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Summary

Branching processes deal with the growth and decay of systems whose components reproduce
themselves following some stochastic laws.

We are going to study the most classical model in Branching Process history, the one that takes
his name from his main developpers, the Bienaymé-Galton-Watson process. This model describes the
evolution of a population in which each individual gives rise, independently of the others and with a
common reproduction law, to a random number of offspring. In this model, the considered population
has just one kind of individuals and we consider that the time is discrete. So, after reproducing, each
individual of the previous generation does not longer exist in this model.

Let {Xn, j : n = 0,1...; j = 0,1, ...} be non-negative integer valued and identically distributed random
variables with probabiliy distribution {pk}. The BGW process is a stochastic process {Zn} that can be
defined as follows:

Z0 = N ∈ N, Zn+1 =
Zn

∑
j=1

Xn, j, n≥ 1.

Xn, j represents the number of offspring produced by the j-th individual in the n-th generation.

We shall make repeated use of the probability generating function

f (s) =
∞

∑
k=0

sk pk, |s| ≤ 1.

Thanks to the iterates of the generating function we can prove that the generating function of Zn

is the n-th iterate fn(s), being
fn(s) = f ( fn−1(s)).

We now introduce one of the main results of the first chapter of this thesis.

Theorem 1. If m = E[Z1]≤ 1, the extinction probability q is 1. If m > 1, the extinction probability is
the unique non-negative solution less than 1 of the equation

s = f (s).

By extinction we mean the event that the random sequence {Zn} consists of zeros for all but a
finite number of values of n.

The other main result is the one that proves that the sequence {Zn} either goes to ∞ or goes to 0;
it does not remain positive and bounded, even in case m = 1, as the next result follows.
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IV Capítulo 0. Summary

Theorem 2. No matter what is the finite value of m = E[Z1], we have lı́mn→∞ P(Zn = k) = 0, k =

1,2, . . . . Moreover Zn→ ∞ with probability 1−q and Zn→ 0 with probability q.

As a consequence of the previous results, we should study separately the cases where m< 1, m= 1
and m > 1. They receive the name of subcritical, critical and supercritical case respectively.

Branching processes have many applications in fields such as Biology, Epidemiology, Genetics, Cell
Kinetics, Computer Algorithms and Economics, and, of course, Population Dynamics.

In chapter 2 we describe one variation of the BGW process introduced by Daley [D], the bisexual
BGW process. Since Daley’s work, the interest on bisexual branching processes increased and it is
nowadays an active research area of both theoretical interest and applicability to the above mentioned
fields.

In Daley’s bisexual process, the reproduction is accomplished only through couples. Each couple
is formed by one individual (same generation) from each of the two disjoint classes the population
consists on. We can define the process as follows:

(Hn+1,Mn+1) =
Zn

∑
i=1

(hn,i,mn,i), Zn+1 = L(Hn+1,Mn+1), n ∈ Z+. (1)

where:

1. (Hn+1,Mn+1) represents the number of females and males in the (n+1)-th generation. These
females and males form Zn+1 = L(Hn+1,Mn+1) couples where L is the mating function.

2. (hn,i,mn,i) represents the number of females and males descending form the i-th couple of the
n-th generation.

It is not difficult to guess that the choice of the mating function is very important to get some reults
about the extinction of the process. In Daley’s initial work the extinction problem was investigated for
the following two intuitive mating functions:

1. L(x,y) = x min{1,y}. It was called the completely promiscuous mating and asumes that a single
male in each generation will mate with every female of the generation. By using some techni-
ques based in analytic iteration of functions it was proved that:

q j = 1, j ≥ 1 ⇐⇒ αm≤ 1

where m = ∑
∞
k=0 kpk and where it is assumed that an individual is female with probability α .

2. L(x,y) = min{x,dy}, d ∈ Z. It was called the polygamous with perfect fidelity. The females
practice perfect fidelity while the males practice polygamy. A male may have up to d wives if
enough wives are available. Daley proved in [D] that:

q j = 1, j ≥ 1 ⇐⇒ min{αm,d(1−α)m} ≤ 1.

The first attempt to use mating functions other than Daley’s two mating functions was made by Hull
in [HD]. He proved that E[Z1 | Z0 = 1] ≤ 1 was a necessary condition for q j = 1, j ≥ 1, where q j
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is the extinction probability when initially there are j ≥ 1 couples in the population and the mating
funcion is superadditive. He also showed that it was not a sufficient condition.

In order to describe the probabilistic evolution of more complicated populations that Daley’s bise-
xual population, several classes of discrete time bisexual branching processes have been introduced.
They could be grouped in the general cases: processes with immigration, processes in varying or in
random environments, processes depending on the number of couples in the population, processes
with control on the number of progenitor couples and other processes.

Autor: Antonio Martínez Esteban





Introducción

Los procesos de ramificación son una parte de las matemáticas que trata de explicar el crecimiento
o decrecimiento de sistemas cuyos componentes se reproducen siguiendo leyes estocásticas. El tér-
mino proceso de ramificación fue utilizado por primera vez por A. N. Kolmogorov y N. A. Dimitrev
en 1947, pero el interés en este tema venía ya de mucho antes, más de siglo y medio atrás en el tiempo.
La idea de este tipo de procesos surge en primer lugar por querer dar una explicación a la extinción de
ciertos nombres de familia de la aristocracia europea.

Tradicionalmente se ha considerado que la teoría moderna de los procesos de ramificación fue ini-
ciada en Inglaterra por F. Galton en 1873 cuando publicó en Educational Times su famoso problema:

Sea N el número de hombres adultos de una gran población que coloniza una zona. Cada uno de
ellos tiene un apellido diferente. Su ley de distribución de la población es tal que, en cada generación,
el a0 por ciento de los hombres adultos no tiene descendencia masculina que llegue a la vida adulta;
el a1 por ciento tiene un hijo varón que llega a adulto; el a2 por ciento tiene dos, y así sucesivamente
hasta a5. Encontrar (1) la proporción de apellidos que se habrán extinguido transcurridas r genera-
ciones; y (2) el número de apellidos que en ese momento llevarán exactamente m individuos.

No obstante, en 1977 se demostró que en Francia, los científicos L. F. Benoiston de Châteauneuf
e I. J. Bienaymé ya habían considerado el problema de la extinción de familias nobles con anterio-
ridad a la publicación de F. Galton. De hecho, se cree que I. J. Bienaymé no solo fue el primero en
formular el problema en términos matemáticos sino que además ya conocía la solución en 1845, aun-
que la publicación original nunca se ha encontrado.

Volviendo al problema enunciado, Galton convenció a H. W. Watson para buscar una solución. Watson
propuso una solución usando funciones generatrices e iteraciones de funciones, sin embargo, entre los
dos llegaron a la conclusión errónea de que toda familia estaba condenada a la extinción. Tuvieron
que pasar más de 50 años hasta que J. F. Steffensen corrigió el error especificando que la extinción de
las familias como decían Galton y Watson solo se producía si el número medio de descendientes de
cada individuo de la población era menor o igual a uno.

A lo largo de los años, el modelo original introducido por Bienaymé, Galton y Watson, ha sido tratado
e investigado de muchas maneras debido a la gran cantidad de campos en los que se podrían aplicar
sus resultados tales como la biología, epidemiología, genética, cinética celular, algoritmos informáti-
cos y económicos, y por supuesto, dinámica de poblaciones.
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VIII Capítulo 0. Introducción

Habiendo dado una idea general de la investigación de los procesos de ramificación a lo largo de
los años, el objetivo de este trabajo es introducir el proceso estándar de Bienaymé-Galton-Watson,
enunciar y demostrar los resultados más importantes prestando especial atención al problema prin-
cipal que motivó el estudio: la probabilidad de extinción del proceso. El capítulo 1 está dedicado al
estudio del proceso de Bienaymé-Galton-Watson, mientras que en el capítulo 2 presentaremos una
variante del modelo original, el proceso Bisexual, en la que también se tiene en cuenta en el proceso la
formación de parejas hembra-macho. Esto nos proporcionará un estudio más acertado de la población
aunque dificultará un poco la obtención de resultados.

Una primera toma de contacto con estos procesos puede verse en [GP], donde González y del Puerto
dan una visión general de varios tipos de procesos de ramificación entre los que se incluyen los que
presentamos en este trabajo.

