‘ 7 ! Facultad de Ciencias
Universidad Zaragoza

ANALISIS CUANTITATIVO Y TRATAMIENTO DE
IMAGENES PARA LA CARACTERIZACION DE
ESTRUCTURAS CRISTALINAS EN
MICROGRAFIAS DE MICROSCOPIA
ELECTRONICA CON RESOLUCION ATOMICA

SERGIO CORDOBA

Trabajo Fin de Master en
“Modelizacion e investigacion matematica,
estadistica y computacion”

2014-2015

Dirigido por:

Dr. RiIcARDO CELORRIO (UZ)
Dr. CESAR MAGEN (UZ-INA)
Dr. PEDRO MATEO (UZ)

b T Instituto unlversl(e{m de Investigacion
W de Matematicas
y Aplicaciones

B
Universidad Zaragoza

i Uni itario de | igacio
en Nanociencia de Aragon
Universidad Zaragoza

Agradecimientos

Es momento de agradecer a todos los que me han apoyado, empujado, ale-
grado, ayudado, motivado, criticado, consolado, animado, ensenado, derrota-
do, corregido, acompanado, abandonado, defraudado, sorprendido... porque
todos, queriendo o sin querer, con consciencia o sin ella, han jugado un papel
para que hoy esté escribiendo estas lineas.

Gracias a mis padres, hermana y amigos, por estar ahi de manera incon-
dicional y constante.

Gracias a mis directores, porque el haber sido “victima de su coopera-
cién” (como me dijo uno de ellos en cierta ocasién), ha supuesto una suerte
y privilegio para mi.

Gracias, en especial, a Ana y Andrea, porque su sonrisa es mi fuerza y,

por supuesto, a Miriam, por acompanarme, contra viento y marea, en mi
caminar.

Sergio Cordoba

“La naturaleza tiene perfecciones

para demostrar que

es imagen de Dios, e imperfecciones para
probar que sélo es una imagen”

Blaise Pascal

Contenido

Resumen 9

Abstract 11

1. Introduccién 13

1.1. Micrografias STEM 14
1.2. Interpretacién y tratamiento de la

micrografiao Lo 15

2. Modelizacion de la imagen 19

2.1. Modelo matematico 19

2.1.1. Modelado del efecto del amplificador 22

2.2. Micrografias sintéticas 22

2.2.1. Proceso 22

2.2.2. Ejemplos en ausencia de ruido 26

2.2.3. Ejemplos que incluyen ruido 32

2.2.4. Ejemplo con una regién de una micrografia real 37

2.2.5. Analisis de resultados y comentarios 38

3. Funcionamiento del Plug-In para DM 41

3.1. Uso y resultados: posprocesado de micrografias reales 41

3.1.1. Asignacién de pardmetros iniciales 42

3.1.2. Obtencion de la informacién 46

3.1.3. Conclusiones y resultados 47

3.2. Limitaciones actuales y propuesta de desarrollo 49

Apéndices 50

A. Instrucciones para la instalacion, detalles técnicos y de fun-
cionamiento. 51

. R-Script para generar imagenes

B.1. Descripcion
B.2. Codigo

. R-Script para ajuste de imagenes sintéticas

C.1. Descripcion
C.2. Cédigo

. Cddigo para el Plug-In

D.1. Descripcion de los DM-script
D.1.1. Cédigo DM: “main”
D.1.2. Cédigo DM: clase “Mancha”
D.1.3. Cédigo DM: clase “Accion”

D.2. Descripciéon del R-scripto
D.2.1. CédigoRo

. Otras R-funciones y R-scripts

E.1. Prueba de normalidad
E.1.1. Descripcion
E.1.2. Cédigoen Ro

E.2. Calculo del gradiente
E.2.1. Descripciéno

E.2.2. Cédigoen R

E.3. Implementacién del algoritmo de

Levenberg-Marquardt
E.3.1. Descripciéon
E.3.2. Cédigoen Ro

Referencias

55
95
o6

63
63
64

73
73
74
83
85
87
87

93
93
93
93
94
94
94

95
95
95

98

RESUMEN 9

Resumen

El objetivo de este trabajo es el desarrollo de una herramienta informéati-
ca, concretamente un Plug-In para el software de tratamiento de imégenes
Digital Micrograph (DM), que permitiré estimar posiciones y distancias entre
las columnas de atomos representadas en micrografias de materiales obteni-
das mediante técnicas de microscopia electronica de transmisién en barrido
(STEM). La medida de estas magnitudes permite caracterizar, de forma lo-
cal, propiedades fisicas del material, como es la ferroelectricidad, que estan
relacionadas con pequenas variaciones de su estructura cristalina.

Se pretende modelizar estas micrografias usando una mixtura de nor-
males de forma que cada una de sus componentes represente y modele una
de las columnas de dtomos visibles en la imagen. Usaremos el algoritmo de
Levenberg-Marquardt para realizar el ajuste al modelo y obtener los pardme-
tros de estas normales. En concreto, las medias, supondran una estimacion
de la posicién de cada columna, con lo que resultard inmediato medir dis-
tancias entre ellas. Se quiere ademas, que estas medidas alcancen precisiones
picométricas, puesto que son desplazamientos atomicos de este orden los que,
en algunos casos, motivan la aparicién de ciertas propiedades.

El tarea principal del proyecto sera pues la implementacién computacional
de este proceso, realizada con el lenguaje de programacién, R, y el lenguaje de
scripting propio de DM. Para ello, se debera entender como se generan estas
micrografias (capitulo 1), lo cual justifica la eleccién del modelo probabilista
elegido. Posteriormente, se realizardan simulaciones de las mismas sobre las
que probaremos y verificaremos el funcionamiento del algoritmo de ajuste
(capitulo 2). Con esto, estaremos en disposiciéon de usar dicho algoritmo pa-
ra desarrollar el plug-in y probarlo en una micrografia STEM real (capitulo
3). Dichos c6digos en R y en lenguaje de DM se presentan y explican en los
apéndices.

PALABRAS CLAVE: Micrografia, TEM, STEM, mixtura de normales,
modelizacién de la imagen, algoritmo de Levenberg-Marquardt, Digital Mi-
crograph, R, estadistica descriptiva, imagen digital.

ABSTRACT 11

Abstract

The main objective in this work is the development of a computational
tool for the processing image software Digital Micrograph (DM), that will
allow to estimate positions and distances between columns of atoms shown
in micrographs of materials obtained by Scanning Transmission Electron Mi-
croscopy (STEM) techniques. The measurement of these magnitudes allows
to characterize the local physical properties of the material, such as ferroelec-
tricity, which are directly related to small variations of its crystal structure.

The intention is to model these micrographs using a mixture of gaussians
so that, each one of its components represents one of those columns of atoms
visible at image. We will use the Levenberg-Marquardt algorithm to fit the
model, and to obtain the parameters for these gaussians. Specifically, their
means will be an estimation to the position of columns of atoms, whereby
it will be inmediate to measure distances between them. Also, we want that
measurements of distances reach accuracies of order of picometres, because
some properties are originated by atomic displacements of this order.

Thus, the main task in this work will be the computational implementa-
tion of this process using the computer language R, and the DM scripting
language. For that purpose, we should understand how the experimental
micrographs are generated (chapter 1) to justify the probabilistic model se-
lected. Later, we will do micrographs simulations to test and verify the fit
algorithm (chapter 2). Finally, we will use this algorithm to develope the
plug-in and apply it to a real STEM micrograph (chapter 3). Both the R and
DM codes are listed and described in the appendices.

KEY-WORDS: Micrograph, TEM, STEM, mixture of normal distribu-
tions, image modelling, Levenberg-Marquardt algorithm, Digital Micrograph,
R, descriptive statistics.

12

ABSTRACT

Capitulo 1

Introduccion

En las tltimas décadas el desarrollo de nuevas tecnologias y dispositivos,
junto con la evolucién en ciertas dreas cientificas, como la biomedicina, ciencia
de materiales o la nanociencia, ha dado lugar a que tengamos una capacidad e
interés en la observacion de los materiales a escala atémica como no se habia
tenido nunca. Una muestra de estas observaciones son las micrografias, que
son imagenes digitales de cuerpos u objetos microscépicos, y en torno a las
cuales se centra este trabajo.

Para conocer en detalle y controlar la materia en la nanoescala se requie-
ren las mas avanzadas técnicas de nanocaracterizacion, de las cuales sélo la
microscopia TEM (Transmission Electron Microscopy) es capaz de propor-
cionar micrografias de la estructura cristalina de los materiales consiguiendo
resoluciones espaciales inferiores a 1 angstrom. Ademas, se plantea el reto
de analizar cuantitativamente las imdgenes adquiridas (un ejemplo en la fi-
gura 1.1), con el fin de extraer magnitudes fisicas con resolucién atémica
a partir de relaciones entre parametros estructurales y quimicos locales y
propiedades fisicas cuantificables macroscépicamente. Un caso muy intere-
sante de aplicacién del analisis cuantitativo de imagenes se da con los ma-
teriales ferroeléctricos, en los que la propia ferroelectricidad se deriva del
desplazamiento relativo de distintos atomos con cargas eléctricas opuestas
para formar localmente dipolos eléctricos. Habitualmente bastan pequenos
desplazamientos atémicos, en el rango de los picémetros, para desencadenar
este comportamiento. Asi pues, no basta con la simple inspeccién de la ima-
gen, si no que es necesario desarrollar modelos tedricos de su distribucion de
intensidades para posteriormente realizar la determinacién de las posiciones
atémicas.

Asumiremos un modelo probabilistico en el que consideraremos la micro-
grafia como una realizaciéon de una distribucion multimodal bivariante, en
concreto una miztura de normales, a partir de la cual estimaremos variables

13

14 CAPITULO 1. INTRODUCCION

(a) (b)

Figura 1.1: a) Se presenta una micrografia real de tipo HAADF-STEM (de
2048 x 2048 pizeles) de una multicapa de un déxido cristalino, b) Detalle de micro-
grafia de un drea correspondiente con un dxido de lantano (columnas mds brillan-
tes) y manganeso (columnas menos brillantes). Se puede apreciar el pizelaje de la
imagen, otro de los elementos que resultard clave en el trabajo.

latentes asociadas con las posiciones de las columnas atomicas. Cabe notar
que el modelo probabilista resulta coherente con la fisica del problema puesto
que la micrografia es consecuencia directa de impactos de electrones sobre el
detector.

1.1. Micrografias STEM

El TEM es una técnica de caracterizacion que genera imagenes digitales
de alta resolucién de un material. Se fundamenta en la dispersién de un haz
de electrones de alta energia al incidir sobre una muestra delgada, del orden
de unos 100 nm de espesor. Los electrones transmitidos a través de la muestra
llegan a un detector que mide y procesa la senal que generan. A cada punto
de la superficie de la muestra representada (a cada pixel') se le asigna una
intensidad proporcional? a la sefial medida en este punto. Asi pues se trata

!Obviaremos este concepto, que no resulta ajeno en la “Era Digital” que vivimos, pero
dejaremos la definicién que da la RAE: Superficie homogénea mds pequena de las que
componen una imagen, que se define por su brillo y color

2Los electrones que impactan en el detector generan una sefal eléctrica que se procesa
siendo amplificada. Si el dispositivo encargado de esto opera linealmente, se da la propor-
cionalidad mencionada entre electrones detectados y el brillo asignado. Habitualmente se
trata de que esto asi sea y asi lo consideraremos aqui.

1.2. INTERPRETACIC)N Y TRATAMIENTO DE LA
MICROGRAFIA 15

de micrografias en blanco y negro. De esta forma se obtienen imégenes como
la que podemos ver en la figura 1.1, donde las zonas con mayor intensidad se
identifican con las columnas de atomos de la red.

Existen diversas técnicas de imagen TEM (figura 1.2), cuya diferencia
radica en la forma en que se ilumina la muestra y se detectan los electrones
transmitidos. En el modo STEM (Scanning Transmission Electron Micros-
copy), se forma una sonda electrénica sub-nanométrica que barre la superficie
de la muestra y un detector anular recoge los electrones transmitidos disper-
sados a alto angulo. Por la geometria de este detector, en puntos donde hay
columnas de atomos, se recoge un mayor numero de electrones dispersados
a alto dngulo. A su vez, cuanto mas pesados sean estos atomos, mayor es la
intensidad en esos pixeles. Esta proporcionalidad directa entre el niimero de
eventos y el brillo del pixel es clave en el posterior desarrollo. Esta técnica
de imagen STEM se denomina HAADF (High Angle Annular Dark Field).

(a TEM (b) STEM
Source Detector(s)
HAADF: SOmrad=®
Plane wave BF: #<10mrad
Sample Sample

Objective lens Objective lens

Scan coils

Image Source

Figura 1.2: Esquema de la formacion de imdgenes con dos técnicas TEM diferen-
tes: TEM y STEM (figura obtenida de la referencia [1])

1.2. Interpretacion y tratamiento de la
micrografia

La intensidad de cada pixel viene dada como un niimero entero y positivo,
con lo que la “matriz de pixeles” que compone la imagen va ligada a una
matriz de datos, con el mismo nimero de filas y columnas, de manera que
cada dato de la segunda, corresponde a la intensidad del pixel que ocupe la
misma posicién en la primera.

16 CAPITULO 1. INTRODUCCION

Por otra parte, cada pixel es referenciado en la imagen por la columna
y fila que ocupa, que pueden considerarse como coordenadas de posicion
discretas,

x = columna € {1,2,3...n,}, con n, =n° de columnas,
y = fila € {1,2,3..n,}, con n, =n° de filas.

(1.1)

Cada pixel quedard caracterizado completamente por estas coordenadas de
posicién y su intensidad, pudiendo considerar esta tltima como una tercera
coordenada perpendicular al plano de la imagen, de manera que se puede
interpretar como un relieve sobre dicho plano. Puesto que este dato va aso-
ciado a un nimero de eventos detectados, pensaremos en la imagen como un
histograma en tres dimensiones. Con esto, le podemos dar un tratamiento
estadistico y modelizar la intensidad de la imagen mediante distribuciones
de probabilidad.

Si las coordenadas de posicién (expresiones (1.1)) se consideran continuas
y definidas de la siguiente manera,

x = coord. horizontal del centro del pizel € (0,n,),
con n, = n° de columnas
y = coord. vertical del centro del pizel € (0,n,),

_ 0 :
con n, =n° de filas

se tiene que cada pixel se representa como un punto en un espacio real de
tres dimensiones, con coordenadas z, y (expresiones (1.2)) e intensidad. Estos
puntos quedan contenidos en una superficie como la que se muestra en la
figura 1.3, que ilustra la manera en la que vamos a interpretar la imagen, y
sugiere la posibilidad de usar, para la modelizacion, distribuciones continuas
y conocidas que nos otorguen cierta capacidad descriptiva.

s

INTERPRETACION Y TRATAMIENTO DE LA

1.2.

’

. 03
— S
S 3
B £
S S
"R
1%6
‘Z/m
TS
S 9
S 3
-~
=5
< 3
< =
)
= S S
= %R
5 n
N s
—
Lm [99) mR
o S <
g = = 3
o] w O
< < 2
— la
O
[) = Od
< S
N g s
=] e S &
2 = S 9
3 < (%
s = w <
<) \8)
z &
I S
= S
Q 41
/~ - 3
<
& NoJISY
»
)
SRS
.
I
< £
O =
< & g
~ RS
@) ™ 2
S — 3
:
S 5 =
-16
= SRS

de la matriz, corresponden a dos de las columnas de dtomos mds brillantes. Es de

, de poca altura y anchos

bien

superpuestos sobre una senal de fondo mucho mayor que la altura de dichos picos.

’

) dos, si mo mds

1enemn picos acusa

notar que no se t

18

CAPITULO 1. INTRODUCCION

Capitulo 2

Modelizacion de la imagen

Se asumird un modelo probabilistico (no determinista) simple para la
interaccién entre el haz de electrones y el material cristalino que se emplea
de espécimen. Segun este la dispersién de los electrones debida a la interaccion
con una columna de atomos del cristal es una variable aleatoria bivariante que
sigue una ley de distribucién normal, y cuya media coincide con la proyeccion
del eje central de la columna de dtomos en el plano de la imagen.

La imagen asociada a la micrografia se basa en el recuento de los electro-
nes que impactan en un escintilador para cada pixel de la imagen, por lo que
el resultado del mismo aproximara la forma de la funcién de densidad. La
radiacién producida por el escintilador es amplificada por un fotomultiplica-
dor, con lo que en la imagen adquirida se regula el contraste (amplificacién
o ganancia) y el brillo (desplazamiento, senal de fondo u offset) para operar
en la zona lineal del amplificador que procesa la senal detectada.

2.1. Modelo matematico

En micrografias HAADF-STEM de resolucién atémica de materiales cris-
talinos, como en la de la figura 1.1 b), correspondiente a un 6xido de lantano
y manganeso. Alli se aprecian zonas mas o menos circulares y brillantes que
corresponden a las columnas atémicas de lantano. Nétese que entre las zonas
mas destacadas tenemos otras, menos brillantes, correspondientes a colum-
nas de manganeso. Este hecho puede corresponder con la vista de una de las
caras de una celda BCC!, con los dtomos de lantano, en los vértices, mds

IEstructura cristalina con celda unidad ctbica, siendo los dtomos de los vértices y del
centro del cubo (del inglés Body Centered Cubic), elementos quimicos con distinto nimero
atémico. Hay que decir que en realidad esta muestra no es de este tipo, pero es lo que
visualmente se aprecia en la imagen.

19

20 CAPITULO 2. MODELIZACION DE LA IMAGEN

destacados que el de manganeso del centro. Se propone modelizar cada una
de estas regiones de la imagen mediante una distribucién normal bivariante.
Ademas, de las distribuciones con media y varianza conocidas, la normal ma-
ximiza la entropia, es decir, es la que introduce menos informacion a priori
en el modelo.

La expresién explicita para una normal bivariante es

27r0x0y1 1- pz'
 exp (—2(1 i & ((ﬂf —ra)® (=)’ 20—)y uy))) |
(2.1)

oz oy (020y)
con lo que tenemos 5 parametros (y,, media en z; p,, media en y; 0,, desvia-
cién tipica en z; oy, desviacion tipica en y y p, el coeficiente de correlacion)
que definiran la superficie de ajuste, identificando ji, y p, con una estimacién
de la posicién de la columna atémica en cuestion. Puesto que en una imagen
encontramos muchas de ellas, se elige un modelo basado en una Miztura (o
Mezcla) de Normales (remitimos a [5] para més detalle).

Una mixtura de normales es una variable aleatoria cuya funcién de den-
sidad es una combinacion lineal, de la forma

flx,y) =

G G
g(UC,y):mei(l',y), con Zﬂ'izla T >O, L= 17-~'7G (22>
i=1 =1

donde cada uno de los G términos de la sumatoria (cada f; es una distribucién
normal que se denomina componente de la mixtura) modeliza una columnas
de atomos e introduce otro parametro, el m;, que se denomina peso de la
componente y que se asocia a su intensidad en la imagen.

Prueba de normalidad

En la figura 1.3 se puede ver la presencia de una senal de fondo u “offset”
sobre el que se superpone el relieve que describe la intensidad de la imagen, y
el cual se pretende modelizar como mixtura de normales. Esta constante, que
corresponde a los minimos de intensidad en la imagen, se fija en los ajustes
experimentales realizados durante la adquisicion de la imagen y, por tanto,
se tiene en cualquier micrografia. Debera de considerarse este fenémeno en
el modelo.

Por otro lado, podemos representar una seccién de esta superficie. To-
mamos los datos, por ejemplo, de la séptima fila de la matriz de la figura

2.1. MODELO MATEMATICO 21

1.3 b), restamos su valor minimo para anular el offset y tenemos un perfil
como el de la figura 2.1. Se debe hacer notar que esto corresponde a una sec-
cién en el plano (pizeles,, brillo) y que pasa aproximadamente por el centro
del eje pizeles, (con la notacién de la figura 1.3). Si aplicamos el test de

brillo
10000 30000 50000 70000

pixeles x

Figura 2.1: Perfil de la superficie presentada en la figura 1.3 tomando los datos
de la fila 7 de la matriz en la misma figura, habiendo restado el valor minimo de
la matriz para observar mejor el relieve.

Shapiro-Wilk? (c6digo en el apéndice E) a los picos que se observan, obtene-
mos p-valores mayores que la significancia, de 0,05 por defecto. En concreto,
se obtiene 0,4246 en el primer pico y 0,08209 en el segundo con lo que se
aceptaria la normalidad de ambas muestras.

Aunque la normalidad de este perfil no implica la normalidad de la su-
perficie, se aporta como argumento a favor para el modelo de mixtura. Por
otro lado, se realiz6 esta prueba para distintas secciones de los picos® y se
obtuvo en todo caso resultados que apoyan su normalidad.

2Este test es recomendable para muestras pequenas (n < 50 en muchos textos) por lo
que calcularemos un vector de frecuencias proporcional al que se representa en la figura 2.1,
y restringido a que la suma de sus elementos sea aproximadamente 50. Ademas, en R se
aplica el test para un vector de observaciones (resultados de una medida), no de frecuencias.
Esto requiere un nuevo vector que tenga tantas copias de la variable aleatoria (ntimero
de columna de pixeles, en este caso, como variable aleatoria de posicién) como indique
su frecuencia asociada. Este vector tendra una longitud igual a la suma de frecuencias
(aproximadamente 50, como proponfamos).

