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Summary

Branching processes deal with the growth and decay of systems whose components reproduce
themselves following some stochastic laws.

We are going to study the most classical model in Branching Process history, the one that takes
his name from his main developpers, the Bienaymé-Galton-Watson process. This model describes the
evolution of a population in which each individual gives rise, independently of the others and with a
common reproduction law, to a random number of offspring. In this model, the considered population
has just one kind of individuals and we consider that the time is discrete. So, after reproducing, each
individual of the previous generation does not longer exist in this model.

Let {X, ;:n=0,1..;j=0,1,...} be non-negative integer valued and identically distributed random
variables with probabiliy distribution {p; }. The BGW process is a stochastic process {Z, } that can be
defined as follows:

Zo=NeN, Z,1= anvj, n>1.
=1
X, j represents the number of offspring produced by tkjle j-th individual in the n-th generation.
We shall make repeated use of the probability generating function
fls)= ;skpk, s < 1.

Thanks to the iterates of the generating function we can prove that the generating function of Z,
is the n-th iterate f,(s), being

In(8) = f(fu-1(5))-

We now introduce one of the main results of the first chapter of this thesis.

Theorem 1. [f m = E[Z,] < 1, the extinction probability q is 1. If m > 1, the extinction probability is

the unique non-negative solution less than 1 of the equation

s = f(s).

By extinction we mean the event that the random sequence {Z,} consists of zeros for all but a
finite number of values of n.

The other main result is the one that proves that the sequence {Z,} either goes to o or goes to 0;
it does not remain positive and bounded, even in case m = 1, as the next result follows.
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v Capitulo 0. Summary

Theorem 2. No matter what is the finite value of m = E[Z;], we have lim, .. P(Z, = k) =0, k =
1,2,.... Moreover Z, — o with probability 1 — q and Z,, — 0 with probability q.

As a consequence of the previous results, we should study separately the cases where m < 1,m =1
and m > 1. They receive the name of subcritical, critical and supercritical case respectively.

Branching processes have many applications in fields such as Biology, Epidemiology, Genetics, Cell
Kinetics, Computer Algorithms and Economics, and, of course, Population Dynamics.

In chapter 2 we describe one variation of the BGW process introduced by Daley [D], the bisexual
BGW process. Since Daley’s work, the interest on bisexual branching processes increased and it is
nowadays an active research area of both theoretical interest and applicability to the above mentioned
fields.

In Daley’s bisexual process, the reproduction is accomplished only through couples. Each couple
is formed by one individual (same generation) from each of the two disjoint classes the population

consists on. We can define the process as follows:

Z

( n+1, n+1 Z hnnmnt n+1 L(Hn+1>Mn+1)a n€Z+‘ (l)
=1

3

where:

1. (Hpt1,M,1) represents the number of females and males in the (n+1)-th generation. These
females and males form Z, ;| = L(H,+1,M,1) couples where L is the mating function.

2. (hp,i,my ;) represents the number of females and males descending form the i-th couple of the

n-th generation.

It is not difficult to guess that the choice of the mating function is very important to get some reults
about the extinction of the process. In Daley’s initial work the extinction problem was investigated for

the following two intuitive mating functions:

1. L(x,y) = x min{1,y}. It was called the completely promiscuous mating and asumes that a single
male in each generation will mate with every female of the generation. By using some techni-
ques based in analytic iteration of functions it was proved that:

gi=1,j>21 <+ am<1
where m =Y ;°_ kp; and where it is assumed that an individual is female with probability o.

2. L(x,y) = min{x,dy}, d € 7.1t was called the polygamous with perfect fidelity. The females
practice perfect fidelity while the males practice polygamy. A male may have up to d wives if
enough wives are available. Daley proved in [D] that:

gi=1, j>1 < min{om,d(1—o)m} <1.

The first attempt to use mating functions other than Daley’s two mating functions was made by Hull
in [HD]. He proved that E[Z; | Zp = 1] < 1 was a necessary condition for ¢; = 1, j > 1, where g;
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is the extinction probability when initially there are j > 1 couples in the population and the mating
funcion is superadditive. He also showed that it was not a sufficient condition.

In order to describe the probabilistic evolution of more complicated populations that Daley’s bise-
xual population, several classes of discrete time bisexual branching processes have been introduced.
They could be grouped in the general cases: processes with immigration, processes in varying or in
random environments, processes depending on the number of couples in the population, processes
with control on the number of progenitor couples and other processes.
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Introduccion

Los procesos de ramificacion son una parte de las matematicas que trata de explicar el crecimiento
o decrecimiento de sistemas cuyos componentes se reproducen siguiendo leyes estocdsticas. El tér-
mino proceso de ramificacion fue utilizado por primera vez por A. N. Kolmogorov y N. A. Dimitrev
en 1947, pero el interés en este tema venia ya de mucho antes, mds de siglo y medio atrds en el tiempo.
La idea de este tipo de procesos surge en primer lugar por querer dar una explicacién a la extincién de
ciertos nombres de familia de la aristocracia europea.

Tradicionalmente se ha considerado que la teoria moderna de los procesos de ramificacion fue ini-
ciada en Inglaterra por F. Galton en 1873 cuando publicé en Educational Times su famoso problema:

Sea N el niimero de hombres adultos de una gran poblacion que coloniza una zona. Cada uno de
ellos tiene un apellido diferente. Su ley de distribucion de la poblacion es tal que, en cada generacion,
el ag por ciento de los hombres adultos no tiene descendencia masculina que llegue a la vida adulta;
el ay por ciento tiene un hijo varén que llega a adulto; el ay por ciento tiene dos, y asi sucesivamente
hasta as. Encontrar (1) la proporcion de apellidos que se habrdn extinguido transcurridas r genera-

ciones; y (2) el niimero de apellidos que en ese momento llevardn exactamente m individuos.

No obstante, en 1977 se demostré que en Francia, los cientificos L. F. Benoiston de Chateauneuf
e 1. J. Bienaymé ya habian considerado el problema de la extincion de familias nobles con anterio-
ridad a la publicacion de F. Galton. De hecho, se cree que 1. J. Bienaymé no solo fue el primero en
formular el problema en términos matematicos sino que ademas ya conocia la solucién en 1845, aun-
que la publicacién original nunca se ha encontrado.

Volviendo al problema enunciado, Galton convencié a H. W. Watson para buscar una solucién. Watson
propuso una solucién usando funciones generatrices e iteraciones de funciones, sin embargo, entre los
dos llegaron a la conclusién errénea de que toda familia estaba condenada a la extincién. Tuvieron
que pasar mds de 50 afios hasta que J. F. Steffensen corrigi6 el error especificando que la extincién de
las familias como decfan Galton y Watson solo se producia si el nimero medio de descendientes de
cada individuo de la poblacién era menor o igual a uno.

A lo largo de los afios, el modelo original introducido por Bienaymé, Galton y Watson, ha sido tratado
e investigado de muchas maneras debido a la gran cantidad de campos en los que se podrian aplicar
sus resultados tales como la biologia, epidemiologia, genética, cinética celular, algoritmos informati-
cos y econémicos, y por supuesto, dinamica de poblaciones.
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VIII Capitulo 0. Introduccion

Habiendo dado una idea general de la investigacidn de los procesos de ramificacion a lo largo de
los afios, el objetivo de este trabajo es introducir el proceso estindar de Bienaymé-Galton-Watson,
enunciar y demostrar los resultados mds importantes prestando especial atencién al problema prin-
cipal que motivé el estudio: la probabilidad de extincién del proceso. El capitulo 1 estd dedicado al
estudio del proceso de Bienaymé-Galton-Watson, mientras que en el capitulo 2 presentaremos una
variante del modelo original, el proceso Bisexual, en la que también se tiene en cuenta en el proceso la
formacion de parejas hembra-macho. Esto nos proporcionara un estudio mas acertado de la poblacion
aunque dificultara un poco la obtencién de resultados.

Una primera toma de contacto con estos procesos puede verse en [GP], donde Gonzélez y del Puerto
dan una visién general de varios tipos de procesos de ramificacion entre los que se incluyen los que

presentamos en este trabajo.