En bastantes casos, especialmente en el caso del proceso Bisexual, las técnicas de demostración de
los resultados utilizan herramientas de procesos estocásticos que quedan fuera del alcance del trabajo.
En particular, se requieren técnicas de martingalas, de condicionamiento, especialmente de esperan-
za condicional y de teoría no elemental de cadenas de Markov. Este tipo de herramientas no se ven
durante el grado por lo que ha sido necesario consultar en bibliografía específica algunas cuestiones
sobre ellas. En aquellos casos en los que el uso de este tipo de herramientas es esencial, se facilita
bibliografía donde encontrar las propiedades más importantes que se utilizan a lo largo del trabajo
y se han obviado los detalles específicos, si bien, en algunos casos se comentan también los pasos
principales de sus demostraciones.
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Capítulo 1

Proceso de Bienaymé-Galton-Watson

El modelo más antiguo y simple de procesos de ramificación en tiempo discreto es el modelo
de Bienaymé-Galton-Watson (BGW), a veces llamado también proceso de ramificación simple. Este
proceso modela la evolución de una población en la que cada individuo tiene descendencia de manera
independiente siguiendo la misma ley de probabilidad. Las poblaciones estudiadas en el proceso de
BGW sólo tienen un tipo de individuo, y el tiempo se mide de manera discreta en generaciones. En
este modelo, en cada generación se considera que los individuos anteriores o bien han muerto o sim-
plemente se les deja de tener en cuenta en futuros cálculos.

Definimos las variables aleatorias {Xn, j : n = 0,1...; j = 0,1, ...} independientes e idénticamente dis-
tribuidas (v.a.i.i.d.) con valores enteros no negativos y con distribución {pk}k≥0. Estas variables re-
presentan el número de descendientes que tiene el individuo j en la generación n. Por ejemplo, la
probabilidad de que en la generación 3 el individuo 1 tenga k descendientes es:

P(X3,1 = k) = pk, p0 < 1.

El proceso BGW es un proceso estocástico {Zn}n≥0 que se define de manera recursiva como:

Z0 = N ∈ N, Zn+1 =
Zn

∑
j=1

Xn, j, n≥ 1. (1.1)

Para simplificar la notación podemos llamar X j al número de descendientes que tiene un individuo j
cualquiera y así el proceso nos quedaría:

Zn+1 =
Zn

∑
j=1

X j. (1.2)

Es fácil ver que si el tamaño de la generación n es conocido, la ley de probabilidad por la que se
regirán las siguientes generaciones no dependerá de los tamaños de las generaciones anteriores a la
n. Por lo tanto el proceso BGW es una cadena de Markov con un estado absorbente1, que se alcanza
cuando una generación entera no tiene descendencia. Además, debido a que la ley de probabilidad de
los descendientes es común y no cambia en las sucesivas generaciones, esta cadena de Markov tiene
probabilidad de transición estacionaria, es decir, que no cambia a lo largo del tiempo

1Un estado k se dice absorbente si cada vez que la cadena llega al estado k, permanece ahí para siempre.
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2 Capítulo 1. Proceso de Bienaymé-Galton-Watson

Hemos definido anteriormente en (1.1) Z0 = N ∈ N, pero debido al comportamiento indepen-
diente de los individuos a la hora de tener descendencia, en realidad podríamos haber definido Z0 = 1.
Así, a partir de ahora lo daremos por hecho, ya que el proceso BGW que parte de una generación
con N individuos se comporta como la suma de N procesos BGW independientes cada uno de ellos
compuesto por una generación Z0 de un individuo.

1.1. Función generatriz

La función generatriz de probabilidades de la variable Z1 viene dada por:

f (s) =
∞

∑
k=0

sk pk, |s| ≤ 1. (1.3)

Dicha función es continua, estrictamente creciente y convexa en 0≤ s≤ 1 y además f (0) = P(Z1 = 0)
y f (1) = 1.

De manera natural, las iteraciones de la función generatriz de probabilidad f (s) quedarán definidas
por:

f0(s) = s, f1(s) = f (s), (1.4)

fn+1(s) = f [ fn(s)], n = 1,2, ... (1.5)

Como consecuencia de (1.4) y (1.5), tenemos la siguiente relación:

fm+n(s) = fm[ fn(s)], m,n = 1,2, ... (1.6)

Y en particular,
fn+1(s) = fn[ f (s)]. (1.7)

Teorema 1.1.1. La función generatriz de Zn es la n-ésima iteración fn(s).

Demostración. Definimos f(n)(s) como la función generatriz de Zn, n= 0,1, .... Notemos que f(0)(s)=
s. Vamos a ver cuál es la función generatriz de la distribución de Zn+1, bajo la condición de que Zn = k.
En ese caso, como Zn+1 = ∑

Zn
j=1 X j, la función generatriz buscada será:

E(sZn+1) = E(sX1+X2+...+Xk). (1.8)

Y por ser X j, j = 1, ...,k. variables aleatorias independientes idénticamente distribuidas, tenemos que:

E(sX1+X2+...+Xk) =
k

∏ f (s) = [ f (s)]k. (1.9)
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1.2. Momentos de Zn 3

Ahora calculamos f(n+1)(s). Para ello usaremos propiedades de esperanzas condicionadas.

f(n+1) = E[sZn+1 ] = E[E[sZn+1 | Zn = k]] =

=
∞

∑
k=0

P(Zn = k)E[s∑
k
j=1 X j | Zn = k] =

∞

∑
k=0

P(Zn = k)[ f (s)]k.

Y por lo tanto,

f(n+1)(s) =
∞

∑
k=0

P(Zn = k)[ f (s)]k = f(n)[ f (s)], n = 0,1.... (1.10)

Además, por las definiciones de f0 y f(0), vemos que son iguales. Usando (1.7) y (1.10), vemos por
inducción que f(n)(s) = fn(s), n = 1,2, ... .

1.2. Momentos de Zn

La esperanza y la varianza de la ley de ramificación quedan definidas por:

m = E[Z1] = ∑
∞
k=1 kpk, σ2 =Var[Z1] = E[Z2

1 ]−m2.

Nótese que m = f ′(1) y σ2 = f ′′(1)+m−m2

Teorema 1.2.1. Momentos de Zn :
1) La esperanza de Zn es mn,n = 0,1....
2) Si σ2 =Var[Z1]< ∞, entonces el valor de la varianza de Zn, n≥ 1, viene dado por:

σ
2
n =Var[Zn] = E[Z2

n ]−E[Zn]
2 =


mn−1σ2 1−mn

1−m , m 6= 1,

nσ2, m = 1.
(1.11)

Demostración. Derivando fn(s) y teniendo en cuenta (1.7), obtenemos:

f ′n(s) = f ′n−1( f (s)) f ′(s),

de donde,
f ′n(1) = f ′n−1( f (1)) f ′(1) = f ′n−1(1) f ′(1) = m f ′n−1(1).

Ahora, iterando,
f ′n(1) = m2 f ′n−2(1) = ...

...

...= mn−1 f ′(1) = mn.

Por lo tanto,
E[Zn] = f ′n(1) = mn.

Autor: Antonio Martínez Esteban



4 Capítulo 1. Proceso de Bienaymé-Galton-Watson

Ahora veamos la varianza. Derivando dos veces fn(s) y teniendo en cuenta (1.7), obtenemos:

f ′′n (s) = f ′′n−1( f (s))[ f ′(s)]2 + f ′′(s) f ′n−1( f (s)). (1.12)

Además, como σ2
n = f ′′n (1)+E[Zn]−E[Zn]

2, f (1) = 1, f ′(1) = m, f ′′(1) = σ2−m+m2, tenemos
que:

f ′′n (1) = σ
2
n −mn +m2n,

y por lo tanto,
f ′′n−1(1) = σ

2
n−1−mn−1 +m2n−2.

De (1.12) tenemos que:
f ′′n (1) = f ′′n−1(1)[ f

′(1)]2 + f ′′(1) f ′n−1(1)

σ
2
n −mn +m2n = (σ2

n−1−mn−1 +m2n−2)m2 +mn−1(σ2−m+m2)

⇒ σ
2
n = m2

σ
2
n−1 +mn−1

σ
2.

E iterando,
σ

2
n = mn−1

σ
2(1+m+m2 + ...+mn−1),

con lo cual,

σ
2
n =


mn−1σ2 1−mn

1−m , m 6= 1,

nσ2, m = 1.
(1.13)

1.3. Probabilidad de extinción

Ahora consideraremos el problema original propuesto por Galton: encontrar la probabilidad de
extinción de un apellido.

Definición 1.3.1. Un proceso {Zn} se dice que se extingue si la sucesión {Zn} que define el proceso
está compuesta por ceros ∀n ∈ N excepto para un número finito de valores de n.

Como Zn toma valores enteros no negativos, la extinción también será el suceso Q ≡ {Zn→ 0}.
Además, como P(Zn+1 = 0|Zn = 0) = 1, tenemos la siguiente igualdad:

P(Zn→ 0) = P(Zn = 0 para algún n) = P[(Z1 = 0)∪ (Z2 = 0)...]

