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Un modelo computacional de simulación de flujo en

arterias

Resumen

En este trabajo se ha realizado una simulación computacional del flujo en arterias. Para
ello, en primer lugar se han derivado las ecuaciones diferenciales que rigen el comporta-
miento del sistema y después, se han resuelto por medio del método de las caracteŕısticas.
Dicho método aprovecha una propiedad de las ecuaciones hiperbólicas, que consiste en
que en ciertas familias de curvas, llamadas curvas caracteŕısticas, la solución de dichas
ecuaciones vaŕıa de una forma espećıfica, que depende de dichas ecuaciones. El objetivo
es proponer un modelo de simulación numérica de flujos transitorios en vasos elásticos.
Los resultados numéricos se han validado por comparación con soluciones exactas de
problemas simplificados. Se ha analizado la sensibilidad de dichas soluciones a diver-
sos parámetros tanto f́ısicos como numéricos. Para dar por finalizado el trabajo, se han
expuesto una serie de conclusiones obtenidas de las distintas simulaciones realizadas.
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1. Introducción

1.1. Descripción del sistema circulatorio

El sistema cardiovascular, o circulatorio, transporta ox́ıgeno y nutrientes a todos los
tejidos del cuerpo, desde donde se elimina dióxido de carbono y otros desechos que se
producen. La sangre pobre en ox́ıgeno penetra en el corazón desde el cuerpo y sale hacia los
pulmones. Una vez que en los pulmones se recarga de ox́ıgeno, vuelve a entrar al corazón
desde donde sale hacia el cuerpo a través de la arteria aorta. La aorta se divide en otras
arterias y arteriolas, que transportan la sangre hasta los capilares. En los capilares tiene
lugar el intercambio de ox́ıgeno, agua, dióxido de carbono y otros muchos nutrientes y
sustancias entre la sangre y los tejidos de alrededor de los capilares. Entonces, los capilares
se transforman en vénulas, que a su vez se juntan para formar las venas que retornan la
sangre desoxigenada al corazón.

El corazón proporciona la enerǵıa para mover la sangre a través del sistema circulato-
rio. Consiste en cuatro cavidades: dos ventŕıculos y dos auŕıculas, cuyos tamaños vaŕıan
durante el ciclo cardiaco debido a la actividad del corazón. La auŕıcula derecha recibe la
sangre del sistema venoso. La sangre fluye de la auŕıcula derecha al ventŕıculo derecho
y sale a los pulmones a través de los vasos pulmonares. De los pulmones vuelve a la
auŕıcula izquierda a través de las venas pulmonares, baja al ventŕıculo izquierdo y sale
por la aorta hacia el resto del cuerpo. Además, existen cuatro válvulas, una a la salida
de cada vavidad, que regulan el flujo de sangre en el corazón y se aseguran de que solo
haya movimiento en un sentido. La sangre consiste en una solución acuosa (plasma) que
transporta las distintas sustancias que hemos comentado antes (ox́ıgeno, nutrientes...) en
suspensión. Estos materiales entran y salen de la sangre cuando pasan a través de los
capilares. Debido a que más del 90/100 del plasma es agua y a que los materiales en sus-
pensión son varios órdenes de magnitud más pequeños que el diámetro de las arterias, la
sangre se aproxima como un fluido homogéneo e incompresible de densidad 1050 Kg/m3.
Esta aproximación no es válida en los capilares ya que son mucho más estrechos que las
arterias y, en ellos, el tamaño de los materiales en suspensión no es despreciable.

En la eyección ventricular de la sangre y su interacción con las paredes distensibles de
las arterias se generan ondas de presión y de flujo (o velocidad). La sangre se aproxima a
un fluido incompresible. Debido a esto, la aorta y el resto de las arterias deben distenderse
para acomodarse al repentino flujo de sangre producido por la expulsión ventricular.
Cuando la sangre es eyectada, las arterias se distienden debido a un incremento de la
presión y los tejidos de las paredes acumulan enerǵıa elástica. La distensión empieza en
la aorta y se propaga a lo largo del sistema arterial. Cuando la enerǵıa elástica acumulada
durante la distensión es liberada, las arterias se contraen de la misma forma que se hab́ıan
distendido. Los cambios en la velocidad y en la presión se propagan como ondas a través
de las arterias. Por tanto, las arterias presentan un latido regular, llamado pulso, que
sigue el latido del corazón. La velocidad de estas ondas es uno o dos órdenes de magnitud
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mayores que la velocidad del flujo. Por tanto, durante un ciclo cardiaco son capaces de
llegar a los capilares y reflejarse. La velocidad del pulso depende del módulo elástico
(módulo de Young) de tal manera que cuanto mayor es el módulo más rápido viajan las
ondas.

