000032183 001__ 32183
000032183 005__ 20210121082857.0
000032183 0247_ $$2doi$$a10.1016/j.fuel.2014.10.036
000032183 0248_ $$2sideral$$a88577
000032183 037__ $$aART-2015-88577
000032183 041__ $$aeng
000032183 100__ $$0(orcid)0000-0002-8704-9274$$aGil Lalaguna, Noemí
000032183 245__ $$aUse of sewage sludge combustion ash and gasification ash for high-temperature desulphurization of different gas streams
000032183 260__ $$c2015
000032183 5060_ $$aAccess copy available to the general public$$fUnrestricted
000032183 5203_ $$aDue to its metal content, sewage sludge ash appears as a potential sorbent material for H2S removal at high temperature. The desulphurization ability of the solid by-products of combustion and gasification of sewage sludge has been evaluated in this work. Ash characterization results revealed that metal fraction in sewage sludge did not remained completely inert during the combustion and gasification processes. Iron content was lower in the gasification ash and X-ray patterns showed different crystalline phases in the solids: Fe2O3 in the combustion ash and Fe3O4 in the gasification ash. These differences resulted in a lower sulphur capture capacity of the gasification ash
Desulphurization tests were carried out in a lab-scale fixed bed reactor operating at 600- 800 ºC. Different gases containing 5000 ppmv H2S (H2S/N2 mixture and synthetic gasification gas) were used. The H2S breakthrough curves were negatively affected by the reducing atmosphere created by the gasification gas and by the presence of steam in the reaction medium. However, H2S breakthrough curves alone do not provide enough information to evaluate the sulphur capture capacity of the sorbent materials. Ultimate analyses of the spent solid samples showed that the total amount of H2S removed from the gas was only partially captured in the ash. Thermodynamic data pointed to a significant fraction of sulphur forming part of other gases, such as SO2. In the best operating conditions, an outlet gas with less than 100 ppmv of H2S was obtained during 300 min, thus resulting in a sulphur loading of 63 mg S·g-1 ash. This experimental sulphur content was 39% lower than the maximum theoretical value predicted by equilibrium simulations.
000032183 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2010-20137
000032183 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000032183 590__ $$a3.611$$b2015
000032183 591__ $$aENGINEERING, CHEMICAL$$b19 / 135 = 0.141$$c2015$$dQ1$$eT1
000032183 591__ $$aENERGY & FUELS$$b23 / 88 = 0.261$$c2015$$dQ2$$eT1
000032183 592__ $$a1.781$$b2015
000032183 593__ $$aChemical Engineering (miscellaneous)$$c2015$$dQ1
000032183 593__ $$aOrganic Chemistry$$c2015$$dQ1
000032183 593__ $$aFuel Technology$$c2015$$dQ1
000032183 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000032183 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000032183 700__ $$0(orcid)0000-0002-9705-2207$$aSánchez Cebrián, José Luis$$uUniversidad de Zaragoza
000032183 700__ $$0(orcid)0000-0002-3771-8994$$aMurillo Esteban, Maria Benita$$uUniversidad de Zaragoza
000032183 700__ $$0(orcid)0000-0002-4364-2535$$aGea Galindo, Gloria$$uUniversidad de Zaragoza
000032183 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000032183 7102_ $$15005$$2790$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Tecnologi. Medio Ambiente
000032183 773__ $$g141 (2015), 99-108$$pFuel$$tFuel$$x0016-2361
000032183 8564_ $$s571710$$uhttps://zaguan.unizar.es/record/32183/files/texto_completo.pdf$$yPostprint
000032183 8564_ $$s68524$$uhttps://zaguan.unizar.es/record/32183/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000032183 909CO $$ooai:zaguan.unizar.es:32183$$particulos$$pdriver
000032183 951__ $$a2021-01-21-08:13:33
000032183 980__ $$aARTICLE