= lı́m
n→∞

P[(Z1 = 0)∪ ...∪ (Zn = 0)] = lı́m
n→∞

P(Zn = 0) = lı́m
n→∞

fn(0).

Definición 1.3.2. Llamaremos q a la probabilidad de extinción del proceso:

q = P(Zn→ 0) = lı́m fn(0). (1.14)

Teorema 1.3.3. Si m≤ 1, la probabilidad de extinción q es 1. Si m > 1, la probabilidad de extinción
es la única solución no negativa menor que 1 de la ecuación:

s = f (s). (1.15)

Procesos de ramificación



1.3. Probabilidad de extinción 5

Demostración. Sea qn = P(Zn = 0), es decir, qn es la probabilidad de que el proceso se haya extin-
guido antes o al llegar a la generación n. Claramente qn = fn(0), q1 = f1(0) = f (0) = p0. Y por (1.5):

qn = f ( fn−1(0)) = f (qn−1). (1.16)

Si p0 = 0, entonces q1 = 0, q2 = 0,..., es decir, si la probabilidad de que no haya descendencia es
nula, la extinción nunca llegará. Por el contrario si p0 = 1 entonces q1 = 1, q2 = 1,..., es decir, si la
probabilidad de que no haya descendencia es uno, entonces la extinción llegará justo después de la
generación 0. Por ello vamos a considerar el caso 0 < p0 < 1.

Como f (s) es una función estrictamente creciente de s, q2 = f (q1) = f (p0) > f (0) = q1. Vamos
a aplicar inducción. Para ello suponemos que qn > qn−1, entonces qn+1 = f (qn)> f (qn−1) = qn y por
inducción q1 < q2 < q3.... La sucesión monótona creciente {qn} está acotada superiormente por 1.
Por lo tanto qn tiene que tener un límite q = lı́mn→∞ qn, 0 ≤ q ≤ 1; q es la probabilidad de extinción
definitiva.

Por (1.16) y la continuidad de f (.) vemos que q satisface la ecuación q = f (q), es decir, q es raíz
de la ecuación (1.15),

s = f (s).

Ahora vamos a investigar un poco más acerca de dicha raíz. Primero vamos a ver que q es la raíz posi-
tiva más pequeña de la ecuación (1.15). Sea s0 una raíz arbitraria positiva de dicha ecuación. Entonces
q1 = f1(0) = f (0)< f (s0) = s0. Suponiendo que qm < s0, tenemos que qm+1 = f (qm)< f (s0) = s0,
y por inducción qn < s0 ∀n ∈ N. De este modo, q = lı́mm→∞ qn ≤ s0 es la raíz positiva más pequeña
de (1.15).

Consideramos la gráfica y = f (s) en 0 ≤ s ≤ 1. Dicha gráfica empieza en el punto (0, p0) y termi-
na en el (1,1). Recordar que la curva en el primer cuadrante es convexa y creciente. Por ello la curva
y = f (s) podrá cortar a la recta y = s como máximo en dos puntos, uno de ellos el (1,1). Es decir, la
ecuación (1.15) tendrá como máximo dos raíces, una de ellas la unidad. Ahora debemos considerar
dos casos (ver figura 1.1):

i) Caso I.
La curva y = f (s) permanece siempre por encima de la recta y = s. En este caso, el punto
(1,1) es el único punto de intersección, es decir, 1 es la única raíz de s = f (s), y por lo tanto
q = lı́mn→∞ qn = 1. Entonces:

f (1)− f (s) = 1− f (s)≤ 1− s,

por lo tanto,

lı́m
s→0

f (1)− f (s)
1− s

≤ 1, es decir f ′(1)≤ 1.

De este modo,
f ′(1) = m≤ 1, cuando lı́m

n→∞
qn = 1.

ii) Caso II.
La curva y= f (s) corta a la recta y= s en otro punto (δ , f (δ )) tal que δ = f (δ ), δ < 1. Como la

Autor: Antonio Martínez Esteban



6 Capítulo 1. Proceso de Bienaymé-Galton-Watson

curva y = f (s) es convexa, se mantiene por encima de la recta y = s en el intervalo (0,δ ) y por
debajo en el intervalo (δ ,1). Es decir, f (s)< s en δ < s < 1 y f (s)> s en 0 < s < δ . Entonces
q1 = f (0) < f (δ ) = δ y suponiendo que qm < δ , tenemos que qm+1 = f (qm) < f (δ ) = δ . Y
por inducción qn < δ ∀n ∈ N. Por ello lı́mn→∞ qn = q = δ < 1.

Ahora aplicando el teorema del valor medio al intervalo [δ ,1], vemos que existe ξ ∈ [δ ,1]
tal que:

f ′(ξ ) =
f (1)− f (δ )

1−δ
= 1,

y como su derivada es monótona, f ′(1) > 1. De este modo hemos probado que si q es la raíz
menor que la unidad de la ecuación (1.15) entonces m = f ′(1)> 1.

Y así queda probado el teorema.

m≤ 1

f(s) f(s)
m > 1

(q,q)

fFigura 1.1: Función generatriz de probabilidad y su probabilidad de extinción.

Acabamos de ver cómo se extingue el proceso dependiendo de m. Pues bien, es interesante ver
que la sucesión Zn no permanece positiva y acotada: o bien tiende a 0 o a ∞, incluso en el caso m = 1,
como muestra el siguiente teorema. Es decir, que la población o se extingue, o crece indefinidamente.

Teorema 1.3.4. Sea cual sea el valor finito de m, tenemos que lı́mn→∞ P(Zn = k) = 0, k = 1,2, ...
Además Zn→ 0 con probabilidad q y Zn→ ∞ con probabilidad 1-q.

Demostración. Primero vamos a demostrar que lı́mn→∞ fn(s) = q para todo s < 1, y a partir de ahí
obtenemos la conclusión del teorema.

Consideramos el caso m≤ 1. Hemos visto en el teorema anterior que en este caso, la función s = f (s)
solo tiene la raíz q = 1.

En general, si 0 ≤ s ≤ q, f (s) ≤ f (q) = q, y f2(s) ≤ f2(q) = f1( f (q)) = f1(q) = f (q) = q. Supo-
niendo que fm(s) ≤ q, obtenemos que fm+1(s) ≤ q y por inducción fn(s) ≤ q para todo n. Al ser
función creciente, fn(s)≥ fn(0) = qn, por lo que tenemos que qn ≤ fn(s)≤ q.

Procesos de ramificación



1.3. Probabilidad de extinción 7

Por tanto, recordando que en este caso q = 1:

lı́m
n→∞

fn(s) = 1 = q, 0≤ s≤ 1.

Consideramos ahora el caso m > 1. También hemos visto en el teorema anterior que, en este caso,
q es la raíz menor que 1 de f (s) = s. En el intervalo q < s < 1, la curva y = f (s) se mantiene por de-
bajo de la recta y = s, y q < f (s)< s < 1. De manera similar, f2(s) = f ( f1(s)) = f ( f (s))> f (q) = q.
Suponiendo que fm(s)> q, vemos que fm+1(s)> q, y podemos ver por inducción que fn(s)> q para
todo n. También vemos que f2(s) = f1( f (s))< f1(s) y suponiendo que fm(s)< fm−1(s), tenemos que
fn(s)< fn−1(s) para todo n.

Por consiguiente, en q < s < 1, tenemos que:

q < fn(s)< fn−1(s)< ... ,

y por lo tanto,
lı́m
n→∞

fn(s)≥ q.

Supongamos que lı́mn→∞ fn(s) = α > q. Entonces f (α)< α , y lı́mn→∞ fn+1(s) = lı́mn→∞ f ( fn(s)) =
f (α) < α, y llegamos a una contradicción debido a nuestra suposición inicial de que α > q. Por
consiguiente,

lı́m
n→∞

fn(s) = q.

Recapitulando, hemos probado que sea cual sea el valor de E[Z1] = m, lı́mn→∞ fn(s) = q no depende
del valor de s para todo s < 1. En otras palabras:

lı́m
n→∞

∞

∑
k=0

P(Zn = k)sk = q, s < 1.

Esto implica que los coeficientes de sk para k ≥ 1 tienden a 0, mientras que el término constante
(k = 0) tiende a q.

Es decir, cuando n→ ∞,

P(Zn = k)→ 0,

para valores positivos enteros de k, y,
P(Zn = 0)→ q.

Y como fn(1) = 1, se tendrá que,
P(Zn→ ∞)→ 1−q.

Nota 1.3.5. El resultado anterior también puede demostrarse usando la teoría general de cadenas
de Markov aplicada a la cadena Zn, en la que cada uno de los estados k = 1,2,3... es transitorio2

mientras que el estado 0 es absorbente.

2Un estado k se dice transitorio, si y solo si, comenzando desde el estado k, hay una probabilidad positiva de que el
proceso no vuelva a k.