1.2. Simulación numérica y objetivos

La aplicación de modelos numéricos en el estudio y en la simulación de la circulación
de la sangre en el cuerpo humano es frecuente en la actualidad [2] y podŕıa jugar un
papel importante en el diagnóstico y el tratamiento de enfermedades cardiovasculares,
las cuales son la principal causa de mortalidad en páıses desarrollados [1]. Varias de
estas enfermedades introducen algunas variaciones en las propiedades f́ısicas que pueden
cambiar de forma significativa la forma de los pulsos de onda que viajan por el sistema. Por
ejemplo, la aterosclerosis, que es una enfermedad común y bastante peligrosa, consiste en
la formación de depósitos dentro de los vasos, venas o arterias. Debido a ello, disminuye
el diámetro de dichos vasos y disminuye, o incluso se frena, el flujo de sangre. Estas
variaciones también afectan al patrón de los pulsos de presión y velocidad.

En este trabajo el sistema arterial se simula como un conjunto de tubos flexibles a
través de los cuales se propagan ondas de presión y de velocidad. Solamente se simula
la componente axial, ya que una simulación tridimensional (3-D) no es factible debido a
su coste computacional, porque el sistema circulatorio contiene un número muy grande
de vasos. Una simulación en una dimensión (1-D) es rápida y permite llevar a cabo un
análisis sensible. Aunque el modelo 1-D es más simple y mas barato que el modelo 3-
D, proporciona información relevante, debido a que la propagación de las ondas ocurre
principalmente en la dirección axial de las arterias.

El objetivo de este trabajo es realizar varias simulaciones que permitan determinar la
sensibilidad del sistema a variaciones de diversos parámetros, como el radio del conducto
(vena o arteria), el espesor o el módulo de elasticidad del mismo. Para ello es necesario
familiarizarse con las ecuaciones que describen el comportamiento de un fluido incompre-
sible en conductos elásticos, aśı como con las ecuaciones hiperbólicas y el método de las
caracteŕısticas.
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2. Ecuaciones gobernantes

Cada arteria es aproximada por un tubo impermeable de longitud l en 1-D, cuya
dirección axial es x. El área circular variable A(x, t) es normal a x y tiene espesor h.
El flujo de sangre está descrito en la dirección axial a través de u(x, t), definido como
la velocidad media sobre el área A(x, t). Además, hablamos también del caudal Q(x, t)
que es igual al producto del área por la velocidad media Q(x, t)=A(x, t)u(x, t). La pared
arterial se deforma por la acción de la presión interna, denotada por p(x, t), que se asume
constante en los puntos de cada área.

2.1. Ecuación de conservación de la masa

Se va a utilizar un volumen de control, como en la Figura 2.1, para aplicar el teorema
de transporte de Reynolds [9]. Dentro de este volumen de control la variación total en el
tiempo de la masa m debe ser igual a cero:

Dm

Dt
=

D

Dt

∫

ρdV = 0 (2.1)

Aplicando el teorema de transporte de Reynolds, se obtiene:

d

dt

∫

V C

ρdV +

∮

SC

ρ(u · n̂)dS = 0 (2.2)

con u la velocidad del fluido. La primera integral tiene en cuenta la variación de la masa
dentro del VC debido al cambio de densidad o volumen en el tiempo y la segunda integral
tiene en cuenta la variación de la masa dentro del VC debido a la existencia de un flujo
neto de masa distinto de cero a través de la SC. Desarrollando esta expresión, se llega a
la primera ecuación:

∂ (ρA)

∂t
+
∂ (ρQ)

∂x
= 0 (2.3)

z

x

VC

Frente de onda

( +   )(A+  A)(u+   u+c) A(u+c) � 

( +   )� α

� � 

Figura 2.1: Volumen de control usado para la ecuación de conservación de la masa.

4



El desarrollo completo de esta expresión se encuentra en el Anexo 1.

