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Simulación por elementos finitos del ensayo de 

nanoindentación para la caracterización de 

materiales biológicos 
 

RESUMEN 

Uno de los ensayos más utilizados para la caracterización de las propiedades 

mecánicas de materiales es el de tracción uniaxial. Sin embargo, estos ensayos no 

permiten caracterizar determinados materiales muy blandos, como por ejemplo los 

materiales biológicos. Para determinar correctamente las propiedades de estos 

materiales, se han desarrollado otros métodos basados en indentación, como el que 

utiliza el microscopio de fuerza atómica (AFM). 

Con este trabajo se pretende investigar, utilizando modelos de simulación basados en 

elementos finitos, el comportamiento de algunos materiales, entre ellos los biológicos. 

De esta manera, mediante la obtención de determinadas propiedades, se puede 

entender y definir el modo en el que se van a comportar estos materiales ante 

determinados esfuerzos. 

Para ello se ha llevado a cabo la simulación de ensayos de nanoindentación, mediante 

el programa de simulación por elementos finitos Abaqus/CAE 6.12, de tal forma que se 

ha desarrollado un modelo paramétrico, que permite la simulación de cualquier 

casuística de ensayo con un microscopio de fuerza atómica.  

Para la simulación de este tipo de ensayos, se han utilizado modelos de 

comportamiento con distintas propiedades mecánicas, empezando por los materiales 

más sencillos (material elástico lineal) para llegar a los más complejos (material 

hiperelástico anisótropo fibrado). 

Los resultados obtenidos muestran el fuerte comportamiento no lineal que tienen estos 

materiales hiperelásticos, el cual se intensifica conforme aumenta la profundidad de la 

indentación, y por tanto la deformación. En el caso del modelo de comportamiento del 

material hiperelástico anisótropo fibrado, se ha observado la enorme influencia que 

tienen las direcciones de las familias de fibras que lo forman.  

Por último, se han analizado los resultados comparándolos con el modelo teórico de 

Hertz, que es el más utilizado para determinar experimentalmente las propiedades 

mecánicas en este tipo de ensayos. Se ha observado cómo se comporta la ley de 

Hertz para los modelos de comportamiento simulados, y se ha concluido, que para 

poderse utilizar la ley de Hertz, es necesario aplicar una corrección. Sin esta 

corrección, las predicciones del modelo teórico distan sustancialmente de las de 

elementos finitos, especialmente para materiales con comportamiento fuertemente no 

lineal. 
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1 Introducción 

Uno de los ensayos más utilizados, para obtener las propiedades mecánicas de los 

materiales, son los ensayos uniaxiales. Sin embargo, con estos ensayos resulta muy 

difícil la caracterización de materiales blandos, entre ellos los biológicos, debido a que la 

escala necesaria para medir magnitudes, es mucho menor que la que un ensayo uniaxial 

puede proporcionar. Por ello se ha comenzado a utilizar otros métodos, como es el AFM 

(Atomic Force Microscopy).   

1.1 Nanoindentación y AFM 

Un ensayo de indentación consiste, esencialmente, en  hacer incidir un material cuyas 

propiedades mecánicas son conocidas en otro cuyas propiedades mecánicas nos 

interesa conocer.  

La nanoindentación es una variedad de los ensayos de dureza que se caracteriza por ser 

aplicada a pequeños volúmenes, ya que la escala utilizada es a nivel nanométrico. Por lo 

tanto, se diferencia principalmente del resto de ensayos de dureza en que el tamaño del 

indentador y el de la huella aplicada, son de unos pocos micrómetros.  

El fin del ensayo de naoindentación es determinar el módulo de Young y la dureza del 

material ensayado a partir de las cargas y desplazamientos medidos. De esta forma, es 

posible estimar las propiedades mecánicas de dicho material. 

Los ensayos por AFM presentan diferencias frente a los ensayos de dureza tradicionales, 

ya que inicialmente en un ensayo de dureza se aplica una carga y cuando ésta es 

retraída se mide la huella que el indentador ha impreso. Sin embargo, en los ensayos de 

nanoindentación la profundidad de penetración debe ser medida conforme la carga es 

aplicada. Este tipo de ensayos se han podido llevar a cabo recientemente debido al 

desarrollo de esta tecnología en las últimas décadas. El instrumento más utilizado para 

realizar este tipo de ensayos es el microscopio de fuerza atómica [1]. Se trata de un 

microscopio capaz de medir fuerzas del orden de los nanonewtons en tiempo real. Como 

se puede observar en la Figura 1, está formado por un voladizo de silicio de unos 200 µm 

con una punta en su extremo. Las interacciones entre la punta y la muestra quedan 

registradas y las deflexiones del voladizo se detectan mediante un rayo láser, que se 

refleja en el extremo del voladizo sobre un detector. 

 

Figura 1: Diagrama de un microscopio de fuerza atómica. 
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1.2 Materiales biológicos 

Los ensayos de nanoindentación son aplicados a materiales con módulos de Young muy 

pequeños, es decir, materiales blandos. Entre este tipo de materiales se encuentran los 

tejidos biológicos (pulmones, músculo esquelético, corazón, arterias, ligamentos, 

tendones, piel…). Estos materiales se caracterizan por tener un comportamiento no 

lineal, que genera grandes desplazamientos y deformaciones, y hace que su 

comportamiento sea muy complejo. Esto es debido a que las propiedades estructurales y 

el comportamiento de estos materiales están definidos por la relación entre los 

desplazamientos y deformaciones generados, o lo que es equivalente, la relación entre 

tensión y deformación.   

Si se habla de materiales ideales, hay que tener en cuenta que su comportamiento es 

isótropo y homogéneo, es decir, tienen las mismas propiedades en todas las direcciones 

y la composición del material es la misma en su totalidad. Sin embargo, en el caso de los 

materiales biológicos, se trata con materiales anisótropos y no homogéneos, lo que 

dificulta más su estudio; además de lo anterior, tienen un comportamiento viscoelástico, 

esto es, que exhiben propiedades viscosas, así como elásticas, cuando se deforman [2, 

3]. 

1.3 Definición del modelo de Hertz 

El modelo de Hertz, es el modelo más utilizado para analizar las fuerzas microscópicas 

en un ensayo de nanoindentación en relación con la profundidad aplicada.  

1.3.1 Hipótesis del modelo 

Las hipótesis en las que se basa el modelo de Hertz son [4]: 

- Material isótropo, que se caracteriza por tener las mismas propiedades físicas y 

mecánicas en todas las direcciones. 

- Material homogéneo, que tiene las mismas propiedades físicas y mecánicas en 

todo su volumen. 

- Material elástico lineal, este material se caracteriza por la recuperación del 

material a su estado original una vez hayan cesado las tensiones aplicadas en él. 

- Pequeñas deformaciones, de forma que se eviten las no linealidades geométricas. 

- Muestra semi-infinita, para suprimir los efectos debidos a las condiciones de 

contorno. 

- Superficie de contacto entre el indentador y la muestra sin fricción, así como se 

asume que el indentador no sufre deformaciones. 

1.3.2 Ecuación Hertz 

La geometría de las puntas de los ensayos de nanoindentación puede ser esférica, 

cónica [5, 6] o piramidal [7, 8]. 

