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Resumen

Uno de los grandes retos de la fisica actual es la unificacion de la Relatividad General (GR) y de la Teoria
Cuantica de Campos (QFT), o, equivalentemente, la formulacién de una teoria cudntica de la gravedad. Ambas
teorias, bien comprobadas experimentalmente el siglo pasado, presentan incompatibilidades fundamentales que
tienen su origen en el papel que el espacio-tiempo presenta en ellas (es una variable dindmica en GR, y un marco
estatico en QFT).

Ha habido numerosos intentos de formular una teorfa de gravedad cudntica, como teoria de cuerdas, gravedad
cudntica de lazos, teorfa de conjuntos causales, etc. En algunos de estos contextos el espacio-tiempo adquiere
una estructura fundamental, caracteristica, y bien distinta a la nocién de espacio-tiempo continuo de Relatividad
Espacial (SR). Sin embargo, ni la dindmica de estas teorias se comprende en su totalidad, ni son facilmente
contrastables con observaciones experimentales.

A principios de siglo comenz6 a desarrollarse una nueva teorfa que ain estd germinando, la Relatividad
Doblemente Especial (DSR). El punto de partida de esta teoria es muy diferente a los anteriores: se plantea, no
como una teoria fundamental, sino como un limite de bajas energias que trata de capturar elementos residuales
de una teorfa de gravedad cudntica. En particular, en DSR se generaliza el principio de relatividad einsteniano
afiadiendo a la velocidad de la luz ¢ un nuevo invariante relativista, la longitud de Planck /p. Esta idea si puede
tener implicaciones observables experimentalmente, dando Iugar a lo que se conoce como fenomenologia de
gravedad cudntica. Por otro lado, DSR implica la existencia de relaciones de composicién de energia y momento
no triviales, lo que a su vez se traduce en un espacio-tiempo con ingredientes de no localidad, un elemento que
también aparece en otros desarrollos de gravedad cuéntica.

En este trabajo haremos primero una introduccién a DSR y de los motivos por los que debemos ir mds alla
de SR. Estas correcciones a SR pueden plantearse como un desarrollo en serie de potencias de una escala de
alta energia, tipicamente, la energia de Planck. Asi, haremos a continuacién un estudio de un trabajo previo
de lo que ocurre al considerar desviaciones de SR a primer orden en esta escala al implementar un principio
de relatividad con relaciones de dispersion y relaciones de composicion de energia-momento modificadas, los
ingredientes esenciales en DSR. El principal objetivo del trabajo serd, partiendo del estudio anterior, ver cudles
son las implicaciones de correcciones que comienzan a segundo orden en la escala de Planck, lo que seria
coherente con observaciones experimentales recientes.
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1. Introduccion

1.1. Motivacion

Desde los primeros comienzos de la fisica, siempre se han observado hechos y se han intentado desarrollar
teorias que pudieran dar cuenta de ellos. Como una mufieca rusa, la realidad ha revelado una vez tras otra capas
de escalas cada vez mds y mds pequefias. Esto nos lleva a la siguiente pregunta: ;continuaremos explorando mas
de cerca la estructura de la naturaleza llegando a encontrar mds capas? (O hay un limite fundamental para esta
buisqueda mads alld del cudl no se puede ir? Y si es asi, ;este limite estd basado en argumentos tedricos o se deberia
a problemas experimentales?

Cualquier respuesta a esta pregunta tiene que incluir no sélo la estructura de la materia, sino la estructura del
espacio y del tiempo en si mismos, y por lo tanto, tiene que incluir la gravedad. Al igual que existen constituyentes
fundamentales de la materia, ; ocurre lo mismo para el espacio-tiempo? ; Existen «dtomos» del espacio? Y también
hay que tener en cuenta que medir distancias mds cortas requiere concentrar energias grandes en volimenes pe-
queiios, y cuando la densidad de energia aumenta, uno no puede despreciar la curvatura del espacio, por lo que la
interaccidn gravitatoria es indispensable.

Desde el descubrimiento de la mecédnica cudntica, los fisicos, al desarrollar la teorfa cudntica de campos, obser-
varon que era imposible compatibilizar ambas teorias. Al intentar cuantizar la GR, uno observa que hay infinitos
no renormalizables, es decir, hay divergencias que uno no puede evitar, al contrario de lo que pasa con el resto de
interacciones. La idea de unificacion sugiere que debe haber una teoria que englobe a las dos y dé cuenta de las
cuatro interacciones.

Uno podria hacerse esta pregunta: si tenemos una teoria para los objetos masivos (GR) y otra para los mas
livianos (QFT), ¢para qué necesitamos una teoria cudntica de la gravedad? Si uno considera una particula muy
pequeiia pero con una gran energia, las leyes que describen su dindmica deberian tener en cuenta no sélo elementos
cuanticos, sino también gravitatorios. Entonces, ;en qué casos podemos encontrar esta situacién? Al inicio del
universo, sabemos que habia una gran cantidad de energia en una regién muy pequeiia. Para poder describir los
primeros instantes del universo en los que existia esta alta densidad, deberiamos tener una teoria cudntica de la
gravedad.

Tampoco sabemos lo que ocurre en el interior de un agujero negro. Un agujero negro es un cuerpo que se
ha dado al colapso gravitatorio debido a la gran cantidad de materia que tenia. Este objeto es tan masivo, que ni
la luz puede escapar de él, delimitando un horizonte conocido como horizonte de eventos. Desde que en 1916
Schwarzschild obtuvo la primera solucion a las ecuaciones de Einstein que daba lugar a un agujero negro estatico,
se vio que habia una singularidad en las coordenadas del espacio-tiempo (que no era posible eliminar mediante
un cambio de coordenadas como ocurria con la del horizonte de eventos). Los agujeros negros son fuentes de
contradiccion de estas dos teorias, lo que hace que su fisica despierte gran interés. ;Qué ocurre con la informacién
una vez que se cruza el horizonte? Si uno considera que la informacién se pierde, estd yendo en contra de lo que
nos dice la teoria cudntica. Si por el contrario, la informacién permanece encriptada en la superficie del horizonte,
la evaporacion del agujero negro (proceso que describié Hawking al desarrollar una QFT en espacios curvos), darfa
lugar a una contradiccion entre estados puros y mezcla. De hecho, una de las posibles soluciones, conocida como
firewall, viola el principio de equivalencia, ya que uno no deberia notar nada al cruzar el horizonte de eventos al
estar en caida libre, pero al existir estados mezcla, habria particulas que estarian «quemando» al observador. Otra
pregunta sin respuesta es /qué ocurre cuando uno llega a la singularidad? Este es otro motivo para tener una teoria
de gravedad cudntica.

Otro de los problemas que nos encontramos es que en mecdnica cudntica uno asume el espacio-tiempo dado
y estudia en todo detalle las propiedades y el movimiento de las particulas en él, tanto de la materia como de la
radiacién. En GR y especialmente en cosmologia, uno toma el camino contrario: se asume que las propiedades de
la materia y de la radiacién son dadas (mediante las ecuaciones de estado) y se describe en detalle el espacio-tiempo
al que da lugar, en particular su curvatura. De hecho, Einstein pensé en poder describir las coordenadas del espacio-



tiempo mediante el intercambio de sefiales luminosas, pero cuando usamos este procedimiento, desechamos toda
informacién sobre la energia de los fotones y presuponemos que el mismo espacio-tiempo esta reconstruido por
intercambios de sefiales luminosas de diferentes frecuencias. Sin embargo, ;qué pasarfa si la velocidad de la luz
dependiese de la energia del fotén, como sucede en varios de los marcos teéricos que tratan de unificar GR y mecé-
nica cudntica? En este caso, la energia de este afectaria a la propia estructura del espacio-tiempo. Presumiblemente,
esta paradoja podria evitarse si se conociese una teoria de gravedad cudntica.

Entre las teorias méds conocidas que han intentado esta unificacion estédn la teoria de cuerdas, la teoria cuédntica
de lazos, la supersimetria y la teoria de conjuntos causales. Con el objetivo de intentar poner en el mismo marco la
QFT y la GR, nacié la DSR (Doubly Special Relativity, Relatividad Doblemente Especial) como una teoria a bajas
energias. En esta teoria, uno considera que existen dos invariantes en todo sistema de referencia: la velocidad de la
Iuz ¢ y la longitud de Planck /p. Para obtener ademas de esta longitud, el tiempo de Planck 7p, la masa de Planck
Mp y la energia de Planck A, no hay més que utilizar las constantes fisicas de la cudntica %, de la relatividad c y de
la gravitacién G:

hG
lp=1\/—=1,610"m (1.1.1)
C
[hG
tp=1]— =5410"*s (1.1.2)
C
A h
—=Mp= ézZ,ZlO’SKg:1,21019GeV/c2 (1.1.3)
C

Otra novedad que aparece en DSR es que es una teoria formulada en el espacio de momentos, no en las coorde-
nadas de un espacio-tiempo y esta limitacion parece ser fundamental. Asi, aunque en el limite en el que la longitud
de Planck es cero (que es a lo que estamos habituados por los experimentos actuales) uno pueda formular su teoria
en el espacio-tiempo (como la QFT y la GR), al considerar una escala de longitud de ese orden (o lo que es lo
mismo, a escalas de energias del orden de la energia de Planck), uno debe ir al espacio de fases.