Autor: Antonio Martínez Esteban



8 Capítulo 1. Proceso de Bienaymé-Galton-Watson

Esta propiedad es conocida como la propiedad de dualidad extinción-explosión:

P(Zn→ 0)+P(Zn→ ∞) = 1. (1.17)

Como consecuencia de este resultado, llamamos a los procesos BGW con m < 1, m = 1 y m > 1
subcríticos, críticos y supercríticos respectivamente.

Los dos teoremas anteriores son los resultados básicos sobre el proceso BGW y pueden encontrar-
se en cualquier texto que estudie dicho proceso, como, por ejemplo, [AN], [H], [HJV] y [M].

A continuación estudiaremos algunas características del proceso Zn en las diferentes situaciones: sub-
crítica, crítica y supercrítica.

1.3.1. Caso subcrítico

Recordemos que, en el caso subcrítico (m < 1), el proceso muere con probabilidad 1, P(Zn →
0) = 1. Por ello la distribución límite de Zn no es interesante.
Por tanto, para estudiar el comportamiento asintótico de Zn no trivial, debemos introducir la condición
de que aún no se haya alcanzado la extinción, es decir, Zn > 0 . El siguiente resultado, obtenido por
primera vez por A.M. Yaglom en 1947, nos proporciona el comportamiento límite de su probabilidad
condicionada. Se trata de un resultado muy técnico cuya demostración requiere técnicas que quedan
fuera del alcance del trabajo y que pueden verse en [H].

Teorema 1.3.6. Suponiendo que m < 1 y E[Z1]
2 < ∞, entonces ∀k ∈ N,

lı́m
n→∞

P(Zn = k | Zn > 0) = bk, (1.18)

con ∑
∞
k=1 bk = 1.

1.3.2. Caso crítico

Notemos que ahora, de acuerdo al teorema (1.2.1): E[Zn] = m = 1 ∀n ∈ N, Var[Zn]→ ∞ cuando
n→ ∞ y que P(Zn→ 0) = 1 (Teorema (1.3.3)). En estas condiciones, si pudiéramos calcular los bk

de la ecuación (1.18) se obtendría que éstos son nulos. Sin embargo, una normalización de Zn a través
de n sí que converge. Así se tiene el siguiente resultado, que fue obtenido por A.M. Yaglom en 1947.

Teorema 1.3.7. Si σ2 < ∞, entonces ∀z ∈ N,

lı́m
n→∞

P(
Zn

n
< z | Zn > 0) = Γa,b(z), (1.19)

siendo Γa,b la función de distribución gamma con parámetros a = 1 y b = σ2/2.

Demostración. La demostración de este teorema se basa en determinar la Transformada de Laplace
de Zn/n y relacionarla con la función f (s). Los detalles de los cálculos pueden verse en [M].

Lo que nos indica el teorema anterior, es que si el proceso no se ha extinguido para un n grande,
entonces el proceso tiene un crecimiento lineal y la distribución de Zn/n es casi exponencial.
El siguiente resultado de un proceso crítico cuando n es grande fue probado por Kolmogorov en 1938,
pero para poder demostrarlo necesitaremos el siguiente lema:

Procesos de ramificación



1.3. Probabilidad de extinción 9

Lema 1.3.8. Sea un proceso BGW con m = 1 y σ2 < ∞, entonces:

lı́m
n→∞

1
n
{ 1

1− fn(s)
− 1

1− s
}→ σ2

2
, (1.20)

uniformemente en 0≤ s < 1.

Demostración. Sea 0≤ s < 1 y f ′′′(1)< ∞. Usando el desarrollo de Taylor de f (s) en un entorno del
1, obtenemos:

f (s) = s+
σ2

2
(1− s)2 + r(s)(1− s)2,

donde r(s)→ 0 cuando s→ 1.

Si ahora desarrollamos la expresión 1
1− f (s) −

1
1−s obtenemos:

1
1− f (s)

− 1
1− s

=
f (s)− s

(1− f (s))(1− s)
(1.21)

Por el desarrollo de Taylor de anterior se tiene que:

σ2

2
+ r(s) =

f (s)− s
(1− s)2

Por lo tanto,

f (s)− s
(1− f (s))(1− s)

=

[
σ2

2
+ r(s)

][
1− s

1− f (s)

]
=

[
σ2

2
+ r(s)

][
1− (1− s)

[
σ2

2
+ r(s)

]]−1

.

Y finalmente:
1

1− f (s)
− 1

1− s
=

σ2

2
+R(s), (1.22)

donde R(s), que procede del desarrollo de Taylor, está acotada y R(s)→ 0 cuando s→ 1.

De la misma manera:

f2(s) = f ( f (s)) = f (s)+
σ2

2
(1− f (s))2 + r( f (s))(1− f (s))2

Y llegamos a:

1
1− f2(s)

− 1
1− f (s)

=
σ2

2
+R( f (s)) (1.23)

Sumando las ecuaciones (1.22) y (1.23) y dividiendo por 2, obtenemos:

1
2

[
1

1− f2(s)
− 1

1− s

]
=

σ2

2
+

1
2

[
R(s)+R( f (s))

]
E iterando,

1
n

[
1

1− fn(s)
− 1

1− s

]
=

σ2

2
+

1
n

n−1

∑
k=0

R( fk(s))

Como fn(0)≤ fn(s)≤ 1 y fn(0)→ 1, entonces la convergencia de fn(s)→ 1 es uniforme. Así queda
probado el lema.

Autor: Antonio Martínez Esteban



10 Capítulo 1. Proceso de Bienaymé-Galton-Watson

Una vez visto el lema anterior, ya podemos probar el siguiente teorema.

Teorema 1.3.9. Sea m=1 y σ2 < ∞, entonces

lı́m
n→∞

nP(Zn > 0) =
2

σ2 . (1.24)

Demostración. Primero vemos que:

nP(Zn > 0) = n[1− fn(0)] =
[

1
n
(

1
1− fn(0)

−1)+
1
n

]−1

.

Y ahora aplicando el lema anterior en s = 0, obtenemos el resultado:

lı́m
n→∞

nP(Zn > 0) = lı́m
n→∞

[
σ2

2
+

1
n

]−1

=
2

σ2

1.3.3. Caso supercrítico

Hemos visto que cuando E[Z1] = m > 1, el proceso de BGW tiene una probabilidad positiva de
supervivencia para n grande. En el caso de sobrevivir, sabemos por el Teorema (1.3.4) que el tamaño
de la población aumenta indefinidamente. Por ello efectuamos una normalización de Zn con el fin de
estudiar su comportamiento.

Así, definimos una nueva sucesión de variables Wn a partir de Zn:

Wn =
Zn

mn , n = 0,1, ... (1.25)

Teorema 1.3.10. Si m > 1 y E[Z2
n ] < ∞, entonces la sucesión de variables aleatorias Wn convergen

con probabilidad 1 a una variable aleatoria W. Además:

E[W ] = 1, Var[W ] =
Var[Z1]

m2−m
> 0. (1.26)

Demostración. Comenzamos calculando la esperanza y la varianza de Wn, para lo cual usaremos al-
gunas propiedades de la esperanza condicional (ver [RP]).

En primer lugar, dado que Zn+1 puede escribirse como Zn+1 =∑
Zn
j=1 X j, se tiene que, para n= 0,1,2, . . . :

E[Zn+1 | Zn] = E
[ Zn

∑
j=1

X j | Zn

]
= Znm

Aplicando esta propiedad de manera iterativa y teniendo en cuenta las propiedades de la esperanza
condicional y la naturaleza markoviana de Zn:

E[Zn+k | Zn] = E
[
E[Zn+k | (Zn+k−1, . . . ,Zn)] | Zn

]
= E

[
E[Zn+k | Zn+k−1] | Zn

]
=

= E[mZn+k−1 | Zn] = · · ·= mkZn, ∀n,k = 0,1,2, . . .

Por tanto, Wn = Zn/mn es una martingala no negativa y converge casi seguramente a una variable
aleatoria no negativa W [RP]:

lı́m
n→∞

Wn =W (c.s).

Procesos de ramificación
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Además aplicando el teorema (1.2.1), se tiene que

E[Wn = 1]

y que:

Var[Wn] =
1

m2nVar[Zn] =
1

m2n mn−1
σ

2 1−mn

1−m
=

1
mn+1 σ

2 1−mn

1−m
,

y se puede comprobar tomando límites que :

E[W ] = 1,

Var[W ] = σ
2 1

m(m−1)
.

