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Sergio Córdoba
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por supuesto, a Miriam, por acompañarme, contra viento y marea, en mi
caminar.

Sergio Córdoba
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RESUMEN 9

Resumen

El objetivo de este trabajo es el desarrollo de una herramienta informáti-
ca, concretamente un Plug-In para el software de tratamiento de imágenes
Digital Micrograph (DM), que permitirá estimar posiciones y distancias entre
las columnas de átomos representadas en micrograf́ıas de materiales obteni-
das mediante técnicas de microscoṕıa electrónica de transmisión en barrido
(STEM). La medida de estas magnitudes permite caracterizar, de forma lo-
cal, propiedades f́ısicas del material, como es la ferroelectricidad, que están
relacionadas con pequeñas variaciones de su estructura cristalina.

Se pretende modelizar estas micrograf́ıas usando una mixtura de nor-
males de forma que cada una de sus componentes represente y modele una
de las columnas de átomos visibles en la imagen. Usaremos el algoritmo de
Levenberg-Marquardt para realizar el ajuste al modelo y obtener los paráme-
tros de estas normales. En concreto, las medias, supondrán una estimación
de la posición de cada columna, con lo que resultará inmediato medir dis-
tancias entre ellas. Se quiere además, que estas medidas alcancen precisiones
picométricas, puesto que son desplazamientos atómicos de este orden los que,
en algunos casos, motivan la aparición de ciertas propiedades.

El tarea principal del proyecto será pues la implementación computacional
de este proceso, realizada con el lenguaje de programación, R, y el lenguaje de
scripting propio de DM. Para ello, se deberá entender cómo se generan estas
micrograf́ıas (caṕıtulo 1), lo cual justifica la elección del modelo probabilista
elegido. Posteriormente, se realizarán simulaciones de las mismas sobre las
que probaremos y verificaremos el funcionamiento del algoritmo de ajuste
(caṕıtulo 2). Con esto, estaremos en disposición de usar dicho algoritmo pa-
ra desarrollar el plug-in y probarlo en una micrograf́ıa STEM real (caṕıtulo
3). Dichos códigos en R y en lenguaje de DM se presentan y explican en los
apéndices.

PALABRAS CLAVE: Micrograf́ıa, TEM, STEM, mixtura de normales,
modelización de la imagen, algoritmo de Levenberg-Marquardt, Digital Mi-
crograph, R, estad́ıstica descriptiva, imagen digital.
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Abstract

The main objective in this work is the development of a computational
tool for the processing image software Digital Micrograph (DM), that will
allow to estimate positions and distances between columns of atoms shown
in micrographs of materials obtained by Scanning Transmission Electron Mi-
croscopy (STEM) techniques. The measurement of these magnitudes allows
to characterize the local physical properties of the material, such as ferroelec-
tricity, which are directly related to small variations of its crystal structure.

The intention is to model these micrographs using a mixture of gaussians
so that, each one of its components represents one of those columns of atoms
visible at image. We will use the Levenberg-Marquardt algorithm to fit the
model, and to obtain the parameters for these gaussians. Specifically, their
means will be an estimation to the position of columns of atoms, whereby
it will be inmediate to measure distances between them. Also, we want that
measurements of distances reach accuracies of order of picometres, because
some properties are originated by atomic displacements of this order.

Thus, the main task in this work will be the computational implementa-
tion of this process using the computer language R, and the DM scripting
language. For that purpose, we should understand how the experimental
micrographs are generated (chapter 1) to justify the probabilistic model se-
lected. Later, we will do micrographs simulations to test and verify the fit
algorithm (chapter 2). Finally, we will use this algorithm to develope the
plug-in and apply it to a real STEM micrograph (chapter 3). Both the R and
DM codes are listed and described in the appendices.

KEY-WORDS: Micrograph, TEM, STEM, mixture of normal distribu-
tions, image modelling, Levenberg-Marquardt algorithm, Digital Micrograph,
R, descriptive statistics.
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Caṕıtulo 1

Introducción

En las últimas décadas el desarrollo de nuevas tecnoloǵıas y dispositivos,
junto con la evolución en ciertas áreas cient́ıficas, como la biomedicina, ciencia
de materiales o la nanociencia, ha dado lugar a que tengamos una capacidad e
interés en la observación de los materiales a escala atómica como no se hab́ıa
tenido nunca. Una muestra de estas observaciones son las micrograf́ıas, que
son imágenes digitales de cuerpos u objetos microscópicos, y en torno a las
cuales se centra este trabajo.

Para conocer en detalle y controlar la materia en la nanoescala se requie-
ren las más avanzadas técnicas de nanocaracterización, de las cuales sólo la
microscoṕıa TEM (Transmission Electron Microscopy) es capaz de propor-
cionar micrograf́ıas de la estructura cristalina de los materiales consiguiendo
resoluciones espaciales inferiores a 1 angstrom. Además, se plantea el reto
de analizar cuantitativamente las imágenes adquiridas (un ejemplo en la fi-
gura 1.1), con el fin de extraer magnitudes f́ısicas con resolución atómica
a partir de relaciones entre parámetros estructurales y qúımicos locales y
propiedades f́ısicas cuantificables macroscópicamente. Un caso muy intere-
sante de aplicación del análisis cuantitativo de imágenes se da con los ma-
teriales ferroeléctricos, en los que la propia ferroelectricidad se deriva del
desplazamiento relativo de distintos átomos con cargas eléctricas opuestas
para formar localmente dipolos eléctricos. Habitualmente bastan pequeños
desplazamientos atómicos, en el rango de los picómetros, para desencadenar
este comportamiento. Aśı pues, no basta con la simple inspección de la ima-
gen, si no que es necesario desarrollar modelos teóricos de su distribución de
intensidades para posteriormente realizar la determinación de las posiciones
atómicas.

Asumiremos un modelo probabiĺıstico en el que consideraremos la micro-
graf́ıa como una realización de una distribución multimodal bivariante, en
concreto una mixtura de normales, a partir de la cual estimaremos variables

13
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(a) (b)

Figura 1.1: a) Se presenta una micrograf́ıa real de tipo HAADF-STEM (de

2048× 2048 pixeles) de una multicapa de un óxido cristalino, b) Detalle de micro-

graf́ıa de un área correspondiente con un óxido de lantano (columnas más brillan-

tes) y manganeso (columnas menos brillantes). Se puede apreciar el pixelaje de la

imagen, otro de los elementos que resultará clave en el trabajo.

latentes asociadas con las posiciones de las columnas atómicas. Cabe notar
que el modelo probabilista resulta coherente con la f́ısica del problema puesto
que la micrograf́ıa es consecuencia directa de impactos de electrones sobre el
detector.

1.1. Micrograf́ıas STEM

El TEM es una técnica de caracterización que genera imágenes digitales
de alta resolución de un material. Se fundamenta en la dispersión de un haz
de electrones de alta enerǵıa al incidir sobre una muestra delgada, del orden
de unos 100 nm de espesor. Los electrones transmitidos a través de la muestra
llegan a un detector que mide y procesa la señal que generan. A cada punto
de la superficie de la muestra representada (a cada pixel1) se le asigna una
intensidad proporcional2 a la señal medida en este punto. Aśı pues se trata

1Obviaremos este concepto, que no resulta ajeno en la “Era Digital” que vivimos, pero
dejaremos la definición que da la RAE: Superficie homogénea más pequeña de las que
componen una imagen, que se define por su brillo y color

2Los electrones que impactan en el detector generan una señal eléctrica que se procesa
siendo amplificada. Si el dispositivo encargado de esto opera linealmente, se da la propor-
cionalidad mencionada entre electrones detectados y el brillo asignado. Habitualmente se
trata de que esto aśı sea y aśı lo consideraremos aqúı.
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de micrograf́ıas en blanco y negro. De esta forma se obtienen imágenes como
la que podemos ver en la figura 1.1, donde las zonas con mayor intensidad se
identifican con las columnas de átomos de la red.

Existen diversas técnicas de imagen TEM (figura 1.2), cuya diferencia
radica en la forma en que se ilumina la muestra y se detectan los electrones
transmitidos. En el modo STEM (Scanning Transmission Electron Micros-
copy), se forma una sonda electrónica sub-nanométrica que barre la superficie
de la muestra y un detector anular recoge los electrones transmitidos disper-
sados a alto ángulo. Por la geometŕıa de este detector, en puntos donde hay
columnas de átomos, se recoge un mayor número de electrones dispersados
a alto ángulo. A su vez, cuanto más pesados sean estos átomos, mayor es la
intensidad en esos pixeles. Esta proporcionalidad directa entre el número de
eventos y el brillo del pixel es clave en el posterior desarrollo. Esta técnica
de imagen STEM se denomina HAADF (High Angle Annular Dark Field).

Figura 1.2: Esquema de la formación de imágenes con dos técnicas TEM diferen-

tes: TEM y STEM (figura obtenida de la referencia [1])

1.2. Interpretación y tratamiento de la

micrograf́ıa

La intensidad de cada pixel viene dada como un número entero y positivo,
con lo que la “matriz de pixeles” que compone la imagen va ligada a una
matriz de datos, con el mismo número de filas y columnas, de manera que
cada dato de la segunda, corresponde a la intensidad del pixel que ocupe la
misma posición en la primera.
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Por otra parte, cada pixel es referenciado en la imagen por la columna
y fila que ocupa, que pueden considerarse como coordenadas de posición
discretas,

x ≡ columna ∈ {1, 2, 3...nx}, con nx = no de columnas,

y ≡ fila ∈ {1, 2, 3...ny}, con ny = no de filas.
(1.1)

Cada pixel quedará caracterizado completamente por estas coordenadas de
posición y su intensidad, pudiendo considerar esta última como una tercera
coordenada perpendicular al plano de la imagen, de manera que se puede
interpretar como un relieve sobre dicho plano. Puesto que este dato va aso-
ciado a un número de eventos detectados, pensaremos en la imagen como un
histograma en tres dimensiones. Con esto, le podemos dar un tratamiento
estad́ıstico y modelizar la intensidad de la imagen mediante distribuciones
de probabilidad.

Si las coordenadas de posición (expresiones (1.1)) se consideran continuas
y definidas de la siguiente manera,

x ≡ coord. horizontal del centro del pixel ∈ (0, nx),

con nx = no de columnas

y ≡ coord. vertical del centro del pixel ∈ (0, ny),

con ny = no de filas

(1.2)

se tiene que cada pixel se representa como un punto en un espacio real de
tres dimensiones, con coordenadas x, y (expresiones (1.2)) e intensidad. Estos
puntos quedan contenidos en una superficie como la que se muestra en la
figura 1.3, que ilustra la manera en la que vamos a interpretar la imagen, y
sugiere la posibilidad de usar, para la modelización, distribuciones continuas
y conocidas que nos otorguen cierta capacidad descriptiva.
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(a) Representación de la matriz en b)

(b) Matriz de datos

Figura 1.3: Región, de 36×14 pixeles (como las dimensiones de la matriz de datos),

de la micrograf́ıa de la figura 1.1 representada con R. Esta representación, extráıda

de la matriz, corresponden a dos de las columnas de átomos más brillantes. Es de

notar que no se tienen picos acusados, si no más bien, de poca altura y anchos

superpuestos sobre una señal de fondo mucho mayor que la altura de dichos picos.
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Caṕıtulo 2

Modelización de la imagen

Se asumirá un modelo probabiĺıstico (no determinista) simple para la
interacción entre el haz de electrones y el material cristalino que se emplea
de espécimen. Según este la dispersión de los electrones debida a la interacción
con una columna de átomos del cristal es una variable aleatoria bivariante que
sigue una ley de distribución normal, y cuya media coincide con la proyección
del eje central de la columna de átomos en el plano de la imagen.

La imagen asociada a la micrograf́ıa se basa en el recuento de los electro-
nes que impactan en un escintilador para cada pixel de la imagen, por lo que
el resultado del mismo aproximará la forma de la función de densidad. La
radiación producida por el escintilador es amplificada por un fotomultiplica-
dor, con lo que en la imagen adquirida se regula el contraste (amplificación
o ganancia) y el brillo (desplazamiento, señal de fondo u offset) para operar
en la zona lineal del amplificador que procesa la señal detectada.

2.1. Modelo matemático

En micrograf́ıas HAADF-STEM de resolución atómica de materiales cris-
talinos, como en la de la figura 1.1 b), correspondiente a un óxido de lantano
y manganeso. Alĺı se aprecian zonas más o menos circulares y brillantes que
corresponden a las columnas atómicas de lantano. Nótese que entre las zonas
más destacadas tenemos otras, menos brillantes, correspondientes a colum-
nas de manganeso. Este hecho puede corresponder con la vista de una de las
caras de una celda BCC1, con los átomos de lantano, en los vértices, más

1Estructura cristalina con celda unidad cúbica, siendo los átomos de los vértices y del
centro del cubo (del inglés Body Centered Cubic), elementos qúımicos con distinto número
atómico. Hay que decir que en realidad esta muestra no es de este tipo, pero es lo que
visualmente se aprecia en la imagen.

19
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destacados que el de manganeso del centro. Se propone modelizar cada una
de estas regiones de la imagen mediante una distribución normal bivariante.
Además, de las distribuciones con media y varianza conocidas, la normal ma-
ximiza la entroṕıa, es decir, es la que introduce menos información a priori
en el modelo.

La expresión expĺıcita para una normal bivariante es

f(x, y) =
1

2πσxσy
√

1− ρ2
·

· exp

(
− 1

2(1− ρ2)

(
(x− µx)2

σ2
x

+
(y − µy)

2

σ2
y

− 2ρ(x− µx)(y − µy)

(σxσy)

))
,

(2.1)
con lo que tenemos 5 parámetros (µx, media en x; µy, media en y; σx, desvia-
ción t́ıpica en x; σy, desviación t́ıpica en y y ρ, el coeficiente de correlación)
que definirán la superficie de ajuste, identificando µx y µy con una estimación
de la posición de la columna atómica en cuestión. Puesto que en una imagen
encontramos muchas de ellas, se elige un modelo basado en una Mixtura (o
Mezcla) de Normales (remitimos a [5] para más detalle).

Una mixtura de normales es una variable aleatoria cuya función de den-
sidad es una combinación lineal, de la forma

g(x, y) =
G∑
i=1

πifi(x, y), con
G∑
i=1

πi = 1, πi > 0, i = 1, . . . , G (2.2)

donde cada uno de los G términos de la sumatoria (cada fi es una distribución
normal que se denomina componente de la mixtura) modeliza una columnas
de átomos e introduce otro parámetro, el πi, que se denomina peso de la
componente y que se asocia a su intensidad en la imagen.

Prueba de normalidad

En la figura 1.3 se puede ver la presencia de una señal de fondo u “offset”
sobre el que se superpone el relieve que describe la intensidad de la imagen, y
el cual se pretende modelizar como mixtura de normales. Esta constante, que
corresponde a los mı́nimos de intensidad en la imagen, se fija en los ajustes
experimentales realizados durante la adquisición de la imagen y, por tanto,
se tiene en cualquier micrograf́ıa. Deberá de considerarse este fenómeno en
el modelo.

Por otro lado, podemos representar una sección de esta superficie. To-
mamos los datos, por ejemplo, de la séptima fila de la matriz de la figura
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1.3 b), restamos su valor mı́nimo para anular el offset y tenemos un perfil
como el de la figura 2.1. Se debe hacer notar que esto corresponde a una sec-
ción en el plano (pixelesx, brillo) y que pasa aproximadamente por el centro
del eje pixelesy (con la notación de la figura 1.3). Si aplicamos el test de

Figura 2.1: Perfil de la superficie presentada en la figura 1.3 tomando los datos

de la fila 7 de la matriz en la misma figura, habiendo restado el valor mı́nimo de

la matriz para observar mejor el relieve.

Shapiro-Wilk2 (código en el apéndice E) a los picos que se observan, obtene-
mos p-valores mayores que la significancia, de 0,05 por defecto. En concreto,
se obtiene 0,4246 en el primer pico y 0,08209 en el segundo con lo que se
aceptaŕıa la normalidad de ambas muestras.

Aunque la normalidad de este perfil no implica la normalidad de la su-
perficie, se aporta como argumento a favor para el modelo de mixtura. Por
otro lado, se realizó esta prueba para distintas secciones de los picos3 y se
obtuvo en todo caso resultados que apoyan su normalidad.

2Este test es recomendable para muestras pequeñas (n < 50 en muchos textos) por lo
que calcularemos un vector de frecuencias proporcional al que se representa en la figura 2.1,
y restringido a que la suma de sus elementos sea aproximadamente 50. Además, en R se
aplica el test para un vector de observaciones (resultados de una medida), no de frecuencias.
Esto requiere un nuevo vector que tenga tantas copias de la variable aleatoria (número
de columna de pixeles, en este caso, como variable aleatoria de posición) como indique
su frecuencia asociada. Este vector tendrá una longitud igual a la suma de frecuencias
(aproximadamente 50, como propońıamos).

