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RESUMEN 

La melatonina es una hormona importante en la regulación de la reproducción, por lo 

que el descubrimiento de la presencia de los receptores de esta hormona en la 

superficie del espermatozoide ovino permite especular sobre su importancia en la 

funcionalidad espermática. Se sabe que, en ciertas células somáticas, ejerce sus 

acciones a través de diversas vías moleculares, algunas implicadas en la regulación de 

procesos fisiológicos del espermatozoide, como la capacitación. Esta capacitación es el 

conjunto de cambios moleculares y fisiológicos que sufre el espermatozoide y que le 

confieren capacidad fecundante.  Por otro lado, es sabido  que la melatonina tiene la 

capacidad de reducir el estrés oxidativo inducido por especies reactivas de oxígeno 

(ROS) y que durante la capacitación in vitro se produce un incremento de los niveles de 

ROS. Basándonos en estos datos, en el presente trabajo se planteó la hipótesis de que 

la melatonina jugaría un papel crucial en la capacitación espermática. 

 El objetivo de este estudio fue investigar el efecto de diferentes concentraciones de 

melatonina sobre distintos parámetros relacionados con la funcionalidad espermática 

en muestras sometidas a capacitación in vitro. Los parámetros analizados fueron la 

motilidad y la viabilidad celular y otros especialmente vinculados con la capacitación, 

como la hiperactivación,  la distribución y la cantidad de calcio intracelular, los niveles 

de ROS, la cantidad de AMPc  y los niveles de fosforilación en residuos de tirosina de 

las proteínas espermáticas. 

Los resultados obtenidos en este trabajo indicaron que ninguna de las concentraciones 

de melatonina utilizadas (100 pM, 10 nM y 1 μM) modificaron significativamente el 

porcentaje de espermatozoides mótiles o con membrana plasmática íntegra con 

respecto a las muestras capacitadas sin melatonina. Sin embargo, la presencia de 1 μM  

de melatonina en el medio de capacitación dio lugar a un menor porcentaje de 

espermatozoides capacitados (p<0,001) junto con menores niveles de ROS y calcio 

intracelular y además menor grado de fosforilación en residuos de tirosinas.   

 En conclusión,  en este estudio se demostró que la melatonina tiene efectos directos 

sobre la capacitación del espermatozoide ovino.  
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ABSTRACT 

 

Melatonin is an important hormone regulating reproductive functions and the 

presence of receptors for this hormone on the ram sperm surface leads to speculate 

about relevant role of melatonin on sperm functionality. Certain similarities between 

molecular patways activated by this hormone in somatic cells, and those implicated in 

sperm events such as capacitation, have been described. Capacitation includes 

physiological and biochemical changes required for spermatozoa to acquire the ability 

to fertilize the oocyte. On the other hand, melatonin is a potent antioxidant molecule, 

reducing the oxidative stress induced by reactive oxygen species (ROS). It has been 

shown that in vitro capacitation results in increased ROS levels. Based in all the above-

mentioned, we suggest the hypothesis that melatonin play a crucial role in sperm 

capacitation. 

The aim of this study was to investigate the effect of different melatonin 

concentrations on several sperm parameters related to sperm functionality in samples 

incubated in capacitating conditions. Analyzed parameters were motility, plasma 

membrane integrity, and those associated with capacitation, such as hyperactivation 

of motility, changes in intracellular calcium levels and distribution, ROS and cAMP 

levels and increment of protein tyrosine phosphorylation. 

The results obtained showed that none of melatonin concentrations assayed (100 pM, 

10nM and 1µM) affected the percentage of motile and with integral plasma 

membrane sperm compared with capacitated samples without melatonin. However, 

samples capacitated in the presence of 1µM melatonin showed a lower percentage of 

non-capacitated sperm (p< 0.001) together with lower levels of ROS and calcium and a 

decrease in protein tyrosine phophosrylation than capacitated samples without 

melatonin. 

In conclusion, this study showed that melatonin has direct effects on ram sperm 

capacitation. 
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1. INTRODUCCIÓN 

 

1.1. CAPACITACIÓN ESPERMÁTICA 

El espermatozoide de los mamíferos es incapaz de fecundar al ovocito tras la 

eyaculación. La capacidad fecundante la adquiere durante su tránsito por el tracto 

reproductor femenino, en un proceso conocido como capacitación espermática, que 

implica una serie secuencial de profundos cambios bioquímicos y biofísicos 

(Yanagimachi, 1994). 

1.1.1. EVENTOS FISIOLÓGICOS Y BIOQUÍMICOS DE LA CAPACITACIÓN 

A continuación se describirán brevemente algunos de los cambios más relevantes 

asociados a la capacitación espermática: 

1.1.1.1.  INCREMENTO EN LA FLUIDEZ DE LA MEMBRANA PLASMÁTICA 

Durante la capacitación, el contenido del colesterol de la membrana espermática se 

reduce hasta en un 40% dependiendo de la especie animal (Iborra et al., 2000).  La 

salida de colesterol conduce a un aumento en la fluidez de la membrana (Davis et al., 

1979) y una mayor permeabilidad de la misma (Visconti et al., 1999). 

Durante la capacitación, el colesterol se reordena en la parte apical de la cabeza 

espermática, recolocación que se produce de forma previa a su eliminación (Flesch et 

al., 2001). La albúmina, lipoproteínas de alta densidad (HDL) y β-ciclodextrinas han 

sido descritas como moléculas promotoras de la capacitación espermática, actuando 

como aceptores del colesterol y eliminándolo de la membrana plasmática (Vadnais et 

al., 2007). 

Es muy posible que el diferente contenido en colesterol de la membrana espermática 

de las distintas especies de mamíferos esté relacionado con el tiempo requerido para 

capacitarse. Así, espermatozoides de cerdo y de morueco, al tener poca cantidad de 

colesterol en su membrana plasmática, solo necesitan entre una y dos horas 

(Yanagimachi, 1994) mientras que el humano requiere entre siete y ocho horas de 

capacitación(Davis, 1981). 
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1.1.1.2.  FOSFORILACIÓN DE PROTEÍNAS EN RESIDUOS DE TIROSINAS 

La fosforilación de proteínas es una modificación post-traduccional  para regular y 

controlar diversos procesos celulares. En el espermatozoide, esta fosforilación juega 

un papel fundamental en la regulación de procesos como la capacitación, 

hiperactivación o la reacción acrosómica, que veremos más adelante. 

La fosforilación en tirosinas fue descrita en la célula espermática  por primera vez en 

1989 (Leyton et al., 1989) identificándose tres proteínas fosforiladas  de 52, 75 y 95 

KDa gracias al uso de anticuerpos anti-fosfotirosinas.  Esta fosforilación aumenta 

durante la capacitación en diversas especies y parece ser un prerrequisito para que el 

espermatozoide pueda fecundar al ovocito (Visconti et al., 1995) . En el caso de los 

espermatozoides ovinos, este hecho fue descrito por primera vez por nuestro grupo de 

investigación (Perez-Pe et al., 2002) que más recientemente demostró la participación 

de nuevas vías alternativas de señalización que regulan este proceso (Luna et al., 2012) 

además de la clásica AMPc/ PKA de la que se hablará más adelante.  

Además de la fosforilación en tirosinas, también se ha observado que durante la 

capacitación se produce un incremento de fosforilación en residuos de serinas y 

treoninas, tanto en el morueco (Grasa et al., 2009) como en otras especies como 

humano (Naz, 1999) o ratón (Jha et al., 2006). 

 

1.1.1.3.  HIPERACTIVACIÓN FLAGELAR 

Se trata de un cambio en el patrón de la motilidad necesario para la fecundación. El 

espermatozoide de mamífero presenta dos tipos de motilidad fisiológica: una 

motilidad activada, propia del espermatozoide recién eyaculado, y una motilidad 

hiperactivada, característica de espermatozoides con capacidad fecundante (Katz et 

al., 1981) (Fig. 1.1.).  

La motilidad activada se caracteriza porque el espermatozoide se mueve en línea 

relativamente recta. Sin embargo, una vez hiperactivado, el patrón de movimiento 
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cambia; normalmente los flagelos producen curvas más profundas, con un batido 

mucho más asimétrico que el anterior, por lo que tienden a moverse en  círculos o con 

un patrón en forma de ocho (Yanagimachi, 1994). Durante este proceso, la frecuencia 

de batido del flagelo se reduce en torno a un sexto. El proceso de hiperactivación 

podría estar estimulado de forma fisiológica por distintos componentes de los fluidos 

del tracto reproductor femenino. Estos dos procesos, capacitación e hiperactivación 

son complementarios y se desarrollan simultáneamente en condiciones fisiológicas. Sin 

embargo, también pueden producirse de manera independiente aun compartiendo 

vías o rutas de señalización (Ho et al., 2001). 

  

Figura 1.1  Patrones de motilidad espermática. A) Motilidad activada. B y C) Motilidad 

hiperactivada (Ho et al., 2003). 

 

1.1.1.4.  PREPARACIÓN PARA EXPERIMENTAR LA REACCIÓN ACROSÓMICA  

La reacción acrosómica (R.A.) es un proceso de exocitosis que ayuda al espermatozoide 

a penetrar en la zona pelúcida del ovocito y le permite por tanto poder llevar a cabo la 

fecundación. Solo aquellos espermatozoides previamente capacitados son capaces de 

experimentar la R.A. en el tracto reproductor femenino (Saling et al., 1979). Tanto la 

entrada de Ca2+, como la producción de especies reactivas de oxígeno, el aumento de 

la actividad del AMPc (que se verá más adelante) y la fosforilación en residuos de 

tirosina de proteínas, intervienen en la inducción de la R.A. (Yanagimachi, 1994; Leclerc 

et al., 1995; Aitken et al., 1997). 
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1.1.2.   MOLÉCULAS Y SEGUNDOS MENSAJEROS IMPLICADOS EN LA CAPACITACIÓN. 

 

Estos eventos fisiológicos que se producen durante la capacitación están modulados 

por una serie de moléculas y segundos mensajeros. 

 

1.1.2.1.  BICARBONATO 

La capacitación es un proceso dependiente del ión HCO3
-  (Visconti et al., 2002). De 

hecho se hipotetiza que las bajas concentraciones de bicarbonato en el epidídimo 

mantienen a los espermatozoides sin capacitar hasta que los altos niveles de este 

anión en el tracto reproductor femenino disparan su capacitación (Visconti et al., 

1998). Este transporte de HCO3
-  a través de la membrana puede ser el responsable del 

incremento del pH intracelular que se observa durante la capacitación (Zeng et al., 

1996). 

