxial de un modelo de comportamiento elastico lineal y de uno
hiperelastico.
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Para poder comparar con la muestra elastica, se han calculado el médulo de rigidez (W) y
el modulo de compresibilidad (k) a partir de los parametros de la muestra elastica. De
esta forma se ha podido definir en Abaqus el modelo neo-Hookeano a partir de esos dos
parametros (ver Anexo 6.2). Para implementar estos parametros en Abaqus, se ha tenido
en cuenta que dicho programa define dos relaciones a partir de los pardmetros
calculados, las cuales son C10=/2 y D1=2/k, obteniendo como resultado C10=0.5 y
D1=0.

E E

"2y fT3a-2m)

Ademas del modelo neo-Hookeano pueden ser utilizados otros modelos hiperelasticos,
como el de Mooney-Rivlin, Ogden y Polynomial, para simular materiales del tipo
biolégico.

2.2.3 Material hiperelastico anisétropo

Existe una gran cantidad de materiales bioldgicos formados por varias familias de fibras
orientadas de diversas formas embebidas en una matriz formada por coldgeno y otros
constituyentes. Un ejemplo de estos materiales se encuentra en el tejido arterial, que esta
compuesto por dos familias de fibras con dos direcciones preferentes.

Este material es mas complejo que los anteriores, debido a que para caracterizarlo se ha
de definir familias de fibras con una orientacion determinada. Ademas este tejido tiene un
fuerte comportamiento no lineal.

Para simular este tipo de material en Abaqus, se ha utilizado el modelo Holzapfel (ver
Anexo 6.3), en el que se han definido dos orientaciones de las fibras (al y a2), con un
semiangulo entre ellas de y=49.98°, segun queda reflejado en la Figura 4.

Figura 4: Orientacién de las fibras en un modelo de comportamiento hiperelastico anisétropo.

Otros coeficientes que se han tenido que definir, relacionados con la funciéon de densidad
de energia, han sido los pardmetros k1 y k2, los cuales estan relacionados con el
comportamiento anisétropo de las fibras. Los médulos de rigidez y de compresibilidad de
la matriz, se han definido de igual modo que en el caso del material neo-Hookeano, y por
altimo, se ha definido el grado de anisotropia del material (k). Tal y como queda
representado en la Figura 5, dicho parametro corresponde a la dispersién de las fibras del
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material, que puede variar entre 0<k<1/3. El limite mas bajo k=0 supone que las fibras
estdn perfectamente alineadas y, el limite mayor k=1/3 supone que las fibras estan
orientadas de forma aleatoria y el material se comporta isotrépicamente.

K=0.0085 K=0.25 K=0.33

Figura 5: Representacion tridimensional de la orientacién de las fibras. Imagen extraida de un articulo publicado en el
BMES (Biomedical Engineering Society) [16].
Tal y como se muestra en la tabla 1, los coeficientes que se utilizaron para realizar la
simulacion del tejido arterial provienen del articulo Gasser et al.[17], en el que se
realizaban unos ensayos de traccion para diversas muestras extraidas de una arteria.

Y

C10

D

k1l

k2

49.98°

3.82kPa

996.6kPa

524.6

0.226

Tabla 1: Coeficientes utilizados en la simulacion de tejido arterial.

2.3 Modelo 2D axisimétrico

A excepcion del tipo de material de las muestras utilizadas, el resto de pardmetros
definidos para cada simulacion son casi idénticos. EI modelo se ha generado con
axisimetria (ver Anexo 6.4) para reducir el coste computacional y el tiempo de calculo. La
geometria, condiciones de contorno, interaccion entre el indentador y la muestra y parte
del mallado, se han mantenido para todas las simulaciones en 2D.

2.3.1 Geometria

Para representar el indentador, se ha trazado en el plano XY un semicirculo de radio
R=1.125 um, y para representar la muestra de material, un rectangulo de anchura a=100
pm y de altura h=100 pm, entre los cuales se ha dejado una distancia infinitesimal para
evitar el contacto inicial entre ambos. Esto queda reflejado en la Figura 6, en la que se ha
representado el eje de axisimetria en color rojo.
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Figura 6: Geometria del indentador y la muestra de un modelo axisimétrico de un ensayo de nanoindentacién cuyo eje de
axisimetria se muestra en rojo.

2.3.2 Condiciones de contorno

En el lateral izquierdo, donde se encuentra el eje de axisimetria, se ha establecido la
condicion de simetria tanto para el indentador como para la muestra, ya que para reducir
al maximo el nimero de célculos, se ha representado la mitad del indentador y de la
muestra.

En la cara inferior de la muestra se han limitado los desplazamientos en los tres ejes, de
esta forma, se simularia la situacién de la muestra situada encima de la placa en la que
se va a realizar el ensayo.

Por dltimo, se ha impuesto un pequefio desplazamiento & de 0.5um en el eje Y al
indentador, que simula la indentacion sobre la muestra a ensayar. Esto es debido a que
se esta tratando con pequefias deformaciones, y por encima de indentaciones de 0.5um
las deformaciones serian excesivamente grandes.

2.3.3 Interaccion

Se ha establecido la superficie de contacto entre el indentador y la muestra sin friccion,
ya que, como se observa en la Figura 7, los resultados no varian a pesar de aplicar un
coeficiente de friccion p=0.03-0.1 considerado adecuado para materiales biolégicos [18].
Se ha establecido la superficie exterior del indentador como maestra, y la superficie de la
cara superior de la muestra como esclava.

10
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F frente a 6 material hiperelastico is6tropo
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Figura 7: Comparativa de la fuerza frente al desplazamiento del indentador para diferentes coeficientes de friccién.

2.3.4 Mallado

Tras realizar un exhaustivo analisis del mallado (ver anexo 6.5), se ha concluido que el
tipo de elemento mas adecuado a utilizar eran cuadrangulos estructurados (Figura 8) y
gue el elemento idoneo era el CAX4 (C=continuo, AX=axisimétrico, 4=Nodos).