3En concreto, tomando las columnas 7 y 30 de la misma matriz (figura 1.3 b)) se
obtienen p-valores de 0,5057 y 0,3387, respectivamente. Estas columnas correspondeŕıan,
aproximadamente, a las secciones perpendiculares a la de la figura 2.1 y que pasan por los
máximos de cada pico.
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2.1.1. Modelado del efecto del amplificador

Para operar en la zona lineal del amplificador que procesa la señal detec-
tada, a la imagen g(x, y) de (2.2) se ajusta el contraste y el brillo del detector.
A efectos de nuestro modelo matemático, esto equivale a la introducción de
una constante aditiva ,γ1 ∈ R, que modelice el offset, y otra multiplicativa,
γ2 > 0, para la amplificación: F (x, y) = γ2(g(x, y) + γ1), es decir,

F (x, y) = α +
G∑
i=1

wifi(x, y), (2.3)

siendo wi = γ2 · πi > 0 con i = 1, . . . , G, los coeficientes de la nueva mixtura
(nótese que ya no es una distribución de probabilidad) y α = γ1 · γ2 ∈ R, el
término independiente.

Finalmente consideraremos que las micrograf́ıas son muestreos en mallas
regulares (cuadŕıcula) del modelo continuo F (x, y) dado en (2.3).

En la siguiente sección vamos a generar imágenes sintéticas con este mo-
delo, lo que además servirá para aclarar y ejemplificar lo visto hasta ahora.

2.2. Micrograf́ıas sintéticas

Cuando se hacen ajustes de micrograf́ıas reales no se tiene ningún refe-
rente para saber si se obtienen buenos resultados. Parece adecuado probar
antes el algoritmo sobre imagenes sintéticas, generadas a partir del modelo
propuesto en (2.3) y para las cuales hayamos asignado valores concretos a los
parámetros del mismo. Para estas, propondremos unos parámetros iniciales
ligeramente desviados y ejecutaremos el algoritmo para realizar un ajuste al
mismo modelo. Los parámetros a los que converja como resultado serán un
refinamiento de los parámetros iniciales, y deberán de ser muy próximos a
aquellos con los que hayamos generado la imagen.

2.2.1. Proceso

Este proceso tendrá dos partes claramente diferenciadas:

Por un lado, y en primer lugar, la creación de imágenes de prueba (en
el apéndice B se presenta el código R y una descripción de las funciones
que implementa).

En segundo lugar la implementación y prueba del algoritmo de Levenberg-
Marquardt que se propone para el ajuste (código y descripción del mis-
mo en el apéndice C).
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Generación de las micrograf́ıas sintéticas

La implementación de estas simulaciones seguirá los siguientes pasos,

PASO 1: Asignación de valores a las medias, varianzas, coeficientes de
correlación y pesos para definir el modelo que usaremos, considerando
la suma de pesos normalizada, según el modelo dado en (2.2).

PASO 2: Generación de una muestra (de tamaño n = 5000, predefi-
nido por nosotros) de puntos en el plano, distribuidos según el modelo
resultante en el PASO 1. Para tener muestras que sigan una mixtura
se generan tantas muestras, de tamaño πin (con 0 < πi ≤ 1), como
componentes tenga la mixtura4, y siendo la suma de los πi igual a 1. Si
tomamos las observaciones de todas estas muestras como observaciones
de una sola, tenemos otra muestra, de tamaño n y siguiendo la mixtu-
ra. Los πi son precisamente el peso de la componente i, que define el
número de puntos (observaciones) que corresponden a ella.

Se realiza la representación gráfica de dicha muestra (n puntos en el
plano) en rangos de los ejes de coordenadas definidos por el software.
Denotamos los extremos de este rango como ix y sx para el eje hori-
zontal (inferior y superior, respectivamente) y iy y sy para el vertical.

PASO 3: Reescalaremos la muestra mediante las expresiones

xreescalado = nx ·
x− ix
sx − ix

,

yreescalado = ny ·
y − iy
sy − iy

,
(2.4)

para que quede contenida en el intervalo 0 < x < nx en el eje horizontal,
y en 0 < y < ny en el vertical, donde nx y ny serán dos número positivos
definidos por nosotros que representarán el número de columnas y filas
de pixeles de la imagen sintética. Se dibuja una cuadŕıcula simulando
el pixelaje (cada pixel tendrá un lado de longitud 1 según lo propuesto)
y se reescalan tambien las medias (aplicando 2.4) y las desviaciones,

(σx)reescalado = nx ·
σx

sx − ix
(σy)reescalado = ny ·

σy
sy − iy

(2.5)

4Aunque la elección del número de eventos de cada componente es determinista, para
tamaños de muestra grandes la habitual aproximación probabilista da resultados similares.
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para que sean coherentes con la nueva muestra reescalada. El coeficiente
de correlación y peso son parámetros adimensionales con lo que no
necesitan ser reescalados.

PASO 4: Realizando el recuento de puntos de la muestra contenidos
en cada una de las subdivisiones que nos da la cuadŕıcula, simularemos
el brillo asociado a cada pixel de esta imagen sintética y la matriz de
datos correspondiente.

PASO 5: Se define y se suma una constante, α, que simula el offset, a
los elementos de la matriz anterior, y en los casos que corresponda, el
ruido.

PASO 6: Escritura, en un fichero, de la matriz de datos que representa
la micrograf́ıa: una matriz de nx × ny.

Ajuste de las micrograf́ıas sintéticas

Se elige el Algoritmo de Levenberg-Marquardt como método de ajuste.
Este es una generalización de la optimización por mı́nimos cuadrados, la cual
consiste en obtener el vector de parámetros β que minimiza la expresión,

S(β) =
m∑
i=1

(zi − F (xi, yi,β))2, (2.6)

acorde con el caso bivariante que nos ocupa. En esta expresión m es el número
de pixeles, que son los puntos que tenemos para realizar el ajuste; (xi, yi)
son las coordenadas de posición de cada pixel, y zi su brillo. La función F
es el modelo propuesto en (2.3), y β los parámetros que lo definen (offset,
pesos, medias, desviaciones y coeficientes de correlación de cada término de
la mixtura).

El algoritmo trabaja siendo iniciado con un β0 que se propone. En cada
iteración se resuelve la ecuación matricial (remitimos a la referencia [12] para
más detalle)

(JTJ + λI)δ = JT [z − F (x,y,β)], (2.7)

siendo δ el vector de incógnitas. Este nos da los incrementos para recalcular
β en cada iteración, de manera que en la j-ésima tendremos un vector de
parámetros dado por βj = βj−1 + δj−1. Por otro lado, J es una matriz con
m filas, siendo éstas el gradiente de F en cada uno de los m puntos.

La implementación del proceso de ajuste (código en el apéndice C) donde
se usará este algoritmo seguirá los siguientes pasos:
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PASO 1: Lectura del fichero donde se tenga la matriz de datos que
representa la micrograf́ıa que se quiere ajustar, ya sea sintética o real.

PASO 2: Propuesta de los parámetros con los que se inicia el algo-
ritmo. Cuanto más próximos sean estos a los reales más rápida será la
convergencia.

PASO 3: Procesado y preparación de la matriz de datos. Aqúı, por una
parte, restaremos a todos los elementos de matriz el valor del mı́nimo,
que corresponde aproximadamente al offset. Por otra parte, dividiremos
cada uno por la suma de todos, aśı quedará normalizada.

PASO 4: Aplicamos el ajuste a un modelo como el de la expresión
(2.3) con los puntos que resultan del PASO 3. Para esto se hará uso de
la libreŕıa de R lm.minpack (referencia [23]), en concreto, de la función
nlsLM() (remito nuevamente al código del apéndice C). Obtenemos los
estimadores y datos ajustados.

PASO 5: Realizaremos la operación inversa a la realizada en el PASO
3, sumando el mı́nimo valor de la matriz de datos original y multipli-
cando por la suma de todos sus elementos. Aśı recuperamos unos datos
ajustados del mismo orden que los originales.

PASO 6: Escribimos en ficheros los datos (matriz con las mismas
dimensiones que la de datos originales) y estimadores ajustados.
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2.2.2. Ejemplos en ausencia de ruido

Presentaremos dos ejemplos que simulan estructuras atómicas similares
a algunas que podemos encontrar en una micrograf́ıa real.

Ejemplo 1: micrograf́ıa de 25 × 20 con 5 normales en ausencia de
ruido.

Aqúı se pretende simular una de las celdas unidad que se presentan en la
micrograf́ıa de la figura 1.1.

• SIMULACIÓN:

PASO 1-2: Generamos una estructura de este tipo con una muestra de
5000 puntos siguiendo una mixtura de 5 componentes normales, tal y como
se puede ver en la figura 2.2.

(a) Muestra original de una mixtura de 5
componentes de parámetros dados en b).

(b) Parámetros con los que se genera la
muestra original

Figura 2.2: Muestra original donde se observa el rango de representación que se

establece por defecto y que aprovecharemos para reescalar la muestra.

PASO 3: El resultado del reescalado de la muestra se puede ver en la figura
2.3.

PASO 4-5: Realizamos el conteo de puntos en el interior de cada elemento
de la cuadŕıcula y obtenemos aśı la matriz de datos asociada a esta micro-
graf́ıa sintética (figura 2.4 b)). Se puede representar esto en 3 dimensiones
considerando los elementos de matriz, como coordenada dependiente de la
posición (x, y) dada por el punto en el centro del pixel (figura 2.4).
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(a) Muestra reescalada con rejilla que si-
mula el pixelaje de la imagen sintética.
Contando el número de puntos conteni-
dos en cada subdivisión de la cuadŕıcula
simulamos el brillo de cada pixel.

(b) Parámetros reescalados de manera
que tenemos la muestra contenida en un
rango coherente con las coordenadas dis-
cretas (filas y columnas) de los pixeles que
componen una imagen.

Figura 2.3: Muestra de la figura 2.2 tras haber sido reescalada.

(a) Representación gráfica
en 3 dimensiones de la
muestra una vez discretiza-
da, y donde la coordena-
da vertical nos da el núme-
ro de puntos de la muestra
original contenidos en ca-
da uno de los elementos de
la cuadŕıcula que simulan el
pixelaje.

(b) Matriz que recoge el conteo de puntos de la
muestra original más una constante aditiva (de 500
en este caso) que representa el offset que se tiene
en imágenes reales.

Figura 2.4: Muestra de la figura 2.2 tras haber sido discretizada.
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• AJUSTE:

En un tiempo de ejecución de,

tejecucion = 1, 10s (2.8)

y con los parámetros iniciales que se muestran en la figura 2.5 b), se realiza el
ajuste obteniendo los resultados de la figura 2.5, tanto la superficie ajustada
como los parámetros con sus desviaciones t́ıpicas. Estos se pueden comparar
con los de la figura 2.3, que son los que defińıan la imagen.

(a) Representación gráfica en 3 di-
mensiones de los datos ajustados.

(b) Estimadores propuestos pa-
ra iniciar el algoritmo.

(c) Estimadores ajustados para cada
una de las 5 normales presentadas.

(d) Error de los estimadores ajustados para
cada una de las 5 normales.

Figura 2.5: Resultados del ajuste del Ejemplo 1.

Podemos comparar los valores ajustados de la figura 2.5 c) con los origina-
les dados en la figura 2.3 b) y observar desviaciones máximas entre paráme-
tros de unos 0,4 pixeles (en estos valores se toma el pixel como unidad de
longitud). Se observa además que las mayores diferencias se tienen en las
desviaciones t́ıpicas (remitimos a la sección 2.2.5).
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Ejemplo 2: micrograf́ıa con 7 componentes en una imagen de 40×20
y en ausencia de ruido

Ahora otro ejemplo con una estructura de átomos diferente.

• SIMULACIÓN:

PASO 1-2: Proponemos una distribución de puntos (5000, como en los
ejemplos anteriores) como la de la figura 2.6.

(a) Muestra original de una
mixtura de 7 componentes de
parámetros dados en b).

(b) Parámetros con los que se
genera la muestra original.

Figura 2.6: Muestra original del Ejemplo 2.

PASO 3: La reescalamos tal y como se presenta en la figura 2.7.

(a) Muestra de la figura 2.6 re-
escalada en una rango de 40×20
y con parámetros, tambien re-
escalados, dados en b).

(b) Parámetros con los que se ge-
nera la muestra original.

Figura 2.7: Muestra reescalada del Ejemplo 2.
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PASO 4-5: La discretizamos en una imagen de 40× 20 (representación en
3 dimensiones en la figura 2.8).

Figura 2.8: Como en los ejemplos anteriores, presentamos la superficie que gene-

ran los puntos asociados a la posición y brillo de cada pixel, habiéndose obtenido

mediante discretización de 2.7. La matriz de datos (aśı como la de pixeles) aso-

ciada, esta vez es de 40× 20.

• AJUSTE:

En este caso el tiempo de ejecución del ajuste es,

tejecucion = 1, 59s (2.9)

habiendo propuesto como parámetros para iniciar el algoritmo los mostrados
en la figura 2.9 b). Se obtienen los resultados de la figura 2.9, que como en
el Ejemplo 1, podemos comparar con los parámetros con los que se propuso
la imagen y que se presentan en la figura 2.7 b).

Comparando los valores ajustados, visibles en la figura 2.9 c), con los
parámetros que generan la micrograf́ıa sintética (figura 2.7 b)), observamos
desviaciones menores que 0,2 pixeles (tomando estos como unidad de longi-
tud), aproximadamente. Remito a la sección 2.2.5 para más comentario.
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(a) Representación gráfica en 3 di-
mensiones de los datos ajustados.

(b) Parámetros propuestos para
iniciar el algoritmo.

(c) Estimadores ajustados para cada una de las 7
normales presentadas en la simulación de l ejem-
plo 2.

(d) Error de los estimadores ajustados para cada una de
las 7 normales.

Figura 2.9: Resultados del ajuste del Ejemplo 2.
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2.2.3. Ejemplos que incluyen ruido

El propio fenómeno de detección de part́ıculas lleva siempre asociado,
a nivel experimental, un ruido que sigue una distribución de Poisson, cuya
densidad de probabilidad viene dada por la expresión

p(n) =
Nn · e−N

n!
, (2.10)

donde p(n) es la probabilidad de obtener n como resultado en una realización,
y N el promedio de todas las observaciones. En nuestro caso el recuento de
puntos en cada región del mallado (esto es la simulación de la intensidad en
un pixel).

Se plantea que tenemos dos ruidos que consideraremos independientes y
que incluiremos,

Debe de existir una perturbación (esta deberá ser de Poisson) que afecte
a los picos, de forma que en pixeles más brillantes pueda haber más
ruido. En lo relativo a la relación señal-ruido, el ruido de tipo Poisson
o ruido de disparo, afecta más a los pixeles donde han cáıdo pocos
electrones.

Debemos de tener en cuenta otro ruido que sea proporcional al nivel
de offset. Es una realidad que al efectuar los ajustes de contraste que
lo introducen, el ruido crece o decrece con este nivel.

En cuanto al primero, parece obvio que el ruido debe de ir asociado a cada
pixel en particular, tomando como parámetro N el número de eventos en
ausencia de ruido, aśı los pixeles más brillantes se verán afectados por una
perturbación mayor. Para el segundo, se incluye un ruido uniforme tomando
como promedio, N , el 2 % del offset que tengamos.

Para introducir la primera componente del ruido, sustituiremos el recuen-
to de puntos en cada región del mallado por una realización de Poisson cen-
trada en ese mismo recuento (que simula la intensidad del pixel). La segunda
componente de ruido, relativa al offset, la incluimos sumando una realización
de una uniforme con extremos en ±2 % del offset.
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Ejemplo 3: inclusión de ruido en el Ejemplo 1.

• SIMULACIÓN:

Si tomamos la imagen desarrollada en el Ejemplo 1 e introducimos el rui-
do, tenemos una imagen cuyo relieve es como el presentado en la figura 2.10.

Figura 2.10: Imagen del Ejemplo 1, habiendo introducido las dos componentes de

ruido propuestas.

• AJUSTE:

En este caso el algoritmo se ejecuta en

tejecucion = 1,19 s (20 iteraciones) (2.11)

siendo iniciado con los mismos parámetros que en el Ejemplo 1 y obteniendo
los resultados mostrados en la figura 2.11.

Encontramos que las mayores desviaciones (comparando los parámetros
ajustados presentados en la figura 2.11 c) con los originales, presentados en
2.3), como en los ejemplos en ausencia de ruido, las encontramos en una
de las desviaciones t́ıpicas (en torno a 0,4 pixeles). En cuanto a las medias,
notamos que tienen desviaciones inferiores a 0,2 pixeles (unidad de longitud).
Remitimos a la sección 2.2.5.
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(a) Representación gráfica en 3 di-
mensiones de los datos ajustados.

(b) Estimadores propuestos pa-
ra iniciar el algoritmo.

(c) Estimadores ajustados para cada una de las
5 normales presentadas.

(d) Error de los estimadores ajustados para cada una de
las 5 normales.

Figura 2.11: Resultados del ajuste del Ejemplo 3.
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Ejemplo 4: inclusión de ruido en el Ejemplo 2.

• SIMULACIÓN:

Ahora introduciremos las dos componentes de ruido en la imagen del Ejemplo
2 y tenemos la imagen representada en la figura 2.12.

Figura 2.12: Imagen del Ejemplo 2 habiendo introducido ruido.

• AJUSTE:

En un tiempo de ejecución de,

tejecucion = 3,48 s (28 iteraciones) (2.12)

tenemos los resultados presentados en la figura 2.13, iniciando el algoritmo
con los parámetros de la figura 2.13 b).

Desviaciones de entre 0,1 − 0,3 pixeles (tomando estos como unidad de
longitud) de los parámetros ajustados (figura 2.13 c)) respecto de los que
se hab́ıan propuesto para generar la muestra (figura 2.7). Remitimos a la
sección 2.2.5.
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(a) Representación gráfica en 3 di-
mensiones de los datos ajustados.