Vamos a prestar particular atención al proceso {m−nZn}. Escogemos este proceso ya que es una
martingala y por tanto le podremos aplicar varios resultados (ver [RP]) que de otra manera no podría-
mos. Para 0 < m < ∞, m−nZn→W c.s cuando n→ ∞. Sabemos que P(W = 0) = 1 para m ≤ 1. Sin
embargo para m > 1 K. Kesten y B.P. Stigum (ver [KS]) probaron el siguiente teorema.

Teorema 1.3.11. Sea W definida como antes y m > 1,

P(W > 0)> 0 ⇐⇒
∞

∑
k=1

kpklogk < ∞, (1.27)

y
P(W > 0) = P(Zn→ ∞) = 1−q. (1.28)

Demostración. La demostración se basa en el hecho de que Zn/mn es una martingala y por tanto se
pueden usar los resultados de convergencia para martingalas (ver [RP]). Los detalles pueden verse en
[KS] y quedan fuera del alcance del trabajo.

El teorema anterior implica que, en condiciones de no extinción, Zn ∼ mnW .

1.4. Breve introducción a los procesos de ramificación en tiempo conti-
nuo

Aunque en el resto del trabajo nos centraremos sólo en los procesos de ramificación en tiempo
discreto, vamos a introducir brevemente los procesos en tiempo continuo.

Matemáticamente estos procesos son mucho más complejos que los que tienen tiempo discreto. Se
puede discutir la necesidad de su estudio argumentando que los datos nunca son recogidos de manera
continua, sino que son recogidos en intervalos de tiempo (regulares o irregulares). La necesidad es
más bien conceptual, ya que el ser humano concibe el tiempo como un parámetro continuo. Como
las matemáticas pretenden imitar conceptos reales, parece lógico pensar que los modelos deberían
formularse en tiempo continuo.

Autor: Antonio Martínez Esteban



12 Capítulo 1. Proceso de Bienaymé-Galton-Watson

El precio a pagar por estos modelos es un incremento en la dificultad de las matemáticas requeri-
das para la construcción de los espacios de probabilidad y de los procesos. Por otro lado, ganamos un
modelo mucho más parecido a poblaciones reales como a una población de humanos o animales en
condiciones estables.

En el proceso de BGW, el tiempo de vida de cada individuo era una unidad de tiempo. Una manera
natural de generalizar el sistema es permitir que los tiempos de vida de los individuos sean variables
aleatorias. En vez de la cadena de Markov en tiempo discreto {Zn; n = 0,1,2...} de los apartados an-
teriores, debemos considerar un proceso {Z(t); t ≥ 0}, donde Z(t) es el número de individuos vivos
en el momento t. En general este tipo de procesos no será Markoviano, a menos que los tiempos de
vida de cada individuo sean variables aleatorias independientes de distribución exponencial.

Definición 1.4.1. Llamamos proceso de ramificación unidimensional de Markov en tiempo continuo
al proceso estocástico {Z(t,ω); t ≥ 0} en el espacio de probabilidad (Ω,F,P) si cumple:

i) Su espacio de estados es un conjunto de números enteros no negativos.

ii) Es una cadena de Markov estacionaria con respecto a la filtración Ft = σ{Z(s,ω); s≤ t}

iii) Las probabilidades de transición Pi, j(t) satisfacen:

∞

∑
j=0

Pi, j(t)s j = [
∞

∑
j=0

P1, j(t)s j]i (1.29)

para todo i≥ 0 y |s| ≤ 1.

Para más detalle sobre el proceso de BGW en tiempo continuo pueden consultarse las referencias
[AN], [HJV] y [M].

1.5. Un ejemplo de aplicación

En esta última sección del capítulo vamos a presentar sin entrar en mucho detalle un caso en el
que los procesos de ramificación se pueden aplicar para ayudarnos a resolver algún problema. En
la introducción del trabajo ya hemos nombrado varios campos de investigación en los que dichos
procesos pueden ser útiles, siendo seguramente el campo de la biología en el que más aplicaciones se
pueden encontrar.

Modelo del ciclo celular con muerte y quiescencia

El paso fundamental en la expansión de una población de células es la división de una de ellas en
dos células. Al completar su ciclo de vida, cada célula dobla más o menos su tamaño y se divide en
dos células de aproximadamente igual tamaño. El conjunto de la descendencia de cada célula recibe
el nombre de colonia. Se ha observado experimentalmente que células de características similares no
tienen por qué crear colonias del mismo tamaño en la misma cantidad de tiempo. Esto puede deberse
a varios factores, como la aleatoriedad de la muerte celular o la quiescencia.

Procesos de ramificación
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p2 proli f eración

p0 muerte

p1 quiescencia

Figura 1.2: Representación esquemática del modelo del ciclo celular.

El modelo matemático

Consideramos un proceso BGW. Vamos a empezar suponiendo que existe una única célula y que
esta se divide en dos como muestra la Figura (1.2).

Entonces, cada una de las células descendientes de la célula inicial, independientemente la una de
la otra, puede:

1. Proliferar con probabilidad p2.

2. Morir con probabilidad p0.

3. Entrar en un estado de quiescencia con probabilidad p1.

Las células quiescentes son aquellas que continúan existiendo sin proliferar ni morir. Después de mu-
cho tiempo, podrían volver a un estado de proliferación o morir, pero en este modelo no tendremos en
cuenta esta posibilidad. Suponemos que p0 + p1 + p2 = 1. Denotando como Zn al número de células
proliferantes de la generación n y Qn al número de células quiescentes, tenemos planteado un modelo
BGW al que podemos aplicar los resultados obtenidos en el capítulo 1. Así por ejemplo, podemos ver
que si p1 + 2p2 ≤ 1 la población de células desaparecerá. Detalles adicionales de este caso pueden
verse en [KA].

En el capítulo siguiente hablaremos de una variante del proceso de BGW, el proceso Bisexual. Di-
cho proceso se ajustará bastante más a la realidad ya que tendremos en cuenta la formación de parejas
para tener descendencia, no como en este capítulo, en el que solo hablábamos de individuos.

Autor: Antonio Martínez Esteban





Capítulo 2

Proceso Bisexual

2.1. Introducción

Hasta ahora hemos trabajado con procesos de BGW sin tener en cuenta el sexo de cada indivi-
duo ni su capacidad para tener descendencia. Además, tampoco hemos considerado que el tipo de
reproducción pueda ser diferente dependiendo de la población que estudiemos. Por ejemplo, en una
población polígama (un macho puede estar con varias hembras), si el número de machos es lo sufi-
cientemente grande, el número de hembras de una generación será determinante a la hora de estimar
el tamaño de la población en el futuro.

En este capítulo estudiaremos los procesos de BGW en el que los individuos se definen como hembras
o machos y la reproducción se produce por la formación de parejas hembra-macho. Esto complicará
bastante los cálculos matemáticos por lo que los resultados serán más limitados.

De hecho, en el simposio celebrado en el Winstar Institute (Philadelphia) en abril de 1966, el ma-
temático S. M. Ulam hizo la siguiente observación [HD3]:

"Hay una bonita técnica para describir procesos que comienzan con un único objeto, que poste-
riormente puede dar lugar a 0, 2, 3 o más descendientes. Es la teoría de procesos de ramificación.
Estudia la reproducción asexual y permite estudiar diversas características del proceso. Me gusta-
ría destacar que la teoría análoga para procesos de ramificación con sexo, donde los individuos se
juntan, por ejemplo aleatoriamente, para generar descendientes. Es decir, una combinación de un
proceso binario de emparejamiento y reproducción, es matemáticamente mucho más difícil y todavía
no hay una teoría exacta."

Si bien se ha avanzado considerablemente desde el momento en que Ulam hizo tal afirmación, no
es menos cierto que el desarrollo de los procesos de ramificación “sexuales” es bastante más limitado
del que podría ser esperable.

2.2. Modelo Bisexual de Daley

El modelo Bisexual fue introducido por Daley (1968) [D]. En dicho modelo, la población está
formada por dos clases de individuos, los machos y las hembras. La reproducción se lleva a cabo

15



16 Capítulo 2. Proceso Bisexual

a través de la formación de parejas macho-hembra de la misma generación. Por ello, resultará más
conveniente dar el tamaño de la población mediante el número de parejas que dar solo el número de
individuos como hacíamos anteriormente. De nuevo, el tiempo ahora será discreto.

Análogamente a lo visto en el capítulo 1, cada pareja tendrá descendencia de manera independien-
te a las demás parejas siguiendo una distribución de probabilidad {pk}k≥0 siendo pk la probabilidad
de que una pareja tenga k descendientes. Llamaremos α a la probabilidad de que un individuo sea
hembra, α ∈ (0,1), con lo que un individuo será macho con probabilidad 1−α . Una manera alterna-
tiva de estudiar el modelo Bisexual sería considerar una descendencia con distribución de probabilidad
{pi, j} donde pi, j es la probabilidad de que una pareja tenga i descendientes hembras y j machos. Aquí
estudiaremos este proceso siguiendo el primer esquema a través del uso de funciones de empareja-
miento.