Se han generado en el indentador 2693 elementos, y en el caso de la muestra 7818
elementos. Hay que tener en cuenta que el tamafio de los elementos, a lo largo de toda la
muestra, es mucho mayor que en la zona de contacto entre el indentador y la muestra, ya
gue es la zona que se va a estudiar posteriormente.

Figura 8: Mallado modelo 2D axisimétrico.

11
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2.3.5 Simulacion

Para llevar a cabo las simulaciones, se ha programado el cddigo necesario mediante
comandos en Python en el programa Abaqus/CAE 6.12 (ver Anexo 6.6).

Esta técnica permite parametrizar el modelo en funcion de los parAmetros geométricos
elegidos. De esta forma se puede, por ejemplo, variar la altura de la muestra para ver su
influencia cambiando Unicamente un dato numérico, en vez de tener que realizar un
modelo totalmente nuevo. En definitiva, se ha rentabilizado el tiempo evitando repetir el
proceso completo para cada caso estudiado.

2.4 Modelo 3D

Como se ha explicado en el apartado anterior, se ha realizado un modelo 2D axisimétrico
para evitar el tiempo de calculo que supondria hacer el mismo modelo en 3D. Sin
embargo, la estructura del material hipereastico anisétropo exige tener que realizar un
modelo en 3D, debido a que las fibras pueden estar orientadas en las 3 direcciones. Por
lo tanto, mediante un modelo en 3D la muestra de material fibrado quedaria simulada de
manera mas cercana a la realidad.

2.4.1 Geometria, condiciones de contorno y mallado

La geometria utilizada es la misma que en el caso 2D. Las condiciones de contorno
también son las mismas, eliminando las condiciones de simetria de la muestra y el
indentador, puesto que se simula la geometria completa.

En el caso del mallado se han utilizado hexaedros dominados mediante la técnica libre,
debido a que no era posible aplicar la estructurada. Hay que tener en cuenta que, para
refinar la malla en el eje de la altura de la muestra, es necesario crear capas (Figura 9), lo
gue aumenta notablemente el coste computacional y con ello también el tiempo de
calculo.

Figura 9: Mallado modelo 3D con un corte para poder visualizar las capas generadas en el eje Y.
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3 Resultados

Las simulaciones reflejan la diferente respuesta que presentan los modelos de
comportamiento estudiados, ante una pequefa profundidad de indentacion & de 0.5um
(Figura 10).

M. eléstico lineal M. hiper. is6tropo M. hiper. aniso6tropo

Figura 10: Distribucion del desplazamiento en el eje Y para los modelos de comportamiento simulados.

Esta profundidad de indentacién es la misma para todas las muestras, sin embargo, el
comportamiento que sufren es totalmente distinto. Si se compara el material elastico
lineal con el hiperelastico is6tropo, se observa que en éste Ultimo los desplazamientos
son mayores. En el caso del material hiperelastico anisétropo se observa, como debido a
la influencia de las fibras, se genera una distribucion diferente a la de los otros dos casos.

3.1 Material elastico lineal

Tras realizar la simulacion con el modelo de comportamiento elastico lineal, con las
propiedades que se han definido anteriormente, se obtienen las distribuciones mostradas
en la Figura 11.

B o o o b o S e

Distr. Tensiones (S.Mises [kPa]) Distr. Deformaciones (E.Min)

Figura 11: Distribucion de tensiones y deformaciones para un modelo de comportamiento elastico lineal.
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En las distribuciones se observa que, tanto las tensiones como las deformaciones
mayores, se generan en la zona de contacto entre el indentador y la muestra.

Si se compara la fuerza de reaccién sobre el indentador, respecto a la profundidad de
indentacion con el modelo tedrico de Hertz, se obtienen las siguientes curvas mostradas
en la Figura 12.

F frente a 6 material elastico lineal

2,5

g

= Material eldstico lineal

15

Modelo de Hertz

F(nN)

0,5

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

6(um)

Figura 12: Fuerza reaccion frente a la profundidad de indentacion del modelo tedrico y de elementos finitos.

Como se ve en la figura anterior, para un desplazamiento del indentador comprendido
entre 0 y 0.2um los resultados tedricos del modelo de Hertz coinciden con los de la
simulaciéon. Sin embargo, a partir de 0.2um conforme la profundidad de indentacién
aumenta las diferencias entre el modelo tedrico y el de elementos finitos también lo
hacen.

Calculando el modulo de Young a partir de la simulacion mediante la férmula tedrica de
Hertz, y comparando con el propio modelo (Figura 13) se obtiene:

14



Universidad
Zaragoza

Simulacion ensayo de nanoindentacion

E frente a 6 material elastico lineal

3,5

2,5

Modelo de Hertz

= Material elastico lineal

E(kPa)

1,5

0,5

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

&(um)

Figura 13: Médulo de Young para cada 6. Comparativa entre el teérico y el de elementos finitos.

Al comienzo de la grafica (0<6<0.005um), se aprecian unos resultados del mdédulo de
Young muy inestables, esto es debido a que en dicho instante se produce el contacto
entre el indentador y la muestra.

En la gréfica se observa como el modelo de Hertz hace una sobreestimacion del médulo
de Young para desplazamientos del indentador mayores que 6=0.08um, esto conllevaria
a una caracterizacion errénea del material analizado, por lo que habria que hacer una
pequefia correccion sobre el modelo de Hertz.

Definiendo la rigidez aparente como cociente entre Kj;; y K [13], donde:

. 3 Fer E
Ky=—7"3 K= 2
4 RY28°/2 (1-v?)
y representando dicho cociente frente al desplazamiento del indentador, se obtiene la
ecuacioén de la curva a partir de la cual se ha calculado la correccion necesaria (Figura
14).
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K*H/K

1.2

F -

y=-1,772x* + 2,283)3 - 1,181x2 + 0,006X + 0,998
RZ=0,999

08

04

0 0,05 01 0,15 02 0,25 03 035 04 045 05

&(um)

Figura 14: Rigidez aparente frente a 6.