Este incremento de HCO3
- va a afectar principalmente a la membrana espermática. En 

determinadas circunstancias, la asimetría transversal de la membrana plasmática se 

altera dando lugar a un fenómeno conocido como scrambling, y que lleva asociado la 

externalización de determinados fosfolípidos que en condiciones normales se hallan en 

la cara interna de la misma. En esperma porcino (Harrison et al., 1996), humano (de 

Vries et al., 2003), y de caballo (Rathi et al., 2001) se ha observado que este fenómeno 

de scrambling se produce durante la capacitación y es dependiente de HCO3
-. Este ion, 

por tanto, modifica la estructura lipídica de la membrana plasmática del 

espermatozoide durante la capacitación, lo que lleva a su desestabilización y permite 

que la membrana plasmática de la cabeza del espermatozoide pueda fusionarse a la 

membrana acrosomal en la reacción acrosómica, y, posteriormente, con la membrana 

del ovocito (Harrison et al., 1996). 
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1.1.2.2 CALCIO 

El calcio juega un papel importante en diversas vías de transducción de señal, no solo 

implicadas en el proceso de capacitación (Ho and Suarez, 2003), sino también en la 

reacción acrosómica (Dragileva et al., 1999) y en la fecundación (O'Toole et al., 1996). 

Con respecto a la capacitación, regula la fosforilación de residuos de tirosinas (Visconti 

et al., 1995) y también parece estar implicado en la hiperactivación del 

espermatozoide, como demuestran estudios recientes (Ignotz et al., 2005; Colas et al., 

2010). El  Ca2+ actuaría regulando los niveles intracelulares de AMPc (Zaccolo et al., 

2003) mediante la  activación de la enzima adenilato ciclasa (AC), como veremos más 

adelante (Si et al., 2000). 

En la mayoría de las especies se ha observado un incremento de calcio intracelular 

durante la capacitación (Baldi et al., 1991), (White et al., 1989) (Colas et al., 2010). Este 

incremento puede ser debido a la entrada de calcio desde el exterior o a la salida del 

mismo desde reservorios intracelulares.  Aunque también se ha observado una 

disminución de la calmodulina, proteína de unión al Ca2+ durante la capacitación 

espermática, por lo que también se mantendrían altos los niveles de Ca2+ intracelular 

gracias a esta vía (Chaudhry et al., 1988). La entrada de calcio desde el exterior puede 

deberse tanto a la apertura de canales permeables al mismo, como al incremento de la 

fluidez de la membrana plasmática que se produce  durante este proceso, gracias a la 

salida del colesterol comentada anteriormente (Flesch et al., 2000). Sin embargo, 

existen controversias sobre el papel del calcio extracelular en la capacitación 

espermática  (DasGupta et al., 1993), (Baker et al., 2004). 

 

1.1.2.3  ACEPTORES DE COLESTEROL 

Se ha comprobado que, para la mayoría de las especies, los medios para llevar a 

cabo la capacitación in vitro deben incluir albúmina sérica bovina (BSA), debido a que 

este compuesto es capaz de retirar el colesterol de las membranas, aumentando por 

tanto su fluidez. Este papel, in vivo lo desempeñarían, además de la albúmina, 

abundante en los fluidos oviductal y uterino, otras proteínas de unión a esteroles 

como las lipoproteínas de alta densidad (HDLs).  
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Otro compuesto  utilizado en los medios de capacitación con el mismo objetivo son las 

β-ciclodextrinas. Las β-ciclodextrinas presentan una elevada afinidad y especificidad 

por los esteroles y son capaces de eliminar más del 80% del colesterol de membrana 

de las células (Yancey et al., 1996; Christian et al., 1997). 

 

1.1.2.4.  AMPC (ADENIL MONOFOSFATO CÍCLICO) 

Este nucleótido actúa como segundo mensajero de múltiples procesos 

biológicos. En los espermatozoides, al igual que ocurre con células somáticas, el 

incremento de la concentración intracelular de AMPc depende de la activación de la 

adenilato ciclasa (AC), enzima que cataliza la producción de AMPc a partir de adenosín 

trifosfato (ATP). Además de esta enzima, denominada adenilato ciclasa soluble (sAC) y 

regulada por iones (Braun et al., 1975; Hess et al., 2005), se han descrito también 

isoformas asociadas a la membrana (mAC) en espermatozoides de algunas especies, 

cuyo modo de activación y funcionamiento todavía no ha sido completamente 

elucidado (Baxendale et al., 2003). 

El aumento de la concentración de AMPc durante la capacitación parece ser 

mayoritariamente dependiente de un aumento en la concentración de HCO3
- y, en 

algunas especies, de Ca2+, ya que ambos iones estimulan la sAC. Esto a su vez, estimula 

la protein-kinasa A (PKA) para fosforilar, entre otros, residuos de tirosina de ciertas 

proteínas, (Visconti et al., 1998; Gadella et al., 2002). De esta manera, al utilizar un 

inhibidor de la PKA o un antagonista de AMPc se ven alterados los procesos de 

capacitación y la fosforilación de tirosinas(Galantino-Homer et al., 1997). En cuanto al 

papel que desempeña el incremento de AMPc en otros aspectos relacionados con la 

capacitación, como la hiperactivación, existe cierta controversia (Yanagimachi, 1994) 

(Colas et al., 2010) 

Estudios de nuestro grupo sugieren que los elevados niveles intracelulares de 

fosfodiesterasas (PDEs, enzimas encargadas de la degradación del AMPc) presentes en 

el espermatozoide ovino serían los responsables del bajo contenido de AMPc 

intracelular observado (Grasa et al., 2006; Colas et al., 2008). Asimismo, se demostró 
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que era necesaria la adición de un medio específicamente diseñado para mantener 

niveles intracelulares altos de AMPc (al que en este trabajo nos referiremos como 

cocktail) para la inducción de la capacitación in vitro en espermatozoides ovinos (Colas 

et al., 2008). 

Estudios más recientes de nuestro grupo también han demostrado que la tradicional 

vía dependiente de AMPc/PKA está sólo parcialmente implicada en la capacitación de 

espermatozoides ovinos, ya  que existen otras rutas de señalización celular que 

participan en la regulación del proceso de capacitación en esta especie (Luna et al., 

2012). 

1.1.2.5. ESPECIES REACTIVAS DE OXÍGENO (ROS) 

 

Las ROS incluyen moléculas como el anión superóxido (O2-), el peróxido de hidrógeno 

(H2O2), el radical hidroxilo (OH-) y el radical peroxilo (HO2
-)4. Frente a ellos, las 

moléculas antioxidantes actúan para ayudar a mantener sus niveles homeostáticos en 

las células y garantizar las funciones fisiológicas que ejercen, y al mismo tiempo evitar 

o prevenir los efectos patológicos que se pueden producir debido al estrés oxidativo 

(Fig. 1.2). 

  

Figura 1.2  Efectos fisiológicos y dañinos de ROS e la funcionalidad espermática(Kothari 

et al., 2010). 
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En las células espermáticas, las ROS, fisiológicamente presentes a bajas 

concentraciones, intervienen y controlan diversos procesos como  la maduración 

espermática, la capacitación, la hiperactivación, la reacción acrosómica y la fusión 

entre el espermatozoide y el ovocito, (Agarwal et al., 2003). (Kothari et al., 2010). 

 

Parece ser que las ROS, especialmente O2
-  y H2O2, promueven la capacitación, 

principalmente estimulando la adenilato ciclasa (AC), y por tanto la vía AMPc/PKA, 

comentada anteriormente.  

Sin embargo, a pesar de sus acciones fisiológicas, la acumulación excesiva de ROS en 

procesos patológicos induce la peroxidación de lípidos, daños en el DNA y 

apoptosis(Kothari et al., 2010), y por tanto pérdida de fertilidad. Dado que los 

espermatozoides son extremadamente sensibles al estrés oxidativo, se protegen de 

este estrés gracias a la presencia de enzimas y moléculas  antioxidantes como la 

melatonina en el plasma seminal  (Hammadeh et al., 2008; Casao et al., 2013) . 
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1.2. MELATONINA Y SU PAPEL FISIOLÓGICO SOBRE LA REPRODUCCIÓN 

 

La melatonina es una hormona secretada por la glándula pineal, así como por distintos 

tejidos extrapineales, encontrándose también presente en el plasma seminal  (Casao et 

al., 2010) (Cebrian-Perez et al., 2014) y en el tracto reproductor femenino (Brzezinski 

et al., 1987). Esta hormona está regulada por ritmos circadianos, de forma que, en 

plasma sanguíneo, posee un pico máximo de concentración nocturno y unos niveles 

basales diurnos (Turek et al., 1976). Es una molécula con gran poder antioxidante, 

gracias a su capacidad de bloquear los efectos de los radicales libres (Reiter et al., 

2009), y está también implicada en la regulación de multitud de procesos fisiológicos y 

fisiopatológicos, incluida la regulación de procesos reproductivos. 

 

Entre otros efectos, la melatonina juega un papel importante en el control de la 

reproducción en animales estacionales, sincronizando las épocas reproductivas con los 

cambios ambientales (Gerlach et al., 2000) tales como la temperatura, y la 

disponibilidad del alimento(Rosa et al., 2000).  En el caso de la especie ovina, esta 

hormona estimula  la reproducción durante los días cortos, es decir en  las estaciones 

de otoño e invierno (Malpaux et al., 1997), para que los partos se concentren en 

primavera-verano.  En la época no reproductiva (durante los días largos, es decir, 

primavera y verano), se produce una disminución de la actividad del eje hipotálamo-

hipofisario-gonadal (Lincoln, 1990) debida a  una menor liberación de melatonina 

nocturna  en la glándula pineal durante este periodo (Sheikheldin et al., 1992) 

(Sheikheldin et al., 1992) y que en el macho ovino se asocia a una disminución en la 

calidad espermática(Karagiannidis et al., 2000) y en la fertilidad asociada a esta(Palacin 

et al., 2008) . 
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Nuestro grupo de investigación  ha demostrado que el tratamiento con melatonina 

exógena (mediante implantes subcutáneos) durante la época no reproductiva en 

sementales ovinos, permite aumentar la motilidad espermática y mejorar otros 

parámetros reproductivos, dando como resultado un aumento de  la fertilidad  in vivo 

(Palacin et al., 2008; Casao et al., 2010). Esta melatonina exógena también provoca un 

aumento en los niveles de testosterona y estradiol en el plasma seminal ovino, además 

de un incremento de las enzimas glutatión peroxidasa y glutatión reductasa en este 

fluido, lo que se relacionaría con su papel antioxidante (Casao et al., 2013), dando 

lugar a una mejora de la calidad espermática in vivo. 

 

Además, de la presencia de  melatonina en el plasma seminal (Casao et al., 2010), 

estudios de nuestro grupo también han demostrado tanto la acción directa de la 

melatonina sobre el espermatozoide ovino (Casao et al., 2010), sobre el que ejerce un 

efecto antioxidante y modulador de la capacitación, y la existencia de receptores MT1 y 

MT2 en la membrana del esta células(Casao et al., 2012), lo que hace pensar que la 

melatonina puede tener un papel relevante en la funcionalidad espermática ovina. 

Aunque se han descrito algunos efectos de la melatonina sobre la calidad y la 

supervivencia espermática, hasta la fecha se desconoce su implicación exacta y su 

mecanismo de acción en procesos espermáticos tan importantes como la capacitación. 