3En concreto, tomando las columnas 7 y 30 de la misma matriz (figura 1.3 b)) se
obtienen p-valores de 0,5057 y 0,3387, respectivamente. Estas columnas corresponderian,
aproximadamente, a las secciones perpendiculares a la de la figura 2.1 y que pasan por los
maximos de cada pico.

292 CAPITULO 2. MODELIZACION DE LA IMAGEN

2.1.1. Modelado del efecto del amplificador

Para operar en la zona lineal del amplificador que procesa la senal detec-
tada, a la imagen g(x,y) de (2.2) se ajusta el contraste y el brillo del detector.
A efectos de nuestro modelo matematico, esto equivale a la introduccion de
una constante aditiva ,7; € R, que modelice el offset, y otra multiplicativa,
72 > 0, para la amplificacion: F(z,y) = v(g(x,y) + 71), es decir,

G
F(z,y) :04+Zwifi(35’y)> (2.3)
i=1
siendo w; =y -m; > 0 coni=1,...,G, los coeficientes de la nueva mixtura
(ndtese que ya no es una distribucién de probabilidad) y o =71 - 12 € R, el
término independiente.
Finalmente consideraremos que las micrografias son muestreos en mallas
regulares (cuadricula) del modelo continuo F(z,y) dado en (2.3).
En la siguiente secciéon vamos a generar iméagenes sintéticas con este mo-
delo, lo que ademds servird para aclarar y ejemplificar lo visto hasta ahora.

2.2. Micrografias sintéticas

Cuando se hacen ajustes de micrografias reales no se tiene ningtn refe-
rente para saber si se obtienen buenos resultados. Parece adecuado probar
antes el algoritmo sobre imagenes sintéticas, generadas a partir del modelo
propuesto en (2.3) y para las cuales hayamos asignado valores concretos a los
parametros del mismo. Para estas, propondremos unos parametros iniciales
ligeramente desviados y ejecutaremos el algoritmo para realizar un ajuste al
mismo modelo. Los pardametros a los que converja como resultado seran un
refinamiento de los parametros iniciales, y deberan de ser muy proximos a
aquellos con los que hayamos generado la imagen.

2.2.1. Proceso

Este proceso tendra dos partes claramente diferenciadas:

» Por un lado, y en primer lugar, la creacién de imagenes de prueba (en
el apéndice B se presenta el codigo R y una descripcion de las funciones
que implementa).

= En segundo lugar la implementacion y prueba del algoritmo de Levenberg-
Marquardt que se propone para el ajuste (c6digo y descripcion del mis-
mo en el apéndice C).

2.2. MICROGRAFIAS SINTETICAS 23

Generacion de las micrografias sintéticas

La implementacion de estas simulaciones seguiré los siguientes pasos,

= PASO 1: Asignacion de valores a las medias, varianzas, coeficientes de
correlacion y pesos para definir el modelo que usaremos, considerando
la suma de pesos normalizada, segun el modelo dado en (2.2).

» PASO 2: Generacién de una muestra (de tamano n = 5000, predefi-
nido por nosotros) de puntos en el plano, distribuidos segtin el modelo
resultante en el PASO 1. Para tener muestras que sigan una mixtura
se generan tantas muestras, de tamano mn (con 0 < m; < 1), como
componentes tenga la mixtura?, y siendo la suma de los m; igual a 1. Si
tomamos las observaciones de todas estas muestras como observaciones
de una sola, tenemos otra muestra, de tamano n y siguiendo la mixtu-
ra. Los m; son precisamente el peso de la componente i, que define el
nimero de puntos (observaciones) que corresponden a ella.

Se realiza la representacion gréfica de dicha muestra (n puntos en el
plano) en rangos de los ejes de coordenadas definidos por el software.
Denotamos los extremos de este rango como i, y s, para el eje hori-
zontal (inferior y superior, respectivamente) y i, y s, para el vertical.

= PASO 3: Reescalaremos la muestra mediante las expresiones

T — 1y
Treescalado = Mg * ——
Sy — g (2 4)
Yy —= Zy
Yreescalado = Ty * —————»
Sy — Uy

para que quede contenida en el intervalo 0 < x < n, en el eje horizontal,
yen 0 <y < n, en el vertical, donde n, y n, seran dos nimero positivos
definidos por nosotros que representaran el niimero de columnas y filas
de pixeles de la imagen sintética. Se dibuja una cuadricula simulando
el pixelaje (cada pixel tendrd un lado de longitud 1 segiin lo propuesto)
y se reescalan tambien las medias (aplicando 2.4) y las desviaciones,

(Uz>reescalado =Ty

o (2.5)

(Uy)reescalado =Ny -

4Aunque la eleccién del niimero de eventos de cada componente es determinista, para
tamanos de muestra grandes la habitual aproximacion probabilista da resultados similares.

24 CAPITULO 2. MODELIZACION DE LA IMAGEN

para que sean coherentes con la nueva muestra reescalada. El coeficiente
de correlacién y peso son parametros adimensionales con lo que no
necesitan ser reescalados.

= PASO 4: Realizando el recuento de puntos de la muestra contenidos
en cada una de las subdivisiones que nos da la cuadricula, simularemos
el brillo asociado a cada pixel de esta imagen sintética y la matriz de
datos correspondiente.

= PASO 5: Se define y se suma una constante, o, que simula el offset, a
los elementos de la matriz anterior, y en los casos que corresponda, el
ruido.

= PASO 6: Escritura, en un fichero, de la matriz de datos que representa
la micrografia: una matriz de n, x n,.

Ajuste de las micrografias sintéticas

Se elige el Algoritmo de Levenberg-Marquardt como método de ajuste.
Este es una generalizacion de la optimizacion por minimos cuadrados, la cual
consiste en obtener el vector de parametros 3 que minimiza la expresion,

m
S(B) = (z = Flzi,y:, 8))°, (2.6)
i=1
acorde con el caso bivariante que nos ocupa. En esta expresién m es el niimero
de pixeles, que son los puntos que tenemos para realizar el ajuste; (x;,y;)
son las coordenadas de posicién de cada pixel, y z; su brillo. La funciéon F
es el modelo propuesto en (2.3), y B los parametros que lo definen (offset,
pesos, medias, desviaciones y coeficientes de correlacion de cada término de
la mixtura).
El algoritmo trabaja siendo iniciado con un 3, que se propone. En cada
iteracién se resuelve la ecuacién matricial (remitimos a la referencia [12] para
més detalle)

(JTT+ M6 = J' [z — F(x,y, B)], (2.7)

siendo 9§ el vector de incégnitas. Este nos da los incrementos para recalcular
B en cada iteracién, de manera que en la j-ésima tendremos un vector de
parametros dado por B; = B,_; + d;_1. Por otro lado, J es una matriz con
m filas, siendo éstas el gradiente de F' en cada uno de los m puntos.

La implementacién del proceso de ajuste (cddigo en el apéndice C) donde
se usara este algoritmo seguira los siguientes pasos:

2.2. MICROGRAFIAS SINTETICAS 25

= PASO 1: Lectura del fichero donde se tenga la matriz de datos que
representa la micrografia que se quiere ajustar, ya sea sintética o real.

= PASO 2: Propuesta de los parametros con los que se inicia el algo-
ritmo. Cuanto mas proximos sean estos a los reales mas rapida serd la
convergencia.

= PASO 3: Procesado y preparacion de la matriz de datos. Aqui, por una
parte, restaremos a todos los elementos de matriz el valor del minimo,
que corresponde aproximadamente al offset. Por otra parte, dividiremos
cada uno por la suma de todos, asi quedara normalizada.

= PASO 4: Aplicamos el ajuste a un modelo como el de la expresién
(2.3) con los puntos que resultan del PASO 3. Para esto se hara uso de
la libreria de R Im.minpack (referencia [23]), en concreto, de la funcién
nlsLM() (remito nuevamente al cédigo del apéndice C). Obtenemos los
estimadores y datos ajustados.

= PASO 5: Realizaremos la operacién inversa a la realizada en el PASO
3, sumando el minimo valor de la matriz de datos original y multipli-
cando por la suma de todos sus elementos. Asi recuperamos unos datos
ajustados del mismo orden que los originales.

» PASO 6: Escribimos en ficheros los datos (matriz con las mismas
dimensiones que la de datos originales) y estimadores ajustados.

26 CAPITULO 2. MODELIZACION DE LA IMAGEN

2.2.2. Ejemplos en ausencia de ruido
Presentaremos dos ejemplos que simulan estructuras atomicas similares

a algunas que podemos encontrar en una micrografia real.

Ejemplo 1: micrografia de 25 x 20 con 5 normales en ausencia de
ruido.

Aqui se pretende simular una de las celdas unidad que se presentan en la
micrografia de la figura 1.1.

e SIMULACION:

PASO 1-2: Generamos una estructura de este tipo con una muestra de
5000 puntos siguiendo una mixtura de 5 componentes normales, tal y como
se puede ver en la figura 2.2.

media x mediay sigmax sigmay coefComr peso

-5 5 2 2.5 8.1 8.235
2.5 2.1 2.225
2.5 8.1 8.235
2.5 2.1 2.225
2.0 -8.1 e.1ee

5 10 15
1

coordenada y

-0 5 0
1

(SRR TN)

coordenada x

(a) Muestra original de una mixtura de 5 (b) Pardametros con los que se genera la
componentes de pardmetros dados en b). muestra original

Figura 2.2: Muestra original donde se observa el rango de representacion que se
establece por defecto y que aprovecharemos para reescalar la muestra.

PASO 3: Elresultado del reescalado de la muestra se puede ver en la figura
2.3.

PASO 4-5: Realizamos el conteo de puntos en el interior de cada elemento
de la cuadricula y obtenemos asi la matriz de datos asociada a esta micro-
graffa sintética (figura 2.4 b)). Se puede representar esto en 3 dimensiones
considerando los elementos de matriz, como coordenada dependiente de la
posicién (z,y) dada por el punto en el centro del pixel (figura 2.4).

2.2. MICROGRAFIAS SINTETICAS

27

o
&
-
=
>
> =
8 =
]
>
2 ®
©
~
o~
o
0 2 4 6 8 10 12 14 16 18 20 22 24
pixeles x

(a) Muestra reescalada con rejilla que si-
mula el pixelaje de la imagen sintética.
Contando el nimero de puntos conteni-
dos en cada subdivisién de la cuadricula
simulamos el brillo de cada pixel.

media_x media_y sigma x sigmay coefComr peso
1 7.113249 12.698193 1.78985 1.632691 @.1 8.235
2 16.858588 12.698193 1.78%85 1.632691 e.1 g.225
3 7.113249 6.167427 1.78985 1.632691 e.1 8.235
4 16.853588 6.167427 1.78985 1.632691 e.1 g.225
5 11.585874 9.43281@ 1.78985 1.386153 -a.1 8.188

(b) Pardmetros reescalados de manera
que tenemos la muestra contenida en un
rango coherente con las coordenadas dis-
cretas (filas y columnas) de los pixeles que
componen una imagen.

Figura 2.3: Muestra de la figura 2.2 tras haber sido reescalada.

“‘

,
:
:
A s :
t\\ e s :
¢“‘ 7
;

‘

(a) Representacién gréfica
en 3 dimensiones de la
muestra una vez discretiza-
da, y donde la coordena-
da vertical nos da el nime-
ro de puntos de la muestra
original contenidos en ca-
da uno de los elementos de
la cuadricula que simulan el
pixelaje.

v
20
0
0
0
s1
3
2
1
0
o1
£
0
0
0
0

v
s00
s00
se1
so5
£
so7
o
508
sz
sos
sa7
so7
o
£
s00

vs

se0
sa1
s
517
53
s»
ses
so7
sz
s
B
s1s
sz
sa1
so0

(b) Matriz que recoge el conteo de
muestra original m4s una constante aditiva (de 500
en este caso) que representa el offset que se tiene
en imagenes reales.

Ve v v v v viz vis vis s)

S0 see e oo Sep e S0 S0 S0 90 S0 50 S0 500 500 509 S0 590 500 500
S0 so2 e S0 Sep e S0 S0 509 Sl S0 Sl S0 503 500 509 S0 500 500 509
Sz ses se3 se7 sen e S S0 Se2 o2 96 58 Se2 502 500 509 500 590 500 509
S8 s2s sas 533 s12 ses S5 Ses ses S SS9 s s» S12 se2 e S0 5o se
S s s ses s ses sy s13 s s s s se sy sy sl sel s se ses
S a7 ses 53 s S19 W6 Slo 518 S s 553 53 S S8 5@ 509 90 500 509
s s2 s3s sse s» sw s 5w sm SIS 519 517 ses S sl sel 90 500 500
s s s sy s:3 s39 S8 S 513 SIS SIS SS9 SIS0 502 S0 590 500 509
S5 s sas 535 535 s1s s SN 5 s s 51 518 S S sl 5e9 90 500 509
s sas sm se S35 s;m s 513 523 ss1 sss S S37 s25 S se2 sel S90 S0 5e0
S se2 se7 S35 535 ses S0 S 52 SIS S5 S42 510 510 53 500 S00 S00 509
S s 539 sm sey ses e S8 55 S3 S: S0 523 SIS0 509 509 500 500 509
ses ses ses e se2 e S0 So3 53 Ses S0 503 S5 SOl 500 509 S0 590 500 500
S0 sel sel oo Sep e S0 S0 Sl 00 S0 52 S0 500 500 509 S0 500 500 509
50 see e See o0 e S0 S0 S0 S99 SO 50 S0 500 500 509 S0 500 500 509

puntos de la

Figura 2.4: Muestra de la figura 2.2 tras haber sido discretizada.

28 CAPITULO 2. MODELIZACION DE LA IMAGEN

e AJUSTE:
En un tiempo de ejecucion de,

tejecucion = 1a 10s (28)

y con los pardmetros iniciales que se muestran en la figura 2.5 b), se realiza el
ajuste obteniendo los resultados de la figura 2.5, tanto la superficie ajustada
como los parametros con sus desviaciones tipicas. Estos se pueden comparar
con los de la figura 2.3, que son los que definian la imagen.

SN
S =
=N

o

e
S
<>

mediax mediay sigmax sigmay coefCom peso

1|6 14 1 1] 0.2
2 |17 14 2 e.2
3 |6 5 1 1 8 8.2
4 |17 5 1 1 8 8.2
5 12 18 1 1] 2.1

(a) Representacién grafica en 3 di- (b) Estimadores propuestos pa-

mensiones de los datos ajustados. ra iniciar el algoritmo.
mediax mediay sigmax sigmay coefCor peso error media x ermormediay ermorsigma x ermorsigmay ermor coefCorr error peso
1 7.298221 12.624360 1.959985 1.741587 8.82453136 9.23438131 1 @.e5558278 2.85188141 8.85615026 9.05385779 2.84380183 2.083846456
2 15.929183 12.741235 1.8@2@53 1.735287 8.22488893 ©.23137458 2 9.84799342 2.84725138 2.85838214 2.85825043 8.83757@35 8.887142385
3 7.140056 6.166381 1.766673 1.67151 ©.12786373 ©.12518349 3 e.e4ma389c @.24724919 @.05050651 e.04958508 e.23990331 @.087266313
4 15.983678 6.189634 1.812884 1.611859 @.87205241 8.22524719 4 e.e4B7l646 2.e4323321 2.84965062 2.4434235 2.83977358 2.e87023832
5 11.553388 9.19377% 1.448268 1.284289 -@.1854539¢ 9.87749832 5 e.18414032 8.88077802 2.11193728 2.e8380937 2.10629596 8.887545867

(c) Estimadores ajustados para cada (d) Error de los estimadores ajustados para
una de las 5 normales presentadas. cada una de las 5 normales.

Figura 2.5: Resultados del ajuste del Ejemplo 1.

Podemos comparar los valores ajustados de la figura 2.5 ¢) con los origina-
les dados en la figura 2.3 b) y observar desviaciones maximas entre pardme-
tros de unos 0,4 pixeles (en estos valores se toma el pixel como unidad de
longitud). Se observa ademés que las mayores diferencias se tienen en las
desviaciones tipicas (remitimos a la seccién 2.2.5).

2.2. MICROGRAFIAS SINTETICAS

29

Ejemplo 2: micrografia con 7 componentes en una imagen de 40 x 20
y en ausencia de ruido

PASO 1-2:

SIMULACION:

Ahora otro ejemplo con una estructura de atomos diferente.

ejemplos anteriores) como la de la figura 2.6.

PASO 3:

coordenada y
0
L

coordenada x

(a) Muestra original de una
mixtura de 7 componentes de
pardmetros dados en b).

media x mediay sigmax sigmay coefCom peso

1 -1 5 2.5 2 8.18 2.28
2 @ 5 2.5 2 -8.18 8.28
3 1 5 2.5 2 e.2e 2.28
4 5 5 2.5 2 -8.15 2.e6
5 |5 -5 2.5 2 -8.28 2.85
6 28 5 2.5 2 -8.28 8.28
7 |15 -5 2.5 2 -8.28 8.88

(b) Pardmetros con los que se
genera la muestra original.

Figura 2.6: Muestra original del Ejemplo 2.

1M1 14 17 20

pixelesy

02468

G 36 9 43 47 21 25 29 33 I7

pixeles x

(a) Muestra de la figura 2.6 re-
escalada en una rango de 40x20
y con parametros, tambien re-
escalados, dados en b).

Ne W oa W N R

(b) Pardmetros con los que se ge-

La reescalamos tal y como se presenta en la figura 2.7.

media_x media_y sigma_x sigma_y coefCorr peso
7.985184 13.518963 1.815827 1.526835 9.19 8.28
15.165214 13.518063 1.515827 1.526835 -8.19 2.2¢
22.425323 13.518063 1.815827 1.526835 ©.20 2.2¢
11.535159 5.EE7EES 1.815827 1.526835 -8.15 8.86
18.79526% 5.ZE78E5 1.815827 1.526835 -8.29 8.86
29.685432 13.518063 1.515827 1.526835 -0.20 e.2¢
26.855378 5.887885 1.815827 1.526835 -2.20 2.08

nera la muestra original.

Figura 2.7: Muestra reescalada del Ejemplo 2.

Proponemos una distribucién de puntos (5000, como en los

30 CAPITULO 2. MODELIZACION DE LA IMAGEN

PASO 4-5: La discretizamos en una imagen de 40 x 20 (representacién en
3 dimensiones en la figura 2.8).

oy
RS
e
SRS

paN o
JRsiiiie

o
=3

Figura 2.8: Como en los ejemplos anteriores, presentamos la superficie que gene-
ran los puntos asociados a la posicion y brillo de cada pizel, habiéndose obtenido
mediante discretizacion de 2.7. La matriz de datos (asi como la de pizeles) aso-
ctada, esta vez es de 40 x 20.

e AJUSTE:
En este caso el tiempo de ejecucion del ajuste es,

tejecucion = 17 59s (29>

habiendo propuesto como parametros para iniciar el algoritmo los mostrados
en la figura 2.9 b). Se obtienen los resultados de la figura 2.9, que como en
el Ejemplo 1, podemos comparar con los parametros con los que se propuso
la imagen y que se presentan en la figura 2.7 b).

Comparando los valores ajustados, visibles en la figura 2.9 c), con los
pardmetros que generan la micrografia sintética (figura 2.7 b)), observamos
desviaciones menores que 0,2 pixeles (tomando estos como unidad de longi-
tud), aproximadamente. Remito a la seccién 2.2.5 para mas comentario.

2.2. MICROGRAFIAS SINTETICAS

U ‘:“ =3
SR SN
s ST
SRRl
S R R
B A et e media x mediay sigmax sigmay coefCom peso
SRS
Cheeeeis 1|7 14 1 1 2 e.1
z |17 14 1 1) 2.3
3 2 12 1 1) 8.3
4 18 E 1 1 e 8.2
5 17 E 1 1) e.1
6 28 12 1 1) 8.1
7 2 5 1 1) 8.1

(a) Representacién grafica en 3 di- (b) Pardmetros propuestos para

mensiones de los datos ajustados. iniciar el algoritmo.
media_x media_y sigma_x sigma_y coefCorr peso
1 7.871579 13.517765 1.837288 1.497846 €.83345973 ©.19859976
7 15.826291 13.49488% 1.966299 1.51118@ -8.87337796 ©.2859963%
3 22.447924 13.53319@ 1.798688 1.581225 ©8.22953434 @.19577187
4 11.693788 5.528488 1.918649 1.459992 -9.86281338 B.B5145987
5 18.983763 5.825222 1.640277 1.425117 -8.16688157 @.85551775
6 29.753636 13.471289 1.87686@ 1.458589 -B.14256596 @.1991478%
7 25.926531 €.812048 1.806839 1.543363 -8.33958763 8.e7783538

(¢) Estimadores ajustados para cada una de las 7
normales presentadas en la simulacién de 1 ejem-
plo 2.

error media_x error media_y error sigma_x error sigma_y eror coefCorr error peso

1 28.84278336 2.83194915 2.84581745 2.83243342 2.83861416 2.e84701843
2 B.84a457429 2.83185355 2.85268163 2.83147873 8.829727@5 2.885181413
3 2.84866844 2.83318268 2.84595376 2.83351735 2.82846825 2.884757214
4 2.13189819 2.897127% 2.138956594 2.89891843 8.89435642 2.884586583
5 2.11486658 2.89547285 2.12362583 2.83678951 @.89339427 2.284118645
6 ©2.83954524 2.82932789 2.84228171 2.82988373 8.82828654 2.884488862
7 28.89388662 2.87854493 2.89811861 2.eseee115 2.85487243 2.e84327822

(d) Error de los estimadores ajustados para cada una de
las 7 normales.

