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Resumen

Uno de los grandes retos de la física actual es la unificación de la Relatividad General (GR) y de la Teoría
Cuántica de Campos (QFT), o, equivalentemente, la formulación de una teoría cuántica de la gravedad. Ambas
teorías, bien comprobadas experimentalmente el siglo pasado, presentan incompatibilidades fundamentales que
tienen su origen en el papel que el espacio-tiempo presenta en ellas (es una variable dinámica en GR, y un marco
estático en QFT).

Ha habido numerosos intentos de formular una teoría de gravedad cuántica, como teoría de cuerdas, gravedad
cuántica de lazos, teoría de conjuntos causales, etc. En algunos de estos contextos el espacio-tiempo adquiere
una estructura fundamental, característica, y bien distinta a la noción de espacio-tiempo continuo de Relatividad
Espacial (SR). Sin embargo, ni la dinámica de estas teorías se comprende en su totalidad, ni son fácilmente
contrastables con observaciones experimentales.

A principios de siglo comenzó a desarrollarse una nueva teoría que aún está germinando, la Relatividad
Doblemente Especial (DSR). El punto de partida de esta teoría es muy diferente a los anteriores: se plantea, no
como una teoría fundamental, sino como un límite de bajas energías que trata de capturar elementos residuales
de una teoría de gravedad cuántica. En particular, en DSR se generaliza el principio de relatividad einsteniano
añadiendo a la velocidad de la luz c un nuevo invariante relativista, la longitud de Planck lP. Esta idea sí puede
tener implicaciones observables experimentalmente, dando lugar a lo que se conoce como fenomenología de
gravedad cuántica. Por otro lado, DSR implica la existencia de relaciones de composición de energía y momento
no triviales, lo que a su vez se traduce en un espacio-tiempo con ingredientes de no localidad, un elemento que
también aparece en otros desarrollos de gravedad cuántica.

En este trabajo haremos primero una introducción a DSR y de los motivos por los que debemos ir más allá
de SR. Estas correcciones a SR pueden plantearse como un desarrollo en serie de potencias de una escala de
alta energía, típicamente, la energía de Planck. Así, haremos a continuación un estudio de un trabajo previo
de lo que ocurre al considerar desviaciones de SR a primer orden en esta escala al implementar un principio
de relatividad con relaciones de dispersión y relaciones de composición de energía-momento modificadas, los
ingredientes esenciales en DSR. El principal objetivo del trabajo será, partiendo del estudio anterior, ver cuáles
son las implicaciones de correcciones que comienzan a segundo orden en la escala de Planck, lo que sería
coherente con observaciones experimentales recientes.
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1. Introducción

1.1. Motivación

Desde los primeros comienzos de la física, siempre se han observado hechos y se han intentado desarrollar
teorías que pudieran dar cuenta de ellos. Como una muñeca rusa, la realidad ha revelado una vez tras otra capas
de escalas cada vez más y más pequeñas. Esto nos lleva a la siguiente pregunta: ¿continuaremos explorando más
de cerca la estructura de la naturaleza llegando a encontrar más capas? ¿O hay un límite fundamental para esta
búsqueda más allá del cuál no se puede ir? Y si es así, ¿este límite está basado en argumentos teóricos o se debería
a problemas experimentales?

Cualquier respuesta a esta pregunta tiene que incluir no sólo la estructura de la materia, sino la estructura del
espacio y del tiempo en sí mismos, y por lo tanto, tiene que incluir la gravedad. Al igual que existen constituyentes
fundamentales de la materia, ¿ocurre lo mismo para el espacio-tiempo? ¿Existen «átomos» del espacio? Y también
hay que tener en cuenta que medir distancias más cortas requiere concentrar energías grandes en volúmenes pe-
queños, y cuando la densidad de energía aumenta, uno no puede despreciar la curvatura del espacio, por lo que la
interacción gravitatoria es indispensable.

Desde el descubrimiento de la mecánica cuántica, los físicos, al desarrollar la teoría cuántica de campos, obser-
varon que era imposible compatibilizar ambas teorías. Al intentar cuantizar la GR, uno observa que hay infinitos
no renormalizables, es decir, hay divergencias que uno no puede evitar, al contrario de lo que pasa con el resto de
interacciones. La idea de unificación sugiere que debe haber una teoría que englobe a las dos y dé cuenta de las
cuatro interacciones.

Uno podría hacerse esta pregunta: si tenemos una teoría para los objetos masivos (GR) y otra para los más
livianos (QFT), ¿para qué necesitamos una teoría cuántica de la gravedad? Si uno considera una partícula muy
pequeña pero con una gran energía, las leyes que describen su dinámica deberían tener en cuenta no sólo elementos
cuánticos, sino también gravitatorios. Entonces, ¿en qué casos podemos encontrar esta situación? Al inicio del
universo, sabemos que había una gran cantidad de energía en una región muy pequeña. Para poder describir los
primeros instantes del universo en los que existía esta alta densidad, deberíamos tener una teoría cuántica de la
gravedad.

Tampoco sabemos lo que ocurre en el interior de un agujero negro. Un agujero negro es un cuerpo que se
ha dado al colapso gravitatorio debido a la gran cantidad de materia que tenía. Este objeto es tan masivo, que ni
la luz puede escapar de él, delimitando un horizonte conocido como horizonte de eventos. Desde que en 1916
Schwarzschild obtuvo la primera solución a las ecuaciones de Einstein que daba lugar a un agujero negro estático,
se vio que había una singularidad en las coordenadas del espacio-tiempo (que no era posible eliminar mediante
un cambio de coordenadas como ocurría con la del horizonte de eventos). Los agujeros negros son fuentes de
contradicción de estas dos teorías, lo que hace que su física despierte gran interés. ¿Qué ocurre con la información
una vez que se cruza el horizonte? Si uno considera que la información se pierde, está yendo en contra de lo que
nos dice la teoría cuántica. Si por el contrario, la información permanece encriptada en la superficie del horizonte,
la evaporación del agujero negro (proceso que describió Hawking al desarrollar una QFT en espacios curvos), daría
lugar a una contradicción entre estados puros y mezcla. De hecho, una de las posibles soluciones, conocida como
firewall, viola el principio de equivalencia, ya que uno no debería notar nada al cruzar el horizonte de eventos al
estar en caída libre, pero al existir estados mezcla, habría partículas que estarían «quemando» al observador. Otra
pregunta sin respuesta es ¿qué ocurre cuando uno llega a la singularidad? Este es otro motivo para tener una teoría
de gravedad cuántica.

Otro de los problemas que nos encontramos es que en mecánica cuántica uno asume el espacio-tiempo dado
y estudia en todo detalle las propiedades y el movimiento de las partículas en él, tanto de la materia como de la
radiación. En GR y especialmente en cosmología, uno toma el camino contrario: se asume que las propiedades de
la materia y de la radiación son dadas (mediante las ecuaciones de estado) y se describe en detalle el espacio-tiempo
al que da lugar, en particular su curvatura. De hecho, Einstein pensó en poder describir las coordenadas del espacio-
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tiempo mediante el intercambio de señales luminosas, pero cuando usamos este procedimiento, desechamos toda
información sobre la energía de los fotones y presuponemos que el mismo espacio-tiempo está reconstruido por
intercambios de señales luminosas de diferentes frecuencias. Sin embargo, ¿qué pasaría si la velocidad de la luz
dependiese de la energía del fotón, como sucede en varios de los marcos teóricos que tratan de unificar GR y mecá-
nica cuántica? En este caso, la energía de este afectaría a la propia estructura del espacio-tiempo. Presumiblemente,
esta paradoja podría evitarse si se conociese una teoría de gravedad cuántica.

Entre las teorías más conocidas que han intentado esta unificación están la teoría de cuerdas, la teoría cuántica
de lazos, la supersimetría y la teoría de conjuntos causales. Con el objetivo de intentar poner en el mismo marco la
QFT y la GR, nació la DSR (Doubly Special Relativity, Relatividad Doblemente Especial) como una teoría a bajas
energías. En esta teoría, uno considera que existen dos invariantes en todo sistema de referencia: la velocidad de la
luz c y la longitud de Planck lP. Para obtener además de esta longitud, el tiempo de Planck tP, la masa de Planck
MP y la energía de Planck Λ, no hay más que utilizar las constantes físicas de la cuántica h̄, de la relatividad c y de
la gravitación G:

lP =

√
h̄G
c3 = 1,610−35 m (1.1.1)

tP =

√
h̄G
c5 = 5,410−44 s (1.1.2)

Λ

c2 = MP =

√
h̄c
G

= 2,210−8 kg = 1,21019 GeV/c2 (1.1.3)

Otra novedad que aparece en DSR es que es una teoría formulada en el espacio de momentos, no en las coorde-
nadas de un espacio-tiempo y esta limitación parece ser fundamental. Así, aunque en el límite en el que la longitud
de Planck es cero (que es a lo que estamos habituados por los experimentos actuales) uno pueda formular su teoría
en el espacio-tiempo (como la QFT y la GR), al considerar una escala de longitud de ese orden (o lo que es lo
mismo, a escalas de energías del orden de la energía de Planck), uno debe ir al espacio de fases.

También desaparece el concepto de variedad para el espacio-tiempo. SR, QFT y en GR están desarrolladas en
la idea de que el tiempo es un concepto continuo (admite una descripción en términos de números reales). Pero
como hemos visto antes, tenemos una incertidumbre al medir distancias y tiempos que nos impide sincronizar dos
relojes con una precisión mejor que el tiempo de Planck. Debido a esta imposibilidad de sincronizar estos relojes
de forma precisa, la idea de una coordenada de tiempo única para un sistema de referencia es sólo aproximada, y
no puede mantenerse en una descripción precisa de la naturaleza. Tampoco tenemos una forma de ordenar eventos
a tiempos inferiores que el de Planck. Uno por lo tanto se ve obligado a olvidar la idea del tiempo como un «punto»
único también. Por ejemplo, a escalas Planckianas se pierde el concepto de tiempo propio.

De esta manera, tenemos un espacio-tiempo cuantizado, en el sentido de que es discreto y no continuo. Con esto
se pierde el concepto de punto en el espacio y de instante de tiempo, al no poder medir con una resolución mayor
que la escala de Planck. También da lugar a una modificación de las reglas de conmutación (que estudiaremos con
más detalle en la sección 4), ya que la resolución en la medida de tiempo y espacio tiene que cumplir

∆x∆t ≥ lP tP

Uno tampoco podría determinar la métrica a estas escalas, perdiendo la noción de curvatura. Es decir, la im-
posibilidad de medida de longitudes es exactamente equivalente a fluctuaciones en la curvatura. Uno por lo tanto,
podría imaginarse que el espacio-tiempo es como una espuma a escalas muy pequeñas. Las partículas pequeñas
notarían estos efectos debidos a las fluctuaciones cuánticas del espacio-tiempo, siendo cada vez más relevantes a
energías cada vez mayores.