Antes de definir el modelo, necesitamos introducir la notación que utilizaremos.

Definición 2.2.1. Definimos la función de emparejamiento L como una función definida en R+× R+

que toma valores en R+, siendo R+ el conjunto de números reales no negativos. A dicha función la
llamaremos función de emparejamiento. Además, L(x,0) = L(0,y) = 0, x,y ∈ R+.

La función de emparejamiento L, a través del número de hembras y machos de una generación,
define como se forman las parejas de esa generación.

Vamos a representar el número de hembras (H) y machos (M) en la generación n+ 1 mediante el
par (Hn+1,Mn+1), gracias al cual, después de aplicarle la función L, tendremos el número de parejas
de la generación n+1 que denotaremos como {Zn+1}. Dichas parejas se reproducirán de manera inde-
pendiente y con la misma distribución de probabilidad. En la generación inicial, la población constará
de un número positivo de parejas N0 , i.e. Z0 = N0.

Por último el número de machos y hembras que descienden de la pareja i en la generación n quedará
determinado por el vector (hn,i,mn,i) con n ∈ Z+, i = 1, ...,Zn, siendo estos vectores independientes,
no negativos y estando idénticamente distribuidos.

Con todo lo anterior, ya podemos definir el proceso Bisexual de Daley o proceso Bisexual de Galton-
Watson (Hn+1,Mn+1) como:

(Hn+1,Mn+1) =
Zn

∑
i=1

(hn,i,mn,i), Zn+1 = L(Hn+1,Mn+1), n ∈ Z+. (2.1)

Es fácil de ver que en el proceso Bisexual de Daley al igual que en el de BGW visto en el Capítulo
1, {Zn}n≥0 es una cadena de Markov cuyos estados son números enteros no negativos. Además, el
estado 0 será un estado absorbente mientras que los demás estados k serán estados transitorios.

Antes de entrar en detalle sobre la determinación de la probabilidad de extinción conviene introducir
la función generatriz del proceso distinguiendo entre hembras y machos. Independientemente de la
generación en que nos encontremos e independientemente del resto de parejas, cada pareja tendrá h

Procesos de ramificación



2.2. Modelo Bisexual de Daley 17

descendientes hembras y m machos. Así la función generatriz de probabilidad de las variables H y M
es :

f (s1,s2) = E[sH
1 sM

2 ], |s1|, |s2| ≤ 1.

Además,

E[sHn+1
1 sMn+1

2 | Zn = j] = [ f (s1,s2)]
j

debido a la independencia.

Por otra parte si se denota por J = H +M el número total de descendientes, cuya función genera-
triz de probabilidad es f (s) = ∑ j s j p j, y cada descendiente es hembra con probabilidad α y macho
con probabilidad 1−α , independientemente del resto de descendientes, se tiene que (ver [D]):

f (s1,s2) = f (αs1 +(1−α)s2).

2.2.1. Algunas funciones de emparejamiento y probabilidad de extinción

Es claro que el estudio del proceso Bisexual dependerá en gran medida de la función de empare-
jamiento L. Cuando Daley formuló el proceso [D], decidió estudiar dos tipos de funciones diferentes.
Antes de introducirlas, vamos a definir la probabilidad de extinción en un proceso Bisexual de Daley.

Definición 2.2.2. Llamaremos q j a la probabilidad de extinción del proceso {Zn}n≥0 cuando la po-
blación inicial constaba de j parejas, j ≥ 0.

q j = P(Zn→ 0 | Z0 = j). (2.2)

La primera función de emparejamiento que consideró fue:

L(x,y) = x min{1,y} (2.3)

A esta función se le llamó función de emparejamiento completamente promiscuo. Este sistema de
reproducción asume que en cada generación habrá un solo macho (variable y) que se emparejará con
todas las hembras (variable x) de dicha generación. Todos los machos restantes quedarán excluidos
del proceso. Esto es lo que ocurre en algunos grupos de animales tales como las manadas de leones.

Para esta función se tiene el resultado siguiente sobre la probabilidad de extinción. Es interesante
observar que la condición que caracteriza la extinción es la que aparece en el proceso usual de BGW
pero ponderada por la probabilidad α de que un descendiente sea hembra, lo que pone de relieve que
en esta función de emparejamiento el papel esencial lo desempeña el número de hembras.

Teorema 2.2.3. Sea L(x,y) = x min{1,y} la función de emparejamiento de un proceso Bisexual de
Daley, y sea Q = lı́mn→∞ P(Zn = 0 | Z0 > 0), entonces:

Q = 1, j ≥ 1 ⇐⇒ αm≤ 1 (2.4)

donde m = ∑
∞
k=0 kpk.
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Demostración. Para probar la suficiencia del teorema, el punto clave es demostrar que por ser Zn una
cadena de Markov con probabilidad de transición estacionaria la función generatriz verifica que:

E[sZn+1 | Zn = j] =
∞

∑
k=0

p j,ksk =
∞

∑
k=0

skP(Zn+1 = k | Zn = j) =

= [ f (αs+1−α)] j− [ f (αs)] j +[ f (α)] j.

Suponemos ahora que Z0 > 0, para |s| ≤ 1 tenemos que:

fn(s) = E[sZn ] =
∞

∑
j=0

s jP(Zn = j)

notando que fn(1) = f0(1) = 1. Entonces:

fn+1(s) =
∞

∑
k=0

P(Zn+1 = k)sk =
∞

∑
k=0

∞

∑
j=0

P(Zn+1 = k | Zn = j)P(Zn = j)sk =

=
∞

∑
j=0

P(Zn = j)
∞

∑
k=0

P(Zn+1 = k | Zn = j)sk

=
∞

∑
j=0

P(Zn = j)
(
[ f (αs+1−α)] j− [ f (αs)] j +[ f (α)] j),

= fn(g(s))− fn( f (αs))+ fn( f (α))

donde se ha usado la igualdad anterior.

Sea ahora g(s) = f (αs+ 1−α). Denotando a las iteraciones de esa función generatriz de proba-
bilidad por g0(s) = s y gn(s) = g(gn−1(s)) para n = 1,2... tenemos que:

fn+1(s) = f0(gn+1(s))+
n

∑
r=0

[ fr( f (α))− fr( f (αgn−r(s)))],

donde los términos de esa suma son no negativos para 0 ≤ s ≤ 1 por ser las funciones fr crecientes.
Luego para 0≤ s≤ 1,

fn+1(s)≥ f0(gn+1(s)).

Ahora bien, por la teoría de procesos BGW vistos en el capítulo 1, cuando g′(1)=α f ′(1)≤ 1, gn(s)→
1 cuando n→ ∞ ∀s ∈ [0,1]. Por consiguiente, ya que f0(s) es una función continua, vemos que:

1≥ q = lı́m
n→∞

fn(0)≥ lı́m
n→∞

f0(gn(0))

= f0( lı́m
n→∞

gn(0)) = f0(1) = 1

Y así queda probada la suficiencia del teorema.

La demostración de la necesidad utiliza técnicas y herramientas que quedan fuera del alcance del
trabajo, por lo que presentaremos solamente un esquema de los pasos de más interés.

En primer lugar, para la necesidad, se usa el hecho de que {Zn} es una cadena de Markov en la que
el estado {0} es absorbente y los demás estados {1,2, . . . ,} son estados transitorios que comunican
entre sí, para demostrar que

Q j = lı́m
n→∞

P
(
Zn = 0 | Z0 = j

)
Procesos de ramificación
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es la solución positiva minimal de la ecuación

Q j = p j,0 +
∞

∑
k=1

p j,kQk, j = 1,2, . . . .

donde p j,k son las probabilidades de transición de esa cadena, es decir, p j,k = P(Zn+1 = k|Zn = j).

Posteriormente, a partir de la desigualdad,

P(Zn ≥ j+n | Z0 = j)≥ P(Z1 ≥ j+1,Z2 ≥ j+2, . . . ,Zn ≥ j+n | Z0 = j),

usando la propiedad de Markov y aplicando la fórmula integral de Cauchy para calcular P(Zm+1 ≤
j | Zm = j), que toma la expresión

P(Zm+1 ≤ j | Zm = j) =
1

2πi

∫
Γ

[g(z)] j− [ f (αz)] j +[ f (α)] j

z j+1(1− z)
dz

se puede, tras una serie de cálculos técnicos, probar la necesidad.

Los detalles completos pueden verse en [D].