En bastantes casos, especialmente en el caso del proceso Bisexual, las técnicas de demostracion de
los resultados utilizan herramientas de procesos estocdsticos que quedan fuera del alcance del trabajo.
En particular, se requieren técnicas de martingalas, de condicionamiento, especialmente de esperan-
za condicional y de teoria no elemental de cadenas de Markov. Este tipo de herramientas no se ven
durante el grado por lo que ha sido necesario consultar en bibliografia especifica algunas cuestiones
sobre ellas. En aquellos casos en los que el uso de este tipo de herramientas es esencial, se facilita
bibliografia donde encontrar las propiedades mds importantes que se utilizan a lo largo del trabajo
y se han obviado los detalles especificos, si bien, en algunos casos se comentan también los pasos
principales de sus demostraciones.
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Capitulo 1

Proceso de Bienaymé-Galton-Watson

El modelo més antiguo y simple de procesos de ramificacién en tiempo discreto es el modelo
de Bienaymé-Galton-Watson (BGW), a veces llamado también proceso de ramificacion simple. Este
proceso modela la evolucién de una poblacién en la que cada individuo tiene descendencia de manera
independiente siguiendo la misma ley de probabilidad. Las poblaciones estudiadas en el proceso de
BGW sdlo tienen un tipo de individuo, y el tiempo se mide de manera discreta en generaciones. En
este modelo, en cada generacion se considera que los individuos anteriores o bien han muerto o sim-
plemente se les deja de tener en cuenta en futuros calculos.

Definimos las variables aleatorias {X, j:n=0,1...; j =0, 1,...} independientes e idénticamente dis-
tribuidas (v.a.i.i.d.) con valores enteros no negativos y con distribucién { py }x>¢. Estas variables re-
presentan el nimero de descendientes que tiene el individuo j en la generacién n. Por ejemplo, la
probabilidad de que en la generacién 3 el individuo 1 tenga k descendientes es:

P(X3,1 = k) = px, po<1.

El proceso BGW es un proceso estocéstico {Z, },>0 que se define de manera recursiva como:
Zn
Zy=NeN, Zy1=)Y X, n>1l (1.1)
j=1

Para simplificar la notacién podemos llamar X; al nimero de descendientes que tiene un individuo |
cualquiera y asi el proceso nos quedaria:

Z)‘l
Znp1 =) X;. (1.2)
Jj=1

Es facil ver que si el tamafio de la generacién n es conocido, la ley de probabilidad por la que se
regirdn las siguientes generaciones no dependerd de los tamafios de las generaciones anteriores a la
n. Por lo tanto el proceso BGW es una cadena de Markov con un estado absorbente', que se alcanza
cuando una generacidn entera no tiene descendencia. Ademds, debido a que la ley de probabilidad de
los descendientes es comun y no cambia en las sucesivas generaciones, esta cadena de Markov tiene
probabilidad de transicién estacionaria, es decir, que no cambia a lo largo del tiempo

Un estado k se dice absorbente si cada vez que la cadena llega al estado k, permanece ahi para siempre.



2 Capitulo 1. Proceso de Bienaymé-Galton-Watson

Hemos definido anteriormente en (1.1) Zp = N € N, pero debido al comportamiento indepen-
diente de los individuos a la hora de tener descendencia, en realidad podriamos haber definido Zg = 1.
Asi, a partir de ahora lo daremos por hecho, ya que el proceso BGW que parte de una generacién
con N individuos se comporta como la suma de N procesos BGW independientes cada uno de ellos

compuesto por una generacion Zy de un individuo.

1.1. Funcion generatriz

La funcidén generatriz de probabilidades de la variable Z; viene dada por:
f)=Y spe, Is|<1. (1.3)
k=0

Dicha funcién es continua, estrictamente creciente y convexaen 0 < s < 1 y ademds f(0) = P(Z; =0)

yf(1)=1.

De manera natural, las iteraciones de la funcion generatriz de probabilidad f(s) quedardn definidas
por:

fols) =5, fi(s)=f(s), (1.4)
for1(s) = flfu(s)], n=1,2,.. (1.5)

Como consecuencia de (1.4)y (1.5), tenemos la siguiente relacién:

fm+n(s):fm[fn(s)]a mn=1,2,... (1.6)

Y en particular,

Jor1(s) = ful £(s)]. (1.7)

Teorema 1.1.1. La funcion generatriz de Z,, es la n-ésima iteracion f,(s).

Demostracion. Definimos f(,)(s) como la funcién generatriz de Z,, n=0, 1, .... Notemos que f(g)(s) =
s. Vamos a ver cudl es la funcién generatriz de la distribucién de Z, 1, bajo la condicién de que Z,, = k.
En ese caso, como Z, | = ZJZ'":1 X, la funcion generatriz buscada sera:

E(SZ"“) :E(SX1+X2+"'+Xk). (1.8)

Y por ser X;, j =1,...,k. variables aleatorias independientes idénticamente distribuidas, tenemos que:

k

E(9 ) =TT £(s) = [£(s) (19)
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1.2. Momentos de Z, 3

Ahora calculamos f{,,;1)(s). Para ello usaremos propiedades de esperanzas condicionadas.

fity = El1) = EIE™ | 2, = K] =

=Y P(Z, = E[s51% | 2, =K = Y P(Z, = k)[f(s)]".
Y por lo tanto,

f(n+1)<s): iP<Zn:k>[f(s)]k:f(n)[f(s)]’ n=0,1.. (1.10)
k=0

Ademas, por las definiciones de fo y f(g), vemos que son iguales. Usando (1.7) y (1.10), vemos por
induccién que f(,)(s) = fu(s), n=1,2,....

O
1.2. Momentos de Z,
La esperanza y la varianza de la ley de ramificacién quedan definidas por:
m=E[Z|| =Y kpy, ©%=Var[Z|=E[Z}]—m’.
Noétese que m = f'(1) y 6% = f"(1) +m — m?
Teorema 1.2.1. Momentos de Z,, :
1) La esperanza de Z, esm",n =10, 1....
2)Si o= Var|Z] < oo, entonces el valor de la varianza de Z,, n > 1, viene dado por:
m”*lcz—]li”;:, m#1,
o2 =Var(Z,| = E[Z}] - E[Z,)* = (1.11)

no?, m=1.

Demostracion. Derivando f,(s) y teniendo en cuenta (1.7), obtenemos:
fa(s) = Fua (F(9)) (s),

de donde,
L) = (FAONF () = £ (D (1) = mf,_y (1).

Ahora, iterando,

Por lo tanto,

Autor: Antonio Martinez Esteban



4 Capitulo 1. Proceso de Bienaymé-Galton-Watson

Ahora veamos la varianza. Derivando dos veces f;(s) y teniendo en cuenta (1.7), obtenemos:

2 (5) = LA (PN )P + 17 (5) fu1 (F(5))- (1.12)

Ademis, como 67 = f/(1)+E[Z,) —E[Z,)%.f(1) = 1, f'(1) =m, f"(1) = 6* — m+m?, tenemos
que:
rlll(l) :63_mn+m2n

y por lo tanto,

De (1.12) tenemos que:

()= LM OP+ () fr (1)

G,f—m” +m2n —_ (63_1 _mn—l +m2n—2)m2+mn—1(62_m+m2)
:>62—m262 | +m" o2,
E iterando,
ol=m"1*(1+m+m’+...+m" "),
con lo cual,
m' oM m
o’ = (1.13)
no?, m=1
]

1.3. Probabilidad de extincion

Ahora consideraremos el problema original propuesto por Galton: encontrar la probabilidad de
extincién de un apellido.

Definicion 1.3.1. Un proceso {Z,} se dice que se extingue si la sucesion {Z,} que define el proceso

estd compuesta por ceros Vn € N excepto para un niimero finito de valores de n.

Como Z, toma valores enteros no negativos, la extincién también serd el suceso Q = {Z, — 0}.
Ademis, como P(Z,, = 0|Z, = 0) = 1, tenemos la siguiente igualdad:

P(Z, — 0) = P(Z, = 0 para algiin n) = P[(Z, =0) U (Z, =0)...]
= 1im P[(Z) = 0)U...U(Z, = 0)] = lim P(Z, = 0) = lim £,(0).