También desaparece el concepto de variedad para el espacio-tiempo. SR, QFT y en GR estdn desarrolladas en
la idea de que el tiempo es un concepto continuo (admite una descripcion en términos de nimeros reales). Pero
como hemos visto antes, tenemos una incertidumbre al medir distancias y tiempos que nos impide sincronizar dos
relojes con una precision mejor que el tiempo de Planck. Debido a esta imposibilidad de sincronizar estos relojes
de forma precisa, la idea de una coordenada de tiempo Unica para un sistema de referencia es sélo aproximada, y
no puede mantenerse en una descripcion precisa de la naturaleza. Tampoco tenemos una forma de ordenar eventos
a tiempos inferiores que el de Planck. Uno por lo tanto se ve obligado a olvidar la idea del tiempo como un «punto»
unico también. Por ejemplo, a escalas Planckianas se pierde el concepto de tiempo propio.

De esta manera, tenemos un espacio-tiempo cuantizado, en el sentido de que es discreto y no continuo. Con esto
se pierde el concepto de punto en el espacio y de instante de tiempo, al no poder medir con una resolucién mayor
que la escala de Planck. También da lugar a una modificacion de las reglas de conmutacién (que estudiaremos con
mds detalle en la seccién 4), ya que la resolucién en la medida de tiempo y espacio tiene que cumplir

AxAt > Iptp

Uno tampoco podria determinar la métrica a estas escalas, perdiendo la nocién de curvatura. Es decir, la im-
posibilidad de medida de longitudes es exactamente equivalente a fluctuaciones en la curvatura. Uno por lo tanto,
podria imaginarse que el espacio-tiempo es como una espuma a escalas muy pequefas. Las particulas pequefias
notarian estos efectos debidos a las fluctuaciones cuanticas del espacio-tiempo, siendo cada vez mas relevantes a
energias cada vez mayores.

Debido a esta imprecision en la medida a escalas Planckianas, el concepto de orden espacial, de invariancia
traslacional y la isotropia del vacio, y los sistemas globales de coordenadas, pierden todo respaldo experimental



a estas dimensiones. Ademds, el espacio-tiempo no es ni invariante Lorentz, ni invariante bajo difeomorfismos, ni
invariante por dilatacién. Todas las simetrias base de SR y de GR son sélo aproximaciones validas para escalas
mayores que la de Planck.

Tampoco tiene sentido el nimero de dimensiones. Para determinar experimentalmente el nimero de dimen-
siones, uno puede observar cudntos puntos puede elegir en el espacio tal que todas las distancias sean iguales. Si
uno encuentra n puntos, el espacio tendrd n — 1 dimensiones. Al no tener una medida certera de distancia no hay
manera de determinar el nimero de dimensiones a escalas Planckianas con este método. Con todo esto, vemos
que el espacio-tiempo fisico no puede ser un conjunto de puntos mateméticos. No podemos distinguir tampoco a
escalas pequefias si una distancia es de tipo-tiempo o de tipo-espacio. A escalas Planckianas, el tiempo y el espacio
no pueden distinguirse el uno del otro. En resumen, el espacio-tiempo a estas escalas no es continuo, ni ordenado,
ni dotado de métrica, ni cuadridimensional, ni hecho de puntos.

Como el tiempo y el espacio no son continuos, los observables tampoco varian continuamente. Esto significa
que a escalas Planckianas, los observables (o sus componentes en una base) no pueden describirse con nimero
reales con (potencialmente) infinita precisiéon. Tampoco los campos fisicos pueden describirse como funciones
continuas.

Con esto también desaparece el concepto de particula puntual. De hecho, carece completamente de sentido
utilizar este término. Por supuesto, la existencia de una longitud minima, tanto para el espacio vacio como para los
objetos, estd relacionada con este hecho. Si el término punto en el espacio carece de sentido, también el de particula
puntual.

Por definicidn, el tamafio d de una particula elemental es menor que su longitud de onda Compton

h
— (1.1.4)
mc

Por otro lado, el tamafio de la particula es siempre mayor que la longitud de Planck. De aqui podemos ver la

siguiente condicidn para la masa una particula elemental:

m<£:Mp (1.1.5)
Clp

Esto nos dice que la masa de una particula elemental no puede exceder la masa de Planck. De hecho, todas las
particulas elementales conocidas lo cumplen. En QFT, sabemos que la diferencia entre una particula real o virtual,
es si estd en la capa de masas o no. Debido a estas indeterminaciones en las medidas, a escalas Planckianas uno no
puede saber si una particula es real o virtual.

Como la antimateria puede describirse como materia moviéndose hacia atrds en el tiempo, y como la diferencia
entre atrds y adelante no puede determinarse a escalas Planckianas, uno no puede distinguir entre materia y anti-
materia en estos rangos. Como no tenemos rotaciones bien definidas, el espin de una particula tampoco lo estd y
por lo tanto no podemos distinguir entre bosones y fermiones, o en otras palabras, no podemos distinguir materia
de radiacion a estas escalas.

Por dltimo, pensemos en la masa inercial de un objeto pequefio. Para determinarla, debemos empujarlo, es
decir, realizar un experimento de dispersién. Para determinar la masa inercial dentro de una regién de tamafo R,
se debe utilizar una longitud de onda menor que R con su consiguiente energia. Una energia grande significa que
la particula se verd atraida debida a la gravedad. Por lo tanto, a escalas Planckianas, la masa inercial y gravitatoria
no pueden distinguirse. Para determinar la masa en un volumen de Planck, se tiene que utilizar una longitud de
onda de longitud /p. En otras palabras, el error en la masa es tan grande como la masa de Planck. Este limite es una
consecuencia directa del limite en las medidas de longitud y del espacio. De esta forma, uno no puede distinguir el
vacio de la materia. Por lo tanto, cuando una particula con energia la de Planck viaja a través del espacio, puede ser
dispersada por las fluctuaciones del propio espacio-tiempo, haciendo imposible asi decir si ha sido dispersada por
vacio o por materia.



Con todos estos ejemplos, vemos que la fisica a escalas Planckianas es completamente diferente a la que
estamos habituados y a lo que ni siquiera podriamos imaginar. Hoy en dia, parece impensable obtener en un futuro
préximo una teorfa que pueda dar cuenta de todo esto. Teorfas como DSR podrian arrojar algo de luz en las tinieblas
del desconocimiento.

1.2. GUP: principio de incertidumbre generalizado

Veamos qué ocurre al introducir la interaccidn gravitatoria en el experimento mental del microscopio de Hei-
senberg. Desde este apartado y en adelante, utilizaremos unidades naturales en las que i=c = 1.

De acuerdo a la dptica clasica, la longitud de onda del fotén con momento @ establece un limite a la posible
resolucién Ax en la posicién de la particula con la que interacciona el fotén

1
A2 2w sine 2.1
donde € es el dngulo de apertura de la lente del microscopio. Pero el fotén utilizado para medir la posicién de
la particula tiene un retroceso cuando se dispersa y transfiere momento a la particula. Como uno no conoce la
direccién del fotén con mayor resolucién que €, esto da lugar a una indeterminacién en el momento de la particula
en la direccidn x
Apy 2 @ sing (1.2.2)

Tomando todo esto junto, uno obtiene la indeterminacién de Heisenberg (hasta un factor de orden unidad)

AxAp, > (1.2.3)
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Esta es una propiedad fundamental de la naturaleza cuantica de la materia.
Incluyamos ahora la gravedad en este experimento mental. Como hemos visto, la interaccién del fotén con la

particula no tiene lugar en un punto bien definido, sino mas bien en una region de tamafio R. Para que la interaccién

tenga lugar y la medida sea posible, el tiempo pasado entre la interaccidén y la medida tiene que ser al menos

del orden de tiempo 7 2 R. El fotén lleva una energia que, aunque en general es pequeiia, ejerce una atraccion

gravitatoria sobre la particula cuya posicién queremos medir. La aceleracion gravitatoria actuando sobre la particula

es al menos del orden de
Gw

o

(1.2.4)

y, asumiendo que la particula es no relativista y que es mucho més lenta que el fotén, la aceleracion actia aproxi-
madamente durante el tiempo en el que el fotén estd en la region de la interaccidn, por lo que la particula adquiere

una velocidad v ~ aR o G
0)
~— 1.2.5
e — ( )