Adimensionalizando la ecuacién en funcién del pardmetro y = 5/R, se obtiene el siguiente

factor de correccion:

F, = —2.838x* + 3.250x3 — 1.494x2? + 0.006 + 0.998

Aplicando dicho factor al modelo de Hertz, se ve como la curva tedrica y la de elementos

finitos

coinciden sin ningun error (Figura 15).

F(nN)

F frente a 6 material elastico lineal

2,5

e

——Modelo de Hertz
Corregido

1,5

0,5

0 0,05 0,1 0,15 0,2 0,25 03 0,35 0,4 0,45 0,5

6(um)

= Material eldstico linea

Figura 15: Fuerza frente a 6. Comparacion modelo de elementos finitos con el teérico de Hertz.
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Tal y como se observa en la Figura 16, la correccion anterior seria aplicable al modelo de
Hertz para materiales elastico lineales con médulos de Young comprendidos entre un
rango de 1kPa y 1000kPa. Hay que tener en cuenta que el rango anterior engloba todos
los materiales considerados blandos.

F frente a 6 material elastico lineal

600

500

400

= Hertz Corregido 1000kPa

E=1000kPa

300

F(nN)

= Hertz Corregido 100kPa
= E=100kPa

200 o Hertz Corregido 10kPa

E=10kPa

= Hertz Corregido 1kPa

100 ; ——E=1kPa

o] 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

6(um)

Figura 16: Fuerza frente a 6. Comparaciéon modelo de elementos finitos con el teérico de Hertz corregido, para distintos
mddulos de Young.

3.2 Material hiperelastico isotropo

Para el caso del modelo de comportamiento neo-Hookeano (hipereléstico isétropo) las
distribuciones obtenidas son las que se muestran en la Figura 17.

Distr. Tensiones (S.Mises [kPa]) Distr. Deformaciones (E.Min)

Figura 17: Distribucion de tensiones y deformaciones para un modelo de comportamiento hiperelastico isétropo.
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Comparando con el modelo de comportamiento elastico lineal, se observa que las
tensiones y deformaciones maximas no se generan en la zona de contacto entre el
indentador y la muestra, si no que lo hacen ligeramente méas abajo, debido a la
rigidizacién del material hiperelastico.

Si se compara la fuerza de reaccién sobre el indentador, respecto a la profundidad de
indentacion con el modelo tedrico de Hertz, y con el modelo de comportamiento elastico
lineal (Figura 18), se observa que modelo de comportamiento neo-Hookeano tiene un
comportamiento mas cercano al que dicta el modelo de Hertz. Sin embargo, sigue
habiendo ciertas diferencias para desplazamientos del indentador mayores de 6=0.2um.

F frente a 6 material hiperelastico isotropo

7

2,5

15

Modelo de Hertz

Material hipereldstico

F(nN)

Material elastico linea

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

&(um)

Figura 18: Fuerza frente a & de los dos modelos de comportamienzo analizados y del modelo de Hertz.

Si se procede del mismo modo que en el caso anterior, se obtendria el siguiente factor de
correccion:

F, = —4.145y* + 4366 — 1.621x2 + 0.135y + 0.989

Como se observa en la Figura 19, este factor aproxima la curva de Hertz a la de
elementos finitos del material neo-Hookeano, para un rango de modulos de Young
comprendidos entre 1kPa y 1000 kPa.
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F frente a & material hiperelastico isétropo

600

500

400
——Hertz Corregido 1000kPa
= E=1000kPa

F(nN)

300 = Hertz Corregido 100kPa
= E=100kPa
= Hertz Corregido 10kPa
200 ———E=10kPa
= Hertz Corregido 1kPa
——E=1kPa

100

0 0,05 0,1 0,15 0,2 0,25 03 0,35 04 0,45 0.5

&(um)

Figura 19: Fuerza frente a 5. Comparacion modelo de elementos finitos con el teérico de Hertz corregido, para distintos
maodulos de Young.

3.3 Material hiperelastico anisotropo

Tal como se indicd anteriormente, se realiz6 un modelo 3D para el caso del modelo de
comportamiento fibrado, debido a la distribucion espacial de las fibras. Si se compara la
distribucion de tensiones y deformaciones para el caso 2D axisimétrico y 3D se ve que
hay mucha diferencia entre ambos modelos (Figura 20).

Figura 20: Distribucion de tensiones [kPa] y deformaciones del modelo 2D y 3D para un modelo de comportamiento fibrado.
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Por lo tanto, es de esperar que al presentar la fuerza de reaccion frente al
desplazamiento del indentador también existan grandes diferencias (Figura 21).

F frente a 6 material hiperelastico anisotropo

60

/

50

40

= Material fibrado 2D

= Material fibrado 3D

30

F(nN)

20

10

0,05 0,1 0,15 0,2 0,25 0,3

&(pm)

Figura 21: Fuerza frente a profundidad de indentacion del modelo 2D y 3D para un modelo de comportamiento fibrado.

Hasta el momento, se ha considerado que las fibras que forman el modelo de
comportamiento forman un semiangulo de y=49.98° respecto al eje Y. Sin embargo, para
conocer cémo afecta realmente la orientacion de las fibras, se deberia variar el angulo
entre las dos familias de fibras que componen el modelo de comportamiento. Tras
realizar varias simulaciones con el modelo axisimétrico, para distintas orientaciones de
fibras (Figura 22), se observd que la orientacion tiene una gran influencia de cara a
caracterizar el material, ya que segun su orientacién actla Unicamente una familia de
fibras (caso 90°), ninguna (caso 180°) o ambas (caso 49.98°).