Figura 2.9: Resultados del ajuste del Ejemplo 2.

32 CAPITULO 2. MODELIZACION DE LA IMAGEN

2.2.3. Ejemplos que incluyen ruido

El propio fenémeno de deteccién de particulas lleva siempre asociado,
a nivel experimental, un ruido que sigue una distribucién de Poisson, cuya
densidad de probabilidad viene dada por la expresion

N™. eV
pln) = S (2.10)
donde p(n) es la probabilidad de obtener n como resultado en una realizacién,
y N el promedio de todas las observaciones. En nuestro caso el recuento de
puntos en cada regién del mallado (esto es la simulacién de la intensidad en
un pixel).
Se plantea que tenemos dos ruidos que consideraremos independientes y
que incluiremos,

s Debe de existir una perturbacion (esta deberd ser de Poisson) que afecte
a los picos, de forma que en pixeles més brillantes pueda haber mas
ruido. En lo relativo a la relacion senal-ruido, el ruido de tipo Poisson
o ruido de disparo, afecta mas a los pixeles donde han caido pocos
electrones.

= Debemos de tener en cuenta otro ruido que sea proporcional al nivel
de offset. Es una realidad que al efectuar los ajustes de contraste que
lo introducen, el ruido crece o decrece con este nivel.

En cuanto al primero, parece obvio que el ruido debe de ir asociado a cada
pixel en particular, tomando como parametro N el nimero de eventos en
ausencia de ruido, asi los pixeles mas brillantes se veran afectados por una
perturbacion mayor. Para el segundo, se incluye un ruido uniforme tomando
como promedio, N, el 2% del offset que tengamos.

Para introducir la primera componente del ruido, sustituiremos el recuen-
to de puntos en cada region del mallado por una realizacion de Poisson cen-
trada en ese mismo recuento (que simula la intensidad del pixel). La segunda
componente de ruido, relativa al offset, la incluimos sumando una realizacién
de una uniforme con extremos en £2 % del offset.

2.2. MICROGRAFIAS SINTETICAS 33

Ejemplo 3: inclusién de ruido en el Ejemplo 1.

e SIMULACION:

Si tomamos la imagen desarrollada en el Ejemplo 1 e introducimos el rui-
do, tenemos una imagen cuyo relieve es como el presentado en la figura 2.10.

>0

e A :

T SR

B ataviy, A A\ g =
e g \\zﬂ, N A
e e
Paveieane=—au
WV

Figura 2.10: Imagen del Ejemplo 1, habiendo introducido las dos componentes de

rutdo propuestas.

e AJUSTE:
En este caso el algoritmo se ejecuta en

tejecucion = 1,19 s (20 iteraciones) (2.11)

siendo iniciado con los mismos parametros que en el Ejemplo 1 y obteniendo
los resultados mostrados en la figura 2.11.

Encontramos que las mayores desviaciones (comparando los parametros
ajustados presentados en la figura 2.11 ¢) con los originales, presentados en
2.3), como en los ejemplos en ausencia de ruido, las encontramos en una
de las desviaciones tipicas (en torno a 0,4 pixeles). En cuanto a las medias,
notamos que tienen desviaciones inferiores a 0,2 pixeles (unidad de longitud).
Remitimos a la seccién 2.2.5.

CAPITULO 2. MODELIZACION DE LA IMAGEN

e oL
i
ks

PR =27

“,‘.O\Q_\\v"

==
<

RS P
s S OTTS
P

mediax mediay sigmax sigmay coefCom peso

1|6 14 1 1] 0.2
2 |17 14 2 e.2
3 |6 5 1 1 8 8.2
4 |17 5 1 1 8 8.2
5 12 18 1 1] 2.1

(a) Representacién grafica en 3 di- (b) Estimadores propuestos pa-

mensiones de los datos ajustados. ra iniciar el algoritmo.
media x media y sigma x sigma y coef. corr peso
1 7.158916 12.513642 2.218319 1.784587 -9.83963229 9.12871391
2 16.e21948 12.851795 | 1.873632 1.716544 ©.28353482 9.11534891
3 7.159776 6.183981 1.794832 1.648126 @.17812288 2.11e42818
4 15.842126 | £.201889 1.678797 | 1.6083241 -0.84629239 ©.11612267
5 11.627136 9.483266 1.429552 1.234245 8.47321718 2.83311862

(¢) Estimadores ajustados para cada una de las
5 normales presentadas.

error mediax errormediay errorsigmax error sigmay error coef. corr error peso

1 2.13545248 2.11256466 2.14428658 2.12144892 28.83826237 8.889463163
2 8.14257588 8.12669886 #.13685873 8.12154743 8.18235241 8.889676891
3 2.13421321 2.12823625 2.13842343 2.11671487 2.18136448 8.8893228957
4 8.83837333 8.88918991 8.89412883 9.89439852 8.87864424 8.887171378
5 2.28845208 @.23854368 @.33329682 2.26353485 2.21538582 8.889465564

(d) Error de los estimadores ajustados para cada una de
las 5 normales.

Figura 2.11: Resultados del ajuste del Ejemplo 3.

2.2. MICROGRAFIAS SINTETICAS 35

Ejemplo 4: inclusién de ruido en el Ejemplo 2.

e SIMULACION:

Ahora introduciremos las dos componentes de ruido en la imagen del Ejemplo
2 y tenemos la imagen representada en la figura 2.12.

Figura 2.12: Imagen del Ejemplo 2 habiendo introducido ruido.

e AJUSTE:
En un tiempo de ejecucion de,

tejecucion = 3,48 s (28 iteraciones) (2.12)

tenemos los resultados presentados en la figura 2.13, iniciando el algoritmo
con los parametros de la figura 2.13 b).

Desviaciones de entre 0,1 — 0,3 pixeles (tomando estos como unidad de
longitud) de los pardmetros ajustados (figura 2.13 c)) respecto de los que
se habian propuesto para generar la muestra (figura 2.7). Remitimos a la
seccion 2.2.5.

36

CAPITULO 2.

MODELIZACION DE LA IMAGEN

e 2,
AN

SRReg TR T

SN
=

2% \\‘:“\‘&\\\
S

i

R
e

RO
==

(a) Representacion gréfica en 3 di-
mensiones de los datos ajustados.

media x media y
1 7.781843 13.526638
2 15.133584 13.442586
3 22.619377 13.548352
4 11.866278 5.879489
5 183.938922 | 5.729193
6 29.679186 13.396819
7 26.176594 | 5.736395

(c) Estimadores ajustados para cada una

sigma X
1.796852
1.919386
1.7383e3
1.323485
1.849554
1.724137
1.758852

7 normales presentadas.

error media x
.1112522
.1158926
.1826438
22224236
.3528393
.1857188

CV T R TR R
® B D @ D @ @

.2782985

error media y
89146419
82768777
89857595
27845721
24694593
82611587

® B D @ D @ @

28378442

eITor sigma X
1177979
1382606
1126864
2261769
3799999
1113781

® B D @ D @ @

2334215

media_x

7

7 17
3 24
4 10
5| 17
6 22
7 24

(b) Estimadores propuestos pa-

media_y sigma_x
14 1
14 1
12 1
5 1
5 1
12 1
5 1

sigma_y coefCorr
1
1

1

® 0 e e e s ®

ra iniciar el algoritmo.

sigma y coef. corr peso

1.547989 8.15487e85 8.87448554
1.53683@ 2.82877757 2.e88e2337
1.689652 ©.38748145 8.87733525
1.655872 -8.61584933 2.e2890062
1.349112 @ @.19388757 8.82251241
1.439677 -8.37892858 @.8c778285
1.327229 -8.24822217 8.82681865

de las

error sigma y
89298584
88982514
89165634
27932333
24999933
88718656

® B D @ D @ @

28683231

error coef. corr
.BE224483
.88213483
87277958

.25381263

e
e
e
2.14681228
e
2.87337236
e

.28581434

EFTor peso

284896629
2e5283924
BB4E63674
8@3859613
884538556
2e43929:8

@ DD D D ® @

284358588

(d) Error de los estimadores ajustados para cada una de
las 7 normales.

Figura 2.13: Resultados del ajuste del Ejemplo 4.

peso

]
]
@
a.
8
]
e

B
.2
.3

2.2. MICROGRAFIAS SINTETICAS 37

2.2.4. Ejemplo con una region de una micrografia real

En el primer capitulo presentamos, en la figura 1.3, y para ilustrar algunas
ideas, una pequena region de la micografia de la figura 1.1, la cual comprendia
s6lamente dos a&tomos. Como un primer ensayo sobre una imagen real, y antes
de pasar a la implementacion del plug-in, probaremos el algoritmo de ajuste
sobre ella obteniendo los resultados presentados en la figura 2.14.

e
St
s
T ::“\\\\\\\\

0
‘t

media x mediay sigmax sigmay coefCor peso
I & 8 4 4 e 2.5
2 e 2 4 4 e 2.5

(a) Representaciéon grafica en 3 di- (b) Estimadores propuestos para ini-
mensiones de los datos ajustados. ciar el algoritmo.

X1 x2 X3 x4 X5 X6
1 E.7822EE £.285535 4.389697 3.e52887 -8.1432187 8.3576885
2 29.319138 6.891211 4.456898 3.961834 -8.1443273 2.3338256

(¢) Estimadores ajustados para cada una de
las 7 normales presentadas.

X1 x2 X3 X4 X5 X6
1 @8.82187817 B8.86636388 8.1248535 8.8998453 8.82617458 8.81288544
2 2.88835738 8.86964532 2.1281351 28.1852815 8.82552864 28.81351978

(d) Error de los estimadores ajustados para cada
una de las 7 normales.

Figura 2.14: Resultados del ajuste de la figura 1.8, siendo X1, X2, X3, X4, X5 y
X6 la media en z, media en y, desviacion en x, desviacion en y, coeficiente de
correlacion y peso, respectivamente, como en casos anteriores.

En este caso, se procedié de manera similar a como luego se hara sobre
micrografias reales. Se proponen unos parametros iniciales donde visualmente
parecen estar los picos, teniendo en cuenta que las coordenadas de posicién
se definen segun las expresiones dadas en 1.2 y que esta imagen tenia 36 X

38 CAPITULO 2. MODELIZACION DE LA IMAGEN

14 pixeles. Con estos parametros se lanza el algoritmo, y se obtienen los
resultados del ajuste, los cuales suponen un refinamiento de los iniciales. Esta
metodologia es la que se aplicard e implementara en el siguiente capitulo para
desarrollar el plug-in.

2.2.5. Analisis de resultados y comentarios

En vista de los resultados, que vienen dados tomando el propio pixel como
unidad de longitud, observamos diferencias en el primer decimal, concreta-
mente, y a “grosso modo”, de entre 0,1 y 0,4 pixeles, teniendo los mayores
errores en los ajustes de las desviaciones tipicas. Bien es cierto que para las
medias se podria decir que estas diferencias son menores que 0,2, lo que su-
pone una estimacion de la precision maxima con la que podemos determinar
el desplazamiento de una columna. Si consideramos que la micrografia de la
figura 1.1, por ejemplo, esta calibrada tal manera que cada pixel representa
0,017455 nm de la muestra, estariamos hablando de errores en torno a 3 — 4
pm, con lo que no tendrian porqué detectarse desplazamientos inferiores a es-
ta distancia. Si parece que garantiza la posibilidad de medir desplazamientos
por encima de 5 — 6 pm.

Por otro lado, es notable el aumento en el tiempo de ejecucién en los
ejemplos que incluyen ruido.

Se pueden hacer algunos comentarios y puntualizaciones respecto del tra-
tamiento que damos a las micrografias y de los ejemplos propuestos,

= Es habitual en las técnicas de procesamiento de imagen, que el origen
para enumerar filas y columnas de pixeles se encuentre en la esquina
superior izquierda, de la misma manera en que se enumeran (indexan)
los elementos de una matriz en matemaéticas. Sin embargo, en ciertas
representaciones graficas (por ejemplo las figuras del tipo 2.2 o 2.3)
encontramos el origen en la esquina inferior izquierda. Este cambio en
el origen debe tenerse en cuenta cuando se programan determinados
bloques del cédigo.

» En grificas del tipo de las de las figuras 2.14 a) o 2.13 a), cada pixel
esta representado por las intersecciones de las lineas de la cuadricula
(como un punto), no por las propias subdivisiones de esta.

= La eleccién de parametros iniciales debe de hacerse, dentro de los po-
sible, tratando de seleccionarlos préoximos a los reales. Esto favorece la
convergencia del algoritmo.

2.2. MICROGRAFIAS SINTETICAS 39

= Se ha podido ver en los ejemplos que se presentan unos errores asociados
a los parametros ajustados. Sin embargo no se ha comentado nada
respecto de ellos. Esto se debe a que son errores que arroja el software
R al hacer el ajuste, pero por desconocimiento del funcionamiento de
la rutina que los devuelve, no se ha tratado con ellos.

40

CAPITULO 2. MODELIZACION DE LA IMAGEN

Capitulo 3

Funcionamiento del Plug-In
para DM

En el anterior capitulo se ha desarrollado y puesto a prueba un script que
realiza el ajuste de imagenes sintéticas recibiendo la matriz de datos asociada
y los estimadores iniciales. Tenemos ahora que hacer una herramienta para
DM (cédigo en el apéndice D), que obtenga esta matriz y estos estimadores,
directamente de una micrografia que se visualice en este software, y que, tras
el ajuste, nos muestre la informacion resultante.

Comentaremos el funcionamiento del plug-in probandolo sobre la micro-
grafia de la figura 1.1. Asi, ademas de ver los resultados y el efecto que tiene
en la imagen, discutiremos el proceso de ejecuciéon del plug-in y las opciones
que nos ofrece.

3.1. Uso y resultados: posprocesado de mi-
crografias reales

Cuando abrimos una micrografia en DM encontramos una pantalla como
la que vemos en la figura 3.1, sobre la que podemos hacer un zoom y selec-
cionar una regién de interés que se quiera analizar! (figura 3.2). Con esto,
estamos en disposicién de ejecutar el plug-in (mend “custom” en la barra de
tareas de DM, una vez que se tenga instalado?) y se tendrd la pantalla de la
figura 3.3. Si no se ha seleccionado previamente una region de interés, se to-
mara la micrografia completa como regién a analizar. Hay que ser consciente

INo se entrara en cémo hacer estas operaciones. Se remite a la ayuda del propio software
para ello. Aqui se pretende comentar sélo el funcionamiento del plug-in, no de DM.
2En el apéndice A se detalla este proceso.

41

42 CAPITULO 3. FUNCIONAMIENTO DEL PLUG-IN PARA DM

Image Fitering v x
Fier:

e B: FELHAADF Sum 14 » Bancpass Fer @t v (2]

Live setup (one mage)
Live setup (cross corelaion)

Output
Welcone to DigitalMicrograph. 08/09/2015. 12:53:07

G Resutts [Notes | Debug

Figura 3.1: Micrografia de la figura 1.1 visualizada en DM. Se muestra tambien
el aspecto de la pantalla principal que tiene dicho programa.

CAnRIRN 1}

Lo BN G QA

foplyfter

Live setup fone image)
Live setup (cross corelaion)

Type: Real 4
Size: 2048 x2048

Output
Welcone to DigitalMicrograph. 03/09/2015. 13:14:55

. H#

Figura 3.2: Micrografia de la figura 1.1 habiendo seleccionado una region de in-

terés.

del elevado tiempo de célculo que conllevarfa dicho anélisis (ver seccién 3.2).

3.1.1. Asignaciéon de parametros iniciales

Resulta necesario dar unos valores a los parametros que definen el modelo,
para iniciar el proceso iterativo que nos llevard a un ajuste (refinamiento) de
los mismos. Para esto se proponen dos funcionalidades diferentes, ambas
basadas en la seleccion de los picos contenidos en la regién de interés elegida.

3.1. USO Y RESULTADOS: POSPROCESADO DE MICROGRAFIAS
REALES 43

cess anabss Win
B @R E g | =
5 M*|

the A ORIGEN: (col 1177, il 1018); MARCO: sup 1018, inf 1055, izda 1177, dcha 1260

jow Micoscope Custom Help

<Fteing
s Fhe o) | (%)

Aoplyfter

—_Lm ‘setup (one image)

% ph =
(7] e los parametros icales (sslecgon de icos) de form:
mana] [automatca

Output ax
Welcone to DigitalMicrograph. 03/09,2015, 13:14:55

evento selecsion lanzado 3254

0, Resuits | Notes | Debug b

Figura 3.3: Pantalla tras la ejecucion del plug-in.

Caso de uso: estimacién “manual”

Con esta opcién tendremos que seleccionar uno a uno los picos, usando
regiones de interés rectangulares, hasta tener algo como lo que se muestra en
la figura 3.4. Esta seleccion debe de hacerse con cierto cuidado, puesto que

31 s, Window. Migossope CustomHelp
pm @Rl sl L= bt BiNeQIA /a0 nEE
] - R

A: ORIGEN: col 1177, il 1018); MARCO: sup 1018, inf 1055, zda 1177, dche 1260

| image Fitering v x
Fie

S——
—_u" ‘setup (one image)
Live setup (cross comelation)

Output ax
4120 1.33333 1.5 0 0.346748 A

Figura 3.4: Pantalla tras seleccionar los picos a ajustar (componentes de la miz-
tura que modeliza la region).

los parametros iniciales para cada componente de la mixtura se propondran
a partir de ella. Las medias se elegirdn como las coordenadas del pixel més
brillante dentro de cada regiéon de interés, las desviaciones tipicas como la
cuarta parte de los lados del cuadro que encierra cada pico (considerando la

44 CAPITULO 3. FUNCIONAMIENTO DEL PLUG-IN PARA DM

zona central de una normal con una distancia de 2 sigmas desde su centro),
el coeficiente de correlacion se fija a 0 en todos los casos, y el peso se asigna
segun la proporcionalidad entre la altura del pico, y la diferencia entre el
maximo y minimo brillo en la regién a modelizar. De estas asignaciones,
las desviaciones tipicas son las que requieren una seleccién mas cuidadosa,
debiendo de hacerse de manera que se encuadre toda la zona brillante que
corresponde al pico (remito a la figura 3.5 para una muestra).

Cuando ya se han seleccionado todos los picos, se debe de pulsar la tecla
“escape” para finalizar el proceso, y se nos pide confirmacién para lanzar
el algoritmo de ajuste. Veremos como se abre la consola de Windows y al
finalizar obtendremos la imagen original con un rombo azul sobre cada pico,
y la imagen que generan los datos ajustados (figura 3.5)

i TS

s BNGQIA/xO0|NEE

|
; (Bacoss Fier o) =] ()

Vi V.% *
- C: ORIGEN: (col 1177, il 1018) ; MARCO: sup 1018, inf 1055, izda 1177, deha 1260 I ook

Live setup (one mage)
Live setup (coss corelaion)

Output ax
56 30 2.16667 2 0 0.921131

on de
INFORMACTON
KEVLISTENER

A REH G

B2
09/09/2015

Figura 3.5: Resultado tras el ajuste de la zona seleccionada en la figura 3.2.

Caso de uso: estimacién “automatica”

Para presentar esta otra forma de asignar parametros iniciales, tomaremos
otra regién de la imagen (3.6), lanzamos el plug-in, pero esta vez elegiremos
la seleccién “automatica”. Con esta opcion tendremos que seleccionar sélo
un elemento (el més préximo a la esquina superior izquierda, que es el origen
de coordenadas) de aquellos que tengan periodicidad e intensidad parecidas.
Tras la seleccion de este pico, se nos pedird la periodicidad con el siguiente,
tanto en el eje horizontal como en el vertical. Este dato debe de introducirse
en pixeles (como unidad de longitud), lo cual requiere contarlos sobre la
imagen. En la figura 3.7, tenemos un ejemplo de como serfa esta seleccion.

Confirmando el lanzamiento del algoritmo de ajuste obtenemos el resul-
tado mostrado en la figura 3.8.

3.1. USO Y RESULTADOS: POSPROCESADO DE MICROGRAFIAS
REALES 45

(defan
Apply fiter

—_Lm ‘setup (one image)

EEEEEE R RN
(E AR R R R EDR R R

EEEEEEREERE

25 2.75 0 0.847851
e picos seleccionados: 25

o

| T]
Do @R Bt R e @l = B e s BN G QA /00| NEE
i - Ry

Y e EE——
e e —
Banioss s) =) ()
S——

—_Lm ‘setup (one image)

Output ax
34 54 2.16667 2 0 0.95951
1

Figura 3.7: Seleccion en el modo “automdtico” para la region de la figura 3.6. Se
puede ver que se han consideraado dos conjuntos de elementos con periodicidad y
caracteristicas similares. Uno de ellos el de picos de mayor intensidad y otro el de
los picos menos notables, se selecciona el que estd mdsprorimo al origen y cuando
procede se les introduce, en este caso, una periodicidad de 23 pizeles tanto en la
coordenada horizontal como en la vertical. Este dato tambien de procurarse que
sea una buena aproximacion.

En la siguiente seccion, y sobre esta imagen resultante, vamos a ver como
actuar para obtener distancias entre atomos y pardmetros de ajuste.