La segunda función de emparejamiento que consideró Daley fue:

L(x,y) = min{x,dy}, d ∈ Z+ (2.5)

Esta función es conocida por el nombre de función de emparejamiento poligámico con perfecta fideli-
dad. En este sistema las hembras, la variable x, son siempre fieles y se les permite emparejarse como
mucho con un macho. Los machos (al menos algunos) practican la poligamia, un macho puede llegar
a emparejarse hasta con d hembras si hubiera hembras suficientes. En el caso particular en el que
d = 1 tendríamos la función de perfecta fidelidad en la que tanto machos como hembras son siempre
fieles.

Teorema 2.2.4. Sea L(x,y) = min{x,dy}, d ∈ Z+, la función de emparejamiento de un proceso Bise-
xual de Daley, entonces:

q j = 1, j ≥ 1 ⇐⇒ min{αm,d(1−α)m} ≤ 1 (2.6)

donde m = ∑
∞
k=0 kpk.

Demostración. Al igual que en la demostración anterior vamos a empezar probando la suficiencia del
teorema. Continuaremos escribiendo g(s) = f (αs+ 1−α), con gn(s) denotando sus iteraciones, y
para |s| ≤ 1,

fn(s) = E[sZn ].

Entonces, como:

P(Zn+1 ≤ k|Zn = j) = P(min(Hn+1,dMn+1)≤ k | Zn = j)

≥ P(Hn+1 ≤ k | Zn = j),
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20 Capítulo 2. Proceso Bisexual

para 0≤ s < 1 se tiene que:

E(sZn+1 | Zn = j)
1− s

≥ E(sHn+1 | Zn = j)
1− s

=
[g(s)] j

1− s
,

donde la última igualdad se sigue del hecho de que E[sHn+1 | Zn = j] = [ f (s,1)] j = [ f (αs+1−α)] j.
En consecuencia, para 0≤ s < 1,

fn+1(s) =
∞

∑
k=0

∞

∑
j=0

P(Zn+1 = k | Zn = j)P(Zn = j)sk

=
∞

∑
j=0

E[sZn+1 | Zn = j]P(Zn = j)

≥
∞

∑
j=0

[g(s)] jP(Zn = j)

= fn(g(s)).

Luego, para n = 1,2, ...

fn(s)≥ f0(gn(s)), 0≤ s≤ 1

Si g′(1) = α f ′(1)≤ 1, entonces gn(0)→ 1 (n→ ∞) y por la continuidad de f0(s),

1≥ q = lı́m
n→∞

fn(0)≥ lı́m
n→∞

f0(gn(0))

= f0( lı́m
n→∞

gn(0)) = f0(1) = 1.

De manera similar,

E[sZn+1 | Zn = j]≥ [G(s)] j

donde G(s)= f (α+(1−α)sd), y para 0≤ s≤ 1, fn(s)≥ f0(G(s)), así cuando G′(1)= (1−α)d f ′(1)≤
1, q = 1 como antes. Así queda probada la suficiencia del teorema.

De nuevo la necesidad requiere de herramientas fuera de nuestro alcance y es relativamente similar a
la del teorema (2.2.3) (véase [D]).

Aparte de las ya mencionadas, se han estudiado otras funciones de emparejamiento a lo largo de
la historia. D.M. Hull consideró funciones superaditivas:

L(x1 + x2,y1 + y2)≥ L(x1,y1)+L(x2,y2), xi,yi ∈ R+, i = 1,2. (2.7)

Este tipo de funciones expresan la idea intuitiva de que x1 + x2 hembras coexistiendo con y1 + y2

machos formarán un número de parejas al menos tan grande como el número total de parejas que
formarían x1 hembras e y1 machos, y x2 hembras e y2 machos viviendo separados. D. M. Hull probó
que bajo estas circunstancias, E[Z1 | Z0 = 1] ≤ 1 era una condición necesaria pero no suficiente para
que q j = 1, j ≥ 1. Si bien el resultado fue probado por primera vez por D. M. Hull [HD], aquí
presentamos una demostración alternativa que sigue una aproximación debida a González y Molina
[GM]. Para demostrar este resultado necesitaremos ver antes este otro teorema:

Procesos de ramificación
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Teorema 2.2.5. Sea Zn, n = 0,1,2... el número de parejas en las sucesivas generaciones de un pro-
ceso Bisexual con función de emparejamiento superaditiva y con Z0 = 1. Entonces, para s ∈ [0,1]
tenemos que:

fn(s)≤ fn−1( f1(s)), n = 1,2, ... (2.8)

donde fn(s) es la función generadora de probabilidad de Zn.

Demostración. Evidentemente f0(s) = s. Para n = 1,2, ... tenemos que:

fn(s) = E[sZn ] = E[E[sZn | Zn−1]] =

= E[E[sL(∑Zn
i=1(hn,i,mn,i)) | Zn−1]] = E[sL(∑Zn

i=1(hn,i,mn,i))]P(Zn−1 = k),

para 0 ≤ s ≤ 1. Por ser L una función superaditiva, sabemos que cumple (2.7). Y a partir de esa
ecuación no es difícil comprobar por inducción que:

L(
k

∑
i=1

xi,
k

∑
i=1

yi)≥
k

∑
i=1

L(xi,yi), xi,yi ∈ R+, i = 1, ...,k.

Y por lo tanto:
E[sL(∑k

i=1 hn,i,∑
k
i=1 mn,i)]≤ E[s∑

k
i=1 L(hn,i,mn,i)], 0≤ s≤ 1.

Entonces,

fn(s)≤
∞

∑
k=0

E[s∑
k
i=1 L(hn,i,mn,i)]P(Zn−1 = k),

y teniendo en cuenta que (hn,i,mn,i) son vectores aleatorios i.i.d podemos deducir que:

fn(s)≤
∞

∑
k=0

E[
k

∏
i=1

sL(hn,i,mn,i)]P(Zn−1 = k) =

=
∞

∑
k=0

[E[sZ1 ]]kP(Zn−1 = k) = fn−1( f1(s)),

lo que completa la demostración del teorema.

Con este resultado, ya somos capaces de probar el teorema antes mencionado.

Teorema 2.2.6. Sea q := lı́mn→∞ P(Zn = 0). Si q = 1, entonces m = E[Z1 | Z0 = 1]≤ 1.

Demostración. Denotamos Z∗n a un proceso Bisexual BGW con función de emparejamiento superadi-
tiva con Z∗0 = 1, y con una distribución de su descendencia idéntica a la distribución de Z1. Tenemos
que:

f ∗n (s)≡ E[sZ∗n ] = ( f1 ◦ n. . .◦ f1)(s) (2.9)

y
q∗ ≡ lı́m

n→∞
P(Z∗n = 0) = lı́m

n→∞
f ∗n (0) = 1 ⇐⇒

m = E[Z∗1 | Z∗0 = 1] = E[Z1 | Z0 = 1]≤ 1.

Así pues, por (2.8) y (2.9) deducimos que q∗= lı́mn→∞ f ∗n (0)= lı́mn→∞( f1◦ n. . .◦ f1)(0)≥ lı́mn→∞ fn(0)=
q. Por consiguiente, si q = 1 tenemos que q∗ = 1 y m≤ 1.

Con el objetivo de obtener condiciones suficientes para la extinción de una población, F. T. Bruss
introdujo en [B] el concepto de tasa media de crecimiento por pareja.
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Definición 2.2.7. La tasa media de crecimiento por pareja, r j, queda definida por:

r j =
1
j
E[Z1 | Z0 = j], j ≥ 1. (2.10)

F. T. Bruss demostró que para un j suficientemente grande, r j ≤ 1 es una condición suficiente para
que el proceso Bisexual se extinga casi seguramente.

Teorema 2.2.8. Existe límite de la sucesión {r j} j≥1. Dicho límite r es denominado tasa de crecimiento
asintótico. Además:

r = sup j≥1r j. (2.11)

Demostración. La demostración se consigue aplicando resultados estándares de funciones superadi-
tivas a { jr j}. Queda fuera del contexto del trabajo ya que no usa argumentos probabilísticos y la
omitimos. Se puede consultar en [DHT].

En el caso concreto de proceso Bisexual con una función de emparejamiento superaditiva tenemos
el siguiente resultado de extinción.

Teorema 2.2.9. Sea {Zn} un proceso de ramificación Bisexual con una función de emparejamiento
superaditiva (2.7),entonces:

q j = 1, j ≥ 1 ⇐⇒ r ≤ 1 (2.12)

Demostración. La demostración se basa en el hecho de que para r ≤ 1 el proceso {Zn} es una super-
martingala no negativa, así que la probabilidad de que {Zn} diverja al infinito es nula y la probabilidad
de extinción es 1. Los detalles completos pueden verse en [DHT] y quedan fuera del alcance del tra-
bajo.