En indentación esférica, la relación entre la fuerza aplicada y profundidad de indentación 

(δ) viene dada por la siguiente expresión [1, 4, 9, 10, 11, 12]: 
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𝐹 =
4𝐸𝑅

1
2⁄ δ

3
2⁄

3(1 − ν2)
 

donde 𝐸 y ν son respectivamente el modulo de Young y el coeficiente de Poisson de la 

muestra y 𝑅 hace referencia al radio del indentador (Figura 2). 

 

Figura 2: Contacto entre un indentador rígido y una muestra. Definición parámetros R y δ. 

1.4 Estudios previos 

Existen estudios en los que se han analizado los ensayos de nanoindentación esférica, 

mediante experimentación y simulación en elementos finitos. En Lin et al., [9] establecen 

las funciones de densidad de energía de varios modelos hiperelásticos y posteriormente, 

las comparan con los resultados que obtienen de dichos modelos en simulaciones de 

elementos finitos y a la vez con el modelo de Hertz. Este trabajo concluye que los 

resultados del modelo de Hertz son aceptables para un límite de δ/R=0.2. 

Por otro lado, en el capítulo 3 de la tesis “Computational Modelling of Single Cell Probing” 

[13], se estudia un material hiperelástico mediante el modelo de Ogden, que es 

comparado con el modelo de  Hertz con el fin de establecer cuándo es válido dicho 

modelo y bajo qué condiciones. Para finalizar el estudio, aplican una serie de 

correcciones al modelo de Hertz basándose en otro estudio similar (Dimitriadis et al., 

[12]). 

Del mismo modo, Long et al., [11] analiza las limitaciones del modelo de Hertz, 

concluyendo que éste sobreestima el módulo de Young y por lo tanto, ve necesario 

aplicar una serie de correcciones para poder ser utilizado. 

Otros estudios, como Ladjal et al., [4] utilizan la técnica AFM sobre muestras esféricas. 

Ladjal et al., [4] realiza un experimento sobre células madre de embriones de ratón, 

comparándolo con una simulación de elementos finitos y con el modelo teórico de Hertz. 

Se concluye que los resultados teóricos y de elementos finitos son sólo válidos para 

pequeñas deformaciones. 
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1.5 Objetivo 

El objetivo del proyecto es comprender el comportamiento de distintos materiales, 

mediante la simulación de modelos de comportamiento en un ensayo de nanoindentación 

con el programa Abaqus CAE, y poder ser capaces de entender este tipo de ensayo. 

Estos materiales presentan distinto comportamiento mecánico: elástico lineal, 

hiperelástico isótropo e hiperelástico anisótropo. Se prestará especial atención al material 

hipereástico anisótropo debido a que los trabajos publicados hasta la fecha, implementan 

materiales hiperelásticos isótropos para simular materiales blandos tales como geles. Sin 

embargo, no se han utilizado otro tipo de materiales como son los hiperelásticos 

anisótropos. Estos materiales están formados por varias familias de fibras con distinta 

orientación. Este tipo de estructura se encuentra en numerosos tejidos, tales como la piel 

o tejidos vasculares.  

Por último, se comparará el modelo de Hertz con los resultados de las simulaciones y se 

determinará bajo qué condiciones, éste, es aplicable para los modelos de 

comportamiento analizados. 

2 Métodos y cálculos 

Para llevar a cabo las simulaciones es necesario conocer las hipótesis del modelo 

utilizado, así como los materiales que van a ser analizados. 

2.1 Hipótesis de partida 

Para realizar las simulaciones se han utilizado varias hipótesis de partida de tal forma que 

la simulación quede lo mejor adaptada posible a lo que sería un ensayo real. Se han 

simulado indentadores esféricos ya que éstos reducen las deformaciones no lineales 

generadas durante el ensayo, permitiendo obtener una estimación del módulo de Young 

más fiable respecto a otro tipo de geometrías, como pudiera ser un indentador cónico o 

piramidal.  

El indentador utilizado, tiene un módulo de Young mucho mayor que la muestra, E= 

200000MPa y ν=0.3, para que éste no sea deformable. 

La altura y la anchura de las muestras son mucho más grandes que el tamaño del 

indentador, ya que de esta forma se suprimen los efectos debido a las condiciones de 

contorno (ver Anexo 6.1). 

Por último, se ha supuesto que en el contacto entre el indentador y la muestra, no existe 

fricción. Si el material a analizar fuesen células, habría que considerar que éstas 

disponen de una membrana, que se debería tener en cuenta en la simulación [14]. 

2.2 Materiales analizados 

Se ha partido de un material elástico lineal, debido a que es el material más sencillo de 

analizar y es el material base para el que la ley de Hertz se cumple. A partir de este 
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material, se han ido complicando los modelos de comportamiento introducidos en las 

simulaciones, adaptándolos a materiales que reflejarían un tejido más real y por tanto con 

un comportamiento mucho más complejo y desconocido. 

2.2.1 Material elástico lineal 

Los materiales elástico lineales se caracterizan por recuperar su forma inicial, una vez se 

haya retraído la carga que los deforma. En ellos las tensiones son directamente 

proporcionales a las deformaciones. 

La rigidez de un material representa la capacidad de éste para resistir las deformaciones, 

quedando definida mediante el módulo de Young, el cual es constante en los materiales 

elástico lineales. Con el módulo de Young y el coeficiente de Poisson quedarían definidas 

las propiedades del material. 

Como módulo de Young se ha tomado E=3kPa, ya que se está hablando de materiales 

blandos, es decir, con módulos de Young no muy elevados [10]. 

Se ha tomado un coeficiente de Poisson de ν=0.5 (material no compresible), que es el 

más utilizado para materiales blandos, en los que puede variar entre 0.3 y 0.5 [15]. 

2.2.2 Material hiperelástico isótropo 

Los materiales hiperelásticos se caracterizan por tener un comportamiento no lineal, es 

decir, el material se rigidiza conforme se deforma. Este comportamiento puede 

observarse en la Figura 3, donde se representa un ensayo uniaxial de dos probetas, para 

comparar las diferencias entre un material elástico y uno hiperelástico neo-Hookeano.  

 

Figura 3: Tensión frente a deformación de un ensayo uniaxial de un modelo de comportamiento elástico lineal y de uno 
hiperelástico. 
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Para poder comparar con la muestra elástica, se han calculado el módulo de rigidez (µ) y 

el módulo de compresibilidad (к) a partir de los parámetros de la muestra elástica. De 

esta forma se ha podido definir en Abaqus el modelo neo-Hookeano a partir de esos dos 

parámetros (ver Anexo 6.2). Para implementar estos parámetros en Abaqus, se ha tenido 

en cuenta que dicho programa define dos relaciones a partir de los parámetros 

calculados, las cuales son C10=µ/2 y D1=2/к, obteniendo como resultado C10=0.5 y 

D1=0.   

µ =
𝐸

2(1 + ν)
                                            к =

𝐸

3(1 − 2ν)
 

Además del modelo neo-Hookeano pueden ser utilizados otros modelos hiperelásticos, 

como el de Mooney-Rivlin, Ogden y Polynomial, para simular materiales del tipo 

biológico. 

2.2.3 Material hiperelástico anisótropo 

Existe una gran cantidad de materiales biológicos formados por varias familias de fibras 

orientadas de diversas formas embebidas en una matriz formada por colágeno y otros 

constituyentes. Un ejemplo de estos materiales se encuentra en el tejido arterial, que está 

compuesto por dos familias de fibras con dos direcciones preferentes.  