(b) Estimadores propuestos pa-
ra iniciar el algoritmo.

(c) Estimadores ajustados para cada una de las
7 normales presentadas.

(d) Error de los estimadores ajustados para cada una de
las 7 normales.

Figura 2.13: Resultados del ajuste del Ejemplo 4.
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2.2.4. Ejemplo con una región de una micrograf́ıa real

En el primer caṕıtulo presentamos, en la figura 1.3, y para ilustrar algunas
ideas, una pequeña región de la micograf́ıa de la figura 1.1, la cual comprend́ıa
sólamente dos átomos. Como un primer ensayo sobre una imagen real, y antes
de pasar a la implementación del plug-in, probaremos el algoritmo de ajuste
sobre ella obteniendo los resultados presentados en la figura 2.14.

(a) Representación gráfica en 3 di-
mensiones de los datos ajustados.

(b) Estimadores propuestos para ini-
ciar el algoritmo.

(c) Estimadores ajustados para cada una de
las 7 normales presentadas.

(d) Error de los estimadores ajustados para cada
una de las 7 normales.

Figura 2.14: Resultados del ajuste de la figura 1.3, siendo X1, X2, X3, X4, X5 y

X6 la media en x, media en y, desviación en x, desviación en y, coeficiente de

correlación y peso, respectivamente, como en casos anteriores.

En este caso, se procedió de manera similar a como luego se hará sobre
micrograf́ıas reales. Se proponen unos parámetros iniciales donde visualmente
parecen estar los picos, teniendo en cuenta que las coordenadas de posición
se definen según las expresiones dadas en 1.2 y que esta imagen teńıa 36 ×
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14 pixeles. Con estos parámetros se lanza el algoritmo, y se obtienen los
resultados del ajuste, los cuales suponen un refinamiento de los iniciales. Esta
metodoloǵıa es la que se aplicará e implementará en el siguiente caṕıtulo para
desarrollar el plug-in.

2.2.5. Análisis de resultados y comentarios

En vista de los resultados, que vienen dados tomando el propio pixel como
unidad de longitud, observamos diferencias en el primer decimal, concreta-
mente, y a “grosso modo”, de entre 0,1 y 0,4 pixeles, teniendo los mayores
errores en los ajustes de las desviaciones t́ıpicas. Bien es cierto que para las
medias se podŕıa decir que estas diferencias son menores que 0,2, lo que su-
pone una estimación de la precisión máxima con la que podemos determinar
el desplazamiento de una columna. Si consideramos que la micrografia de la
figura 1.1, por ejemplo, está calibrada tal manera que cada pixel representa
0,017455 nm de la muestra, estaŕıamos hablando de errores en torno a 3− 4
pm, con lo que no tendŕıan porqué detectarse desplazamientos inferiores a es-
ta distancia. Śı parece que garantiza la posibilidad de medir desplazamientos
por encima de 5− 6 pm.

Por otro lado, es notable el aumento en el tiempo de ejecución en los
ejemplos que incluyen ruido.

Se pueden hacer algunos comentarios y puntualizaciones respecto del tra-
tamiento que damos a las micrograf́ıas y de los ejemplos propuestos,

Es habitual en las técnicas de procesamiento de imagen, que el origen
para enumerar filas y columnas de pixeles se encuentre en la esquina
superior izquierda, de la misma manera en que se enumeran (indexan)
los elementos de una matriz en matemáticas. Sin embargo, en ciertas
representaciones gráficas (por ejemplo las figuras del tipo 2.2 o 2.3)
encontramos el origen en la esquina inferior izquierda. Este cambio en
el origen debe tenerse en cuenta cuando se programan determinados
bloques del código.

En gráficas del tipo de las de las figuras 2.14 a) o 2.13 a), cada pixel
está representado por las intersecciones de las ĺıneas de la cuadŕıcula
(como un punto), no por las propias subdivisiones de esta.

La elección de parámetros iniciales debe de hacerse, dentro de los po-
sible, tratando de seleccionarlos próximos a los reales. Esto favorece la
convergencia del algoritmo.
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Se ha podido ver en los ejemplos que se presentan unos errores asociados
a los parámetros ajustados. Sin embargo no se ha comentado nada
respecto de ellos. Esto se debe a que son errores que arroja el software
R al hacer el ajuste, pero por desconocimiento del funcionamiento de
la rutina que los devuelve, no se ha tratado con ellos.
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Caṕıtulo 3

Funcionamiento del Plug-In
para DM

En el anterior caṕıtulo se ha desarrollado y puesto a prueba un script que
realiza el ajuste de imágenes sintéticas recibiendo la matriz de datos asociada
y los estimadores iniciales. Tenemos ahora que hacer una herramienta para
DM (código en el apéndice D), que obtenga esta matriz y estos estimadores,
directamente de una micrograf́ıa que se visualice en este software, y que, tras
el ajuste, nos muestre la información resultante.

Comentaremos el funcionamiento del plug-in probándolo sobre la micro-
graf́ıa de la figura 1.1. Aśı, además de ver los resultados y el efecto que tiene
en la imagen, discutiremos el proceso de ejecución del plug-in y las opciones
que nos ofrece.

3.1. Uso y resultados: posprocesado de mi-

crograf́ıas reales

Cuando abrimos una micrograf́ıa en DM encontramos una pantalla como
la que vemos en la figura 3.1, sobre la que podemos hacer un zoom y selec-
cionar una región de interés que se quiera analizar1 (figura 3.2). Con esto,
estamos en disposición de ejecutar el plug-in (menú “custom” en la barra de
tareas de DM, una vez que se tenga instalado2) y se tendrá la pantalla de la
figura 3.3. Si no se ha seleccionado previamente una región de interés, se to-
mará la micrograf́ıa completa como región a analizar. Hay que ser consciente

1No se entrará en cómo hacer estas operaciones. Se remite a la ayuda del propio software
para ello. Aqúı se pretende comentar sólo el funcionamiento del plug-in, no de DM.

2En el apéndice A se detalla este proceso.
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Figura 3.1: Micrograf́ıa de la figura 1.1 visualizada en DM. Se muestra tambien

el aspecto de la pantalla principal que tiene dicho programa.

Figura 3.2: Micrograf́ıa de la figura 1.1 habiendo seleccionado una región de in-

terés.

del elevado tiempo de cálculo que conllevaŕıa dicho análisis (ver sección 3.2).

3.1.1. Asignación de parámetros iniciales

Resulta necesario dar unos valores a los parámetros que definen el modelo,
para iniciar el proceso iterativo que nos llevará a un ajuste (refinamiento) de
los mismos. Para esto se proponen dos funcionalidades diferentes, ambas
basadas en la selección de los picos contenidos en la región de interés elegida.
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REALES 43

Figura 3.3: Pantalla tras la ejecución del plug-in.

Caso de uso: estimación “manual”

Con esta opción tendremos que seleccionar uno a uno los picos, usando
regiones de interés rectangulares, hasta tener algo como lo que se muestra en
la figura 3.4. Esta selección debe de hacerse con cierto cuidado, puesto que

Figura 3.4: Pantalla tras seleccionar los picos a ajustar (componentes de la mix-

tura que modeliza la región).

los parámetros iniciales para cada componente de la mixtura se propondrán
a partir de ella. Las medias se elegirán como las coordenadas del pixel más
brillante dentro de cada región de interés, las desviaciones t́ıpicas como la
cuarta parte de los lados del cuadro que encierra cada pico (considerando la
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zona central de una normal con una distancia de 2 sigmas desde su centro),
el coeficiente de correlación se fija a 0 en todos los casos, y el peso se asigna
según la proporcionalidad entre la altura del pico, y la diferencia entre el
máximo y mı́nimo brillo en la región a modelizar. De estas asignaciones,
las desviaciones t́ıpicas son las que requieren una selección más cuidadosa,
debiendo de hacerse de manera que se encuadre toda la zona brillante que
corresponde al pico (remito a la figura 3.5 para una muestra).

Cuando ya se han seleccionado todos los picos, se debe de pulsar la tecla
“escape” para finalizar el proceso, y se nos pide confirmación para lanzar
el algoritmo de ajuste. Veremos como se abre la consola de Windows y al
finalizar obtendremos la imagen original con un rombo azul sobre cada pico,
y la imagen que generan los datos ajustados (figura 3.5)

Figura 3.5: Resultado tras el ajuste de la zona seleccionada en la figura 3.2.

Caso de uso: estimación “automática”

Para presentar esta otra forma de asignar parámetros iniciales, tomaremos
otra región de la imagen (3.6), lanzamos el plug-in, pero esta vez elegiremos
la selección “automática”. Con esta opción tendremos que seleccionar sólo
un elemento (el más próximo a la esquina superior izquierda, que es el origen
de coordenadas) de aquellos que tengan periodicidad e intensidad parecidas.
Tras la selección de este pico, se nos pedirá la periodicidad con el siguiente,
tanto en el eje horizontal como en el vertical. Este dato debe de introducirse
en pixeles (como unidad de longitud), lo cual requiere contarlos sobre la
imagen. En la figura 3.7, tenemos un ejemplo de como seŕıa esta selección.

Confirmando el lanzamiento del algoritmo de ajuste obtenemos el resul-
tado mostrado en la figura 3.8.
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Figura 3.6: Resultado tras el ajuste de la zona seleccionada en la figura 3.2.

Figura 3.7: Selección en el modo “automático” para la región de la figura 3.6. Se

puede ver que se han consideraado dos conjuntos de elementos con periodicidad y

caracteŕısticas similares. Uno de ellos el de picos de mayor intensidad y otro el de

los picos menos notables, se selecciona el que está máspróximo al origen y cuando

procede se les introduce, en este caso, una periodicidad de 23 pixeles tanto en la

coordenada horizontal como en la vertical. Este dato tambien de procurarse que

sea una buena aproximación.

En la siguiente sección, y sobre esta imagen resultante, vamos a ver como
actuar para obtener distancias entre átomos y parámetros de ajuste.
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Figura 3.8: Resultados del ajuste de la región seleccionada en la figura 3.6.

3.1.2. Obtención de la información

Sobre la imagen producto del ajuste (figura 3.8 o 3.5) se generan objetos
que asocian cada pico a una región de interés (rombo azul con tamaño de
las diagonales igual a la desviación en x y en y, respectivamente), a los
parámetros que definen su normal de ajuste y a un número identificador
(que se visualiza en las etiquetas anexas en la parte superior de cada rombo).

Para interactuar con esta imagen, basta añadirle una región de interés
tipo puntual o lineal. Si es tipo puntual, y la añadimos en el interior de uno
de los rombos, aparecerá una etiqueta sobre dicho rombo con las medias3 y
el peso ajustados. Sobre fuera de los rombos, no tendrá efecto. Si la región
de interés que añadimos es lineal, con extremos en el interior de dos rombos
diferentes, nos da la distancia entre las medias correspondientes. En otro
caso, veremos la linea etiquetada con la palabra “error”. En la figura 3.9
vemos un ejemplo de estas utilidades.

Es necesario comentar, por una lado, que en la ventana de “output”
tambien se presentan los resultados simultáneamente. Por otra parte, para
los parámetros ajustados se usa el pixel como unidad de longitud, no aśı con
las distancias, que se presentan en las unidades en las que esté calibrada la
imagen original.

3Se presentan medias locales, esto es, respecto del origen de la región seleccionada para
el ajuste, y globales, las cuales corresponden a medidas tomadas respecto del origen de la
micrograf́ıa completa.
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Figura 3.9: Ejemplo de acción sobre la imagen resultante al añadirle una región

de interés puntual o lineal.

3.1.3. Conclusiones y resultados

Hagamos un breve análisis de la información obtenida. Lanzamos un nue-
vo ajuste, de una región algo mayor, usando el método “manual” de selección,
que aunque más incómodo, nos da unos parámetros iniciales más precisos.
Obtenemos aśı la imagen mostrada en la figura 3.10 donde se tiene una me-
dida estimada, entre dos de los átomos de la parte central, de 0,390755 nm.
Este valor es muy próximo al experimental de 0,390 nm.

Figura 3.10: Nuevo ajuste sobre el que se realizan pruebas de medida.

Podemos probar tambien a tomar medidas, por ejemplo, entre los átomos
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de los vértices y el central en la celda unidad que se ve en medio de la imagen
(figura 3.11).

(a) Medida estimada de 279 pm. (b) Medida estimada de 286 pm.

(c) Medida estimada de 274 pm. (d) Medida estimada de 255 pm.

Figura 3.11: Distancias entre los átomos de los vértices y el central en una celda

unidad. Se deduce de las medidas una mayor proximidad entre el átomo central y

el situado en la esquina superior derecha.
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3.2. Limitaciones actuales y propuesta de desa-

rrollo

Se han observado algunos errores de ejecución o de ajuste en algunas
situaciones, en general, en regiones mayores que las aqúı tratadas, aśı como un
elevado tiempo de cálculo en estos casos. Básicamente se diŕıa que estos fallos
vienen dados por dos cuestiones. La primera, por una mala aproximación
de los parámetros iniciales, y la segunda, en casos en los que los picos se
presentan demasiado difusos, o tenemos presencia de pixeles con intensidad
notable en los bordes.

Si hablamos de la primera, el método de selección de picos que llamamos
“manual”, haciendo un buen encuadre de los mismos, ofrece mejores estima-
ciones para los parámetros, puesto que se realizan las asignaciones para cada
pico en particular. Esto se traduce, además, en mayor velocidad de conver-
gencia. En cuanto a la segunda, en algunas zonas encontramos que, los picos
de menor intensidad, se ven demasiado planos y difusos llegando práctica-
mente a solaparse con sus vecinos. En estas situaciones se puede llegar a
ajustes en los que las normales que los modelicen tengan grandes varianzas o
altos coeficientes de correlación que no resultan acordes con lo esperado. Por
otro lado, los pixeles en los bordes de la región a analizar pueden provocar
deformaciones en el ajuste de las columnas de átomos más próximas, razón
por la cual resulta conveniente realizar una buena selección de la región de
interés, tratando de no incluir más pixeles de los necesarios, más aún si se
observan con cierta intensidad.

Se desprende, incluso sólo de la lectura de este caṕıtulo, que el proceso
de selección de picos puede resultar algo tedioso. Se debe de hacer para cada
uno, con cierto cuidado, y no admite corrección sobre la selección que se ha
hecho, por lo que, ante una equivocación habŕıa que repetir todo el proceso.
Si además se ha utilizado la herramienta, es inmediato pensar en como me-
jorar esto. Con este fin, de hecho, se implementó el método de selección que
denominamos “automático”, pero aprovechar la periodicidad de la red no da
buenas estimaciones iniciales. La solución que planteamos, y que supondŕıa
una evolución del plug-in es incluirle un detector de picos, adecuado para
el caso, que fuera capaz de reconocerlos en la micrograf́ıa y asignar valores
aproximados a los parámetros iniciales.
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Apéndice A

Instrucciones para la
instalación, detalles técnicos y
de funcionamiento.

El plug-in ha sido desarrollado sobre Windows 7, usando la versión 3.0.1
del software de tratamiento de datos R (open source) y la 2.31.734.0 del
software de procesamiento de imagen Digital Micrograph (desarrollado por la
compañ́ıa Gatan y disponible en su web).

Está compuesto por cuatro scripts. Tres de ellos, contienen código del len-
guaje de scripting de DM y en ellos se codifican las acciones sobre la imagen,
como puede ser la obtención de la matriz de datos asociada, lectura de los
datos ajustados, implementación de los “listeners” que controlan la interac-
ción del usuario con la imagen... El cuarto script codifica, en lenguaje R, una
implementación del algoritmo de Levenberg-Marquardt (función nlsLM() de
la libreŕıa lm.minpack).

Los archivos mencionados se han denominado como:

tfmAlgLMPlugIn classListenerAccion.s (DM-script), pero nos referire-
mos a él como “classListener”. En éste se implementa el listener que
ejecuta las acciones para obtener la información en la imagen resultante
tras la ejecución (acciones sobre los rombos que se generan).

tfmAlgLMPlugIn classMancha.s (DM-script), pero nos referiremos a él
como “classMancha”. Esta es la clase que genera los objetos que asocian
los rombos, los parámetros de cada normal y la id que los identifica.

tfmAlgLMPlugIn mainV2.s (DM-script), pero nos referiremos a él co-
mo “main”. Archivo principal de la herramienta.
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DETALLES TÉCNICOS Y DE FUNCIONAMIENTO.

algoritmoLM V5 DM Definitivo.R (R-script), pero nos referiremos a él
como “Ralgoritmo”. Archivo en el que se procesa y se ajusta la imagen
original.

De estos, es importante no cambiar el nombre del R-script porque el plug-
in se refiere a él internamente mediante este nombre.

La instalación se lleva a cabo siguiendo estos pasos:

Por un lado, es evidente que se tiene que tener instalado R, y con el
paquete lm.minpack cargado, el cual no viene por defecto al instalar el
software.

En la carpeta donde se instala el software (habitualmente, como en
tantos otros programas, es “C:\Archivos de programa\R”) encontra-
mos una carpeta llamada “\bin” que contiene un ejecutable llamado
“Rscript”. La ruta de este ejecutable debe de incluirse como variable
de entorno del sistema operativo, puesto que es el que ejecuta R-scripts
desde la consola y necesitamos tener útil esta función para que el plug-
in pueda hacerlo.