200

150

F(nN)

50

F frente a 6 seglin la orientacién de las fibras

= 49,982

g2
1 302

a2 . al

= al

——>al

0 0.05 01 0.15 0.2 0.25 0.3 0.35 04 0.45 0.5

&(pm)

Figura 22: Fuerza frente a profundidad de indentacion segun la orientacion de las fibras.
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Tal como se observa en la figura anterior, el material tiene una fuerte dependencia de la
orientacion de las fibras. Esto supone que a la hora de realizar un experimento con este
tipo de materiales, es esencial conocer cudl es la orientacion exacta de las fibras de la
muestra que se ha tomado, asi como la orientacion en la que se sita la muestra para
hacer el experimento.

Para poder comparar con los modelos de comportamiento anteriores hay que conocer el
maédulo de Young y el coeficiente de Poisson equivalente del modelo de comportamiento
arterial, ya que este tipo de modelos de comportamiento se definen en base a distintos
parametros. Para ello, se realizd un ensayo uniaxial de una probeta para obtener la
tension y deformacion del modelo de comportamiento, conforme estaba siendo sometido
a traccion, y asi poder obtener el médulo de Young inicial y el coeficiente de Poisson
inicial. Al tratarse de un material hiperelastico, conforme se deforma mas se rigidiza, lo
gue se traduce en un aumento de su modulo de Young. Tras realizar la simulacién del
ensayo uniaxial, se obtuvo que el médulo de Young era E=24.42kPa y el coeficiente de
Poisson v=0.5.

Si comparamos las distribuciones de tension y deformacion con el resto de modelos de
comportamiento, se obtienen las distribuciones que se muestran en la Figura 23.

Distribucion de tensiones (S.Mises [kPa])

Distribucion de deformaciones (E.Min)
Figura 23: Comparativa distribuciones para los distintos modelos de comportamiento cuando & es 0.3um.

Si se compara el modelo de comportamiento anisétropo, con el resto de modelos, se
observa como se asemeja Unicamente para pequefios desplazamientos (6=0.05um), ya
que dicho modelo tiene un fuerte comportamiento no lineal. Esto queda claramente
reflejado en la Figura 24.
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F(nN)

F frente a 6 distintos modelos de comportamiento

4 -

=

4] 0,05 0,1 0,15 0,2 0,25

6(um)

0,3

fibrado
—Hertz
= neo hookeano

——celdstico

Figura 24: Comparativa fuerza frente a profundidad de indentacion de todos los modelos de comportamiento simulados.

Para el caso del modelo de comportamiento fibrado, procediendo de forma analoga a los
otros dos casos, también se podria corregir el modelo de Hertz para adaptarlo.

F. = —706.877x* + 533.366x% — 147.060y% + 18.506y + 0.478

Como se observa en la Figura 25, tras aplicar el factor de correccién anterior, la curva del

modelo tedrico y el arterial se asemejan.

F frente a 6 material hiperelastico anisétropo

12

/

10

F(nN)

0,15 0,2 0,25

6(um)

0,3

—— Material fibrado 3D

Modelo de Hertz
Corregido

Figura 25: Correccion del modelo de Hertz para el modelo de comportamiento hiperelastico anisétropo.
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4 Conclusiones y discusion

Atendiendo al ensayo de nanoindentacion, se ha visto como con el manejo de un
programa de elementos finitos, se puede proceder a realizar una simulacion de un
ensayo de nanoindentacién. Este método permite el estudio bajo diferentes condiciones,
y sirve de complemento para los métodos experimentales.

Si se comparan los distintos modelos de comportamiento analizados, se observa que el
hiperelastico isétropo se caracteriza por tener un comportamiento no lineal. En el caso del
material hiperelastico anisétropo, la orientacion de las fibras que posee es un factor
determinante para llevar a cabo su caracterizacion, ya que segun se encuentran
orientadas las fibras el comportamiento del material varia considerablemente.

Por ultimo, para poder comparar con el modelo de Hertz hay que tener en cuenta varias
consideraciones. La teoria de Hertz se puede aplicar a materiales con médulos de Young
no muy elevados, la altura de la muestra tiene que tener un tamafio como minimo de
100um para indentadores con un radio de 1.125um, y el radio de la muestra a analizar
debe ser de 100um o mas. También se ha observado que el modelo de Hertz se asemeja
al de las simulaciones para pequefios desplazamientos del indentador, comprendidos
entre 0 y 0.2um, pero conforme los desplazamientos son mayores, y con ello las
deformaciones, los resultados del modelo tedrico distan considerablemente de la
simulacién, especialmente para el caso del modelo de comportamiento fibrado. Sin
embargo, esto puede ser subsanado mediante la aplicacion de diversos factores de
correccion segun el modelo de comportamiento analizado. Para el caso elastico lineal y el
hiperelastico isétropo, el factor de correcciébn aplicado al modelo de Hertz, seria
adecuado para modulos de Young comprendidos entre 1 y 1000kPa, es decir, para
materiales blandos. Si se comparan los factores de correccion de los tres casos, se
observa que el modelo de comportamiento elastico lineal e hiperelastico is6tropo, tienen
factores de correccion similares, ya que estos dos modelos tienen ciertas similitudes en
su comportamiento. Sin embargo, para el caso hiperelastico anisétropo la correcciéon a
aplicar es muy distinta a las anteriores, debido a la gran influencia que tienen las familias
de fibras que lo forman.
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6 Anexos

6.1 Dimensionamiento de la muestra

Para conocer el tamafio 6ptimo de la muestra, sin que afecten las condiciones de
contorno de sus limites, se han realizado simulaciones variando la geometria. De esta
forma, se puede observar a partir de qué dimensiones las condiciones de contorno
afectan lo suficiente como para interferir en los resultados.

Teniendo en cuenta que el radio del indentador es de 1.125um, ya que es el tamafio
comun que se utiliza en indentadores para los ensayos de AMF, y tras realizar las
simulaciones para una altura de 2, 5, 10, 50, 100 y 1000 um sobre un modelo de
comportamiento neo-Hookeano, se observan los siguientes resultados mostrados en la
Figura 26.