Este material es más complejo que los anteriores, debido a que para caracterizarlo se ha 

de definir familias de fibras con una orientación determinada. Además este tejido tiene un 

fuerte comportamiento no lineal. 

Para simular este tipo de material en Abaqus, se ha utilizado el modelo Holzapfel (ver 

Anexo 6.3), en el que se han definido dos orientaciones de las fibras (a1 y a2), con un 

semiángulo entre ellas de γ=49.98º, según queda reflejado en la Figura 4.  

 

Figura 4: Orientación de las fibras en un modelo de comportamiento hiperelástico anisótropo. 
 

Otros coeficientes que se han tenido que definir, relacionados con la función de densidad 

de energía, han sido los parámetros k1 y k2, los cuales están relacionados con el 

comportamiento anisótropo de las fibras. Los módulos de rigidez y de compresibilidad de 

la matriz, se han definido de igual modo que en el caso del material neo-Hookeano, y por 

último, se ha definido el grado de anisotropía del material (к). Tal y como queda 

representado en la Figura 5, dicho parámetro corresponde a la dispersión de las fibras del 
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material, que puede variar entre 0<к<1/3. El límite más bajo к=0 supone que las fibras 

están perfectamente alineadas y, el límite mayor к=1/3 supone que las fibras están 

orientadas de forma aleatoria y el material se comporta isotrópicamente. 

 

  к=0.0085         к=0.25     к=0.33 

Figura 5: Representación tridimensional de la orientación de las fibras. Imagen extraída de un artículo publicado en el 
BMES (Biomedical Engineering Society) [16]. 

 

Tal y como se muestra en la tabla 1, los coeficientes que se utilizaron para realizar la 

simulación del tejido arterial provienen del artículo Gasser et al.[17], en el que se 

realizaban unos ensayos de tracción para diversas muestras extraídas de una arteria. 

γ C10 D k1 k2 к 

49.98º 3.82kPa 0 996.6kPa 524.6 0.226 
 

Tabla 1: Coeficientes utilizados en la simulación de tejido arterial. 

2.3 Modelo 2D axisimétrico 

A excepción del tipo de material de las muestras utilizadas, el resto de parámetros 

definidos para cada simulación son casi idénticos. El modelo se ha generado con 

axisimetría (ver Anexo 6.4) para reducir el coste computacional y el tiempo de cálculo. La 

geometría, condiciones de contorno, interacción entre el indentador y la muestra y parte 

del mallado, se han mantenido para todas las simulaciones en 2D. 

2.3.1 Geometría 

Para representar el indentador, se ha trazado en el plano XY un semicírculo de radio 

R=1.125 µm, y para representar la muestra de material, un rectángulo de anchura a=100 

µm y de altura h=100 µm, entre los cuales se ha dejado una distancia infinitesimal para 

evitar el contacto inicial entre ambos. Esto queda reflejado en la Figura 6, en la que se ha 

representado el eje de axisimetría en color rojo.                               
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Figura 6: Geometría del indentador y la muestra de un modelo axisimétrico de un ensayo de nanoindentación cuyo eje de 
axisimetría se muestra en rojo. 

 

2.3.2 Condiciones de contorno 

En el lateral izquierdo, donde se encuentra el eje de axisimetría, se ha establecido la 

condición de simetría tanto para el indentador como para la muestra, ya que para reducir 

al máximo el número de cálculos, se ha representado la mitad del indentador y de la 

muestra. 

En la cara inferior de la muestra se han limitado los desplazamientos en los tres ejes, de 

esta forma, se simularía la situación de la muestra situada encima de la placa en la que 

se va a realizar el ensayo. 

Por último, se ha impuesto un pequeño desplazamiento δ de 0.5µm en el eje Y al 

indentador, que simula la indentación sobre la muestra a ensayar. Esto es debido a que 

se está tratando con pequeñas deformaciones, y por encima de indentaciones de 0.5µm 

las deformaciones serían excesivamente grandes. 

2.3.3 Interacción 

Se ha establecido la superficie de contacto entre el indentador y la muestra sin fricción, 

ya que, como se observa en la Figura 7, los resultados no varían a pesar de aplicar un 

coeficiente de fricción µ=0.03-0.1 considerado adecuado para materiales biológicos [18]. 

Se ha establecido la superficie exterior del indentador como maestra, y la superficie de la 

cara superior de la muestra como esclava. 
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Figura 7: Comparativa de la fuerza frente al desplazamiento del indentador para diferentes coeficientes de fricción. 
 

2.3.4 Mallado 

Tras realizar un exhaustivo análisis del mallado (ver anexo 6.5), se ha concluido que el 

tipo de elemento más adecuado a utilizar eran cuadrángulos estructurados (Figura 8) y 

que el elemento idóneo era el CAX4 (C=continuo, AX=axisimétrico, 4=Nodos).  

Se han generado en el indentador 2693 elementos, y en el caso de la muestra 7818 

elementos. Hay que tener en cuenta que el tamaño de los elementos, a lo largo de toda la 

muestra, es mucho mayor que en la zona de contacto entre el indentador y la muestra, ya 

que es la zona que se va a estudiar posteriormente. 

 

Figura 8: Mallado modelo 2D axisimétrico. 
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2.3.5 Simulación 

Para llevar a cabo las simulaciones, se ha programado el código necesario mediante 

comandos en Python en el programa Abaqus/CAE 6.12 (ver Anexo 6.6). 

Esta técnica permite parametrizar el modelo en función de los parámetros geométricos 

elegidos. De esta forma se puede, por ejemplo, variar la altura de la muestra para ver su 

influencia cambiando únicamente un dato numérico, en vez de tener que realizar un 

modelo totalmente nuevo. En definitiva, se ha rentabilizado el tiempo evitando repetir el 

proceso completo para cada caso estudiado. 

2.4 Modelo 3D 

Como se ha explicado en el apartado anterior, se ha realizado un modelo 2D axisimétrico 

para evitar el tiempo de cálculo que supondría hacer el mismo modelo en 3D. Sin 

embargo, la estructura del material hipereástico anisótropo exige tener que realizar un 

modelo en 3D, debido a que las fibras pueden estar orientadas en las 3 direcciones. Por 

lo tanto, mediante un modelo en 3D la muestra de material fibrado quedaría simulada de 

manera más cercana a la realidad.   

2.4.1 Geometría, condiciones de contorno y mallado 

La geometría utilizada es la misma que en el caso 2D. Las condiciones de contorno 

también son las mismas, eliminando las condiciones de simetría de la muestra y el 

indentador, puesto que se simula la geometría completa. 

En el caso del mallado se han utilizado hexaedros dominados mediante la técnica libre, 

debido a que no era posible aplicar la estructurada. Hay que tener en cuenta que, para 

refinar la malla en el eje de la altura de la muestra, es necesario crear capas (Figura 9), lo 

que aumenta notablemente el coste computacional y con ello también el tiempo de 

cálculo. 

 

Figura 9: Mallado modelo 3D con un corte para poder visualizar las capas generadas en el eje Y. 
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3 Resultados 

Las simulaciones reflejan la diferente respuesta que presentan los modelos de 

comportamiento estudiados, ante una pequeña profundidad de indentación δ de 0.5µm 

(Figura 10). 

 

                            M. elástico lineal           M. hiper. isótropo         M. hiper. anisótropo 

Figura 10: Distribución del desplazamiento en el eje Y para los modelos de comportamiento simulados. 
 