46 CAPITULO 3. FUNCIONAMIENTO DEL PLUG-IN PARA DM

e s

& Digital Mirogra

(S @) =) | mageFitering v x

i
Sendpass e i) =] (2]

o rae
EEm = G ORIGEN: cl 458, [| 51|

Image Status v X
image C

Type: Real ¢

Size: 6259

Output ax
20 40 1.33333 1.33333 0 0.559028
43 40 1.33333 1.33333 0 0.559025
nunero de picos seleccionados: 13

mw 12 ||
09/09/2015

Figura 3.8: Resultados del ajuste de la region seleccionada en la figura 3.6.

3.1.2. Obtencion de la informacion

Sobre la imagen producto del ajuste (figura 3.8 o 3.5) se generan objetos
que asocian cada pico a una regién de interés (rombo azul con tamano de
las diagonales igual a la desviacién en z y en y, respectivamente), a los
parametros que definen su normal de ajuste y a un numero identificador
(que se visualiza en las etiquetas anexas en la parte superior de cada rombo).

Para interactuar con esta imagen, basta anadirle una region de interés
tipo puntual o lineal. Si es tipo puntual, y la anadimos en el interior de uno
de los rombos, aparecerd una etiqueta sobre dicho rombo con las medias® y
el peso ajustados. Sobre fuera de los rombos, no tendra efecto. Si la region
de interés que anadimos es lineal, con extremos en el interior de dos rombos
diferentes, nos da la distancia entre las medias correspondientes. En otro
caso, veremos la linea etiquetada con la palabra “error”. En la figura 3.9
vemos un ejemplo de estas utilidades.

Es necesario comentar, por una lado, que en la ventana de “output”
tambien se presentan los resultados simultdneamente. Por otra parte, para
los parametros ajustados se usa el pixel como unidad de longitud, no asi con
las distancias, que se presentan en las unidades en las que esté calibrada la
imagen original.

3Se presentan medias locales, esto es, respecto del origen de la regién seleccionada para
el ajuste, y globales, las cuales corresponden a medidas tomadas respecto del origen de la
micrografia completa.

3.1. USO Y RESULTADOS: POSPROCESADO DE MICROGRAFIAS
REALES 47

Rl HACRo AN WA AR AN] |

oo e | | inoefiteing v x
Fier.

(Bandoess s @iot) +] (2]

Aoplyfter

e

Output
distancia (pixeles): 22.4133 - 0.391224 mm

(42.16) y (52.27)
pixeles): 160011 - 0.279299 nn

CAP UM G

T . 162
SR A g9m0ms

Figura 3.9: Ejemplo de accidn sobre la imagen resultante al anadirle una region

de interés puntual o lineal.

3.1.3. Conclusiones y resultados

Hagamos un breve andlisis de la informacion obtenida. Lanzamos un nue-
vo ajuste, de una region algo mayor, usando el método “manual” de seleccion,
que aunque mas incomodo, nos da unos parametros iniciales mas precisos.
Obtenemos asi la imagen mostrada en la figura 3.10 donde se tiene una me-
dida estimada, entre dos de los atomos de la parte central, de 0,390755 nm.
Este valor es muy proximo al experimental de 0,390 nm.

= Digital Micrograph

p—— Y vx
EEE .,

s st~

Aoplyfter

Live setup (cross comelation)

52 G ORGEN: col 458, 11 [|

seleccion destruido 7264
INFORMACION lanzado 14727
KEYLISTENER destzuido 7265

(31.26) y (52.27)
(pieles): 2273884 - 0.390755 mn a

Figura 3.10: Nuevo ajuste sobre el que se realizan pruebas de medida.

Podemos probar tambien a tomar medidas, por ejemplo, entre los atomos

48 CAPITULO 3. FUNCIONAMIENTO DEL PLUG-IN PARA DM

de los vértices y el central en la celda unidad que se ve en medio de la imagen
(figura 3.11).

(c) Medida estimada de 274 pm. (d) Medida estimada de 255 pm.

Figura 3.11: Distancias entre los dtomos de los vértices y el central en una celda
unidad. Se deduce de las medidas una mayor proximidad entre el dtomo central y
el situado en la esquina superior derecha.

3.2. LIMITACIONES ACTUALES Y PROPUESTA DE DESARROLLO49

3.2. Limitaciones actuales y propuesta de desa-
rrollo

Se han observado algunos errores de ejecucion o de ajuste en algunas
situaciones, en general, en regiones mayores que las aqui tratadas, asi como un
elevado tiempo de cédlculo en estos casos. Basicamente se diria que estos fallos
vienen dados por dos cuestiones. La primera, por una mala aproximacion
de los parametros iniciales, y la segunda, en casos en los que los picos se
presentan demasiado difusos, o tenemos presencia de pixeles con intensidad
notable en los bordes.

Si hablamos de la primera, el método de seleccion de picos que llamamos
“manual”, haciendo un buen encuadre de los mismos, ofrece mejores estima-
ciones para los parametros, puesto que se realizan las asignaciones para cada
pico en particular. Esto se traduce, ademas, en mayor velocidad de conver-
gencia. En cuanto a la segunda, en algunas zonas encontramos que, los picos
de menor intensidad, se ven demasiado planos y difusos llegando practica-
mente a solaparse con sus vecinos. En estas situaciones se puede llegar a
ajustes en los que las normales que los modelicen tengan grandes varianzas o
altos coeficientes de correlacion que no resultan acordes con lo esperado. Por
otro lado, los pixeles en los bordes de la regién a analizar pueden provocar
deformaciones en el ajuste de las columnas de atomos maés proximas, razon
por la cual resulta conveniente realizar una buena seleccion de la regién de
interés, tratando de no incluir mas pixeles de los necesarios, mas ain si se
observan con cierta intensidad.

Se desprende, incluso solo de la lectura de este capitulo, que el proceso
de seleccién de picos puede resultar algo tedioso. Se debe de hacer para cada
uno, con cierto cuidado, y no admite correccién sobre la seleccién que se ha
hecho, por lo que, ante una equivocacion habria que repetir todo el proceso.
Si ademas se ha utilizado la herramienta, es inmediato pensar en como me-
jorar esto. Con este fin, de hecho, se implementd el método de seleccion que
denominamos “automatico”, pero aprovechar la periodicidad de la red no da
buenas estimaciones iniciales. La solucion que planteamos, y que supondria
una evolucién del plug-in es incluirle un detector de picos, adecuado para
el caso, que fuera capaz de reconocerlos en la micrografia y asignar valores
aproximados a los parametros iniciales.

20 CAPITULO 3. FUNCIONAMIENTO DEL PLUG-IN PARA DM

Apéndice A

Instrucciones para la
instalacion, detalles técnicos y
de funcionamiento.

El plug-in ha sido desarrollado sobre Windows 7, usando la version 3.0.1
del software de tratamiento de datos R (open source) y la 2.31.734.0 del
software de procesamiento de imagen Digital Micrograph (desarrollado por la
compania Gatan y disponible en su web).

Esta compuesto por cuatro scripts. Tres de ellos, contienen codigo del len-
guaje de scripting de DM y en ellos se codifican las acciones sobre la imagen,
como puede ser la obtencién de la matriz de datos asociada, lectura de los
datos ajustados, implementaciéon de los “listeners” que controlan la interac-
cién del usuario con la imagen... El cuarto script codifica, en lenguaje R, una
implementacién del algoritmo de Levenberg-Marquardt (funcién nlsLM() de
la libreria im.minpack).

Los archivos mencionados se han denominado como:

» tfmAlgLMPlugln_classListenerAccion.s (DM-script), pero nos referire-
mos a él como “classListener”. En éste se implementa el listener que
ejecuta las acciones para obtener la informacién en la imagen resultante
tras la ejecucién (acciones sobre los rombos que se generan).

» tfmAlgLMPlugln _classMancha.s (DM-script), pero nos referiremos a él
como “classMancha”. Esta es la clase que genera los objetos que asocian
los rombos, los pardmetros de cada normal y la id que los identifica.

» tfmAlgLMPlugln_mainV2.s (DM-script), pero nos referiremos a él co-
mo “main”. Archivo principal de la herramienta.

o1

APENDICE A. INSTRUCCIONES PARA LA INSTALACION,
52 DETALLES TECNICOS Y DE FUNCIONAMIENTO.

» algoritmoLM_V5_DM Definitivo.R (R-script), pero nos referiremos a él
como “Ralgoritmo”. Archivo en el que se procesa y se ajusta la imagen
original.

De estos, es importante no cambiar el nombre del R-script porque el plug-
in se refiere a él internamente mediante este nombre.

La instalacion se lleva a cabo siguiendo estos pasos:

= Por un lado, es evidente que se tiene que tener instalado R, y con el
paquete [m.minpack cargado, el cual no viene por defecto al instalar el
software.

» En la carpeta donde se instala el software (habitualmente, como en
tantos otros programas, es “C:\Archivos de programa\R”) encontra-
mos una carpeta llamada “\bin” que contiene un ejecutable llamado
“Rscript”. La ruta de este ejecutable debe de incluirse como variable
de entorno del sistema operativo, puesto que es el que ejecuta R-scripts
desde la consola y necesitamos tener 1til esta funcién para que el plug-
in pueda hacerlo.

= Debemos de tener en el escritorio una carpeta que denominaremos “plu-
gInDM” que contenga el archivo “Ralgoritmo”. Esta carpeta se utili-
zard ademas para el intercambio de datos entre scripts, via archivos
de texto plano. En ella, tras un ajuste quedaran cuatro ficheros que
contienen la matriz de datos original, los estimadores iniciales, la ma-
triz de datos ajustada y los estimadores ajustados. Estos ficheros seran
borrados en la siguiente ejecucion.

» Instalaremos los scripts “classMancha” y “classListener” como libreria
en DM (en el menu del software File>Install script file>as library).

» Instalaremos el script “main” como plug-in en DM (en el menu File>Install
script)

En cuanto a detalles de funcionamiento debemos mencionar que se van
viendo mensajes en la ventana de output de DM. Algunos son meramente
informativos sobre la ejecucion del codigo, pero otros son interesantes a ni-
vel experimental. En concreto, cuando se realiza la seleccion de picos para
asignar parametros iniciales, podemos ir viendo los parametros que se van
estimando para cada pico (en el siguiente orden: mediax, mediay, sigmax,
sigmay, coeficiente de correlacién y peso) y el numero de picos que se han

93

seleccionado. Esto resulta interesante puesto que no se admite la posibili-
dad de correccion de la region de interés que selecciona uno de ellos. Si se
intenta modificar la misma, se anadiria como un nuevo pico. Por otro lado,
cuando tras una ejecucién visualizamos distancias y resultados, tenemos una
informaciéon méas amplia en la ventana de output.

o4

APENDICE A. INSTRUCCIONES PARA LA INSTALACION,
DETALLES TECNICOS Y DE FUNCIONAMIENTO.

Apéndice B

R-Script para generar imagenes

B.1. Descripcion

Script que implementa las funciones que desarrollan las diversas etapas
del proceso de generacion de imagenes sintéticas. Se pueden ejecutar unas u
otras funciones segiin lo que se quiera presentar.

» Funciones “paramEjemploX()” y “paramManual()”: En estas
funciones se definen explicitamente los pardmetros y el nimero de pi-
xeles usados, para generar las muestras de puntos de las que partimos
para hacer las imagenes sintéticas. Puede resultar poco técnico y repe-
titivo codificarlo asi, pero resulta cémodo para reproducir las mismas
iméagenes en cada ejecucion. En el caso de querer asignar los parame-
tros en el momento, tenemos la funcién “paramManual()” que permite
introducirlos por teclado.

» Funcién “defineParametros()”: Aqui definimos otros pardametros
que son comunes en los diversos ejemplos que propusimos. En concreto,
el offset que aplicamos, el tamano de la muestra de puntos, los nombres
de los ficheros en los que escribiremos y el nimero de componentes
de la mixtura. Este tltimo, no resulta necesario, pero se incluye por
comodidad.

» Funcién “generaMuestra()”: Con ésta se crea una tabla de datos
con dos columnas y 5000 filas (tamano de la muestra). Las columnas
corresponden a coordenadas x e y (continuas) de dichos puntos. Ademas
los representa y devuelve dicha tabla.

Se puede observar que el peso de cada componente sirve para definir
la proporcion de esos 5000 puntos que se van a usar para representar
cada componente de la mixtura.

25

56 APENDICE B. R-SCRIPT PARA GENERAR IMAGENES

» Funcién “reescala()”: Bloque de cédigo que recibe la tabla de da-
tos obtenida en la ejecucién de “generaMuestra()”, y la reescala en un
rango tal que 0 < = < numero de columnas de pizeles y 0 < y <
numero de filas de piveles. En ésta se implementan las expresiones
2.4 y 2.5, que se usan tambien para reescalar de la misma forma los
parametros de la mixtura. Devuelve otra tabla de datos con las nue-
vas coordenadas de puntos, los estimadores reescalados y representa la
muestra en el nuevo rango.

» Funcién “discretizaMuestra()”: Se recibe la nueva tabla de datos
y se discretiza la muestra contando los puntos que tenemos en cada
divisién de la cuadricula que representa el pixelaje (representada en la
funcién anterior). Los resultados de este conteo se devuelven en una
matriz con el mismo numero de filas y columnas que la matriz de pixe-
les.

» Funcién “plotea3d_V2()”: En estas lineas se recibe la matriz (de
frecuencias) fruto de la discretizacién anterior y se representan sus ele-
mentos en la coordenada vertical. El plano horizontal representa el
plano de la imagen con su ancho y alto como coordenadas continuas.
Se tienen graficos del tipo de los que encontramos, por ejemplo, en las
figuras 1.3 0 2.4.

» Funcidén “introduceRuido()”: Segin la imagen que queramos gene-
rar se llama a esta funcion para incluir el ruido correspondiente. Vemos
claramente las dos componentes de ruido incluidas, una proporcional
al offset y otra a los picos. Devuelve una nueva matriz que le anade el
ruido a la obtenida en “discretizaMuestra()”.

» Funcién “escribeDatos()”: Cuando es necesario, o deseado, se pue-
den escribir en ficheros de texto plano (txt) la matriz de frecuencias
(con o sin ruido, y con o sin offset) y los estimadores ya reescalados.
Asi tenemos los datos y parametros de la simulacién como los recibimos
de las imagenes reales via Digital Micrograph.

B.2. Cédigo

generar imagenes
version: ’V5.4°.

library (MASS)#para funcion mvrnorm

B.2. CODIGO

#funcion para definir parametros de muestra y de imagen
3

paramEjemplol <- function(){

NPIXX <<- 25

NPIXY <<- 20

#dataframe para los estimadores, donde el nimero de filas

#es el nimero de componentes de la mixtura

estimadoresIni <<- data.frame(media_x=numeric(0),
media_y=numeric(0),
sigma_x=numeric(0),
sigma_y=numeric(0),
coefCorr=numeric(0),
peso=numeric(0))

EJEMPLO 1######

#definimos aqui los parametros de cinco componentes
estimadoresIni[1,1] <<- -5

estimadoresIni[1,2] <<- 5

estimadoresIni[1,3] <<- 2
estimadoresInil[1,4] <<- 2.5
estimadoresIni[1,5] <<- 0.1
estimadoresIni[1,6] <<- 0.225
estimadoresIni[2,1] <<- 5
estimadoresIni[2,2] <<- 5
estimadoresIni[2,3] <<- 2
estimadoresIni[2,4] <<- 2.5
estimadoresIni[2,5] <<- 0.1
estimadoresIni[2,6] <<- 0.225

estimadoresIni[3,1] <<- -5
estimadoresIni[3,2] <<- -5
estimadoresIni[3,3] <<- 2
estimadoresIni[3,4] <<- 2
estimadoresIni[3,5] <<- 0.
estimadoresIni[3,6] <<- 0

estimadoresIni[4,1] <<- 5
estimadoresIni[4,2] <<- -5
estimadoresIni[4,3] <<-
estimadoresInil[4,4] <<-
estimadoresIni[4,5] <<-
estimadoresIni[4,6] <<-

estimadoresIni[5,1] <<-
estimadoresInil[5,2] <<-
estimadoresIni[5,3] <<-
estimadoresIni[5,4] <<-
estimadoresIni[5,5] <<- -0.1
estimadoresIni[5,6] <<- 0.1

paramEjemplo2 <- function(){

NPIXX <<- 40

NPIXY <<- 20

#dataframe para los estimadores, donde el nimero de filas

#es el nimero de componentes de la mixtura

estimadoresIni <<- data.frame(media_x=numeric(0),
media_y=numeric(0),
sigma_x=numeric(0),

58 APENDICE B. R-SCRIPT PARA GENERAR IMAGENES

sigma_y=numeric(0),
coefCorr=numeric(0),
peso=numeric(0))

EJEMPLO 3######

#definimos aqui los pardmetros de cinco componentes
estimadoresIni[1,1] <<- -10

estimadoresIni[1,2] <<- 5

estimadoresIni[1,3] <<- 2.5
estimadoresIni[1,4] <<- 2
estimadoresIni[1,5] <<- 0.1
estimadoresIni[1,6] <<- 0.2
estimadoresIni[2,1] <<- 0
estimadoresIni[2,2] <<- 5
estimadoresIni[2,3] <<- 2.5
estimadoresIni[2,4] <<- 2

estimadoresIni[2,5] <<- -0.1
estimadoresIni[2,6] <<- 0.2

estimadoresIni[3,1] <<- 10
estimadoresIni[3,2] <<- 5
estimadoresIni[3,3] <<- 2
estimadoresInil[3,4] <<- 2
estimadoresIni[3,5] <<- 0
estimadoresIni[3,6] <<- 0

estimadoresIni[4,1] <<- -5
estimadoresIni[4,2] <<- -5
estimadoresIni[4,3] <<- 2.5
estimadoresInil[4,4] <<- 2
estimadoresIni[4,5] <<- -0.15
estimadoresIni[4,6] <<- 0.06

estimadoresIni[5,1] <<- 5
estimadoresIni[5,2] <<- -5
estimadoresIni[5,3] <<- 2.5
estimadoresIni[5,4] <<- 2
estimadoresIni[5,5] <<- -0.2
estimadoresIni[5,6] <<- 0.06

estimadoresIni[6,1] <<- 20
estimadoresIni[6,2] <<- 5
estimadoresIni[6,3] <<- 2.5
estimadoresIni[6,4] <<- 2
estimadoresIni[6,5] <<- -0.2
estimadoresIni[6,6] <<- 0.2

estimadoresIni[7,1] <<- 15

estimadoresIni[7,2] <<- -5

estimadoresIni[7,3] <<- 2.5

estimadoresInil[7,4] <<- 2

estimadoresIni[7,5] <<- -0.2

estimadoresIni[7,6] <<- 0.08
}

paramManual <- function(){
#editamos/asignamos MANUALMENTE los estimadores/parédmetros...
estimadoresIni <<- data.frame(media_x=numeric(0),
media_y=numeric(0),
sigma_x=numeric(0),
sigma_y=numeric(0),

B.2. CODIGO

29

coefCorr=numeric(0),
peso=numeric(0))

while(sum(estimadoresInil[,6])!=1){
estimadoresIni <<- edit(estimadoresIni)
if (sum(estimadoresInil[,6])!=1){
print("la suma de pesos debe de ser 1. Vuelve a introducirlos.")
}
}

#asignacion MANUAL de parametros de la imagen digital

nPixeles <- data.frame(nPixeles_x=numeric(0) ,nPixeles_y=numeric(0))
nPixeles <- edit(nPixeles)

NPIXX <<- as.numeric(nPixeles[1,1])#numero de columnas de pixeles
NPIXY <<- as.numeric(nPixeles[1,2])#numero de filas de pixeles

}

R R R R # 3

defineParametros <- function(){
txtDatosOUT <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosOUT.txt"
txtEstimadoresOUT <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimadoresOUT.txt"

txtFactorCalidad <<- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\factorCalidadOUT.txt"

#numero de normales(grupos) considerados
G <<- nrow(estimadoresIni)

#nimero de elementos para generar la muestra
NMUESTRA <<- 5000
‘‘montard’’ la mixtura...

offset’’ no me lo coge... estd reservado para algo...