Asi, en el tiempo R, la velocidad adquirida permite a la particula viajar una distancia de
L=Gw (1.2.6)

Sin embargo, como la direccion del fotén es desconocida con una anchura del dngulo €, la direccién de la acelera-
cién y el movimiento de la particula son también desconocidos. La proyeccion en el eje x da una indeterminacién
adicional de

Ax Z G sing 1.2.7)

Combinando (1.2.1) y (1.2.7) vemos que
Ax>VG=Ip (1.2.8)



Uno puede refinar este argumento teniendo en cuenta que estrictamente hablando, durante el experimento, el mo-
mento del fotén @ aumenta

Gmo
—_— 1.2.9
R (1.2.9)
donde m es la masa de la particula. Esto aumenta la indeterminacion en el momento de la particula
G
Ap: > © (1 + I;") sing (1.2.10)

y durante el tiempo en el que el fotén estd en la region de interaccién, se traduce en una indeterminacién Ax ~
RAp/m

R
Ax2w<m+G> sing (1.2.11)

que es mayor que la anterior indeterminacién y por lo tanto se sigue satisfaciendo en el limite en el que uno no
considere la gravedad.
Asumiendo que la indeterminacién normal y la gravitatoria se suman linealmente, uno llega a

Ax 2, L+GAp (1.2.12)
Ap
Este resultado también se obtiene en teoria de cuerdas mediante consideraciones completamente diferentes.

De esta forma, vemos que al afiadir la interaccién gravitatoria obtenemos un principio de indeterminacién
generalizado, lo que da lugar a una modificacién de las reglas de conmutacién, y por lo tanto, una razén mds
para ir mds alld de SR. Mas adelante, estudiaremos en detalle la posible forma de unas reglas de conmutacién que
generalicen el dlgebra de Heisenberg usual.

1.3. Fenomenologia de gravedad cuantica

A diferencia de otras teorias que tratan de obtener una teoria de gravedad cudntica, mediante experimentos
factibles hoy en dia uno podria observar desviaciones de SR. Veamos como se pueden dar estas desviaciones
apreciables.

1.3.1. Retraso de fotones

La energfa de Planck (10'° GeV) es mucho mayor que la de los aceleradores de particulas actuales (14 TeV) o
que las particulas provenientes de rayos césmicos (10!! GeV). Uno por lo tanto podria decir que aunque existiesen
desviaciones respecto a SR, no podrian medirse. Lo cierto es que estas desviaciones podrian tener efectos a energias
mucho mds bajas y por lo tanto ser detectables.

Debido a la «espuma» del espacio-tiempo antes mencionada, la estructura de éste a distancias pequefias puede
inducir un efecto donde dos particulas sin masa de igual energia recorran exactamente la misma distancia en tiempos
diferentes. Estas fluctuaciones cudnticas del espacio-tiempo cerca de la escala de Planck inducirfan variaciones
estocdsticas de la velocidad, por ejemplo, de la luz.

Estas desviaciones de la velocidad de la luz pueden obtenerse mediante relaciones de dispersiéon modificadas
(MDR), que pueden escribirse para energias mucho menores que la energia de Planck como

E n
E?—p* —m* ~ &E,E? <> (1.3.1)
A
Al considerar la velocidad como JE
=— 1.3.2
v dp (1.3.2)



uno puede comprobar que esto causa un retraso en el tiempo de vuelo

d, (E\"
n~de, (A) (133)

Este retraso puede medirse para fotones con diferente energia provenientes de un «estallido de rayos gamma (gam-
ma ray burst)». En concreto, en experimentos recientes como en [7] y [8], se toman medidas del GRB090510, y
se busca una dependencia entre la velocidad de los fotones y la energia de los mismos. Como en un gamma ray
burst se emiten fotones a distintas energias, pueden compararse tiempos de vuelo de fotones para intentar ver una
dependencia con la energia de la velocidad de la luz. Estos experimentos parecen descartar efectos a primer orden
(n=1) y se espera que puedan, en un futuro préximo, ver efectos a segundo orden.

Como ya se ha mencionado antes, al intentar ir més alld de SR, la invariancia Lorentz no tiene por qué con-
servarse. De hecho, uno puede considerar que se viola esta invariancia o que estd deformada, como en las teorias
de DSR. A continuacién veremos los ingredientes mds importantes que DSR afiade a una simple violacién de
invariancia Lorentz.

1.3.2. Localidad Relativa

Cuando se cred la SR, el espacio-tiempo era llano. Con el desarrollo de la GR, Einstein introdujo el concepto de
espacio-tiempo curvo: los objetos masivos perturban el espacio-tiempo dando lugar a una curvatura. Una pregunta
que ya se hizo Born en su momento es: ;por qué no considerar un espacio de momentos también curvo? De hecho,
él consideraba que uno no podria obtener una teoria cudntica de la gravedad sin esta implementacién. Si uno lo
hace, la fisica no tendria lugar en un espacio-tiempo como estamos acostumbrados sino en un espacio de fases.

Esto nos dice que una interaccién entre particulas s6lo serd local para un observador en cuyo origen de coorde-
nadas se produzca ésta, mientras que para un observador trasladado con respecto al anterior, la interaccion dejard
de ser local. Este fendmeno ocurre al considerar una ley de composicion modificada (MCL) para los momentos,
lo cual es inevitable en el marco de DSR, donde las transformaciones lineales de Lorentz son deformadas a trans-
formaciones no lineales, que no son compatibles con leyes de composicién de momentos lineales. Asi, en vez
considerar que la conservacién de momentos es lineal, uno considera que es de la forma

(p@ ) =p'+q* +T%, p'g" + ... (1.3.4)

donde I" ’Vl 4 €s la conexion afin. Esta composicién puede verse como una realizacion de un espacio de momentos
curvo. Esta composicion no tiene por qué ser conmutativa, es decir, el resultado puede depender del orden de la
composicion. Si por ejemplo consideramos la desintegracién de una particula en dos con momentos k — p,q, la
ley de conservacién nos dice que

k=pdgqg (1.3.5)

Para el caso de una composicién no conmutativa

pOqgFqdp (1.3.6)

por lo que esta diferencia darfa distintos canales de desintegracion de la particula, lo que supone distintas caracte-
risticas en los productos obtenidos.

De esta manera, uno puede comprobar al mirar la acciéon que, para el caso simple de una interacciéon entre
dos particulas, la interaccién ocurre de forma local para un observador en cuyo origen de coordenadas se produce
la misma. Las posiciones de las particulas, x; y x, con momentos p; y p, respectivamente, para un observador
trasladado una distancia x del primero serdn

u va(pl@PZ)# u va(pl@PZ)“

X, =X ap}’ Xy =X apg (1.3.7)
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Figura 1: Localidad relativa. En la parte izquierda de la figura se muestra como Alice ve la produccion de forma
local y la deteccién no local, mientras que en la figura derecha vemos que Bob ve la produccién no local y la
deteccion local. Fuente [11].

La descripcién de la interaccion para dos observadores puede verse en la figura 1. En ella, se presenta la produccion,
propagacion y deteccién de una particula. En la produccién, Alice es local (izquierda); en la deteccidn, Bob es local
(derecha).

Al igual que ocurria para el caso del retraso del tiempo de vuelo de fotones, aunque estos efectos sean muy
pequeiios, al considerar escalas cosmoldgicas, estos se veran amplificados pudiendo llegar a observarse.

1.3.3. Limite GZK

El limite de Greisen-Zatsepin-Kuzmin (GZK), es un limite superior tedrico en la energia de los rayos césmi-
cos provenientes de fuentes distantes. Este limite es aproximadamente 5 x 10'? eV. Este queda establecido en SR
mediante interacciones lentas de rayos c6smicos de protones con la radiacion de fondo de microondas sobre dis-
tancias grandes (mds de 160 millones de afios luz). Es del mismo orden de magnitud que la energia de los rayos
cosmicos experimentalmente detectados. Si se encontrasen desviaciones respecto a este limite, cabria pensar en la
necesidad de ir mds alld de SR. Resulta interesante notar que el calculo de este limite depende tanto de relaciones
de dispersién modificadas como de la MCL que aparecen en DSR.

2. Modelo a primer orden en A

Vamos ahora a revisar el modelo mds general de DSR a primer orden en la escala de alta energia A (ver
[14]), lo que nos servira para estudiar lo que ocurre a segundo orden. A lo largo de este trabajo supondremos
que la invariancia Lorentz estd deformada pero que las rotaciones son las usuales, y que se sigue satisfaciendo el
algebra de Lorentz, es decir, que la accién de dos boosts da una rotacién. Lo que pretendemos es ver qué leyes de
composicion y relacién de dispersion modificadas con un desarrollo en serie de potencias de 1/A son compatibles
con el principio de relatividad.