 

1.2.1. MELATONINA Y CAPACITACIÓN ESPERMÁTICA 

 

El papel de la melatonina sobre los espermatozoides sigue siendo objeto de estudio, 

pero se ha comprobado que su presencia disminuye el daño oxidativo, al reducir los 

niveles de ROS (Jang et al., 2010), y también los marcadores apoptóticos (Casao et al., 

2010; Espino et al., 2011)  incluyendo la fragmentación del DNA (Sarabia et al., 2009).  

En relación al proceso de capacitación, nuestro grupo ha descrito como la melatonina 

puede actuar como agente tanto capacitante como descapacitante dependiendo de la 

concentración utilizada. Así, a concentraciones de 100 pM se observó un efecto 
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capacitante, mientras que a una concentración de 1 µM se inhibía la capacitación 

espermática (Casao et al., 2010). Estos resultados se corroboraron mediante 

fecundación in vitro (FIV), en los que los ovocitos fecundados con  muestras 

espermáticas tratadas con la concentración más baja de melatonina presentaban una  

mayor tasa de división embrionaria, y por tanto una mayor capacidad fecundante 

(Casao et al., 2010).  

Este efecto de la melatonina sobre la capacitación espermática podría deberse a las 

propiedades antioxidantes de esta hormona. Como se ha comentado, la melatonina 

tiene una elevada capacidad de eliminar las ROS, pero, para que se produzca la 

capacitación, son necesarios unos determinados niveles de estas especies reactivas 

(Gagnon et al., 1984). Por tanto, cantidades elevadas de melatonina, como las 

presentes de forma fisiológica en el plasma seminal, podrían tanto proteger a los 

espermatozoides del daño oxidativo (Reiter et al., 2009),así como prevenir la 

capacitación eliminando las ROS. Una vez en el tracto reproductor femenino, 

probablemente el espermatozoide esté expuesto a  concentraciones mucho más bajas 

de melatonina, ya que esta hormona que se encuentra de forma fisiológica en el fluido 

folicular se diluiría al pasar al fluido oviductal con la ovulación (Tamura et al., 2008), y, 

como se ha comentado, estas bajas concentraciones de melatonina no reducirían 

tanto los niveles de ROS, permitiendo por tanto, la capacitación espermática. 

Sin embargo, también sería posible que la hormona actúe tras su  unión, una vez en el 

citoplasma, a la calmodulina (Pozo et al., 1997) ya que esta proteína se encuentra 

relacionada con diferentes aspectos de la funcionalidad espermática, como  la 

hiperactivación, la capacitación y la reacción acrosómica (Bendahmane et al., 2001; 

Tulsiani et al., 2007; Colas et al., 2009).  

Además de esta posible acción directa de la melatonina, no olvidemos que ésta 

también podría ejercer sus acciones mediante a su unión a receptores de membrana 

específicos. Nuestro grupo ha identificado ambos receptores de melatonina descritos 

en mamíferos, MT1  y MT2, en la membrana del espermatozoide ovino (Casao et al., 

2012), y ha demostrado que la acción de la melatonina sobre la capacitación 

espermática podría estar mediada por la unión a estos receptores, concretamente a 
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MT2(Gonzalez-Arto et al., 2014). Como se ha mencionado, el bicarbonato y el calcio juegan un 

papel muy importante en el proceso de capacitación (Grasa et al., 2006).  En algunas 

células somáticas se ha descrito que la melatonina regula la secreción de bicarbonato y 

la  movilización de calcio intracelular, a través de su unión al receptor MT2  (Sjoblom et al., 

2003) lo que apoyaría la idea de que la melatonina regule la capacitación espermática 

por esta vía. 

De esta forma, al incubar a los espermatozoides con agonistas de la melatonina para 

estos receptores en condiciones capacitantes (en un medio con calcio y bicarbonato) 

se mantuvo una alta proporción de espermatozoides no capacitados,  mientras que si 

se incubaban con antagonistas de la misma, se produce un incremento en el 

porcentaje de espermatozoides capacitados (Gonzalez-Arto et al., 2014). 

Además, quedaría por dilucidar si la melatonina es capaz de ejercer sus efectos 

moduladores de la capacitación cuando esta se lleva a cabo usando la mezcla de 

sustancias elevadoras del AMPc (cocktail) mencionada anteriormente, que da lugar a 

un mayor incremento en el porcentaje de espermatozoides capacitados y una mayor 

señal en fosfotirosinas de proteínas de membrana.   

 Así pues se hace necesario profundizar en la investigación del papel de la melatonina 

en la funcionalidad del  espermatozoide ovino y especialmente  en el proceso de  

capacitación. Esta investigación abriría nuevas vías para seleccionar las condiciones 

óptimas para llevar a cabo procesos de fecundación in vitro  y mejorar sus resultados. 

Además, en base a los resultados obtenidos, esta hormona podría utilizarse como 

aditivo adecuado para la criopreservación del esperma, con la finalidad de evitar o 

minimizar alguno de los daños asociados al frio, como el estrés oxidativo o la 

capacitación prematura, causas potenciales de la disminución en la fertilidad obtenida 

con muestras criopreservadas.  
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2. HIPOTESIS Y OBJETIVOS 

 

Tras investigar los antecedentes sobre este tema, nos planteamos la hipótesis de que 

la melatonina puede tener un papel importante en la funcionalidad espermática y, 

especialmente en el proceso de capacitación.   

Por tanto, el objetivo general de este trabajo es estudiar el efecto de diferentes 

concentraciones de melatonina sobre la capacitación espermática en la especie ovina.  

Para ello, los objetivos específicos planteados fueron: 

 

1. Analizar el efecto capacitante o descapacitante que puede producir esta hormona 

durante el proceso de capacitación in vitro  a diferentes concentraciones, y su 

influencia en los niveles de diferentes moléculas y segundos mensajeros como son el 

Ca2+, ROS y AMPc. 

 

2. Evaluar la motilidad espermática y  los diferentes  parámetros cinéticos relacionados 

con el fenómeno de hiperactivación que suele producirse simultáneamente con la 

capacitación. 

 

3. Por último, estudiar la fosforilación de residuos de tirosina de membrana de las 

proteínas espermáticas  para comprobar el efecto que produce la hormona sobre las 

últimas fases del proceso de capacitación.  

 

Para llevarlos a cabo, se incubaran los espermatozoides libres de plasma seminal en  

medio TALP, sólo o junto con un cocktail de sustancias que han demostrado ser 

eficientes para provocar la capacitación in vitro de los espermatozoides ovinos (Colas 

et al., 2008) en ausencia o presencia de diferentes concentraciones de melatonina 

(100 pM, 10 nM y 1 µM).  
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3.1. PROCESADO DE LAS MUESTRAS ESPERMÁTICAS 

  

3.1.1.    RECOLECCIÓN DE SEMEN 

En los experimentos realizados se utilizó semen ovino obtenido a partir de 

moruecos adultos (3 y 6 años), pertenecientes a la Asociación Nacional de Ganaderos 

de la raza Rasa Aragonesa (ANGRA), mantenidos en las instalaciones del Servicio de 

Experimentación Animal (SEA) de la Universidad de Zaragoza. Tanto el mantenimiento 

de los sementales como la obtención de las muestras corrieron a cargo del personal 

del SEA. Los animales se mantuvieron con un régimen de tres extracciones semanales, 

manteniéndose así períodos de abstinencia de dos o tres días. Se obtuvieron dos 

eyaculados consecutivos por morueco, mediante vagina artificial, y se utilizaron sólo 

los segundos en base a resultados previos de nuestro equipo de investigación que 

demostraron que éstos tenían mejores parámetros de calidad seminal (Ollero et al., 

1994; Ollero et al., 1996; Ollero et al., 1996). Tras la recogida, las muestras se 

mantuvieron a 37 °C hasta su uso y se trabajó con la mezcla de los segundos 

eyaculados para evitar diferencias individuales. 

3.1.2.    MÉTODO DE SWIM-UP/DEXTRANO 

Con el fin de eliminar el plasma seminal y/o restos celulares de las muestras 

frescas, se utilizó el método de swim-up/dextrano. La eliminación del plasma seminal 

resulta conveniente debido al efecto perjudicial que éste ejerce en el mantenimiento 

de las células espermáticas (Mortimer, 1994), así como para evitar la influencia de sus 

componentes en los resultados obtenidos. 

 El método de swim-up/dextrano puesto a punto en nuestro laboratorio por 

García- López y col. (Garcia-Lopez et al., 1996)  está basado en el descrito por Álvarez 

para espermatozoides humanos (Alvarez et al., 1993), pero se modificaron tanto 

alguno de los pasos del proceso como la composición del medio para su aplicación en 

3. MATERIALES Y MÉTODOS 
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SEMEN

D EX TRAN O /M S

A LBÚ M IN A/M S

tª =  37oC

SELEC CIÓN  DE ESPE R M A TOZOID ES 
M EDIA NTE  SW IM -U P/D EXT RA N O 

el lavado de espermatozoides ovinos. El medio utilizado fue el MS, compuesto por 

NaCl 50 mM, KCl 10 mM, MgSO4 0,4 mM, K2HPO4 0,3 mM, HEPES 21 mM, glucosa 2,8 

mM, piruvato sódico 0,33 mM, lactato sódico 18,6 mM, sacarosa 200 mM, pH 6,5. Al 

medio se le añadieron 1,5 UI/ml de penicilina y 15 µg/ml de estreptomicina para evitar 

su contaminación. Este medio no contenía ni CaCl2 ni NaHCO3 para evitar una 

capacitación prematura de las células (Grasa et al., 2004). 

 

 

 

 

 

 

 

 

 

Figura 3.1 Esquema del método de selección de espermatozoides 

mediante swim-up/dextrano. 

 

Para la realización del swim-up se pipetearon cuidadosamente 500 µl de semen 

en el fondo de un tubo redondeado de 15 mm de diámetro como se aprecia en la 

figura 3.1. Sobre el semen se depositaron 500 µl de MS-Dx (30 mg dextrano/ml MS) y a 

continuación, muy lentamente se añadieron 1,5 ml de MS-A (5 mg albúmina sérica 

bovina/ml MS). Pasados 15 minutos a 37 °C, se recogieron 750 µl del sobrenadante. El 

proceso se repitió otras tres veces consecutivas, obteniéndose un total de cuatro 

sobrenadantes. Se desechó el primer sobrenadante por contener restos del plasma 

seminal, y se trabajó posteriormente con la mezcla de los tres restantes. Esta técnica 
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no es un simple método de lavado, ya que presenta la doble ventaja de obtener una 

población espermática libre de plasma seminal, al tiempo que está enriquecida en 

espermatozoides altamente mótiles y viables(Garcia-Lopez et al., 1996). 

 

3.1.3. CAPACITACIÓN IN VITRO 

 Para inducir la capacitación espermática in vitro, a partir de las muestras 

previamente seleccionadas mediante swim-up, se introdujeron alícuotas de 1,6 x 108 

cels./ml en una estufa de incubación a 39 °C, con 5% de CO2  y 100% de humedad, 

durante 3 horas.  Las incubaciones se llevaron a cabo en medio TALP completo (Parrish 

et al., 1988), compuesto por NaCl 100 mM, KCl 3,1 mM, NaHCO3 25 mM, NaH2PO4 0,3 

mM, lactato sódico 21,6 mM, CaCl2 3 mM, MgCl2 0,4 mM, HEPES 10 mM, piruvato 

sódico 1 mM y glucosa 5 mM; se añadieron 5 mg/ml de albúmina sérica bovina (BSA), y 

se ajustó su pH a 7,2.  