F frente a 6 variando h de la muestra

2,5

AN

—h = 2pm
= h=5um

= h = 10um
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= 50Um
= h = 100um

= h =1000um

0,5

o] 0,05 0,1 0,15 0,2 0,25 0,3 0,35 04 0,45 0,5
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Figura 26: Comparacion entre la fuerza de reaccion en el indentador y la profundidad de indentacién para distintas alturas
de la muestra a analizar.

Se puede apreciar que conforme se disminuye la altura de la muestra, la fuerza de

reaccion en el indentador aumenta. Esto es debido a que las paredes de la muestra

interfieren en dicha fuerza, ya que se generan tensiones en las zonas cercanas a las

condiciones de contorno (Figura 27).
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Altura de la muestra 2um Altura de la muestra 100um

Figura 27: Comparacion S.Mises [kPa] entre dos muestras de diferente altura.

Si nos fijamos en la fuerza que se ejerce en la muestra para 8=0.5um se obtiene la
siguiente curva (Figura 28).

h frente a F para 6=0,5um

25

F(nN)

0,5

0 100 200 300 400 500 600 700 800 900 1000

h(um)

Figura 28: Variacion de la fuerza con respecto a la altura de la muestra para 6=0.5um.

Se observa que a partir de una altura h=100um la fuerza estimada no varia, por lo que
seria adecuado utilizar muestras a partir de una altura de 100um.

En los estudios previos analizados, no se analizaba el dimensionamiento del radio idéneo
de la muestra utilizada, ya que en ellos se realizaba un sobredimensionamiento para
establecer la muestra como semi-infinita. Sin embargo, de cara a realizar un experimento,
es conveniente conocer el tamafio de la muestra a extraer.

Si en vez de variar la altura de la muestra del modelo de comportamiento que se quiere
simular, se varia el radio, se obtienen los resultados de la Figura 29 y Figura 30.
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F frente a 6 variando R de la muestra
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Figura 29: Comparacion entre la fuerza de reaccion en el indentador y la profundidad de indentacién para distintos radios

de la muestra a analizar.

R muestra frente a F para 6=0,5um
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Figura 30: Variacion de la fuerza con respecto al radio de la muestra para 6=0.5um.

Se observa que a partir de una radio R=100um la fuerza estimada no varia, por lo que

seria adecuado utilizar muestras a partir de un radio de 100um.
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6.2 Densidad de energia del modelo neo-Hookeano

La funcion de densidad de energia de deformacion de un material es una funcién escalar
gue relaciona la energia almacenada del material con la deformacién. Para un material
isétropo puede expresarse en términos de los alargamientos principales, o en funcién de
los invariantes de deformacion.

U= U(All/lz,ls) = U(11,12,13)

Para definir la funcibn de densidad de energia de deformacion de un material
hiperelastico isétropo, existen distintos modelos. Los modelos més utilizados son los de
Arruda-Boyce, Marlow, Mooney-Rivliny y neo-Hookeano, y se expresan en funcion de
distintos parametros.

Para el modelo neo-Hookeano la forma de definir la densidad de energia es la siguiente:
- 1
U=_Co(l;—3)+ D—(/el —1)2
1

Donde U es la energia de deformacion por unidad de volumen, C;, y D; son parametros
del material dependientes de la temperatura yfl es el primer invariante de deformacién

(controla el grado de distorsion corporal) definido como I; = A2 + A3 4+ 12, J¢ es la
relacién de volumen elastico. EI médulo de rigidez (1) y el médulo de compresibilidad (k)
quedan definidos como p = 2C;y y k = 2/D;.
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6.3 Densidad de energia del modelo Holzapfel

Para un material anisétropo la funcibn de densidad de energia de deformacion
U(C) depende de tensores que caracterizan la microestructura interna del material.

Para materiales anisotropos los modelos més utilizados son los de Fung y Holzapfel.

En el caso del modelo Holzapfel, la forma de definir la densidad de energia en funcién de
la orientacion de las fibras es la siguiente:

N

_ 1 elN2 _ 1 k _
U=Cpo(l,—3)+ 5(% —In ]el> + Z—I;Z{exp[kz(Ea)] ~1)

a=1

siendo
Eo k(T = 3) + (1 = 30 (Tagaey — )

Los dos primeros términos de la funcién densidad de energia hacen referencia a las
contribuciones volumétricas y de distorsion de la matriz del material, y el dltimo término
representa la contribucién de las familias de fibras.

U es la energia de deformacion por unidad de volumen; C;o, D, ki, k;, y K son
parametros del material dependientes de la temperatura, N es el nimero de familias de

fibras, I, es la primera invariante de deformacion, J¢* es la relacién de volumen elastico y
74(aa) son pseudo invariantes de C y 4,. Fa caracteriza la deformacién de la familia de
fibras con la direccion preferente A, .

El modelo asume que las fibras, dentro de cada familia, se dispersan con simetria
rotacional sobre la direccién preferente de la fibra. El parAmetro k describe el nivel de
dispersion de las fibras. Si p(8) es la funcion de densidad de orientacion que caracteriza
la distribucion, el pardmetro k queda definido como:

K= %j:p(G)sin?’(GdG)

Si k = 0 las fibras estan perfectamente alineadas y en el caso de k = 1/3 supone que
las fibras estan orientadas de forma aleatoria.
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6.4 Modelo axisimétrico en Abaqus CAE

Los modelos axisimétricos se utilizan para el estudio de geometrias de revolucién. Estos
modelos permiten reducir el estudio de geometrias 3D a través de la seccion que da lugar
al solido. Por ejemplo, para representar un cilindro mediante un modelo axisimétrico, se
deberia dibujar la seccion de dicho cilindro en el plano XY, siendo el eje X el eje radial, y
el eje Y el eje de simetria del cilindro (eje de color azul en la Figura 31).

Z‘l‘)( Z‘l‘)( Z"t‘X

Figura 31: Transicion modelo cilindro 3D a modelo cilindrico axisimétrico.