2.1. Principio de relatividad

La MDR més general a primer orden y que es invariante rotacional es

%
A

(0]

Aﬁ2p0 =m? (2.1.1)

Py P+ P+
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y la MCL

1 D N )2 V3
p@q!o=po+qo+%poqo+%pq p®qli = pit it Podi 1 Pido+ kP (2.1.2)

En la MCL no pueden aparecer términos a primer orden que no contengan ambos momentos, ya que imponemos
la condicién fisica de que cuando uno de ellos sea nulo, la composicion se reduzca al momento restante. La forma
mds general de las transformaciones de Lorentz del sistema de una particula es

) o
[T (p)lo = po+ (1 + Alpo> (p-é) (2.1.3)
Ao, A A N A
[T (p)); = pi+&; <P0 + Py /\352> + P (ﬁ.é) + 2 posipi& 2.1.4)

Para que se reproduzca el dlgebra de Lorentz, imponemos las siguientes condiciones para dos transformaciones
T y T con pardmetros &) y (@) respectivamente:

[T@) (Tm (p)) 7 <T<2> (p))} -0 (2.1.5)

0

[T@) (Tu) (p)) _ <T<2> (p)ﬂ - @,gm) gV (551)) 3 (2.1.6)

1

Esto nos da la siguientes relaciones entre los A s

As=0 A=A +24, +22;5 (2.1.7)

por lo que el boost queda finalmente de la forma

_ A Lz
[T (p)lo=Po+ <1 + Apo> (p : é) (2.1.8)
o . A2 2 13_,2 M 424+ 243 (=7

[T (p)]; = pi+& <P0+AP0+AP >+Ap, (p.ij) (2.1.9)

La invariancia de la MDR
C(T (p))=C(p) (2.1.10)

impone que

(03] :—2(114-12—!-213) 062:2(114-2)[/2—}—313) (2.1.11)

Cuando uno va al sistema de dos particulas, aparecen ingredientes nuevos. Si se quiere ser lo mds general posible,
se debe tener en cuenta que las transformaciones de los boosts pueden depender de la otra particula (de hecho, estos
términos estan relacionados con la no conmutatividad de la MCL), es decir, pasamos de una pareja de momentos a
otra

g} =+ {7" (0.7 ()} @.1.12)

en donde
L) (p)=TP)+TE ) T (@) =T(@)+T5(q) (2.1.13)

donde el primer término denota la parte de la transformacién que s6lo depende del propio momento mientras que
el segundo es la parte nueva que aparece en el sistema de dos particulas. Los superindices R y L dan cuenta de la
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ordenacidn de las particulas: p estd a la izquierda de g por lo que el superindice debe ser L, y de forma semejante
para R. La forma mas general de estas transformaciones es

L . L .
Ty = Moo (5E)+ %o (38) + E (5na) E 2.1.14)
L . L . L
[TLIL (p)]l ( 6) 7pl< é) A qosljkpjgk"i_
% e G.5)+ o o 2.1.15
751‘(4-19) Apofz‘ukquk+ Aqopoéz (2.1.15)

Al imponer la invariancia de la MDR, uno obtiene que

of=0t=0 of=-n} of=nf of=nk (2.1.16)

y al imponer que se satisfaga el dlgebra de Lorentz, que

ns=ni o mi=-m 2.1.17)
por lo que finalmente se obtiene
L L

=L . m - niz . NP
[Tq (1?)]0 = A (p-é) + A (GNPp).& (2.1.18)

— T’R - nR —
[T (@], = —po (é-é) + o (FNG) 8 (2.1.19)

- L nk nt
[TqL (l’)], = Xl qopo&i + (QOSUkPJ@k—Po&jkqjik) + A (qu§ &iqg. ) (2.1.20)

=R _ Nt ns nf S F g oo

[T, (q)], = —Poqobi+ (posukq]ék — qoeip;&) + - (pig.E — Ep.d 2.1.21)

A A

Consideremos el caso mas sencillo para nuestro estudio que es la desintegracién de una particula en dos (que a
primer orden nos permite obtener todas las consecuencias de imponer el principio de relatividad).
Para que se cumpla
kop®g=0 (2.1.22)

necesitamos que

ko = _PO—QO+113\ (Po-l-CIO) +[j\2(ﬁ+c_j)2 (2.1.23)
_l’_
ki=—pi—qi+ 1L AYZ (po+qo) (pi+qi) (2.1.24)

Ahora vamos a imponer el principio de relatividad, es decir, que todos los observadores coincidan en la forma
de la ley de conservacion:

kDpBg=0 = T, KT (p)oTl) (9)=0 (2.1.25)
en donde
Tyg (k) =T (k) + TE (k) + T (k) (2.1.26)
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T2 (p) =T (p) + TR () + TX (p) 2.127)

T () =T () + & () + TR (q) (2.1.28)

siendo las transformaciones anteriores una generalizacion a tres particulas de las vistas para dos. Al hacer esto, uno
obtiene un sistema de ecuaciones, del que resultan las siguientes relaciones entre los coeficientes de la MCL y los
de los boosts

Bi =2(A + 2 +243) B, = —2A3 —nlt—nk (2.1.29)
N=M+20L+24—-1nF  p=Mh+2L+24-n%  p=nt-nf (2.1.30)

Con esto, podemos hallar las relaciones que existen entre los coeficientes de la MDR y la MCL (las «reglas de
0ro»)
u==p  w=nt+trn-pH (2.1.31)

Estos resultados dan condiciones necesarias y suficientes que se deben cumplir entre los coeficientes de la MDR y
de la MCL, y que concuerdan perfectamente con la obtenida en [15]

ou+o+pi+h—n—1n=0 (2.1.32)

como una condicidn necesaria.

2.2. Cambio de variables

Desde que se formulé DSR, ha habido una gran discusion acerca de lo que ocurre al hacer un cambio de
variables. Muchos argumentan que DSR no es mds que SR formulada en otras coordenadas como puede verse
en [16], mientras que en [2], por el contrario, se dan argumentaciones en contra de poder realizar este cambio de
variables, ya que las variables momento tienen un significado fisico.

Partiendo de SR, consideremos el cambio de variable més general posible y veamos si podemos llegar a las
relaciones obtenidas en el apartado anterior. El cambio de variables mds general que garantiza que la relacién de
dispersion s6lo dependa del propio momento es el siguiente:

8 5 &, Vi
P = — —=p°+-—p4 2.2.1
0=pot 3Pyt P F P (2.2.1)
& vk vk
P, = pi+ - popi+ leoq,- - ngijkp 4k (2.2.2)
8 5 &, Vf
= — —¢-+—q.p 223
Qo=qo+ a0+ 4" +-,-4.p (2.2.3)
5 VR VR
Qi = gi+ —-q0i+ —-qopi+ 3 Eijud Pk (2.2:4)
De hecho, la relacién de dispersion en las nuevas variables es
- 26 2(8,— 6
BB D 280 e (2.2.5)
A A
por lo que podemos identificar aqui que
o) = 251 O = 2(52 — 53) (2.2.6)
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Si ahora vemos cémo deben ser los boosts con estas nuevas variables y los comparamos con los obtenidos
anteriormente, vemos que podemos hacer de forma simultanea que la ley de dispersion y los boosts sean los de SR.

En particular,

Si=-M-M-20  S=A  S=—(M+hi2d)  vER=nbR

1

Calculamos ahora la composicién de dos momentos

o & . 26, VL+VR—252 o
Py+ Qo = Po+q0+A(po+qO)2+A(p+q)2Apoqo+(llA)p.q
% Vi =8 Vi — 8 vh — VR
P+0Q; = pi+qi+ X(po +q0)(pit+qi)+ (11\)190(1,- + (lA)qopi + (2/\2)8ijkPij

e introducimos la MCL

) 26 viE4vR_26,
(p@CI)OZPoJrCIo—AIPOCIoJr(llA)

(Vi = &) (Vi —83) (Vi —v;
A poqi + A qopi + A

pq
R

(PDq)i = pitaqi+

Con esta definicion,

EijkDjqk

1
Pro=(o0+0 ()
y, simultdneamente, cumple la condicion necesaria de que

(PDg)(g=0) =P

Los coeficientes B’s y ¥'s en funcién de los coeficientes del cambio de variables quedan de la forma

Bi= 28 Pr=virvio25

L R L R
Nn=vi—8& L=V —& B=V,—V;

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)

(2.2.15)

Vemos que las relaciones entre los a's, B's y ¥s y los A’s se satisfacen trivialmente, incluidas las reglas de
oro. Esto quiere decir que, a no ser que uno considere que las variables momento tienen un significado fisico, uno

podria con este cambio de variables obtener SR.