Además, a todas las alícuotas excepto a la muestra control, se les añadió una 

mezcla de sustancias al medio TALP, con probada capacidad para inducir la 

capacitación in vitro de los espermatozoides ovinos(Colas et al., 2008), y que se 

denominará cocktail a lo largo de la presente memoria. El cocktail estaba compuesto 

por dibutiril-cAMP (db-cAMP, un análogo del AMPc; 1 mM), cafeína y teofilina (ambos 

inhibidores de fosfodiesterasas; 1 mM, cada uno), ácido okadaico (OA, un inhibidor de 

fosfatasas de amplio espectro; 0,2 μM) y metil-β-ciclodextrinas (M-β-CD;  2,5 mM). 

La melatonina utilizada en los experimentos se disolvió en PBS con 

dimetilsulfóxido (DMSO) y se añadió a determinadas alícuotas espermáticas a una 

concentración final de 1 µM, 10 nM y 100 pM, respectivamente. La concentración final 

de DMSO en todas las muestras fue de 0,1%, incluidas las muestras control. 

 La nomenclatura que se seguirá a lo largo de todo el trabajo será: swim-up 

(muestra libre de plasma seminal sin incubar en condiciones capacitantes), control 

(incubada en medio TALP), cocktail (medio TALP + sustancias elevadoras del AMPc), 

100 pM (medio TALP + sustancias elevadoras del AMPc + 100 pM de melatonina),  
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10 nM (medio TALP + sustancias elevadoras del AMPc + 10 nM de melatonina) 

y 1 µM (medio TALP + sustancias elevadoras del AMPc + 10 µM de melatonina). 

La cantidad de medio TALP añadido a cada una de las alícuotas dependió de la 

cantidad de muestra de swim-up necesaria para tener la adecuada concentración 

celular (1,6 x 108 cels./ml), una vez descontado el volumen de los reactivos añadidos 

en cada caso, hasta alcanzar un volumen final de  500 µl.  

3.2. EVALUACIÓN DE LAS MUESTRAS ESPERMÁTICAS 

 

3.2.1.    CONCENTRACIÓN ESPERMÁTICA 

La determinación de la concentración de las muestras espermáticas obtenidas 

tras el swim-up se calculó por duplicado usando una cámara de Neubauer (Marienfeld, 

Germany), tras una  dilución 1/100 con agua. Se colocó una gota de 6 μl en la cámara y 

se observó con objetivo 10x en un microscopio de contraste de fases. Se contaron las 

células existentes en 16 cuadrículas de la cámara y se aplicó la fórmula: 

         C  =  nº espermatozoides contados  x  104  ml x  
1

dilución   =   espermatozoides/ml 

 

3.2.2. VIABILIDAD CELULAR (INTEGRIDAD DE LA MEMBRANA PLASMÁTICA) 

La viabilidad espermática se valoró  mediante el método descrito por Harrison y 

Vickers (1990), conocido como método del ioduro de propidio/diacetato de 

carboxifluoresceína (PI/CFDA). Esta técnica se basa en la distinta coloración que 

presentan los espermatozoides tras su incubación con estos dos colorantes, en función 

de su viabilidad, entendida ésta como integridad de membrana. Se consideraron 

viables los espermatozoides teñidos de color verde ya que ello implicaba que su 

membrana estaba íntegra al presentar impermeabilidad al ioduro de propidio y estas 

células tenían capacidad de hidrolizar, mediante esterasas, el diacetato de 

carboxifluoresceína, que es incoloro, a carboxifluoresceína, lo cual da como resultado 

el color verde. Los espermatozoides con coloración roja se consideraron inviables, ya 
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que la membrana dañada es permeable al ioduro de propidio, el cual penetra en el 

interior de la célula y le proporciona el color rojo. 

 La muestras seleccionadas por swim-up se diluyeron 1:60 y las alícuotas 

sometidas a capacitación 1:5  con medio de bifase (sacarosa 0,25 M, EGTA 0,1 mM, 

tampón fosfato sódico (pH 7,5) 4 mM, tampón HEPES 10x 10% (v/v)). A continuación se 

procedió a la tinción con diacetato de carboxifluoresceína (10 µM en DMSO) y ioduro 

de propidio (7,3 µM en agua destilada), tras previa adición de formaldehído  1,7 mM 

para la inmovilización de las células con objeto de lograr una mejor evaluación. 

Seguidamente las muestras se incubaron en estufa y en oscuridad a 37 °C durante 15 

minutos.  

Las muestras  se analizaron con un citómetro de flujo FC 500 (Beckman Coulter, 

Fullerton, CA), que usa un láser de argón a 488 nm. La fluorescencia verde debida al 

diacetato de carboxifluoresceína se detectó usando un filtro de  banda a 525 nm (FL-1), 

mientras que para la señal roja debida al ioduro de propidio se usó un filtro de 675 nm 

(FL-4). Se contaron un total de 10.000 eventos, con una media de 500-1.000 eventos/ 

segundo, y se diferenciaron espermatozoides PI-/CFDA+ (con membrana intacta)  y  

espermatozoides PI+ (con membran dañada). 

 

3.2.3. MOTILIDAD ESPERMÁTICA 

Se evaluó utilizando una sistema computarizado de análisis espermático (CASA, 

computer assisted semen analysis ), concretamente el ISAS 1.0.4 (Proiser SL, Valencia, 

España).  Para ello se colocó una gota de 6 µl de muestra swim-up  diluida en medio 

bifase 1:10 y muestra capacitada sin diluir entre un porta- y un cubre-objetos 

previamente atemperados, y se observó con objetivo 10x en un microscopio de 

contraste de fase a través de un monitor de ordenador equipado con el sistema  CASA.  

Se analizaron al menos cinco campos por gota y un mínimo de dos gotas por 

muestra. El programa es capaz de integrar las imágenes captadas mostrando la 

trayectoria de los espermatozoides y clasificándolos en función de su movimiento en 

estáticos y mótiles (lentos, medios y rápidos) (Figura 3.2.).  El equipo también 
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proporciona los valores medios de numerosos parámetros cinéticos, que aparecen 

recogidos en la Tabla 3.3. 

.  

    

  

  

 

 

Figura 3.2. (A) Equipo de análisis de la motilidad espermática . (B) Análisis de la imagen 

microscópica (objetivo de 10x) integrada por el programa ISAS (Integrated Semen 

Analysis System).  Aparecen marcados   los espermatozoides estáticos (en amarillo), y 

la trayectoria de los espermatozoides mótiles lentos (azul), medios (verde) y rápidos 

(rojo).  

 

Tabla 3.3. Diferentes parámetros cinéticos analizados por un sistema CASA. 

 

PARÁMETRO UNIDAD DEFINICIÓN 

 

VELOCIDAD 

 CURVILÍNEA (VCL) 

µm/s Distancia recorrida por el espermatozoide a lo 

largo de su trayectoria real en función del 

tiempo 

 

VELOCIDAD  

RECTILÍNEA (VSL) 

µm/s Distancia recorrida por el espermatozoide desde 

el primer punto hasta el último de su 

trayectoria. 

 

VELOCIDAD 

 MEDIA (VAP) 

µm/s Distancia recorrida por el espermatozoide a lo 

largo de su trayectoria media en función del 

tiempo. 

(A) (B) 
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ÍNDICE LINEARIDAD (LIN) % Relación porcentual entre la VSL y la VCL 

ÍNDICE RECTITUD (STR) % Relación porcentual entre la VSL y la VAP 

 

ÍNDICE DE OSCILACIÓN 

(WOB) 

% Relación porcentual entre la VAP y la VCL 

 

AMPLITUD DEL 

DESPLAZAMIENTO 

LATERAL DE LA CABEZA 

(ALH) 

µm/s Desplazamiento medio efectuado por la cbeza 

del espermatozoide en su trayectoria 

curvilínea de un lado a otro de la trayectoria 

media o lineal. 

 

FRECUENCIA DE BATIDA DE 

COLA (BCF) 

Hz Frecuencia con la cual la trayectoria 

curvilínea atraviesa la lineal o media en 

función del tiempo 

 

MÓTILES NO PROGRESIVOS 

(MNP) 

% Porcentaje de espermatozoides que se 

mueven sin desplazamiento apreciable. 

MÓTILES PROGRESIVOS 

(MP) % 

Porcentaje de espermatozoides mótiles. 

ESTÁTICOS % 

Porcentaje de espermatozoides que no 

presentan motilidad de ningún tipo. 

   

 

 

También se determinó el porcentaje de espermatozoides hiperactivados en las 

diferentes muestras espermáticas al finalizar el swim-up, y tras 1 y 3 horas de 

incubación en condiciones capacitantes. Se realizó teniendo en cuenta dos parámetros 

cinéticos de  los espermatozoides mótiles en base a resultados previos de nuestro 

grupo de investigación (Colas et al., 2010): LIN (índice de linealidad) y ALH (amplitud 

del desplazamiento lateral de la cabeza). Los espermatozoides se consideraron 

hiperactivados  cuando mostraron un valor de LIN ≤45%  y de ALH ≥ 3,5 µm.  
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3.2.5 EVALUACIÓN DEL ESTADO DE CAPACITACIÓN  

La clorotetraciclina (CTC) es un antibiótico que se liga a los cationes asociados a 

la membrana, especialmente el Ca2+ (Caswell et al., 1971). Al penetrar en la célula 

espermática, la CTC se une al calcio libre y se vuelve más fluorescente(Ericsson, 1967). 

La unión de la CTC al calcio (preferentemente en la membrana celular) da lugar a 

patrones característicos de tinción. Dependiendo de los diferentes estados fisiológicos 

del espermatozoide, existen diferentes patrones de fluorescencia que permiten hacer 

una diferenciación entre células no capacitadas, capacitadas y reaccionadas (Fraser et 

al., 1995). En este estudió se utilizó una versión modificada del ensayo descrito por 

Ward and Storey (Ward et al., 1984) y validada para semen ovino por nuestro grupo de 

investigación (Grasa et al., 2006). 

La solución de clorotetraciclina se preparó el mismo día del experimento a una 

concentración 750 μM en una solución tampón que contenía Tris 20 mM, NaCl 130 

mM y cisteína 5 μM, se pasó por un filtro de 0,22 µm (Millipore Ibérica, Madrid, Spain) 

y se ajustó el pH a 7,8.  