Esta profundidad de indentación es la misma para todas las muestras, sin embargo, el 

comportamiento que sufren es totalmente distinto. Si se compara el material elástico 

lineal con el hiperelástico isótropo, se observa que en éste último los desplazamientos 

son mayores. En el caso del material hiperelástico anisótropo se observa, cómo debido a 

la influencia de las fibras, se genera una distribución diferente a la de los otros dos casos.  

3.1 Material elástico lineal 

Tras realizar la simulación con el modelo de comportamiento elástico lineal, con las 

propiedades que se han definido anteriormente, se obtienen las distribuciones mostradas 

en la Figura 11. 

 

           

               Distr. Tensiones (S.Mises [kPa])                       Distr. Deformaciones (E.Min)  

Figura 11: Distribución de tensiones y deformaciones para un modelo de comportamiento elástico lineal. 
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En las distribuciones se observa que, tanto las tensiones como las deformaciones 

mayores, se generan en la zona de contacto entre el indentador y la muestra. 

Si se compara la fuerza de reacción sobre el indentador, respecto a la profundidad de 

indentación con el modelo teórico de Hertz, se obtienen las siguientes curvas mostradas 

en la Figura 12. 

 

Figura 12: Fuerza reacción frente a la profundidad de indentación del modelo teórico y de elementos finitos. 
 

Como se ve en la figura anterior, para un desplazamiento del indentador comprendido 

entre 0 y 0.2μm los resultados teóricos del modelo de Hertz coinciden con los de la 

simulación. Sin embargo, a partir de 0.2μm conforme la profundidad de indentación 

aumenta las diferencias entre el modelo teórico y el de elementos finitos también lo 

hacen.  

Calculando el módulo de Young a partir de la simulación mediante la fórmula teórica de 

Hertz, y comparando con el propio modelo (Figura 13) se obtiene: 
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Figura 13: Módulo de Young para cada δ. Comparativa entre el teórico y el de elementos finitos. 
 

Al comienzo de la gráfica (0<δ<0.005µm), se aprecian unos resultados del módulo de 

Young muy inestables, esto es debido a que en dicho instante se produce el contacto 

entre el indentador y la muestra. 

En la gráfica se observa cómo el modelo de Hertz hace una sobreestimación del módulo 

de Young para desplazamientos del indentador mayores que δ=0.08µm, esto conllevaría 

a una caracterización errónea del material analizado, por lo que habría que hacer una 

pequeña corrección sobre el modelo de Hertz.  

Definiendo la rigidez aparente como cociente entre  𝐾𝐻
∗  y 𝐾 [13], donde: 

𝐾𝐻
∗ =

3 𝐹𝐸𝐹

4 𝑅
1

2⁄ 𝛿
3

2⁄
                             𝐾 =

𝐸

(1 − 𝜈2)
 

y representando dicho cociente frente al desplazamiento del indentador, se obtiene la 

ecuación de la curva a partir de la cual se ha calculado la corrección necesaria (Figura 

14).  
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Figura 14: Rigidez aparente frente a δ. 
 

Adimensionalizando la ecuación en función del parámetro 𝜒 = 𝛿
𝑅⁄ , se obtiene el siguiente 

factor de corrección: 

𝐹𝑐 = −2.838𝜒4 + 3.250𝜒3 − 1.494𝜒2 + 0.006𝜒 + 0.998 

Aplicando dicho factor al modelo de Hertz, se ve como la curva teórica y la de elementos 

finitos coinciden sin ningún error (Figura 15). 

 

Figura 15: Fuerza frente a δ. Comparación modelo de elementos finitos con el teórico de Hertz. 
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Tal y como se observa en la Figura 16, la corrección anterior sería aplicable al modelo de 

Hertz para materiales elástico lineales con módulos de Young comprendidos entre un 

rango de 1kPa y 1000kPa. Hay que tener en cuenta que el rango anterior engloba todos 

los materiales considerados blandos. 

 

Figura 16: Fuerza frente a δ. Comparación modelo de elementos finitos con el teórico de Hertz corregido, para distintos 
módulos de Young. 

3.2 Material hiperelástico isótropo 

Para el caso del modelo de comportamiento neo-Hookeano (hiperelástico isótropo) las 

distribuciones obtenidas son las que se muestran en la Figura 17. 

       

               Distr. Tensiones (S.Mises [kPa])                       Distr. Deformaciones (E.Min)    

Figura 17: Distribución de tensiones y deformaciones para un modelo de comportamiento hiperelástico isótropo. 
 



Simulación ensayo de nanoindentación  
 

18 
 

Comparando con el modelo de comportamiento elástico lineal, se observa que las 

tensiones y deformaciones máximas no se generan en la zona de contacto entre el 

indentador y la muestra, si no que lo hacen ligeramente más abajo, debido a la 

rigidización del material hiperelástico. 

Si se compara la fuerza de reacción sobre el indentador, respecto a la profundidad de 

indentación con el modelo teórico de Hertz, y con el modelo de comportamiento elástico 

lineal (Figura 18), se observa que modelo de comportamiento neo-Hookeano tiene un 

comportamiento más cercano al que dicta el modelo de Hertz. Sin embargo, sigue 

habiendo ciertas diferencias para desplazamientos del indentador mayores de δ=0.2μm. 

 

Figura 18: Fuerza frente a δ de los dos modelos de comportamienzo analizados y del modelo de Hertz. 
 

Si se procede del mismo modo que en el caso anterior, se obtendría el siguiente factor de 

corrección: 

𝐹𝑐 = −4.145𝜒4 + 4.366𝜒3 − 1.621𝜒2 + 0.135𝜒 + 0.989 

Como se observa en la Figura 19, este factor aproxima la curva de Hertz a la de 

elementos finitos del material neo-Hookeano, para un rango de módulos de Young 

comprendidos entre 1kPa y 1000 kPa. 
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Figura 19: Fuerza frente a δ. Comparación modelo de elementos finitos con el teórico de Hertz corregido, para distintos 
módulos de Young. 

3.3 Material hiperelástico anisótropo 

Tal como se indicó anteriormente, se realizó un modelo 3D para el caso del modelo de 

comportamiento fibrado, debido a la distribución espacial de las fibras. Si se compara la 

distribución de tensiones y deformaciones para el caso 2D axisimétrico y 3D se ve que 

hay mucha diferencia entre ambos modelos (Figura 20). 

 

  

Figura 20: Distribución de tensiones [kPa] y deformaciones del modelo 2D y 3D para un modelo de comportamiento fibrado. 
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Por lo tanto, es de esperar que al presentar la fuerza de reacción frente al 

desplazamiento del indentador también existan grandes diferencias (Figura 21).  

 

Figura 21: Fuerza frente a profundidad de indentación del modelo 2D y 3D para un modelo de comportamiento fibrado. 
 

Hasta el momento, se ha considerado que las fibras que forman el modelo de 

comportamiento forman un semiángulo de γ=49.98º respecto al eje Y. Sin embargo, para 

conocer cómo afecta realmente la orientación de las fibras, se debería variar el ángulo 

entre las dos familias de fibras que componen el modelo de comportamiento. Tras 

realizar varias simulaciones con el modelo axisimétrico, para distintas orientaciones de 

fibras (Figura 22), se observó que la orientación tiene una gran influencia de cara a 

caracterizar el material, ya que según su orientación actúa únicamente una familia de 

fibras (caso 90º), ninguna (caso 180º) o ambas (caso 49.98º). 

