000032165 001__ 32165
000032165 005__ 20210121082900.0
000032165 0247_ $$2doi$$a10.3390/ma8041636
000032165 0248_ $$2sideral$$a89889
000032165 037__ $$aART-2015-89889
000032165 041__ $$aeng
000032165 100__ $$0(orcid)0000-0001-7808-381X$$aMoreno-Arotzena , Oihana
000032165 245__ $$aCharacterization of Fibrin and Collagen Gels for Engineering Wound Healing Models
000032165 260__ $$c2015
000032165 5060_ $$aAccess copy available to the general public$$fUnrestricted
000032165 5203_ $$aHydrogels are used for 3D in vitro assays and tissue engineering and regeneration purposes. For a thorough interpretation of this technology, an integral biomechanical characterization of the materials is required. In this work, we characterize the mechanical and functional behavior of two specific hydrogels that play critical roles in wound healing, collagen and fibrin. A coherent and complementary characterization was performed using a
generalized and standard composition of each hydrogel and a combination of techniques. Microstructural analysis was performed by scanning electron microscopy and confocal reflection imaging. Permeability was measured using a microfluidic-based experimental set-up, and mechanical responses were analyzed by rheology. We measured a pore size of 2.84 and 1.69 µm for collagen and fibrin, respectively. Correspondingly, the permeability of the gels was 1.00·10-12 and 5.73·10-13 m2. The shear modulus in the linear viscoelastic regime was 15 Pa for collagen and 300 Pa for fibrin. The gels exhibited strain-hardening behavior at ca. 10% and 50% strain for fibrin and collagen, respectively. This consistent biomechanical characterization provides a detailed and robust starting point for different 3D in vitro bioapplications, such as collagen and/or fibrin gels. These features may have major implications for 3D cellular behavior by inducing divergent microenvironmental cues.
000032165 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/DPI2012-38090-C03-01$$9info:eu-repo/grantAgreement/EUR/FP7/ERC2012-StG-306751
000032165 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000032165 590__ $$a2.728$$b2015
000032165 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b63 / 271 = 0.232$$c2015$$dQ1$$eT1
000032165 592__ $$a0.83$$b2015
000032165 593__ $$aMaterials Science (miscellaneous)$$c2015$$dQ1
000032165 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000032165 700__ $$aMeier, Johann G
000032165 700__ $$0(orcid)0000-0002-3796-4482$$adel Amo, Cristina$$uUniversidad de Zaragoza
000032165 700__ $$0(orcid)0000-0002-9864-7683$$aGarcía-Aznar, José Manuel$$uUniversidad de Zaragoza
000032165 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000032165 773__ $$g8 (2015), 1636-1651$$pMATERIALS$$tMATERIALS$$x1996-1944
000032165 8564_ $$s3423459$$uhttps://zaguan.unizar.es/record/32165/files/texto_completo.pdf$$yVersión publicada
000032165 8564_ $$s90366$$uhttps://zaguan.unizar.es/record/32165/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000032165 909CO $$ooai:zaguan.unizar.es:32165$$particulos$$pdriver
000032165 951__ $$a2021-01-21-08:15:30
000032165 980__ $$aARTICLE