Para realizar la tinción se mezclaron 20 μl de muestra (las de swim-up diluidas 

1:10 en medio bifase y las muestras capacitadas sin diluir)  y 20 μl de la solución de 

CTC y se fijó con 5 μl de una solución de paraformaldehído (paraformaldehido al 12,2% 

(p/v) en tampón Tris-HCl 0,5M, pH 7,4). Se puso una alícuota de 6 μl de cada muestra 

en un portaobjetos y se le añadieron 4 μl de DABCO (antifadding, Sigma Chemical Co., 

Madrid, Spain) para conservar la fluorescencia; se colocó el cubreobjetos y se selló la 

preparación con esmalte transparente, siempre realizando los procesos protegidos de 

la luz. Se observó con un microscopio de fluorescencia Nikon Eclipse E-400  equipado 

con filtro V-2A, se evaluaron unos 200 espermatozoides utilizando unobjetivo de 

inmersión (1000x). Se distinguieron tres tipos de espermatozoides distintos según el 

patrón de tinción: no capacitados (NC, distribución de la fluorescencia en la cabeza, 

con o sin una banda ecuatorial brillante), capacitados (C, con fluorescencia en la 

porción anterior de la cabeza) y con el acrosoma reaccionado (AR, no mostrando 

fluorescencia en la cabeza) como se observa en la figura 3.4. 
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Figura. 3.4. Espermatozoides ovinos con tinción de CTC vistos con microscopía 

de fluorescencia en filtro longitud de onda  azul y 1000 x.  Se pueden distinguir 

espermatozoides no capacitados (NC), capacitados (C), y reaccionados (R) 

 

3.2.6   ESTUDIO DE LA DISTRIBUCIÓN INTRACELULAR DEL CALCIO  POR CITOMETRÍA DE 
FLUJO 

 

El Ca2+   intracelular se valoró en las muestras  seleccionadas por swim-up  (diluidas 

1:10 en medio de bifase) y muestras capacitadas (diluidas 1:5)  a los diez minutos, 1  

hora 3 horas de incubación in vitro en condiciones capacitantes. A continuación, se 

procedió a la tinción con  2 µl de la sonda fluorescente Fluo-4 AM, (Molecular probes, 

Eugene,Orengon, USA; 5 µM en 0,04% de ácido plurónico y 0,25% de DMSO) y  2 µl de 

ioduro de propidio (PI) (Gee et al., 2000). Tras 15 minutos a 37 °C, se fijaron las 

muestras con formaldehído  1,7 mM, se centrifugaron  a 600 g/5 minutos y se  

resuspendió  el pellet en 300 µl de PBS para eliminar el exceso de fluorescencia. El 

análisis de las muestras se realizó en un citómetro FC 500 (Beckman Coulter, Fullerton, 

CA). Las  células se excitaron con un láser de argón a 488 nm. La fluorescencia de Fluo-

4 AM se detectó usando un flitro de  banda a 525 nm (FL-1), mientras que el ioduro de 

propidio (PI) se detectó con un filtro a 675 nm (FL-4),  ambos en escala logarítmica. Se 

analizaron un total de 10.000 eventos, con una media de 500-1.000 eventos/ segundo. 

Se excluyeron las células muertas (PI positivas) y se calculó la intensidad media de la 

fluorescencia correspondiente a Fluo- 4 AM (X-Mean)  de las células vivas (PI 

negativas) 
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3.2.7  ESTUDIO DE LOS NIVELES DE ESPECIES REACTIVAS DE OXÍGENO (ROS)  

 

El método está basado en el uso de H2DCFDA,  un  colorante permeable, que 

atraviesa las membranas celulares y es hidrolizado por esterasas intracelulares, dando 

lugar a H2DCF, que es no permeable y no fluorescente. El H2DCF es oxidado por el H2O2  

a diclorofluoresceína (DCF), que emite fluorescencia a 530 nm tras su excitación a 488 

nm. Se combinó con ioduro de propidio (PI), para discriminar entre células vivas y 

muertas (Guthrie et al., 2006). 

Las muestras se prepararon  a una concentración de 106 células/ml en medio de 

bifase, se incubaron con 1 μM H2DCFDA y 2,5 μg/ml de PI durante 15 minutos a 37 °C 

en oscuridad, y se fijaron con formaldehído  1,7 mM. Tras la incubación, las muestras 

se analizaron mediante un citómetro de flujo Beckman Coulter FC 500 (Beckman 

Coulter, Fullerton, CA). La fluorescencia correspondiente a la diclorofluoresceína (DCF),  

se recogió  en el fotodetector FL1 y la del PI en el FL4.  Se excluyeron las células 

muertas (PI positivas) y se calculó la intensidad media de la fluorescencia 

correspondiente a la DCF  (X-Mean) de las células vivas (PI negativas). 

3.2.8   ESTUDIO DE LA CONCENTRACIÓN DE AMP CÍCLICO  

 

 La concentración de AMPc en las muestras  se midió con un inmuno-ensayo 

usando el  kit cAMP Enzyme Inmunoassay Kit, Direct (Sigma-Aldrich Corp., St. Louis, MO, 

USA ), de acuerdo con las especificaciones indicadas por el fabricante. Las muestras 

fueron  tratadas con HCl 0,1M  para detener la actividad fosfodiesterasa endógena. Y  

también en este caso, las muestras se acetilaron para aumentar la sensibilidad del 

ensayo debido a los bajos niveles intracelulares de AMPc en muestras espermáticas. El 

ensayo se llevó a cabo en placas de 96 pocillos, utilizando un anticuerpo policlonal, que 

se une de forma competitiva al AMPc de la muestra o de la fosfatasa alcalina unida 

covalentemente a AMPc.  
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 Los  estándares y  las muestras, conjugadas con fosfatasa alcalina, y el 

anticuerpo primario se incubaron  a temperatura ambiente con el  anticuerpo 

secundario. El exceso de los reactivos se eliminó  y se añadió por último  el substrato. 

Tras todo esto, la reacción se detuvo  y se generó  un color amarillo que se leyó en un 

lector de placa multipocillos a 405 nm. La intensidad de este color amarillo es 

inversamente proporcional a concentración de AMPc. Se utilizó  la densidad óptica 

para calcular la concentración.  

 

3.3 DETECCIÓN DE LA FOSFORILACIÓN DE RESIDUOS DE TIROSINA DE LAS PROTEÍNAS 
DE MEMBRANA ESPERMÁTICAS POR WESTERN BLOTTING  

   

3.3.1 EXTRACCIÓN DE PROTEÍNAS  ESPERMÁTICAS 

Se procedió a extraer las proteínas de membrana, por el método descrito por 

Colás y col. (Colas et al., 2008). A  200 µl de muestra tanto del swim-up como 

capacitadas in vitro (control, cocktail y cocktail  con las diferentes concentraciones de 

melatonina) conteniendo 8 x 107 células/ 500µl  se les añadieron 100 µl del medio de 

extracción (ESB, Extraction Sample Buffer),  compuesto por  2% de SDS (dodecil sulfato 

sódico, p/v), TRIS-HCl 0,0626 mM (pH 6,8), 0.002% de azul de bromofenol diluido en 

glicerol al 10 % (siendo la concentración final de glicerol del 1%), e inhibidores de 

proteasas y fosfatasas (Sigma-Aldrich Corp., St. Louis, MO, USA).  

La mezcla se incubó inmediatamente durante 5 minutos a 100 °C en baño de arena. 

Después se centrifugó a 13000 g, 5 minutos, a temperatura ambiente y se recogió el 

sobrenadante, desechando el pellet formado. Finalmente, se añadieron 2-

mercaptoetanol y glicerol, a una concentración final del 5% y el 1%, respectivamente, y 

los lisados se almacenaron a -20  °C hasta su posterior análisis.   
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3.3.2. SDS-PAGE  E INMUNOBLOTTING  

 Las proteínas se separaron en una dimensión siguiendo el método Laemmli 

(Laemmli, 1970), utilizando patrones de comparación de pesos moleculares, de 10 a 

250 kDa (Sigma-Aldrich Corp., St. Louis, MO, USA). Se utilizaron geles de acrilamida del 

10% y las condiciones de electroforesis fueron 130 V durante 90 min. a 4 °C. Una vez 

separadas las proteínas, fueron transferidas a una membrana de Immobilon-P 

(Millipore, Bedford, MA, USA), utilizando una unidad de transferencia en húmedo, 

modelo Mini-Protean 3 Cell y el módulo Mini Trans-Blot® de BioRad (BioRaD, Hercules, 

CA) 

  Una vez realizada la transferencia de las proteínas, los sitios no específicos de 

las membranas se bloquearon incubándolas 1 hora con 5% BSA (w/v), a temperatura 

ambiente en un tampón fosfato salino (NaCl 136 mM, KCl 0,2 g/l, Na2HPO4 1,44 g/l,   

KH2PO4 0,24 g/l, y Tween-20 0,5%, pH 7,4). 

 La detección de  la fosforilación de tirosinas  de las proteínas de membrana se 

realizó a través de la incubación con el anticuerpo primario monoclonal anti-

fosfotirosinas (clone 4G10®; Merck Millipore, Darmstadt, Germany), diluído 1/1000 en 

0,1 PBS Tween-20 con 1% BSA  durante toda la noche a 4 °C. Tras realizar tres lavados 

de 10 minutos de duración con 0,1% PBS Tween-20, las membranas se incubaron con 

el anticuerpo secundario immunoglobulina G anti-ratón HRP-conjugado (1/40000; GE 

Healthcare-Amersham, Little Chalfont, UK) diluido 1/15000, durante 1 hora y 15 

minutos temperatura ambiente en semioscuridad. Finalmente, las membranas se 

escanearon utilizando el Odissey Clx (Pierce ECL Western Blotting Detection System; 

Thermo Fisher Scientific Inc., Waltham, MA, USA).) y se cuantificó la señal para determinar 

la intensidad relativa de las bandas de fosfotirosinas de las proteínas con el programa 

Quantity One software (Bio Rad, Hercules, CA, USA).  
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3.4  ANÁLISIS ESTADÍSTICOS 

 Los resultados se muestran como la media ± S.E.M. (error estándar de la media) 

del número de muestras indicadas en cada caso. Los análisis estadísticos se llevaron a 

cabo a través del software GraphPad InStat (3.01; San Diego, CA, USA).  Se realizó el 

análisis estadístico ANOVA para determinar si existían diferencias significativas en la 

cantidad de ROS, de calcio intracelular y en la cuantificación de las fosfotirosinas de las 

proteínas espermáticas entre los diferentes grupos. Y se realizó el análisis estadístico χ²  

comparando todas las muestras para determinar si existían diferencias significativas en 

la motilidad, en el estado de capacitación y en la viabilidad celular. 
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4. RESULTADOS Y DISCUSIÓN 

 

4.1. EFECTO DE LA MELATONINA SOBRE LA INTEGRIDAD DE MEMBRANA DE 
MUESTRAS CAPACITADAS 

 

Como se observa en la figura 4.1., el proceso de capacitación no afectó 

significativamente a la integridad de la membrana espermática. La  viabilidad de la 

muestra obtenida tras el swim-up, (81,98 ± 1,42%) disminuyó tras tres horas de 

incubación en condiciones capacitantes, ligeramente en las muestras control y más 

acusadamente en las incubadas con el medio cocktail (71,60 ± 7,71% y 67,90 ± 7,81%, 

respectivamente), aunque estas diferencias no fueron estadísticamente significativas. 