 

Figura 22: Fuerza frente a profundidad de indentación según la orientación de las fibras. 
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Tal como se observa en la figura anterior, el material tiene una fuerte dependencia de la 

orientación de las fibras. Esto supone que a la hora de realizar un experimento con este 

tipo de materiales, es esencial conocer cuál es la orientación exacta de las fibras de la 

muestra que se ha tomado, así como la orientación en la que se sitúa la muestra para 

hacer el experimento. 

Para poder comparar con los modelos de comportamiento anteriores hay que conocer el 

módulo de Young y el coeficiente de Poisson equivalente del modelo de comportamiento 

arterial, ya que este tipo de modelos de comportamiento se definen en base a distintos 

parámetros. Para ello, se realizó un ensayo uniaxial de una probeta para obtener la 

tensión y deformación del modelo de comportamiento, conforme estaba siendo sometido 

a tracción, y así poder obtener el módulo de Young inicial y el coeficiente de Poisson 

inicial. Al tratarse de un material hiperelástico, conforme se deforma más se rigidiza, lo 

que se traduce en un aumento de su módulo de Young. Tras realizar la simulación del 

ensayo uniaxial, se obtuvo que el módulo de Young era E=24.42kPa y el coeficiente de 

Poisson ν=0.5.   

Si comparamos las distribuciones de tensión y deformación con el resto de modelos de 

comportamiento, se obtienen las distribuciones que se muestran en la Figura 23. 

 

Distribución de tensiones (S.Mises [kPa]) 

 

Distribución de deformaciones (E.Min) 

Figura 23: Comparativa distribuciones para los distintos modelos de comportamiento cuando δ es 0.3µm. 
 

Si se compara el modelo de comportamiento anisótropo, con el resto de modelos, se 

observa cómo se asemeja únicamente para pequeños desplazamientos (δ=0.05μm), ya 

que dicho modelo tiene un fuerte comportamiento no lineal. Ésto queda claramente 

reflejado en la Figura 24. 
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Figura 24: Comparativa fuerza frente a profundidad de indentación de todos los modelos de comportamiento simulados. 
 

Para el caso del modelo de comportamiento fibrado, procediendo de forma análoga a los 

otros dos casos, también se podría corregir el modelo de Hertz para adaptarlo. 

𝐹𝑐 = −706.877𝜒4 + 533.366𝜒3 − 147.060𝜒2 + 18.506𝜒 + 0.478 

Como se observa en la Figura 25, tras aplicar el factor de corrección anterior, la curva del 

modelo teórico y el arterial se asemejan. 

 

Figura 25: Corrección del modelo de Hertz para el modelo de comportamiento hiperelástico anisótropo. 



Simulación ensayo de nanoindentación  
 

23 
 

4 Conclusiones y discusión 

Atendiendo al ensayo de nanoindentación, se ha visto como con el manejo de un 

programa de elementos finitos, se puede proceder a realizar una simulación de un 

ensayo de nanoindentación. Este método permite el estudio bajo diferentes condiciones, 

y sirve de complemento para los métodos experimentales. 

Si se comparan los distintos modelos de comportamiento analizados, se observa que el 

hiperelástico isótropo se caracteriza por tener un comportamiento no lineal. En el caso del 

material hiperelástico anisótropo, la orientación de las fibras que posee es un factor 

determinante para llevar a cabo su caracterización, ya que según se encuentran 

orientadas las fibras el comportamiento del material varía considerablemente.  

Por último, para poder comparar con el modelo de Hertz hay que tener en cuenta varias 

consideraciones. La teoría de Hertz se puede aplicar a materiales con módulos de Young 

no muy elevados, la altura de la muestra tiene que tener un tamaño como mínimo de 

100µm para indentadores con un radio de 1.125µm, y el radio de la muestra a analizar 

debe ser de 100µm o más. También se ha observado que el modelo de Hertz se asemeja 

al de las simulaciones para pequeños desplazamientos del indentador, comprendidos 

entre 0 y 0.2µm, pero conforme los desplazamientos son mayores, y con ello las 

deformaciones, los resultados del modelo teórico distan considerablemente de la 

simulación, especialmente para el caso del modelo de comportamiento fibrado. Sin 

embargo, esto puede ser subsanado mediante la aplicación de diversos factores de 

corrección según el modelo de comportamiento analizado. Para el caso elástico lineal y el 

hiperelástico isótropo, el factor de corrección aplicado al modelo de Hertz, sería 

adecuado para módulos de Young comprendidos entre 1 y 1000kPa, es decir, para 

materiales blandos. Si se comparan los factores de corrección de los tres casos, se 

observa que el modelo de comportamiento elástico lineal e hiperelástico isótropo, tienen 

factores de corrección similares, ya que estos dos modelos tienen ciertas similitudes en 

su comportamiento. Sin embargo, para el caso hiperelástico anisótropo la corrección a 

aplicar es muy distinta a las anteriores, debido a la gran influencia que tienen las familias 

de fibras que lo forman.  
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6 Anexos 

6.1 Dimensionamiento de la muestra 

Para conocer el tamaño óptimo de la muestra, sin que afecten las condiciones de 

contorno de sus límites, se han realizado simulaciones variando la geometría. De esta 

forma, se puede observar a partir de qué dimensiones las condiciones de contorno 

afectan lo suficiente como para interferir en los resultados. 

Teniendo en cuenta que el radio del indentador es de 1.125µm, ya que es el tamaño 

común que se utiliza en indentadores para los ensayos de AMF, y tras realizar las 

simulaciones para una altura de 2, 5, 10, 50, 100 y 1000 µm sobre un modelo de 

comportamiento neo-Hookeano, se observan los siguientes resultados mostrados en la 

Figura 26. 

 

Figura 26: Comparación entre la fuerza de reacción en el indentador y la profundidad de indentación para distintas alturas 
de la muestra a analizar. 

 

Se puede apreciar que conforme se disminuye la altura de la muestra, la fuerza de 

reacción en el indentador aumenta. Esto es debido a que las paredes de la muestra 

interfieren en dicha fuerza, ya que se generan tensiones en las zonas cercanas a las 

condiciones de contorno (Figura 27). 
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                        Altura de la muestra 2µm                 Altura de la muestra 100µm 

Figura 27: Comparación S.Mises [kPa] entre dos muestras de diferente altura. 
 

Si nos fijamos en la fuerza que se ejerce en la muestra para δ=0.5µm se obtiene la 

siguiente curva (Figura 28). 

 

Figura 28: Variación de la fuerza con respecto a la altura de la muestra para δ=0.5µm.  
 

Se observa que a partir de una altura h=100µm la fuerza estimada no varía, por lo que 

sería adecuado utilizar muestras a partir de una altura de 100µm. 

En los estudios previos analizados, no se analizaba el dimensionamiento del radio idóneo 

de la muestra utilizada, ya que en ellos se realizaba un sobredimensionamiento para 

establecer la muestra como semi-infinita. Sin embargo, de cara a realizar un experimento, 

es conveniente conocer el tamaño de la muestra a extraer. 

Si en vez de variar la altura de la muestra del modelo de comportamiento que se quiere 

simular, se varía el radio, se obtienen los resultados de la Figura 29 y Figura 30. 
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Figura 29: Comparación entre la fuerza de reacción en el indentador y la profundidad de indentación para distintos radios 
de la muestra a analizar. 