Este tipo de modelo se utiliza cuando existe geometria de revolucion respecto a un eje,
ya que se reduce el numero de coordenadas espaciales, y por tanto el coste de calculo.
Sin embargo, este tipo de modelo sélo es preciso en el caso de los materiales is6tropos,
ya que éstos tienen las mismas propiedades en todas las direcciones. En cambio, en el
caso de los materiales anisotropos, como pudiera ser un material fibrado (piel o arteria),
este modelo no podria aplicarse debido a que la distribucion de las fibras no se realiza en
torno al eje de simetria, si no que se distribuyen de forma tridimensional (Figura 32).

/ia?;r - _ﬁh‘\\
3

Bex

Figura 32: Dos familias de fibras orientadas 45° respecto al eje 3 (Z) en modelo cilindro 3D y modelo axisimétrico.
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6.5 Mallado en Abaqus CAE

A la hora de realizar una simulacién en Abaqus, hay que tener en cuenta el tipo de malla
utilizada, ya que de ello puede depender en gran medida los resultados obtenidos. Por
esta razon se realizé un estudio centrado en la variacion de la forma de los elementos,
asi como la técnica utilizada.

El nimero de nodos de un elemento pueden ser 4 (primer orden de interpolacion) u 8
(segundo orden de interpolacion), estos determinan cémo los grados de libertad nodales
seran interpolados sobre el dominio del elemento (Figura 33).

2 1 2

5 1
6 8
3 4 3 7 4
CPE4-Orden geométrico lineal CPE8-Orden geométrico cuadratico

Figura 33: Comparacion elementos segiin nimero de nodos.

Si nos fijamos en la forma de los elementos, se dispone entre otros de los siguientes
(Figura 34):

Cuadrangulos (Quad) Cuadrangulos dominados (Quad-dominated) Triangulos (Tri)

Figura 34: Comparacion segin la forma de los elementos.

Los cuadrangulos se diferencian de los cuadrangulos dominados en que, estos ultimos,
pueden introducir algunos elementos triangulares en las transiciones

Por otro lado, la técnica puede ser libre o estructurada. En el caso libre, los elementos se
disponen de forma aleatoria, sin embargo, cuando la técnica utilizada es estructurada, los
elementos quedan dispuestos de forma ordenada mediante un patron pre-establecido
(Figura 35).
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L,- -

Técnica estructurada Técnica libre

Figura 35: Comparacion mallados segun tipo de técnica utilizada.

Ademads, hay que tener en cuenta que los analisis se pueden realizar con integracion
reducida o integracion completa. Tal y como se muestra en la Figura 36, la reducida tiene
menos puntos de integracion que la completa, y por lo tanto, los célculos son menos

precisos.
2 5 1 2 5 1
l EXXB
3 7 4 3 7 4

Integracién completa Integracién reducida
Figura 36: Comparacion elementos segun tipo de integracion.

Tras realizar el andlisis, se eligié trabajar con elementos de 4 nodos (orden geométrico
lineal), ya que en este modelo los resultados obtenidos son practicamente iguales
utilizando el primer o segundo orden de interpolacién. Sin embargo, para el primer caso,
el nimero de calculos necesarios que tiene que hacer el programa es mucho menor.

En lo referente a la forma del elemento, se han utilizado cuadrangulos estructurados, ya
gue en el caso de los triangulos los resultados obtenidos eran muy distantes a la realidad,
debido a que aparecian unas muescas y se generaban tensiones en determinados
puntos, en los que no deberian aparecer. A esta conclusién se llegé tras realizar una
simulacién en Abaqgus para un modelo de comportamiento elastico lineal (E = 3KPayv =
0.49999) y para un modelo neo-Hookeano (€10 = 0.5y D1 = 0), a los que se aplicdé un
indentador de radio 2.25um hasta una profundidad de 0.5um. Si nos fijjamos en la
distribucion de tensiones (Figura 37 y Figura 38), se puede observar la aparicion de las
muescas en el caso de elementos triangulares, y también es apreciable que, la técnica de
elementos estructurada distribuye los elementos a lo largo de la muestra de forma mas
homogénea que la técnica libre.
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+4.116=+D0
+2.077=+00

Cuadrangulos estructurados Cuadrangulos dominados libres Tridngulos estructurados
Figura 37: Distribucion de tensiones [kPa] modelo de comportamiento elastico.

Cuadréangulos estructurados Cuadrangulos dominados libres Tridngulos estructurados

Figura 38: Distribucion de tensiones [kPa] modelo de comportamiento neo-Hookeano.

Centrandonos en los resultados obtenidos segun el tipo de elemento utilizado, se observa
gue, en el caso de los elementos triangulares la curva sigue una distribucion distinta al
resto de casos. Esto es debido a que las tensiones acumuladas en determinados puntos
de la muestra, hacen que la fuerza resultante aumente hasta el extremo de sobrepasar el
resultado tedrico de Hertz. Comparando entre el mallado libre y el estructurado, se
observa que la técnica estructurada da resultados mas precisos, ya que la distribucion de
tensiones es mas homogénea (Figura 39 y Figura 40).

Modelo de comportamiento elastico lineal

3,5 /

2,5

Triangulos estructurados
2
/ = Modelo de Hertz

1,5 el = Cuadrangulos
estructurados
Cuadrangulos-dominados

- libres
1 / -

0.5

F(nN)

0 0,05 0,1 0,15 0,2 0,25 03 0,35 0,4 0,45 05

&(um)

Figura 39: Comparacion entre F y 0 para distintos tipos de elemento de un modelo de comportamiento elastico lineal.
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Modelo de comportamiento neo-Hookeano

3,5

2,5

F(nN)

15

0,5

0,25 0,4 0,45 0,5

&(pm)

0,1 0,15 0,2 0,3 0,35

Tridngulos estructurados

Modelo de Hertz

e Cuadrangulos
estructurados
Cuadrangulos-dominados
libres

Figura 40: Comparacion entre F y 0 para distintos tipos de elemento de un modelo de comportamiento hiperelastico.