#valor sobre el que se

#...el nombre ¢

offs <<- 500
}#...fin de la funcion ‘‘defineParametros’’

#funcion para generar (y plotear) la muestra normal 2-d

generaMuestra <- function(){
#definimos variables
mu <- matrix(nrow=G,ncol=2)
sigmaArray <- array(dim=c(2,2,G))

#¢‘llenamos’’ los arreglos

i <- numeric(0)

for(i in 1:G6){
muli,] <- c(estimadoresInili,1],estimadoresInili,2])
sigmaArray[,,i] <- matrix(c(estimadoresInil[i,3]"2,

estimadoresInil[i,5] *estimadoresIni[i,4]*estimadoresInili,3],
estimadoresInil[i,5]*estimadoresInili,4]*estimadoresInili,3],

estimadoresInil[i,4]°2),2,byrow=T)
}

#genera muestra normal con 5000 puntos
set.seed(1)
muestra <- mvrnorm(n=NMUESTRA*estimadoresIni[1,6], mu[l,], sigmaArray[,,1])

#...si hay mads de una normal, entra en el if y aflade las demas...
if (G>1){
i<-0
for(i in 2:G){
set.seed (i)

60 APENDICE B. R-SCRIPT PARA GENERAR IMAGENES

muestra2 <- mvrnorm(n=NMUESTRA*estimadoresInil[i,6],muli,],sigmaArrayl[,,i])
muestra <- rbind(muestra,muestra?2)
#muestra <- rbind(muestra, mvrnorm(n=NMUESTRA*estimadoresIni([i,6],muli,],sigmaArrayl[,,i]))

}
}
#ploteamos la muestra generada
plot(muestra, pch=’.’, xlab="coordenada x", ylab="coordenada y")
return(muestra)

#funcion para reescalar (y plotear) muestra y estimadores segin el pixelaje

reescala <- function(muestraOriginal){

#definimos y dimensionamos la nueva muestra reescalada...
muestraRees <- matrix(nrow=nrow(muestraOriginal),ncol=ncol(muestraOriginal))

REESCALAMOS LA MUESTRA
#definimos rangos en la imagen analogica usando los parametros del grafico
xmin <- par()$usr[1]
xmax <- par()$usr[2]
ymin <- par()$usr[3]
ymax <- par()$usr[4]

muestraRees[,1] <- NPIXX*((muestraOriginall[,1]-xmin)/(xmax-xmin))
muestraRees[,2] <- NPIXY*((muestraOriginall,2]-ymin)/(ymax-ymin))

PLOTEAMOS LA NUEVA MUESTRA REESCALADA
par(tck=1, lab=c(NPIXX,NPIXY,1), yaxp=c(0,NPIXY,1), xaxp=c(0,NPIXX,1))
plot (muestraRees, pch=’.’, xlab="pixeles x", ylab="pixeles y")

##4##4# REESCALAMOS ESTIMADORES ###############H#H#
#definimos los estimadores reescalados haciendo una copia de los originales...
estimadoresIniRees <- estimadoresIni

#reescalamos la media y desviacidén en x

estimadoresIniRees[,1] <- NPIXX*((estimadoresIni[,1]-xmin)/(xmax-xmin))
estimadoresIniRees[,3] <- NPIXX*((estimadoresInil,3])/(xmax-xmin))
#reescalamos media y desviacién en y

estimadoresIniRees[,2] <- NPIXY*((estimadoresInil[,2]-ymin)/(ymax-ymin))
estimadoresIniRees[,4] <- NPIXY*((estimadoresInil[,4])/(ymax-ymin))

#cargamos muestra y estimadores reescalados en una lista para devolver
reescalados <- list(muestraRees,estimadoresIniRees)

return(reescalados)

#funcion para obtener las frecuencias absolutas

discretizaMuestra <- function(muestraReesc){
frecAbsPorPix <- matrix(nrow=NPIXY,ncol=NPIXX)

#bucle para recorrer filas/pixeles de la matriz
for(fil in 1:(NPIXY)){

B.2. CODIGO 61

#bucle para recorrer columnas/pixeles de la matriz
for(col in 1:(NPIXX)){
#las condiciones en el which, para el eje vertical, tienen en cuenta que
#el extremo superior del rango en y coincide con la posicion (1,1) de la
#matriz. Asi grafico y matriz tienen coherencia visual
frecAbsPorPix[fil,col] <- length(which(muestraReesc[,1]>=(col-1)&
muestraReesc[,1]<(col)&
muestraReesc[,2] <(NPIXY-(fil-1))&
muestraReesc[,2]>=(NPIXY-fil)
))

return(frecAbsPorPix)

}

#funcion para graficar una matriz de frecuencias

plotea3d_V2 <- function(frecuencias){
frecuencias <- as.matrix(frecuencias)

pixeles_x <- seq(0.5,ncol(frecuencias)-0.5,by=1)
pixeles_y <- seq(0.5,nrow(frecuencias)-0.5,by=1)

eventos <- matrix(nrow=nrow(frecuencias),ncol=ncol(frecuencias))
eventos <- frecuencias[pixeles_y+0.5,pixeles_x+0.5]

persp(pixeles_y,pixeles_x,eventos, zlab="brillo", zlim=c(0,max(frecuencias)), phi=30, theta=60)

#funcion para introducir ruido

introduceRuido <- function(frecuencias){

#ruido de fondo proporcional al offset. En este caso, el 2/ de dicho offset
ruidoFondo <- (2/100)*offs

for(£fil in 1:NPIXY){
for(col in 1:NPIXX){
#afladimos el ruido de poisson proporcional al brillo de cada pixel
#y el asociado al offset
lambda <- frecuencias[fil,col]
frecuencias[fil,col] <- (rpois(1,lambda))+runif(1,min=-ruidoFondo,max=ruidoFondo)
}
}

return(frecuencias)

HHEHHEHHERHREREHEHEERHER
#funcion que escribe datos en txt

escribeDatos <- function(frecuencias){
write.table(frecuencias, txtDatosOUT)
write.table(estimadoresIniReescalados, txtEstimadoresOQUT)

62 APENDICE B. R-SCRIPT PARA GENERAR IMAGENES

A MAIN ######## #Hit#

#DEFINIMOS PARAMETROS

#...definimos los ‘‘estimadoresIni’’ y pixelaje de uno u otro ejemplo...
#paramEjemplol ()

paramEjemplo2()

#paramManual ()

#...y demas variables y constantes que usaremos...
defineParametros()

#GENERAMOS LA MUESTRA
muestra <- generaMuestra()

#REESCALAMOS MUESTRA Y ESTIMADORES ORIGINALES DE ACUERDO CON LOS PIXELES QUE TENEMOS
reesc <- reescala(muestra)

muestraReescalada <- as.data.frame(reesc[1])

estimadoresIniReescalados <- as.data.frame(reesc[2])

#DISCRETIZAMOS LA MUESTRA Y OBTENEMOS FRECUENCIAS DE APARICION POR PIXEL
matrizFrecuencias <- discretizaMuestra(muestraReescalada)

#...afladimos offset...

#...y ploteamos...

plotea3d_V2(matrizFrecuencias+offs)

#INTRODUCIMOS RUIDO

#introducimos ruido de poisson...

matrizFrecuenciasNoise <- introduceRuido(matrizFrecuencias)
plotea3d_V2(round(matrizFrecuenciasNoise+offs))

#ESCRIBIMOS DATOS Y PARAMETROS
escribeDatos (round (matrizFrecuenciasNoise+offs))

Apéndice C

R-Script para ajuste de
imagenes sintéticas

C.1. Descripcion

Script que implementa las funciones para desarrollar el ajuste de las
imagenes sintéticas.

» Funciones “estimIniEjemploX()” y “estimIniManual()”: Aqui se
definen los parametros con los que se inicia el algoritmo. En “estiml-
niEjemploX()” se tienen predefinidos los usados para los ejemplos des-
critos en el trabajo y si se quieren proponer en el momento, la funcién
“estimIniManual()” nos ofrece la posibilidad. Se llama a una u otra
funcién dependiendo de lo que se quiera.

» Funcion “datosEntrada()”: En esta funcién se definen el nombre
de los archivos de texto de donde leeremos la informacién, el offset, la
matriz de datos y los parametros con los que se ha generado la imagen
sintética. Interesara acceder a estos para compararlos con los resultados
del ajuste.

» Funcion “convierteMatrizATabla()”: Se recibe una matriz y se
reescribe como tabla (“dataframe”) de tres columnas (coordenada x,
coordenada y, brillo). Resulta necesaria porque R ejecuta ciertas funcio-
nes, como “nlsLM()” (implementa el algoritmo de Levenberg-Marquardt),
para objetos de este tipo.

» Funciones “procesaTablaEntrada()”: En este bloque se tiene co-
mo argumento de entrada una tabla, en concreto la generada en la
funciéon “convierteMatrizATabla()”. Se procesan los datos restando el

63

64

APENDICE C. R-SCRIPT PARA AJUSTE DE IMAQENES
SINTETICAS

offset (definido en “datosEntrada()” como el minimo valor de la matriz
de datos), y normalizdndolos. Para esto ultimo se procede dividiendo
cada brillo por la suma de los mismos, con lo que se normaliza tal que
la suma de todos los brillos sea igual a 1.

Funciones “algoritmoLMLibreria()”: Hacemos uso de la funcién
“nlsLM()”, de la librerfa “Im.minpack”, para realizar el ajuste. Es-
ta libreria contiene diversas instrucciones para ajustes de funciones
no lineales. Una de ellas, la mencionada, desarrolla el algoritmo de
Levenberg-Marquardt.

Este bloque de codigo actiia escribiendo, de manera dinamica, la formu-
la que describe la mixtura de normales en cada caso e incuyendo otro
offset como grado de libertad. Este sera una correccién para el que lleve
la imagen original. Con la férmula completa se procede al ajuste y a
la obtencién de resultados, cargados en un lista que es la variable que
devuelve (habiendo recibido la tabla de datos obtenida en “procesaTa-
blaEntrada()”).

Funciones “procesaTablaSalida()”: En esta funcién se recibe una
tabla de datos (la obtenida tras el ajuste) y se devuelve la matriz de
los datos ajustados. La tabla se procesa de manera inversa a como
se hizo en “procesaTablaEntrada()”, sumando el offset que tenfamos
en la matriz de datos orginal, y multiplicando por la suma de brillos
(tambien de la matriz original). Asi tenemos unos datos ajustados del
mismo orden que los originales.

Funciones “datosSalida()”: Escribimos los datos de salida, en dis-
tintos ficheros, y de dos maneras distintas, como matrices y como co-
lumna (esto ultimo por necesidades que surgieron cuando se escribio el
script en Digital Micrograph)

Funciones “plotea3d_V2()”: Con esta funcién ploteamos una ma-
triz como grafico en tres dimensiones.

script para algoritmo Levenberg-Marquardt
version V3.4

#libreria que implementa la funcién nlsLM()
library(minpack.1lm)

C.2. cODICO

65

#FUNCIONES PARA LEER DEFINIR ESTIMADORES INICIALES Y OTROS PARAMETROS USADOS

estimIniEjemplol <- function(){
#definimos estimadores iniciales para el EJEMPLO 1
ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),

}

ESTIMADORES _INICIALES[1,1]
ESTIMADORES_INICIALES[1,2]
ESTIMADORES_INICIALES[1,3]
ESTIMADORES_INICIALES[1,4]
ESTIMADORES_INICIALES[1,5]
ESTIMADORES _INICIALES[1,6]

ESTIMADORES_INICIALES([2,1]
ESTIMADORES_INICIALES[2,2]
ESTIMADORES_INICIALES[2,3]
ESTIMADORES_INICIALES[2,4]
ESTIMADORES_INICIALES[2,5]
ESTIMADORES _INICIALES([2,6]

ESTIMADORES_INICIALES([3,1]
ESTIMADORES_INICIALES[3,2]
ESTIMADORES_INICIALES[3,3]
ESTIMADORES_INICIALES([3,4]
ESTIMADORES_INICIALES[3,5]
ESTIMADORES _INICIALES([3,6]

ESTIMADORES_INICIALES([4,1]
ESTIMADORES_INICIALES[4,2]
ESTIMADORES_INICIALES([4,3]
ESTIMADORES_INICIALES[4,4]
ESTIMADORES_INICIALES[4,5]
ESTIMADORES _INICIALES([4,6]

ESTIMADORES _INICIALES([5,1]
ESTIMADORES_INICIALES[5,2]
ESTIMADORES_INICIALES[5,3]
ESTIMADORES_INICIALES[5,4]
ESTIMADORES_INICIALES[5,5]
ESTIMADORES_INICIALES[5,6]

<<- 17
<<- 14
<<-1
<<-1
K- 0
<K= 0

<<= 17
k- 5
-1
<<- 1
k-0
k-0

<<= 12
<<- 10
<K-1
-1
K- 0
<<- 0

media_y=numeric(0),
sigma_x=numeric(0),
sigma_y=numeric(0),
coefCorr=numeric(0),
peso=numeric(0))

estimIniEjemplo2 <- function(){
#definimos estimadores iniciales para el EJEMPLO 2
ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),

ESTIMADORES_INICIALES([1,1]
ESTIMADORES_INICIALES[1,2]
ESTIMADORES_INICIALES[1,3]
ESTIMADORES_INICIALES[1,4]
ESTIMADORES_INICIALES[1,5]
ESTIMADORES_INICIALES[1,6]

<<= 7
<<- 14
<<- 1
-1
K- 0
<<- 0.1

media_y=numeric(0),
sigma_x=numeric(0),
sigma_y=numeric(0),
coefCorr=numeric(0),
peso=numeric(0))

APENDICE C. R-SCRIPT PARA AJUSTE DE IMAQENES
66 SINTETICAS

ESTIMADORES_INICIALES[2,1] <<- 17
ESTIMADORES_INICIALES[2,2] <<- 14
ESTIMADORES_INICIALES[2,3] <<- 1
ESTIMADORES_INICIALES[2,4] <<- 1
ESTIMADORES_INICIALES[2,5] <<- 0
ESTIMADORES_INICIALES[2,6] <<- 0

ESTIMADORES_INICIALES[3,1] <<- 24
ESTIMADORES_INICIALES[3,2] <<- 14
ESTIMADORES_INICIALES[3,3] <<- 1
ESTIMADORES_INICIALES[3,4] <<- 1
ESTIMADORES_INICIALES[3,5] <<- O
ESTIMADORES_INICIALES[3,6] <<- 0

ESTIMADORES_INICIALES[4,1] <<- 10
ESTIMADORES_INICIALES[4,2] <<- 5
ESTIMADORES_INICIALES[4,3] <<- 1
ESTIMADORES_INICIALES[4,4] <<- 1
ESTIMADORES_INICIALES[4,5] <<- O
ESTIMADORES_INICIALES[4,6] <<- 0

ESTIMADORES_INICIALES[5,1] <<- 17
ESTIMADORES_INICIALES[5,2] <<- 5
ESTIMADORES_INICIALES[5,3] <<- 1
ESTIMADORES_INICIALES[5,4] <<- 1
ESTIMADORES_INICIALES[5,5] <<- O
ESTIMADORES_INICIALES[5,6] <<- 0

ESTIMADORES_INICIALES[6,1] <<- 28
ESTIMADORES_INICIALES[6,2] <<- 12
ESTIMADORES_INICIALES[6,3] <<- 1
ESTIMADORES_INICIALES[6,4] <<- 1
ESTIMADORES_INICIALES[6,5] <<- 0
ESTIMADORES_INICIALES[6,6] <<- 0

ESTIMADORES_INICIALES([7,1] <<- 24
ESTIMADORES_INICIALES[7,2] <<- 5
ESTIMADORES_INICIALES[7,3] <<- 1
ESTIMADORES_INICIALES[7,4] <<- 1
ESTIMADORES_INICIALES[7,5] <<- 0
ESTIMADORES_INICIALES[7,6] <<- 0

estimIniManual <- function(){

ESTIMADORES_INICIALES <<- data.frame(media_x=numeric(0),
media_y=numeric(0),
sigma_x=numeric(0),
sigma_y=numeric(0),
coefCorr=numeric(0),
peso=numeric(0))

#editamos/asignamos los estimadores/parédmetros iniciales...

while (sum(ESTIMADORES _INICTALES$peso) !=1){

ESTIMADORES_INICIALES <<- edit (ESTIMADORES_INICIALES)
if (sum (ESTIMADORES_INICIALES$peso) !=1){
print("la suma de pesos debe de ser 1. Vuelve a introducirlos.")

datosEntrada <- function(){
txtDatosIN <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosOUT.txt"
txtEstimadoresIni <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimadoresOUT.txt"

C.2. cODICO 67

#variable para la matriz de datos

DATOS_IN <<- read.table(txtDatosIN)

#variable para los pardmetros que han generado la imagen sintética,
#para poder compararlos con los que obtengamos como resultado del ajuste
ESTIMADORES_REALES <<- read.table(txtEstimadoresIni)

#definimos el offset
offs <<- min(DATOS_IN)

#FUNCION PARA CONVERTIR LA MATRIZ DE DATOS EN UNA TABLA

convierteMatrizATabla <- function(matrizImagen){
#escribimos los datos en forma de tabla en vez de como matriz...
tablaDatos <- data.frame(x=numeric(0),y=numeric(0),z=numeric(0))

#...los cogemos y organizamos de la matriz °‘frecuencias’’...
for(col in 1l:ncol(matrizImagen)){
for(fil in 1:nrow(matrizImagen)){
tablaDatos <- rbind(tablaDatos,c(col-0.5,fil-0.5,matrizImagen[nrow(matrizImagen)-£fil+1,col]))
}
}
names (tablaDatos) <- c("x","y","z")
return(tablaDatos)

#FUNCION PARA RESTAR EL OFFSET Y NORMALIZAR LOS DATOS (TABLA)

procesaTablaEntrada <- function(tabla){
#restamos el offset a los datos...
tabla[,3] <- tablal[,3]-offs

#Normalizamos
sumaDatosEntrada <<- sum(tablal,3])

tabla[,3] <- tabla[,3]/sumaDatosEntrada

return(tabla)

#FUNCION PARA ALGORITMO DE LEVENBERG-MARQUARDT
R
algoritmoLMLibreria <- function(tablaDatos){

x <- tablaDatos$x

y <- tablaDatos$y

z <- tablaDatos$z

#definimos variable para almacenar los paraametros ajustados
estimParametros <- ESTIMADORES_INICIALES

#y el nimero de componentes de la mixtura

nComp <- nrow(ESTIMADORES_INICIALES)

cotaSup <- c()

cotalnf <- c()

for(componente in 1:nComp){
valorMx <- estimParametros[componente,1]

68

APENDICE C. R-SCRIPT PARA AJUSTE DE IMAQENES
SINTETICAS

valorMy <- estimParametros[componente,2]
valorSx <- estimParametros[componente,3]
valorSy <- estimParametros[componente,4]
valorRho <- estimParametros[componente,5]
valorPeso <- estimParametros[componente,6]
mx <- paste("mx",componente, sep="")

my <- paste("my",componente, sep="")

sx <- paste("sx",componente, sep="")

sy <- paste("sy",componente, sep="")

rho <- paste("rho",componente, sep="")
peso <- paste("peso",componente, sep="")

#la funcion expresada como cadena de caracteres

funcionNormal <-

paste("(",paste(peso),"*(1/(2%pix",paste(sx,"*",sy),"*sqrt(1-",paste(rho),""2)))*(exp(
(-1/(2*(1-",paste(rho),""2)))*(((x-",paste(mx),") "2/",paste(sx),""2)+
((y-",paste(my),")"2/",paste(sy),""2)-(2+",paste(rho) ,"*(x-",paste(mx) ,") *
(y-",paste(my),")/(",paste(sx,"*",sy),")))) D")

ini <- list(mx=valorMx,my=valorMy,sx=valorSx,sy=valorSy,rho=valorRho,peso=valorPeso)
names (ini) [1]<-paste (mx)

names (ini) [2]<-paste (my)

names (ini) [3]<-paste(sx)

names (ini) [4]<-paste(sy)

names (ini) [6]<-paste(rho)

names (ini) [6]<-paste(peso)

cotaSup <- c(cotaSup, valorMx+7,valorMy+7,valorSx+5,valorSy+5,0.99,5)
cotalnf <- c(cotalnf,valorMx-7,valorMy-7,valorSx-5,valorSy-5,-0.99,0)

if (componente==1){
#generamos la primera componente de la mixtura mas un offset
formula <- paste("z ~",paste("of"),"+",funcionNormal)

inicio <- c(of=min(tablaDatos[,3]),ini)
cotaSup <- c(min(tablaDatos[,3])+(max(tablaDatos[,3])/2), cotaSup)
cotalnf <- c(min(tablaDatos[,3])-(max(tablaDatos[,3])/2), cotalnf)

}

if (componente>1){
#sumamos las demads componentes al modelo completo
formula <- paste(formula,"+",funcionNormal)
inicio <- c(inicio,ini)

}

}#fin del for

ajuste <- nlsLM(formula,

data=tablaDatos,

start=inicio,

upper=cotaSup,

lower=cotalnf,

control=nls.lm.control(maxiter=70,nprint=0) ,#ptol, ftol, factor...
trace=T

)

print (summary(ajuste))

tablaDatosAjustados <- data.frame(tablaDatos$x,tablaDatos$y,predict(ajuste))
estimParametros <- matrix(coef(ajuste) [-1],nrow=nComp,byrow=T)

C.2. cODICO 69

offsAjustado <- coef(ajuste) [1]
errorOffsAjustado <- summary(ajuste)$coefficients[1,2]
errorEstimParametros <- matrix(summary(ajuste)$coefficients[-1,2],nrow=nComp,byrow=T)

valoresAjuste <-
list(tablaDatosAjustados,estimParametros,errorEstimParametros,offsAjustado,error0ffsAjustado)

return(valoresAjuste)

I3

}fin de la funcion ‘‘algoritmoLMLibreria’’

#FUNCION PARA PROCESAR LA TABLA DE DATOS DE SALIDA

procesaTablaSalida <- function(tablaDatosAjuste){

#¢‘desnormalizamos’’ los valores ajustados y sumamos el offset que
habiamos restado en ‘‘procesaTablaEntrada’’

tablaDatosAjuste[,3] <- tablaDatosAjustel[,3]*sumaDatosEntrada
tablaDatosAjuste[,3] <- round(tablaDatosAjuste[,3]+offs)

#..escribimos la tabla como matriz...
#...la definimos igual que la de los datos de entrada...
matrizAjuste <- DATOS_IN

for(col in 1:ncol(DATOS_IN)){
for(£fil in 1:nrow(DATOS_IN)){

matrizAjuste[fil,col] <- tablaDatosAjuste[which(
(tablaDatosAjuste[,1]==(co0l-0.5))&(tablaDatosAjuste[,2]==(nrow(DATOS_IN)-fil+0.5))),3]

}

return(matrizAjuste)