3. Modelo a segundo orden en A

Ahora cabe la pregunta, ;por qué ir a segundo orden? Tenemos varios tipos de argumentos para considerar esta

linea de investigacion:

= Desde un punto de vista experimental, hemos visto en el apartado del retraso de tiempo de vuelo de fotones
que los ultimos experimentos imponen fuertes restricciones de posibles desviaciones a primer orden, lo que

puede significar que éstas empiecen a segundo orden.

= El andlisis del espectro de neutrinos cosmolégicos detectados por IceCube parece poder describirse en tér-
minos de fisica Planckiana con efectos de violacion de Lorentz proporcionales a M, 2ynoaM b ' 221].

= Desde un punto de vista tedrico, en el marco del SME (modelo estdndar extendido), los operadores de dimen-
sién 6 (proporcionales a Mp 2), a diferencia de lo que ocurre con los de d = 5, conservan CPT y no precisan
de ajuste fino en el marco de teorias SUSY para evitar violaciones de invariancia Lorentz a bajas energias
([23] y [24]). Esta es una motivacion tedrica para pensar que los efectos de violacién de invariacia Lorentz

empiezan a orden My 2,
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= Hemos visto en la introduccién que al tener en cuenta la gravedad en el experimento del microscopio de Hei-
senberg, aparecian correciones proporcionales a G o< My, 2 en las incertidumbres en las medidas de posicién

[6].

= Desde un punto de vista heuristico, hemos visto en la seccién anterior que si uno no tiene en cuenta que
las variables momento tienen un significado fisico, uno puede obtener la modificacién més general posible
mediante un cambio de variables. Si nos atenemos al punto de vista geométrico (como la curvatura del
espacio de momentos), sabemos que hay efectos nuevos que apareceran a segundo orden. Sabemos que en
GR, al considerar un espacio-tiempo curvo, uno puede hacer de forma local un cambio de coordenadas en el
que la métrica sea la de Minkowski y que la primera derivada de la métrica con respecto al cuadrivector x*
sea nula, quedando huellas de la curvatura del espacio en las derivadas segundas de la métrica.

Estas consideraciones permiten justificar un estudio como el que aqui se presenta, en el que consideraremos que
las primeras correcciones aparecen a segundo orden.

En esta seccién, procederemos de forma semejante al caso anterior, pero veremos que los resultados obtenidos
son cualitativamente diferentes.

3.1. Principio de relatividad

A segundo orden en A, la relacién de dispersion mas general viene dada por
_ (0%} oy - Os N2
C(p) ==+ 5po+ 300 (P —P°) + 55 (05— ) (3.L1.1)

y la ley de composicién mds general compatible con la invariancia rotacional es

k@p@q\o—ko-l-po-i-cm—i- hs (ko( +q )+po?12) +ﬁi<qo (%24-172) +p022>

/35 Bs ([ (- - =\ B
+3 (kok (P+q) + popq) +57 | 004 (k - p) +popk | + 5 (40 (3 +K5) +K5po) +
BS B9 ﬁlO_’_, Bl] B]Z [313
3 (ko (PG +45) + Pods) + \5kopodo + 5 ko + = kipo+ 2 Pako + S5 k(P AG) (3.1.2)

Y4 Y5
k& p@qli=ki+pit+git+ 5 (K (Pi+a) +p5a) + 5 <Q3 (ki+ pi) +p3ki> +

LZ (koki (po+qo) + popiqo) + % (Popi (ko +qo) +kopopi) + ZQ (k ik (P+q) + plpq) +

A
ZZ (qzq (k+p) +pzpk) 23 (kz (pi+qi)+P qz) E (@ (ki+ p) + Pki) +

N4

“ €ijk (90q; (ki +qi) + pop ki) + A2

Yie N1z s 7/18 Taa o 120

Az th A2 o Pi Q+ A2 A2
donde la forma de la MCL garantiza que cuando uno de los momentos es cero, la composicién de los tres se reduce
a la de los dos restantes, y que los coeficientes de la composicién de dos momentos son independientes de dichos
momentos.

UE: = &ijk (kokj (px +qi) + popjar) +

AZ 25 kopogi + 3/\2 pikoqo+

Y3
A2

- Y21 Y22
kipoqo + D 1ipd + D koe; kDjqk + A2 Pogijiq ki + A2 08 jkk Dk (3.1.3)
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Implementemos ahora el principio de la relatividad con esta relacién de dispersion y estas leyes de composicion
modificadas. A segundo orden, la forma mas general de la transformacion de una particula, que depende de tres

pardmetros &, es

[T(P)]o:l?o—i-(ﬁ-g) (14_% 0+ H2 ——2)

B3 5, Ha >+u

Us H7
[T (p)l;=pi+& (P0+A2P0+A2P p A2 Popi (P 5) AzP(%&jkPjék"‘ﬁngijkpjgk

Imponemos que se reproduzca el dlgebra de Lorentz, obteniendo las siguientes relaciones entre los tt”s

He=H7=0 Us=p =2l +3U3 Hs=—[

por lo que finalmente vemos que los boosts nos quedan
S 7 23 Mo
Tl =po+ (PE) (14+ 558+ E272)

~ -2l +3 g
[T (p)l;=pi+& po+“ipo “ﬁpopz I ) “ﬁ B popi (P&
A A

La invariancia de la relacion de dispersiéon modificada impone que
03 = =2l +2U3 Oy = — +4U —3U3

Para el caso de una transformacion al sistema de tres particulas, tenemos que
1 ~(1 2 = (2
T () =TW+ T3 ®) 18 () =T (0 +75 ()

7 (q) =T (9) + 1) (q)

con
— 1 — — ~ 1

b (k) =Ty (k) + T} (0) + T (k)

— 2 — — ~ 2

T2 (p) = TR (p)+ TE () + T2 (p)

=3 — — ~(3

15 (@) =T (@) + T} (9) + 1) (@)
Estas transformaciones de la forma més general toman las siguientes expresiones

T 0], = g3 (8) + 23 77 (RE) + 243 () + K472 (58) + Btopo (£E) +

%6k <k<§> kopo(p§> izkp<4§> igzko(kxp)éJrLzPo(kXﬁ)g

L
TpL (k)‘ X“ko 0&i + xlzkopoéz kapkoé, kPP051+X125k2P05i+

Ko 28+ X kop, (7€) + Ak, () + Xokop, (58) + Lkip, (58) +

X5 X5 2 X0 a7z, 3 X35
Fk (k X P) &+ AP (k X ﬁ) g T2 kosljkpjék +2 ZSkE gijkkjpr + Fkopoeijkpjéﬁr

L L L

X X7 X29
26 P§ EijkkjPk+ 73 227 pocijik & + kopo& ik i Ex +5 kokzP§ + Fpopzké
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(3.1.4)

(3.1.5)

(3.1.6)

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)



T80 0] = 21 hopo (78) + 22 hoao (58) + 2 oo (RE) + 24 (k5) (a8) + 2, (k)
)fél)(%) <k§>+%7( | ko (B x )&+ A(Z)P <k><f_i)g+gié;)610 (zxﬁ>g+)i{(é)kOP0405
Tyg (k) ‘i 1l =5 kopogo&i + %(l) (k X P) g&i+ X%) kopgéi + X1(4) 2 kpo&i+ %%) kpqo&i+

¢ ) 1) (1) (1) (1)
X X X19 X0 =7
Sk kE pogi + %‘ k§p1q0+ 218 5E kigo + 5 219 pEkog; + + 3 G&kipo+
(1) (1) (1 0 W

X1z X 123 Nz X 2 X
" 221 GE kopi + el (k X p) E+25pi (k x q) &+ 25ki (P % §) &+ “5-koposijd &t

@? 27 28 7z 0 oz 20z
ﬁkOQOEijkpjgk + TZPO‘IOgijkkjgk + ﬁké EijkPjqk + ﬁﬁé & jkk jqi + ﬁ?é €ijick jPi
y de forma similar para el resto de expresiones.
Ahora, pedimos que

obteniendo que

(1)

1
X =1 =X0=Xn=Xn=1X Y

=7 (n_ ) ) ) (1)

=X7 =X =Xis = X0 =X22 = X3 = X2 =0
XI =X X=X Xi=2X% X5=2Xh X&=2Xi3+2Al

X=Xl X5 =2X5 Xo=X35 Xa=—X Xis=—Xi

W) ' =x BV =xld x' =1y 1’ =x3

1 1 1 !
6 =18 x =2 ai=-x26 ns=-xn7

Siimponemos que se satisfaga el dlgebra de Lorentz llegamos a las siguientes relaciones

X

1
X=HE= A =X =X0 =X X5 =X =X =X X6 = A= 54
s =A== X0 M= — X = — X = X5 X5 =—Xas = —Xw =Xio X5 =Xl =0
1 1 1 1 1 1 1 1 1
B - = =l =g =0 = = =1 Y =y