Definicion 1.3.2. Llamaremos g a la probabilidad de extincion del proceso:
q=P(Z, — 0) =1im f,(0). (1.14)

Teorema 1.3.3. Si m < 1, la probabilidad de extincion q es 1. Si m > 1, la probabilidad de extincion

es la unica solucion no negativa menor que I de la ecuacion:
s = f(s). (1.15)

Procesos de ramificacion



1.3. Probabilidad de extincion 5

Demostracion. Sea q, = P(Z, = 0), es decir, g, es la probabilidad de que el proceso se haya extin-
guido antes o al llegar a la generacion n. Claramente g, = f,,(0), g1 = f1(0) = f(0) = po. Y por (1.5):

Qn:f(fnfl(o)):f(anl)- (1-16)

Si pg = 0, entonces g; =0, g2 = 0,..., es decir, si la probabilidad de que no haya descendencia es
nula, la extincién nunca llegard. Por el contrario si pg = 1 entonces g; = 1, g» = 1,..., es decir, si la
probabilidad de que no haya descendencia es uno, entonces la extincidn llegard justo después de la
generacion 0. Por ello vamos a considerar el caso 0 < pg < 1.

Como f(s) es una funcién estrictamente creciente de s, g2 = f(q1) = f(po) > f(0) = g1. Vamos
a aplicar induccién. Para ello suponemos que g, > g1, entonces gn+1 = f(qn) > f(qn—1) = gn y por
induccion g; < g2 < g3.... La sucesién mondtona creciente {g,} estd acotada superiormente por 1.
Por lo tanto g, tiene que tener un limite g = lim, . g,, 0 < g < 1; q es la probabilidad de extincién
definitiva.

Por (1.16) y la continuidad de f(.) vemos que q satisface la ecuacién g = f(q), es decir, q es raiz
de la ecuacién (1.15),

s = f(s).

Ahora vamos a investigar un poco mds acerca de dicha raiz. Primero vamos a ver que q es la raiz posi-
tiva mds pequeiia de la ecuacidn (1.15). Sea so una raiz arbitraria positiva de dicha ecuacién. Entonces
q1 = f1(0) = £(0) < f(so) = so. Suponiendo que g, < o, tenemos que gm+1 = f(gm) < f(s0) = s0,
y por induccién g, < so Vn € N. De este modo, ¢ = 1im,,_, g, < s¢ es la raiz positiva mas pequefia
de (1.15).

Consideramos la grafica y = f(s) en 0 < s < 1. Dicha gréfica empieza en el punto (0,pg) y termi-
naen el (1,1). Recordar que la curva en el primer cuadrante es convexa y creciente. Por ello la curva
y = f(s) podrd cortar a la recta y = s como maximo en dos puntos, uno de ellos el (1,1). Es decir, la
ecuacion (1.15) tendra como maximo dos raices, una de ellas la unidad. Ahora debemos considerar
dos casos (ver figura 1.1):

1) Caso L.
La curva y = f(s) permanece siempre por encima de la recta y = 5. En este caso, el punto
(1,1) es el dnico punto de interseccidn, es decir, 1 es la tnica raiz de s = f(s), y por lo tanto
g = lim,_,.. g, = 1. Entonces:

por lo tanto,

o F) =)
s—0 1—s

<1, es decir f'(1) < 1.

De este modo,

f(1)=m <1, cuando lim g, = 1.
n—oo

ii) Caso II.
Lacurvay = f(s) corta alarectay = s en otro punto (8, f(8)) tal que § = f(6), 0 < 1. Como la

Autor: Antonio Martinez Esteban



6 Capitulo 1. Proceso de Bienaymé-Galton-Watson

curva y = f(s) es convexa, se mantiene por encima de la recta y = s en el intervalo (0,9) y por
debajo en el intervalo (9, 1). Es decir, f(s) <send <s <1y f(s) >sen0<s < . Entonces
q1 = f(0) < f(6) = & y suponiendo que g, < 9, tenemos que ¢u+1 = f(qm) < f(8) =06.Y
por induccién ¢, < & Vn € N. Por ello lim, sq, =¢=0 < 1.

Ahora aplicando el teorema del valor medio al intervalo [8,1], vemos que existe § € [0, 1]
tal que:

riey =TSOy

y como su derivada es monétona, f'(1) > 1. De este modo hemos probado que si q es la raiz
menor que la unidad de la ecuacién (1.15) entonces m = f/(1) > 1.

Y asi queda probado el teorema.

»i . 4 4 : 4 4 »i
Pt t t + t Pt

Figura 1.1: Funcidn generatriz de probabilidad y su probabilidad de extincién.

Acabamos de ver cdmo se extingue el proceso dependiendo de m. Pues bien, es interesante ver
que la sucesion Z, no permanece positiva y acotada: o bien tiende a 0 0 a o, incluso en el casom =1,
como muestra el siguiente teorema. Es decir, que la poblacidn o se extingue, o crece indefinidamente.

Teorema 1.3.4. Sea cual sea el valor finito de m, tenemos que lim, . P(Z, = k) =0, k =1,2,...
Ademads Z,, — 0 con probabilidad q y Z,, — o con probabilidad 1-q.

Demostracion. Primero vamos a demostrar que lim,, . f,,(s) = ¢ para todo s < 1, y a partir de ahi
obtenemos la conclusién del teorema.

Consideramos el caso m < 1. Hemos visto en el teorema anterior que en este caso, la funcién s = f(s)
solo tiene la raiz g = 1.

En general, si 0 < s < g, f(s) < f(q) = ¢, y f2(s) < fa(q) = f1(f(q)) = fi(q) = f(q) = q. Supo-
niendo que f,(s) < g, obtenemos que fy,+1(s) < ¢ y por induccién f,(s) < g para todo n. Al ser
funcién creciente, f,,(s) > f,(0) = gn, por lo que tenemos que g, < fu(s) < g.

Procesos de ramificacion



1.3. Probabilidad de extincion 7

Por tanto, recordando que en este caso g = 1:

lim f,(s)=1=¢q, 0<s<1.

n—yoo

Consideramos ahora el caso m > 1. También hemos visto en el teorema anterior que, en este caso,
q es la raiz menor que 1 de f(s) = s. En el intervalo ¢ < s < 1, la curva y = f(s) se mantiene por de-

bajodelarectay =35,y ¢ < f(s) <s < 1. De manera similar, f2(s) = f(fi(s)) = f(f(s)) > f(q) =q.
Suponiendo que f,(s) > ¢, vemos que f,,+1(s) > ¢, y podemos ver por induccion que f,(s) > g para
todo n. También vemos que f2(s) = f1(f(s)) < fi(s) y suponiendo que fy,(s) < fim—1(s), tenemos que
fn(s) < fu—1(s) para todo n.

Por consiguiente, en g < s < 1, tenemos que:

q < fuls) < fo1(s) < ...,

y por lo tanto,
lim £, (s) > g.

n—yo

Supongamos que lim, . f,(s) = & > g. Entonces f(a) < &, y lim, 0 fy11(8) = lim, e f(fu(s)) =
fla) < a, y llegamos a una contradiccion debido a nuestra suposicién inicial de que @ > g. Por
consiguiente,

lim f£,(s) = ¢.

n—yoo

Recapitulando, hemos probado que sea cual sea el valor de E[Z;] = m, lim,_,« f»(s) = ¢ no depende
del valor de s para todo s < 1. En otras palabras:

s m _ k _
}}ggo];)P(Zn—k)s =q, s<1.

Esto implica que los coeficientes de s* para k > 1 tienden a 0, mientras que el término constante
(k=0) tiende a q.

Es decir, cuando n — oo,

para valores positivos enteros de k, y,
Y como f,(1) = 1, se tendré que,

O

Nota 1.3.5. El resultado anterior también puede demostrarse usando la teoria general de cadenas
de Markov aplicada a la cadena Z,, en la que cada uno de los estados k = 1,2,3... es transitorio’
mientras que el estado 0 es absorbente.

2Un estado k se dice transitorio, si y solo si, comenzando desde el estado k, hay una probabilidad positiva de que el
proceso no vuelva a k.