#funcion para escribir datos

datosSalida <- function(estimAjustados,datosAjustados,errorEstimAjustados){
txtDatosOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\datosImgDM_IN.txt"
txtEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\estimImgDM_IN.txt"
txtErrorEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\errorEstimImgDM_IN.txt"

write.table(estimAjustados,txtEstimadoresOUT, row.names=F, col.names=F)
write.table(datosAjustados,txtDatosOUT, row.names=F, col.names=F)
write.table(errorEstimAjustados,txtErrorEstimadoresOUT, row.names=F, col.names=F)

#esribimos datos y estimadores en una columna, habiendolos tomado de la matriz por filas
txtDatosO0UTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaDatosImgDM_IN.txt"
txtEstimadores0UTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaEstimImgDM_IN.txt"
txtErrorEstimadores0UTColumna <- "C:\\Users\\Usuario\\Desktop\\txtsPruebasR\\ColumnaErrorEstimImgDM_IN.txt"
vectorDatos <- numeric(0)

vectorEstim <- numeric(0)

vectorErrorEstim <- numeric(0)

for(fil in 1:nrow(datosAjustados)){
for(col in 1:ncol(datosAjustados)){
vectorDatos <- c(vectorDatos,datosAjustados[fil,col])

APENDICE C. R-SCRIPT PARA AJUSTE DE IMAQENES
70 SINTETICAS

}
}

write.table(as.matrix(vectorDatos),txtDatosOUTColumna, row.names=F, col.names=F)

for(£fil in 1:nrow(estimAjustados)){
for(col in 1:ncol(estimAjustados)){
vectorEstim <- c(vectorEstim,estimAjustados([fil,col])
vectorErrorEstim <- c(vectorErrorEstim,errorEstimAjustados[fil,col])
}
}
write.table(as.matrix(vectorEstim),txtEstimadoresOUTColumna, row.names=F, col.names=F)
write.table(as.matrix(vectorErrorEstim) ,txtErrorEstimadores0UTColumna, row.names=F, col.names=F)

#funcion para ploteaar en 3d una matriz

L s s s s s s R

plotea3d_V2 <- function(frecuencias){
frecuencias <- as.matrix(frecuencias)

pixeles_x <- seq(1,ncol(frecuencias))
pixeles_y <- seq(l,nrow(frecuencias))

eventos <- matrix(nrow=nrow(frecuencias),ncol=ncol(frecuencias))
eventos <- frecuencias[pixeles_y,pixeles_x]

persp(pixeles_y,pixeles_x,eventos, zlab="brillo",zlim=c(0,max(frecuencias)), phi=30, theta=60)

###4 MAIN ######## RN R R R

#RECIBO DATOS DE ENTRADA: estimadores iniciales, matriz de datos y tamanio de la imagen
datosEntrada()

estimIniEjemplol()

#estimIniEjemplo2()

#estimIniManual ()

#PONEMOS LA MATRIZ DE ENTRADA COMO TABLA
tablaDatosIn <- convierteMatrizATabla(DATOS_IN)

#PROCESAMOS LA TABLA
tablaDatosInProc <- procesaTablaEntrada(tablaDatosIn)

#EJECUTAMOS EL ALGORITMO pasando la tabla de datos y el gradiente ‘grad’’ (de UNA normal)
#iniciamos el cronémetro para medir el tiempo

t <- proc.time()

nuevosDatos <- algoritmoLMLibreria(tablaDatosInProc)

proc.time()-t

tablaDatosAjustados <- as.data.frame(nuevosDatos[1])
estimadoresAjustados <- as.data.frame(nuevosDatos[2])
errorEstimadoresAjustados <- as.data.frame(nuevosDatos[3])
offsetAjustado <- as.numeric(nuevosDatos[4])
errorOffsetAjustado <- as.numeric(nuevosDatos[5])

C.2. cODICO

71

#PROCESAMOS LA TABLA DE DATOS AJUSTADOS Y LA ESCRIBIMOS COMO MATRIZ
DATOS_OUT <- procesaTablaSalida(tablaDatosAjustados)
#plotea3d_V2(DATOS_0OUT)

#ESCRIBIMOS LOS DATOS AJUSTADOS...
datosSalida(estimadoresAjustados,DATOS_OUT,errorEstimadoresAjustados)

72

APENDICE C. R-SCRIPT PARA AJUSTE DE IMAQENES
SINTETICAS

Apéndice D
Cdédigo para el Plug-In

Compuesto por cuatro ficheros, uno de ellos en R y tres en DM-scripting
(clase “Mancha” y “Accion” instalados como librerfas y “main” como plug-
in). Remito al apéndice A, donde se detalla el proceso de instalacién.

D.1. Descripcion de los DM-script

= “main”: Aqui se encuentra el nticleo y la mayor parte del cédigo.
Contiene las siguientes funciones y clases,

e Funcién “seleccionaROI()”: Funcién que captura la regién de
interés a analizar.

e Funcién “visualizaROI()”: Con esta, se amplia y muestra la
regién seleccionada en “seleccionaROI()”.

e Funcién “escribelmg()”: Escribe en un fichero txt la matriz de
datos correspondiente a la region seleccionada.

e Funcién “lanzaR()”: Aqui realizamos la llamada al R-script.

e Funcién “leelmg()”: Leemos la matriz de datos asociados (de
un txt que genera el R-script) a la imagen ajustada.

e Funcién “generaManchas()”: Se leen los estimadores ajusta-
dos (de otro txt que genera el R-script) y se asignan a objetos de
la clase “Mancha”. Estos objetos, a su vez, se cargan en una lista.

e Funcién “borrarFicheros()”: Elimina algunos ficheros usados
en la ejecucion de la carpeta “pluginDM”.

e Clase “Seleccion”: Esta clase es un listener que implementa
las rutinas para la captura de parametros iniciales por seleccion

73

74 APENDICE D. CODIGO PARA EL PLUG-IN

de picos. Hay dos métodos, uno para la seleccion que llamamos
“manual” y otro para la denominada como “automatica’”.

e Clase “AccionTeclado”: Clase que implementa el key-listener
para finalizar la seleccion de picos al pulsar la tecla “escape”. Si se
pulsa otra tecla, lanza un aviso de que se debe de pulsar “escape”
al finalizar.

e Funcién “main()”: Como es habitual en programacion, aqui te-
nemmos la secuencia de llamadas a las distintas funciones para
realizar el proceso completo.

s Clase “Mancha”: Clase que genera objetos en los que se asocian los
picos de la imagen a los parametros ajustados. Contiene, en el siguien-
te orden, las variables de clase, los habituales getters y setters (segin
la terminologia usada por los desarrolladores Java) y el constructor.
A continuacién, dos funciones (“asignaROI()” y “asignaCentro()”) que
generan las regiones de interés romboidales y puntuales que se sitian
sobre cada pico en la imagen final tras una ejecucién. Y por ultimo,
“creaEtiqueta()” es el método encargado de desplegar y recoger la eti-
queta sobre cada rombo, mostrando la ID del pico o los parametros de
ajuste.

= Clase “Accion”: Esta clase corresponde al listener que se activa sobre
la imagen generada tras el ajuste. Implementa las funciones mediante
las cuales, al anadir una region de interés puntual o lineal sobre los
rombos, se obtienen parametros de ajuste o distancias, respectivamente.

D.1.1. Cédigo DM: “main”

/%
SCRIPT TFM - main
*/

/% sokorskokokskok sk ok sk ok sk sk ok ok sk ok sk sk sk ok sk sk ke ok sk sk ok sk ok sk ok sk ok
--- VARIABLES GLOBALES

sk ki skokokskok ok sk sk ok sksk sk skok ok kol kskokkkok ok okskok ok /
//variables para la imagen original
image img

imageDisplay imgDisp

//variable para la ROI seleccionada
image imgROI

imageDisplay imgROIDisp

//variable para la ‘¢
image imgROIAjustada

imgROI’’ ajustada

D.1. DESCRIPCION DE LOS DM-SCRIPT 5

//...definimos las rutas para los archivos de texto que usaremos...

string archivoDatosOUT = "C:/Users/Usuario/Desktop/plugInDM/datosImgDM_OUT.txt"

string archivoEstimOUT = "C:/Users/Usuario/Desktop/plugInDM/estimImgDM_OUT.txt"

string archivoDatosIN = "C:/Users/Usuario/Desktop/plugInDM/datosImgDM_IN.txt"

string archivoEstimIN = "C:/Users/Usuario/Desktop/plugInDM/estimImgDM_IN.txt"

string archivoDatosINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaDatosImgDM_IN.txt"

string archivoEstimINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaEstimImgDM_IN.txt"

string archivoErrorEstimIN = "C:/Users/Usuario/Desktop/plugInDM/errorEstimImgDM_IN.txt"

string archivoErrorEstimINColumna = "C:/Users/Usuario/Desktop/plugInDM/ColumnaErrorEstimImgDM_IN.txt"
string archivoResultados = "C:/Users/Usuario/Desktop/plugInDM/estimadores_IN.txt"

// definimos el numero de normales como variable global

number nNormales = 0

// y el origen de la ROI que ajustaremos

number origenROI_x, origenROI_y

number marcoR0ISup, marcoROIInf, marcoRO0IIzda, marcoROIDcha
//creamos una lista para las manchas

object listaManchas = alloc(ObjectList)

//...y una variable para las selecciones para estimadores iniciales
string cadenaEstimadoresIni = ""

//ids para los listeners que usaremos

number idListenerEstimaciones

number idListenerResultados

/% KoKk ok ok ok ok kKoK ok ok ok ok K KoK oK ok ok ok o K K KoK oK ok ok KKK KKK KKKk kKK K/

/% kokokokokok ok ok ok ok ook oK ok ok ok ook oK ok K ok oK oK ok Kok KoK oK ok oK

—--- FUNCION PARA SELECCIONAR ROI DE INTERES

sk sk ok ok ok ok ok ok ok sk ok K sk ok ok ok ok sk sk KoKk ok ok kK % /

void seleccionaR0I(){

//asignamos la ROI a la variable (tipo image) global.

//De ella obtendremos los datos de cada pixel para el procesado
imgROI = img[]

//variables para definir la ROI seleccionada y su limite/marco
ROI ROISelec = newROI()

if (imgDisp.imageDisplayCountROIs()==0 || imgDisp.imageDisplayCountROIs()>1){
if (imgDisp.imageDisplayCountR0Is()==0){

number nPix_x, nPix_y

getSize(img,nPix_x,nPix_y)
ROISelec.ROISetRectangle(0,0,nPix_y-1,nPix_x-1)

}

if (imgDisp.imageDisplayCountROIs()>1){
okDialog("selecciona UNA sola ROI para el ajuste")
exit (0)

}

}

else{

ROISelec = imageDisplayGetROI(imgDisp,0)

}

ROISelec.ROIGetRectangle (marcoROISup,marcoR0IIzda,marcoROIInf ,marcoR0IDcha)
ROISelec.ROIGetVertex(0,origenROI_x,origenR0OI_y)

//presentamos la ROI seleccionda como nueva imagen... */
showImage (imgROI)
imgROIDisp = imgROI.imagegetimagedisplay(0)
setname (imgROI, "ORIGEN: ("+"col "+origenROI_x+", fil "+origenROI_y+") "+"; MARCO: "
+"sup "+marcoROISup+", inf "+marcoROIInf+", izda "+marcoROIIzda+", dcha "+marcoROIDcha)

76 APENDICE D. CODIGO PARA EL PLUG-IN

}//cierre de ‘‘seleccionaR0I’’

/* 3k >k 3k >k 3k >k 3k 3k ok 3k >k 3k ok 3k ok >k 3k >k 3k >k 5k >k 3k 5k >k 3k >k >k ok >k k >k %k >k %k %k >k >k >k k */

/% ook skok s kok ok s kok sk ok sk stk ok o skok s ok ok ok o skok ok ok sk ok ok ok ko ok ok sk ok ok ok ok
--- FUNCION PARA VISUALIZAR IMAGEN AMPLIADA

kb ok ok ok ok skok ok ok ok sk ok ok ok skok o kok ok s skok sk skok Kok ok skok ok okok Kok ok ok /
void visualizaROI(image imgLocal){

//tamanio de la zona de visualizacion

number pantallaAncho, pantallaAlto

//tamanio de la ventana

number ventanax, ventanay

//posicion de la ventana

number ventanaPosx=10, ventanaPosy=25

GetScreenSize(pantallaAncho, pantallaAlto)
showImage (imgLocal)

setWindowPosition(imglocal,ventanaPosx, ventanaPosy)
setWindowSize (imgLocal,pantallaAncho-(2*ventanaPosx), pantallaAlto-(2*ventanaPosy))

}

/% okokok ok kK Kok ok ok ok ok K K Kok ok ok ok o K K Kok ok ok ok o K Kk ok ok

—--- FUNCION PARA ESCRIBIR DATOS DE LA IMAGEN EN FICHERO

kKKK oK oK ok ok o KK KK oK oK ok o K K KoK oK oK ok KK KKK oKk kR Rk ok /

void escribelmg(image imgLocal){

number refArchivoEscritura = CreateFileForWriting(archivoDatosOUT)
number nPixX,nPixY

number nCol,nFil

getSize(imglocal,nPixX,nPixY)

for(nFil=0;nFil<nPixY;nFil++){

for (nCol=0;nCol<nPixX;nCol++){

writeFile(refArchivoEscritura, ""+getPixel(imgLocal,nCol,nFil)+" ")
if (nCol==(nPixX-1)){

writeFile(refArchivoEscritura, "\n")

}

}

}

closeFile(refArchivoEscritura)
}//cierre de la funcion ‘‘escribelmg’’
/% koo Rk skkokok Rk kR Rk KKKk

[F REFAKFAAFAA K KA KKK KA K KA K KA A K KA K KA KK A KKK K

--- FUNCION PARA LANZAR EL SCRIPT EN R

KA A KA KK A KA KK AR KA A KA KKK KA KKAKK KKK K [

void lanzaR(){

if (twoButtonDialog("Confirmar lanzamiento de algoritmo de ajuste.","continuar","cancelar")){
string llamada="cmd /c Rscript C:/Users/Usuario/Desktop/plugInDM/algoritmoLM_V5_DM_Definitivo.R"
launchExternalProcess(1llamada)

}

else{

if (doesFileExist (archivoDatosOUT)==1){

deleteFile(archivoDatosOUT)

}

if (doesFileExist (archivoEstim0UT)==1){

deleteFile(archivoEstimOUT)

D.1. DESCRIPCION DE LOS DM-SCRIPT 7

}

if (doesFileExist (archivoDatosIN)==1){
deleteFile(archivoDatosIN)

}

if (doesFileExist (archivoResultados)==1){
deleteFile(archivoResultados)

}

exit (0)

¥

}//cierre de ‘‘lanzaR()’’

/% KRk KRRk KK KRRk KKK KR KKK KRR KRR KKK %/

/% okokokokok ok o ok ok ok ok ok ok ok o o koK ok ok ok ok o o ok ok ok ok ok ok o o ok koK ok ok ok ok ok

--- FUNCION PARA LEER DATOS DE IMAGEN GENERADOS (CON R)

stk sk sk sk ok ok o ok ok sk sk ok ok ok o sk ok sk sk sk ok o ok sk sk sk sk sk sk sk o ko sk sk sk sk ok ok ok ok /

void leeImg(){

//definimos dimensiones de la imagen ajustada: iguales que las de la ROI seleccionada

number sizex, sizey

getSize (imgROI,sizex,sizey)

image imgAjuste := Reallmage("ORIGEN: ("+"col "+origenROI_x+", fil "+origenROI_y+") "+";
MARCO: "+"sup "+marcoROISup+", inf "+marcoROIInf+", izda "+marcoROIIzda+", dcha
"+marcoR0IDcha,4,sizex,sizey)

//definimos la referencia del archivo del que leemos

number refArchivoLectura = OpenFileForReading(archivoDatosINColumna)
//variable donde cargaremos las lienas del txt que leemos

string linea = " "

number contadorFil=0, contadorCol=0, contador=1, valor

while(contador<=(sizex*sizey)){
readFilelLine(refArchivolectura,linea)
valor = linea.val()

setPixel (imgAjuste, contadorCol,contadorFil,valor)

if (contador¥%sizex==0){

contadorCol=0

contadorFil++//controla el numero y cambio de fila
¥

else{

contadorCol++//controla el cambio de columna

}

contador++//controla el recorrido del txt

}
closeFile(refArchivoLectura)

imgROIAjustada := imgAjuste
} // fin de la funcion ‘‘leeFichero’’
/% sokskokkokokok s kok s ok skok s skok ok o skok ok ok ok o skok sk ok ko s kok sk kok ok okok sk kokk ok ok /

[% sokokskokoskkokok sk sk sk ok ook sk ok ok ook sk ok ok ook sk ok ok sk sk ok ok o sk sk ok ok o ook ok
--- FUNCION PARA GENERAR OBJETOS CLASE ¢ ‘MANCHA’’

stk ks sk ok sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok sk sk kok sk sk ok sk okok ok /
void generaManchas(imageDisplay displayLocal){

//ing.selectImage ()
//ChooseMenultem("File", "Import Data...",)
number refArchivoLectura = OpenFileForReading(archivoEstimINColumna)

78 APENDICE D. CODIGO PARA EL PLUG-IN

number refArchivolLecturaErrores = OpenFileForReading(archivoErrorEstimINColumna)
string linea=""
string lineaError=""

string resultados = "ID mediax mediay sigmax sigmay coefCorr peso \n"

number cuentalineas=1

number cuentaParam=1

number n=nNormales

number mx, my, sx, sy, rho, peso
number emx, emy, esx, esy, erho, epeso

//iniciamos bucle para recoger los parametros ajustados y asignarlos a objetos de la clase ‘‘Mancha’’

while(cuentalineas<=(n*6)){
readFileLine(refArchivolectura,linea)
readFileLine(refArchivoLecturaErrores,lineaError)

if (cuentaLineas%6==0){

cuentaParam=1

peso=linea.val()

epeso=lineaError.val()

//cada 6 lineas leidas creamos un objeto...

object manchal = alloc(Mancha).init(mx,my,sx,sy,rho,peso,emx,emy,esx,esy,erho,
epeso,origenR0I_x, origenROI_y)

resultados.stringAppend(scriptObjectGetID(manchal)+" "+mx+" "+my+" "+sx+"
Il+sy_+_ll Il+rho+ll ll+peso+|l\nll)

//...lo asignamos a la lista

listaManchas.AddObjectToList (manchal)

//...y seteamos y graficamos su ROI asociada

manchal.asignaR0I(displayLocal)

manchal.asignaR0ICentro(displayLocal)

}

elseq{

if (cuentaParam==1) mx=linea.val()

if (cuentaParam==1) emx=lineaError.val()

if (cuentaParam==2) my=linea.val()

if (cuentaParam==2) emy=lineaError.val()

if (cuentaParam==3) sx=linea.val()

if (cuentaParam==3) esx=lineaError.val()

if (cuentaParam==4) sy=linea.val()

if (cuentaParam==4) esy=lineaError.val()

if (cuentaParam==5) rho=linea.val()

if (cuentaParam==5) erho=lineaError.val()

cuentaParam++

}
cuentalineas++
}

closeFile(refArchivolLectura)
closeFile(refArchivolLecturaErrores)

number refArchivoResultados = CreateFileForWriting(archivoResultados)
writeFile(refArchivoResultados, resultados)
closeFile(refArchivoResultados)

}

/% skskokokokok sk ok ok ok ok ook ok ok ok ok ook ok ok ok ook K ok K ok oK ook ok ok oK ok ok ok oK ok oK
--- FUNCION para borrar los txts usados durante la ejecucion

D.1. DESCRIPCION DE LOS DM-SCRIPT 79

ko stk ok ok ks ok ook sk ok sk sk ok ok sk ok ok sk sk ok ok kok ok ok kb ok ok /
void borrarFicheros(){

deleteFile(archivoEstimIN)

deleteFile(archivoDatosINColumna)

deleteFile(archivoEstimINColumna)

deleteFile(archivoErrorEstimIN)

deleteFile(archivoErrorEstimINColumna)

}

/% skokokokokskok sk oksk ok sk ok sk ok sk sk sk ok ok sk sk sk ok ok sk ok ok

--- CLASE para listener para la seleccion de manchas y obtencion de parametros iniciales
sokoksk sk ok sk ok sk ok skskok sk sk sk sk ok sk sk sk skokskokskkokskokok ok ok ok /

class Seleccion : object{

void estimadores(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_f12, ROI roiEstim){
image imgSeleccion = getFrontImage() []

if (roiEstim.ROIIsRectangle ()==1){
number t,b,r,1l
number ox, oy
string linea =
number mediax, mediay
number peso=1

number sizex, sizey
getSize (imgROI,sizex,sizey)

nn

number sumaOffset = sizex*sizey*min(imgROI)
number aproxOffset = min(imgROI)
number maxROI = max(imgROI)

roiEstim.ROISetVolatile(0)

roiEstim.ROIGetRectangle(t,1,b,r)
roiEstim.R0IGetVertex(0,o0x,0y)

max (imgSeleccion, mediax, mediay)
peso = (max(imgSeleccion)-aprox0ffset)/(maxROI-aproxOffset)
linea = ""+(ox+mediax+1)+" "+(oy+mediay+1)+" "+((r-1)/4)+" "+((b-t)/4)+" "+0+" "+peso+"\n"

cadenaEstimadoresIni.stringAppend(linea)
nNormales++

result("\n ----- \n"+cadenaEstimadoresIni+"numero de picos seleccionados: "+nNormales+"\n ------ \n")
}

else{

okDialog("la ROI debe ser Rectangular")

disp.imageDisplayDeleteROI(roiEstim)