Debido a esta imprecisión en la medida a escalas Planckianas, el concepto de orden espacial, de invariancia
traslacional y la isotropía del vacío, y los sistemas globales de coordenadas, pierden todo respaldo experimental
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a estas dimensiones. Además, el espacio-tiempo no es ni invariante Lorentz, ni invariante bajo difeomorfismos, ni
invariante por dilatación. Todas las simetrías base de SR y de GR son sólo aproximaciones válidas para escalas
mayores que la de Planck.

Tampoco tiene sentido el número de dimensiones. Para determinar experimentalmente el número de dimen-
siones, uno puede observar cuántos puntos puede elegir en el espacio tal que todas las distancias sean iguales. Si
uno encuentra n puntos, el espacio tendrá n− 1 dimensiones. Al no tener una medida certera de distancia no hay
manera de determinar el número de dimensiones a escalas Planckianas con este método. Con todo esto, vemos
que el espacio-tiempo físico no puede ser un conjunto de puntos matemáticos. No podemos distinguir tampoco a
escalas pequeñas si una distancia es de tipo-tiempo o de tipo-espacio. A escalas Planckianas, el tiempo y el espacio
no pueden distinguirse el uno del otro. En resumen, el espacio-tiempo a estas escalas no es continuo, ni ordenado,
ni dotado de métrica, ni cuadridimensional, ni hecho de puntos.

Como el tiempo y el espacio no son continuos, los observables tampoco varían continuamente. Esto significa
que a escalas Planckianas, los observables (o sus componentes en una base) no pueden describirse con número
reales con (potencialmente) infinita precisión. Tampoco los campos físicos pueden describirse como funciones
continuas.

Con esto también desaparece el concepto de partícula puntual. De hecho, carece completamente de sentido
utilizar este término. Por supuesto, la existencia de una longitud mínima, tanto para el espacio vacío como para los
objetos, está relacionada con este hecho. Si el término punto en el espacio carece de sentido, también el de partícula
puntual.

Por definición, el tamaño d de una partícula elemental es menor que su longitud de onda Compton

h̄
mc

(1.1.4)

Por otro lado, el tamaño de la partícula es siempre mayor que la longitud de Planck. De aquí podemos ver la
siguiente condición para la masa una partícula elemental:

m <
h̄

clP
= MP (1.1.5)

Esto nos dice que la masa de una partícula elemental no puede exceder la masa de Planck. De hecho, todas las
partículas elementales conocidas lo cumplen. En QFT, sabemos que la diferencia entre una partícula real o virtual,
es si está en la capa de masas o no. Debido a estas indeterminaciones en las medidas, a escalas Planckianas uno no
puede saber si una partícula es real o virtual.

Como la antimateria puede describirse como materia moviéndose hacia atrás en el tiempo, y como la diferencia
entre atrás y adelante no puede determinarse a escalas Planckianas, uno no puede distinguir entre materia y anti-
materia en estos rangos. Como no tenemos rotaciones bien definidas, el espín de una partícula tampoco lo está y
por lo tanto no podemos distinguir entre bosones y fermiones, o en otras palabras, no podemos distinguir materia
de radiación a estas escalas.

Por último, pensemos en la masa inercial de un objeto pequeño. Para determinarla, debemos empujarlo, es
decir, realizar un experimento de dispersión. Para determinar la masa inercial dentro de una región de tamaño R,
se debe utilizar una longitud de onda menor que R con su consiguiente energía. Una energía grande significa que
la partícula se verá atraída debida a la gravedad. Por lo tanto, a escalas Planckianas, la masa inercial y gravitatoria
no pueden distinguirse. Para determinar la masa en un volumen de Planck, se tiene que utilizar una longitud de
onda de longitud lP. En otras palabras, el error en la masa es tan grande como la masa de Planck. Este límite es una
consecuencia directa del límite en las medidas de longitud y del espacio. De esta forma, uno no puede distinguir el
vacío de la materia. Por lo tanto, cuando una partícula con energía la de Planck viaja a través del espacio, puede ser
dispersada por las fluctuaciones del propio espacio-tiempo, haciendo imposible así decir si ha sido dispersada por
vacío o por materia.
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Con todos estos ejemplos, vemos que la física a escalas Planckianas es completamente diferente a la que
estamos habituados y a lo que ni siquiera podríamos imaginar. Hoy en día, parece impensable obtener en un futuro
próximo una teoría que pueda dar cuenta de todo esto. Teorías como DSR podrían arrojar algo de luz en las tinieblas
del desconocimiento.

1.2. GUP: principio de incertidumbre generalizado

Veamos qué ocurre al introducir la interacción gravitatoria en el experimento mental del microscopio de Hei-
senberg. Desde este apartado y en adelante, utilizaremos unidades naturales en las que h̄ = c = 1.

De acuerdo a la óptica clásica, la longitud de onda del fotón con momento ω establece un límite a la posible
resolución ∆x en la posición de la partícula con la que interacciona el fotón

∆x &
1

2πω sinε
(1.2.1)

donde ε es el ángulo de apertura de la lente del microscopio. Pero el fotón utilizado para medir la posición de
la partícula tiene un retroceso cuando se dispersa y transfiere momento a la partícula. Como uno no conoce la
dirección del fotón con mayor resolución que ε , esto da lugar a una indeterminación en el momento de la partícula
en la dirección x

∆px & ω sinε (1.2.2)

Tomando todo esto junto, uno obtiene la indeterminación de Heisenberg (hasta un factor de orden unidad)

∆x∆px &
1

2π
(1.2.3)

Esta es una propiedad fundamental de la naturaleza cuántica de la materia.
Incluyamos ahora la gravedad en este experimento mental. Como hemos visto, la interacción del fotón con la

partícula no tiene lugar en un punto bien definido, sino más bien en una región de tamaño R. Para que la interacción
tenga lugar y la medida sea posible, el tiempo pasado entre la interacción y la medida tiene que ser al menos
del orden de tiempo τ & R. El fotón lleva una energía que, aunque en general es pequeña, ejerce una atracción
gravitatoria sobre la partícula cuya posición queremos medir. La aceleración gravitatoria actuando sobre la partícula
es al menos del orden de

a≈ Gω

R2 (1.2.4)

y, asumiendo que la partícula es no relativista y que es mucho más lenta que el fotón, la aceleración actúa aproxi-
madamente durante el tiempo en el que el fotón está en la región de la interacción, por lo que la partícula adquiere
una velocidad v≈ aR o

v≈ Gω

R
(1.2.5)

Así, en el tiempo R, la velocidad adquirida permite a la partícula viajar una distancia de

L≈ Gω (1.2.6)

Sin embargo, como la dirección del fotón es desconocida con una anchura del ángulo ε , la dirección de la acelera-
ción y el movimiento de la partícula son también desconocidos. La proyección en el eje x da una indeterminación
adicional de

∆x & Gω sinε (1.2.7)

Combinando (1.2.1) y (1.2.7) vemos que
∆x &

√
G = lP (1.2.8)
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Uno puede refinar este argumento teniendo en cuenta que estrictamente hablando, durante el experimento, el mo-
mento del fotón ω aumenta

Gmω

R
, (1.2.9)

donde m es la masa de la partícula. Esto aumenta la indeterminación en el momento de la partícula

∆px & ω

(
1+

Gm
R

)
sinε (1.2.10)

y durante el tiempo en el que el fotón está en la región de interacción, se traduce en una indeterminación ∆x ≈
R∆p/m

∆x & ω

(
R
m
+G

)
sinε (1.2.11)

que es mayor que la anterior indeterminación y por lo tanto se sigue satisfaciendo en el límite en el que uno no
considere la gravedad.

Asumiendo que la indeterminación normal y la gravitatoria se suman linealmente, uno llega a

∆x &
1

∆p
+G∆p (1.2.12)

Este resultado también se obtiene en teoría de cuerdas mediante consideraciones completamente diferentes.
De esta forma, vemos que al añadir la interacción gravitatoria obtenemos un principio de indeterminación

generalizado, lo que da lugar a una modificación de las reglas de conmutación, y por lo tanto, una razón más
para ir más allá de SR. Más adelante, estudiaremos en detalle la posible forma de unas reglas de conmutación que
generalicen el álgebra de Heisenberg usual.

1.3. Fenomenología de gravedad cuántica

A diferencia de otras teorías que tratan de obtener una teoría de gravedad cuántica, mediante experimentos
factibles hoy en día uno podría observar desviaciones de SR. Veamos como se pueden dar estas desviaciones
apreciables.

1.3.1. Retraso de fotones

La energía de Planck (1019 GeV) es mucho mayor que la de los aceleradores de partículas actuales (14 TeV) o
que las partículas provenientes de rayos cósmicos (1011 GeV). Uno por lo tanto podría decir que aunque existiesen
desviaciones respecto a SR, no podrían medirse. Lo cierto es que estas desviaciones podrían tener efectos a energías
mucho más bajas y por lo tanto ser detectables.

Debido a la «espuma» del espacio-tiempo antes mencionada, la estructura de éste a distancias pequeñas puede
inducir un efecto donde dos partículas sin masa de igual energía recorran exactamente la misma distancia en tiempos
diferentes. Estas fluctuaciones cuánticas del espacio-tiempo cerca de la escala de Planck inducirían variaciones
estocásticas de la velocidad, por ejemplo, de la luz.

Estas desviaciones de la velocidad de la luz pueden obtenerse mediante relaciones de dispersión modificadas
(MDR), que pueden escribirse para energías mucho menores que la energía de Planck como

E2−~p2−m2 ' ξnE2
(

E
Λ

)n

(1.3.1)

Al considerar la velocidad como
v =

dE
d p

(1.3.2)
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uno puede comprobar que esto causa un retraso en el tiempo de vuelo

∆t ∼ d
c

ξn

(
E
Λ

)n

(1.3.3)

Este retraso puede medirse para fotones con diferente energía provenientes de un «estallido de rayos gamma (gam-
ma ray burst)». En concreto, en experimentos recientes como en [7] y [8], se toman medidas del GRB090510, y
se busca una dependencia entre la velocidad de los fotones y la energía de los mismos. Como en un gamma ray
burst se emiten fotones a distintas energías, pueden compararse tiempos de vuelo de fotones para intentar ver una
dependencia con la energía de la velocidad de la luz. Estos experimentos parecen descartar efectos a primer orden
(n = 1) y se espera que puedan, en un futuro próximo, ver efectos a segundo orden.

Como ya se ha mencionado antes, al intentar ir más allá de SR, la invariancia Lorentz no tiene por qué con-
servarse. De hecho, uno puede considerar que se viola esta invariancia o que está deformada, como en las teorías
de DSR. A continuación veremos los ingredientes más importantes que DSR añade a una simple violación de
invariancia Lorentz.