 

 

Figura 30: Variación de la fuerza con respecto al radio de la muestra para δ=0.5µm.  
 

Se observa que a partir de una radio R=100µm la fuerza estimada no varía, por lo que 

sería adecuado utilizar muestras a partir de un radio de 100µm. 
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6.2 Densidad de energía del modelo neo-Hookeano 

La función de densidad de energía de deformación de un material es una función escalar 

que relaciona la energía almacenada del material con la deformación. Para un material 

isótropo puede expresarse en términos de los alargamientos principales, o en función de 

los invariantes de deformación. 

𝑈 = 𝑈̂(𝜆1, 𝜆2, 𝜆3) = 𝑈̃(𝐼1, 𝐼2, 𝐼3) 

Para definir la función de densidad de energía de deformación de un material 

hiperelástico isótropo, existen distintos modelos. Los modelos más utilizados son los de 

Arruda-Boyce, Marlow, Mooney-Rivliny y neo-Hookeano, y se expresan en función de 

distintos parámetros. 

Para el modelo neo-Hookeano la forma de definir la densidad de energía es la siguiente: 

𝑈 = 𝐶10(𝐼1 − 3) +
1

𝐷1
(𝐽𝑒𝑙 − 1)2 

Donde 𝑈 es la energía de deformación por unidad de volumen, 𝐶10 y 𝐷1 son parámetros 

del material dependientes de la temperatura y 𝐼1 es el primer invariante de deformación 

(controla el grado de distorsión corporal) definido como 𝐼1 = 𝜆̅1
2 + 𝜆̅2

2 + 𝜆̅3
2 , 𝐽𝑒𝑙  es la 

relación de volumen elástico. El módulo de rigidez (µ) y el módulo de compresibilidad (к) 

quedan definidos como µ = 2𝐶10 y к = 2/𝐷1. 
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6.3 Densidad de energía del modelo Holzapfel 

Para un material anisótropo la función de densidad de energía de deformación 

𝑈̂(𝐶) depende de tensores que caracterizan la microestructura interna del material. 

Para materiales anisótropos los modelos más utilizados son los de Fung y Holzapfel. 

En el caso del modelo Holzapfel, la forma de definir la densidad de energía en función de 

la orientación de las fibras es la siguiente: 

𝑈 = 𝐶10(𝐼1 − 3) +
1

𝐷
(

(𝐽𝑒𝑙)2 − 1

2
− 𝑙𝑛  𝐽𝑒𝑙) +

𝑘1

2𝑘2
∑{𝑒𝑥𝑝[𝑘2〈𝐸𝛼〉] − 1}

𝑁

𝛼=1

 

siendo 

𝐸𝛼 ≝ к(𝐼1 − 3) + (1 − 3к)(𝐼4(𝛼𝛼) − 1) 

Los dos primeros términos de la función densidad de energía hacen referencia a las 

contribuciones volumétricas y de distorsión de la matriz del material, y el último término 

representa la contribución de las familias de fibras. 

𝑈  es la energía de deformación por unidad de volumen; 𝐶10 , 𝐷 , 𝑘1 ,  𝑘2 , y к  son 

parámetros del material dependientes de la temperatura, 𝑁 es el número de familias de 

fibras, 𝐼1 es la primera invariante de deformación, 𝐽𝑒𝑙 es la relación de volumen elástico y 

𝐼4(𝛼𝛼) son pseudo invariantes de 𝐶̅ y 𝐴𝛼. 𝐸𝛼 caracteriza la deformación de la familia de 

fibras con la dirección preferente 𝐴𝛼. 

El modelo asume que las fibras, dentro de cada familia, se dispersan con simetría 

rotacional sobre la dirección preferente de la fibra. El parámetro к describe el nivel de 

dispersión de las fibras. Si 𝜌(𝜃) es la función de densidad de orientación que caracteriza 

la distribución, el parámetro к queda definido como: 

к =
1

4
∫ 𝜌(𝜃)𝑠𝑖𝑛3(𝜃𝑑𝜃)

π

0

 

Si к = 0 las fibras están perfectamente alineadas y en el caso de к = 1/3 supone que 
las fibras están orientadas de forma aleatoria. 
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6.4 Modelo axisimétrico en Abaqus CAE 

Los modelos axisimétricos se utilizan para el estudio de geometrías de revolución. Estos 

modelos permiten reducir el estudio de geometrías 3D a través de la sección que da lugar 

al sólido. Por ejemplo, para representar un cilindro mediante un modelo axisimétrico, se 

debería dibujar la sección de dicho cilindro en el plano XY, siendo el eje X el eje radial, y 

el eje Y el eje de simetría del cilindro (eje de color azul en la Figura 31). 

 

Figura 31: Transición modelo cilindro 3D a modelo cilíndrico axisimétrico. 
 

Este tipo de modelo se utiliza cuando existe geometría de revolución respecto a un eje, 

ya que se reduce el número de coordenadas espaciales, y por tanto el coste de cálculo. 

Sin embargo, este tipo de modelo sólo es preciso en el caso de los materiales isótropos, 

ya que éstos tienen las mismas propiedades en todas las direcciones. En cambio, en el 

caso de los materiales anisótropos, como pudiera ser un material fibrado (piel o arteria), 

este modelo no podría aplicarse debido a que la distribución de las fibras no se realiza en 

torno al eje de simetría, si no que se distribuyen de forma tridimensional (Figura 32). 

 

Figura 32: Dos familias de fibras orientadas 45º respecto al eje 3 (Z) en modelo cilindro 3D y modelo axisimétrico. 
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6.5 Mallado en Abaqus CAE 

A la hora de realizar una simulación en Abaqus, hay que tener en cuenta el tipo de malla 

utilizada, ya que de ello puede depender en gran medida los resultados obtenidos. Por 

esta razón se realizó un estudio centrado en la variación de la forma de los elementos, 

así como la técnica utilizada.  

El número de nodos de un elemento pueden ser 4 (primer orden de interpolación) u 8 

(segundo orden de interpolación), estos determinan cómo los grados de libertad nodales 

serán interpolados sobre el dominio del elemento (Figura 33). 

 
CPE4-Orden geométrico lineal        CPE8-Orden geométrico cuadrático  

Figura 33: Comparación elementos según número de nodos. 
 

Si nos fijamos en la forma de los elementos, se dispone entre otros de los siguientes 

(Figura 34): 

 

Cuadrángulos (Quad) Cuadrángulos dominados (Quad -dominated) Triángulos (Tri)  

Figura 34: Comparación según la forma de los elementos. 
 

Los cuadrángulos se diferencian de los cuadrángulos dominados en que, estos últimos, 

pueden introducir algunos elementos triangulares en las transiciones  

Por otro lado, la técnica puede ser libre o estructurada. En el caso libre, los elementos se 

disponen de forma aleatoria, sin embargo, cuando la técnica utilizada es estructurada, los 

elementos quedan dispuestos de forma ordenada mediante un patrón pre-establecido 

(Figura 35). 
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Técnica estructurada          Técnica libre 

Figura 35: Comparación mallados según tipo de técnica utilizada. 
 

Además, hay que tener en cuenta que los análisis se pueden realizar con integración 

reducida o integración completa. Tal y como se muestra en la Figura 36, la reducida tiene 

menos puntos de integración que la completa, y por lo tanto, los cálculos son menos 

precisos. 

 
Integración completa               Integración reducida 

Figura 36: Comparación elementos según tipo de integración. 
 