Debemos de tener en el escritorio una carpeta que denominaremos “plu-
gInDM” que contenga el archivo “Ralgoritmo”. Esta carpeta se utili-
zará además para el intercambio de datos entre scripts, v́ıa archivos
de texto plano. En ella, tras un ajuste quedarán cuatro ficheros que
contienen la matriz de datos original, los estimadores iniciales, la ma-
triz de datos ajustada y los estimadores ajustados. Estos ficheros serán
borrados en la siguiente ejecución.

Instalaremos los scripts “classMancha” y “classListener” como libreŕıa
en DM (en el menú del software File>Install script file>as library).

Instalaremos el script “main” como plug-in en DM (en el menú File>Install
script)

En cuanto a detalles de funcionamiento debemos mencionar que se van
viendo mensajes en la ventana de output de DM. Algunos son meramente
informativos sobre la ejecución del código, pero otros son interesantes a ni-
vel experimental. En concreto, cuando se realiza la selección de picos para
asignar parámetros iniciales, podemos ir viendo los parámetros que se van
estimando para cada pico (en el siguiente orden: mediax, mediay, sigmax,
sigmay, coeficiente de correlación y peso) y el número de picos que se han
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seleccionado. Esto resulta interesante puesto que no se admite la posibili-
dad de corrección de la región de interés que selecciona uno de ellos. Si se
intenta modificar la misma, se añadiŕıa como un nuevo pico. Por otro lado,
cuando tras una ejecución visualizamos distancias y resultados, tenemos una
información más amplia en la ventana de output.



54
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Apéndice B

R-Script para generar imágenes

B.1. Descripción

Script que implementa las funciones que desarrollan las diversas etapas
del proceso de generación de imágenes sintéticas. Se pueden ejecutar unas u
otras funciones según lo que se quiera presentar.

Funciones “paramEjemploX()” y “paramManual()”: En estas
funciones se definen expĺıcitamente los parámetros y el número de pi-
xeles usados, para generar las muestras de puntos de las que partimos
para hacer las imágenes sintéticas. Puede resultar poco técnico y repe-
titivo codificarlo aśı, pero resulta cómodo para reproducir las mismas
imágenes en cada ejecución. En el caso de querer asignar los paráme-
tros en el momento, tenemos la función “paramManual()” que permite
introducirlos por teclado.

Función “defineParametros()”: Aqúı definimos otros parámetros
que son comunes en los diversos ejemplos que propusimos. En concreto,
el offset que aplicamos, el tamaño de la muestra de puntos, los nombres
de los ficheros en los que escribiremos y el número de componentes
de la mixtura. Éste último, no resulta necesario, pero se incluye por
comodidad.

Función “generaMuestra()”: Con ésta se crea una tabla de datos
con dos columnas y 5000 filas (tamaño de la muestra). Las columnas
corresponden a coordenadas x e y (continuas) de dichos puntos. Además
los representa y devuelve dicha tabla.

Se puede observar que el peso de cada componente sirve para definir
la proporción de esos 5000 puntos que se van a usar para representar
cada componente de la mixtura.
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Función “reescala()”: Bloque de código que recibe la tabla de da-
tos obtenida en la ejecución de “generaMuestra()”, y la reescala en un
rango tal que 0 < x < numero de columnas de pixeles y 0 < y <
numero de filas de pixeles. En ésta se implementan las expresiones
2.4 y 2.5, que se usan tambien para reescalar de la misma forma los
parámetros de la mixtura. Devuelve otra tabla de datos con las nue-
vas coordenadas de puntos, los estimadores reescalados y representa la
muestra en el nuevo rango.

Función “discretizaMuestra()”: Se recibe la nueva tabla de datos
y se discretiza la muestra contando los puntos que tenemos en cada
división de la cuadŕıcula que representa el pixelaje (representada en la
función anterior). Los resultados de este conteo se devuelven en una
matriz con el mismo número de filas y columnas que la matriz de pixe-
les.

Función “plotea3d V2()”: En estas ĺıneas se recibe la matriz (de
frecuencias) fruto de la discretización anterior y se representan sus ele-
mentos en la coordenada vertical. El plano horizontal representa el
plano de la imagen con su ancho y alto como coordenadas continuas.
Se tienen gráficos del tipo de los que encontramos, por ejemplo, en las
figuras 1.3 o 2.4.

Función “introduceRuido()”: Según la imagen que queramos gene-
rar se llama a esta función para incluir el ruido correspondiente. Vemos
claramente las dos componentes de ruido incluidas, una proporcional
al offset y otra a los picos. Devuelve una nueva matriz que le añade el
ruido a la obtenida en “discretizaMuestra()”.

Función “escribeDatos()”: Cuando es necesario, o deseado, se pue-
den escribir en ficheros de texto plano (txt) la matriz de frecuencias
(con o sin ruido, y con o sin offset) y los estimadores ya reescalados.
Aśı tenemos los datos y parámetros de la simulación como los recibimos
de las imágenes reales v́ıa Digital Micrograph.

B.2. Código

###################################

# generar imagenes

# version: ’V5.4’.

######################################

library(MASS)#para funcion mvrnorm
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#############################################

#funcion para definir parametros de muestra y de imagen

##############################################3

paramEjemplo1 <- function(){

NPIXX <<- 25

NPIXY <<- 20

#dataframe para los estimadores, donde el número de filas

#es el número de componentes de la mixtura

estimadoresIni <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),

sigma_y=numeric(0),

coefCorr=numeric(0),

peso=numeric(0))

#### EJEMPLO 1######

#definimos aqui los parámetros de cinco componentes

estimadoresIni[1,1] <<- -5

estimadoresIni[1,2] <<- 5

estimadoresIni[1,3] <<- 2

estimadoresIni[1,4] <<- 2.5

estimadoresIni[1,5] <<- 0.1

estimadoresIni[1,6] <<- 0.225

estimadoresIni[2,1] <<- 5

estimadoresIni[2,2] <<- 5

estimadoresIni[2,3] <<- 2

estimadoresIni[2,4] <<- 2.5

estimadoresIni[2,5] <<- 0.1

estimadoresIni[2,6] <<- 0.225

estimadoresIni[3,1] <<- -5

estimadoresIni[3,2] <<- -5

estimadoresIni[3,3] <<- 2

estimadoresIni[3,4] <<- 2.5

estimadoresIni[3,5] <<- 0.1

estimadoresIni[3,6] <<- 0.225

estimadoresIni[4,1] <<- 5

estimadoresIni[4,2] <<- -5

estimadoresIni[4,3] <<- 2

estimadoresIni[4,4] <<- 2.5

estimadoresIni[4,5] <<- 0.1

estimadoresIni[4,6] <<- 0.225

estimadoresIni[5,1] <<- 0

estimadoresIni[5,2] <<- 0

estimadoresIni[5,3] <<- 2

estimadoresIni[5,4] <<- 2

estimadoresIni[5,5] <<- -0.1

estimadoresIni[5,6] <<- 0.1

}

###################################

paramEjemplo2 <- function(){

NPIXX <<- 40

NPIXY <<- 20

#dataframe para los estimadores, donde el número de filas

#es el número de componentes de la mixtura

estimadoresIni <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),
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sigma_y=numeric(0),

coefCorr=numeric(0),

peso=numeric(0))

#### EJEMPLO 3######

#definimos aqui los parámetros de cinco componentes

estimadoresIni[1,1] <<- -10

estimadoresIni[1,2] <<- 5

estimadoresIni[1,3] <<- 2.5

estimadoresIni[1,4] <<- 2

estimadoresIni[1,5] <<- 0.1

estimadoresIni[1,6] <<- 0.2

estimadoresIni[2,1] <<- 0

estimadoresIni[2,2] <<- 5

estimadoresIni[2,3] <<- 2.5

estimadoresIni[2,4] <<- 2

estimadoresIni[2,5] <<- -0.1

estimadoresIni[2,6] <<- 0.2

estimadoresIni[3,1] <<- 10

estimadoresIni[3,2] <<- 5

estimadoresIni[3,3] <<- 2.5

estimadoresIni[3,4] <<- 2

estimadoresIni[3,5] <<- 0.2

estimadoresIni[3,6] <<- 0.2

estimadoresIni[4,1] <<- -5

estimadoresIni[4,2] <<- -5

estimadoresIni[4,3] <<- 2.5

estimadoresIni[4,4] <<- 2

estimadoresIni[4,5] <<- -0.15

estimadoresIni[4,6] <<- 0.06

estimadoresIni[5,1] <<- 5

estimadoresIni[5,2] <<- -5

estimadoresIni[5,3] <<- 2.5

estimadoresIni[5,4] <<- 2

estimadoresIni[5,5] <<- -0.2

estimadoresIni[5,6] <<- 0.06

estimadoresIni[6,1] <<- 20

estimadoresIni[6,2] <<- 5

estimadoresIni[6,3] <<- 2.5

estimadoresIni[6,4] <<- 2

estimadoresIni[6,5] <<- -0.2

estimadoresIni[6,6] <<- 0.2

estimadoresIni[7,1] <<- 15

estimadoresIni[7,2] <<- -5

estimadoresIni[7,3] <<- 2.5

estimadoresIni[7,4] <<- 2

estimadoresIni[7,5] <<- -0.2

estimadoresIni[7,6] <<- 0.08

}

####################################

paramManual <- function(){

#editamos/asignamos MANUALMENTE los estimadores/parámetros...

estimadoresIni <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),

sigma_y=numeric(0),
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coefCorr=numeric(0),

peso=numeric(0))

while(sum(estimadoresIni[,6])!=1){

estimadoresIni <<- edit(estimadoresIni)

if(sum(estimadoresIni[,6])!=1){

print("la suma de pesos debe de ser 1. Vuelve a introducirlos.")

}

}

#asignacion MANUAL de parametros de la imagen digital

nPixeles <- data.frame(nPixeles_x=numeric(0),nPixeles_y=numeric(0))

nPixeles <- edit(nPixeles)

NPIXX <<- as.numeric(nPixeles[1,1])#numero de columnas de pixeles

NPIXY <<- as.numeric(nPixeles[1,2])#numero de filas de pixeles

}

###################################3

defineParametros <- function(){

txtDatosOUT <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosOUT.txt"

txtEstimadoresOUT <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimadoresOUT.txt"

txtFactorCalidad <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\factorCalidadOUT.txt"

#numero de normales(grupos) considerados

G <<- nrow(estimadoresIni)

#número de elementos para generar la muestra

NMUESTRA <<- 5000

#valor sobre el que se ‘‘montará’’ la mixtura...

#...el nombre ‘‘offset’’ no me lo coge... está reservado para algo...

offs <<- 500

}#...fin de la funcion ‘‘defineParametros’’

###########################################

#funcion para generar (y plotear) la muestra normal 2-d

###########################################

generaMuestra <- function(){

#definimos variables

mu <- matrix(nrow=G,ncol=2)

sigmaArray <- array(dim=c(2,2,G))

#‘‘llenamos’’ los arreglos

i <- numeric(0)

for(i in 1:G){

mu[i,] <- c(estimadoresIni[i,1],estimadoresIni[i,2])

sigmaArray[,,i] <- matrix(c(estimadoresIni[i,3]^2,

estimadoresIni[i,5]*estimadoresIni[i,4]*estimadoresIni[i,3],

estimadoresIni[i,5]*estimadoresIni[i,4]*estimadoresIni[i,3],

estimadoresIni[i,4]^2),2,byrow=T)

}

#genera muestra normal con 5000 puntos

set.seed(1)

muestra <- mvrnorm(n=NMUESTRA*estimadoresIni[1,6], mu[1,], sigmaArray[,,1])

#...si hay más de una normal, entra en el if y a~nade las demás...

if(G>1){

i <- 0

for(i in 2:G){

set.seed(i)
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muestra2 <- mvrnorm(n=NMUESTRA*estimadoresIni[i,6],mu[i,],sigmaArray[,,i])

muestra <- rbind(muestra,muestra2)

#muestra <- rbind(muestra, mvrnorm(n=NMUESTRA*estimadoresIni[i,6],mu[i,],sigmaArray[,,i]))

}

}

#ploteamos la muestra generada

plot(muestra, pch=’.’, xlab="coordenada x", ylab="coordenada y")

return(muestra)

}

#############################################################

#funcion para reescalar (y plotear) muestra y estimadores según el pixelaje

#############################################################

reescala <- function(muestraOriginal){

#definimos y dimensionamos la nueva muestra reescalada...

muestraRees <- matrix(nrow=nrow(muestraOriginal),ncol=ncol(muestraOriginal))

#### REESCALAMOS LA MUESTRA ###################

#definimos rangos en la imagen analogica usando los parametros del gráfico

xmin <- par()$usr[1]

xmax <- par()$usr[2]

ymin <- par()$usr[3]

ymax <- par()$usr[4]

muestraRees[,1] <- NPIXX*( (muestraOriginal[,1]-xmin)/(xmax-xmin) )

muestraRees[,2] <- NPIXY*( (muestraOriginal[,2]-ymin)/(ymax-ymin) )

##### PLOTEAMOS LA NUEVA MUESTRA REESCALADA ##############

par(tck=1, lab=c(NPIXX,NPIXY,1), yaxp=c(0,NPIXY,1), xaxp=c(0,NPIXX,1))

plot(muestraRees, pch=’.’, xlab="pixeles x", ylab="pixeles y")

##### REESCALAMOS ESTIMADORES ##################

#definimos los estimadores reescalados haciendo una copia de los originales...

estimadoresIniRees <- estimadoresIni

#reescalamos la media y desviación en x

estimadoresIniRees[,1] <- NPIXX*((estimadoresIni[,1]-xmin)/(xmax-xmin))

estimadoresIniRees[,3] <- NPIXX*((estimadoresIni[,3])/(xmax-xmin))

#reescalamos media y desviación en y

estimadoresIniRees[,2] <- NPIXY*((estimadoresIni[,2]-ymin)/(ymax-ymin))

estimadoresIniRees[,4] <- NPIXY*((estimadoresIni[,4])/(ymax-ymin))

#cargamos muestra y estimadores reescalados en una lista para devolver

reescalados <- list(muestraRees,estimadoresIniRees)

return(reescalados)

}

###############################################

#funcion para obtener las frecuencias absolutas

###############################################

discretizaMuestra <- function(muestraReesc){

frecAbsPorPix <- matrix(nrow=NPIXY,ncol=NPIXX)

#bucle para recorrer filas/pixeles de la matriz

for(fil in 1:(NPIXY)){
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#bucle para recorrer columnas/pixeles de la matriz

for(col in 1:(NPIXX)){

#las condiciones en el which, para el eje vertical, tienen en cuenta que

#el extremo superior del rango en y coincide con la posicion (1,1) de la

#matriz. Ası́ gráfico y matriz tienen coherencia visual

frecAbsPorPix[fil,col] <- length(which( muestraReesc[,1]>=(col-1)&

muestraReesc[,1]<(col)&

muestraReesc[,2]<(NPIXY-(fil-1))&

muestraReesc[,2]>=(NPIXY-fil)

))

}

}

return(frecAbsPorPix)

}

###############################################

#funcion para graficar una matriz de frecuencias

###############################################

plotea3d_V2 <- function(frecuencias){

frecuencias <- as.matrix(frecuencias)

pixeles_x <- seq(0.5,ncol(frecuencias)-0.5,by=1)

pixeles_y <- seq(0.5,nrow(frecuencias)-0.5,by=1)

eventos <- matrix(nrow=nrow(frecuencias),ncol=ncol(frecuencias))

eventos <- frecuencias[pixeles_y+0.5,pixeles_x+0.5]

persp(pixeles_y,pixeles_x,eventos, zlab="brillo", zlim=c(0,max(frecuencias)), phi=30, theta=60)

}

##############################

#funcion para introducir ruido

##############################

introduceRuido <- function(frecuencias){

#ruido de fondo proporcional al offset. En este caso, el 2% de dicho offset

ruidoFondo <- (2/100)*offs

for(fil in 1:NPIXY){

for(col in 1:NPIXX){

#a~nadimos el ruido de poisson proporcional al brillo de cada pixel

#y el asociado al offset

lambda <- frecuencias[fil,col]

frecuencias[fil,col] <- (rpois(1,lambda))+runif(1,min=-ruidoFondo,max=ruidoFondo)

}

}

return(frecuencias)

}

#################################

#funcion que escribe datos en txt

#################################

escribeDatos <- function(frecuencias){

write.table(frecuencias, txtDatosOUT)

write.table(estimadoresIniReescalados, txtEstimadoresOUT)
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}

########################################

################## MAIN ################

########################################

#DEFINIMOS PARAMETROS

#...definimos los ‘‘estimadoresIni’’ y pixelaje de uno u otro ejemplo...

#paramEjemplo1()

paramEjemplo2()

#paramManual()

#...y demás variables y constantes que usaremos...

defineParametros()

#GENERAMOS LA MUESTRA

muestra <- generaMuestra()

#REESCALAMOS MUESTRA Y ESTIMADORES ORIGINALES DE ACUERDO CON LOS PIXELES QUE TENEMOS

reesc <- reescala(muestra)

muestraReescalada <- as.data.frame(reesc[1])

estimadoresIniReescalados <- as.data.frame(reesc[2])

#DISCRETIZAMOS LA MUESTRA Y OBTENEMOS FRECUENCIAS DE APARICION POR PIXEL

matrizFrecuencias <- discretizaMuestra(muestraReescalada)

#...a~nadimos offset...