1.3.2. Localidad Relativa

Cuando se creó la SR, el espacio-tiempo era llano. Con el desarrollo de la GR, Einstein introdujo el concepto de
espacio-tiempo curvo: los objetos masivos perturban el espacio-tiempo dando lugar a una curvatura. Una pregunta
que ya se hizo Born en su momento es: ¿por qué no considerar un espacio de momentos también curvo? De hecho,
él consideraba que uno no podría obtener una teoría cuántica de la gravedad sin esta implementación. Si uno lo
hace, la física no tendría lugar en un espacio-tiempo como estamos acostumbrados sino en un espacio de fases.

Esto nos dice que una interacción entre partículas sólo será local para un observador en cuyo origen de coorde-
nadas se produzca ésta, mientras que para un observador trasladado con respecto al anterior, la interacción dejará
de ser local. Este fenómeno ocurre al considerar una ley de composición modificada (MCL) para los momentos,
lo cual es inevitable en el marco de DSR, donde las transformaciones lineales de Lorentz son deformadas a trans-
formaciones no lineales, que no son compatibles con leyes de composición de momentos lineales. Así, en vez
considerar que la conservación de momentos es lineal, uno considera que es de la forma

(p⊕q)µ = pµ +qµ +Γ
µ

νλ
pνqλ + ... (1.3.4)

donde Γ
µ

νλ
es la conexión afín. Esta composición puede verse como una realización de un espacio de momentos

curvo. Esta composición no tiene por qué ser conmutativa, es decir, el resultado puede depender del orden de la
composición. Si por ejemplo consideramos la desintegración de una partícula en dos con momentos k→ p,q, la
ley de conservación nos dice que

k = p⊕q (1.3.5)

Para el caso de una composición no conmutativa

p⊕q 6= q⊕ p (1.3.6)

por lo que esta diferencia daría distintos canales de desintegración de la partícula, lo que supone distintas caracte-
rísticas en los productos obtenidos.

De esta manera, uno puede comprobar al mirar la acción que, para el caso simple de una interacción entre
dos partículas, la interacción ocurre de forma local para un observador en cuyo origen de coordenadas se produce
la misma. Las posiciones de las partículas, x1 y x2, con momentos p1 y p2 respectivamente, para un observador
trasladado una distancia x del primero serán

xµ

1 = xν ∂ (p1⊕ p2)
µ

∂ pν
1

xµ

2 = xν ∂ (p1⊕ p2)
µ

∂ pν
2

(1.3.7)
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Figura 1: Localidad relativa. En la parte izquierda de la figura se muestra como Alice ve la producción de forma
local y la detección no local, mientras que en la figura derecha vemos que Bob ve la producción no local y la
detección local. Fuente [11].

La descripción de la interacción para dos observadores puede verse en la figura 1. En ella, se presenta la producción,
propagación y detección de una partícula. En la producción, Alice es local (izquierda); en la detección, Bob es local
(derecha).

Al igual que ocurría para el caso del retraso del tiempo de vuelo de fotones, aunque estos efectos sean muy
pequeños, al considerar escalas cosmológicas, estos se verán amplificados pudiendo llegar a observarse.

1.3.3. Límite GZK

El límite de Greisen-Zatsepin-Kuzmin (GZK), es un límite superior teórico en la energía de los rayos cósmi-
cos provenientes de fuentes distantes. Este límite es aproximadamente 5× 1019 eV. Éste queda establecido en SR
mediante interacciones lentas de rayos cósmicos de protones con la radiación de fondo de microondas sobre dis-
tancias grandes (más de 160 millones de años luz). Es del mismo orden de magnitud que la energía de los rayos
cósmicos experimentalmente detectados. Si se encontrasen desviaciones respecto a este límite, cabría pensar en la
necesidad de ir más allá de SR. Resulta interesante notar que el cálculo de este límite depende tanto de relaciones
de dispersión modificadas como de la MCL que aparecen en DSR.

2. Modelo a primer orden en Λ

Vamos ahora a revisar el modelo más general de DSR a primer orden en la escala de alta energía Λ (ver
[14]), lo que nos servirá para estudiar lo que ocurre a segundo orden. A lo largo de este trabajo supondremos
que la invariancia Lorentz está deformada pero que las rotaciones son las usuales, y que se sigue satisfaciendo el
álgebra de Lorentz, es decir, que la acción de dos boosts da una rotación. Lo que pretendemos es ver qué leyes de
composición y relación de dispersión modificadas con un desarrollo en serie de potencias de 1/Λ son compatibles
con el principio de relatividad.

2.1. Principio de relatividad

La MDR más general a primer orden y que es invariante rotacional es

p2
0−~p2 +

α1

Λ
p3

0 +
α2

Λ
~p2 p0 = m2 (2.1.1)
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y la MCL

p⊕q|0 = p0 +q0 +
β1

Λ
p0q0 +

β2

Λ
~p~q p⊕q|i = pi +qi +

γ1

Λ
p0qi +

γ2

Λ
piq0 +

γ3

Λ
εi jk p jqk (2.1.2)

En la MCL no pueden aparecer términos a primer orden que no contengan ambos momentos, ya que imponemos
la condición física de que cuando uno de ellos sea nulo, la composición se reduzca al momento restante. La forma
más general de las transformaciones de Lorentz del sistema de una partícula es

[T (p)]0 = p0 +

(
1+

λ1

Λ
p0

)(
~p ·~ξ

)
(2.1.3)

[T (p)]i = pi +ξi

(
p0 +

λ2

Λ
p2

0 +
λ3

Λ
~p2
)
+

λ4

Λ
pi

(
~p.~ξ
)
+

λ5

Λ
p0εi jk p jξk (2.1.4)

Para que se reproduzca el álgebra de Lorentz, imponemos las siguientes condiciones para dos transformaciones
T (1) y T (2) con parámetros ~ξ (1) y ~ξ (2) respectivamente:[

T (2)
(

T (1) (p)
)
−T (1)

(
T (2) (p)

)]
0
= 0 (2.1.5)[

T (2)
(

T (1) (p)
)
−T (1)

(
T (2) (p)

)]
i
=
(
~p.~ξ (2)

)
ξ
(1)
i −

(
~p.~ξ (1)

)
ξ
(2)
i (2.1.6)

Esto nos da la siguientes relaciones entre los λ ´s

λ5 = 0 λ4 = λ1 +2λ2 +2λ3 (2.1.7)

por lo que el boost queda finalmente de la forma

[T (p)]0 = p0 +

(
1+

λ1

Λ
p0

)(
~p ·~ξ

)
(2.1.8)

[T (p)]i = pi +ξi

(
p0 +

λ2

Λ
p2

0 +
λ3

Λ
~p2
)
+

λ1 +2λ2 +2λ3

Λ
pi

(
~p.~ξ
)

(2.1.9)

La invariancia de la MDR
C (T (p)) =C (p) (2.1.10)

impone que

α1 =−2(λ1 +λ2 +2λ3) α2 = 2(λ1 +2λ2 +3λ3) (2.1.11)

Cuando uno va al sistema de dos partículas, aparecen ingredientes nuevos. Si se quiere ser lo más general posible,
se debe tener en cuenta que las transformaciones de los boosts pueden depender de la otra partícula (de hecho, estos
términos están relacionados con la no conmutatividad de la MCL), es decir, pasamos de una pareja de momentos a
otra

{p,q}→
{

T (1)
q (p) ,T (2)

p (q)
}

(2.1.12)

en donde
T (1)

q (p) = T (p)+ T̄ L
q (p) T (2)

p (q) = T (q)+ T̄ R
p (q) (2.1.13)

donde el primer término denota la parte de la transformación que sólo depende del propio momento mientras que
el segundo es la parte nueva que aparece en el sistema de dos partículas. Los superíndices R y L dan cuenta de la
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ordenación de las partículas: p está a la izquierda de q por lo que el superíndice debe ser L, y de forma semejante
para R. La forma más general de estas transformaciones es

[
T̄ L

q (p)
]

0 =
ηL

1
Λ

q0

(
~p.~ξ
)
+

σL
1

Λ
p0

(
~q.~ξ
)
+

ηL
2

Λ
(~p∧~q) .~ξ (2.1.14)

[
T̄ L

q (p)
]

i
=

ηL
3

Λ
qi

(
~p.~ξ
)
+

σL
2

Λ
pi

(
~q.~ξ
)
+

ηL
4

Λ
q0εi jk p jξk+

σL
3

Λ
ξi (~q.~p)+

σL
4

Λ
p0εi jkq jξk +

σL
5

Λ
q0 p0ξi (2.1.15)

Al imponer la invariancia de la MDR, uno obtiene que

σ
L
1 = σ

L
2 = 0 σ

L
3 =−η

L
3 σ

L
4 = η

L
2 σ

L
5 = η

L
1 (2.1.16)

y al imponer que se satisfaga el álgebra de Lorentz, que

η
L
3 = η

L
1 η

L
4 =−η

L
2 (2.1.17)

por lo que finalmente se obtiene

[
T̄ L

q (p)
]

0 =
ηL

1
Λ

q0

(
~p.~ξ
)
+

ηL
2

Λ
(~q∧~p) .~ξ (2.1.18)

[
T̄ R

p (q)
]

0 =
ηR

1
Λ

p0

(
~q.~ξ
)
+

ηR
2

Λ
(~p∧~q) .~ξ (2.1.19)

[
T̄ L

q (p)
]

i
=

ηL
1

Λ
q0 p0ξi +

ηL
2

Λ2

(
q0εi jk p jξk− p0εi jkq jξk

)
+

ηL
1

Λ

(
qi~p.~ξ −ξi~q.~p

)
(2.1.20)

[
T̄ R

p (q)
]

i =
ηR

1
Λ

p0q0ξi +
ηR

2
Λ

(
p0εi jkq jξk−q0εi jk p jξk

)
+

ηR
1

Λ

(
pi~q.~ξ −ξi~p.~q

)
(2.1.21)

Consideremos el caso más sencillo para nuestro estudio que es la desintegración de una partícula en dos (que a
primer orden nos permite obtener todas las consecuencias de imponer el principio de relatividad).