Por lo tanto, teniendo en cuenta todo lo anterior, se determin6 que el tipo de elemento
idoneo para el mallado eran los cuadrangulos mediante la técnica estructurada, y que el
elemento idéneo para esta simulacién era el CAX4 (C=continuo, AX=axisimétrico,

4=Nodos), el cual se corresponde a la Figura 41.

Figura 41: Elemento utilizado en el mallado de la muestra.
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6.6 Codigo de la simulacion del ensayo 2D en Abaqus para una

muestra de un material elastico

A continuacién, se incluye el codigo desarrollado para parametrizar el modelo en funcion
de los pardmetros definidos inicialmente en la cabecera del programa. Si se variase
cualquiera de los parametros de la cabecera, al introducir el cédigo en el programa
Abaqus/CAE 6.12, quedaria el modelo modificado en funcion de los parametros
introducidos.

HHAHHHHH AR R R R R R R R R R
#Definir propiedades:

#Unidades: Todo en micrémetros y nanoNewtons. E en (nN/umz2) = (kPa).
#Indentador

Ri=2.25

Ei= 200000000

Vi= 0.3

Delta=0.5

#Muestra

Rm =100

Hm =100

Em=3

Vm= 0.49999

SeparacioniM= 0.0000009

T T T T R T e T R T R R R
from abaqus import *

from abaqusConstants import *
backwardCompatibility.setValues(includeDeprecated=True, reportDeprecated=False)
myModel = mdb.Model(hame="ModeloAbaqus")

# Damos la geometria al Indentador definiéndolo mediante un arco y una linea
import part

mySketchl = myModel.ConstrainedSketch(name='Indentador’, sheetSize=225/1000.)
mySketchl.ArcByCenterEnds(center=(0,SeparacionIM+(Ri)),point1=(0,SeparacionIM),poi
nt2=(0,SeparacionIM+(2*Ri)))
mySketchl.Line(pointl=(0,SeparacionIM),point2=(0,2*Ri+SeparacionIM))

# Definimos el eje de revolucién
mySketchl1.ConstructionLine(point1=(0,-1),point2=(0,1))

# Definimos axisimétrico y lo generamos

Indentador = myModel.Part(dimensionality=AXISYMMETRIC, = name='Indentador’,
type=DEFORMABLE_BODY)

myModel.parts['Indentador'].BaseShell(sketch=mySketch1)

# Damos la geometria a la Muestra definiéndola mediante un rectangulo
mySketch2 = myModel.ConstrainedSketch(name="Muestra’, sheetSize=225/100.)
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mySketch2.rectangle(pointl=(Rm,0), point2=(0,-Hm))

# Definimos el eje de revolucién
mySketch2.ConstructionLine(pointl=(0,-1),point2=(0,1))

# Definimos axisimétrico y la generamos

Muestra = myModel.Part(dimensionality=AXISYMMETRIC, name='Muestra’,
type=DEFORMABLE_BODY)

myModel.parts['Muestra’l.BaseShell(sketch=mySketch?2)

# Creamos el material del Indentador
import material
myMateriallndentador = myModel.Material(name="M-Indentador’)

# Propiedades del material del indentador
elasticProperties = (Ei, Vi)
myMateriallndentador.Elastic(table=(elasticProperties, ) )

# Creamos el material de la Muestra
myMaterialMuestra = myModel.Material(name="M-Muestra’)

# Propiedades del material de la muestra
elasticProperties = (Em, Vm)
myMaterialMuestra.Elastic(table=(elasticProperties, ) )

# Creamos las secciones

import section

mySectionl = myModel.HomogeneousSolidSection(name='Seccionindentador’,
material="M-Indentador’, thickness=None )

mySection2 = myModel.HomogeneousSolidSection(hame='SeccionMuestra’,
material="M-Muestra’, thickness=None)

# Asignamos las secciones

Centrolndentador=(0,Ri,0)

regionl = Indentador.faces.findAt(Centrolndentador)

i = regionl.index

Setl = Indentador.Set(hame='Set1’', faces=Indentador.faces][i:i+1])
Indentador.SectionAssignment(region=Set1, sectionName="'Seccionindentador")
CentroMuestra=(0,-Hm,0)

region2 = Muestra.faces.findAt(CentroMuestra)

i = region2.index

Set2 = Muestra.Set(name='Set2', faces=Muestra.faces][i:i+1])
Muestra.SectionAssignment(region=Set2, sectionName='SeccionMuestra')

# Creamos el ensamblaje
import assembly
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myAssemblyl = myModel.rootAssembly

mylnstancel = myAssemblyl.Instance(name='I-Indentador’, part=Indentador,
dependent=0ON)

myAssembly2 = myModel.rootAssembly

mylnstance2 = myAssembly2.Instance(hame='lI-Muestra', part=Muestra, dependent=0ON)

# Creamos particiones para mejorar y facilitar el mallado
CentroMuestra=((Rm,-Hm/2,0))

cara = Muestra.faces.findAt(CentroMuestra)

mySketch = myModel.ConstrainedSketch(name="Dibujo", sheetSize=1.0)
mySketch.Line(point1=(3.5*Ri ,0), point2=(3.5*Ri ,-Hm))
mySketch.ArcByCenterEnds(center=(0,0),point1=(0,2.5*Ri),point2=(2.5*Ri,0))
mySketch.ArcByCenterEnds(center=(0,0),point1=(0,1*Ri),point2=(1*Ri,0))
mdb.models['ModeloAbaqus'].parts['Muestra'].PartitionFaceBySketch(faces=cara,
sketch=mySketch)

# Generamos el mallado

import mesh

elemTypelset = mesh.ElemType(elemCode=CAX4, elemLibrary=STANDARD)
Indentador.seedPart( size=0.03)

Indentador.generateMesh()

elemType2set = mesh.ElemType(elemCode=CAX4, elemLibrary=STANDARD)
elemType2=(elemType2set,)

Muestra.seedPart( size=8)