#...y ploteamos...

plotea3d_V2(matrizFrecuencias+offs)

#INTRODUCIMOS RUIDO

#introducimos ruido de poisson...

matrizFrecuenciasNoise <- introduceRuido(matrizFrecuencias)

plotea3d_V2(round(matrizFrecuenciasNoise+offs))

#ESCRIBIMOS DATOS Y PARAMETROS

escribeDatos(round(matrizFrecuenciasNoise+offs))



Apéndice C

R-Script para ajuste de
imágenes sintéticas

C.1. Descripción

Script que implementa las funciones para desarrollar el ajuste de las
imágenes sintéticas.

Funciones “estimIniEjemploX()” y “estimIniManual()”: Aqúı se
definen los parámetros con los que se inicia el algoritmo. En “estimI-
niEjemploX()” se tienen predefinidos los usados para los ejemplos des-
critos en el trabajo y si se quieren proponer en el momento, la función
“estimIniManual()” nos ofrece la posibilidad. Se llama a una u otra
función dependiendo de lo que se quiera.

Funcion “datosEntrada()”: En esta función se definen el nombre
de los archivos de texto de donde leeremos la información, el offset, la
matriz de datos y los parámetros con los que se ha generado la imagen
sintética. Interesará acceder a estos para compararlos con los resultados
del ajuste.

Funcion “convierteMatrizATabla()”: Se recibe una matriz y se
reescribe como tabla (“dataframe”) de tres columnas (coordenada x,
coordenada y, brillo). Resulta necesaria porque R ejecuta ciertas funcio-
nes, como “nlsLM()” (implementa el algoritmo de Levenberg-Marquardt),
para objetos de este tipo.

Funciones “procesaTablaEntrada()”: En este bloque se tiene co-
mo argumento de entrada una tabla, en concreto la generada en la
función “convierteMatrizATabla()”. Se procesan los datos restando el
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offset (definido en “datosEntrada()” como el mı́nimo valor de la matriz
de datos), y normalizándolos. Para esto último se procede dividiendo
cada brillo por la suma de los mismos, con lo que se normaliza tal que
la suma de todos los brillos sea igual a 1.

Funciones “algoritmoLMLibreria()”: Hacemos uso de la función
“nlsLM()”, de la libreŕıa “lm.minpack”, para realizar el ajuste. Es-
ta libreŕıa contiene diversas instrucciones para ajustes de funciones
no lineales. Una de ellas, la mencionada, desarrolla el algoritmo de
Levenberg-Marquardt.

Este bloque de código actúa escribiendo, de manera dinámica, la fórmu-
la que describe la mixtura de normales en cada caso e incuyendo otro
offset como grado de libertad. Este será una corrección para el que lleve
la imagen original. Con la fórmula completa se procede al ajuste y a
la obtención de resultados, cargados en un lista que es la variable que
devuelve (habiendo recibido la tabla de datos obtenida en “procesaTa-
blaEntrada()”).

Funciones “procesaTablaSalida()”: En esta función se recibe una
tabla de datos (la obtenida tras el ajuste) y se devuelve la matriz de
los datos ajustados. La tabla se procesa de manera inversa a como
se hizo en “procesaTablaEntrada()”, sumando el offset que teńıamos
en la matriz de datos orginal, y multiplicando por la suma de brillos
(tambien de la matriz original). Aśı tenemos unos datos ajustados del
mismo orden que los originales.

Funciones “datosSalida()”: Escribimos los datos de salida, en dis-
tintos ficheros, y de dos maneras distintas, como matrices y como co-
lumna (esto último por necesidades que surgieron cuando se escribió el
script en Digital Micrograph)

Funciones “plotea3d V2()”: Con esta función ploteamos una ma-
triz como gráfico en tres dimensiones.

C.2. Código

###########################################

# script para algoritmo Levenberg-Marquardt

# version V3.4

##########################################

#librerı́a que implementa la función nlsLM()

library(minpack.lm)



C.2. CÓDIGO 65

##################################

#FUNCIONES PARA LEER DEFINIR ESTIMADORES INICIALES Y OTROS PARAMETROS USADOS

##################################

estimIniEjemplo1 <- function(){

#definimos estimadores iniciales para el EJEMPLO 1

ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),

sigma_y=numeric(0),

coefCorr=numeric(0),

peso=numeric(0))

ESTIMADORES_INICIALES[1,1] <<- 6

ESTIMADORES_INICIALES[1,2] <<- 14

ESTIMADORES_INICIALES[1,3] <<- 1

ESTIMADORES_INICIALES[1,4] <<- 1

ESTIMADORES_INICIALES[1,5] <<- 0

ESTIMADORES_INICIALES[1,6] <<- 0.2

ESTIMADORES_INICIALES[2,1] <<- 17

ESTIMADORES_INICIALES[2,2] <<- 14

ESTIMADORES_INICIALES[2,3] <<- 1

ESTIMADORES_INICIALES[2,4] <<- 1

ESTIMADORES_INICIALES[2,5] <<- 0

ESTIMADORES_INICIALES[2,6] <<- 0.2

ESTIMADORES_INICIALES[3,1] <<- 6

ESTIMADORES_INICIALES[3,2] <<- 5

ESTIMADORES_INICIALES[3,3] <<- 1

ESTIMADORES_INICIALES[3,4] <<- 1

ESTIMADORES_INICIALES[3,5] <<- 0

ESTIMADORES_INICIALES[3,6] <<- 0.2

ESTIMADORES_INICIALES[4,1] <<- 17

ESTIMADORES_INICIALES[4,2] <<- 5

ESTIMADORES_INICIALES[4,3] <<- 1

ESTIMADORES_INICIALES[4,4] <<- 1

ESTIMADORES_INICIALES[4,5] <<- 0

ESTIMADORES_INICIALES[4,6] <<- 0.2

ESTIMADORES_INICIALES[5,1] <<- 12

ESTIMADORES_INICIALES[5,2] <<- 10

ESTIMADORES_INICIALES[5,3] <<- 1

ESTIMADORES_INICIALES[5,4] <<- 1

ESTIMADORES_INICIALES[5,5] <<- 0

ESTIMADORES_INICIALES[5,6] <<- 0.1

}

#################################################

estimIniEjemplo2 <- function(){

#definimos estimadores iniciales para el EJEMPLO 2

ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),

sigma_y=numeric(0),

coefCorr=numeric(0),

peso=numeric(0))

ESTIMADORES_INICIALES[1,1] <<- 7

ESTIMADORES_INICIALES[1,2] <<- 14

ESTIMADORES_INICIALES[1,3] <<- 1

ESTIMADORES_INICIALES[1,4] <<- 1

ESTIMADORES_INICIALES[1,5] <<- 0

ESTIMADORES_INICIALES[1,6] <<- 0.1
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ESTIMADORES_INICIALES[2,1] <<- 17

ESTIMADORES_INICIALES[2,2] <<- 14

ESTIMADORES_INICIALES[2,3] <<- 1

ESTIMADORES_INICIALES[2,4] <<- 1

ESTIMADORES_INICIALES[2,5] <<- 0

ESTIMADORES_INICIALES[2,6] <<- 0.3

ESTIMADORES_INICIALES[3,1] <<- 24

ESTIMADORES_INICIALES[3,2] <<- 14

ESTIMADORES_INICIALES[3,3] <<- 1

ESTIMADORES_INICIALES[3,4] <<- 1

ESTIMADORES_INICIALES[3,5] <<- 0

ESTIMADORES_INICIALES[3,6] <<- 0.3

ESTIMADORES_INICIALES[4,1] <<- 10

ESTIMADORES_INICIALES[4,2] <<- 5

ESTIMADORES_INICIALES[4,3] <<- 1

ESTIMADORES_INICIALES[4,4] <<- 1

ESTIMADORES_INICIALES[4,5] <<- 0

ESTIMADORES_INICIALES[4,6] <<- 0.2

ESTIMADORES_INICIALES[5,1] <<- 17

ESTIMADORES_INICIALES[5,2] <<- 5

ESTIMADORES_INICIALES[5,3] <<- 1

ESTIMADORES_INICIALES[5,4] <<- 1

ESTIMADORES_INICIALES[5,5] <<- 0

ESTIMADORES_INICIALES[5,6] <<- 0.1

ESTIMADORES_INICIALES[6,1] <<- 28

ESTIMADORES_INICIALES[6,2] <<- 12

ESTIMADORES_INICIALES[6,3] <<- 1

ESTIMADORES_INICIALES[6,4] <<- 1

ESTIMADORES_INICIALES[6,5] <<- 0

ESTIMADORES_INICIALES[6,6] <<- 0.1

ESTIMADORES_INICIALES[7,1] <<- 24

ESTIMADORES_INICIALES[7,2] <<- 5

ESTIMADORES_INICIALES[7,3] <<- 1

ESTIMADORES_INICIALES[7,4] <<- 1

ESTIMADORES_INICIALES[7,5] <<- 0

ESTIMADORES_INICIALES[7,6] <<- 0.1

}

###############################################

estimIniManual <- function(){

ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),

media_y=numeric(0),

sigma_x=numeric(0),

sigma_y=numeric(0),

coefCorr=numeric(0),

peso=numeric(0))

#editamos/asignamos los estimadores/parámetros iniciales...

while(sum(ESTIMADORES_INICIALES$peso)!=1){

ESTIMADORES_INICIALES <<- edit(ESTIMADORES_INICIALES)

if(sum(ESTIMADORES_INICIALES$peso)!=1){

print("la suma de pesos debe de ser 1. Vuelve a introducirlos.")

}

}

}

########################################################

datosEntrada <- function(){

txtDatosIN <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosOUT.txt"

txtEstimadoresIni <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimadoresOUT.txt"
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#variable para la matriz de datos

DATOS_IN <<- read.table(txtDatosIN)

#variable para los parámetros que han generado la imagen sintética,

#para poder compararlos con los que obtengamos como resultado del ajuste

ESTIMADORES_REALES <<- read.table(txtEstimadoresIni)

#definimos el offset

offs <<- min(DATOS_IN)

}

#############################

#FUNCION PARA CONVERTIR LA MATRIZ DE DATOS EN UNA TABLA

#################################

convierteMatrizATabla <- function(matrizImagen){

#escribimos los datos en forma de tabla en vez de como matriz...

tablaDatos <- data.frame(x=numeric(0),y=numeric(0),z=numeric(0))

#...los cogemos y organizamos de la matriz ‘‘frecuencias’’...

for(col in 1:ncol(matrizImagen)){

for(fil in 1:nrow(matrizImagen)){

tablaDatos <- rbind(tablaDatos,c(col-0.5,fil-0.5,matrizImagen[nrow(matrizImagen)-fil+1,col]))

}

}

names(tablaDatos) <- c("x","y","z")

return(tablaDatos)

}

######################################

#FUNCION PARA RESTAR EL OFFSET Y NORMALIZAR LOS DATOS (TABLA)

#########################################

procesaTablaEntrada <- function(tabla){

#restamos el offset a los datos...

tabla[,3] <- tabla[,3]-offs

#Normalizamos

sumaDatosEntrada <<- sum(tabla[,3])

tabla[,3] <- tabla[,3]/sumaDatosEntrada

return(tabla)

}

##############################################

#FUNCION PARA ALGORITMO DE LEVENBERG-MARQUARDT

##############################################

algoritmoLMLibreria <- function(tablaDatos){

x <- tablaDatos$x

y <- tablaDatos$y

z <- tablaDatos$z

#definimos variable para almacenar los paraametros ajustados

estimParametros <- ESTIMADORES_INICIALES

#y el número de componentes de la mixtura

nComp <- nrow(ESTIMADORES_INICIALES)

cotaSup <- c()

cotaInf <- c()

for(componente in 1:nComp){

valorMx <- estimParametros[componente,1]
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valorMy <- estimParametros[componente,2]

valorSx <- estimParametros[componente,3]

valorSy <- estimParametros[componente,4]

valorRho <- estimParametros[componente,5]

valorPeso <- estimParametros[componente,6]

mx <- paste("mx",componente, sep="")

my <- paste("my",componente, sep="")

sx <- paste("sx",componente, sep="")

sy <- paste("sy",componente, sep="")

rho <- paste("rho",componente, sep="")

peso <- paste("peso",componente, sep="")

#la funcion expresada como cadena de caracteres

funcionNormal <-

paste("(",paste(peso),"*(1/(2*pi*",paste(sx,"*",sy),"*sqrt(1-",paste(rho),"^2)) )*( exp(

(-1/(2*(1-",paste(rho),"^2)))*(((x-",paste(mx),")^2/",paste(sx),"^2)+

((y-",paste(my),")^2/",paste(sy),"^2)-(2*",paste(rho),"*(x-",paste(mx),")*

(y-",paste(my),")/(",paste(sx,"*",sy),"))) ) ))" )

ini <- list(mx=valorMx,my=valorMy,sx=valorSx,sy=valorSy,rho=valorRho,peso=valorPeso)

names(ini)[1]<-paste(mx)

names(ini)[2]<-paste(my)

names(ini)[3]<-paste(sx)

names(ini)[4]<-paste(sy)

names(ini)[5]<-paste(rho)

names(ini)[6]<-paste(peso)

cotaSup <- c(cotaSup, valorMx+7,valorMy+7,valorSx+5,valorSy+5,0.99,5)

cotaInf <- c(cotaInf,valorMx-7,valorMy-7,valorSx-5,valorSy-5,-0.99,0)

if(componente==1){

#generamos la primera componente de la mixtura mas un offset

formula <- paste("z ~",paste("of"),"+",funcionNormal)

inicio <- c(of=min(tablaDatos[,3]),ini)

cotaSup <- c(min(tablaDatos[,3])+(max(tablaDatos[,3])/2), cotaSup)

cotaInf <- c(min(tablaDatos[,3])-(max(tablaDatos[,3])/2), cotaInf)

}

if(componente>1){

#sumamos las demás componentes al modelo completo

formula <- paste(formula,"+",funcionNormal)

inicio <- c(inicio,ini)

}

}#fin del for

ajuste <- nlsLM(formula,

data=tablaDatos,

start=inicio,

upper=cotaSup,

lower=cotaInf,

control=nls.lm.control(maxiter=70,nprint=0),#ptol, ftol, factor...

trace=T

)

print(summary(ajuste))

tablaDatosAjustados <- data.frame(tablaDatos$x,tablaDatos$y,predict(ajuste))

estimParametros <- matrix(coef(ajuste)[-1],nrow=nComp,byrow=T)
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offsAjustado <- coef(ajuste)[1]

errorOffsAjustado <- summary(ajuste)$coefficients[1,2]

errorEstimParametros <- matrix(summary(ajuste)$coefficients[-1,2],nrow=nComp,byrow=T)

valoresAjuste <-

list(tablaDatosAjustados,estimParametros,errorEstimParametros,offsAjustado,errorOffsAjustado)

return(valoresAjuste)

}#fin de la funcion ‘‘algoritmoLMLibreria’’

#############################################

#FUNCION PARA PROCESAR LA TABLA DE DATOS DE SALIDA

#############################################

procesaTablaSalida <- function(tablaDatosAjuste){

#‘‘desnormalizamos’’ los valores ajustados y sumamos el offset que

# habı́amos restado en ‘‘procesaTablaEntrada’’

tablaDatosAjuste[,3] <- tablaDatosAjuste[,3]*sumaDatosEntrada

tablaDatosAjuste[,3] <- round(tablaDatosAjuste[,3]+offs)

#..escribimos la tabla como matriz...