Para que se cumpla
k⊕ p⊕q = 0 (2.1.22)

necesitamos que

k0 =−p0−q0 +
β1

Λ
(p0 +q0)

2 +
β2

Λ
(~p+~q)2 (2.1.23)

ki =−pi−qi +
γ1 + γ2

Λ
(p0 +q0)(pi +qi) (2.1.24)

Ahora vamos a imponer el principio de relatividad, es decir, que todos los observadores coincidan en la forma
de la ley de conservación:

k⊕ p⊕q = 0 =⇒ T (1)
p,q (k)⊕T (2)

k,q (p)⊕T (3)
k,p (q) = 0 (2.1.25)

en donde
T (1)

p,q (k) = T (k)+ T̄ L
p (k)+ T̄ L

q (k) (2.1.26)
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T (2)
k,q (p) = T (p)+ T̄ R

k (p)+ T̄ L
q (p) (2.1.27)

T (3)
k,p (q) = T (q)+ T̄ R

k (q)+ T̄ R
p (q) (2.1.28)

siendo las transformaciones anteriores una generalización a tres partículas de las vistas para dos. Al hacer esto, uno
obtiene un sistema de ecuaciones, del que resultan las siguientes relaciones entre los coeficientes de la MCL y los
de los boosts

β1 = 2(λ1 +λ2 +2λ3) β2 =−2λ3−η
L
1 −η

R
1 (2.1.29)

γ1 = λ1 +2λ2 +2λ3−η
L
1 γ2 = λ1 +2λ2 +2λ3−η

R
1 γ3 = η

L
2 −η

R
2 (2.1.30)

Con esto, podemos hallar las relaciones que existen entre los coeficientes de la MDR y la MCL (las «reglas de
oro»)

α1 =−β1 α2 = γ1 + γ2−β2 (2.1.31)

Estos resultados dan condiciones necesarias y suficientes que se deben cumplir entre los coeficientes de la MDR y
de la MCL, y que concuerdan perfectamente con la obtenida en [15]

α1 +α2 +β1 +β2− γ1− γ2 = 0 (2.1.32)

como una condición necesaria.

2.2. Cambio de variables

Desde que se formuló DSR, ha habido una gran discusión acerca de lo que ocurre al hacer un cambio de
variables. Muchos argumentan que DSR no es más que SR formulada en otras coordenadas como puede verse
en [16], mientras que en [2], por el contrario, se dan argumentaciones en contra de poder realizar este cambio de
variables, ya que las variables momento tienen un significado físico.

Partiendo de SR, consideremos el cambio de variable más general posible y veamos si podemos llegar a las
relaciones obtenidas en el apartado anterior. El cambio de variables más general que garantiza que la relación de
dispersión sólo dependa del propio momento es el siguiente:

P0 = p0 +
δ1

Λ
p2

0 +
δ2

Λ
~p2 +

νL
1

Λ
~p.~q (2.2.1)

Pi = pi +
δ3

Λ
p0 pi +

νL
1

Λ
p0qi +

νL
2

Λ
εi jk p jqk (2.2.2)

Q0 = q0 +
δ1

Λ
q2

0 +
δ2

Λ
~q2 +

νR
1

Λ
~q.~p (2.2.3)

Qi = qi +
δ3

Λ
q0qi +

νR
1

Λ
q0 pi +

νR
2

Λ
εi jkq j pk (2.2.4)

De hecho, la relación de dispersión en las nuevas variables es

P2
0 −~P2 = p2

0−~p2 +
2δ1

Λ
p3

0 +
2(δ2−δ3)

Λ
p0~p2 (2.2.5)

por lo que podemos identificar aquí que

α1 = 2δ1 α2 = 2(δ2−δ3) (2.2.6)
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Si ahora vemos cómo deben ser los boosts con estas nuevas variables y los comparamos con los obtenidos
anteriormente, vemos que podemos hacer de forma simultánea que la ley de dispersión y los boosts sean los de SR.
En particular,

δ1 =−λ1−λ2−2λ3 δ2 = λ3 δ3 =−(λ1 +λ2 +2λ3) ν
L,R
i = η

L,R
i (2.2.7)

Calculamos ahora la composición de dos momentos

P0 +Q0 = p0 +q0 +
δ1

Λ
(p0 +q0)

2 +
δ2

Λ
(~p+~q)2− 2δ1

Λ
p0q0 +

(νL
1 +νR

1 −2δ2)

Λ
~p.~q (2.2.8)

Pi +Qi = pi +qi +
δ3

Λ
(p0 +q0)(pi +qi)+

(νL
1 −δ3)

Λ
p0qi +

(νR
1 −δ3)

Λ
q0 pi +

(νL
2 −νR

2 )

Λ
εi jk p jqk (2.2.9)

e introducimos la MCL

(p⊕q)0
.
= p0 +q0−

2δ1

Λ
p0q0 +

(νL
1 +νR

1 −2δ2)

Λ
~p.~q (2.2.10)

(p⊕q)i
.
= pi +qi +

(νL
1 −δ3)

Λ
p0qi +

(νR
1 −δ3)

Λ
q0 pi +

(νL
2 −νR

2 )

Λ
εi jk p jqk (2.2.11)

Con esta definición,

P+Q = (p⊕q)+O

(
1

Λ2

)
(2.2.12)

y, simultáneamente, cumple la condición necesaria de que

(p⊕q){q=0} = p (2.2.13)

Los coeficientes β ′s y γ ′s en función de los coeficientes del cambio de variables quedan de la forma

β1 = −2δ1 β2 = ν
L
1 +ν

R
1 −2δ2 (2.2.14)

γ1 = ν
L
1 −δ3 γ2 = ν

R
1 −δ3 γ3 = ν

L
2 −ν

R
2 (2.2.15)

Vemos que las relaciones entre los α ′s, β ′s y γ ′s y los λ ′s se satisfacen trivialmente, incluidas las reglas de
oro. Esto quiere decir que, a no ser que uno considere que las variables momento tienen un significado físico, uno
podría con este cambio de variables obtener SR.

3. Modelo a segundo orden en Λ

Ahora cabe la pregunta, ¿por qué ir a segundo orden? Tenemos varios tipos de argumentos para considerar esta
línea de investigación:

Desde un punto de vista experimental, hemos visto en el apartado del retraso de tiempo de vuelo de fotones
que los últimos experimentos imponen fuertes restricciones de posibles desviaciones a primer orden, lo que
puede significar que éstas empiecen a segundo orden.

El análisis del espectro de neutrinos cosmológicos detectados por IceCube parece poder describirse en tér-
minos de física Planckiana con efectos de violación de Lorentz proporcionales a M−2

P y no a M−1
P [22].

Desde un punto de vista teórico, en el marco del SME (modelo estándar extendido), los operadores de dimen-
sión 6 (proporcionales a M−2

P ), a diferencia de lo que ocurre con los de d = 5, conservan CPT y no precisan
de ajuste fino en el marco de teorías SUSY para evitar violaciones de invariancia Lorentz a bajas energías
([23] y [24]). Esta es una motivación teórica para pensar que los efectos de violación de invariacia Lorentz
empiezan a orden M−2

P .
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Hemos visto en la introducción que al tener en cuenta la gravedad en el experimento del microscopio de Hei-
senberg, aparecían correciones proporcionales a G ∝ M−2

P en las incertidumbres en las medidas de posición
[6].

Desde un punto de vista heurístico, hemos visto en la sección anterior que si uno no tiene en cuenta que
las variables momento tienen un significado físico, uno puede obtener la modificación más general posible
mediante un cambio de variables. Si nos atenemos al punto de vista geométrico (como la curvatura del
espacio de momentos), sabemos que hay efectos nuevos que aparecerán a segundo orden. Sabemos que en
GR, al considerar un espacio-tiempo curvo, uno puede hacer de forma local un cambio de coordenadas en el
que la métrica sea la de Minkowski y que la primera derivada de la métrica con respecto al cuadrivector xµ

sea nula, quedando huellas de la curvatura del espacio en las derivadas segundas de la métrica.

Estas consideraciones permiten justificar un estudio como el que aquí se presenta, en el que consideraremos que
las primeras correcciones aparecen a segundo orden.

En esta sección, procederemos de forma semejante al caso anterior, pero veremos que los resultados obtenidos
son cualitativamente diferentes.

3.1. Principio de relatividad

A segundo orden en Λ, la relación de dispersión más general viene dada por

C (p) = p2
0−~p2 +

α3

Λ2 p4
0 +

α4

Λ2 p2
0
(

p2
0−~p2)+ α5

Λ2

(
p2

0−~p2)2
(3.1.1)

y la ley de composición más general compatible con la invariancia rotacional es

k⊕ p⊕q|0 = k0 + p0 +q0 +
β3

Λ2

(
k0
(
~p2 +~q2)+ p0~q2)+ β4

Λ2

(
q0

(
~k2 +~p2

)
+ p0~k2

)

+
β5

Λ2

(
k0~k (~p+~q)+ p0~p~q

)
+

β6

Λ2

(
q0~q
(
~k+~p

)
+ p0~p~k

)
+

β7

Λ2

(
q0
(

p2
0 + k2

0
)
+ k2

0 p0
)
+

β8

Λ2

(
k0
(

p2
0 +q2

0
)
+ p0q2

0
)
+

β9

Λ2 k0 p0q0 +
β10

Λ2
~k~pq0 +

β11

Λ2
~k~qp0 +

β12

Λ2 ~p~qk0 +
β13

Λ2
~k (~p∧~q) (3.1.2)

k⊕ p⊕q|i = ki + pi +qi +
γ4

Λ2

(
k2

0 (pi +qi)+ p2
0qi
)
+

γ5

Λ2

(
q2

0 (ki + pi)+ p2
0ki

)
+

γ6

Λ2 (k0ki (p0 +q0)+ p0 piq0)+
γ7

Λ2 (p0 pi (k0 +q0)+ k0 p0 pi)+
γ8

Λ2

(
ki~k (~p+~q)+ pi~p~q

)
+

γ9

Λ2

(
qi~q
(
~k+~p

)
+ pi~p~k

)
+

γ10

Λ2

(
~k2 (pi +qi)+~p2qi

)
+

γ11

Λ2

(
~q2 (ki + pi)+~p2ki

)
+

γ12

Λ2 εi jk (k0k j (pk +qk)+ p0 p jqk)+
γ13

Λ2 εi jk (q0q j (kk +qk)+ p0 p jkk)+
γ14

Λ2 k0 p0qi +
γ15

Λ2 pik0q0+

γ16

Λ2 ki p0q0 +
γ17

Λ2
~k~pqi +

γ18

Λ2 pi~k~q+
γ19

Λ2 ki~p~q+
γ20

Λ2 k0εi jk p jqk +
γ21

Λ2 p0εi jkq jkk +
γ22

Λ2 q0εi jkk j pk (3.1.3)

donde la forma de la MCL garantiza que cuando uno de los momentos es cero, la composición de los tres se reduce
a la de los dos restantes, y que los coeficientes de la composición de dos momentos son independientes de dichos
momentos.
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Implementemos ahora el principio de la relatividad con esta relación de dispersión y estas leyes de composición
modificadas. A segundo orden, la forma más general de la transformación de una partícula, que depende de tres
parámetros ~ξ , es

[T (p)]0 = p0 +
(
~p ·~ξ

)(
1+

µ1

Λ2 p2
0 +

µ2

Λ2~p
2
)

(3.1.4)