Este mayor descenso en el porcentaje de espermatozoides viables en las muestras 

capacitadas en un medio que incrementa el AMPc en comparación con el medio TALP 

coincide con otros resultados de nuestro grupo (Colas et al., 2010; Luna et al., 2015) y 

podría explicarse por una mayor desestabilización de la membrana espermática 

concomitante con un mayor grado de capacitación.  La incubación con diferentes 

concentraciones de melatonina tampoco afectó significativamente a la viabilidad 

celular, obteniéndose valores de 74,40 ±  4,33%, 73,22 ± 3,18% y 67,74 ± 4,98% en las 

muestras incubadas con 100 pM, 10 nM y 1 µM respectivamente. 
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Figura 4.1.  Porcentaje de espermatozoides con membrana íntegra (CFDA +/PI-) antes 
de la capacitación (swim up) y tras 3 horas de incubación en condiciones capacitantes 
(39 °C y 5% de C02), en medio TALP (control),  con alto AMPc (cocktail) y con diferentes 
concentraciones de melatonina (M) añadidas al medio cocktail.  Los valores se 
representan como media ± S.E.M. (n=5) 

 

  En un estudio previo de nuestro grupo de investigación realizado en 

condiciones similares pero incubando en un medio no capacitante, estas mismas dosis 

de melatonina tampoco influyeron en la viabilidad celular (Casao et al., 2010). Sin 

embargo, otros autores han descrito que la incubación con melatonina incrementa  el 

porcentaje de espermatozoides viables en la especie humana (du Plessis et al., 2010) y 

en la especie porcina(Martin-Hidalgo et al., 2011). 
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4.2  EFECTO DE LA MELATONINA SOBRE LA MOTILIDAD ESPERMÁTICA DE MUESTRAS 
CAPACITADAS  

El porcentaje de espermatozoides mótiles totales (Fig 4.2.) obtenidos tras el 

swim-up (76,44 ± 2,89%) se mantuvo prácticamente sin cambios tras una hora de 

incubación en condiciones capacitantes en la muestra control (73,22 ± 4,03%) y 

disminuyó ligeramente en las muestras en medio cocktail, solo (69,75 % ± 3,66%) o con 

distintas concentraciones de melatonina (69,33 ± 4,21%, 69,44 ± 3,79% y 68,87 ± 4,41 

con 100pM, 10nM y 1µM respectivamente), aunque esta disminución no fue 

estadísticamente significativa. 

 

Figura 4.2.  Porcentaje de espermatozoides mótiles antes de la capacitación (swim up) 
y tras 1 y 3 horas de incubación en condiciones capacitantes (39 °C y 5% de C02),, en 
medio TALP (control), con alto AMPc (cocktail) y con diferentes concentraciones de 
melatonina añadidas al medio cocktail.  Los valores se representan como media ± 
S.E.M. (n=5) 

 

Tras 3 horas de incubación en condiciones capacitantes se pudo observar un 

descenso de la motilidad total en todas las muestras estudiadas, aunque de nuevo sin 

observarse diferencias significativas ni entre grupos ni con la muestra inicial. El 

porcentaje de espermatozoides mótiles en todas las muestras se mantuvo en torno al 

62%.  
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En cuanto al porcentaje de espermatozoides con motilidad progresiva (Fig 4.3.) 

el valor inicial (27,00 ± 2,73%) se mantuvo tras una hora de incubación en todas las 

muestras excepto las que contenían una concentración 1 µM de melatonina, en la que 

este porcentaje disminuyó hasta 21,56 ± 1,78%, si bien este descenso no fue 

significativo.  

 

 

Figura 4.3.   Porcentaje de espermatozoides mótiles progresivos antes de la 
capacitación (swim up) y tras 1 y 3 horas de de incubación en condiciones capacitantes 
(39 °C y 5% de C02),, en medio TALP (control), con alto AMPc (cocktail) y con diferentes 
concentraciones de melatonina (M) añadidas al medio cocktail..  Los valores se 
representan como media ± S.E.M. (n=5) 

 

Tras 3 horas de incubación en condiciones capacitantes, todas las muestras 

presentaron valores inferiores a los iniciales, aunque los descensos no fueron 

estadísticamente significativos. La muestra incubada con 10 nM de melatonina fue la 

que mejor mantuvo la motilidad progresiva de los espermatozoides (25,00 ± 1,64%) en 

contraposición con la tratada con 1 µM de melatonina, que mostró la menor motilidad 

progresiva (18,11 ± 3,01%). 
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  Los resultados del efecto de la melatonina sobre la motilidad espermática en 

diferentes especies de mamíferos son contradictorios. Así, mientras algunos autores 

han descrito que la incubación in vitro con melatonina mejora la motilidad en 

espermatozoides de toro (Ashrafi et al., 2013) cerdo (Martin-Hidalgo et al., 2011) y 

humanos (Ortiz et al., 2011), otros, entre ellos nuestro grupo, no encontraron 

diferencias significativas en la motilidad total, progresiva ni en los parámetros cinéticos 

en comparación con las muestras control (Casao et al., 2010). En los experimentos 

realizados en el presente trabajo, las condiciones son diferentes, ya que se trata de 

muestras incubadas en un medio que da lugar a un incremento de AMPc, y que está 

descrito como inductor de la capacitación en la espermatozoides ovino (Colas et al., 

2008). La capacitación va asociada con cambios en el patrón de movimiento, y 

concretamente con un descenso en la motilidad progresiva, con lo que los cambios 

observados en el presente trabajo, si bien no son significativos, podrían sugerirnos un 

efecto diferente de las distintas concentraciones de melatonina sobre la capacitación.  

Para profundizar más en los cambios en el patrón de movimiento asociados con 

la capacitación se decidió analizar, usando igualmente la información proporcionada 

por el programa CASA, el porcentaje de espermatozoides hiperactivados. La 

hiperactivación flagelar es un cambio en el patrón de movimiento caracterizado por 

una menor linealidad y una mayor amplitud del desplazamiento lateral de la cabeza 

que proporciona  una mayor posibilidad de interacción con el ovocito. En base a 

resultados publicados de nuestro grupo para la especie ovina (Colas et al., 2010) 

consideramos espermatozoides hiperactivados aquellos con LIN ≤45% y  ALH ≥3,5µm. 

Como se puede observar en la Figura 4.4.,  el porcentaje de espermatozoides 

hiperactivados antes de la capacitación fue de 24,18 ± 4,61%. Este valor se mantuvo 

tras una hora de incubación en las muestras control y con 1µM de melatonina (24,27 ± 

1,75% y 22,02 ± 2,51%, respectivamente). Sin embargo, se observó  una disminución 

del porcentaje de espermatozoides hiperactivados  en la muestra cocktail, 100 pM y 10 

nM (16,81 ± 2,13%, 18,63 ± 1,70% y 18,59 ± 3,66%, respectivamente) aunque sin 

diferencias estadísticamente significativas. Estos resultados no coinciden con los 

esperados, ya que, como se ha comentado, la hiperactivación flagelar, es uno de los 

eventos asociados a la capacitación en la mayoría de las especies. Sin embargo, 
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aunque ambos procesos comparten elementos comunes, parece ser que la activación 

de dichos procesos pueden ocurrir de manera independiente (Suarez, 2008).   

 

 

 

 

Figura 4.4.  Porcentaje de espermatozoides  hiperactivados antes de la capacitación 
(swim up) y tras 1 y 3 horas de incubación en condiciones capacitantes (39 °C y 5% de 
C02),, en medio TALP (control), con alto AMPc (cocktail) y con diferentes 
concentraciones de melatonina (M) añadidas al medio cocktail..  Los valores se 
representan como media ± S.E.M. (n=5) 

 

Con el paso del tiempo en condiciones capacitantes, el porcentaje de 

espermatozoides hiperactivados siguió disminuyendo tanto en la muestra control 

(18,44 ± 2,24%) como en las muestras incubadas con 100 pM y 10 nM  de  melatonina 

(15,85 ± 2,09% y 13,82 ± 1,57% respectivamente), y se mantuvo prácticamente igual 

en la muestra cocktail (16,03 ± 3,67%). Curiosamente, en la muestra incubada con 1µM 

de melatonina se observó el mayor porcentaje de espermatozoides hiperactivados a 

las 3 horas de incubación (20,29 ± 3,75%), aunque las diferencias tampoco fueron 

significativas. Esta muestra también es la que presentaba menor porcentaje de 
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espermatozoides con motilidad progresiva, indicativo también de una menor 

linealidad. Estos resultados coincidirían con estudios llevados a cabo en hámster que 

han demostrado que la melatonina produce hiperactivación en espermatozoides de 

esta especie (Fujinoki, 2008).  

 

Para poder tener una idea más detallada de este proceso de hiperactivación 

sería necesario  analizar de forma más profunda todas las subpoblaciones de las 

muestras mediante un análisis de componentes principales (PCA) como el que nuestro 

grupo  está empezado a utilizar en el estudio de la motilidad espermática. También se 

podría recurrir  a otros métodos de análisis como la medición de la curvatura en 

diferentes puntos a lo largo del flagelo de cada espermatozoide de la muestra 

(Ohmuro et al., 2006) (Yanagimachi, 1994). 

 

4.3  EFECTO DE LA MELATONINA SOBRE LA DISTRIBUCIÓN INTRACELULAR DEL CALCIO 

 

Como se aprecia en la figura 4.5., tras una hora de incubación en condiciones 

capacitantes, el porcentaje de espermatozoides capacitados evaluados mediante la 

tinción con clorotetraciclina (CTC), en la muestra cocktail aumentó con respecto a la 

muestra inicial (37,40 ± 4,56% vs. 26,40 ± 6,57%), aunque las diferencias no fueron 

significativas. Sin embargo, la incubación en el medio TALP (control) no incrementó 

este porcentaje (26,20 ± 3,68%). La incubación con melatonina disminuyó el 

porcentaje de espermatozoides capacitados a unos niveles semejantes a los de la 

muestra inicial, especialmente con 10 nM (26,20 ± 2,47%) y con 1µM (28,20 ± 3,68%), 

aunque sin ser diferencias significativas. 
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Figura 4.5. Porcentaje de  espermatozoides capacitados según la tinción de 
clorotetraciclina (CTC), antes de la capacitación (swim up) y tras 1 y 3 horas de 
incubación en condiciones capacitantes (39 °C y 5% de C02),, en medio TALP (control), 
con alto AMPc (cocktail) y con diferentes concentraciones de melatonina (M) añadidas 
al medio cocktail..  Los valores se representan como media ± S.E.M. (n=5 * P<0,05, ** 
P<0,01 y *** P<0,001 comparando con la muestra cocktail, y  † P<0,05, †† P<0,01 y ††† 
P<0,001 comparando con la muestra control, en el mismo tiempo de incubación. 

 

Tras 3 horas de incubación en condiciones capacitantes el incremento de 

espermatozoides capacitados en la muestra cocktail fue muy notable, llegando a ser de 

un 64,40 ± 3,26%, frente a un 28,20 ± 3,01% en el grupo control (P<0,001). Esto 

concordaría con resultados previos de nuestro grupo que mostraron que para que se 

produzca la capacitación en los espermatozoides ovinos no sólo son necesarios calcio y 

bicarbonato, si no también sustancias que incrementen el AMPc (Colas et al., 2008), 
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debido probablemente a la elevada cantidad de fosfodiesterasas presentes en la célula 

espermática de morueco. 