}

}//fin ‘‘estimadores()’’

void estimadoresAutom(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_£12, ROI roiEstim){

image imgSeleccion = getFrontImage() []

80 APENDICE D. CODIGO PARA EL PLUG-IN

if (roiEstim.ROIIsRectangle()==1){
number t,b,r,1l

number ox, oy

string linea = ""

number mediax, mediay, mediaxO, mediayO
number periodox, periodoy

number peso=1

number sumaOffset = (marcoROIInf-marcoROISup)*(marcoROIDcha-marcoR0IIzda)*min(imgROI)
number aproxOffset = min(imgROI)

number maxROI = max(imgROI)

getNumber ("periodo en x: ", 23, periodox)
getNumber ("periodo en y: ", 23, periodoy)

roiEstim.ROISetVolatile(0)

roiEstim.ROIGetRectangle(t,1,b,r)
roiEstim.ROIGetVertex(0,o0x,0y)

max (imgSeleccion, mediax0, mediayO)

peso = (max(imgSeleccion)-aproxOffset)/(maxROI-aprox0ffset)
mediax = mediaxO

mediay = mediayO
while((oy+mediay+1)<(marcoROIInf-marcoROISup)){
while((ox+mediax+1)<(marcoROIDcha-marcoR0IIzda)){

linea = ""+(ox+mediax+1)+" "+(oy+mediay+1)+" "+((r-1)/4)+" "+((b-t)/4)+" "+0+" "+peso+"\n"

cadenaEstimadoresIni.stringAppend(linea)
nNormales++

mediax = mediax+periodox

}

mediax = mediax0

mediay = mediay+periodoy

}

result("\n ----—- \n"+cadenaEstimadoresIni+"numero de picos seleccionados: "+nNormales+"\n ------ \n")
}

else{

okDialog("la ROI debe ser Rectangular")
disp.imageDisplayDeleteROI(roiEstim)
}

}//fin de ‘‘estimadoresAuto()’’

Seleccion(object self){

result("\n evento seleccion lanzado "+self.ScriptObjectGetID())

}

“Seleccion(object self){

result("\n evento seleccion destruido "+self.ScriptObjectGetID())

}

}//fin de la clase ‘‘seleccion’’

D.1. DESCRIPCION DE LOS DM-SCRIPT 81

/% sokokoksk ok sk sk ok sk ok ok sk sk sk ok ok ok sk o sk ok ok sk sk sk ok ok sk sk sk sk ok sk ok sk ok ok ok ok ok oK

--- CLASE para el key-listener que finaliza la seleccion de picos
sk sk ok sk ok ok sk sk sk sk ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk ok sk okokkok ok /

Class AccionTeclado : object

{
Number SelfTOKEN

number escalaCalibracion, origenCalibracion
string unidadesCalibracion

void KeepToken(object self, number tok) SelfTOKEN = tok

void setCalibracion(object self, number escCal, number origCal, string udsCal){
escalaCalibracion = escCal

origenCalibracion = origCal

unidadesCalibracion = udsCal

}

number controlTecla(Object self, ImageDisplay disp, Object keydesc)
{

number b_keyhandled = 0

Result ("\n Key pressed:"+keydesc.GetKeyDescriptor())

Result (" ("+keydesc.GetDescription()+")")

If (keydesc.MatchesKeyDescriptor("esc"))

{

//...destruimos keylistener...
disp.ImageDisplayRemoveKeyHandler (SelfTOKEN)

//...destruimos listener para la seleccion de picos...
disp.imageDisplayRemoveEventListener (idListenerEstimaciones)

b_keyhandled = 1

//...eliminamos rois en el display...

while (O < disp.ImageDisplayCountROIs()){

ROI r = disp.ImageDisplayGetROI(O)
disp.ImageDisplayDeleteROI(r)

}

//...escribimos en fichero los estimadores...
number ref = createFileForWriting(archivoEstimQUT)
writeFile(ref, cadenaEstimadoresIni)
closeFile(ref)

//////lanzamos script R...

lanzaR()

//////1leemos los datos ajustados...

leeImg()

//////...y mostramos la imagen refinada...

showImage (imgROIAjustada)

//////... y generamos los objetos "mancha" sobre ella...
generaManchas (imgROIDisp)

object acc = alloc(Accion)
acc.setListaManchas(listaManchas)
acc.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)

number idListenerResultados = imgROIDisp.imageDisplayAddEventListener(acc,"roi_added,roi_end_track:muestralnfo")
borrarFicheros()

}

else{

82 APENDICE D. CODIGO PARA EL PLUG-IN

okDialog("Para finalizar la seleccion pulsa escape")
}

Return b_keyhandled

}

AccionTeclado(object self){

result("\n evento KEYLISTENER lanzado "+self.ScriptObjectGetID())
okDialog("Cuando acabes las selecciones pulsa ESC")

}

“AccionTeclado(object self){

result("\n evento KEYLISTENER destruido "+self.ScriptObjectGetID())
}

}

[1111717777717777777777777177777777777777/71777/71/777/
11777717777771777771777777771777777777777/77/717777777/
//17/77777777/7777 MAIN [/////777/177/777/7/177/7/77/7/7177/
1177771777777777771777777771777777777177/77/77777/7777/
void main(){

//////...borramos archivos de la anterior ejecucion...
if (doesFileExist (archivoDatos0QUT)==1){

deleteFile(archivoDatosOUT)

}

if (doesFileExist (archivoEstimQUT)==1){

deleteFile(archivoEstimQUT)

}

if (doesFileExist (archivoDatosIN)==1){

deleteFile(archivoDatosIN)

}

if (doesFileExist (archivoResultados)==1){

deleteFile(archivoResultados)

}

I3

//////asignamos a
img.getFrontImage ()

imgDisp = img.imageGetImageDisplay (0)

//////...y tomamos la calibracion de la imagen original...

number escalaCalibracion, origenCalibracion

string unidadesCalibracion

img.imageGetDimensionCalibration(0, origenCalibracion, escalaCalibracion,unidadesCalibracion,1)

img’’ la imagen en pantalla

(X3

//////asignamos a
//////...y la seteamos en el imageDisplay
seleccionaR0I()

visualizaROI(imgROI)

//////escribimos en un txt los datos de la ROI
escribeImg(imgROI)

imgROI’’ la ROI seleccionada...
¢ “imgROIDisp’’

//////introducimos parametros iniciales...
//...objeto listener para seleccionar los picos...
object estimaciones = alloc(Seleccion)

if (twoButtonDialog("Introduce los parametros iniciales

(seleccion de picos) de forma:","manual","automatica")){
idListenerEstimaciones =
imgROIDisp.imageDisplayAddEventListener (estimaciones,"roi_end_track:estimadores")

}

D.1. DESCRIPCION DE LOS DM-SCRIPT 83

else{
okDialog("selecciona el primer elemento de cada conjunto
(el mas proximo a la esquina superior izquierda)")
idListenerEstimaciones =
imgROIDisp.imageDisplayAddEventListener (estimaciones, "roi_end_track:estimadoresAutom")

}

//...objeto key listener pra finalizar la seleccion de picos...

object controlFinal = Alloc(AccionTeclado)

controlFinal.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)
number idControlFinal = imgROIDisp.ImageDisplayAddKeyHandler(controlFinal, "controlTecla")
controlFinal.setCalibracion(escalaCalibracion, origenCalibracion, unidadesCalibracion)
controlFinal.KeepToken(idControlFinal)

}//...fin del main(Q)...

main()

D.1.2. Cédigo DM: clase “Mancha”

/% sokokok sk ok ok ok sk ook ok ok sk ok ok oK o ok ok o ok ook o ok ok K oK o ok o ok ok ok ok o ok ok K ok oK o sk ok ok ok o ok ok oK
—--- CLASE para objetos ‘‘Mancha’’: cada una de las normales
sk sk ok sk ok kb sk o sk ok ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk ok kR okok ok ok /
class Mancha : object{

//...variables de clase...

//...los parmetros de la normal...

number mu_x, mu_y, sigma_x, sigma_y, rho, peso/*, IDListax/
//...y sus desviaciones...

number emu_x, emu_y, esigma_x, esigma_y, erho, epeso
number IDMancha, IDROIMancha

ROI ROIMancha

ROI ROICentro

number origenROI_x, origenROI_y

number cuentaClick

//...getters y setters...

void setCuentaClickIni(object self) cuentaClick=2
number getMux(object self) return mu_x

number getMuy(object self) return mu_y

ROI getROIMancha(object self) return ROIMancha

void setCuentaClick(object self) cuentaClick++

//...constructor

object init(object self, number mx, number my, number sx, number sy, number ro, number
pes,number emx, number emy, number esx, number esy, number ero, number epes, number oROI_x,

number oROI_y){

mu_X = mx

mu_y = my
sigma_x = sX
sigma_y = sy
rho = ro

peso = pes
emu_x = emx

84 APENDICE D. CODIGO PARA EL PLUG-IN

emu_y = emy
esigma_x = esx
esigma_y = esy
erho = ero
epeso = epes

origenROI_x = oROI_x
origenROI_y = oROI_y

IDMancha = ScriptObjectGetID(self)

//...inicializamos variable *°¢

setCuentaClickIni(self)

cuentaClick’’ al crear el objeto

return self

}

void asignaROI(object self, imageDisplay displayLocal){
ROIMancha = newROI()

ROIMancha.ROIAddVertex (mu_x-sigma_x , mu_y)
ROIMancha.ROIAddVertex(mu_x , mu_y+sigma_y)
ROIMancha.ROIAddVertex (mu_x+sigma_x , mu_y)
ROIMancha.ROIAddVertex(mu_x , mu_y-sigma_y)
ROIMancha.ROISetColor(0,0,1)
ROISetIsClosed(ROIMancha,1)

ROISetVolatile(ROIMancha,O)

ROIMancha.ROISetLabel("ID: "+IDMancha)
displayLocal.imageDisplayAddROI (ROIMancha)
}

void asignaROICentro(object self, imageDisplay displayLocal){
ROICentro = newROI()

ROICentro.ROISetPoint (mu_x,mu_y)

ROISetVolatile(ROICentro,0)

displayLocal.imageDisplayAddROI(ROICentro)
}

void creaEtiqueta(object self){
number selec = cuentaClick¥%2

if (selec==1){

number mu_xG = mu_x+origenROI_x

number mu_yG = mu_y+origenROI_y

ROIMancha.R0ISetLabel("ID: "+IDMancha+"\n media_x: "+mu_x+" +- "+emu_x+"\n media_y:
"+mu_y+" +- "+emu_y+"\n media_x (global): "+(mu_xG)+"\n media_y (global):
"+mu_yG+"\n peso: "+peso+" +- "+epeso)

result("\n ------ \n")

result("\n ID: "+IDMancha)

result("\n media x: " + mu_x + " +- "+emu_x)
result("\n media y: " + mu_y + " +- " +emu_y)
result("\n media x (global): " + (mu_x+origenROI_x))
result("\n media y (global): " + (mu_y+origenROI_y))
result("\n peso: " + peso + " +- "+epeso)

result("\n sigmax: "+sigma_x+" +- "+esigma_x)
result("\n sigmay: "+sigma_y+" +- "+esigma_y)
result("\n coef. Corr.: "+rho+" +- "+erho)
result("\n ------ \n")

D.1. DESCRIPCION DE LOS DM-SCRIPT 85

}

if (selec==0){
ROIMancha.ROISetLabel("ID: "+IDMancha)
}

}
}

D.1.3. Cédigo DM: clase “Accion”

/% skokokskokskok sk ok sk sk ok sk sk ok sk ok ok ok ok sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok ok ok ko okokok ok /
/* *x¥*x*x CLASE ACCION implementa el listener para distancias y parametros *x**x */
/% kskckokskokskokskok sk sk ok sk ok sk ok sk sk ok sk ok sk ok sk sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk sk ok sk sk sk ok sk ok sk ok kokskokok ok /
class Accion : object{

object listaManchas

number escalaCalibracion, origenCalibracion
string unidadesCalibracion

void setListaManchas(object self, object lista) listaManchas = lista

void setCalibracion(object self, number escCal, number origCal, string udsCal){
escalaCalibracion = escCal

origenCalibracion = origCal

unidadesCalibracion = udsCal

}

void muestralnfo(Object self, Number e_fl, ImageDisplay disp, Number r_fl, Number r_£12, ROI r){

//condicional para ejecutar la accion de mostrar parametros con una ROI PUNTUAL
if (r.ROIIsPoint ()==1){

number Xx,y
number contador=0
number idMancha

r.ROIGetPoint(x,y)

//bucle para recorrer ‘‘listaManchas’’ y buscar la que corresponde al punto (x,y)
for (contador=0 ; contador<listaManchas.sizeOfList() ; contador++){

//asignamos la id de cada mancha en ‘‘listaManchas’’ a la variable idMancha
idMancha = ScriptObjectGetID(listaManchas.ObjectAt(contador))

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto
if (getScriptObjectFromID(idMancha) .getROIMancha() .ROIContainsPoint (x,y)==1){

getScriptObjectFromID(idMancha) .setCuentaClick()
getScriptObjectFromID(idMancha) . creaEtiqueta()

break
}

}

}//fin del ¢‘if’’ para ROI-punto

//condicional para ejecutar la accion de medir distancia con una ROI LINEA

86 APENDICE D. CODIGO PARA EL PLUG-IN

if (r.ROIIsLine()==1){

number idManchal, idMancha2
number x1, y1, x2, y2, distancia
number contador = 0, continuaContador = 0

r.ROIGetLine(x1,y1,x2,y2)
if (listaManchas.sizeOfList ()>1){

//bucle para recorrer ‘‘listaManchas’’ y buscar la que corresponde al punto (x1,yl) y (x2,y2)
for(contador=0; contador<listaManchas.sizeOfList(); contador++){

idManchal = ScriptObjectGetID(listaManchas.ObjectAt(contador))

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto
if (getScriptObjectFromID(idManchal) .getROIMancha() .ROIContainsPoint (x1,y1)==1){
break

}
}

for(contador=0; contador<listaManchas.sizeOfList(); contador++){
idMancha2 = ScriptObjectGetID(listaManchas.ObjectAt(contador))

//y accedemos a la ROI asociada al objeto de clase Mancha que contenga al punto
if (getScriptObjectFromID(idMancha2) .getROIMancha() .R0IContainsPoint (x2,y2)==1){
break

}
}

if (idManchal==idMancha2 ||

getScriptObjectFromID(idMancha2) .getROIMancha() .ROIContainsPoint (x2,y2)==0 ||
getScriptObjectFromID(idMancha?2) . getR0IMancha() .ROIContainsPoint (x2,y2)==0){

r.ROISetLabel("error")

}

else{

object ml = getScriptObjectFromID(idManchal)

object m2 = getScriptObjectFromID(idMancha?2)

distancia = ((ml.getMux()-m2.getMux())**2+(ml.getMuy()-m2.getMuy ())**2)**(1/2)

r.ROISetLabel("distancia: "+distancia*escalaCalibracion+" "+unidadesCalibracion)

result("\n ------- \n")

result("\n extremos: ("+x1+","+yl+") y ("+x2+","+y2+")")

result("\n distancia (pixeles): "+distanciat+" - "+distancia*escalaCalibracion+" "+unidadesCalibracion)
result("\n ------- \n")

}

}

else{

okDialog("Solo hay un elemento. No podemos medir distancias.")

}

}//fin del ¢‘if’’ para medida de distancia (ROI-linea)
}//fin de metodo ¢ ‘muestralnfo’’
Accion(object self){

result("\n evento INFORMACION lanzado "+self.ScriptObjectGetID())
}

D.2. DESCRIPCION DEL R-SCRIPT 87

“Accion(object self){
result("\n evento INFORMACION destruido "+self.ScriptObjectGetID())
}

}//cierre de la clase ‘‘Accion’’

D.2. Descripciéon del R-script

Remitimos a la explicacion del cédigo del apéndice C puesto que imple-
menta las mismas funciones. Hay pequenos cambios respecto de este otro para
adaptarlo al funcionamiento junto con DM. Por ejemplo, aqui los parame-
tros iniciales se leen de un fichero de texto, se anade alguna salida de datos
por pantalla tras la ejecucion del algoritmo, y se tiene en cuenta que ahora,
para imagenes digitales, el origen se tiene en la esquina superior izquierda,
mientras que el codigo presentado en C se desarrollé considerando el origen
en la esquina inferior izquierda.

D.2.1. Cédigo R

script para algoritmo Levenberg-Marquardt
version V5 para DM

library (minpack.1lm)

#FUNCION PARA LEER DATOS DE UN TXT

datosEntrada <- function(){
txtDatosIN <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\datosImgDM_OUT.txt"
txtEstimadoresIni <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\estimImgDM_OUT.txt"

DATOS_IN <<- read.table(txtDatosIN)
ESTIMADORES_INICIALES <<- read.table(txtEstimadoresIni)

#definimos el offset
offs <<- min(DATOS_IN)

#FUNCION PARA CONVERTIR LA MATRIZ DE DATOS EN UNA TABLA
convierteMatrizATabla <- function(matrizImagen){
#escribimos los datos en forma de tabla en vez de como matriz...
tablaDatos <- data.frame(x=numeric(0),y=numeric(0) ,z=numeric(0))
#...los cogemos y organizamos de la matriz ¢ ‘frecuencias’’...
for(col in 1:ncol(matrizImagen)){
for(fil in 1:nrow(matrizImagen)){

88 APENDICE D. CODIGO PARA EL PLUG-IN

tablaDatos <- rbind(tablaDatos,c(col-0.5,fil-0.5,matrizImagen[fil,col]))
¥
}
names (tablaDatos) <- c("x","y","z")
return(tablaDatos)

}

HEHHHHHHEEEEEE
#FUNCION PARA RESTAR EL OFFSET Y NORMALIZAR LOS DATOS (TABLA)
HEHHHHHHEEEE R
procesaTablaEntrada <- function(tabla){

#restamos offset a los datos...

tabla[,3] <- tablal[,3]-offs

#Normalizamos. ..
sumaDatosEntrada <<- sum(tablal,3])
tabla[,3] <- tablal,3]/sumaDatosEntrada

return(tabla)

#FUNCION PARA ALGORITMO DE LEVENBERG-MARQUARDT

algoritmoLMLibreria <- function(tablaDatos){

x <- tablaDatos$x
y <- tablaDatos$y
z <- tablaDatos$z

#HE#H S

#generamos la formula completa
estimParametros <- ESTIMADORES_INICIALES
#y el nimero de componentes de la mixtura
nComp <- nrow(ESTIMADORES_INICIALES)
cotaSup <- c()

cotaInf <- c()

for (componente in 1:nComp){

valorMx <- estimParametros[componente,1]
valorMy <- estimParametros[componente,2]
valorSx <- estimParametros[componente,3]
valorSy <- estimParametros[componente,4]
valorRho <- estimParametros[componente,5]
valorPeso <- estimParametros[componente,6]
mx <- paste("mx",componente, sep="")

my <- paste("my",componente, sep="")

sx <- paste("sx",componente, sep="")

sy <- paste("sy",componente, sep="")

rho <- paste("rho",componente, sep="")
peso <- paste("peso",componente, sep="")

#la funcion expresada como cadena de caracteres
funcionNormal <- paste("(",paste(peso),"*(
1/(2*pix" ,paste(sx,"*",sy), "*sqrt(1-",paste(rho),""2)))*(exp(
(-1/(2x(1-",paste(rho) ,"~2)))*(((x-",paste(mx),")"2/",paste(sx),""2)
+((y-",paste(my),")"2/",paste(sy),"~2)-(2%" ,paste(rho) ,"*(x-",paste(mx),")
(y-",paste(my),")/(",paste(sx,"",sy),")))))")

D.2. DESCRIPCION DEL R-SCRIPT 89

ini <- list(mx=valorMx,my=valorMy,sx=valorSx,sy=valorSy,rho=valorRho,peso=valorPeso)
names (ini) [1]<-paste (mx)

names (ini) [2]<-paste(my)

names (ini) [3]<-paste(sx)

names (ini) [4]1<-paste(sy)

names (ini) [6]<-paste(rho)

names (ini) [6]<-paste(peso)

cotaSup <- c(cotaSup, valorMx+7,valorMy+7,valorSx+7,valorSy+7,0.99,5)
cotaInf <- c(cotalnf,valorMx-7,valorMy-7,valorSx-7,valorSy-7,-0.99,0)

if (componente==1){
formula <- paste("z ~",paste("of"),"+",funcionNormal)

inicio <- c(of=min(tablaDatos[,3]),ini)
cotaSup <- c(min(tablaDatos[,3])+(max(tablaDatos[,3])/2), cotaSup)
cotalnf <- c(min(tablaDatos[,3])-(max(tablaDatos[,3])/2), cotalnf)

}

if (componente>1){
#sumamos las demds componentes al modelo completo
formula <- paste(formula,"+",funcionNormal)
inicio <- c(inicio,ini)

}

}#fin del for

#...lanzamos el ajuste con la férmula generada...
ajuste <- nlsLM(formula,
data=tablaDatos,
start=inicio,
#par=1list (mx=5,my=3,sx=1,sy=1,rho=0.8),
upper=cotaSup,
lower=cotalnf,
control=nls.lm.control (maxiter=70,nprint=0) ,#ptol, ftol, factor...