Autor: Antonio Martinez Esteban



8 Capitulo 1. Proceso de Bienaymé-Galton-Watson

Esta propiedad es conocida como la propiedad de dualidad extincién-explosién:
P(Z, — 0)+P(Z, — o) = 1. 1.17)

Como consecuencia de este resultado, llamamos a los procesos BGW conm <1, m=1ym > 1
subcriticos, criticos y supercriticos respectivamente.

Los dos teoremas anteriores son los resultados basicos sobre el proceso BGW y pueden encontrar-
se en cualquier texto que estudie dicho proceso, como, por ejemplo, [AN], [H], [HIV] y [M].

A continuacidn estudiaremos algunas caracteristicas del proceso Z, en las diferentes situaciones: sub-

critica, critica y supercritica.

1.3.1. Caso subcritico

Recordemos que, en el caso subcritico (m < 1), el proceso muere con probabilidad 1, P(Z, —
0) = 1. Por ello la distribucién limite de Z, no es interesante.
Por tanto, para estudiar el comportamiento asintético de Z, no trivial, debemos introducir la condicién
de que aun no se haya alcanzado la extincion, es decir, Z, > 0 . El siguiente resultado, obtenido por
primera vez por A.M. Yaglom en 1947, nos proporciona el comportamiento limite de su probabilidad
condicionada. Se trata de un resultado muy técnico cuya demostracion requiere técnicas que quedan

fuera del alcance del trabajo y que pueden verse en [H].

Teorema 1.3.6. Suponiendo que m < 1y E[Z;]* < o, entonces Yk € N,

lim P(Z, = k| Z, > 0) = by, (1.18)

n—sco

cony bp=1

1.3.2. Caso critico

Notemos que ahora, de acuerdo al teorema (1.2.1): E[Z,] = m = 1Vn € N, Var|Z,] — e cuando
n— oy que P(Z, —0) =1 (Teorema (1.3.3)). En estas condiciones, si pudiéramos calcular los by
de la ecuacion (1.18) se obtendria que éstos son nulos. Sin embargo, una normalizacién de Z, a través

de n si que converge. As{ se tiene el siguiente resultado, que fue obtenido por A.M. Yaglom en 1947.

Teorema 1.3.7. Si 6% < oo, entonces Vz € N,

Zn
lim P( " <2]2,>0) =Tu(2), (1.19)

n—oo
siendo 'y, la funcion de distribucion gamma con pardmetros a =1y b = c?/2.

Demostracion. La demostracioén de este teorema se basa en determinar la Transformada de Laplace
de Z,/n y relacionarla con la funcién f(s). Los detalles de los cdlculos pueden verse en [M].
O

Lo que nos indica el teorema anterior, es que si el proceso no se ha extinguido para un n grande,
entonces el proceso tiene un crecimiento lineal y la distribucion de Z, /n es casi exponencial.
El siguiente resultado de un proceso critico cuando n es grande fue probado por Kolmogorov en 1938,
pero para poder demostrarlo necesitaremos el siguiente lema:

Procesos de ramificacion



1.3. Probabilidad de extincion

Lema 1.3.8. Sea un proceso BGW conm =1y 62 < oo, entonces:
1 1 1 o2

lim — — — 1.20

no 1 1= fu(s) l—s} 27 (1.20)

uniformemente en 0 < s < 1.

Demostracion. Sea0 <s <1y f"”(1) < e. Usando el desarrollo de Taylor de f(s) en un entorno del
1, obtenemos:

2

(¢
£) =5 (1= 4 r(s) (1 -,
donde r(s) — 0 cuando s — 1.

Si ahora desarrollamos la expresion %(Y) — %_s obtenemos:
1 1 —
S (1.21)
I=f(s) T1-=s (1=f(s)(1-s)
Por el desarrollo de Taylor de anterior se tiene que:

2

c f(s)—s

>+ r(s) (=52

Por lo tanto,

T [622 0] [ 743,
Y finalmente:

(¢
1—f(s) 1—s :7—{—R(s),

(1.22)
donde R(s), que procede del desarrollo de Taylor, estd acotada y R(s) — 0 cuando s — 1.
De la misma manera:
Fa6) = FF(9) = )+ S (1= F6) P+ r(F6) (1= 0)
Y llegamos a:
T = S RUG) (129

Sumando las ecuaciones (1.22) y (1.23) y dividiendo por 2, obtenemos:

% [1 —;Z(S) 1 is] B Cj % [R(s) +R(f(s))]

E iterando,

1 1 1 o2 1

- — = 4 R

n[l—fn(s) l—s] 2 +nk;0 (fic(s))

Como f,(0) < fu(s) < 1y f,(0) — 1, entonces la convergencia de f,(s) — 1 es uniforme. Asi queda
probado el lema.

O]
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10 Capitulo 1. Proceso de Bienaymé-Galton-Watson

Una vez visto el lema anterior, ya podemos probar el siguiente teorema.

Teorema 1.3.9. Sea m=1y 6> < oo, entonces

lim nP(Z, > 0) = —. (1.24)
n—oo O
Demostracion. Primero vemos que:
P> 0) =t~ 0] = [ L]
n =n —_ = |—-(— — —
" " n 1—£,(0) n
Y ahora aplicando el lema anterior en s = 0, obtenemos el resultado:
) _[o* 177" 2
e[ 212
O

1.3.3. Caso supercritico

Hemos visto que cuando E[Z;] = m > 1, el proceso de BGW tiene una probabilidad positiva de
supervivencia para n grande. En el caso de sobrevivir, sabemos por el Teorema (1.3.4) que el tamafio
de la poblacién aumenta indefinidamente. Por ello efectuamos una normalizacién de Z, con el fin de
estudiar su comportamiento.

Asi, definimos una nueva sucesion de variables W, a partir de Z,:

Z
Wo=", n=0,1,... (1.25)

mn’

Teorema 1.3.10. Si m > 1y E[Z?] < oo, entonces la sucesion de variables aleatorias W,, convergen

con probabilidad I a una variable aleatoria W. Ademds:

EW] =1, Var[W| = ‘,:;{Z,},l > 0. (1.26)

Demostracion. Comenzamos calculando la esperanza y la varianza de W, para lo cual usaremos al-
gunas propiedades de la esperanza condicional (ver [RP]).

En primer lugar, dado que Z,,| puede escribirse como Z,, | = ZJZ.":1 X, setiene que, paran=0,1,2,...:

Zn
E[Zn+l ‘Zn] :E[ij |Zn:| =Z,m
=1

Aplicando esta propiedad de manera iterativa y teniendo en cuenta las propiedades de la esperanza

condicional y la naturaleza markoviana de Z,:

E[Zn+k | Zn] =F [E[ZnJrk | (Zn+kfla s 7Zn)] | Zn] =E [E[ZnJrk | Zn+k71] | Zn} =
—=EmZyi1 | Z) = =m"Z,, Vn,k=0,1,2,...
Por tanto, W,, = Z,/m" es una martingala no negativa y converge casi seguramente a una variable

aleatoria no negativa W [RP]:
imW,=W (c.s).

n—oo

Procesos de ramificacion



1.4. Breve introduccion a los procesos de ramificacion en tiempo continuo 11

Ademéds aplicando el teorema (1.2.1), se tiene que

EW,=1]
y que:
et = #Var[z"] N m12" o 11__’:: - mnl+1 o’ 11__’::,
y se puede comprobar tomando limites que :
EW] =1,
1
VarlW] = sz(m —1)

O]

Vamos a prestar particular atencion al proceso {m"Z,}. Escogemos este proceso ya que es una
martingala y por tanto le podremos aplicar varios resultados (ver [RP]) que de otra manera no podria-
mos. Para 0 < m < co, m~"Z, — W c.s cuando n — co. Sabemos que P(W = 0) = 1 para m < 1. Sin
embargo para m > 1 K. Kesten y B.P. Stigum (ver [KS]) probaron el siguiente teorema.

Teorema 1.3.11. Sea W definida como antes y m > 1,

PW >0)>0 < Y kpilogk < e, (1.27)
k=1

P(W>0)=P(Z, ) =1—gq. (1.28)

Demostracion. La demostracion se basa en el hecho de que Z"/m" es una martingala y por tanto se
pueden usar los resultados de convergencia para martingalas (ver [RP]). Los detalles pueden verse en
[KS]y quedan fuera del alcance del trabajo. O

El teorema anterior implica que, en condiciones de no extincion, Z, ~ m"W.