[T (p)]i = pi +ξi

(
p0 +

µ3

Λ2 p3
0 +

µ4

Λ2 p0~p2
)
+

µ5

Λ2 p0 pi

(
~p.~ξ
)
+

µ6

Λ2 p2
0εi jk p jξk +

µ7

Λ2~p
2
εi jk p jξk (3.1.5)

Imponemos que se reproduzca el álgebra de Lorentz, obteniendo las siguientes relaciones entre los µ´s

µ6 = µ7 = 0 µ5 = µ1−2µ2 +3µ3 µ4 =−µ2 (3.1.6)

por lo que finalmente vemos que los boosts nos quedan

[T (p)]0 = p0 +
(
~p.~ξ
)(

1+
µ1

Λ2 p2
0 +

µ2

Λ2~p
2
)

(3.1.7)

[T (p)]i = pi +ξi

(
p0 +

µ3

Λ2 p3
0−

µ2

Λ2 p0~p2
)
+

µ1−2µ2 +3µ3

Λ2 p0 pi

(
~p.~ξ
)

(3.1.8)

La invariancia de la relación de dispersión modificada impone que

α3 =−2µ2 +2µ3 α4 =−µ1 +4µ2−3µ3 (3.1.9)

Para el caso de una transformación al sistema de tres partículas, tenemos que

T (1)
p,q (k) = T (k)+ T̄ (1)

p,q (k) T (2)
k,q (p) = T (p)+ T̄ (2)

k,q (p)

T (3)
k,p (q) = T (q)+ T̄ (3)

k,p (q) (3.1.10)

con
T̄ (1)

p,q (k) = T̄ L
p (k)+ T̄ L

q (k)+ T̃ (1)
p,q (k)

T̄ (2)
k,q (p) = T̄ R

k (p)+ T̄ L
q (p)+ T̃ (2)

k,q (p)

T̄ (3)
k,p (q) = T̄ R

k (q)+ T̄ R
p (q)+ T̃ (3)

k,p (q) (3.1.11)

Estas transformaciones de la forma más general toman las siguientes expresiones

T̄ L
p (k)

∣∣
0 =

χL
1

Λ2 p2
0

(
~k~ξ
)
+

χL
2

Λ2~p
2
(
~k~ξ
)
+

χL
3

Λ2 k2
0

(
~p~ξ
)
+

χL
4

Λ2
~k2
(
~p~ξ
)
+

χL
5

Λ2 k0 p0

(
~k~ξ
)
+

χL
6

Λ2
~k~p
(
~k~ξ
)
+

χL
7

Λ2 k0 p0

(
~p~ξ
)
+

χL
8

Λ2
~k~p
(
~p~ξ
)
+

χL
9

Λ2 k0

(
~k×~p

)
~ξ +

χL
10

Λ2 p0

(
~k×~p

)
~ξ (3.1.12)

T̄ L
p (k)

∣∣
i =

χL
11

Λ2 k2
0 p0ξi +

χL
12

Λ2 k0 p2
0ξi +

χL
13

Λ2
~k~pk0ξi +

χL
14

Λ2
~k~pp0ξi +

χL
15

Λ2
~k2 p0ξi+

χL
16

Λ2 k0~p2
ξi +

χL
17

Λ2 k0 pi

(
~k~ξ
)
+

χL
18

Λ2 ki po

(
~k~ξ
)
+

χL
19

Λ2 k0 pi

(
~p~ξ
)
+

χL
20

Λ2 ki po

(
~p~ξ
)
+

χL
21

Λ2 ki

(
~k×~p

)
~ξ +

χL
22

Λ2 pi

(
~k×~p

)
~ξ +

χL
23

Λ2 k2
0εi jk p jξk +

χL
24

Λ2
~k~ξ εi jkk̂ j pk +

χL
25

Λ2 k0 p0εi jk p jξk+

χL
26

Λ2 ~p
~ξ εi jkk j pk +

χL
27

Λ2 p2
0εi jkk jξk +

χL
28

Λ2 k0 p0εi jkk jξk +
χL

29
Λ2 k0ki~p~ξ +

χL
30

Λ2 p0 pi~k~ξ (3.1.13)
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y

T̃ (1)
p,q (k)

∣∣∣
0
=

χ
(1)
1

Λ2 k0 p0

(
~q~ξ
)
+

χ
(1)
2

Λ2 k0q0

(
~p~ξ
)
+

χ
(1)
3

Λ2 p0q0

(
~k~ξ
)
+

χ
(1)
4

Λ2

(
~k~p
)(

~q~ξ
)
+

χ
(1)
5

Λ2

(
~k~q
)(

~p~ξ
)
+

χ
(1)
6

Λ2 (~p~q)
(
~k~ξ
)
+

χ
(1)
7

Λ2 k0 (~p×~q)~ξ +
χ
(1)
8

Λ2 p0

(
~k×~q

)
~ξ +

χ
(1)
9

Λ2 q0

(
~k×~p

)
~ξ +

χ
(1)
10

Λ2 k0 p0q0
~ξ (3.1.14)

T̃ (1)
p,q (k)

∣∣∣
i
=

χ
(1)
11

Λ2 k0 p0q0ξi +
χ
(1)
12

Λ2

(
~k×~p

)
~qξi +

χ
(1)
13

Λ2 k0~p~qξi +
χ
(1)
14

Λ2
~k~qp0ξi +

χ
(1)
15

Λ2
~k~pq0ξi+

χ
(1)
16

Λ2
~k~ξ p0qi +

χ
(1)
17

Λ2
~k~ξ piq0 +

χ
(1)
18

Λ2 ~p~ξ kiq0 +
χ
(1)
19

Λ2 ~p~ξ k0qi +
χ
(1)
20

Λ2 ~q~ξ ki p0+

χ
(1)
21

Λ2 ~q~ξ k0 pi +
χ
(1)
22

Λ2 qi

(
~k×~p

)
~ξ +

χ
(1)
23

Λ2 pi

(
~k×~q

)
~ξ +

χ
(1)
24

Λ2 ki (~p×~q)~ξ +
χ
(1)
25

Λ2 k0 p0εi jkq jξk+

χ
(1)
26

Λ2 k0q0εi jk p jξk +
χ
(1)
27

Λ2 p0q0εi jkk jξk +
χ
(1)
28

Λ2
~k~ξ εi jk p jqk +

χ
(1)
29

Λ2 ~p~ξ εi jkk jqk +
χ
(1)
30

Λ2 ~q~ξ εi jkk j pk (3.1.15)

y de forma similar para el resto de expresiones.
Ahora, pedimos que

C
(

T (1)
p,q (k)

)
=C (k) (3.1.16)

obteniendo que

χ
L
3 = χ

L
7 = χ

L
20 = χ

L
21 = χ

L
22 = χ

(1)
1 = χ

(1)
2 = χ

(1)
7 = χ

(1)
10 = χ

(1)
18 = χ

(1)
20 = χ

(1)
22 = χ

(1)
23 = χ

(1)
24 = 0 (3.1.17)

χ
L
1 = χ

L
12 χ

L
2 = χ

L
16 χ

L
4 = χ

L
29 χ

L
5 = χ

L
11 χ

L
6 = χ

L
13 +χ

L
17

χ
L
8 = χ

L
19 χ

L
9 = χ

L
23 χ

L
10 = χ

L
25 χ

L
14 =−χ

L
30 χ

L
15 =−χ

L
18 (3.1.18)

χ
(1)
3 = χ

(1)
11 χ

(1)
4 = χ

(1)
21 χ

(1)
5 = χ

(1)
19 χ

(1)
6 = χ

(1)
13 χ

(1)
8 = χ

(1)
25

χ
(1)
9 = χ

(1)
26 χ

(1)
12 =−χ

(1)
28 χ

(1)
14 =−χ

(1)
16 χ

(1)
15 =−χ

(1)
17 (3.1.19)

Si imponemos que se satisfaga el álgebra de Lorentz llegamos a las siguientes relaciones

χ
L
1 = χ

L
8 =−χ

L
14 = χ

L
19 = χ

L
30 = χ

L
1 χ

L
5 = χ

L
11 = χ

L
17 = χ

L
4 + xL

6 χ
L
6 =−χ

L
13 =

1
2

χ
L
17

−χ
L
15 = χ

L
18 = χ

L
29 = χ

L
4 , χ

L
23 =−χ

L
24 =−χ

L
28 = χ

L
9 χ

L
25 =−χ

L
26 =−χ

L
27 = χ

L
10 χ

L
2 = χ

L
16 = 0 (3.1.20)

χ
(1)
3 −χ

(1)
4 = χ

(1)
5 =−χ

(1)
14 = χ

(1)
16 = χ

(1)
19 χ

(1)
4 =−χ

(1)
15 = χ

(1)
17 = χ

(1)
21 χ

(1)
8 = χ

(1)
25

χ
(1)
9 = χ

(1)
26 χ

(1)
12 =−χ

(1)
28 χ

(1)
8 −χ

(1)
12 = χ

(1)
29 −χ

(1)
9 +χ

(1)
12 = χ

(1)
30 (3.1.21)

Haciendo un cambio de notación, nuestra transformación queda finalmente de la forma

T̄ L
p (k)

∣∣
0 =

τL
1

Λ2

(
p2

0

(
~k~ξ
)
+~k~p

(
~p~ξ
))

+
τL

2
Λ2

(
~k2
(
~p~ξ
)
+ k0 p0

(
~k~ξ
))

+

τL
3

Λ2

(
k0 p0

(
~k~ξ
)
+~k~p

(
~k~ξ
))

+
τL

4
Λ2 k0

(
~k×~p

)
~ξ +

τL
5

Λ2 p0

(
~k×~p

)
~ξ (3.1.22)

T̄ L
p (k)

∣∣
i =

τL
1

Λ2

(
k0 p2

0ξi−~k~pp0ξi + k0 pi~p~ξ + p0 pi~k~ξ
)
+

τL
2

Λ2

(
k2

0 p0ξi−~k2 p0ξi+
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+ki po

(
~k~ξ
)
+ k0ki~p~ξ

)
+

τL
3

Λ2

(
k2

0 p0ξi−~k~pk0ξi +2k0 pi

(
~k~ξ
))

+

τL
4

Λ2

(
k2

0εi jk p jξk− k0 p0εi jkk jξk−~k~ξ εi jkk j pk

)
+

τL
5

Λ2

(
k0 p0εi jk p jξk− p2

0εi jkk jξk−~p~ξ εi jkk j pk

)
(3.1.23)

T̃ (1)
p,q (k)

∣∣∣
0
=

τ
(1)
1
Λ2

(
p0q0

(
~k~ξ
)
+
(
~k~q
)(

~p~ξ
))

+
τ
(1)
2
Λ2

((
~k~p
)(

~q~ξ
)
−
(
~k~q
)(

~p~ξ
))