2.2. Ecuación de conservación del momento

Utilizando un volumen de control en un fluido:

P =

∫

V C

ρudV (2.4)

Se puede aplicar la segunda ley de Newton a un fluido dentro del volumen de control. La
variación del momento P en el tiempo es igual a la suma de las fuerzas que actúan en el
volumen de control:

D(P)

Dt
=

∮

SC(t)

F̃s · n̂dS +

∫

V C(t)

FvdV (2.5)

donde la primera integral tiene en cuenta las fuerzas de superficie y la segunda integral
las fuerzas de volumen que actúan dentro del VC. F̃s es el llamado tensor de esfuerzos.
Nuevamente, se aplica el teorema de Reynolds y se obtiene:

d

dt

∫

V C(t)

ρudV +

∮

SC(t)

ρu(u · n̂)dS =

∮

SC(t)

F̃s · n̂dS +

∫

V C(t)

FvdV (2.6)

Para completar esta ecuación es necesario definir las fuerzas de volumen y de superficie
que aparecen en el lado derecho de la ecuación. Las fuerzas de superficie vienen dadas
por la acción de la presión y la fricción en las paredes:

∮

SC(t)

F̃s · n̂dS = −
∮

SC(t)

p(x, t)n̂dS +

∮

SC

τ̃v · n̂dS (2.7)

donde p es la presión en las paredes y τ̃v es el tensor de esfuerzos viscosos. Únicamente
es de interés la componente axial, por ello:

∮

SC(t)

(

F̃s · n̂
)

x
dS = −

∮

SC(t)

pnxdS +

∮

SC

(τ̃v · n̂)x dS (2.8)

La única fuerza volumı́nica a incluir en la ecuación es la fuerza gravitatoria. Dicha
fuerza gravitatoria por unidad de volumen en el eje x vendrá dada por:

Fv,x = ρgSinα (2.9)

donde α es la inclinación del conducto respecto a la horizontal. Ahora que todos los
términos están definidos, se desarrolla la expresión y se obtiene la segunda ecuación:

∂Q

∂t
+
∂(Qu)

∂x
= −A

ρ

∂p

∂x
+
fvπD

ρ
− gASinα (2.10)

donde fv es la componente x de esfuerzo viscoso y u es la velocidad media u = Q/A.
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2.3. Velocidad de onda

La ecuación de conservación de la masa obtenida es:

∂ (ρA)

∂t
+
∂ (ρAu)

∂x
= 0 (2.11)

Separando las derivadas parciales queda:

ρ
∂A

∂t
+ A

∂ρ

∂t
+ ρA

∂u

∂x
+ ρu

∂A

∂x
+ Au

∂ρ

∂x
= 0 (2.12)

Dividiendo por ρA y agrupando se obtiene:

1

ρ

(

∂ρ

∂t
+ u

∂ρ

∂x

)

+
1

A

(

∂A

∂t
+ u

∂A

∂x

)

+
∂u

∂x
= 0 (2.13)

que puede reescribirse como:

1

ρ

Dρ

Dt
+

1

A

DA

Dt
+
∂u

∂x
= 0 (2.14)

Donde D/Dt = ∂/∂t+u∂/∂x es la derivada sustancial en una dimensión espacial [5].
Como ρ = ρ(p) y A = A(p), la ecuación anterior queda:

1

ρ

dρ

dp

Dp

Dt
+

1

A

dA

dp

Dp

Dt
+
∂u

∂x
= 0 (2.15)

Sacando factor común a Dp

Dt
se llega a:

(

1

ρ

dρ

dp
+

1

A

dA

dp

)

Dp

Dt
+
∂u

∂x
= 0 (2.16)

que se reescribe como:

1

ρc2
Dp

Dt
+
∂u

∂x
= 0 (2.17)

con:

1

c2
=
dρ

dp
+
ρ

A

dA

dp
(2.18)

Siendo c la velocidad de onda [5]. El primer término del lado derecho de la ecuación
(2.18) representa el efecto de la compresibilidad de un fluido en la velocidad de onda y
el segundo término representa el efecto de la elasticidad del conducto. Por tanto, puede
resolverse la velocidad de onda de un fluido compresible en un conducto ŕıgido por medio
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de dA/dp = 0. Sin embargo, el caso que se trata aqúı es el de un fluido incompresible en
un conducto elástico, que se obtiene por medio de dρ/dp = 0 y que lleva a:

c2 =
A

ρ

dp

dA
(2.19)

El sistema inicial, compuesto por la ecuación de conservación de la masa y por la
ecuación de conservación del momento, es:

∂A

∂t
+
∂Q

∂x
= 0 (2.20)

∂Q

∂t
+
∂(Qu)

∂x
= −A

ρ

∂p

∂x
+
fvπD

ρ
− gASinα (2.21)

Manipulando dicho sistema, se ha llegado a otra formulación del mismo:

1

ρc2
Dp

Dt
+
∂u

∂x
= 0 (2.22)

1

ρc2
Du

Dt
+

1

ρ

∂p

∂x
= 0 (2.23)