1.4. Breve introduccion a los procesos de ramificacion en tiempo conti-
nuo

Aunque en el resto del trabajo nos centraremos sé6lo en los procesos de ramificacion en tiempo
discreto, vamos a introducir brevemente los procesos en tiempo continuo.

Matemadticamente estos procesos son mucho mds complejos que los que tienen tiempo discreto. Se
puede discutir la necesidad de su estudio argumentando que los datos nunca son recogidos de manera
continua, sino que son recogidos en intervalos de tiempo (regulares o irregulares). La necesidad es
maés bien conceptual, ya que el ser humano concibe el tiempo como un pardmetro continuo. Como
las matematicas pretenden imitar conceptos reales, parece 16gico pensar que los modelos deberian
formularse en tiempo continuo.

Autor: Antonio Martinez Esteban



12 Capitulo 1. Proceso de Bienaymé-Galton-Watson

El precio a pagar por estos modelos es un incremento en la dificultad de las matemadticas requeri-
das para la construccién de los espacios de probabilidad y de los procesos. Por otro lado, ganamos un
modelo mucho mds parecido a poblaciones reales como a una poblacién de humanos o animales en

condiciones estables.

En el proceso de BGW, el tiempo de vida de cada individuo era una unidad de tiempo. Una manera
natural de generalizar el sistema es permitir que los tiempos de vida de los individuos sean variables
aleatorias. En vez de la cadena de Markov en tiempo discreto {Z,; n =0,1,2...} de los apartados an-
teriores, debemos considerar un proceso {Z(¢); t > 0}, donde Z(¢) es el nimero de individuos vivos
en el momento t. En general este tipo de procesos no serd Markoviano, a menos que los tiempos de
vida de cada individuo sean variables aleatorias independientes de distribucién exponencial.

Definicion 1.4.1. Llamamos proceso de ramificacion unidimensional de Markov en tiempo continuo
al proceso estocdstico {Z(t,); t > 0} en el espacio de probabilidad (Q,F,P) si cumple:

i) Su espacio de estados es un conjunto de niimeros enteros no negativos.
ii) Es una cadena de Markov estacionaria con respecto a la filtracion F, = 6{Z(s,®); s <t}

iii) Las probabilidades de transicion P, j(t) satisfacen.:

oo

Y P(1)s = [ioa S5 (1.29)

=0
paratodoi >0y |s| < 1.

Para més detalle sobre el proceso de BGW en tiempo continuo pueden consultarse las referencias
[AN], [HIV]y [M].

1.5. Un ejemplo de aplicacion

En esta tdltima seccién del capitulo vamos a presentar sin entrar en mucho detalle un caso en el
que los procesos de ramificacion se pueden aplicar para ayudarnos a resolver algiin problema. En
la introduccién del trabajo ya hemos nombrado varios campos de investigacién en los que dichos
procesos pueden ser ttiles, siendo seguramente el campo de la biologia en el que més aplicaciones se

pueden encontrar.

Modelo del ciclo celular con muerte y quiescencia

El paso fundamental en la expansion de una poblacién de células es la division de una de ellas en
dos células. Al completar su ciclo de vida, cada célula dobla mds o menos su tamafio y se divide en
dos células de aproximadamente igual tamafio. El conjunto de la descendencia de cada célula recibe
el nombre de colonia. Se ha observado experimentalmente que células de caracteristicas similares no
tienen por qué crear colonias del mismo tamafio en la misma cantidad de tiempo. Esto puede deberse
a varios factores, como la aleatoriedad de la muerte celular o la quiescencia.

Procesos de ramificacion



1.5. Un ejemplo de aplicacion 13

{ p2  proliferacion

Po muerte

\ 4

N . p1 quiescencia

\ 4

Figura 1.2: Representacion esquemadtica del modelo del ciclo celular.

El modelo matematico

Consideramos un proceso BGW. Vamos a empezar suponiendo que existe una tnica célula y que
esta se divide en dos como muestra la Figura (1.2).

Entonces, cada una de las células descendientes de la célula inicial, independientemente la una de
la otra, puede:

1. Proliferar con probabilidad p;.
2. Morir con probabilidad pg.
3. Entrar en un estado de quiescencia con probabilidad p;.

Las células quiescentes son aquellas que contindan existiendo sin proliferar ni morir. Después de mu-
cho tiempo, podrian volver a un estado de proliferacién o morir, pero en este modelo no tendremos en
cuenta esta posibilidad. Suponemos que py+ p; + p» = 1. Denotando como Z, al nimero de células
proliferantes de la generacion n y O, al niimero de células quiescentes, tenemos planteado un modelo
BGW al que podemos aplicar los resultados obtenidos en el capitulo 1. Asi por ejemplo, podemos ver
que si p; +2p> < 1 la poblacién de células desaparecerd. Detalles adicionales de este caso pueden
verse en [KA].

En el capitulo siguiente hablaremos de una variante del proceso de BGW, el proceso Bisexual. Di-

cho proceso se ajustard bastante mds a la realidad ya que tendremos en cuenta la formacién de parejas
para tener descendencia, no como en este capitulo, en el que solo habldbamos de individuos.
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Capitulo 2

Proceso Bisexual

2.1. Introduccion

Hasta ahora hemos trabajado con procesos de BGW sin tener en cuenta el sexo de cada indivi-
duo ni su capacidad para tener descendencia. Ademds, tampoco hemos considerado que el tipo de
reproduccion pueda ser diferente dependiendo de la poblacién que estudiemos. Por ejemplo, en una
poblacién poligama (un macho puede estar con varias hembras), si el nimero de machos es lo sufi-
cientemente grande, el nimero de hembras de una generacién serd determinante a la hora de estimar
el tamafio de la poblacién en el futuro.

En este capitulo estudiaremos los procesos de BGW en el que los individuos se definen como hembras
o machos y la reproduccién se produce por la formacién de parejas hembra-macho. Esto complicard
bastante los cdlculos matematicos por lo que los resultados serdn mas limitados.

De hecho, en el simposio celebrado en el Winstar Institute (Philadelphia) en abril de 1966, el ma-

temdtico S. M. Ulam hizo la siguiente observacién [HD3]:

"Hay una bonita técnica para describir procesos que comienzan con un unico objeto, que poste-
riormente puede dar lugar a 0, 2, 3 o mds descendientes. Es la teoria de procesos de ramificacion.
Estudia la reproduccion asexual y permite estudiar diversas caracteristicas del proceso. Me gusta-
ria destacar que la teoria andloga para procesos de ramificacion con sexo, donde los individuos se
juntan, por ejemplo aleatoriamente, para generar descendientes. Es decir, una combinacion de un
proceso binario de emparejamiento y reproduccion, es matemdticamente mucho mds dificil y todavia

no hay una teoria exacta."

Si bien se ha avanzado considerablemente desde el momento en que Ulam hizo tal afirmacién, no
es menos cierto que el desarrollo de los procesos de ramificacion “sexuales” es bastante mas limitado
del que podria ser esperable.

2.2. Modelo Bisexual de Daley

El modelo Bisexual fue introducido por Daley (1968) [D]. En dicho modelo, la poblacién esta
formada por dos clases de individuos, los machos y las hembras. La reproduccién se lleva a cabo

15



16 Capitulo 2. Proceso Bisexual

a través de la formacion de parejas macho-hembra de la misma generacién. Por ello, resultard més
conveniente dar el tamaifio de la poblacién mediante el nimero de parejas que dar solo el niimero de
individuos como haciamos anteriormente. De nuevo, el tiempo ahora serd discreto.

Andlogamente a lo visto en el capitulo 1, cada pareja tendrd descendencia de manera independien-
te a las demds parejas siguiendo una distribucion de probabilidad {py }1>0 siendo py la probabilidad
de que una pareja tenga k descendientes. Llamaremos ¢ a la probabilidad de que un individuo sea
hembra, ¢ € (0, 1), con lo que un individuo serd macho con probabilidad 1 — ¢. Una manera alterna-
tiva de estudiar el modelo Bisexual seria considerar una descendencia con distribucién de probabilidad
{pi j} donde p; ; es la probabilidad de que una pareja tenga i descendientes hembras y j machos. Aqui
estudiaremos este proceso siguiendo el primer esquema a través del uso de funciones de empareja-
miento.