+
τ
(1)
3
Λ2 p0

(
~k×~q

)
~ξ +

τ
(1)
4
Λ2 q0

(
~k×~p

)
~ξ (3.1.24)

T̃ (1)
p,q (k)

∣∣∣
i
=

τ
(1)
1
Λ2

(
k0 p0q0ξi−~k~qp0ξi +~k~ξ p0qi +~p~ξ k0qi

)
+

τ
(1)
2
Λ2

(
~k~qp0ξi−~k~pq0ξi−~k~ξ p0qi +~k~ξ piq0−

~p~ξ k0qi+~q~ξ k0 pi

)
+

τ
(1)
3
Λ2

(
k0 p0εi jkq jξk− p0q0εi jkk jξk +~p~ξ εi jkk jqk

)
+

τ
(1)
4
Λ2

(
k0q0εi jk p jξk− p0q0εi jkk jξk−~q~ξ εi jkk j pk

)
(3.1.25)

Para que se cumpla
k⊕ p⊕q⊕ r = 0 (3.1.26)

debemos tener que

k0 =−p0−q0− r0 +
β3

Λ2

(
(p0 +q0 + r0)

(
~p2 +~q2 +~r2)− p0

(
~q2 +~r2)−q0~r2)− β4

Λ2

(
r0
(
~p2 +~q2)+q0~p2+

(p0 +q0 + r0)(~p+~q+~r)2

)
− β5

Λ2

(
(~p+~q+~r)2 (p0 +q0 + r0)+ p0 (~p~q+~p~r)+q0~q~r

)
+

β6

Λ2

(
(~p+~q+~r)~qq0+

(~p+~q+~r)~pp0 +(~p+~q+~r)~rr0−~p~qq0−~p~rr0−~q~rr0

)
− β7

Λ2

(
p2

0 (q0 + r0)+q2
0r0 +(p0 +q0 + r0)

3
)
+

+
β8

Λ2

(
(p0 +q0 + r0)

(
p2

0 +q2
0 + r2

0
)
− p0

(
q2

0 + r2
0
)
−q0r2

0
)
+

β9

Λ2 ((p0 +q0 + r0)(p0q0 + p0r0 +q0r0)− p0q0r0)+

β10

Λ2 ((~p+~q+~r)(~pq0 +~pr0 +~qr0)−~p~qr0)+
β11

Λ2 ((~p+~q+~r)(~qp0 +~rq0 +~rp0)−~p~rq0)+

+
β12

Λ2 ((p0 +q0 + r0)(~p~q+~p~r+~q~r)−~q~rp0) (3.1.27)

ki =−pi−qi− ri−
γ4

Λ2

(
(p0 +q0 + r0)

2 (pi +qi + ri)+ p2
0 (qi + ri)+q2

0ri

)
+

γ5

Λ2

((
p2

0 +q2
0 + r2

0
)
(pi +qi + ri)−

r2
0 (pi +qi)−q2

0 pi

)
− γ6

Λ2

(
p0 pi (q0 + r0)+q0r0qi +(p0 +q0 + r0)

2 (pi +qi + ri)
)
+

γ7

Λ2 ((p0 +q0 + r0)(p0 pi +q0qi + r0ri)− p0q0qi− p0r0ri− r0q0ri)−
γ8

Λ2

(
(~p+~q+~r)2 (pi +qi + ri)+
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+pi~p(~q+~r)+~q~rqi

)
+

γ9

Λ2 ((~p+~q+~r)(~ppi +~qqi +~rri)−~p~qqi−~p~rri−~r~qri)−

−γ10

Λ2

(
(~p+~q+~r)2 (pi +qi + ri)+ pi

(
~q2 +~r2)+qi~r2

)
+

γ11

Λ2

((
~p2 +~q2 +~r2)(pi +qi + ri)+qi~p2− ri

(
~p2 +~q2))−

−γ12

Λ2 εi jk (p0 p j (qk + rk)+q0q jrk)+
γ13

Λ2 εi jk (p0 p j (qk + rk)+q0q jrk)+

γ14

Λ2 ((p0 +q0 + r0)(p0qi +q0ri + p0ri)− p0q0ri)+
γ15

Λ2 ((p0 +q0 + r0)(r0qi +q0 pi + r0 pi)− p0r0qi)+

γ16

Λ2 ((pi +qi + ri)(p0q0 + p0r0 +q0r0)− r0q0 pi)+
γ17

Λ2 ((~p+~q+~r)(~pqi +~qri +~pri)−~p~qri)+

γ18

Λ2 ((~p+~q+~r)(~rqi +~qpi +~rpi)−~p~rqi)+
γ19

Λ2 ((pi +qi + ri)(~p~q+~p~r+~q~r)−~r~qpi)+

γ20

Λ2 εi jk ((p0 +q0 + r0)(p jqk +q jrk + p jrk)− p0q jrk)−
γ21

Λ2 εi jk (p0 p jqk + p0 p jrk +q0q jrk)

−γ22

Λ2 εi jk (q0 p jqk +q0 p jrk + r0 (p jrk + p jqk +q jrk)) (3.1.28)

Ahora imponemos el principio de relatividad, que es la siguiente ley de conservación

k⊕ p⊕q⊕ r = 0 =⇒ T (1)
p,q,r (k)⊕T (2)

k,q,r (p)⊕T (3)
k,p,r (q)⊕T (4)

k,p,q (r) = 0 (3.1.29)

lo que da lugar a un sistema de ecuaciones, de las cuales sólo son linealmente independientes las siguientes:

β3 = β4 +β5−β6− γ4 + γ5− γ6 + γ7−2γ8 +2γ9−2γ10 +2γ11 , β7 = β8− γ8 + γ9− γ10 + γ11 (3.1.30)

µ2−µ1 =−β4−β5−3β8+β9+
β10

3
+

β11

3
+

β12

3
+γ4+γ6+2γ8−3γ9+2γ10−3γ11−

γ14

3
− γ15

3
− γ16

3
+

γ17

3
+

γ18

3
+

γ19

3
(3.1.31)

µ3−µ1 =−2β4−2β5−4β8+
4β9

3
+

2β10

3
+

2β11

3
+

2β12

3
+2γ4+2γ6+4γ8−4γ9+4γ10−4γ11−

2γ14

3
− 2γ15

3
− 2γ16

3
(3.1.32)

µ1− τ
L
1 − τ

R
2 − τ

R
3 − τ

1
1 = 2β4 +β5 +β6 +3β8−β9−β10−β11− γ5− γ6−2γ8 +2γ9−2γ10−2γ11 + γ16 (3.1.33)

τ
L
1 − τ

R
1 − τ

L
2 + τ

R
2 − τ

L
3 + τ

(3)
2 = γ4− γ5 + γ6− γ7 + γ8− γ9 + γ10− γ11 (3.1.34)

µ1− τ
R
1 − τ

L
2 − τ

L
3 + τ

(2)
1 = 2β4 +2β5 +3β8−β9−β10−β12− γ4− γ6−3γ8 +3γ9−3γ10 +3γ11 + γ15 (3.1.35)

µ1− τ
R
1 −2τ

L
2 + τ

R
2 − τ

L
3 + τ

(1)
2 + τ

(2)
2 = 2β4 +β5 +β6 +3β8−β9−

4β10

3
+

β11

3
+

β12

3
− γ5− γ7− γ8+

γ9−2γ10 +2γ11 +
γ14

3
+

γ15

3
+

γ16

3
+

2γ17

3
− γ18

3
− γ19

3
(3.1.36)

µ1+τ
L
1 −2τ

R
1 −τ

L
2 −τ

L
3 +τ

(3)
1 = 2β4+3β5−β6+3β8−β9−β11−β12−2γ4+γ5−γ6−4γ8+4γ9−4γ10+4γ11+γ14

(3.1.37)

τ
L
1 −τ

R
1 −τ

(1)
2 +τ

(3)
2 = β5−β6+

2β10

3
− β11

3
− β12

3
−γ4+γ5−γ8+γ9−γ10+γ11+

γ14

3
+

γ15

3
− 2γ16

3
− γ17

3
+

2γ18

3
− γ19

3
(3.1.38)

τ
(1)
4 − τ

(2)
3 − τ

(2)
4 + τ

(3)
3 =−γ20 + γ22 , τ

L
4 − τ

R
4 + τ

L
5 − τ

R
5 − τ

(1)
3 − τ

(1)
4 + τ

(2)
4 + τ

(3)
4 = γ12− γ13 + γ21− γ22 (3.1.39)

De estas ecuaciones podemos realizar las siguientes observaciones:

Al contrario de lo que ocurría a primer orden, no todos los β ′s y γ ′s están determinados por los µ ′s, sino
que algunos de ellos son parámetros libres, al igual que pasaba con los α ′s, en el que había un parámetro
indeterminado (ver (3.1.9)).
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También podemos ver que sin una transformación de los boosts distinta de SR tenemos que los parámetros
de la composición son en general no nulos.

Al igual que a primer orden, podemos obtener las «reglas de oro» que envuelven términos de la ley de
composición y de la relación de dispersión modificada:

α3 =−2β4−2β5−2β8 +
2β9

3
− 2β10

3
− 2β11

3
− 2β12

3
+2γ4 +2γ6 +4γ8−

−2γ9 +3γ10−2γ11 +
2γ14

3
+

2γ15

3
+

2γ16

3
− 2γ17

3
− 2γ18

3
− 2γ19

3
(3.1.40)

α4 = 2β4 +2β5 +2β10 +2β11 +2β12−2γ4−2γ6−4γ8−2γ10−2γ14−2γ15−2γ16 +
4γ17

3
+

4γ18

3
+

4γ19

3
(3.1.41)

3.2. Cambio de variables

Consideremos el cambio de variable más general posible y veamos si podemos llegar a las relaciones obtenidas
en el apartado anterior. El cambio de variables más general es el siguiente:

K0 = k0 +
ν1

Λ2 k3
0 +

ν2

Λ2 k0~k2 +
θ L

1
Λ2 k2

0 (p0 +q0)+
θ L

2
Λ2 k0

(
p2

0 +q2
0
)
+

θ L
3

Λ2 k0
(
~p2 +~q2)+ θ L

4
Λ2

~k2 (p0 +q0)+

θ L
5

Λ2 k0~k (~p+~q)+
θ L

6
Λ2

~k (~pp0 +~qq0)+
θ 1

7
Λ2 k0 p0q0 +

θ 1
8

Λ2
~k~pq0 +

θ 1
9

Λ2
~k~qp0 +

θ 1
10

Λ2 ~p~qk0 +
θ 1

11
Λ2

~k (~p∧~q) (3.2.1)

Ki = ki +
ν3

Λ2 k2
0ki +

ν4

Λ2
~k2ki +

θ L
12

Λ2 k2
0 (pi +qi)+

θ L
13

Λ2

(
q2

0 + p2
0
)

ki +
θ L

14
Λ2 k0ki (p0 +q0)+

θ L
15

Λ2 k0 (q0qi + p0 pi)+

θ L
16

Λ2 ki~k (~p+~q)+
θ L

17
Λ2

~k (~qqi +~ppi)+
θ L

18
Λ2

~k2 (pi +qi)+
θ L

19
Λ2 ki

(
~p2 +~q2)+ θ L

20
Λ2 k0εi jkk j (pk +qk)+

θ L
21

Λ2 εi jk (q0q j + p0 p j)kk+

θ 1
22

Λ2 k0 p0qi+
θ 1

23
Λ2 k0q0 pi+

θ 1
24

Λ2 p0q0ki+
θ 1

25
Λ2

~k~pqi+
θ 1

26
Λ2

~k~qpi+
θ 1

27
Λ2 ~p~qki+

θ 1
28

Λ2 k0εi jk p jqk+
θ 1

29
Λ2 p0εi jkq jkk+

θ 1
30

Λ2 q0εi jkk j pk

(3.2.2)
y de forma semejante para los otros dos momentos.