En el caso de los grupos incubados con melatonina, y a diferencia de los 

resultados obtenidos en viabilidad celular, motilidad y porcentaje de hiperactivación, sí 

se observaron diferencias significativas entre las muestras incubadas con y sin esta 

hormona a las tres horas de incubación en condiciones capacitantes. Las tres 

concentraciones de melatonina redujeron el porcentaje de espermatozoides 

capacitados respecto a la muestra cocktail, pero fueron la concentración intermedia 

(10 nM) y la más alta (1µM) de melatonina las que disminuyeron significativamente 

estos valores (48,80 ± 4,80%, p < 0,001 y 39,40 ± 5,01%, p < 0,001 respectivamente). 

Estos datos también concordarían con los resultados previos obtenidos por nuestro 

grupo, en los que se describió que la melatonina puede actuar como agente 

capacitante y descapacitante en función de la concentración utilizada(Casao et al., 

2010). 

 

4.5 EFECTO DE LA MELATONINA SOBRE LA CANTIDAD DE CALCIO INTRACELULAR 

 

Una vez observados cambios en la distribución intracelular del calcio tras la 

tinción con CTC, se quiso evaluar el efecto de la melatonina sobre los niveles de ese ion 

en el interior de los espermatozoides, ya que se ha descrito que  existe un incremento 

de calcio intracelular durante la capacitación (Ho et al., 2003). Como en algunos 

trabajos previos se describe un aumento rápido del Cai
2+ en los primeros minutos tras 

incubación en condiciones capacitantes (Colas et al., 2010) en este ensayo se incluyó 

un análisis de las muestras a los 10 minutos de incubación. 
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Figura 4.6. Intensidad media de fluorescencia emitida por la sonda Fluo-4AM y 
evaluada por citometría de flujo (FL1) antes de la capacitación (swim up) y tras 10 
minutos, 1 hora y 3 horas de de incubación en condiciones capacitantes (39 °C y 5% de 
C02),, en medio TALP (control), con alto AMPc (cocktail) y con diferentes 
concentraciones de melatonina (M) añadidas al medio cocktail..  Los valores se 
representan como media ± S.E.M. (n=5) 

 

Como se muestra en la figura 4.6., a los 10 minutos de incubación, la intensidad 

de fluorescencia relacionada con la cantidad de Ca2+ intracelular apenas se modificó 

respecto a la muestra inicial (5,58 ± 1,45%) exceptuando un ligero descenso en la 

muestra tratada con 100 pM de melatonina (4,28 ± 0,22%), aunque sin diferencias 

significativas. 

  Tras una hora de incubación es cuando se produjo el mayor incremento en la 

concentración de calcio intracelular en todas las muestras estudiadas, duplicándose la 

intensidad de fluorescencia, aunque con grandes variaciones en los resultados y, de 

nuevo, sin diferencias significativas entre ellas.  Este incremento del calcio intracelular 

durante la capacitación ha sido previamente observado en espermatozoides humanos 

(Baldi et al., 1991),  de ratón (White and Aitken, 1989) y, más recientemente, de 

morueco (Colas et al., 2010).   



 39 

 Al finalizar la incubación, los niveles de calcio intracelular volvieron a ser  

semejantes a los iniciales, tanto en muestra control como la incubada con 1 µM de 

melatonina (5,11 ± 1,51% y 5,26 ± 1,55%, respectivamente), mientras que el resto de 

grupos experimentales alcanzó valores ligeramente superiores (6,28 ± 1,67, 6,48 ± 2,57 

y 6,86 ± 2,68, en cocktail,  100 pM, y 10nM, respectivamente) aunque no 

estadísticamente significativos. Los resultados obtenidos parecen concordar con el 

porcentaje de espermatozoides capacitados evaluados por CTC, ya que se aprecia un 

ligero aumento de concentración de Ca2+ intracelular en las muestras incubadas con 

cocktail sólo o con 100 pM y 10 nM melatonina, en las que se había observado un 

mayor porcentaje de espermatozoides capacitados, mientras que las muestras con 

menor concentración de Ca intracelular (control y 1 µM melatonina) también 

mostraron menor porcentaje de espermatozoides capacitados. No es de extrañar el 

hecho de que a las 3 horas de incubación se observen los mayores incrementos en los 

niveles de espermatozoides capacitados evaluados por CTC, mientras que los mayores 

niveles de calcio se aprecien tras una hora, ya que la capacitación es un proceso 

secuencial y en este caso se están evaluando diferentes aspectos de dicho proceso, 

que pueden ocurrir a distintos tiempos. 

 

4.6  EFECTO DE LA MELATONINA SOBRE LA CONCENTRACIÓN DE ADENIL 
MONOFOSFATO CÍCLICO ( AMPc)  

La cuantificación de la concentración de AMP cíclico en las muestras 

espermáticas se llevó a cabo a los 10 minutos de incubación en condiciones 

capacitantes, ya que en estudios anteriores se había observado un pico en los niveles 

de este compuesto al comienzo de la capacitación (Colas et al., 2010).  

En la figura 4.7. se muestran los resultados obtenidos en este inmunoensayo.  A 

los  diez minutos del proceso de capacitación, la concentración de AMPc detectada en 

muestra control fue muy pequeña (0,0196 pmol/ml/107 células),  mientras que en la 

muestra cocktail, incubada con compuestos que promueven la capacitación mediante 

el aumento de AMPc (Colas et al., 2008), la concentración cuantificada fue de 3,48 

pmol/ml/107 células.  
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Figura 4.7.  Concentración de AMP cíclico  (pmol/ml) por cada 107 espermatozoides 
ovinos a los 10 minutos de incubación en condiciones capacitantes (39 °C y 5% de C02),, 

en medio TALP (control), con alto AMPc (cocktail) y con diferentes concentraciones de 
melatonina (M) añadidas al medio cocktail. Resultados correspondientes a un único 
ensayo. 
 

En las muestras espermáticas incubadas con melatonina se observó una 

cantidad de  AMPc mayor que el control, pero inferior al cocktail (2,079 pmol/ml/107 

células y 1,952 pmol/ml/107 células para 100 pM y 1µM de melatonina, 

respectivamente). Esta disminución de los niveles de AMPc observado en las muestras 

tratadas con melatonina con respecto a la muestra cocktail podría explicar su efecto en 

la disminución del porcentaje de espermatozoides capacitados  observado mediante la 

tinción con CTC.  

Un aumento de AMP cíclico, como ya hemos descrito en la introducción,  es 

esencial para provocar el proceso de capacitación gracias a la activación de PKA. Esta 

vía AMPc/PKA es una de las principales implicada en la capacitación espermática de la 

mayoría de las especies de mamíferos, aunque no la única (Luna et al., 2012). 
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Sin embargo, algunos estudios realizados en células somáticas han descrito el 

efecto contrario de la melatonina sobre la concentración de AMPc.  Así, tanto en 

células epiteliales de conejo, como en una línea celular de neuroblastoma humano, se 

observó un incremento en el AMPc en células tratadas con melatonina (Schuster et al., 

2005; Huete-Toral et al., 2015)  

Es necesario recalcar que los resultados mostrados en el presente trabajo 

pertenecen a un único ensayo, que corresponde a la puesta a punto del protocolo para 

espermatozoides ovinos, por lo que no se ha podido realizar el análisis estadístico y 

evidentemente no nos permite extraer conclusiones del mismo.  En un futuro  se 

planea repetir este experimento  incluyendo muestras a distintos tiempos de 

incubación en condiciones capacitantes para estudiar posibles cambios en la 

concentración de  AMPc. 

. 

 

4.7 EFECTO DE LA MELATONINA SOBRE LOS NIVELES DE ESPECIES REACTIVAS DE 
OXÍGENO (ROS) 

 

Como muestra la figura 4.8., ya a los 10 minutos de incubación en condiciones 

capacitantes se observó un aumento de las especies reactivas de oxigeno  tanto en 

muestra control (7,35 ± 2,31) como la muestra con cocktail, (7,12 ± 1,76) comparando 

con la muestra inicial (2,49 ± 0,40). El tratamiento con 10 nM de melatonina  produjo 

un leve descenso en los niveles de ROS (5,95 ± 2,10), que fue mucho más acusado en 

las muestras tratadas con 1 µM de melatonina (3,31 ± 0,82), aunque las diferencias no 

fueron estadísticamente significativas. Sin embargo, la cantidad más baja de 

melatonina utilizada no provocó ningún efecto.  
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Figura 4.8.  Intensidad media de fluorescencia emitida por la diclorofluoresceína (DCF) 
(tras la oxidación de laEl H2DCF por el H2O2 ) y evaluada por citometría de flujo (FL1) 
antes de la capacitación (swim up) y tras 10 minutos, 1 hora y 3 horas de incubación en 
condiciones capacitantes (39 °C y 5% de C02),, en medio TALP (control), con alto AMPc 
(cocktail)y con diferentes concentraciones de melatonina (M) añadidas al medio 
cocktail.  Los valores se representan como media ± S.E.M. (n=5). 

 

Tras una hora de incubación en condiciones capacitantes, se observó  un   

incremento en la concentración de ROS en todas las muestras excepto en la control 

(6,82 ± 1,52). El aumento fue mucho más marcado en las muestra cocktail (11,96 ± 

4,87) y con 100 pM de melatonina (12,58 ± 4,45), en comparación con el producido en 

las incubadas con 10 nM y 1 µM de melatonina  (8,27 ± 3,68 y 5,58 ± 1,94 

respectivamente), aunque sin diferencias significativas. Aun así es de resaltar la 

capacidad de la melatonina, a concentraciones de 10 nM y sobre todo, de 1 µM, de 

reducir el incremento en los niveles de ROS que se producen como consecuencia de la 

capacitación, como demuestra el hecho de que dicho incremento se produzca sólo en 

la muestra con alto AMPc (cocktail) y no en la control (con TALP). Estos datos 

concordarían con los observados tras tinción de CTC en relación al porcentaje de 

espermatozoides capacitados. 
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Al finalizar la incubación en condiciones capacitantes, los niveles de ROS 

disminuyeron con respecto a los valores obtenidos a la hora de incubación, pero 

igualmente, la muestra cocktail  siguió presentando mayores valores que la muestra 

control (8,48 ± 2,95 y 6,07 ± 0,80 para cocktail y control, respectivamente) y de nuevo, 

la muestra incubada con 1µM de melatonina mantuvo unos niveles de ROS similares al 

control  (6,08 ±0,56), aunque en ningún caso se obtuvieron diferencias 

estadísticamente significativas. 