Tras realizar el análisis, se eligió trabajar con elementos de 4 nodos (orden geométrico 

lineal), ya que en este modelo los resultados obtenidos son prácticamente iguales 

utilizando el primer o segundo orden de interpolación. Sin embargo, para el primer caso, 

el número de cálculos necesarios que tiene que hacer el programa es mucho menor. 

En lo referente a la forma del elemento, se han utilizado cuadrángulos estructurados, ya 

que en el caso de los triángulos los resultados obtenidos eran muy distantes a la realidad, 

debido a que aparecían unas muescas y se generaban tensiones en determinados 

puntos, en los que no deberían aparecer. A esta conclusión se llegó tras realizar una 

simulación en Abaqus para un modelo de comportamiento elástico lineal (𝐸 = 3𝐾𝑃𝑎 𝑦 𝜈 =

0.49999) y para un modelo neo-Hookeano (𝐶10 = 0.5 𝑦 𝐷1 = 0), a los que se aplicó un 

indentador de radio 2.25µ𝑚  hasta una profundidad de 0.5µ𝑚 . Si nos fijamos en la 

distribución de tensiones (Figura 37 y Figura 38), se puede observar la aparición de las 

muescas en el caso de elementos triangulares, y también es apreciable que, la técnica de 

elementos estructurada distribuye los elementos a lo largo de la muestra de forma más 

homogénea que la técnica libre. 
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          Cuadrángulos estructurados  Cuadrángulos dominados libres  Triángulos estructurados 

Figura 37: Distribución de tensiones [kPa] modelo de comportamiento elástico. 
 

 
          Cuadrángulos estructurados  Cuadrángulos dominados libres  Triángulos estructurados 

Figura 38: Distribución de tensiones [kPa] modelo de comportamiento neo-Hookeano. 
 

Centrándonos en los resultados obtenidos según el tipo de elemento utilizado, se observa 

que, en el caso de los elementos triangulares la curva sigue una distribución distinta al 

resto de casos. Esto es debido a que las tensiones acumuladas en determinados puntos 

de la muestra, hacen que la fuerza resultante aumente hasta el extremo de sobrepasar el 

resultado teórico de Hertz. Comparando entre el mallado libre y el estructurado, se 

observa que la técnica estructurada da resultados más precisos, ya que la distribución de 

tensiones es más homogénea (Figura 39 y Figura 40). 

 

Figura 39: Comparación entre F y δ para distintos tipos de elemento de un modelo de comportamiento elástico lineal. 
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Figura 40: Comparación entre F y δ para distintos tipos de elemento de un modelo de comportamiento hiperelástico. 
 

Por lo tanto, teniendo en cuenta todo lo anterior, se determinó que el tipo de elemento 

idóneo para el mallado eran los cuadrángulos mediante la técnica estructurada, y que el 

elemento idóneo para esta simulación era el CAX4 (C=continuo, AX=axisimétrico, 

4=Nodos), el cual se corresponde a la Figura 41.  

  

Figura 41: Elemento utilizado en el mallado de la muestra. 
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6.6 Código de la simulación del ensayo 2D en Abaqus para una 

muestra de un material elástico 

A continuación, se incluye el código desarrollado para parametrizar el modelo en función 

de los parámetros definidos inicialmente en la cabecera del programa. Si se variase 

cualquiera de los parámetros de la cabecera, al introducir el código en el programa 

Abaqus/CAE 6.12, quedaría el modelo modificado en función de los parámetros 

introducidos. 

####################################################################### 

#Definir propiedades: 

#Unidades: Todo en micrómetros y nanoNewtons. E en (nN/µm2) = (kPa). 

#Indentador 

Ri = 2.25 

Ei= 200000000 

Vi= 0.3 

Delta=0.5 

#Muestra 

Rm = 100 

Hm = 100 

Em = 3 

Vm= 0.49999 

SeparacionIM= 0.0000009 

####################################################################### 

from abaqus import * 

from abaqusConstants import * 

backwardCompatibility.setValues(includeDeprecated=True, reportDeprecated=False) 

myModel = mdb.Model(name='ModeloAbaqus') 

 

# Damos la geometría al Indentador definiéndolo mediante un arco y una línea 

import part 

mySketch1 = myModel.ConstrainedSketch(name='Indentador', sheetSize=225/1000.) 

mySketch1.ArcByCenterEnds(center=(0,SeparacionIM+(Ri)),point1=(0,SeparacionIM),poi

nt2=(0,SeparacionIM+(2*Ri))) 

mySketch1.Line(point1=(0,SeparacionIM),point2=(0,2*Ri+SeparacionIM)) 

 

# Definimos el eje de revolución 

mySketch1.ConstructionLine(point1=(0,-1),point2=(0,1)) 

 

# Definimos axisimétrico y lo generamos 

Indentador = myModel.Part(dimensionality=AXISYMMETRIC, name='Indentador', 

type=DEFORMABLE_BODY) 

myModel.parts['Indentador'].BaseShell(sketch=mySketch1) 

 

# Damos la geometría a la Muestra definiéndola mediante un rectángulo 

mySketch2 = myModel.ConstrainedSketch(name='Muestra', sheetSize=225/100.) 
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mySketch2.rectangle(point1=(Rm,0), point2=(0,-Hm)) 

 

# Definimos el eje de revolución 

mySketch2.ConstructionLine(point1=(0,-1),point2=(0,1)) 

 

# Definimos axisimétrico y la generamos 

Muestra = myModel.Part(dimensionality=AXISYMMETRIC, name='Muestra', 

type=DEFORMABLE_BODY) 

myModel.parts['Muestra'].BaseShell(sketch=mySketch2) 

 

# Creamos el material del Indentador 

import material 

myMaterialIndentador = myModel.Material(name='M-Indentador') 

 

# Propiedades del material del indentador 

elasticProperties = (Ei, Vi) 

myMaterialIndentador.Elastic(table=(elasticProperties, ) ) 

 

# Creamos el material de la Muestra 

myMaterialMuestra = myModel.Material(name='M-Muestra') 

 

# Propiedades del material de la muestra 

elasticProperties = (Em, Vm) 

myMaterialMuestra.Elastic(table=(elasticProperties, ) ) 

 

# Creamos las secciones 

import section 

mySection1 = myModel.HomogeneousSolidSection(name='SeccionIndentador', 

material='M-Indentador', thickness=None ) 

mySection2 = myModel.HomogeneousSolidSection(name='SeccionMuestra', 

material='M-Muestra', thickness=None) 

 

# Asignamos las secciones 

CentroIndentador=(0,Ri,0) 

region1 = Indentador.faces.findAt(CentroIndentador) 

i = region1.index 

Set1 = Indentador.Set(name='Set1', faces=Indentador.faces[i:i+1]) 

Indentador.SectionAssignment(region=Set1, sectionName='SeccionIndentador') 

CentroMuestra=(0,-Hm,0) 

region2 = Muestra.faces.findAt(CentroMuestra) 

i = region2.index 

Set2 = Muestra.Set(name='Set2', faces=Muestra.faces[i:i+1]) 

Muestra.SectionAssignment(region=Set2, sectionName='SeccionMuestra') 

 

# Creamos el ensamblaje 

import assembly 
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myAssembly1 = myModel.rootAssembly 

myInstance1 = myAssembly1.Instance(name='I-Indentador', part=Indentador, 

dependent=ON) 

myAssembly2 = myModel.rootAssembly 

myInstance2 = myAssembly2.Instance(name='I-Muestra', part=Muestra, dependent=ON) 