En los resultados inmediatamente anteriores, hemos visto condiciones que garantizan la extinción
del proceso para todos los valores posibles de Z0. Por ello la pregunta más natural que surge a partir
de este punto sería ver cómo afecta el tamaño de Z0 a la extinción del proceso si las condiciones antes
fijadas no se cumplieran.

El primer intento de responder a esta pregunta se lo debemos a Hull, que ya hemos visto que estudió
funciones superaditivas. Para probar su resultado principal debemos antes introducir el siguiente lema.

Lema 2.2.10. Sea Nξ el entero no negativo más grande tal que qNξ
= 1, entonces:

a) P(Zn+1 > Nξ | Zn = Nξ ) = 0.

b) Si t > Nξ , P(Zn+1 > t | Zn = t)> 0.

Demostración.

a) Si suponemos que cuando Zn = Nξ , Zn+1 tiene una probabilidad positiva de tomar un valor
superior a Nξ , entonces tendríamos que qNξ

< 1, lo que contradice la definición de Nξ .

b) Supongamos que P(Zn+1 > t | Zn = t) = 0, donde t > Nξ , Como {Zn} es una cadena de
Markov estocásticamente monótona ([D2]), P(Zn+1 > t | Zn = j) = 0 para todo j = 0,1,2, ...t.
Además, la teoría de cadenas de Markov nos permite asegurar que o bien con el tiempo Zn =

0 o bien Zn → ∞ cuando n→ ∞. La segunda posibilidad queda descartada al igualar a 0 la
probabilidad condicional de arriba. Por lo tanto solo nos queda la opción de que ocurra la
extinción y entonces qt = 1 lo que contradice la definición de Nξ .

Procesos de ramificación
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Una vez visto este lema, ya somos capaces de probar el teorema que desarrolló Hull en 1993
[HD2].

Teorema 2.2.11. Sea un proceso Bisexual de Daley con una función de emparejamiento superaditiva
tal que L(1,1) = 1 y L(x,y)≤ min{xy,x+ y}, si r > 1, entonces:

q j < 1 ⇐⇒ P(Zn+1 > j | Zn = j)> 0. (2.13)

Demostración. ⇒) Por hipótesis se tiene que q j < 1. Entonces, j > Nξ por definición de Nξ . Luego,
por el Lema (2.2.10), se tiene la tesis, es decir que

P(Zn+1 > j | Zn = j)> 0.

⇐) Ahora se asume que P(Zn+1 > j | Zn = j)> 0.
Por lo tanto, existirá algún k ≥ 2 tal que pk > 0, donde {pk} es la distribución de probabilidad de

la descendencia. En efecto, si no fuera así, se tendría que p0+ p1 = 1 y entonces, teniendo en cuenta la
segunda condición de la función de emparejamiento, es decir que L(x,y)≤mı́n(x+ y,x y), se tendría
que L(x,y)≤ j, por lo que no podría ocurrir que

P(Zn+1 > j | Zn = j)> 0

Luego, pk > 0 para algún k ≥ 2. Como además, L(1,1) = 1, se verificará que

P(Zn+1 ≥ 1 | Zn = 1)> 0

(Al menos se podrá formar una pareja con probabilidad positiva).
Finalmente, combinando las tres cuestiones siguientes:

1. P(Zn+1 ≥ 1 | Zn = 1)> 0

2. P(Zn+1 > j | Zn = j)> 0

3. La función de emparejamiento es superaditiva.

Se concluye que:
P(Zn+1 > j+ i | Zn = j+ i)> 0, ∀i = 0,1,2, . . .

Entonces, de esta última desigualdad y la parte (a) del lema (2.2.10), se sigue que:

j+ i 6= Nξ , ∀i = 0,1,2, . . . .

Por tanto, Nξ < j y, por la definición de Nξ ,

q j < 1.

Siguiendo en esta línea, Alsmeyer y Rösler, ver [MM], estudiaron la sucesión de cocientes {q j/q j} j≥1,
en la que el numerador es la probabilidad de extinción de un proceso regido por una función de empa-
rejamiento completamente promiscuo (2.3) y el denominador representa la probabilidad de extinción
de un proceso donde la función de emparejamiento es L(x,y) = x cuando Z0 = j. Consiguieron aco-
tar tanto inferior como superiormente la sucesión y además desarrollaron una ecuación que una vez
resuelta determina la probabilidad de extinción de un proceso completamente promiscuo.

Autor: Antonio Martínez Esteban



24 Capítulo 2. Proceso Bisexual

2.3. Otros procesos Bisexuales en tiempo discreto

Está claro que el modelo Bisexual general que hemos visto hasta ahora no es suficiente a la hora
de estudiar poblaciones un poco más complicadas. Muchos estudios se han realizado con el objetivo
de buscar modelos que se adapten mejor a la realidad, por ejemplo los procesos con inmigración,
los procesos en ambientes aleatorios, procesos dependientes del número de parejas de la población o
procesos con control en el número de parejas que pueden tener descendencia.

Vamos a introducir el proceso de ramificación Bisexual con inmigración para ver alguna de sus pro-
piedades y ver las diferencias respecto al modelo Bisexual general que habíamos planteado antes.

2.3.1. Proceso Bisexual con inmigración

Vamos a definir el siguiente proceso Bisexual con inmigración de hombres y mujeres empezando
con una población de N0 parejas.

El proceso a estudiar sería el siguiente:

(Hn+1,Mn+1) =
Zn

∑
i=1

(hn,i,mn,i)+(HI
n+1(hn∗),MI

n+1(mn∗)), (2.14)

Zn+1 = L(Hn+1,Mn+1), n ∈ Z+.

con Z0 = N0,

donde Z+ denota el conjunto de enteros no negativos. Al igual que en el modelo anterior, el vec-
tor (hn,i,mn,i) representa el número de hembras y machos descendientes de la pareja i en la generación
n. Y {(hn,i,mn,i), i≥ 1; n≥ 0} es una sucesión de vectores aleatorios independientes e idénticamente
distribuidos. Por otro lado, (HI

n+1(hn∗),MI
n+1(mn∗)), con hn∗ = ∑

Zn
i=1 hn,i y mn∗ = ∑

Zn
i=1 mn,i representa

el número de inmigrantes hembras y machos en la generación n+1. Asumiremos que dados j, l ∈ Z+,
{(HI

n+1( j),MI
n+1(l))}∞

n=0 es una sucesión de vectores aleatorios independientes e idénticamente dis-
tribuidos. También vamos a introducir la notación para el vector de las medias de la distribución de
la descendencia y para el vector de la media de inmigración que serán respectivamente (µh,µm) y
(µ j,l

h ,µ j,l
m ), j, l ∈ Z+. Dichos vectores serán positivos y finitos. Además la función de emparejamiento

L será superaditiva (2.7).

Para que algunos de los siguientes resultados teóricos sean válidos, necesitamos introducir la siguiente
suposición:

(A) Las sucesiones {HI
1( j)}∞

j=0 y {MI
1(l)}∞

l=0 son tales que, para j, l ∈ Z+, E[g(HI
1( j + 1))] ≤

E[g(HI
1( j))] y E[g(MI

1(l +1))]≤ E[g(MI
1(l))] siendo g una función no decreciente.

Nota 2.3.1. De la suposición (A) se deduce (ver [MM]) la existencia de variables aleatorias F I( j) y
F I( j+1) definidas en el mismo espacio de probabilidad y teniendo las mismas distribuciones de pro-
babilidad que F I

1 ( j) y F I
1 ( j+1) respectivamente. Análogamente se deduce la existencia de variables

Procesos de ramificación
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aleatorias MI(l) y MI(l + 1) definidas den el mismo espacio de probabilidad y teniendo las mismas
distribuciones de probabilidad que MI

1(l) y MI
1(l +1) respectivamente.

Además podemos deducir que:

(i) {HI( j)}∞
j=0 (análogamente {MI(l)}∞

l=0) es una sucesión monótona no creciente que converge
casi seguramente a una variable aleatoria no negativa de valores enteros HI (análogamente
MI)

(ii) {E[g(HI( j))]}∞
j=0 (análogamente {E[g(MI(l))]}∞

l=0) es una sucesión monótona no creciente
que converge a E[g(F I)] (análogamente E[g(MI)]), para toda función g no decreciente.

El siguiente teorema establece unas condiciones que garantizan la existencia de la tasa de creci-
miento asintótico, r.

Teorema 2.3.2. Sean r j y r definidos como en (2.10) y (2.11) respectivamente. Si se cumple (A) y el
proceso tiene una función de emparejamiento L tal que L(x,y)≤ x+ y, con x,y ∈ R+, entonces:

r = lı́m
k→∞

1
k

L(kµh,kµm) (2.15)

donde suponemos que µh y µm son valores finitos positivos.

Demostración. Se pueden consultar los detalles en [MX].
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