La primera formulación es habitual para el caso de flujo en arterias y la segunda para el
flujo en tubeŕıas pero ambas son equivalentes. Además, ambos son sistemas hiperbólicos.
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3. Método de las caracteŕısticas

Una vez que se han obtenido las ecuaciones que rigen el sistema, hay que resolverlo.
Para ello se utiliza el método de las caracteŕısticas debido a que el sistema de ecuaciones
es hiperbólico. Sin embargo, para resolver numéricamente un sistema de ecuaciones no
lineales como el que se tiene, se ha partido del caso más simple (una ecuación lineal) y
se ha ido avanzando progresivamente hasta llegar al sistema de ecuaciones no lineales.

3.1. Una ecuación lineal

Se analiza la siguiente ecuación diferencial en derivadas parciales:

∂g

∂t
+ c

∂g

∂x
= 0 (3.1)

con c una constante. Esta ecuación es hiperbólica de primer orden como se explica en el
Anexo 2 y se le denomina ecuación del color o ecuación de convección lineal [8]. Si en la
ecuación (3.1) se reemplaza c por:

c =
dx

dt
(3.2)

la ecuación (3.1) queda:

∂g

∂t
+
dx

dt

∂g

∂x
=
dg

dt
= 0 (3.3)

Lo cual nos muestra que g es constante a lo largo de estas ĺıneas caracteŕısticas
x = x0+ct, como se aprecia en la Figura 3.1. La ecuación del color describe la propagación
de una señal a lo largo de una dirección del espacio. Si se conoce g en t = 0, g(x, 0), la
solución anaĺıtica a dicha ecuación será la traslación de la función g(x, 0) con velocidad
c en dirección positiva a lo largo eje x. Se va a implementar un método numérico y a
comparar los resultados obtenidos por dicho método con la solución anaĺıtica. De esta
manera, se comprueba que el método numérico se ha realizado de forma correcta.

t

x

x = x0+ct

Figura 3.1: Ĺıneas de pendiente c en el plano (x,t)

8



El dominio en el que se trabaja se discretiza, de tal manera que el punto (i, n) del
plano (x, t) va a indicar el punto espacial x = i∆x y el momento temporal t = n∆t.
Debido a esto, se habla de ∆x, que es la distancia entre dos puntos en el eje espacial y de
∆t, que es la distancia entre dos puntos en el eje temporal. Para explicar cómo se obtiene
el valor de la solución en el punto i en el siguiente instante temporal n + 1, es decir, en
el punto (i, n+ 1), se utiliza la Figura 3.2.

t

x

n+1

n

t

i-1 i

(1)

(2)

x

L

(i,n+1) t=(n+1) t

t=n t

Figura 3.2: Discretización espacial y temporal

El valor de c viene dado por las condiciones del problema. ∆x se escoge y se deja
fijado inicialmente. Se define ∆t0:

∆t0 =
∆x

c
(3.4)

como el que hace que la recta que pasa por el punto (i, n+ 1) salga del punto (i− 1, n).
El ∆t utilizado se relaciona con dicho ∆t0 de la siguiente manera:

∆t = CFL∆t0 (3.5)

donde CFL es el número de Courant-Friedrichs-Levy [8]. Dicho número es el cociente
entre el paso de tiempo numérico, ∆t y el tiempo caracteŕıstico ∆t0. La condición:

0 < CFL ≤ 1 (3.6)

hace que el punto L sea tal que:

xi−1 ≤ xL ≤ xi (3.7)

Se va a utilizar esta condición a lo largo de todo el trabajo. A partir de la Figura 3.2,
utilizando una aproximación lineal se tiene:

gnL − gni−1

gni − gni−1

=
xL − xi−1

xi − xi−1

(3.8)

lo que da:

gnL = gni−1 +
gni − gni−1

∆x
(xL − xi−1) (3.9)
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Además:

c =
xi − xL
∆t

⇒ xL = xi − c∆t (3.10)

Llevando el resultado de (3.10) a (3.9) se obtiene:

gn+1
i = gnL = gni−1 +

gni − gni−1

∆x
(xi − c∆t− xi−1) (3.11)

Para el caso en el que CFL = 1 se tiene que ∆t = ∆t0 y la ecuación (3.11) queda:

gn+1
i = gnL = gni−1 (3.12)

Siempre serán necesarias condiciones iniciales y, dependiendo del caso, una o dos
condiciones de contorno en los puntos de entrada y/o salida. Para la comprobación del
método, se va a utilizar un pulso rectangular que actúa como condición inicial. Ahora
son necesarias las condiciones de contorno para los puntos de entrada y de salida. Como
la solución viaja hacia la derecha, es necesaria una condición de contorno en el punto de
entrada. La condición de contorno de entrada va a ser g(0, t) = b, con b la base del pulso.
Esta condición de contorno va a suponer que el pulso viaje hasta el ĺımite y desaparezca.