Se ha demostrado que la incubación de espermatozoides con  melatonina in 

vitro  disminuye el daño por el estrés oxidativo de la célula provocado por ROS (du 

Plessis et al., 2010; Jang et al., 2010). Como se ha comentado en la introducción, los 

niveles de  ROS juegan un papel fundamental en la regulación de la capacitación 

espermática en modelos humanos y animales (Zini et al., 1995; O'Flaherty et al., 2006; 

O'Flaherty et al., 2006).  Estas sustancias  promueven la activación de AC , que a su vez 

activa  AMPc, y  en última instancia promueve un aumento de  la fosforilación de 

tirosinas (Zini et al., 1995). La melatonina, en base a los resultados obtenidos en este 

trabajo, sería capaz de disminuir los niveles de ROS, probablemente debido a su acción 

antioxidante, y por tanto evitar parcialmente la capacitación espermática.  

 

4.8. EFECTO DE LA MELATONINA SOBRE  LA FOSFORILACIÓN EN RESIDUOS DE 
TIROSINAS DE LAS PROTEÍNAS DE MEMBRANA ESPERMÁTICAS  

Como se puede apreciar en la figura 4.9., correspondiente a una membrana 

representativa de varios análisis de western-blot, la fosforilación en residuos de 

tirosinas fue mucho menor en la muestra inicial (carril 2) que en las muestras tras 3 

horas de incubación en condiciones capacitantes por lo que no se incluyeron los datos 

de esta en la cuantificación por densitometría de las bandas observadas, al ser los 

valores prácticamente inexistentes en comparación con las otras muestras.  
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Figura 4.9.  Western-blot  representativo de los obtenidos utilizando anticuerpos anti-
fosfotirosinas en proteínas de muestras antes de la capacitación (swim up) (carril 2) y 
tras 3 horas de incubación en condiciones capacitacitantes (39 °C y 5% de C02)  (1) en 
medio TALP (control), (3) con alto AMPc (cocktail) y con diferentes concentraciones de 
melatonina,  (4) 100 pM melatonina; (5) 10 nM melatonina; (6) 1µM melatonina 
añadidas al medio cocktail.  

 

Como se aprecia en la figura 4.9 y queda demostrado por cuantificación 

densitométrica (Fig. 4.10.), en  la muestra cocktail se observó una mayor señal de 

fosforilación en residuos de tirosina en las proteínas espermáticas (451 ± 119,4)  

expresada como intensidad total de las bandas (unidades arbitrarias) en comparación 

con la muestra control (183 ± 90,4). Este resultado concuerda con resultados 

anteriores obtenidos por nuestro grupo de investigación en el que se observaron más 

bandas y mayor intensidad en el patrón de fosforilación al ser incubadas con este 

medio que incrementa el AMPc (Grasa et al., 2006). 
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Figura 4.10.  Cuantificación por densitometría del total de proteínas fosforiladas en 
tirosinas de las   muestras espermáticas tras 3 horas de incubación en condiciones 
capacitaciones (39 °C y 5% de C02),  en medio TALP (control), con alto AMPc (cocktail) y 
con diferentes concentraciones de melatonina añadidas al medio cocktail .  Los valores 
se representan como media ± S.E.M. (n=5). 

 

  En todas las muestras incubadas con melatonina se observó una importante 

disminución de la señal de fosforilación en comparación con la muestra cocktail, 

reduciéndose incluso hasta los niveles de la muestra control en el caso de la muestra 

1µM de melatonina (202 ± 23,47).  Estos resultados concuerdan con los  obtenidos tras 

la evaluación de la distribución intracelular del calcio por clorotetraciclina y, junto a los 

demás presentados en esta memoria, demuestran que la melatonina, especialmente a  

una concentración de 1µM, tiene capacidad de reducir los parámetros generalmente 

asociados a la capacitación (inducida, en este caso por el aumento intracelular de 

AMPc provocado por el cocktail usado), excepto la  hiperactivación  

Este fenómeno se ha manifestado en otros trabajos de nuestro grupo de investigación, 

en el que se observaron que aun utilizando un medio con alto AMPc para inducir la 

capacitación en el espermatozoide ovino no se produjeron cambios en el  proceso de 

hiperactivación (Colas et al., 2010).  
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En otro trabajo más reciente de nuestro grupo, se obtuvieron resultados similares  al 

añadir proteínas del plasma seminal al mismo  medio que promueve la capacitación in 

vitro, ya que éstas eran capaces de mantener a los espermatozoides en estado 

descapacitado, disminuyendo la fosforilacion en los residuos de tirosinas, pero sin 

embargo provocaban un aumento del porcentaje de espermatozoides hiperactivados 

(Luna et al., 2015).  En conclusión, el resultado de este estudio corroboraría, junto con 

los anteriores resultados mencionados,  que el espermatozoide ovino es capaz de 

llevar a cabo el proceso de capacitación in vitro sin producirse un movimiento 

hiperactivado, ya que estos dos procesos (capacitación e hiperactivación) son dos 

procesos concomitantes (Fraser, 1977) pero pueden activarse independientemente el 

uno del otro (Mortimer et al., 1998; Colas et al., 2010). 

 

Todos estos datos animan a seguir investigando el mecanismo de acción de la 

melatonina sobre la capacitación, ya que su comprensión abriría nuevas posibilidades 

en las tecnologías de reproducción asistida, usando esta hormona de forma diluida o 

bien análogos o antagonistas de la misma, que activen o inhiban los receptores de esta 

hormona en los espermatozoides, para así ser capaces de regular la capacitación 

espermática y que ésta se produzca en el momento oportuno. 
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5.CONCLUSIONES 

 
 
 

1) La melatonina, no fue capaz de modificar significativamente, a ninguna de las 

concentraciones ensayadas (100 pM, 10nM and 1µM), el porcentaje de 

espermatozoides mótiles o con membrana plasmática íntegra con respecto a 

las muestras capacitadas sin melatonina.  

2) La presencia de melatonina a concentración 1 μM en el medio de capacitación 

dio lugar a un porcentaje significativamente menor de espermatozoides 

capacitados junto con menores niveles de ROS y calcio intracelular y además  

menor grado de fosforilación en residuos de tirosinas.   

 
 

CONCLUSIONS 

 
 

 

1) None of melatonin concentrations assayed (100 pM, 10nM and 1µM) affected the 

percentage of motile and with integral plasma membrane sperm compared with 

capacitated samples without melatonin. 

2) The exposure of ram spermatozoa to 1 µM melatonin resulted in  a significantly 

lower percentage of capacitated sperm (p <0.001), and also a decrease in the levels of 

reactive oxygen species and intracellular calcium, and addionatilly decrease in protein 

tyrosine phosphorylation. 
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A seminal plasma-free sperm population obtained by dextran/ swim-up procedure 
was diluted (1.6x 108cells/mL) in TALP medium. For the induction of in vitro 
capacitation, aliquots were incubated at 39 ºC for 3 h in a humidified incubator with 
5% CO2 in air, and a cocktail with cAMP-elevating agents, previously proved to 
capacitate ram spermatozoa in vitro, was added to all samples except to the control 
ones.  Melatonin was added to the samples with cocktail  to yield a final 
concentrations of  100 pM, 10 nM and 1 μM.  
Sperm membrane integrity was assessed by the fluorescent staining with 6-CFDA 
and propidium iodide (PI) and levels of reactive oxygen species (ROS) with 
H2DCFDA and PI in all samples at 10 min, 1h and  3h of incubation in capacitating 
conditions. Both stainings were  analysed by flow cytometry. Computer-assisted 
sperm motility analysis (CASA) was performed using the ISAS 1.0.4 software 
(Proiser SL) and hyperactivated sperm were considered when LIN (%linearity) ≤45% 
and ALH (amplitud of lateral head displacement) ≥3,5 µm. Capacitation state was 
evaluated by CTC (chlortetracycline) staining (changes in intracellular calcium 
distribution visualized by fluorescence microscopy) and quantification of 
phosphorylated proteins (Western Blot analysis using an monoclonal mouse 
antibody anti-phosphotyrosine and densitometric quantification by an Odissey Clx 
aparatus, Li-Cor Biosciences).  
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FSE 

The results obtained showed that none of the melatonin concentrations assayed (100 
pM, 10 nM and 1 μM) affected the percentage of sperm with hyperactivated motility or 
with integral plasma membrane (PI-).  However, samples capacitated in the presence of 
1 μM melatonin showed a lower percentage of non-capacitated sperm (CTC staining) 
(p<0.001) (Fig 1) together with lower levels of ROS than cocktail-capacitated samples  
(Fig 2) and a decrease in protein tyrosine phosphorylation  (Fig 3 and 4). 
 
This study shows that exposure of ram spermatozoa to  1 μM  melatonin has direct 
effects by decreasing capacitation. In conclusion, these results point out the possibility 
of using melatonin or diluted analogues or antagonists, which activate or inhibit 
receptors for controlling capacitation in assisted reproductive procedures. 

Melatonin is an important hormone regulating reproductive functions and the presence 
of receptors for this hormone on the ram sperm surface leads to speculate about a 
relevant role of melatonin on sperm functionality. Certain similarities between 
molecular pathways activated by this hormone in somatic cells, and those implicated 
in sperm events such as capacitation, have been described. On the other hand, 
melatonin is a potent antioxidant molecule, reducing the oxidative stress induced by 
reactive oxygen species (ROS). It has been shown that in vitro capacitation results in 
increased ROS levels. 
Based in all the above-mentioned, we suggest the hypothesis that melatonin play a 
crucial role in sperm capacitation. The aim of this study was to investigate the effect of 
different melatonin concentrations on several sperm parameters related to 
capacitation, such as hyperactivation of motility, changes in intracellular calcium 
distribution, increment of protein tyrosine phosphorylation and ROS levels. 

Fig.1. Percentage of  non-capacitated  spermatozoa 
evaluated  by CTC staining in a free-seminal plasma 
sample before capacitation (swim-up) and in samples 
incubated 1 h and 3 h in capacitating conditions with 
cocktail, cocktail plus different melatonin 
concentrations or without this compounds (control). 
Values are expressed as mean ±  SEM (n=5).  
Significant differences comparing with cocktail sample at 3 h  
** P<0.1 y *** P<0.001.  and with control at 3 h  †† P<0.01 y ††† 
P<0.001. 

Fig. 2.   Assessment of intracellular ROS in a free-seminal 
plasma sample before capacitation (swim-up) and in 
samples incubated 10 minutes, 1 h and 3 h in 
capacitating conditions with cocktail, cocktail plus 
different melatonin concentrations or without this 
compounds (control). Values are expressed as mean ±  
SEM (n=5) of the average intensity of fluorescence 
corresponding to H2DCFDA in live cells (PI-) evaluated by 
flow cytometry (FL1).  

Fig. 3.  Densitometric quantification of total 
phosphorylated proteins (phosphotyrosine) after 3 
h of incubation in capacitating conditions with 
cocktail, cocktail plus different melatonin 
concentrations or without this compounds 
(control). Values are expressed as mean ±  SEM 
(n=5).  
  

Fig. 4. Western blot analysis of total of total 
phosphorylated proteins (phosphotyrosine) after 
3 h of incubation in capacitating conditions with 
cocktail, cocktail plus different melatonin 
concentrations or without this compounds 
(control). Lanes: 1, control; 2, cocktail-
containing sample; 3, cocktail plus 100 pM  
melatonin ; 4, cocktail plus 10nM   melatonin; 5, 
cocktail plus 1 µM melatonin. 
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