Los coeficientes de la relación de dispersión que se obtienen al aplicar un cambio de variables a unas variables
cuyas relaciones de dispersión son las de SR son:

α3 = 2ν1 +2ν2−2ν3−2ν4 α4 =−2ν2 +2ν3 +4ν4 α5 =−2ν4 (3.2.3)

Para que el cambio de variables preserve la separación de variables momento en las relaciones de dispersión se
tienen que cumplir las siguientes relaciones entre los coeficientes del cambio de variables:

θ
L
1 = θ

L
2 = θ

L
3 = θ

1
7 = θ

1
10 = θ

L
13 = θ

L
17 = θ

L
18 = θ

L
19 = θ

1
24 = θ

1
27 = 0

θ
L
4 = θ

L
14 , θ

L
5 = θ

L
12 , θ

L
6 = θ

L
15 , θ

1
8 = θ

1
23 , θ

1
9 = θ

1
22 , θ

1
11 = θ

1
28 , θ

1
16 =−θ

1
18 , θ

1
25 =−θ

1
26 (3.2.4)

Haciendo un cambio de notación, el cambio de variables más general es

K0 = k0 +
ν1

Λ2 k3
0 +

ν2

Λ2 k0~k2 +
δ L

1
Λ2

~k2 (p0 +q0)+
δ L

2
Λ2 k0~k (~p+~q)+

δ L
3

Λ2
~k (~pp0 +~qq0)+

δ 1
4

Λ2
~k~pq0 +

δ 1
5

Λ2
~k~qp0 +

δ 1
6

Λ2
~k (~p∧~q) (3.2.5)
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Ki = ki +
ν3

Λ2 k2
0ki +

ν4

Λ2
~k2ki +

δ L
1

Λ2 k0ki (p0 +q0)+
δ L

2
Λ2 k2

0 (pi +qi)+
δ L

3
Λ2 k0 (q0qi + p0 pi)+

δ 1
4

Λ2 k0q0 pi+

δ 1
5

Λ2 k0 p0qi +
δ 1

6
Λ2 k0εi jk p jqk +

δ L
7

Λ2

(
ki~k (~p+~q)−~k2 (pi +qi)

)
+

δ L
8

Λ2 k0εi jkk j (pk +qk)+
δ L

9
Λ2 εi jk (q0q j + p0 p j)kk+

δ 1
10

Λ2

(
~k~pqi−~k~qpi

)
+

δ 1
11

Λ2 p0εi jkq jkk +
δ 1

12
Λ2 q0εi jkk j pk (3.2.6)

Si ahora vemos cómo deben ser los boosts con estas nuevas variables y los comparamos con los obtenidos
anteriormente, vemos que tenemos una correspondencia entre los parámetros de la ley de transformación para unas
variables momento que resultan de aplicar un cambio de variables a unos momentos que transforman linealmente

µ1 = ν3−3ν1−2ν2 µ2 = ν4−ν2 µ3 = ν1−ν3 (3.2.7)

τ
L
1 =−δ

L
3 , τ

L
2 =−δ

L
7 −δ

L
1 , τ

L
3 = δ

L
7 −δ

L
2 , τ

L
4 = δ

L
8 , τ

L
5 =−δ

L
9 (3.2.8)

τ
1
1 =−δ

1
4 −δ

1
5 , τ

1
2 = δ

1
10−δ

1
4 , τ

1
3 = δ

1
6 −δ

1
11 , τ

1
4 = δ

1
12−δ

1
6 (3.2.9)

Veamos qué ocurre ahora para la ley de composición de los momentos que se obtienen mediante un cambio de
variables sobre unos momentos cuya ley de composición es aditiva. Los 30 coeficientes β ′s y γ ′s en función de los
34 coeficientes del cambio de variables quedan de la forma

β3 = δ
R
1 −ν2 , β4 = δ

L
1 −ν2 , β5 = δ

R
3 +δ

L
2 −2ν2 , β6 = δ

L
3 +δ

R
2 −2ν2 , β7 = β8 =−3ν1 , β9 =−6ν1

β10 = δ
1
4 +δ

2
4 −2ν2 , β11 = δ

1
5 +δ

3
4 −2ν2 , β12 = δ

2
5 +δ

3
5 −2ν2 , β13 = δ

1
6 −δ

2
6 +δ

3
6 (3.2.10)

γ4 = δ
L
2 −ν3 , γ5 = δ

R
2 −ν3 , γ6 = δ

R
3 +δ

L
1 −2ν3 , γ7 = δ

L
3 +δ

R
1 −2ν3 , γ8 = δ

L
7 −2ν4 , γ9 = δ

R
7 −2ν4

γ10 =−δ
L
7 −ν4 , γ11 =−δ

R
7 −ν4 , γ12 = δ

L
8 +δ

R
9 , γ13 = δ

R
8 +δ

L
9 , γ14 = δ

1
5 +δ

2
5 −2ν3 , γ15 = δ

1
4 +δ

3
5 −2ν3

γ16 = δ
2
4 +δ

3
4 −2ν3 , γ17 = δ

1
10 +δ

2
10−2ν4 , γ18 = δ

3
10−δ

1
10−2ν4 , γ19 =−δ

3
10−δ

2
10−2ν4

γ20 = δ
1
6 −δ

2
11 +δ

3
11 , γ21 = δ

1
11−δ

2
6 +δ

3
12 , γ22 = δ

1
12−δ

2
12 +δ

3
6 (3.2.11)

Si ahora sustituimos en las relaciones (3.1.30)-(3.1.41) este cambio de variables, vemos que las ecuaciones se
satisfacen de forma trivial como era de esperar, pues al aplicar un cambio de variables sobre SR se ha de obtener
una ley de transformación y una ley de composición compatibles con el principio de la relatividad, lo que constituye
una buena comprobación.

Uno puede extraer las siguientes relaciones entre los coeficientes β ′s y γ ′s de la ley de composición que se
obtiene a partir de la ley de composición aditiva mediante un cambio de variables:

β7 +β8−β9 = 0 β7−β8 = 0 (3.2.12)

(β3 +β4 +β5 +β6)− (β10 +β11 +β12)− (γ4 + γ5 + γ6 + γ7)+(γ14 + γ15 + γ16) = 0 (3.2.13)

β3−β4−β5 +β6 + γ4− γ5 + γ6− γ7 = 0 (3.2.14)

γ8− γ9 + γ10− γ11 = 0 γ8 + γ9 + γ10 + γ11− γ17− γ18− γ19 = 0 (3.2.15)

Esto quiere decir que hay sólo 24 combinaciones linealmente independientes de los 30 coeficientes que aparecen
en una MCL obtenida a partir de un cambio de variables. Vemos por lo tanto que, al contrario de lo que ocurría
a primer orden, no toda MCL puede obtenerse a partir de una ley de composición aditiva mediante un cambio
de variables. Si comparamos estas relaciones con las obtenidas al implementar el principio de la relatividad en el
apartado anterior, vemos que antes teníamos sólo 2 (3.1.30), mientras que ahora tenemos 6. Puede comprobarse
fácilmente que las 2 relaciones en (3.1.30) están contenidas en este conjunto nuevo obtenido mediante cambios
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de variables, como era de esperar. Introduzcamos ahora una representación de cada ley de composición mediante
un vector con (30) componentes para cada uno de los coeficientes (β3, ...,β13,γ4, ...,γ22) y representamos cada
relación mediante un vector ortogonal al vector que representa la ley de composición. Por ejemplo, el primer vector
correspondiente a la primera relación de (3.2.12) tiene todo componentes nulas salvo las componentes 5, 6 y 7
que se corresponden con las posiciones que ocupan los coeficientes β7, β8 y β9 en el vector definido arriba que
valen 1, 1 y -1 respectivamente. A los vectores correspondientes a las relaciones (3.2.12)-(3.2.14) los denotaremos
por ~1CV , ...,~6CV y a los de (3.1.30) por ~1RP,~2RP. Entonces podemos escribir los vectores ~1RP,~2RP en función de
los~1CV , ...,~6CV :

~1RP =~2CV +~5CV ~2RP =~4CV +2×~5CV (3.2.16)

La conclusión que puede obtenerse por lo tanto es que no toda cinemática relativista está contenida en un
cambio de variables. Esto no ocurría a primer orden. Dado que tenemos 6 relaciones entre los coeficientes de la
MCL mediante el cambio de variables y 2 al imponer el principio de la relatividad, tendremos 4 parámetros libres
irreducibles en nuestra MCL asociados a cada uno de los 4 vectores perpendiculares a los 2 obtenidos mediante el
principio de la relatividad, que son:

~1Irrep =~1CV ~2Irrep =~3CV ~3Irrep =~6CV ~4Irrep =~2CV +
1
2
~4CV −

1
2
~5CV (3.2.17)

De esta manera determinamos las 4 combinaciones de coeficientes β ′s y γ ′s que no pueden eliminarse con un
cambio de variables. Pueden utilizarse pues 24 de los 34 coeficientes del cambio de variables para eliminar 24
combinaciones linealmente independientes de coeficientes de la MCL. Podemos usar otro coeficiente para eliminar
α5 de la relación de dispersión. Los otros 9 los podríamos utilizar para eliminar parte de las transformaciones de
Lorentz no lineales, pero seguiría habiendo parámetros completamente indeterminados.