1 1 1 1 1 1 1
=20 ) =-ny w -y =xy —x+al) =

Haciendo un cambio de notacién, nuestra transformacion queda finalmente de la forma

01, (4 (8) () 5 (6 9) om0
% o) +9(60) « 08+ S )
Ty (k)| = AL2 (kopofz kppo&i +kopiPE + popike ) AL2 <koP0§z K poi+
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3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

(3.1.22)



- L — —
thip, (RE) +kok,-p*§> S (KBpo&i—Kikof+ 2kopi (KE) ) +

AZ
/%Lz (k(z)gi D& — kopotijek; & — K€k jpk) + ;;SLQ (kopoé‘ijkp & — pRek & — PE ek ij) (3.1.23)
78 0], = S (o () + (1) (72)) + 5 ((57) 38) - (30) (72))
+ji)po (%xq)§+i‘$qo (%xﬁ)é (3.1.24)

(1) (1)
Tyy (k)‘l, = ﬁ (kopoqoé‘i—kqpo§i+k§poqi+p€‘koql> A2 (kqpoél kpqo&i — k& poqi + k& piqo—
(1)

1)
2 = 7 = T 2
PEkogi +61§kopi) + = (koposl,kq/ & — poqo&ijik &k + PE SijkijIk) + 7/‘{2 <k06]08ijkpj§k — Poqoéijkk i&x — G& Sijkkjpk>

A2
(3.1.25)
Para que se cumpla
kdpdqgdr=0 (3.1.26)
debemos tener que
ﬁ - - -, - -, B4 ' — —
ko=—po—q o—r0+A2((Po-HIo-Ho)(P2+612+r2)—170(q2+r) 907) = 53 | 70 (P* +7°) + 0P+
o o = o o o oy | oy . 6 [ 1= = ==
(po+qo+ro)(P+q+r)2> —fsz ((p+q+r)2(po+qo+ro)+po (pq+pr)+qoqr> +ﬁ2<(p+q+r)qqo+

- o o - S o o - — s 7
(P+G-+7)Ppo+ (P+G+T7)Fro — paqo — prro —qrro> - % (p3 (g0 +r0) +qgro+ (po+qo+ro)3) +

Bs Bo
v ((po+go+710) (P5+a5+15) — o (a5 +75) — qorg) + ~5 2 ((po+qo + ro) (Pogo + poro + qoro) — pPogoro) +
Bio, /e o e o Buii e o e .
F((PJMIJFF)(PC]OJFPFOJFC]FO)—quo)+F((P+6]+r)(CIPo+r6]0+rpo)—P7610)+
2 o
Bl 5 ((po+qo+r0) (PG + pr+Gr) — Grpo) (3.1.27)

4 S
ki=—pi—qi—ri— % ((Po+ g0+ r0) (pi+gi+ )+ pi (i -+ i) +airi) + % ((p%+q§+r3) (Pi+gqi+ri)—
15 (pi+aqi) — q(2)Pi> ,?\/2 (popz (g0 +70) +qorogi + (po+qo+7r0)* (i +qi + ri)) -

g 5
% ((po+qo +ro) (popi + qogi + rori) — Poqoqi — Porori — roqori) — % ((p +G+7)? (pi+qi+r)+
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o s 9 - S o o - - e = NN
+piB (G+7)+ qFQi> + % (B+G+7) (Ppi+dqi +7ri) — Pgqi — prri — 7gr;) —

0 (/o o 2 I, B 2\ N1 /22 =2, < — G T
—ﬁ((P—i‘Q‘H) (Pi+6]i+ri)+l?i(q2+r2)+61ir2)+ﬁ((P2+612+r2)(Pi+6]i+ri)+61ipz—ri(P2+q2))—
T2 N3
_ngjk(POPj(Qk+”k)+QOQj”k)+ngjk(POPj(Qk‘f"‘k)+QOQj"k)+
14 15
% ((po+ g0+ ro) (pogi + qori + pori) — poqori) + % ((po+qo+ro) (rogi + qopi +ropi) — poroqi) +
Y6 N7 i = o o S S e
2 ((pi+qi+ri) (pogo + poro + qoro) — roqopi) + 2 ((P+G+7) (Pqgi+ Gri+ pri) — pqgri) +
N8 /10 = Ny = o R Y19 s oo o oo
p((p+q+r)(rqi+qpf+rpi)—prqz')+p((pi+qi+n)(m+pr+qr>—rqpi)+
Y20 721
2 ik ((Po+qo+70) (Pja + 47+ Pjri) = Podjre) — 5 €ijk (Pop i+ Pop i+ 4od k)
V22
_Feijk(CIOijIk‘i‘fIOpjrk‘f”’O(Pjrk+Pij+51jrk)) (3.1.28)

Ahora imponemos el principio de relatividad, que es la siguiente ley de conservacién

kopogor=0 = T, 0o’ (Pt (a1 (=0 (3.1.29)

lo que da lugar a un sistema de ecuaciones, de las cuales sdlo son linealmente independientes las siguientes:

Bs=PBs+Bs—Bs—V+v—Y+1—2K+2%—2%0+2%1,B7 =B —%+%— Yo+ i (3.1.30)
M2 — :—ﬁ4—35—338+ﬁ9+@+@+@+}’4+%+2Ys—3Y9+2Y10—3}’11—m—ﬁ—m+m+m+@
3 3 3 3 3 3 3 (3%31)3

2n4  2%s 2%

4By 2 2 2
Bo | 2P , 2Pu [;12+2y4+2y6+478—479+4m—4%1—

3=t = 2By =2fs —4Ps+ =+ =+

3 3 3
(3.1.32)
i —tF— R — R 1] =284+ Bs+Bs+3Bs — Bo—Bio—Bii — % — %6 — 2% +2% — 2%10 — 2711 + Y16 (3.1.33)
ottt —p—p+r—r+r—1+710-" (3.1.34)

75 *Tfe*‘rszfgLJrTl(z) =2B4+2Bs+3Bs —Bo—Pio— B2~ —Y%—3%+3w—370+3Y1+%s (3.1.35)

4
ul—rf—2fﬁ+f§—f§+f§”+f§2)=2B4+ﬁs+B6+3l38—B9—§“’+ﬁ3“+ﬁ312—%-—77—78+

_ Na Vs Mo  2N7_ Vs Mo
Y —2%0+2%1+ 3 + 3 + 3 + 3 3 3 (3.1.36)

H1 +T1L—27f€—72L—T3L+Tl(3) =2B4+3Bs —Bo+3Bs—Po—Pi1 — P2 —2%+V— Y% —41R+40 —4%0+ 471 + N4

(3.1.37)
2 2 2

TlL—Tfe—Tél)‘FTzG):ﬁs—l%Jrglo—ﬁ;—[3312—Y4+Ys—78+?’9—710+?’11+y;4+y;5—)3/16—}/;7+?3/18—y;9

(3.1.38)

ril) - T3(2) - @Ez) +T3(3) = Yo+, T — T+ T —TE— T3(1) - il) +Ti2) +T£3) =%2—N3+ %1 — Y2 (3.1.39)

De estas ecuaciones podemos realizar las siguientes observaciones:

= Al contrario de lo que ocurria a primer orden, no todos los ’s y ¥'s estdn determinados por los ’s, sino
que algunos de ellos son pardmetros libres, al igual que pasaba con los @'s, en el que habfa un pardmetro
indeterminado (ver (3.1.9)).
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» También podemos ver que sin una transformacién de los boosts distinta de SR tenemos que los pardmetros
de la composicién son en general no nulos.