#...la definimos igual que la de los datos de entrada...

matrizAjuste <- DATOS_IN

for(col in 1:ncol(DATOS_IN)){

for(fil in 1:nrow(DATOS_IN)){

matrizAjuste[fil,col] <- tablaDatosAjuste[which(

(tablaDatosAjuste[,1]==(col-0.5))&(tablaDatosAjuste[,2]==(nrow(DATOS_IN)-fil+0.5)) ),3]

}

}

return(matrizAjuste)

}

#############################################

#funcion para escribir datos

##############################

datosSalida <- function(estimAjustados,datosAjustados,errorEstimAjustados){

txtDatosOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosImgDM_IN.txt"

txtEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimImgDM_IN.txt"

txtErrorEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\errorEstimImgDM_IN.txt"

write.table(estimAjustados,txtEstimadoresOUT, row.names=F, col.names=F)

write.table(datosAjustados,txtDatosOUT, row.names=F, col.names=F)

write.table(errorEstimAjustados,txtErrorEstimadoresOUT, row.names=F, col.names=F)

#esribimos datos y estimadores en una columna, habiendolos tomado de la matriz por filas

txtDatosOUTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaDatosImgDM_IN.txt"

txtEstimadoresOUTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaEstimImgDM_IN.txt"

txtErrorEstimadoresOUTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaErrorEstimImgDM_IN.txt"

vectorDatos <- numeric(0)

vectorEstim <- numeric(0)

vectorErrorEstim <- numeric(0)

for(fil in 1:nrow(datosAjustados)){

for(col in 1:ncol(datosAjustados)){

vectorDatos <- c(vectorDatos,datosAjustados[fil,col])
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}

}

write.table(as.matrix(vectorDatos),txtDatosOUTColumna, row.names=F, col.names=F)

for(fil in 1:nrow(estimAjustados)){

for(col in 1:ncol(estimAjustados)){

vectorEstim <- c(vectorEstim,estimAjustados[fil,col])

vectorErrorEstim <- c(vectorErrorEstim,errorEstimAjustados[fil,col])

}

}

write.table(as.matrix(vectorEstim),txtEstimadoresOUTColumna, row.names=F, col.names=F)

write.table(as.matrix(vectorErrorEstim),txtErrorEstimadoresOUTColumna, row.names=F, col.names=F)

}

############################################

#funcion para ploteaar en 3d una matriz

#####################################33

plotea3d_V2 <- function(frecuencias){

frecuencias <- as.matrix(frecuencias)

pixeles_x <- seq(1,ncol(frecuencias))

pixeles_y <- seq(1,nrow(frecuencias))

eventos <- matrix(nrow=nrow(frecuencias),ncol=ncol(frecuencias))

eventos <- frecuencias[pixeles_y,pixeles_x]

persp(pixeles_y,pixeles_x,eventos, zlab="brillo",zlim=c(0,max(frecuencias)), phi=30, theta=60)

}

##################################################################

#### MAIN ######################################################

##################################################################

#RECIBO DATOS DE ENTRADA: estimadores iniciales, matriz de datos y tamanio de la imagen

datosEntrada()

estimIniEjemplo1()

#estimIniEjemplo2()

#estimIniManual()

#PONEMOS LA MATRIZ DE ENTRADA COMO TABLA

tablaDatosIn <- convierteMatrizATabla(DATOS_IN)

#PROCESAMOS LA TABLA

tablaDatosInProc <- procesaTablaEntrada(tablaDatosIn)

#EJECUTAMOS EL ALGORITMO pasando la tabla de datos y el gradiente ‘‘grad’’ (de UNA normal)

#iniciamos el cronómetro para medir el tiempo

t <- proc.time()

nuevosDatos <- algoritmoLMLibreria(tablaDatosInProc)

proc.time()-t

tablaDatosAjustados <- as.data.frame(nuevosDatos[1])

estimadoresAjustados <- as.data.frame(nuevosDatos[2])

errorEstimadoresAjustados <- as.data.frame(nuevosDatos[3])

offsetAjustado <- as.numeric(nuevosDatos[4])

errorOffsetAjustado <- as.numeric(nuevosDatos[5])
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#PROCESAMOS LA TABLA DE DATOS AJUSTADOS Y LA ESCRIBIMOS COMO MATRIZ

DATOS_OUT <- procesaTablaSalida(tablaDatosAjustados)

#plotea3d_V2(DATOS_OUT)

#ESCRIBIMOS LOS DATOS AJUSTADOS...

datosSalida(estimadoresAjustados,DATOS_OUT,errorEstimadoresAjustados)
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Apéndice D

Código para el Plug-In

Compuesto por cuatro ficheros, uno de ellos en R y tres en DM-scripting
(clase “Mancha” y “Accion” instalados como libreŕıas y “main” como plug-
in). Remito al apéndice A, donde se detalla el proceso de instalación.

D.1. Descripción de los DM-script

“main”: Aqúı se encuentra el núcleo y la mayor parte del código.
Contiene las siguientes funciones y clases,

• Función “seleccionaROI()”: Función que captura la región de
interés a analizar.

• Función “visualizaROI()”: Con esta, se ampĺıa y muestra la
región seleccionada en “seleccionaROI()”.

• Función “escribeImg()”: Escribe en un fichero txt la matriz de
datos correspondiente a la región seleccionada.

• Función “lanzaR()”: Aqúı realizamos la llamada al R-script.

• Función “leeImg()”: Leemos la matriz de datos asociados (de
un txt que genera el R-script) a la imagen ajustada.

• Función “generaManchas()”: Se leen los estimadores ajusta-
dos (de otro txt que genera el R-script) y se asignan a objetos de
la clase “Mancha”. Estos objetos, a su vez, se cargan en una lista.

• Función “borrarFicheros()”: Elimina algunos ficheros usados
en la ejecución de la carpeta “plugInDM”.

• Clase “Selección”: Esta clase es un listener que implementa
las rutinas para la captura de parámetros iniciales por selección
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de picos. Hay dos métodos, uno para la selección que llamamos
“manual” y otro para la denominada como “automática”.

• Clase “AccionTeclado”: Clase que implementa el key-listener
para finalizar la selección de picos al pulsar la tecla “escape”. Si se
pulsa otra tecla, lanza un aviso de que se debe de pulsar “escape”
al finalizar.

• Función “main()”: Como es habitual en programación, aqúı te-
nemmos la secuencia de llamadas a las distintas funciones para
realizar el proceso completo.

Clase “Mancha”: Clase que genera objetos en los que se asocian los
picos de la imagen a los parámetros ajustados. Contiene, en el siguien-
te orden, las variables de clase, los habituales getters y setters (según
la terminoloǵıa usada por los desarrolladores Java) y el constructor.
A continuación, dos funciones (“asignaROI()” y “asignaCentro()”) que
generan las regiones de interés romboidales y puntuales que se sitúan
sobre cada pico en la imagen final tras una ejecución. Y por último,
“creaEtiqueta()” es el método encargado de desplegar y recoger la eti-
queta sobre cada rombo, mostrando la ID del pico o los parámetros de
ajuste.

Clase “Accion”: Esta clase corresponde al listener que se activa sobre
la imagen generada tras el ajuste. Implementa las funciones mediante
las cuales, al añadir una región de interés puntual o lineal sobre los
rombos, se obtienen parámetros de ajuste o distancias, respectivamente.

D.1.1. Código DM: “main”

/*

SCRIPT TFM - main

*/

/* *************************************

--- VARIABLES GLOBALES

************************************ */

//variables para la imagen original

image img

imageDisplay imgDisp

//variable para la ROI seleccionada

image imgROI

imageDisplay imgROIDisp

//variable para la ‘‘imgROI’’ ajustada

image imgROIAjustada
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//...definimos las rutas para los archivos de texto que usaremos...

string archivoDatosOUT = "C:/Users/Usuario/Desktop/plugInDM/datosImgDM_OUT.txt"

string archivoEstimOUT = "C:/Users/Usuario/Desktop/plugInDM/estimImgDM_OUT.txt"

string archivoDatosIN = "C:/Users/Usuario/Desktop/plugInDM/datosImgDM_IN.txt"

string archivoEstimIN = "C:/Users/Usuario/Desktop/plugInDM/estimImgDM_IN.txt"

string archivoDatosINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaDatosImgDM_IN.txt"

string archivoEstimINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaEstimImgDM_IN.txt"

string archivoErrorEstimIN = "C:/Users/Usuario/Desktop/plugInDM/errorEstimImgDM_IN.txt"

string archivoErrorEstimINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaErrorEstimImgDM_IN.txt"

string archivoResultados = "C:/Users/Usuario/Desktop/plugInDM/estimadores_IN.txt"

// definimos el numero de normales como variable global

number nNormales = 0

// y el origen de la ROI que ajustaremos

number origenROI_x, origenROI_y

number marcoROISup, marcoROIInf, marcoROIIzda, marcoROIDcha

//creamos una lista para las manchas

object listaManchas = alloc(ObjectList)

//...y una variable para las selecciones para estimadores iniciales

string cadenaEstimadoresIni = ""

//ids para los listeners que usaremos

number idListenerEstimaciones

number idListenerResultados

/* ******************************************* */

/* ***************************************

--- FUNCION PARA SELECCIONAR ROI DE INTERES

*************************************** */

void seleccionaROI(){

//asignamos la ROI a la variable (tipo image) global.

//De ella obtendremos los datos de cada pixel para el procesado

imgROI = img[]

//variables para definir la ROI seleccionada y su limite/marco

ROI ROISelec = newROI()

if(imgDisp.imageDisplayCountROIs()==0 || imgDisp.imageDisplayCountROIs()>1){

if(imgDisp.imageDisplayCountROIs()==0){

number nPix_x, nPix_y

getSize(img,nPix_x,nPix_y)

ROISelec.ROISetRectangle(0,0,nPix_y-1,nPix_x-1)

}

if(imgDisp.imageDisplayCountROIs()>1){

okDialog("selecciona UNA sola ROI para el ajuste")

exit(0)

}

}

else{

ROISelec = imageDisplayGetROI(imgDisp,0)

}

ROISelec.ROIGetRectangle(marcoROISup,marcoROIIzda,marcoROIInf,marcoROIDcha)

ROISelec.ROIGetVertex(0,origenROI_x,origenROI_y)

//presentamos la ROI seleccionda como nueva imagen... */

showImage(imgROI)

imgROIDisp = imgROI.imagegetimagedisplay(0)

setname(imgROI, "ORIGEN: ("+"col "+origenROI_x+", fil "+origenROI_y+") "+"; MARCO: "

+"sup "+marcoROISup+", inf "+marcoROIInf+", izda "+marcoROIIzda+", dcha "+marcoROIDcha)
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}//cierre de ‘‘seleccionaROI’’

/* **************************************** */

/* ****************************************************

--- FUNCION PARA VISUALIZAR IMAGEN AMPLIADA

************************************************ */

void visualizaROI(image imgLocal){

//tamanio de la zona de visualizacion

number pantallaAncho, pantallaAlto

//tamanio de la ventana

number ventanax, ventanay

//posicion de la ventana

number ventanaPosx=10, ventanaPosy=25

GetScreenSize(pantallaAncho, pantallaAlto )

showImage(imgLocal)

setWindowPosition(imgLocal,ventanaPosx, ventanaPosy)

setWindowSize(imgLocal,pantallaAncho-(2*ventanaPosx), pantallaAlto-(2*ventanaPosy))

}

/* **************************************

--- FUNCION PARA ESCRIBIR DATOS DE LA IMAGEN EN FICHERO

**************************************** */

void escribeImg(image imgLocal){

number refArchivoEscritura = CreateFileForWriting( archivoDatosOUT )

number nPixX,nPixY

number nCol,nFil

getSize(imgLocal,nPixX,nPixY)

for(nFil=0;nFil<nPixY;nFil++){

for(nCol=0;nCol<nPixX;nCol++){

writeFile( refArchivoEscritura, ""+getPixel(imgLocal,nCol,nFil)+" " )

if(nCol==(nPixX-1)){

writeFile( refArchivoEscritura, "\n")

}

}

}

closeFile( refArchivoEscritura )

}//cierre de la funcion ‘‘escribeImg’’

/* ****************************************** */

/* *******************************************

--- FUNCION PARA LANZAR EL SCRIPT EN R

**************************************** */

void lanzaR(){

if(twoButtonDialog("Confirmar lanzamiento de algoritmo de ajuste.","continuar","cancelar")){

string llamada="cmd /c Rscript C:/Users/Usuario/Desktop/plugInDM/algoritmoLM_V5_DM_Definitivo.R"

launchExternalProcess(llamada)

}

else{

if(doesFileExist(archivoDatosOUT)==1){

deleteFile( archivoDatosOUT )

}

if(doesFileExist(archivoEstimOUT)==1){

deleteFile( archivoEstimOUT )
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}

if(doesFileExist(archivoDatosIN)==1){

deleteFile( archivoDatosIN )

}

if(doesFileExist(archivoResultados)==1){

deleteFile( archivoResultados )

}

exit(0)

}

}//cierre de ‘‘lanzaR()’’

/* **************************************** */

/* ******************************************

--- FUNCION PARA LEER DATOS DE IMAGEN GENERADOS (CON R)

******************************************** */

void leeImg(){

//definimos dimensiones de la imagen ajustada: iguales que las de la ROI seleccionada

number sizex, sizey

getSize(imgROI,sizex,sizey)

image imgAjuste := RealImage("ORIGEN: ("+"col "+origenROI_x+", fil "+origenROI_y+") "+";

MARCO: "+"sup "+marcoROISup+", inf "+marcoROIInf+", izda "+marcoROIIzda+", dcha

"+marcoROIDcha,4,sizex,sizey)

//definimos la referencia del archivo del que leemos

number refArchivoLectura = OpenFileForReading( archivoDatosINColumna )

//variable donde cargaremos las lienas del txt que leemos

string linea = " "

number contadorFil=0, contadorCol=0, contador=1, valor

while(contador<=(sizex*sizey)){

readFileLine(refArchivoLectura,linea)

valor = linea.val()

setPixel(imgAjuste,contadorCol,contadorFil,valor)

if(contador%sizex==0){

contadorCol=0

contadorFil++//controla el numero y cambio de fila

}

else{

contadorCol++//controla el cambio de columna

}

contador++//controla el recorrido del txt

}

closeFile(refArchivoLectura)

imgROIAjustada := imgAjuste

} // fin de la funcion ‘‘leeFichero’’

/* ************************************************* */

/* *************************************************

--- FUNCION PARA GENERAR OBJETOS CLASE ‘‘MANCHA’’

************************************************* */

void generaManchas(imageDisplay displayLocal){

//img.selectImage()

//ChooseMenuItem( "File", "Import Data...", )

number refArchivoLectura = OpenFileForReading( archivoEstimINColumna )
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number refArchivoLecturaErrores = OpenFileForReading( archivoErrorEstimINColumna )

string linea=""

string lineaError=""

string resultados = "ID mediax mediay sigmax sigmay coefCorr peso \n"

number cuentaLineas=1

number cuentaParam=1

number n=nNormales

number mx, my, sx, sy, rho, peso

number emx, emy, esx, esy, erho, epeso

//iniciamos bucle para recoger los parametros ajustados y asignarlos a objetos de la clase ‘‘Mancha’’

while(cuentaLineas<=(n*6)){

readFileLine(refArchivoLectura,linea)

readFileLine(refArchivoLecturaErrores,lineaError)

if(cuentaLineas%6==0){

cuentaParam=1

peso=linea.val()

epeso=lineaError.val()

//cada 6 lineas leidas creamos un objeto...

object mancha1 = alloc(Mancha).init(mx,my,sx,sy,rho,peso,emx,emy,esx,esy,erho,

epeso,origenROI_x, origenROI_y)

resultados.stringAppend(scriptObjectGetID(mancha1)+" "+mx+" "+my+" "+sx+"

"+sy+" "+rho+" "+peso+"\n")

//...lo asignamos a la lista

listaManchas.AddObjectToList(mancha1)

//...y seteamos y graficamos su ROI asociada

mancha1.asignaROI(displayLocal)

mancha1.asignaROICentro(displayLocal)

}

else{

if(cuentaParam==1) mx=linea.val()

if(cuentaParam==1) emx=lineaError.val()

if(cuentaParam==2) my=linea.val()

if(cuentaParam==2) emy=lineaError.val()

if(cuentaParam==3) sx=linea.val()

if(cuentaParam==3) esx=lineaError.val()

if(cuentaParam==4) sy=linea.val()

if(cuentaParam==4) esy=lineaError.val()

if(cuentaParam==5) rho=linea.val()

if(cuentaParam==5) erho=lineaError.val()

cuentaParam++

}

cuentaLineas++

}

closeFile(refArchivoLectura)

closeFile(refArchivoLecturaErrores)

number refArchivoResultados = CreateFileForWriting( archivoResultados )

writeFile( refArchivoResultados, resultados)

closeFile( refArchivoResultados )

}

/* *************************************************

--- FUNCION para borrar los txts usados durante la ejecucion
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******************************************************* */

void borrarFicheros(){

deleteFile( archivoEstimIN )

deleteFile( archivoDatosINColumna )

deleteFile( archivoEstimINColumna )

deleteFile( archivoErrorEstimIN )

deleteFile( archivoErrorEstimINColumna )

}

/* ***********************************

--- CLASE para listener para la seleccion de manchas y obtencion de parametros iniciales

************************************ ***/

class Seleccion : object{

void estimadores(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_fl2, ROI roiEstim){

image imgSeleccion = getFrontImage()[]

if(roiEstim.ROIIsRectangle()==1){

number t,b,r,l

number ox, oy

string linea = ""

number mediax, mediay

number peso=1

number sizex, sizey

getSize(imgROI,sizex,sizey)

number sumaOffset = sizex*sizey*min(imgROI)

number aproxOffset = min(imgROI)

number maxROI = max(imgROI)

roiEstim.ROISetVolatile(0)

roiEstim.ROIGetRectangle(t,l,b,r)

roiEstim.ROIGetVertex(0,ox,oy)

max(imgSeleccion, mediax, mediay)

peso = (max(imgSeleccion)-aproxOffset)/(maxROI-aproxOffset)

linea = ""+(ox+mediax+1)+" "+(oy+mediay+1)+" "+((r-l)/4)+" "+((b-t)/4)+" "+0+" "+peso+"\n"

cadenaEstimadoresIni.stringAppend(linea)

nNormales++

result("\n ----- \n"+cadenaEstimadoresIni+"numero de picos seleccionados: "+nNormales+"\n ------ \n")

}

else{

okDialog("la ROI debe ser Rectangular")

disp.imageDisplayDeleteROI(roiEstim)

}

}//fin ‘‘estimadores()’’

void estimadoresAutom(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_fl2, ROI roiEstim){

image imgSeleccion = getFrontImage()[]
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if(roiEstim.ROIIsRectangle()==1){

number t,b,r,l

number ox, oy

string linea = ""

number mediax, mediay, mediax0, mediay0

number periodox, periodoy

number peso=1

number sumaOffset = (marcoROIInf-marcoROISup)*(marcoROIDcha-marcoROIIzda)*min(imgROI)

number aproxOffset = min(imgROI)

number maxROI = max(imgROI)

getNumber("periodo en x: ", 23, periodox)

getNumber("periodo en y: ", 23, periodoy)

roiEstim.ROISetVolatile(0)

roiEstim.ROIGetRectangle(t,l,b,r)

roiEstim.ROIGetVertex(0,ox,oy)

max(imgSeleccion, mediax0, mediay0)

peso = (max(imgSeleccion)-aproxOffset)/(maxROI-aproxOffset)

mediax = mediax0

mediay = mediay0

while((oy+mediay+1)<(marcoROIInf-marcoROISup)){

while((ox+mediax+1)<(marcoROIDcha-marcoROIIzda)){

linea = ""+(ox+mediax+1)+" "+(oy+mediay+1)+" "+((r-l)/4)+" "+((b-t)/4)+" "+0+" "+peso+"\n"

cadenaEstimadoresIni.stringAppend(linea)

nNormales++

mediax = mediax+periodox

}

mediax = mediax0

mediay = mediay+periodoy

}

result("\n ----- \n"+cadenaEstimadoresIni+"numero de picos seleccionados: "+nNormales+"\n ------ \n")