Antes de definir el modelo, necesitamos introducir la notacién que utilizaremos.

Definicion 2.2.1. Definimos la funcién de emparejamiento L como una funcion definida en RT x R*
que toma valores en R", siendo R" el conjunto de niimeros reales no negativos. A dicha funcion la

llamaremos funcion de emparejamiento. Ademds, L(x,0) = L(0,y) =0, x,y € R™.

La funcién de emparejamiento L, a través del niimero de hembras y machos de una generacion,
define como se forman las parejas de esa generacion.

Vamos a representar el nimero de hembras (H) y machos (M) en la generacién n + 1 mediante el
par (H,.1,M,1), gracias al cual, después de aplicarle la funcién L, tendremos el nimero de parejas
de la generacién n+ 1 que denotaremos como {Z, }. Dichas parejas se reproducirdan de manera inde-
pendiente y con la misma distribucion de probabilidad. En la generacidn inicial, la poblacién constard
de un nimero positivo de parejas Ny , i.e. Zy = Np.

Por dltimo el nimero de machos y hembras que descienden de la pareja i en la generacion n quedard
determinado por el vector (A, ;,my, ;) conn € Zt, i=1,...,Z,, siendo estos vectores independientes,
no negativos y estando idénticamente distribuidos.

Con todo lo anterior, ya podemos definir el proceso Bisexual de Daley o proceso Bisexual de Galton-
Watson (Hy+1,M,1) como:

N

(Hys1,Mui1) = Y (hniymni),  Zniy = L(Hyp1,Mys1), n€Z". (2.1)
1

Es f4cil de ver que en el proceso Bisexual de Daley al igual que en el de BGW visto en el Capitulo
1, {Z,},>0 es una cadena de Markov cuyos estados son nimeros enteros no negativos. Ademds, el
estado 0 serd un estado absorbente mientras que los demds estados k serdn estados transitorios.

Antes de entrar en detalle sobre la determinacion de la probabilidad de extincién conviene introducir
la funcién generatriz del proceso distinguiendo entre hembras y machos. Independientemente de la
generacién en que nos encontremos e independientemente del resto de parejas, cada pareja tendrd h
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2.2. Modelo Bisexual de Daley 17

descendientes hembras y m machos. Asi la funcién generatriz de probabilidad de las variables H y M
es:

fls1,2) =E[s{sY],  Isi],]s2] < 1.

Ademas,
E[s{" s | Z, = j] = [f(s1,52))

debido a la independencia.

Por otra parte si se denota por J = H + M el nimero total de descendientes, cuya funcién genera-
triz de probabilidad es f(s) =% ; sip j» y cada descendiente es hembra con probabilidad & y macho
con probabilidad 1 — ¢, independientemente del resto de descendientes, se tiene que (ver [D]):

f(s1,82) = flas;+ (1 —o)s7).

2.2.1. Algunas funciones de emparejamiento y probabilidad de extincion

Es claro que el estudio del proceso Bisexual dependerd en gran medida de la funcién de empare-
jamiento L. Cuando Daley formuld el proceso [D], decidi6 estudiar dos tipos de funciones diferentes.
Antes de introducirlas, vamos a definir la probabilidad de extincién en un proceso Bisexual de Daley.

Definicién 2.2.2. Liamaremos q; a la probabilidad de extincion del proceso {Z,}n>0 cuando la po-

blacion inicial constaba de j parejas, j > 0.

qj=P(Z,—0[Z = j). 2.2

La primera funcién de emparejamiento que consideré fue:
L(x,y) = x min{1,y} (2.3)

A esta funcién se le llamé funcion de emparejamiento completamente promiscuo. Este sistema de
reproduccién asume que en cada generacién habra un solo macho (variable y) que se emparejara con
todas las hembras (variable x) de dicha generacién. Todos los machos restantes quedaran excluidos
del proceso. Esto es lo que ocurre en algunos grupos de animales tales como las manadas de leones.

Para esta funcion se tiene el resultado siguiente sobre la probabilidad de extincién. Es interesante
observar que la condicién que caracteriza la extincion es la que aparece en el proceso usual de BGW
pero ponderada por la probabilidad o de que un descendiente sea hembra, lo que pone de relieve que
en esta funcién de emparejamiento el papel esencial lo desempefia el nimero de hembras.

Teorema 2.2.3. Sea L(x,y) = x min{1,y} la funcién de emparejamiento de un proceso Bisexual de
Daley, y sea Q =1im,_,.. P(Z, = 0| Zy > 0), entonces:

O0=1,j>1 < am<]1 2.4)

donde m =Y., kpy.

Autor: Antonio Martinez Esteban



18 Capitulo 2. Proceso Bisexual

Demostracion. Para probar la suficiencia del teorema, el punto clave es demostrar que por ser Z, una
cadena de Markov con probabilidad de transicién estacionaria la funcién generatriz verifica que:

oo

E[sZnJrl |Zn — J] — thksk — ZSkP(Zn+1 :k | Zn == J) g
k=0 k=0

=[flas+1—a)) —[f(as))/ +[f(a)) .

Suponemos ahora que Zy > 0, para |s| < 1 tenemos que:

oo

fals) =E[s™] =Y s'P(Z, = j)

Jj=0

notando que f,(1) = fo(1) = 1. Entonces:

(=) [SSINY

Jat1(s) = ZP(ZnH :k)sk = Z ZP(ZnH =k|Z,= j)P(Z, :j)sk =

k=0 k=0 j=0
= Y PZu=J) ¥ P(Zor =k| Zy = j)s"
j=0 k=0

= I P2, = ) (s 1 ) [l + (@),
= (9~ (@) + i)

donde se ha usado la igualdad anterior.

Sea ahora g(s) = f(os+ 1 — ). Denotando a las iteraciones de esa funcion generatriz de proba-
bilidad por go(s) = sy gn(s) = g(gn—1(s)) paran = 1,2... tenemos que:

n

fas1(s) = folgnr1(s) + Y [fr(f(00)) = £ (f (0gu-r(s)))],

r=0
donde los términos de esa suma son no negativos para 0 < s < 1 por ser las funciones f, crecientes.
Luego para0 <s <1,
fn+1(s) > fO(gn+1(S))-

Ahora bien, por la teorfa de procesos BGW vistos en el capitulo 1, cuando g'(1) = a.f'(1) < 1, g, (s) —
1 cuando n — e Vs € [0, 1]. Por consiguiente, ya que fy(s) es una funcién continua, vemos que:

1>g= r}l;nolofn(o) > ’}l;nolofO(gn(O))
= fo(lim g,(0)) = fo(1) =1
n—yoo
Y asi queda probada la suficiencia del teorema.

La demostracién de la necesidad utiliza técnicas y herramientas que quedan fuera del alcance del
trabajo, por lo que presentaremos solamente un esquema de los pasos de mds interés.

En primer lugar, para la necesidad, se usa el hecho de que {Z,} es una cadena de Markov en la que
el estado {0} es absorbente y los demds estados {1,2,...,} son estados transitorios que comunican
entre si, para demostrar que

Q; = lim P(Z, =0Z = j)

Procesos de ramificacion
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es la solucidén positiva minimal de la ecuacién

Qj:pj70+2pj7ka, j=12,....
k=1

donde p; 4 son las probabilidades de transicién de esa cadena, es decir, p; x = P(Z+1 = k|Z, = j).
Posteriormente, a partir de la desigualdad,
P(Z,> j+n|Zy=j)>P(Zi > j+ 1,2, > j+2,....2, > j+n| Zy=j),

usando la propiedad de Markov y aplicando la férmula integral de Cauchy para calcular P(Z,41 <
J | Zn = Jj), que toma la expresion

P(Znir < j| Zn = j) = — /F[8(Z)]j—[f(aZ)]j+[f(a)]de

2mi 211 —72)

se puede, tras una serie de cdlculos técnicos, probar la necesidad.