= Al igual que a primer orden, podemos obtener las «reglas de oro» que envuelven términos de la ley de
composicion y de la relacion de dispersion modificada:

:39 ~ 2B 2Bu 2PBn
3 3 3

24 2%s5  2%e6  2V17 2%is 29
2% +3%0 211 + 3 T3 T3 3 3 3 (3.1.40)
417 4?’18+4?’19

04 =24 +2Bs +2B1o+2P11 +2P12 — 274 — 2% — 418 — 2Y10 — 214 — 2%15 — 2Yi6 + 3 +

+2%+ 2% +4%—

2
03 = —2P4—2B5s —2Ps + ——

3
(3.1.41)

3.2. Cambio de variables

Consideremos el cambio de variable mas general posible y veamos si podemos llegar a las relaciones obtenidas
en el apartado anterior. El cambio de variables mds general es el siguiente:

Ko— kot Vs V2o O L0 O P e

0= 0+p 0+P0 +P 0 (Po+4q0) + A2 (Po‘f'%) EO(P ‘HI) A2 (Po+qo) +
T N O, 6. Oy O .
Ekok(p+q)+pk(ppo+qqo) AszPOQO+ A2 kP40 + 35kdpo+ 5 Pako + — 5k (PAG) (3.2.1)

2 72 9 2 GL 61L4 L

Ki = ki + ki + Rk + A2k o (pita)+-5 A2 > (g5+po) ki+ A2 Koki (Po+qo) + A2 ko (qogi + popi) +

oL ek . el o’ oL, oL

S kik (B+@)+ K (Ggi + Bpo) + - 5K (pi+ai) + -5 ki (B + @) + - F kogijk (pi+q0) + -5 & (40 + popy) kit

15 1 1 1
0 0,, 6. 0 0,, 0 6, 05
A2 “Zkopogi+ -5 A2 3 kogqopi+ A2 -2} poqoki t kpq, t2 kqu t2 2 piiki 2 S kogijep 9k + =5 A2 =2 pot;juq ki + -2 A2 -3 go€ijuk;pr
(3.2.2)
y de forma semejante para los otros dos momentos.
Los coeficientes de la relacién de dispersién que se obtienen al aplicar un cambio de variables a unas variables

cuyas relaciones de dispersion son las de SR son:
03 =2V +2Vo —2Vv3 — 2V, oy = -2V, +2v3+4vy Os = —2V4 (3.2.3)

Para que el cambio de variables preserve la separacion de variables momento en las relaciones de dispersion se
tienen que cumplir las siguientes relaciones entre los coeficientes del cambio de variables:

91L:92L:93L:971:9110291L3:91L7:91Ls:91L9:9214:9217:0
94L = 91L47 95L = 91Lz7 96L = 91L57 981 = 62137 991 = 92127 9111 = 62187 9116 = _01187 9215 = _6216 (3.2.4)

Haciendo un cambio de notacién, el cambio de variables mas general es

Vi oy 8P 8 -
Ko = ko -+ k0+—2k0k2+A—12k2(po+qo)+A—szok(p—i-q)—l-

A2

Sk sl sl sl
k (Ppo+dqo) + Af“zkﬁqo + A%képo + A—%k(ﬁ AG) (3.2.5)
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Sk o , oL S)
Ki=ki+ Azkzk + Azkzk + 2zkoki (po+qo) + AZk 5 (Pitai)+ A%ko (qoq,-+popi)+A—42koqopi+

54 : 5t ) 5L 5t
Azkopodi+ 23 S ko&ijkpjgk + 5 (k k(P+q)—k (pi+ qi)) + A2 kogijk; (Pr+aqr) + A2 ik (q09;+ pop;) ki +
1 - 5} 5,
A2 (kp% kszi) A2 pOgl]kq;kk + A2 QOez]kk/Pk (3.2.6)

Si ahora vemos cémo deben ser los boosts con estas nuevas variables y los comparamos con los obtenidos
anteriormente, vemos que tenemos una correspondencia entre los pardmetros de la ley de transformacién para unas
variables momento que resultan de aplicar un cambio de variables a unos momentos que transforman linealmente

M =V3—=3v; =2V, 2 =Vs—V Uz =V —V3 (3.2.7)
I L Y (3.2.8)
T=-8 -8, 11=8,-8},ti=8-8/,7t=5,—-8 (3.2.9)

Veamos qué ocurre ahora para la ley de composicidén de los momentos que se obtienen mediante un cambio de
variables sobre unos momentos cuya ley de composicién es aditiva. Los 30 coeficientes ’s y ¥'s en funcién de los
34 coeficientes del cambio de variables quedan de la forma

Bs=8—va,Ba=08—v2,Bs =8 +& — ZVZ,ﬁ6:63L+5§—2vz,B7:B8:—3v1,59:_6v1
Bio=8 +87 2w, Bi1 =84 +8 —2vy, Bo=824+83 —2v», Bz =8 — 62+ & (3.2.10)
7’4:52L—V3,}’5=5§—V3,76=5§+51L—2V3,Y7253L+51—2V3,}’8=57—2V4,79=57R—2V4
Yio=—8F — vy, 11 ==K — vy, Yo = SE+ 88 yi3 = SR+ 8L e = 88 + 82 —2v3, 715 = 8] + 83 —2v3
Yo = 85 +8; —2v3, N7 = 8o+ 87y — 24, Vis = 87 — Sl — 24, Yio = — iy — Sip — 2v4
Yoo =8 — 87+ 871, 11 = 8l — & + 8%, 2 = 8L, — S + & (3.2.11)

Si ahora sustituimos en las relaciones (3.1.30)-(3.1.41) este cambio de variables, vemos que las ecuaciones se
satisfacen de forma trivial como era de esperar, pues al aplicar un cambio de variables sobre SR se ha de obtener
una ley de transformacién y una ley de composicién compatibles con el principio de la relatividad, lo que constituye
una buena comprobacion.

Uno puede extraer las siguientes relaciones entre los coeficientes B's y ¥'s de la ley de composicién que se
obtiene a partir de la ley de composicién aditiva mediante un cambio de variables:

Br+Bs—Po=0  PBr—Ps=0 (3.2.12)

(Bs+Ba+Bs+Bs) — (Bio+Bii +Bi2) — (Ja+¥+%+71)+ (Via+¥s+7e) =0 (3.2.13)
Bs—Bs—Bs+Bs+1m—Y+%—r=0 (3.2.14)

B—Y+Y0— %1 =0 B+Y+Yo0+ Y1 —Y7—Y8—Yo=0 (3.2.15)

Esto quiere decir que hay s6lo 24 combinaciones linealmente independientes de los 30 coeficientes que aparecen
en una MCL obtenida a partir de un cambio de variables. Vemos por lo tanto que, al contrario de lo que ocurria
a primer orden, no toda MCL puede obtenerse a partir de una ley de composicion aditiva mediante un cambio
de variables. Si comparamos estas relaciones con las obtenidas al implementar el principio de la relatividad en el
apartado anterior, vemos que antes teniamos sélo 2 (3.1.30), mientras que ahora tenemos 6. Puede comprobarse
facilmente que las 2 relaciones en (3.1.30) estdn contenidas en este conjunto nuevo obtenido mediante cambios
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de variables, como era de esperar. Introduzcamos ahora una representacién de cada ley de composicién mediante
un vector con (30) componentes para cada uno de los coeficientes (fBs, ..., B13, V4, ...,122) y representamos cada
relacién mediante un vector ortogonal al vector que representa la ley de composicién. Por ejemplo, el primer vector
correspondiente a la primera relaciéon de (3.2.12) tiene todo componentes nulas salvo las componentes 5, 6 y 7
que se corresponden con las posiciones que ocupan los coeficientes 37, Bs y By en el vector definido arriba que
valen 1, 1 y- -1 respectivamente. A los vectores correspondientes a las relaciones (3.2.12)- (3 2. 14) los denotaremos
por lcv, 6cv y a los de (3.1.30) por 1 Rp,2Rp Entonces podemos escribir los vectores 1 Rp,2Rp en funcién de
losch,. 6CV

Trp=2cv+5cv  2rp=4cv +2% 5S¢y (3.2.16)

La conclusién que puede obtenerse por lo tanto es que no toda cinematica relativista estd contenida en un
cambio de variables. Esto no ocurria a primer orden. Dado que tenemos 6 relaciones entre los coeficientes de la
MCL mediante el cambio de variables y 2 al imponer el principio de la relatividad, tendremos 4 pardmetros libres
irreducibles en nuestra MCL asociados a cada uno de los 4 vectores perpendiculares a los 2 obtenidos mediante el
principio de la relatividad, que son:

- - - - - - - - 1—» 1—»
1Irrep = lev 21rrep =3cv 31rrep = 6cv 4Irrep =2cv + §4CV - ESCV (3.2.17)

De esta manera determinamos las 4 combinaciones de coeficientes 8’s y ¥'s que no pueden eliminarse con un
cambio de variables. Pueden utilizarse pues 24 de los 34 coeficientes del cambio de variables para eliminar 24
combinaciones linealmente independientes de coeficientes de la MCL. Podemos usar otro coeficiente para eliminar
a5 de la relacion de dispersion. Los otros 9 los podriamos utilizar para eliminar parte de las transformaciones de
Lorentz no lineales, pero seguiria habiendo pardmetros completamente indeterminados.