trace=T
#jac=as.expression(calculaGradiente())
)

#print (summary(ajuste))

tablaDatosAjustados <- data.frame(tablaDatos$x,tablaDatos$y,predict(ajuste))
estimParametros <- matrix(coef(ajuste) [-1],nrow=nComp,byrow=T)

offsAjustado <- coef(ajuste) [1]

errorOffsAjustado <- summary(ajuste)$coefficients([1,2]

errorEstimParametros <- matrix(summary(ajuste)$coefficients[-1,2],nrow=nComp,byrow=T)

cat ("parametros ajustados: \n")

cat("media x media y sigma x sigma y coefCorr peso")
print (estimParametros)

cat("offset para la mixtura \n")

print (offsAjustado)

Sys.sleep(5)

valoresAjuste <- list(tablaDatosAjustados,estimParametros,errorEstimParametros,offsAjustado,error0OffsAjustado)

90 APENDICE D. CODIGO PARA EL PLUG-IN

return(valoresAjuste)

¢

}fin de la funcion ‘‘algoritmoLMLibreria’’

#FUNCION PARA PROCESAR LA TABLA DE DATOS DE SALIDA

HHHHH R

procesaTablaSalida <- function(tablaDatosAjuste){
#¢‘desnormalizamos’’ los valores ajustados y sumamos el offset que
habiamos restado en ‘°‘procesaTablaEntrada’’
tablaDatosAjuste[,3] <- tablaDatosAjuste[,3]*sumaDatosEntrada
tablaDatosAjuste[,3] <- round(tablaDatosAjuste[,3]+offs)

matrizAjuste <- matrix(data=tablaDatosAjustel[,3],nrow=nrow(DATOS_IN) ,ncol=ncol(DATOS_IN),byrow = FALSE)
return(matrizAjuste)

#funcion para escribir datos

datosSalida <- function(estimAjustados,datosAjustados,errorEstimAjustados){
txtDatosOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\datosImgDM_IN.txt"
txtEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\estimImgDM_IN.txt"
txtErrorEstimadoresOUT <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\errorEstimImgDM_IN.txt"

write.table(estimAjustados,txtEstimadoresOUT, row.names=F, col.names=F)
write.table(datosAjustados,txtDatosOUT, row.names=F, col.names=F)
write.table(errorEstimAjustados,txtErrorEstimadoresQUT, row.names=F, col.names=F)

#esribimos datos y estimadores en una columna, habiendolos tomado de la matriz por filas
txtDatosOUTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaDatosImgDM_IN.txt"
txtEstimadoresOUTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaEstimImgDM_IN.txt"
txtErrorEstimadores0UTColumna <- "C:\\Users\\Usuario\\Desktop\\plugInDM\\ColumnaErrorEstimImgDM_IN.txt"
vectorDatos <- numeric(0)

vectorEstim <- numeric(0)

vectorErrorEstim <- numeric(0)

for(£fil in 1:nrow(datosAjustados)){
for(col in 1:ncol(datosAjustados)){
vectorDatos <- c(vectorDatos,datosAjustados[fil,col])
}
}

write.table(as.matrix(vectorDatos) ,txtDatosOUTColumna, row.names=F, col.names=F)

for(£fil in 1:nrow(estimAjustados)){
for(col in 1:ncol(estimAjustados)){
vectorEstim <- c(vectorEstim,estimAjustados[fil,col])
vectorErrorEstim <- c(vectorErrorEstim,errorEstimAjustados[fil,col])
}
}
write.table(as.matrix(vectorEstim),txtEstimadoresO0UTColumna, row.names=F, col.names=F)
write.table(as.matrix(vectorErrorEstim) ,txtErrorEstimadores0UTColumna, row.names=F, col.names=F)

D.2. DESCRIPCION DEL R-SCRIPT 91

MAIN
B g S s S s S s s s s s s s
#RECIBIMOS DATOS Y ESTIMADORES

datosEntrada()

#PONEMOS LA MATRIZ DE ENTRADA COMO TABLA

tablaDatosIn <- convierteMatrizATabla(DATOS_IN)

#PROCESAMOS LA TABLA

tablaDatosInProc <- procesaTablaEntrada(tablaDatosIn)

#EJECUTAMOS EL ALGORITMO

t <- proc.time()

nuevosDatos <- algoritmoLMLibreria(tablaDatosInProc)
proc.time()-t

tablaDatosAjustados <- as.data.frame(nuevosDatos[1])
estimadoresAjustados <- as.data.frame(nuevosDatos[2])
errorEstimadoresAjustados <- as.data.frame(nuevosDatos[3])
offsetAjustado <- as.numeric(nuevosDatos[4])
errorOffsetAjustado <- as.numeric(nuevosDatos[5])

#PROCESAMOS LA TABLA DE DATOS AJUSTADOS Y LA ESCRIBIMOS COMO MATRIZ
DATOS_OUT <- procesaTablaSalida(tablaDatosAjustados)

#ESCRIBIMOS LOS DATOS AJUSTADOS...
datosSalida(estimadoresAjustados,DATOS_OUT,errorEstimadoresAjustados)

92

APENDICE D. CODIGO PARA EL PLUG-IN

Apéndice E

Otras R-funciones y R-scripts

E.1. Prueba de normalidad

E.1.1. Descripciéon

Script usado en la seccion 2.1 para realizar el test de Shapiro-Wilk a
distintas filas y columnas (en concreto, aqui se presenta para los picos visibles
en la figura 2.1) de la matriz de datos.

E.1.2. Cddigo en R

#cargamos la matriz en la variable m
m<-read.table("C:\\Users\\Usuario\\Desktop\\TFM\\MiTrabajoV1i\\ImagenReal\\datosImgDM_OUT.txt")
#le restamos el minimo de m a todos los elementos

m<-m-min(m)# (max (m) -min(m)) /min (m)

#y la ponemos como variable tipo matriz (por defecto es data.frame)

m<-as.matrix(m)

#tomamos una fila de m

mFila <- m[7,]

#y la ploteamos

x <- seq(l:length(mFila))

#ploteamos la grafica del perfil de superficie
plot(x,mFila, xlab="pixeles x", ylab="brillo")

#cogemos la zona que comprende cada pico

mFilaPicol <- mFila[1:16]

mFilaPico2 <- mFila[17:length(mFila)]

#y sumamos sus elementos (total de eventos detectados)

sumaFilaPicol <- sum(mFilaPicol)

sumaFilaPico2 <- sum(mFilaPico2)

#calculamos un vector con elementos proporcionales, pero de suma aproximadamente 50
#puesto que el test de S-W se aplica a muestras pequefias (incluso menores)
mFilab0Picol <- round((50/sumaFilaPicol)*mFilaPicol)#sum(mFila50Picol)

mFilab0Pico2 <- round((50/sumaFilaPico2)*mFilaPico2)#sum(mFila50Pico2)

#ahora generaremos un vector (para cada pico) que tenga cada valor que puede tomar
#la variable aleatoria (pixeles x) tantas veces como indique la frecuencia asociada a dicho valor

93

94 APENDICE E. OTRAS R-FUNCIONES Y R-SCRIPTS

#Este vector contendrd lo que serian los resultados de cada observaciénm.
valoresPicol <- integer(0)
for(i in 1:length(mFila50Pico1)){

n <- mFila50Pico1[i]

valoresPicol <- c(valoresPicol, rep(i,times=n))
Htlength(valoresPicol)
valoresPico2 <- integer(0)
for(i in 1:length(mFila50Pico2)){

n <- mFilab0Pico2[i]

valoresPico2 <- c(valoresPico2, rep(i,times=n))
}tlength(valoresPico2)

#aplicamos el test de S-W a estos vectores
#...en nuestro caso, al primer pico...
shapiro.test(valoresPicol)

#...y al segundo
shapiro.test(valoresPico2)

E.2. Calculo del gradiente

E.2.1. Descripcién

Funcién que calcula el gradiente de una normal bivariante multiplicada
por un factor (“peso”). Funcién usada en algunas pruebas.

E.2.2. Cddigo en R

HHHHHHR R R R #H 3

#FUNCION PARA CALCULAR EL GRADIENTE

IR R S

calculaGradiente <- function(){
#férmula de UNA normal bivariante
expl <- expression(pesox((1/(2*pi*sx*sy*sqrt(l-rho~2)))*(exp((-1/(2*(1-rho~2)))*(((x-
mx) “2/sx"2)+((y-my) “2/sy"2) - (2*rho* (x-mx) * (y-my) / (sx*sy)))))))

#calculamos el gradiente de una normal (una de las componentes)....

#...el gradiente de la mixtura serd un vector tal que (gradiente_compl,...,gradiente_compG)
parcialmx <- D(expl, "mx")

parcialmy <- D(expl, "my")

parcialsx <- D(expl, "sx")

parcialsy <- D(expl, "sy")

parcialrho <- D(expl, "rho")

parcialpeso <- D(expl, "peso")

gradiente <- c(parcialmx,parcialmy,parcialsx,parcialsy,parcialrho,parcialpeso)

return(gradiente)

E.3. IMPLEMENTACION DEL ALGORITMO DE
LEVENBERG-MARQUARDT 95

E.3. Implementacién del algoritmo de
Levenberg-Marquardt

E.3.1. Descripcion

Implementacion del algoritmo realizada y usada en algunas pruebas. Re-
cibe una tabla de datos con tres columnas (coordenadas z, coordenadas y y
brillos) y devuelve los pardmetros ajustados. Aunque da buenos resultados,
obteniamos tiempos de ejecucién muy altos y se optd por usar la libreria
Im.minpack en la que hay funciones que lo desarrollan. Al final, quedé como
ejercicio académico, aun asi se presenta porque funciona y permitié conocer
tanto R como el propio algoritmo mas a fondo.

E.3.2. Cddigo en R

algoritmoLM_V2 <- function(tablaDatos){

estimParametros <- ESTIMADORES_INICIALES

#y el nimero de componentes de la mixtura
nComp <- nrow(ESTIMADORES_INICIALES)

gradiente <- c()
lambda <- 10

#definimos parametros para medir bondad del ajuste
SCE <- 1

SCT <- sum((tablaDatos[,3]-mean(tablaDatos[,3]))"2)
RCuad <- 0

#definimos un iterador para enumerar las mismas
iterador <- 1

####iniciamos algoritmo
while(SCE > 0.001){

#con ¢

‘componente’’ recorremos las normales que componen la mixtura,
#y generamos la expresién para el modelo de mixtura de normales

for (componente in 1:nComp){

mx <- estimParametros[componente,1]
my <- estimParametros[componente,2]
sx <- estimParametros[componente,3]
sy <- estimParametros[componente,4]
rho <- estimParametros[componente,5]
peso <- estimParametros[componente,6]

#la funcion expresada como cadena de caracteres
funcionNormal <- paste("(",paste(peso),"*(1/(2xpi*",paste(sx*sy),"*sqrt(1-",paste(rho),"~2)))*(
exp((-1/(2x(1-",paste(rho),""2)))*(((x-",paste(mx),")"2/",paste(sx),""2)+((y-",paste(my),")"2/",paste(sy),""2)

96

APENDICE E. OTRAS R-FUNCIONES Y R-SCRIPTS

-(2%",paste(rho),"*(x-",paste(mx) ,")*(y-",paste(my),")/(",paste(sx*sy),"))))))")

#gradiente expresado explicitamente
gradiente[(6*(componente-1))+1] <- paste("-(",paste(peso)," * ((1/(2 * pi * ",paste(sx*sy),"*
sqrt(1 - ",paste(rho~2),"))) * (exp((-1/(2 * (1 - ",paste(rho"2),"))) * (((x -

",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy”2),") - (2 *
",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *
(1 - ",paste(rho~2),"))) * (2 * (x - ",paste(mx),")/",paste(sx"2)," - 2 x ",paste(rho)," * (y

- ",paste(my),")/(",paste(sx * sy),")))))) ™

gradiente [(6% (componente-1))+2] <- paste("-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *
sqrt(1 - ",paste(rho~2),"))) * (exp((-1/(2 * (1 - ",paste(rho~2),"))) * (((x -

",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy~2),") - (2 *
",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *
(1 - ",paste(rho~2),"))) * (2 *x (y - ",paste(my),")/",paste(sy~2)," - 2 x ",paste(rho)," * (x

- ",paste(mx),")/(",paste(sx *sy),")))))) ")

gradiente [(6% (componente-1))+3] <- paste("-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *
sqrt(1 - ",paste(rho~2),"))) * (exp((-1/(2 * (1 - ",paste(rho~2),"))) * (((x -
",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy~2),") - (2 *
",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *
(1 - ",paste(rho~2),"))) * ((x - ",paste(mx),")"2 * (2 * ",paste(sx),")/(",paste(sx"2),")"2 -
2 * ",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),") * ",paste(sy),"/(",paste(sx *
sy),")"2))) + 2 x pi * ",paste(sy)," * sqrt(l - ",paste(rho”2),")/(2 * pi * ",paste(sx *
sy)," * sqrt(1 - ",paste(rho~2),"))"2 * (exp((-1/(2 * (1 - ",paste(rho~2),"))) * (((x -
",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy"2),") - (2 *
",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))))))"

gradiente[(6* (componente-1))+4] <- paste("-(",paste(peso)," * ((1/(2 * pi * ",paste(sx * sy)," *
sqrt(1 - ",paste(rho”2),"))) * (exp((-1/(2 * (1 - ",paste(rho"2),"))) * (((x -
",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy”2),") - (2 *
",paste(rho) ," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 *
(1 - ",paste(rho~2),"))) * ((y - ",paste(my),")"2 * (2 * ",paste(sy),")/(",paste(sy™2),")"2 -
2 x ", paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),") * ",paste(sx),"/(",paste(sx *
sy),")72))) + 2 x pi * ",paste(sx)," * sqrt(l - ",paste(rho”2),")/(2 * pi * ",paste(sx *
sy)," * sqrt(1 - ",paste(rho~2),"))"2 * (exp((-1/(2 * (1 - ",paste(rho~2),"))) * (((x -
",paste(mx),")"~2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy"2),") - (2 *

",paste(rho) ," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")))))N")
gradiente [(6*(componente-1))+5] <- paste("(",paste(peso)," * (2 * pi * ",paste(sx * sy)," * (0.5
* (2 * ",paste(rho)," * (1 - ",paste(rho”2),")"-0.5))/(2 * pi * ",paste(sx * sy)," * sqrt(1l -
",paste(rho”2),"))"2 * (exp((-1/(2 * (1 - ",paste(rho"2),"))) * (((x -

",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy~2),") - (2 *
",paste(rho)," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),"))))) - (1/(2 *
pi * ",paste(sx * sy)," * sqrt(1 - ",paste(rho~2),"))) * (exp((-1/(2 * (1 -
",paste(rho”~2),"))) * (((x - ",paste(mx),")"2/",paste(sx"2),") + ((y -
",paste(my),")"2/",paste(sy”2),") - (2 * ",paste(rho)," * (x - ",paste(mx),") * (y -

",paste(my),")/(",paste(sx * sy),")))) * ((-1/(2 * (1 - ",paste(rho”2),"))) * (2 * (x -
",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),")) + 2 * (2 * ", paste(rho),")/(2
* (1 - ",paste(rho~2),"))"2 * (((x - ",paste(mx),")"2/",paste(sx"2),") + ((y -

",paste(my),")"2/",paste(sy"2),") - (2 * ",paste(rho)," * (x - ",paste(mx),") * (y -
",paste(my),")/(",paste(sx * sy),")))))))")

gradiente[(6*(componente-1))+6] <- paste("((1/(2 * pi * ",paste(sx * sy)," * sqrt(l -
",paste(rho~2),"))) * (exp((-1/(2 * (1 - ",paste(rho”2),"))) * (((x -
",paste(mx),")"2/",paste(sx"2),") + ((y - ",paste(my),")"2/",paste(sy”2),") - (2 *
",paste(rho) ," * (x - ",paste(mx),") * (y - ",paste(my),")/(",paste(sx * sy),"))))))")

if (componente==1){
#asignamos la primera normal a la expresidén para el modelo completo
funcionMixtura <- paste(funcionNormal)

E.3. IMPLEMENTACION DEL ALGORITMO DE
LEVENBERG-MARQUARDT 97

}

if (componente>1){
#sumamos las demads componentes al modelo completo
funcionMixtura <- paste(funcionMixtura,"+",funcionNormal)

Mfin del for
#)

#PASO 2: CALCULAMOS ERRORES PARA EL AJUSTE (usado como condicion de finalizacidn)
errorAjuste <- apply(tablaDatos,1,function(fila){
x <- fila[1]
y <= fila[2]
z <- fila[3]

return(z-eval (parse(text=funcionMixtura)))})
SCE <- sum(errorAjuste~2)
RCuad <- 1-(SCE/SCT)

#PASO 3: CALCULAMOS MATRIZ J
1 <- as.list(gradiente)

J <- apply(tablaDatos,1,function(fila){

x <= fila[1]
y <- fila[2]

g <- lapply(1l,function(elem){

#print (elem)
return(eval (parse(text=elem)))
B
g <- unlist(g)
return(g)
1))
J <- as.matrix(J)

J <= t(J)

#PASO 4: recalculamos parametros para la siguiente iteracion

A <= (£ (D%*%I)+((lambda/ (2" iterador))*diag(length(gradiente)))#lambda*diag(t(J)%*/J)#
b <- t(J)Y%*%errorAjuste
delta <- solve(4,b)

for (componente in 1:nComp){
for(m in 1:ncol(estimParametros)){
estimParametros[componente,m] <- estimParametros[componente,m] +
delta[(componentex*ncol (estimParametros))-6+m]
}
}

98 APENDICE E. OTRAS R-FUNCIONES Y R-SCRIPTS

cat("iteracion",iterador," SCE: ",SCE," R"2: ", RCuad)

iterador <- iterador+1

Hifin del while

#imprimimos en pantalla y devolvemos resultados
print (estimParametros)
return(estimParametros)

Hfin de la funcion ‘‘algoritmoLM_V2’’

Referencias

(6]

[7]

e Bibliograficas

Experimentales

E. Snoeck - A. Lubk - C. Magén, Structural characterization of ferroic
and multiferroic nanostructures by advanced tem techniques, Ch. 10 Na-
noscale Ferroelectrics and Multiferroics: Key Processing and Characteri-
zation issues, and Nanoscale Effects, Ed. by M. Algueré, J. Marty Gregg
and L. Mitoseriu, Ed.: John Wiley & Sons (1st Edition), 2015.

Williams, D. B. - Carter, C. B., Transmission Electron Microscopy. A
Textbook for Materials Science, Ed.: Springer (2nd ed.), 20009.

B. Bhushan, Handbook of Nanotechnology, Ed.: Springer (Berlin, Hei-
delberg), 2010.

P. W. Hawkes - J. C. H. Spence, Science of Microscopy, Ed.: Springer
(New York, NY) 2007.

Matematicas

Héctor Javier Moyano Nino (Dir. Henry Lamos Diaz), Mezclas finitas
de distribuciones normales: una alternativa para clasificar (TFG), Uni-
versidad Industrial de Santander, 2007.

J. A. Cristobal Cristébal, Lecciones de inferencia estadistica, Ed.: Pren-
sas Universitarias de Zaragoza, 2003.

Pierre Gravel - Gilles Beaudoin - Jacques A. De Guise, A method for mo-
deling noise in medical images, IEEE TRANSACTIONS ON MEDICAL
IMAGING, VOL. 23, NO. 10, OCTOBER 2004.

99

100

REFERENCIAS

8]

[10]

[14]

[15]

[16]
[17]

[18]

D.M. Titterington - A.F.M. Smith - U.E. Makov, Statistical Analysis
of Finite Mizture Distributions, Ed.: John Wiley & Sons (New York,
London, Sydney), 1985.

Software R

Christian Ritz - Jens Carl Streibig, Nonlinear regression with R, Ed.:
Springer, 2008.

e Digitales

Experimentales

http://www.uma.es/sme/nueva/Tecnicas.php

Matematicas

https://es.wikipedia.org/wiki/Distribuci %C3 %B3n_normal_multivariante
https://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm

http://mediad.obspm.fr/public/ VAU /instrumentacion/observar/analizar /ruido-
poisson/APPRENDRE.html

Software Digital Micrograph

Digital Micrograph: basic and advanced scripting, Berndhard Shaffer -
Bernd Kraus.

How to script... Digital Micrograph Scripting Handbook, Berndhard Shaf-
fer

http://portal.tugraz.at/portal /page/portal /felmi/DM-Script
http://temdm.com/

http://digitalmicrograph-scripting.tavernmaker.de /HowToScript_index.htm

REFERENCIAS 101

[19] http://www.dmscripting.com/

[20] http://matwww.technion.ac.il/Mika/manuals/
DigitalMicrograph %20User %20Guide.pdf

[21] http://www.gatan.com /resources/scripts

Software R

[22] https://cran.r-project.org/

[23] https://cran.r-project.org/web/packages/minpack.lm/index.html
[24] http://adv-r.had.co.nz/

[25] https://rmazing.wordpress.com/

[26] http://www.rdocumentation.org/

Posts

[27] http://stackoverflow.com/questions/29820176 /how-to-transfer-to-
connect-data-between-digital-micrograph-and-r

[28] http://stackoverflow.com/questions/32014758 /to-create-an-object-of-
some-class-in-a-listener

[29] http://stackoverflow.com/questions/32026093/to-create-an-object-of-
some-class-in-a-listener-part-ii