Los detalles completos pueden verse en [D]. O

La segunda funcién de emparejamiento que considerd Daley fue:
L(x,y) = min{x,dy}, decZ* (2.5)

Esta funcién es conocida por el nombre de funcion de emparejamiento poligdmico con perfecta fideli-
dad. En este sistema las hembras, la variable x, son siempre fieles y se les permite emparejarse como
mucho con un macho. Los machos (al menos algunos) practican la poligamia, un macho puede llegar
a emparejarse hasta con d hembras si hubiera hembras suficientes. En el caso particular en el que
d = 1 tendriamos la funcién de perfecta fidelidad en la que tanto machos como hembras son siempre
fieles.

Teorema 2.2.4. Sea L(x,y) = min{x,dy}, d € Z", la funcion de emparejamiento de un proceso Bise-
xual de Daley, entonces:

gi=1, j>1 < min{om,d(1—o)m} <1 (2.6)
donde m =Y ;> o kpx.
Demostracion. Aligual que en la demostracién anterior vamos a empezar probando la suficiencia del
teorema. Continuaremos escribiendo g(s) = f(as+ 1 — ), con g,(s) denotando sus iteraciones, y
para |s| <1,
Entonces, como:
P(Zy1 <k|Z, = j) = P(min(H,11,dMy11) < k| Z, = j)

> P(Hy1 <k|Zy =),
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para 0 < s < 1 se tiene que:

Ee™|Zy=)) L E6™ | Zi=)) _ [s6))

1—ys 1—ys 1—s

9

donde la dltima igualdad se sigue del hecho de que E[s"+1 | Z, = j] = [f(s, 1)}/ = [f(as + 1 — )]/,
En consecuencia, para 0 < s < 1,

oo

Y P(Zys1 =k | Zy = j)P(Z, = j)s*
j=0

Sat1 (S) =

»
8 1L[1s

=Y E[s" |2, = jlP(Z, = ))

~
Il
<

8()/P(Zy = ))

A\
™5

~
i
o

e
P
oo
—
N
N—
S—

Luego, paran=1,2,...
fa(s) = fo(gn(s)), 0<s<1

Sig'(1)=of'(1) <1, entonces g,(0) — 1 (n — o0) y por la continuidad de fy(s),

>g=1i > i
1> g = lim £,(0) > lim fo(gx(0))

:fO(r}g{}ogu(O)) :fo(l) =1.

De manera similar,
E[s" | Z, = j] 2 [G(s))

donde G(s) = f(a+(1—a)s?), ypara0 < s < 1, f,(s) > fo(G(s)), asi cuando G'(1) = (1—a)df'(1) <
1, g = 1 como antes. Asi queda probada la suficiencia del teorema.

De nuevo la necesidad requiere de herramientas fuera de nuestro alcance y es relativamente similar a
la del teorema (2.2.3) (véase [D]). O]

Aparte de las ya mencionadas, se han estudiado otras funciones de emparejamiento a lo largo de
la historia. D.M. Hull consideré funciones superaditivas:

L(xl+x27yl+y2) ZL(xlayl)+L(x25y2)a xi)yiER+v i= 172 (27)

Este tipo de funciones expresan la idea intuitiva de que x| + x» hembras coexistiendo con y; + y»
machos formardn un nimero de parejas al menos tan grande como el ndimero total de parejas que
formarian x; hembras e y; machos, y x, hembras e y, machos viviendo separados. D. M. Hull prob6
que bajo estas circunstancias, E[Z; | Zp = 1] < 1 era una condicién necesaria pero no suficiente para
que g; = 1, j > 1. Si bien el resultado fue probado por primera vez por D. M. Hull [HD], aqui
presentamos una demostracién alternativa que sigue una aproximacion debida a Gonzdlez y Molina
[GM]. Para demostrar este resultado necesitaremos ver antes este otro teorema:
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Teorema 2.2.5. Sea Z,, n =0,1,2... el niimero de parejas en las sucesivas generaciones de un pro-
ceso Bisexual con funcion de emparejamiento superaditiva y con Zy = 1. Entonces, para s € [0,1]

tenemos que:
fa(s) < famr(fils), n=1.2,... (2.8)
donde f,(s) es la funcion generadora de probabilidad de Z,,.

Demostracion. Evidentemente fy(s) =s. Paran = 1,2,... tenemos que:

fu(s) = E[s"] = E[E[s" | Z,1]) =
— E[E[SL(Z['Zgl(hn‘hmn.i)) ’Zn—lﬂ — E[SL(Z,'ZL(hmivmn,i))]P<Zn_l — k)’

para 0 < s < 1. Por ser L una funcién superaditiva, sabemos que cumple (2.7). Y a partir de esa
ecuacioén no es dificil comprobar por induccién que:

k k k
L(inaZ)’i)Z L(xiuyi)v xiuyi€R+7 l:177k
i 1

i=1 =1 i=
Y por lo tanto:
E[SL():?:]hn,h):f-‘:lmn.j)} < E[stzlL(hn,i,mn,i)], 0<s<l.

Entonces,

oo

fuls) < Y Bl e |P(Z, 4 = k),
k=0

y teniendo en cuenta que (hy,,;,m, ;) son vectores aleatorios i.i.d podemos deducir que:

oo k
fuls) < X E s 0 1P(Zes = k) =
0 =1

k=

= Y ES P =) = fur(i(5)).

k=0

lo que completa la demostracion del teorema. 0
Con este resultado, ya somos capaces de probar el teorema antes mencionado.
Teorema 2.2.6. Sea g :=1im,_,. P(Z, =0). Si ¢ =1, entoncesm =E[Z; | Zo =1] < 1.

Demostracion. Denotamos Z;, a un proceso Bisexual BGW con funcién de emparejamiento superadi-
tiva con Z; = 1, y con una distribucién de su descendencia idéntica a la distribucién de Z;. Tenemos
que:

fi(s) = E["] = (fio.".0 fi)(s) (2.9)

g = lim P(Z; = 0) = lim £;(0) = 1 +=
m=E[Z] |Zy=1]=E[Z| | Zo=1] < 1.

Asi pues, por (2.8) y (2.9) deducimos que ¢* = lim,, o f; (0) = lim, ;e (f1 0.".0 £1)(0) > lim,, e f,,(0) =

gq. Por consiguiente, si ¢ = 1 tenemos que g* = 1ym < 1. 0

Con el objetivo de obtener condiciones suficientes para la extincidon de una poblacidn, F. T. Bruss
introdujo en [B] el concepto de tasa media de crecimiento por pareja.
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Definicion 2.2.7. La tasa media de crecimiento por pareja, r;j, queda definida por:
1 a
rj:}E[Zl | Zo=]], j=1. (2.10)

F. T. Bruss demostr6 que para un j suficientemente grande, r; < 1 es una condicion suficiente para
que el proceso Bisexual se extinga casi seguramente.

Teorema 2.2.8. Existe limite de la sucesion {r;} j>1. Dicho limite r es denominado tasa de crecimiento
asintético. Ademds:

r=Supj>1r;. (2.11)

Demostracion. La demostracion se consigue aplicando resultados estindares de funciones superadi-
tivas a {jr;}. Queda fuera del contexto del trabajo ya que no usa argumentos probabilisticos y la
omitimos. Se puede consultar en [DHT]. O

En el caso concreto de proceso Bisexual con una funcién de emparejamiento superaditiva tenemos
el siguiente resultado de extincién.

Teorema 2.2.9. Sea {Z,} un proceso de ramificacion Bisexual con una funcion de emparejamiento
superaditiva (2.7),entonces:
gi=1, j=z1 << r<l1 (2.12)

Demostracion. La demostracion se basa en el hecho de que para r < 1 el proceso {Z,} es una super-
martingala no negativa, asi que la probabilidad de que {Z,} diverja al infinito es nula y la probabilidad
de extincion es 1. Los detalles completos pueden verse en [DHT] y quedan fuera del alcance del tra-
bajo. 0

En los resultados inmediatamente anteriores, hemos visto condiciones que garantizan la extincién
del proceso para todos los valores posibles de Zy. Por ello la pregunta mas natural que surge a partir
de este punto seria ver como afecta el tamafio de Z; a la extincién del proceso si las condiciones antes
fijadas no se cumplieran.