}

else{

okDialog("la ROI debe ser Rectangular")

disp.imageDisplayDeleteROI(roiEstim)

}

}//fin de ‘‘estimadoresAuto()’’

Seleccion(object self){

result("\n evento seleccion lanzado "+self.ScriptObjectGetID())

}

~Seleccion(object self){

result("\n evento seleccion destruido "+self.ScriptObjectGetID())

}

}//fin de la clase ‘‘seleccion’’
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/* *****************************************************

--- CLASE para el key-listener que finaliza la seleccion de picos

********************************************** */

Class AccionTeclado : object

{

Number SelfTOKEN

number escalaCalibracion, origenCalibracion

string unidadesCalibracion

void KeepToken(object self, number tok) SelfTOKEN = tok

void setCalibracion(object self, number escCal, number origCal, string udsCal){

escalaCalibracion = escCal

origenCalibracion = origCal

unidadesCalibracion = udsCal

}

number controlTecla(Object self, ImageDisplay disp, Object keydesc)

{

number b_keyhandled = 0

Result("\n Key pressed:"+keydesc.GetKeyDescriptor())

Result(" ("+keydesc.GetDescription()+")")

If ( keydesc.MatchesKeyDescriptor("esc"))

{

//...destruimos keylistener...

disp.ImageDisplayRemoveKeyHandler(SelfTOKEN)

//...destruimos listener para la seleccion de picos...

disp.imageDisplayRemoveEventListener(idListenerEstimaciones)

b_keyhandled = 1

//...eliminamos rois en el display...

while ( 0 < disp.ImageDisplayCountROIs() ){

ROI r = disp.ImageDisplayGetROI( 0 )

disp.ImageDisplayDeleteROI( r )

}

//...escribimos en fichero los estimadores...

number ref = createFileForWriting(archivoEstimOUT)

writeFile(ref, cadenaEstimadoresIni )

closeFile(ref)

//////lanzamos script R...

lanzaR()

//////leemos los datos ajustados...

leeImg()

//////...y mostramos la imagen refinada...

showImage(imgROIAjustada)

//////... y generamos los objetos "mancha" sobre ella...

generaManchas(imgROIDisp)

object acc = alloc(Accion)

acc.setListaManchas(listaManchas)

acc.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)

number idListenerResultados = imgROIDisp.imageDisplayAddEventListener(acc,"roi_added,roi_end_track:muestraInfo")

borrarFicheros()

}

else{
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okDialog("Para finalizar la seleccion pulsa escape")

}

Return b_keyhandled

}

AccionTeclado(object self){

result("\n evento KEYLISTENER lanzado "+self.ScriptObjectGetID())

okDialog("Cuando acabes las selecciones pulsa ESC")

}

~AccionTeclado(object self){

result("\n evento KEYLISTENER destruido "+self.ScriptObjectGetID())

}

}

/////////////////////////////////////////////////////

/////////////////////////////////////////////////////

///////////////// MAIN //////////////////////////////

/////////////////////////////////////////////////////

void main(){

//////...borramos archivos de la anterior ejecucion...

if(doesFileExist(archivoDatosOUT)==1){

deleteFile( archivoDatosOUT )

}

if(doesFileExist(archivoEstimOUT)==1){

deleteFile( archivoEstimOUT )

}

if(doesFileExist(archivoDatosIN)==1){

deleteFile( archivoDatosIN )

}

if(doesFileExist(archivoResultados)==1){

deleteFile( archivoResultados )

}

//////asignamos a ‘‘img’’ la imagen en pantalla

img.getFrontImage()

imgDisp = img.imageGetImageDisplay(0)

//////...y tomamos la calibracion de la imagen original...

number escalaCalibracion, origenCalibracion

string unidadesCalibracion

img.imageGetDimensionCalibration(0, origenCalibracion, escalaCalibracion,unidadesCalibracion,1 )

//////asignamos a ‘‘imgROI’’ la ROI seleccionada...

//////...y la seteamos en el imageDisplay ‘‘imgROIDisp’’

seleccionaROI()

visualizaROI(imgROI)

//////escribimos en un txt los datos de la ROI

escribeImg( imgROI )

//////introducimos parametros iniciales...

//...objeto listener para seleccionar los picos...

object estimaciones = alloc(Seleccion)

if(twoButtonDialog("Introduce los parametros iniciales

(seleccion de picos) de forma:","manual","automatica")){

idListenerEstimaciones =

imgROIDisp.imageDisplayAddEventListener(estimaciones,"roi_end_track:estimadores")

}
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else{

okDialog("selecciona el primer elemento de cada conjunto

(el mas proximo a la esquina superior izquierda)")

idListenerEstimaciones =

imgROIDisp.imageDisplayAddEventListener(estimaciones,"roi_end_track:estimadoresAutom")

}

//...objeto key listener pra finalizar la seleccion de picos...

object controlFinal = Alloc(AccionTeclado)

controlFinal.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)

number idControlFinal = imgROIDisp.ImageDisplayAddKeyHandler( controlFinal, "controlTecla" )

controlFinal.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)

controlFinal.KeepToken(idControlFinal)

}//...fin del main()...

main()

D.1.2. Código DM: clase “Mancha”

/* **********************************************************

--- CLASE para objetos ‘‘Mancha’’: cada una de las normales

********************************************************* */

class Mancha : object{

//...variables de clase...

//...los parmetros de la normal...

number mu_x, mu_y, sigma_x, sigma_y, rho, peso/*, IDLista*/

//...y sus desviaciones...

number emu_x, emu_y, esigma_x, esigma_y, erho, epeso

number IDMancha, IDROIMancha

ROI ROIMancha

ROI ROICentro

number origenROI_x, origenROI_y

number cuentaClick

//...getters y setters...

void setCuentaClickIni(object self) cuentaClick=2

number getMux(object self) return mu_x

number getMuy(object self) return mu_y

ROI getROIMancha(object self) return ROIMancha

void setCuentaClick(object self) cuentaClick++

//...constructor

object init( object self, number mx, number my, number sx, number sy, number ro, number

pes,number emx, number emy, number esx, number esy, number ero, number epes, number oROI_x,

number oROI_y ){

mu_x = mx

mu_y = my

sigma_x = sx

sigma_y = sy

rho = ro

peso = pes

emu_x = emx
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emu_y = emy

esigma_x = esx

esigma_y = esy

erho = ero

epeso = epes

origenROI_x = oROI_x

origenROI_y = oROI_y

IDMancha = ScriptObjectGetID(self)

//...inicializamos variable ‘‘cuentaClick’’ al crear el objeto

setCuentaClickIni(self)

return self

}

void asignaROI(object self, imageDisplay displayLocal){

ROIMancha = newROI()

ROIMancha.ROIAddVertex(mu_x-sigma_x , mu_y)

ROIMancha.ROIAddVertex(mu_x , mu_y+sigma_y)

ROIMancha.ROIAddVertex(mu_x+sigma_x , mu_y)

ROIMancha.ROIAddVertex(mu_x , mu_y-sigma_y)

ROIMancha.ROISetColor(0,0,1)

ROISetIsClosed(ROIMancha,1)

ROISetVolatile(ROIMancha,0)

ROIMancha.ROISetLabel("ID: "+IDMancha)

displayLocal.imageDisplayAddROI(ROIMancha)

}

void asignaROICentro(object self, imageDisplay displayLocal){

ROICentro = newROI()

ROICentro.ROISetPoint(mu_x,mu_y)

ROISetVolatile(ROICentro,0)

displayLocal.imageDisplayAddROI(ROICentro)

}

void creaEtiqueta(object self){

number selec = cuentaClick%2

if(selec==1){

number mu_xG = mu_x+origenROI_x

number mu_yG = mu_y+origenROI_y

ROIMancha.ROISetLabel("ID: "+IDMancha+"\n media_x: "+mu_x+" +- "+emu_x+"\n media_y:

"+mu_y+" +- "+emu_y+"\n media_x (global): "+(mu_xG)+"\n media_y (global):

"+mu_yG+"\n peso: "+peso+" +- "+epeso)

result("\n ------ \n")

result("\n ID: "+IDMancha)

result("\n media x: " + mu_x + " +- "+emu_x)

result("\n media y: " + mu_y + " +- " +emu_y)

result("\n media x (global): " + (mu_x+origenROI_x))

result("\n media y (global): " + (mu_y+origenROI_y))

result("\n peso: " + peso + " +- "+epeso)

result("\n sigmax: "+sigma_x+" +- "+esigma_x)

result("\n sigmay: "+sigma_y+" +- "+esigma_y)

result("\n coef. Corr.: "+rho+" +- "+erho)

result("\n ------ \n")
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}

if(selec==0){

ROIMancha.ROISetLabel("ID: "+IDMancha)

}

}

}

D.1.3. Código DM: clase “Accion”

/* ***************************************************************************** */

/* ******* CLASE ACCION implementa el listener para distancias y parametros **** */

/* ***************************************************************************** */

class Accion : object{

object listaManchas

number escalaCalibracion, origenCalibracion

string unidadesCalibracion

void setListaManchas(object self, object lista) listaManchas = lista

void setCalibracion(object self, number escCal, number origCal, string udsCal){

escalaCalibracion = escCal

origenCalibracion = origCal

unidadesCalibracion = udsCal

}

void muestraInfo(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_fl2, ROI r){

//condicional para ejecutar la accion de mostrar parametros con una ROI PUNTUAL

if(r.ROIIsPoint()==1){

number x,y

number contador=0

number idMancha

r.ROIGetPoint(x,y)

//bucle para recorrer ‘‘listaManchas’’ y buscar la que corresponde al punto (x,y)

for(contador=0 ; contador<listaManchas.sizeOfList() ; contador++){

//asignamos la id de cada mancha en ‘‘listaManchas’’ a la variable idMancha

idMancha = ScriptObjectGetID( listaManchas.ObjectAt( contador ) )

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto

if(getScriptObjectFromID(idMancha).getROIMancha().ROIContainsPoint(x,y)==1){

getScriptObjectFromID(idMancha).setCuentaClick()

getScriptObjectFromID(idMancha).creaEtiqueta()

break

}

}

}//fin del ‘‘if’’ para ROI-punto

//condicional para ejecutar la accion de medir distancia con una ROI LINEA
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if(r.ROIIsLine()==1){

number idMancha1, idMancha2

number x1, y1, x2, y2, distancia

number contador = 0, continuaContador = 0

r.ROIGetLine(x1,y1,x2,y2)

if(listaManchas.sizeOfList()>1){

//bucle para recorrer ‘‘listaManchas’’ y buscar la que corresponde al punto (x1,y1) y (x2,y2)

for(contador=0; contador<listaManchas.sizeOfList(); contador++){

idMancha1 = ScriptObjectGetID( listaManchas.ObjectAt( contador ) )

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto

if(getScriptObjectFromID(idMancha1).getROIMancha().ROIContainsPoint(x1,y1)==1){

break

}

}

for(contador=0; contador<listaManchas.sizeOfList(); contador++){

idMancha2 = ScriptObjectGetID( listaManchas.ObjectAt( contador ) )

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto

if(getScriptObjectFromID(idMancha2).getROIMancha().ROIContainsPoint(x2,y2)==1){

break

}

}

if(idMancha1==idMancha2 ||

getScriptObjectFromID(idMancha2).getROIMancha().ROIContainsPoint(x2,y2)==0 ||

getScriptObjectFromID(idMancha2).getROIMancha().ROIContainsPoint(x2,y2)==0){

r.ROISetLabel("error")

}

else{

object m1 = getScriptObjectFromID(idMancha1)

object m2 = getScriptObjectFromID(idMancha2)

distancia = ((m1.getMux()-m2.getMux())**2+(m1.getMuy()-m2.getMuy())**2)**(1/2)

r.ROISetLabel("distancia: "+distancia*escalaCalibracion+" "+unidadesCalibracion)

result("\n ------- \n")

result("\n extremos: ("+x1+","+y1+") y ("+x2+","+y2+")")

result("\n distancia (pixeles): "+distancia+" - "+distancia*escalaCalibracion+" "+unidadesCalibracion)

result("\n ------- \n")

}

}

else{

okDialog("Solo hay un elemento. No podemos medir distancias.")

}

}//fin del ‘‘if’’ para medida de distancia (ROI-linea)

}//fin de metodo ‘‘muestraInfo’’

Accion(object self){

result("\n evento INFORMACION lanzado "+self.ScriptObjectGetID())

}
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~Accion(object self){

result("\n evento INFORMACION destruido "+self.ScriptObjectGetID())

}

}//cierre de la clase ‘‘Accion’’

D.2. Descripción del R-script

Remitimos a la explicación del código del apéndice C puesto que imple-
menta las mismas funciones. Hay pequeños cambios respecto de este otro para
adaptarlo al funcionamiento junto con DM. Por ejemplo, aqúı los paráme-
tros iniciales se leen de un fichero de texto, se añade alguna salida de datos
por pantalla tras la ejecución del algoritmo, y se tiene en cuenta que ahora,
para imágenes digitales, el origen se tiene en la esquina superior izquierda,
mientras que el código presentado en C se desarrolló considerando el origen
en la esquina inferior izquierda.

D.2.1. Código R

###########################################

# script para algoritmo Levenberg-Marquardt

# version V5 para DM

##########################################

library(minpack.lm)

##################################

#FUNCION PARA LEER DATOS DE UN TXT

##################################

datosEntrada <- function(){

txtDatosIN <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\datosImgDM_OUT.txt"

txtEstimadoresIni <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\estimImgDM_OUT.txt"

DATOS_IN <<- read.table(txtDatosIN)

ESTIMADORES_INICIALES <<- read.table(txtEstimadoresIni)

#definimos el offset

offs <<- min(DATOS_IN)

}

#############################

#FUNCION PARA CONVERTIR LA MATRIZ DE DATOS EN UNA TABLA

#################################

convierteMatrizATabla <- function(matrizImagen){

#escribimos los datos en forma de tabla en vez de como matriz...

tablaDatos <- data.frame(x=numeric(0),y=numeric(0),z=numeric(0))

#...los cogemos y organizamos de la matriz ‘‘frecuencias’’...

for(col in 1:ncol(matrizImagen)){

for(fil in 1:nrow(matrizImagen)){



88 APÉNDICE D. CÓDIGO PARA EL PLUG-IN

tablaDatos <- rbind(tablaDatos,c(col-0.5,fil-0.5,matrizImagen[fil,col]))

}

}

names(tablaDatos) <- c("x","y","z")

return(tablaDatos)

}

######################################

#FUNCION PARA RESTAR EL OFFSET Y NORMALIZAR LOS DATOS (TABLA)

#########################################

procesaTablaEntrada <- function(tabla){

#restamos offset a los datos...

tabla[,3] <- tabla[,3]-offs

#Normalizamos...

sumaDatosEntrada <<- sum(tabla[,3])

tabla[,3] <- tabla[,3]/sumaDatosEntrada

return(tabla)

}

##############################################

#FUNCION PARA ALGORITMO DE LEVENBERG-MARQUARDT

##############################################

algoritmoLMLibreria <- function(tablaDatos){

x <- tablaDatos$x

y <- tablaDatos$y

z <- tablaDatos$z

################

#generamos la formula completa

estimParametros <- ESTIMADORES_INICIALES

#y el número de componentes de la mixtura

nComp <- nrow(ESTIMADORES_INICIALES)

cotaSup <- c()

cotaInf <- c()

for(componente in 1:nComp){

valorMx <- estimParametros[componente,1]

valorMy <- estimParametros[componente,2]

valorSx <- estimParametros[componente,3]

valorSy <- estimParametros[componente,4]

valorRho <- estimParametros[componente,5]

valorPeso <- estimParametros[componente,6]

mx <- paste("mx",componente, sep="")

my <- paste("my",componente, sep="")

sx <- paste("sx",componente, sep="")

sy <- paste("sy",componente, sep="")

rho <- paste("rho",componente, sep="")

peso <- paste("peso",componente, sep="")

#la funcion expresada como cadena de caracteres

funcionNormal <- paste("(",paste(peso),"*(

1/(2*pi*",paste(sx,"*",sy),"*sqrt(1-",paste(rho),"^2)) )*( exp(

(-1/(2*(1-",paste(rho),"^2)))*(((x-",paste(mx),")^2/",paste(sx),"^2)

+((y-",paste(my),")^2/",paste(sy),"^2)-(2*",paste(rho),"*(x-",paste(mx),")

*(y-",paste(my),")/(",paste(sx,"*",sy),"))) ) ))" )