La MCL irreducible puede escribirse como una combinacién lineal de estos vectores, por lo que se pueden
construir distintas MCL. Tomemos como ejemplo la MCL irreducible construida a partir del vector 1 Irrep

k® p®qlo=ko+ po+qo+

% (90 (P +K3) + kg po + ko (P§ +45) + Pods — kopogo) (3.2.18)

k& p®qli=ki+pi+qi (3.2.19)

Este caso en concreto, vemos que la ley de composicion es conmutativa (esto no ocurrird si aparece en la MCL
el vector 4;,.p,). Entonces ahora nos podemos preguntar qué ocurre con las transformaciones de Lorentz. Si vamos
a las relaciones (3.1.31)-(3.1.39), vemos que

16(01

U — [ = —4@y, U3 — U] = — i th—R k1l = 4w, (3.2.20)
bRy tb ) o=t —f -tV ¥y —f b - dP = —de, (3.2.21)
w—tR—2tb 4R btV P = sy, ot —2ef — k- b 1Y = —de, (3.2.22)
R B L | Ny Y S Oy O S (3.2.23)

y en cuanto a la relacion de dispersion
o = —?, o =0 (3.2.24)

Una solucién muy simple de (3.2.21)-(3.2.24) corresponde a que todos los coeficientes T’s se anulan. En ese caso
los 1’s quedan determinados. Por lo que resumiendo, tendriamos una cinemadtica muy sencilla en la que la MDR,
la ley de transformacién y la MCL serian
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Cp)=po—P" = 3,300 (3.2.25)

[T (p)lo = po+ (ﬁ-g) <1 + Lt\a;lp%) (3.2.26)

[T (p)l;=pri+é& (Po - ;LAw;p?)) (3.2.27)
k®p®qlo=ko+ po+qo+

% (qo (p% + k(z)) + kg po + ko (P(% + 615) + pogg — kopoqo) (3.2.28)

k& p®qli=ki+pit+qi (3.2.29)

Acabamos de ver un ejemplo para una ley de composicién irreducible, pero en realidad lo que tendriamos de
forma general es una combinacién lineal de las cuatro obtenidas anteriormente.

Estos coeficientes podrian obtenerse experimentalmente, y también mediante experimentos se podria ver si la
composicién es 0 no conmutativa.

4. Modificacion del algebra de Heisenberg

En este apartado vamos a explorar una forma de ir mds alld de SR distinta a la deformacién de relaciones de
dispersion y leyes de composicion, y que estard intimamente relacionada con la estructura del espacio-fase, y por
tanto, del espacio-tiempo. Nuestro objetivo sera tratar de formular unas relaciones de conmutacion que generalicen
el dlgebra de Heisenberg y que permitirian describir los efectos del experimento mental extension del "microscopio
de Heisenberg", tal como describimos en la introduccion.

Partimos de las relaciones de conmutacién mds generales para el dlgebra de Heisenberg a segundo orden

. €1 & . &
o, po] = =i (14+5P3+37°)  [o.pil = i5pop (4.0.)
&4 . & & &7
[xi, po] = i aPopi [xi, pj] =i <5ij (1 + Azp(2)+ A2p2) +tAzPiPit A2PO£1]kPk> (4.0.2)
€10 €14
[x0,%;] = ( Az Poxi+ AzXopHr 2 El]kxjpk) i, xj] = ( Azpo&]kxw Alepﬂrﬁpiijr AZXOSkaPk>

(4.0.3)
Para determinar las relaciones entre los coeficientes, aplicamos las identidades de Jacobi obteniendo en los
casos en los que no se satisfacen de forma trivial

Xi, Xj, X = €15=0, €14 = —€13 X0, Xiy Xj = 2€11 = €2 4.0.4)
Do, X0, Xi = €10 = &4 —2& (4.0.5)
Dis X0, Xj = € = —€)1, & = —& — 2&;5 Diy Xj, X = €13 = —26+ & (4.0.6)

Vemos que estos resultados contienen el dlgebra de Snyder [3],

] 1
[xuaxv] = _é-]uv [xuapv] =i <nuv - AZPqu) (4.0.7)

pero son mds generales. También incluyen otras relaciones exploradas tedrica y experimentalmente como en [21].
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Ahora hacemos el cambio de variable mds general en las x's siendo éste

2
fo =0+ R o+ 15 P2+ B3 55m0 (4.0.8)
4 S5
fi=xi+ iz Poxi+ ﬁz Poxi+ ﬁz poxopi + ﬁz Xppi+ iz POEijiXj Dk (4.0.9)

Queremos que en estas nuevas variables se satisfaga el dlgebra de Heisenberg usual, por lo que imponemos que

[%0,%] =0 = € =2ps+p3, €10 =2p2+Ps, P = O11 (4.0.10)
[%i,%j] =0 = €13 =2ps —p7, —2ps = €12 (4.0.11)
[X0,po] = —i = —€1=p1,—&=p2 (4.0.12)

[Xo,pi] =0 = —& =p3 (4.0.13)

[%i,po] =0 = 04 = ps (4.0.14)

[%i,pj] =i6;; = —&5 =ps4, —€ =pPs, —& = p7 (4.0.15)

Podemos ver que es posible hacer un cambio de variables que nos elimine todos los términos a segundo orden,
por lo que si consideramos que las variables posicién no tienen un significado fisico, podemos llevar esta algebra a
la usual. Otra forma de intentar ir més alld de las reglas de conmutacién usuales es considerar el dlgebra de Hopf,
que incluye al dlgebra de Poincaré como caso particular (un libro basico de dlgebras de Hopf puede encontrarse en
[17], y un desarrollo aplicado a las relaciones de conmutacién en [18], [19] y [20]).

5. Conclusiones

En este trabajo hemos empezando motivando por qué ir mds alld de SR. Existen incompatibilidades entre
QFT y GR que nos impiden tener una teorfa cudntica de la gravedad. Una forma de ir mas alld es considerar
que existe una longitud minima, la longitud de Planck, construida mediante las constantes fundamentales de la
fisica. Al considerar esta longitud minima, la fisica cambia completamente: distinciones entre particula real o
virtual, materia-antimateria, materia-radiacion,... desaparecen a escalas Planckianas. También el propio espacio-
tiempo cambia sus propiedades. Ya no puede hablarse de eventos, ni de distancias de tipo-tiempo o tipo-espacio, ni
siquiera de sistemas de referencia. Hay que visualizar el espacio-tiempo como una espuma que hoy en dia estamos
lejos de poder expresar matemédticamente.

Sin embargo, uno puede intentar construir teorias que nos permitan poco a poco adentrarnos en la gravedad
cudntica, como DSR. En este marco, hemos estudiado primero un trabajo previo que considera desviaciones res-
pecto a SR a primer orden en la expansién, para poder reproducir los calculos a segundo orden. Hemos encontrado
que a segundo orden los resultados difieren enormemente de los primeros:

= A primer orden, los pardimetros de la MCL y de la MDR estdn completamente determinados por los pa-
rametros no lineales de los boosts. A segundo orden, hay parametros de la MCL y de la MDR que son
completamente libres. De hecho, al contrario de lo que ocurria a primer orden, uno puede tener una MCL y
una MDR compatibles con una transformacién de Lorentz lineal.

= A primer orden, todas las MCL son compatibles con el principio de relatividad mientras que a segundo, no
todas las MCL son compatibles con el principio de relatividad, ya que hemos encontrado relaciones entre los
coeficientes.
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= Si uno no tiene en cuenta que las variables momento tienen un significado fisico, a primer orden puede
llegarse a SR sin mds que hacer un cambio de variables. En cambio hemos visto que a segundo orden,
mediante un cambio de variables no es posible eliminar todos los pardmetros de la MCL. Encontramos
toda una familia de MCL con cuatro pardmetros independientes, los cuales podrian determinarse mediante
observaciones experimentales. También encontramos que los pardmetros de la ley de transformacién no
pueden eliminarse mediante un cambio de variables y que el principio de la relatividad nos impone tan s6lo
condiciones para algunos de ellos.

Como hemos visto, los experimentos actuales ponen fuertes restricciones a posibles desviaciones a primer orden,
pero en un préximo futuro podrian ser sensibles a desviaciones a segundo orden. La extension natural del presente
trabajo seria tratar de analizar implicaciones de un modelo sencillo con leyes de composicién irreducibles a segundo
orden compatible con el Principio de Relatividad, como el presentado al final de la seccién 3, en experimentos
de observacion de fotones de rayos-gamma (MAGIC, Fermi) y de neutrinos cosmoldgicos de muy alta energia
(IceCube).

Por tltimo, hemos estudiado la forma mas general que tienen las leyes de conmutacion en el espacio de fase,
viendo que, en el caso en el que uno no considere que las coordenadas tienen un significado fisico, mediante un
cambio de variables uno puede obtener las relaciones del dlgebra de Heisenberg usual. Esto no est4 en contradiccién
con lo visto en la seccién del modelo a segundo orden, ya que a diferencia del modelo de DSR estudiado a segundo
orden, en el que resulta crucial considerar la composicién de varios momentos, en el tratamiento final del dlgebra de
Heisenberg estdbamos considerando tnicamente el sector de una particula. Ir mds all4 del sector de una particula
en este lenguaje algebraico requeriria considerar dlgebras de Hopf, un trabajo que esperamos desarrollar en un
proximo futuro.
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