El primer intento de responder a esta pregunta se lo debemos a Hull, que ya hemos visto que estudi6
funciones superaditivas. Para probar su resultado principal debemos antes introducir el siguiente lema.

Lema 2.2.10. Sea N¢ el entero no negativo mds grande tal que gn; = 1, entonces:
a) P(Zys1 > Ng | Z, = Ng) =0.
b) Sit > Ng, P(Zy1>t]Z,=1t)>0.

Demostracion.

a) Si suponemos que cuando Z, = Ng, Z,4, tiene una probabilidad positiva de tomar un valor
superior a Ng, entonces tendriamos que gy, < 1, lo que contradice la definicion de Ne.

b) Supongamos que P(Z,.| >t |Z, =t) =0, donde t > Ng, Como {Z,} es una cadena de
Markov estocdsticamente monétona ([D2]), P(Z,+1 >t | Z, = j) =0 paratodo j =0,1,2,...1.
Ademds, la teorfa de cadenas de Markov nos permite asegurar que o bien con el tiempo Z, =
0 o bien Z, — oo cuando n — oo. La segunda posibilidad queda descartada al igualar a O la
probabilidad condicional de arriba. Por lo tanto solo nos queda la opcién de que ocurra la
extincion y entonces g; = 1 lo que contradice la definicion de Ng.
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O

Una vez visto este lema, ya somos capaces de probar el teorema que desarrollé Hull en 1993
[HD2].

Teorema 2.2.11. Sea un proceso Bisexual de Daley con una funcion de emparejamiento superaditiva
tal que L(1,1) = 1y L(x,y) < min{xy,x+y}, si r > 1, entonces:

qj <1 <= P(Zp1>j|Z,=j)>0. (2.13)

Demostracion. =) Por hipétesis se tiene que g; < 1. Entonces, j > Ng por definicién de Ng. Luego,
por el Lema (2.2.10), se tiene la tesis, es decir que

P(Zyi1> j| Zo=j)>0.

<) Ahora se asume que P(Z,+1 > j | Z, = j) > 0.

Por lo tanto, existird algin k > 2 tal que p; > 0, donde {p;} es la distribucién de probabilidad de
la descendencia. En efecto, si no fuera asi, se tendria que pg+ p1 = 1 y entonces, teniendo en cuenta la
segunda condici6n de la funcién de emparejamiento, es decir que L(x,y) < min(x+y,x y), se tendria
que L(x,y) < j, por lo que no podria ocurrir que

P(ZnJrl >j|Zn:j)>0
Luego, px > 0 para algin k > 2. Como ademads, L(1,1) = 1, se verificard que
P(Zyt1>21|Z,=1)>0

(Al menos se podra formar una pareja con probabilidad positiva).
Finalmente, combinando las tres cuestiones siguientes:

1. P(Zys1>11Z2,=1)>0
2. P(Zyy1>j|Zy=Jj)>0
3. La funcién de emparejamiento es superaditiva.

Se concluye que:
P(Zy1>j+i|lZ,=j+i)>0,Vi=0,1,2,...

Entonces, de esta tltima desigualdad y la parte (a) del lema (2.2.10), se sigue que:
Jt+i#Neg, Vi=0,1,2,....
Por tanto, Né < jy, por la definicién de Ng; R
qgj <l

O

Siguiendo en esta linea, Alsmeyer y Rosler, ver [MM], estudiaron la sucesion de cocientes {g;/q’} j>1,
en la que el numerador es la probabilidad de extincién de un proceso regido por una funcién de empa-
rejamiento completamente promiscuo (2.3) y el denominador representa la probabilidad de extincién
de un proceso donde la funcién de emparejamiento es L(x,y) = x cuando Zy = j. Consiguieron aco-
tar tanto inferior como superiormente la sucesién y ademds desarrollaron una ecuacién que una vez
resuelta determina la probabilidad de extincidon de un proceso completamente promiscuo.
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2.3. Otros procesos Bisexuales en tiempo discreto

Esté claro que el modelo Bisexual general que hemos visto hasta ahora no es suficiente a la hora
de estudiar poblaciones un poco mds complicadas. Muchos estudios se han realizado con el objetivo
de buscar modelos que se adapten mejor a la realidad, por ejemplo los procesos con inmigracién,
los procesos en ambientes aleatorios, procesos dependientes del nimero de parejas de la poblacién o
procesos con control en el nimero de parejas que pueden tener descendencia.

Vamos a introducir el proceso de ramificacién Bisexual con inmigracién para ver alguna de sus pro-
piedades y ver las diferencias respecto al modelo Bisexual general que habiamos planteado antes.

2.3.1. Proceso Bisexual con inmigracion

Vamos a definir el siguiente proceso Bisexual con inmigracién de hombres y mujeres empezando

con una poblacién de Ny parejas.

El proceso a estudiar seria el siguiente:

Z)l

(Hp1: M) = Y (B jomn) + (HL (i), M2 (), (2.14)
i=1

Zni1 = L(Hyy1,Myy1), n€Z*.

con Zy = Ny,

donde Z" denota el conjunto de enteros no negativos. Al igual que en el modelo anterior, el vec-
tor (hy, ;,m, ;) representa el nimero de hembras y machos descendientes de la pareja i en la generacién
0. Y {(hni,my;), i > 1; n >0} es una sucesion de vectores aleatorios independientes e idénticamente
distribuidos. Por otro lado, (H,’l+1 (), M£+1 (mpy)), con hy, = ZL-ZL hni y Mps = Z,-Zil my, ; Tepresenta
el nimero de inmigrantes hembras y machos en la generacién n+1. Asumiremos que dados j,/ € Z™,
{(HL, ,(j),ML, (1))}, es una sucesion de vectores aleatorios independientes e idénticamente dis-
tribuidos. También vamos a introducir la notacion para el vector de las medias de la distribucion de
la descendencia y para el vector de la media de inmigracion que serdn respectivamente (U, ) y
( ,u,{’l, u,{;’l), Jj,1 € Z". Dichos vectores serdn positivos y finitos. Ademads la funcién de emparejamiento

L serd superaditiva (2.7).
Para que algunos de los siguientes resultados tedricos sean validos, necesitamos introducir la siguiente
suposicioén:

(A) Las sucesiones {HI(j ooy M ()}, son tales que, para j,l € Z*, E[g(H{(j+1))] <
Elg(HI(j)]y E[g(Ml(1+ ))] < E[g(M!(1))] siendo g una funcién no decreciente.

Nota 2.3.1. De la suposicion (A) se deduce (ver [MM]) la existencia de variables aleatorias F! )y
F!(j+1) definidas en el mismo espacio de probabilidad y teniendo las mismas distribuciones de pro-
babilidad que Fl(j)y Fl(j+ 1) respectivamente. Andlogamente se deduce la existencia de variables

Procesos de ramificacion



2.3. Otros procesos Bisexuales en tiempo discreto 25

aleatorias M'(1) y M' (1 + 1) definidas den el mismo espacio de probabilidad y teniendo las mismas
distribuciones de probabilidad que M1 (1) y M!(1+ 1) respectivamente.

Ademds podemos deducir que:

. 1/ \\ oo 2 /4 =) .z z .

(i) {H'(j)}7-o (andlogamente {M"(1)}2) es una sucesion mondtona no creciente que converge
casi seguramente a una variable aleatoria no negativa de valores enteros H' (andlogamente
M)

(ii) {E[g(H'(j))] 7o (andlogamente {E [g(M!(1))]}7,) es una sucesion mondtona no creciente
que converge a E[g(F!)] (andlogamente E[g(M!))), para toda funcion g no decreciente.

El siguiente teorema establece unas condiciones que garantizan la existencia de la tasa de creci-

miento asintotico, r.

Teorema 2.3.2. Sean r; y r definidos como en (2.10) y (2.11) respectivamente. Si se cumple (A) y el
proceso tiene una funcion de emparejamiento L tal que L(x,y) < x+y, con x,y € RT, entonces:

1
r= Hm —L(kw, kiby) (2.15)
k—oo k
donde suponemos que L, y Uy, son valores finitos positivos.

Demostracion. Se pueden consultar los detalles en [MX]. O
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