 

# Creamos particiones para mejorar y facilitar el mallado 

CentroMuestra=((Rm,-Hm/2,0)) 

cara = Muestra.faces.findAt(CentroMuestra) 

mySketch = myModel.ConstrainedSketch(name="Dibujo", sheetSize=1.0) 

mySketch.Line(point1=(3.5*Ri ,0), point2=(3.5*Ri ,-Hm)) 

mySketch.ArcByCenterEnds(center=(0,0),point1=(0,2.5*Ri),point2=(2.5*Ri,0)) 

mySketch.ArcByCenterEnds(center=(0,0),point1=(0,1*Ri),point2=(1*Ri,0)) 

mdb.models['ModeloAbaqus'].parts['Muestra'].PartitionFaceBySketch(faces=cara, 

sketch=mySketch) 

 

# Generamos el mallado 

import mesh 

elemType1set = mesh.ElemType(elemCode=CAX4, elemLibrary=STANDARD) 

Indentador.seedPart( size=0.03) 

Indentador.generateMesh() 

elemType2set = mesh.ElemType(elemCode=CAX4, elemLibrary=STANDARD) 

elemType2=(elemType2set,) 

Muestra.seedPart( size=8) 

Muestra.generateMesh() 

region3 = Muestra.edges.findAt((Ri,-Hm,0,)) 

Abajo=(region3,) 

Muestra.seedEdgeByNumber(edges=Abajo , number=1) 

region4 = Muestra.edges.findAt((1.4*Ri,0,0,)) 

Arriba=(region4,) 

Muestra.seedEdgeByNumber(edges=Arriba , number=30) 

region5 = Muestra.edges.findAt((0,-1.4*Ri,0,)) 

Izquierdo=(region5,) 

Muestra.seedEdgeByNumber(edges=Izquierdo , number=30) 

region6 = Muestra.edges.findAt((2.5*Ri*(2**0.5)/2 ,-2.5*Ri*(2**0.5)/2,0,)) 

Radio=(region6,) 

Muestra.seedEdgeByNumber(edges=Radio , number=60) 

region7 = Muestra.edges.findAt((0.4*Ri,0,0,)) 

Arriba=(region7,) 

Muestra.seedEdgeByNumber(edges=Arriba , number=50) 

region8 = Muestra.edges.findAt((0,-0.4*Ri,0,)) 

Izquierdo=(region8,) 

Muestra.seedEdgeByNumber(edges=Izquierdo , number=50) 

region9 = Muestra.edges.findAt((1*Ri*(2**0.5)/2 ,-1*Ri*(2**0.5)/2,0,)) 

Radio=(region9,) 

Muestra.seedEdgeByNumber(edges=Radio , number=70) 
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region16 = Muestra.faces.findAt((Rm/2 ,-Hm/2,0,)) 

region17 = Muestra.faces.findAt((Ri/3 ,-Ri/3,0,)) 

region18 = Muestra.faces.findAt((3*Ri/3 ,-3*Ri/3,0,)) 

region19 = Muestra.faces.findAt((Ri/2 ,-Hm/2,0,)) 

m=(region16,region17,region18,region19) 

n=(region19,) 

Muestra.setMeshControls(regions=m, elemShape= QUAD ,technique=STRUCTURED) 

Muestra.setMeshControls(regions=n, elemShape= QUAD ,technique=FREE) 

Muestra.setElementType(regions=m, elemTypes=elemType2) 

Muestra.setElementType(regions=n, elemTypes=elemType2) 

Muestra.generateMesh() 

 

# Creamos Step  

myModel.StaticStep(name='BC', previous='Initial', timePeriod=50, initialInc=0.1, 

description='BoundaryConditions',nlgeom=OFF, minInc=0.00000000001) 

 

# Condiciones de Contorno: 

 

# Simetría de la Muestra 

set3A = myInstance2.edges.findAt((0,-Hm/2,0,)) 

set3B = myInstance2.edges.findAt((0,-0.9*Ri,0,)) 

set3C = myInstance2.edges.findAt((0,-1.1*Ri,0,)) 

region10 = (set3A,set3B,set3C) 

myModel.XsymmBC(name='SimetriaMuestra',createStepName='BC', region = region10 ) 

 

#Fijación en la parte inferior de la Muestra 

set4A = myInstance2.edges.findAt((Ri,-Hm,0,)) 

set4B = myInstance2.edges.findAt((0.5*Rm,-Hm,0,)) 

region11 = (set4A,set4B,) 

myModel.EncastreBC(name='EncastreInferiorMuestra',createStepName='BC', region = 

region11 ) 

 

# Desplazamiento del Indentador 

set5 = myInstance1.edges.findAt((Ri,Ri,0,)) 

region12 = (set5,) 

myModel.DisplacementBC(name='Desplazamiento',createStepName='BC', region 

=region12, u1=UNSET, u2=-Delta, u3=UNSET ,distributionType=UNIFORM) 

 

# Simetría del Indentador 

set6 = myInstance1.edges.findAt((0,SeparacionIM+Ri/2,0,)) 

region13 = (set6,) 

myModel.XsymmBC(name='SimetriaIndentador',createStepName='BC', region = 

region13) 

 

# Definimos la interacción entre el Indentador y la muestra. 

import interaction 
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myModel.ContactProperty('IntProp1') 

myModel.interactionProperties['IntProp1'].TangentialBehavior(formulation=FRICTIONLES

S) 

i = mdb.models['ModeloAbaqus'].rootAssembly 

e1 = i.instances['I-Indentador'].edges 

region14 = i.Surface(name='SuperficieIndentador', side1Edges=e1.findAt(((Ri, Ri, 0), ), )) 

m = mdb.models['ModeloAbaqus'].rootAssembly 

e2 = m.instances['I-Muestra'].edges 

region15 = m.Surface(name='SuperficieMuestra', side1Edges=e2.findAt(((0.9*Ri, 0, 0), 

),((1.1*Ri, 0, 0), ),((3*Ri, 0, 0), ),((5*Ri, 0, 0), ))) 

myModel.SurfaceToSurfaceContactStd(name='Interacción' , createStepName='Initial', 

master= region14 , slave = region15, sliding=FINITE, interactionProperty = 'IntProp1') 

 

# Submit 

import job 

jobName = 'Modelo' 

myJob = mdb.Job(name=jobName, model='ModeloAbaqus', description='_') 

myJob.submit() 

myJob.waitForCompletion() 

6.6.1 Modificación para una muestra de material neo-Hookeano 

####################################################################### 

#Definir propiedades: 

#Muestra (Neo Hooke) 

Rm = 100 

Hm = 100 

C10= 0.5 

D1= 0 

SeparacionIM= 0.0000009 

####################################################################### 

 

# Propiedades del material de la muestra 

hyperelasticProperties = (C10, D1) 

myMaterialMuestra.Hyperelastic(testData=OFF, table=(hyperelasticProperties,), 

type=NEO_HOOKE ) 

 

# Generamos el mallado 

elemType2set = mesh.ElemType(elemCode=CAX4H, elemLibrary=STANDARD) 

 

# Creamos Step  

myModel.StaticStep(name='BC', previous='Initial', timePeriod=50, initialInc=0.1, 

description='BoundaryConditions',nlgeom=ON, minInc=0.00000000001) 
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