D.2. DESCRIPCIÓN DEL R-SCRIPT 89

ini <- list(mx=valorMx,my=valorMy,sx=valorSx,sy=valorSy,rho=valorRho,peso=valorPeso)

names(ini)[1]<-paste(mx)

names(ini)[2]<-paste(my)

names(ini)[3]<-paste(sx)

names(ini)[4]<-paste(sy)

names(ini)[5]<-paste(rho)

names(ini)[6]<-paste(peso)

cotaSup <- c(cotaSup, valorMx+7,valorMy+7,valorSx+7,valorSy+7,0.99,5)

cotaInf <- c(cotaInf,valorMx-7,valorMy-7,valorSx-7,valorSy-7,-0.99,0)

if(componente==1){

formula <- paste("z ~",paste("of"),"+",funcionNormal)

inicio <- c(of=min(tablaDatos[,3]),ini)

cotaSup <- c(min(tablaDatos[,3])+(max(tablaDatos[,3])/2), cotaSup)

cotaInf <- c(min(tablaDatos[,3])-(max(tablaDatos[,3])/2), cotaInf)

}

if(componente>1){

#sumamos las demás componentes al modelo completo

formula <- paste(formula,"+",funcionNormal)

inicio <- c(inicio,ini)

}

}#fin del for

#...lanzamos el ajuste con la fórmula generada...

ajuste <- nlsLM(formula,

data=tablaDatos,

start=inicio,

#par=list(mx=5,my=3,sx=1,sy=1,rho=0.8),

upper=cotaSup,

lower=cotaInf,

control=nls.lm.control(maxiter=70,nprint=0),#ptol, ftol, factor...

trace=T

#jac=as.expression(calculaGradiente())

)

#print(summary(ajuste))

tablaDatosAjustados <- data.frame(tablaDatos$x,tablaDatos$y,predict(ajuste))

estimParametros <- matrix(coef(ajuste)[-1],nrow=nComp,byrow=T)

offsAjustado <- coef(ajuste)[1]

errorOffsAjustado <- summary(ajuste)$coefficients[1,2]

errorEstimParametros <- matrix(summary(ajuste)$coefficients[-1,2],nrow=nComp,byrow=T)

cat("parámetros ajustados: \n")

cat("media x media y sigma x sigma y coefCorr peso")

print(estimParametros)

cat("offset para la mixtura \n")

print(offsAjustado)

Sys.sleep(5)

valoresAjuste <- list(tablaDatosAjustados,estimParametros,errorEstimParametros,offsAjustado,errorOffsAjustado)
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return(valoresAjuste)

}#fin de la funcion ‘‘algoritmoLMLibreria’’

#############################################

#FUNCION PARA PROCESAR LA TABLA DE DATOS DE SALIDA

#############################################

procesaTablaSalida <- function(tablaDatosAjuste){

#‘‘desnormalizamos’’ los valores ajustados y sumamos el offset que

# habı́amos restado en ‘‘procesaTablaEntrada’’

tablaDatosAjuste[,3] <- tablaDatosAjuste[,3]*sumaDatosEntrada

tablaDatosAjuste[,3] <- round(tablaDatosAjuste[,3]+offs)

matrizAjuste <- matrix(data=tablaDatosAjuste[,3],nrow=nrow(DATOS_IN),ncol=ncol(DATOS_IN),byrow = FALSE)

return(matrizAjuste)

}

#############################################

#funcion para escribir datos

##############################

datosSalida <- function(estimAjustados,datosAjustados,errorEstimAjustados){

txtDatosOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\datosImgDM_IN.txt"

txtEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\estimImgDM_IN.txt"

txtErrorEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\errorEstimImgDM_IN.txt"

write.table(estimAjustados,txtEstimadoresOUT, row.names=F, col.names=F)

write.table(datosAjustados,txtDatosOUT, row.names=F, col.names=F)

write.table(errorEstimAjustados,txtErrorEstimadoresOUT, row.names=F, col.names=F)

#esribimos datos y estimadores en una columna, habiendolos tomado de la matriz por filas

txtDatosOUTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaDatosImgDM_IN.txt"

txtEstimadoresOUTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaEstimImgDM_IN.txt"

txtErrorEstimadoresOUTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaErrorEstimImgDM_IN.txt"

vectorDatos <- numeric(0)

vectorEstim <- numeric(0)

vectorErrorEstim <- numeric(0)

for(fil in 1:nrow(datosAjustados)){

for(col in 1:ncol(datosAjustados)){

vectorDatos <- c(vectorDatos,datosAjustados[fil,col])

}

}

write.table(as.matrix(vectorDatos),txtDatosOUTColumna, row.names=F, col.names=F)

for(fil in 1:nrow(estimAjustados)){

for(col in 1:ncol(estimAjustados)){

vectorEstim <- c(vectorEstim,estimAjustados[fil,col])

vectorErrorEstim <- c(vectorErrorEstim,errorEstimAjustados[fil,col])

}

}

write.table(as.matrix(vectorEstim),txtEstimadoresOUTColumna, row.names=F, col.names=F)

write.table(as.matrix(vectorErrorEstim),txtErrorEstimadoresOUTColumna, row.names=F, col.names=F)

}

##################################################################
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#### MAIN ######################################################

##################################################################

#RECIBIMOS DATOS Y ESTIMADORES

datosEntrada()

#PONEMOS LA MATRIZ DE ENTRADA COMO TABLA

tablaDatosIn <- convierteMatrizATabla(DATOS_IN)

#PROCESAMOS LA TABLA

tablaDatosInProc <- procesaTablaEntrada(tablaDatosIn)

#EJECUTAMOS EL ALGORITMO

t <- proc.time()

nuevosDatos <- algoritmoLMLibreria(tablaDatosInProc)

proc.time()-t

tablaDatosAjustados <- as.data.frame(nuevosDatos[1])

estimadoresAjustados <- as.data.frame(nuevosDatos[2])

errorEstimadoresAjustados <- as.data.frame(nuevosDatos[3])

offsetAjustado <- as.numeric(nuevosDatos[4])

errorOffsetAjustado <- as.numeric(nuevosDatos[5])

#PROCESAMOS LA TABLA DE DATOS AJUSTADOS Y LA ESCRIBIMOS COMO MATRIZ

DATOS_OUT <- procesaTablaSalida(tablaDatosAjustados)

#ESCRIBIMOS LOS DATOS AJUSTADOS...

datosSalida(estimadoresAjustados,DATOS_OUT,errorEstimadoresAjustados)
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Apéndice E

Otras R-funciones y R-scripts

E.1. Prueba de normalidad

E.1.1. Descripción

Script usado en la sección 2.1 para realizar el test de Shapiro-Wilk a
distintas filas y columnas (en concreto, aqúı se presenta para los picos visibles
en la figura 2.1) de la matriz de datos.

E.1.2. Código en R

#cargamos la matriz en la variable m

m<-read.table("C:\\Users\\Usuario\\Desktop\\TFM\\MiTrabajoV1\\ImagenReal\\datosImgDM_OUT.txt")

#le restamos el mı́nimo de m a todos los elementos

m<-m-min(m)#(max(m)-min(m))/min(m)

#y la ponemos como variable tipo matriz (por defecto es data.frame)

m<-as.matrix(m)

#tomamos una fila de m

mFila <- m[7,]

#y la ploteamos

x <- seq(1:length(mFila))

#ploteamos la gráfica del perfil de superficie

plot(x,mFila, xlab="pixeles x", ylab="brillo")

#cogemos la zona que comprende cada pico

mFilaPico1 <- mFila[1:16]

mFilaPico2 <- mFila[17:length(mFila)]

#y sumamos sus elementos (total de eventos detectados)

sumaFilaPico1 <- sum(mFilaPico1)

sumaFilaPico2 <- sum(mFilaPico2)

#calculamos un vector con elementos proporcionales, pero de suma aproximadamente 50

#puesto que el test de S-W se aplica a muestras peque~nas (incluso menores)

mFila50Pico1 <- round((50/sumaFilaPico1)*mFilaPico1)#sum(mFila50Pico1)

mFila50Pico2 <- round((50/sumaFilaPico2)*mFilaPico2)#sum(mFila50Pico2)

#ahora generaremos un vector (para cada pico) que tenga cada valor que puede tomar

#la variable aleatoria (pixeles x) tantas veces como indique la frecuencia asociada a dicho valor

93
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#Este vector contendrá lo que serı́an los resultados de cada observación.

valoresPico1 <- integer(0)

for(i in 1:length(mFila50Pico1)){

n <- mFila50Pico1[i]

valoresPico1 <- c(valoresPico1, rep(i,times=n))

}#length(valoresPico1)

valoresPico2 <- integer(0)

for(i in 1:length(mFila50Pico2)){

n <- mFila50Pico2[i]

valoresPico2 <- c(valoresPico2, rep(i,times=n))

}#length(valoresPico2)

#aplicamos el test de S-W a estos vectores

#...en nuestro caso, al primer pico...

shapiro.test(valoresPico1)

#...y al segundo

shapiro.test(valoresPico2)

E.2. Cálculo del gradiente

E.2.1. Descripción

Función que calcula el gradiente de una normal bivariante multiplicada
por un factor (“peso”). Función usada en algunas pruebas.

E.2.2. Código en R

####################################3

#FUNCION PARA CALCULAR EL GRADIENTE

######################################3

calculaGradiente <- function(){

#fórmula de UNA normal bivariante

exp1 <- expression( peso*(( 1/(2*pi*sx*sy*sqrt(1-rho^2)) )*( exp( (-1/(2*(1-rho^2)))*(((x-

mx)^2/sx^2)+((y-my)^2/sy^2)-(2*rho*(x-mx)*(y-my)/(sx*sy))) ) )) )

#calculamos el gradiente de una normal (una de las componentes)....

#...el gradiente de la mixtura será un vector tal que (gradiente_comp1,...,gradiente_compG)

parcialmx <- D(exp1, "mx")

parcialmy <- D(exp1, "my")

parcialsx <- D(exp1, "sx")

parcialsy <- D(exp1, "sy")

parcialrho <- D(exp1, "rho")

parcialpeso <- D(exp1, "peso")

gradiente <- c(parcialmx,parcialmy,parcialsx,parcialsy,parcialrho,parcialpeso)

return(gradiente)

}
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E.3. Implementación del algoritmo de

Levenberg-Marquardt

E.3.1. Descripción

Implementación del algoritmo realizada y usada en algunas pruebas. Re-
cibe una tabla de datos con tres columnas (coordenadas x, coordenadas y y
brillos) y devuelve los parámetros ajustados. Aunque da buenos resultados,
obteńıamos tiempos de ejecución muy altos y se optó por usar la libreŕıa
lm.minpack en la que hay funciones que lo desarrollan. Al final, quedó como
ejercicio académico, aun aśı se presenta porque funciona y permitió conocer
tanto R como el propio algoritmo más a fondo.

E.3.2. Código en R

algoritmoLM_V2 <- function(tablaDatos){

estimParametros <- ESTIMADORES_INICIALES

#y el número de componentes de la mixtura

nComp <- nrow(ESTIMADORES_INICIALES)

gradiente <- c()

lambda <- 10

#definimos parametros para medir bondad del ajuste

SCE <- 1

SCT <- sum((tablaDatos[,3]-mean(tablaDatos[,3]))^2)

RCuad <- 0

#definimos un iterador para enumerar las mismas

iterador <- 1

####iniciamos algoritmo

while(SCE > 0.001){

##########################################################################

#PASO 1: GENERAMOS MODELO DE MIXTURAS Y GRADIENTE#########################

#con ‘‘componente’’ recorremos las normales que componen la mixtura,

#y generamos la expresión para el modelo de mixtura de normales

for(componente in 1:nComp){

mx <- estimParametros[componente,1]

my <- estimParametros[componente,2]

sx <- estimParametros[componente,3]

sy <- estimParametros[componente,4]

rho <- estimParametros[componente,5]

peso <- estimParametros[componente,6]

#la funcion expresada como cadena de caracteres

funcionNormal <- paste("(",paste(peso),"*( 1/(2*pi*",paste(sx*sy),"*sqrt(1-",paste(rho),"^2)) )*(

exp((-1/(2*(1-",paste(rho),"^2)))*(((x-",paste(mx),")^2/",paste(sx),"^2)+((y-",paste(my),")^2/",paste(sy),"^2)
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-(2*",paste(rho),"*(x-",paste(mx),")*(y-",paste(my),")/(",paste(sx*sy),"))) ) ))" )

#gradiente expresado explı́citamente

gradiente[(6*(componente-1))+1] <- paste( "-(",paste(peso)," * ((1/(2 * pi * ",paste(sx*sy),"*

sqrt(1 - ",paste(rho^2),"))) * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *

(1 - ",paste(rho^2),"))) * (2 * (x - ",paste(mx),")/",paste(sx^2)," - 2 * ",paste(rho)," * (y

- ",paste(my),")/(",paste(sx * sy),")))))) ")

gradiente[(6*(componente-1))+2] <- paste( "-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *

sqrt(1 - ",paste(rho^2),"))) * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *

(1 - ",paste(rho^2),"))) * (2 * (y - ",paste(my),")/",paste(sy^2)," - 2 * ",paste(rho)," * (x

- ",paste(mx),")/(",paste(sx *sy),")))))) ")

gradiente[(6*(componente-1))+3] <- paste( "-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *

sqrt(1 - ",paste(rho^2),"))) * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *

(1 - ",paste(rho^2),"))) * ((x - ",paste(mx),")^2 * (2 * ",paste(sx),")/(",paste(sx^2),")^2 -

2 * ",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),") * ",paste(sy),"/(",paste(sx *

sy),")^2))) + 2 * pi * ",paste(sy)," * sqrt(1 - ",paste(rho^2),")/(2 * pi * ",paste(sx *

sy)," * sqrt(1 - ",paste(rho^2),"))^2 * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))))))" )

gradiente[(6*(componente-1))+4] <- paste( "-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *

sqrt(1 - ",paste(rho^2),"))) * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *

(1 - ",paste(rho^2),"))) * ((y - ",paste(my),")^2 * (2 * ",paste(sy),")/(",paste(sy^2),")^2 -

2 * ",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),") * ",paste(sx),"/(",paste(sx *

sy),")^2))) + 2 * pi * ",paste(sx)," * sqrt(1 - ",paste(rho^2),")/(2 * pi * ",paste(sx *

sy)," * sqrt(1 - ",paste(rho^2),"))^2 * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))))))" )

gradiente[(6*(componente-1))+5] <- paste( "(",paste(peso)," * (2 * pi * ",paste(sx * sy)," * (0.5

* (2 * ",paste(rho)," * (1 - ",paste(rho^2),")^-0.5))/(2 * pi * ",paste(sx * sy)," * sqrt(1 -

",paste(rho^2),"))^2 * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),"))))) - (1/(2 *

pi * ",paste(sx * sy)," * sqrt(1 - ",paste(rho^2),"))) * (exp((-1/(2 * (1 -

",paste(rho^2),"))) * (((x - ",paste(mx),")^2/",paste(sx^2),") + ((y -

",paste(my),")^2/",paste(sy^2),") - (2 * ",paste(rho)," * (x - ",paste(mx),") * (y -

",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 * (1 - ",paste(rho^2),"))) * (2 * (x -

",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")) + 2 * (2 * ",paste(rho),")/(2

* (1 - ",paste(rho^2),"))^2 * (((x - ",paste(mx),")^2/",paste(sx^2),") + ((y -

",paste(my),")^2/",paste(sy^2),") - (2 * ",paste(rho)," * (x - ",paste(mx),") * (y -

",paste(my),")/(",paste(sx * sy),")))))))" )

gradiente[(6*(componente-1))+6] <- paste( "((1/(2 * pi * ",paste(sx * sy)," * sqrt(1 -

",paste(rho^2),"))) * (exp((-1/(2 * (1 - ",paste(rho^2),"))) * (((x -

",paste(mx),")^2/",paste(sx^2),") + ((y - ",paste(my),")^2/",paste(sy^2),") - (2 *

",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),"))))))" )

if(componente==1){

#asignamos la primera normal a la expresión para el modelo completo

funcionMixtura <- paste(funcionNormal)
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}

if(componente>1){

#sumamos las demás componentes al modelo completo

funcionMixtura <- paste(funcionMixtura,"+",funcionNormal)

}

}#fin del for

#)

#################################################

#PASO 2: CALCULAMOS ERRORES PARA EL AJUSTE (usado como condicion de finalización)

errorAjuste <- apply(tablaDatos,1,function(fila){

x <- fila[1]

y <- fila[2]

z <- fila[3]

return(z-eval(parse(text=funcionMixtura)))})

SCE <- sum(errorAjuste^2)

RCuad <- 1-(SCE/SCT)

##################################################

#PASO 3: CALCULAMOS MATRIZ J

l <- as.list(gradiente)

J <- apply(tablaDatos,1,function(fila){

x <- fila[1]

y <- fila[2]

g <- lapply(l,function(elem){

#print(elem)

return(eval(parse(text=elem)))

})

g <- unlist(g)

return(g)

})

J <- as.matrix(J)

J <- t(J)

####################################################

#PASO 4: recalculamos parámetros para la siguiente iteracion

A <- (t(J)%*%J)+( (lambda/(2^iterador))*diag(length(gradiente)) )#lambda*diag(t(J)%*%J)#

b <- t(J)%*%errorAjuste

delta <- solve(A,b)

for(componente in 1:nComp){

for(m in 1:ncol(estimParametros)){

estimParametros[componente,m] <- estimParametros[componente,m] +

delta[(componente*ncol(estimParametros))-6+m]

}

}
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cat("iteracion",iterador," SCE: ",SCE," R^2: ", RCuad)

iterador <- iterador+1

}#fin del while

#imprimimos en pantalla y devolvemos resultados

print(estimParametros)

return(estimParametros)

}#fin de la funcion ‘‘algoritmoLM_V2’’
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