Muestra.generateMesh()

region3 = Muestra.edges.findAt((Ri,-Hm,0,))

Abajo=(region3,)

Muestra.seedEdgeByNumber(edges=Abajo , number=1)

region4 = Muestra.edges.findAt((1.4*Ri,0,0,))

Arriba=(region4,)

Muestra.seedEdgeByNumber(edges=Arriba , number=30)

region5 = Muestra.edges.findAt((0,-1.4*Ri,0,))

Izquierdo=(region5,)

Muestra.seedEdgeByNumber(edges=Izquierdo , number=30)

region6 = Muestra.edges.findAt((2.5*Ri*(2**0.5)/2 ,-2.5*Ri*(2**0.5)/2,0,))
Radio=(region6,)

Muestra.seedEdgeByNumber(edges=Radio , number=60)

region7 = Muestra.edges.findAt((0.4*Ri,0,0,))

Arriba=(region7,)

Muestra.seedEdgeByNumber(edges=Arriba , number=50)

region8 = Muestra.edges.findAt((0,-0.4*Ri,0,))

Izquierdo=(region8,)

Muestra.seedEdgeByNumber(edges=Izquierdo , number=50)

region9 = Muestra.edges.findAt((1*Ri*(2**0.5)/2 ,-1*Ri*(2**0.5)/2,0,))
Radio=(region9,)

Muestra.seedEdgeByNumber(edges=Radio , number=70)
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regionl6 = Muestra.faces.findAt((Rm/2 ,-Hm/2,0,))

regionl7 = Muestra.faces.findAt((Ri/3 ,-Ri/3,0,))

region18 = Muestra.faces.findAt((3*Ri/3 ,-3*Ri/3,0,))

region19 = Muestra.faces.findAt((Ri/2 ,-Hm/2,0,))
m=(region16,regionl7,region18,region19)

n=(region19,)

Muestra.setMeshControls(regions=m, elemShape= QUAD ,technique=STRUCTURED)
Muestra.setMeshControls(regions=n, elemShape= QUAD ,technique=FREE)
Muestra.setElementType(regions=m, elemTypes=elemType2)
Muestra.setElementType(regions=n, elemTypes=elemType2)
Muestra.generateMesh()

# Creamos Step
myModel.StaticStep(name='BC’, previous='Initial’, timePeriod=50, initialinc=0.1,
description="BoundaryConditions',nlgeom=0FF, minlnc=0.00000000001)

# Condiciones de Contorno:

# Simetria de la Muestra

set3A = mylnstance2.edges.findAt((0,-HmM/2,0,))

set3B = mylnstance2.edges.findAt((0,-0.9*Ri,0,))

set3C = mylnstance2.edges.findAt((0,-1.1*Ri,0,))

region10 = (set3A,set3B,set3C)

myModel. XsymmBC(name='SimetriaMuestra’',createStepName="'BC', region = region10 )

#Fijacion en la parte inferior de la Muestra

set4A = mylnstance2.edges.findAt((Ri,-Hm,0,))

set4B = mylnstance2.edges.findAt((0.5*Rm,-Hm,0,))

regionll = (setd4A,set4B,)
myModel.EncastreBC(name="EncastrelnferiorMuestra’,createStepName='BC', region =
regionll)

# Desplazamiento del Indentador

set5 = mylnstancel.edges.findAt((Ri,Ri,0,))

regionl2 = (set5,)
myModel.DisplacementBC(name='Desplazamiento’,createStepName='BC/, region
=region12, ul=UNSET, u2=-Delta, u3=UNSET ,distributionType=UNIFORM)

# Simetria del Indentador

set6 = mylnstancel.edges.findAt((0,SeparacioniM+Ri/2,0,))

regionl3 = (set6,)

myModel. XsymmBC(name='Simetrialndentador',createStepName='BC’, region =
regionl3)

# Definimos lainteraccion entre el Indentador y la muestra.
import interaction
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myModel.ContactProperty('IntPropl’)

myModel.interactionProperties['IntPropl’]. TangentialBehavior(formulation=FRICTIONLES
S)

i = mdb.models['ModeloAbaqus'].rootAssembly

el = i.instances['l-Indentador'].edges

regionl4 = i.Surface(name='Superficielndentador’, sidel1Edges=el.findAt(((Ri, Ri, 0), ), ))
m = mdb.models['ModeloAbaqus'].rootAssembly

e2 = m.instances['|-Muestra’].edges

regionl5 = m.Surface(hame='SuperficieMuestra’, sidelEdges=e2.findAt(((0.9*Ri, 0, 0),
),((1.1*Ri, O, 0), ),((3*Ri, 0, 0), ),((5*Ri, 0, 0), )))
myModel.SurfaceToSurfaceContactStd(name='Interaccién' , createStepName='Initial',
master= regionl4 , slave = regionl5, sliding=FINITE, interactionProperty = 'IntProp1")

# Submit

import job

jobName = 'Modelo'

myJob = mdb.Job(name=jobName, model="ModeloAbaqus', description="_")
myJob.submit()

myJob.waitForCompletion()

6.6.1 Modificacion para una muestra de material neo-Hookeano

FRERhH R R R R R R R TR R R e R R R R R R e R R R R R R R R R e R g
#Definir propiedades:

#Muestra (Neo Hooke)

Rm =100

Hm =100

C10=0.5

D1=0

SeparacionlM= 0.0000009

HH AR R R R R R R R

# Propiedades del material de la muestra

hyperelasticProperties = (C10, D1)

myMaterialMuestra.Hyperelastic(testData=OFF, table=(hyperelasticProperties,),
type=NEO_HOOKE )

# Generamos el mallado
elemType2set = mesh.ElemType(elemCode=CAX4H, elemLibrary=STANDARD)

# Creamos Step

myModel.StaticStep(name='BC’, previous='Initial’, timePeriod=50, initiallnc=0.1,
description="BoundaryConditions',nlgeom=0N, mininc=0.00000000001)
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