La MCL irreducible puede escribirse como una combinación lineal de estos vectores, por lo que se pueden
construir distintas MCL. Tomemos como ejemplo la MCL irreducible construida a partir del vector~1Irrep

k⊕ p⊕q|0 = k0 + p0 +q0+

ω1

Λ2

(
q0
(

p2
0 + k2

0
)
+ k2

0 p0 + k0
(

p2
0 +q2

0
)
+ p0q2

0− k0 p0q0
)

(3.2.18)

k⊕ p⊕q|i = ki + pi +qi (3.2.19)

Este caso en concreto, vemos que la ley de composición es conmutativa (esto no ocurrirá si aparece en la MCL
el vector~4Irrep). Entonces ahora nos podemos preguntar qué ocurre con las transformaciones de Lorentz. Si vamos
a las relaciones (3.1.31)-(3.1.39), vemos que

µ2−µ1 =−4ω1 , µ3−µ1 =−
16ω1

3
, µ1− τ

L
1 − τ

R
2 − τ

R
3 − τ

1
1 =−4ω1 (3.2.20)

τ
L
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R
1 − τ

L
2 + τ

R
2 − τ

L
3 + τ

(3)
2 = 0 = τ

L
1 − τ

R
1 − τ

(1)
2 + τ

(3)
2 , µ1− τ

R
1 − τ

L
2 − τ

L
3 + τ

(2)
1 =−4ω1 (3.2.21)

µ1− τ
R
1 −2τ

L
2 + τ

R
2 − τ

L
3 + τ

(1)
2 + τ

(2)
2 =−4ω1 , µ1 + τ

L
1 −2τ

R
1 − τ

L
2 − τ

L
3 + τ

(3)
1 =−4ω1 (3.2.22)

τ
(1)
4 − τ

(2)
3 − τ

(2)
4 + τ

(3)
3 =−0 , τ

L
4 − τ

R
4 + τ

L
5 − τ

R
5 − τ

(1)
3 − τ

(1)
4 + τ

(2)
4 + τ

(3)
4 = 0 (3.2.23)

y en cuanto a la relación de dispersión

α3 =−
8ω1

3
, α4 = 0 (3.2.24)

Una solución muy simple de (3.2.21)-(3.2.24) corresponde a que todos los coeficientes τ´s se anulan. En ese caso
los µ´s quedan determinados. Por lo que resumiendo, tendríamos una cinemática muy sencilla en la que la MDR,
la ley de transformación y la MCL serían
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C (p) = p2
0−~p2− 8ω1

3Λ2 p4
0 (3.2.25)

[T (p)]0 = p0 +
(
~p.~ξ
)(

1+
4ω1

Λ2 p2
0

)
(3.2.26)

[T (p)]i = pi +ξi

(
p0−

4ω1

3Λ2 p3
0

)
(3.2.27)

k⊕ p⊕q|0 = k0 + p0 +q0+

ω1

Λ2

(
q0
(

p2
0 + k2

0
)
+ k2

0 p0 + k0
(

p2
0 +q2

0
)
+ p0q2

0− k0 p0q0
)

(3.2.28)

k⊕ p⊕q|i = ki + pi +qi (3.2.29)

Acabamos de ver un ejemplo para una ley de composición irreducible, pero en realidad lo que tendríamos de
forma general es una combinación lineal de las cuatro obtenidas anteriormente.

Estos coeficientes podrían obtenerse experimentalmente, y también mediante experimentos se podría ver si la
composición es o no conmutativa.

4. Modificación del álgebra de Heisenberg

En este apartado vamos a explorar una forma de ir más allá de SR distinta a la deformación de relaciones de
dispersión y leyes de composición, y que estará íntimamente relacionada con la estructura del espacio-fase, y por
tanto, del espacio-tiempo. Nuestro objetivo será tratar de formular unas relaciones de conmutación que generalicen
el álgebra de Heisenberg y que permitirían describir los efectos del experimento mental extensión del "microscopio
de Heisenberg", tal como describimos en la introducción.

Partimos de las relaciones de conmutación más generales para el álgebra de Heisenberg a segundo orden

[x0, p0] =−i
(

1+
ε1

Λ2 p2
0 +

ε2

Λ2~p
2
)

[x0, pi] = i
ε3

Λ2 p0 pi (4.0.1)

[xi, p0] = i
ε4

Λ2 p0 pi [xi, p j] = i
(

δi j

(
1+

ε5

Λ2 p2
0 +

ε6

Λ2~p
2
)
+

ε7

Λ2 pi p j +
ε8

Λ2 p0εi jk pk

)
(4.0.2)

[x0,xi] = i
(

ε9

Λ2 p0xi +
ε10

Λ2 x0 pi +
ε11

Λ2 εi jkx j pk

)
[xi,x j] = i

(
ε12

Λ2 p0εi jkxk +
ε13

Λ2 xi p j +
ε14

Λ2 pix j +
ε15

Λ2 x0εi jk pk

)
(4.0.3)

Para determinar las relaciones entre los coeficientes, aplicamos las identidades de Jacobi obteniendo en los
casos en los que no se satisfacen de forma trivial

xi, x j, xk =⇒ ε15 = 0, ε14 =−ε13 x0, xi, x j =⇒ 2ε11 = ε12 (4.0.4)

p0, x0, xi =⇒ ε10 = ε4−2ε2 (4.0.5)

pi, x0, x j =⇒ ε8 =−ε11, ε9 =−ε3−2ε5 pi, x j, xk =⇒ ε13 =−2ε6 + ε7 (4.0.6)

Vemos que estos resultados contienen el álgebra de Snyder [3],

[
xµ ,xν

]
=− i

Λ2 Jµν

[
xµ , pν

]
= i
(

ηµν −
1

Λ2 pµ pν

)
(4.0.7)

pero son más generales. También incluyen otras relaciones exploradas teórica y experimentalmente como en [21].
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Ahora hacemos el cambio de variable más general en las x′s siendo éste

x̃0 = x0 +
ρ1

Λ2 p2
0x0 +

ρ2

Λ2~p
2x0 +

ρ3

Λ2~x~pp0 (4.0.8)

x̃i = xi +
ρ4

Λ2 p2
0xi +

ρ5

Λ2~p
2xi +

ρ6

Λ2 p0x0 pi +
ρ7

Λ2~x~ppi +
ρ8

Λ2 p0εi jkx j pk (4.0.9)

Queremos que en estas nuevas variables se satisfaga el álgebra de Heisenberg usual, por lo que imponemos que

[x̃0, x̃i] = 0 =⇒ ε9 = 2ρ4 +ρ3 , ε10 = 2ρ2 +ρ6 , ρ8 = σ11 (4.0.10)

[x̃i, x̃ j] = 0 =⇒ ε13 = 2ρ5−ρ7 ,−2ρ8 = ε12 (4.0.11)

[x̃0, p0] =−i =⇒ −ε1 = ρ1 ,−ε2 = ρ2 (4.0.12)

[x̃0, pi] = 0 =⇒ −ε3 = ρ3 (4.0.13)

[x̃i, p0] = 0 =⇒ σ4 = ρ6 (4.0.14)

[x̃i, p j] = iδi j =⇒ −ε5 = ρ4 ,−ε6 = ρ5 ,−ε7 = ρ7 (4.0.15)

Podemos ver que es posible hacer un cambio de variables que nos elimine todos los términos a segundo orden,
por lo que si consideramos que las variables posición no tienen un significado físico, podemos llevar esta álgebra a
la usual. Otra forma de intentar ir más allá de las reglas de conmutación usuales es considerar el álgebra de Hopf,
que incluye al álgebra de Poincaré como caso particular (un libro básico de álgebras de Hopf puede encontrarse en
[17], y un desarrollo aplicado a las relaciones de conmutación en [18], [19] y [20]).

5. Conclusiones

En este trabajo hemos empezando motivando por qué ir más allá de SR. Existen incompatibilidades entre
QFT y GR que nos impiden tener una teoría cuántica de la gravedad. Una forma de ir más allá es considerar
que existe una longitud mínima, la longitud de Planck, construida mediante las constantes fundamentales de la
física. Al considerar esta longitud mínima, la física cambia completamente: distinciones entre partícula real o
virtual, materia-antimateria, materia-radiación,... desaparecen a escalas Planckianas. También el propio espacio-
tiempo cambia sus propiedades. Ya no puede hablarse de eventos, ni de distancias de tipo-tiempo o tipo-espacio, ni
siquiera de sistemas de referencia. Hay que visualizar el espacio-tiempo como una espuma que hoy en día estamos
lejos de poder expresar matemáticamente.

Sin embargo, uno puede intentar construir teorías que nos permitan poco a poco adentrarnos en la gravedad
cuántica, como DSR. En este marco, hemos estudiado primero un trabajo previo que considera desviaciones res-
pecto a SR a primer orden en la expansión, para poder reproducir los cálculos a segundo orden. Hemos encontrado
que a segundo orden los resultados difieren enormemente de los primeros:

A primer orden, los parámetros de la MCL y de la MDR están completamente determinados por los pa-
rámetros no lineales de los boosts. A segundo orden, hay parámetros de la MCL y de la MDR que son
completamente libres. De hecho, al contrario de lo que ocurría a primer orden, uno puede tener una MCL y
una MDR compatibles con una transformación de Lorentz lineal.

A primer orden, todas las MCL son compatibles con el principio de relatividad mientras que a segundo, no
todas las MCL son compatibles con el principio de relatividad, ya que hemos encontrado relaciones entre los
coeficientes.
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Si uno no tiene en cuenta que las variables momento tienen un significado físico, a primer orden puede
llegarse a SR sin más que hacer un cambio de variables. En cambio hemos visto que a segundo orden,
mediante un cambio de variables no es posible eliminar todos los parámetros de la MCL. Encontramos
toda una familia de MCL con cuatro parámetros independientes, los cuales podrían determinarse mediante
observaciones experimentales. También encontramos que los parámetros de la ley de transformación no
pueden eliminarse mediante un cambio de variables y que el principio de la relatividad nos impone tan sólo
condiciones para algunos de ellos.

Como hemos visto, los experimentos actuales ponen fuertes restricciones a posibles desviaciones a primer orden,
pero en un próximo futuro podrían ser sensibles a desviaciones a segundo orden. La extensión natural del presente
trabajo sería tratar de analizar implicaciones de un modelo sencillo con leyes de composición irreducibles a segundo
orden compatible con el Principio de Relatividad, como el presentado al final de la sección 3, en experimentos
de observación de fotones de rayos-gamma (MAGIC, Fermi) y de neutrinos cosmológicos de muy alta energía
(IceCube).

Por último, hemos estudiado la forma más general que tienen las leyes de conmutación en el espacio de fase,
viendo que, en el caso en el que uno no considere que las coordenadas tienen un significado físico, mediante un
cambio de variables uno puede obtener las relaciones del álgebra de Heisenberg usual. Esto no está en contradicción
con lo visto en la sección del modelo a segundo orden, ya que a diferencia del modelo de DSR estudiado a segundo
orden, en el que resulta crucial considerar la composición de varios momentos, en el tratamiento final del álgebra de
Heisenberg estábamos considerando únicamente el sector de una partícula. Ir más allá del sector de una partícula
en este lenguaje algebraico requeriría considerar álgebras de Hopf, un trabajo que esperamos desarrollar en un
próximo futuro.
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