Se va a comprobar que el pulso viaje a la velocidad adecuada y cómo afecta el valor
de CFL. Los valores de programación escogidos han sido ∆x = 0,1 y c = 0,5, por su
parte se han utilizado dos valores de CFL: 0,5 y 1. En la Figura 3.3 se representa el pulso
en cinco instantes de tiempo y se ve que se propaga a la velocidad adecuada en ambos
casos y que por tanto el método numérico se ha implementado correctamente. Además
se ve que con CFL=1 la propagación es perfecta mientras que con CFL=0,5 el pulso
sufre una deformación, debida a la disipación de los valores de la solución y a la difusión
espacial a lo largo del eje x. El siguiente paso es la ecuación no lineal.

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100

g(
x)

x

t = 0
t = 30
t = 60
t = 90

t = 120

(a) CFL=1

 0

 5

 10

 15

 20

 25

 30

 35

 0  20  40  60  80  100

g(
x)

x

t = 0
t = 30
t = 60
t = 90

t = 120

(b) CFL=0,5

Figura 3.3: Propagación de un pulso en la ecuación lineal con c=0,5. a) CFL=1. b)
CFL=0,5.
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3.2. Una ecuación no lineal

La ecuación que se va a tratar ahora es la llamada ecuación de Burgers no viscosa [3],
que tiene la siguiente forma:

∂u

∂t
+ u

∂u

∂x
= 0 (3.13)

La solución anaĺıtica de esta ecuación puede calcularse de sus curvas caracteŕısticas.
Dado que u = u(x, t):

du

dt
=
∂u

∂t
+
∂u

∂x

∂x

∂t
=
∂u

∂t
+ u

∂u

∂x
= 0 (3.14)

de donde:
dx

dt
= u⇒ u = constante (3.15)

Ahora, las curvas caracteŕısticas van a ser rectas de pendiente u, que tiene distintos
valores en los puntos del sistema. Para ilustrar esto, se utiliza la función inicial escalón.
En la Figura 3.4 se presentan los dos tipos de escalones. Cuando se produce la intersección
de dos curvas caracteŕısticas se tiene una onda de choque, como es el caso del escalón (b).
Por otra parte, cuando existe una zona en la que no llega ninguna curva caracteŕıstica lo
que se tiene es una onda de rarefacción, como es el caso del escalón (a) [3] [6].

u

x

t=0

u2

u1

x

t

u1 u2

(a) Escalón 1

u

x

t=0

u1

u2

x

t

u1 u2

(b) Escalón 2

Figura 3.4: Función escalón y sus rectas caracteŕısticas. a) Escalón creciente. b) Escalón
decreciente.

Nuevamente, se fija el valor de ∆x. Cada punto tendrá una velocidad distinta, ui
(en nuestro ejemplo, como estamos explicando el escalón, tenemos dos grupos con dos
velocidades distintas) y, por tanto, una pendiente distinta y un ∆ti distinto, ∆ti = ∆x/ui.
Se escoge ∆t0 como el menor de todos los ∆ti.

∆t0 = min{∆ti} (3.16)
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∆t = CFL∆t0, CFL ≤ 1 (3.17)

El motivo es que el punto que tenga menor pendiente será el más restrictivo y esto
garantiza que todas las rectas vayan a parar a un punto situado entre (i−1, n) y (i, n). Si
se escogiese como ∆t0 otro que no fuera el asociado al punto de menor pendiente (mayor
velocidad), alguna de las rectas de los otros puntos no iŕıa a parar a algún punto situado
entre (i− 1, n) y (i, n) sino que se iŕıa más hacia la izquierda y esto es algo que se evita
en este trabajo.

Nuevamente, harán falta condiciones iniciales y de contorno. La condición inicial
vendrá dada por un pulso de la siguiente forma:

u(x, 0) =

{

−u1, ∀xǫ(−∞, x1) ∪ (x2,∞)
u2, ∀xǫ[x1, x2] (3.18)

cuya solución anaĺıtica es, según [4]:

u(x, t) =







−u1, ∀xǫ(−∞, x1 − u1t) ∪ (x2,
u2−u1

2
t,∞)

x−x1

t
, ∀xǫ [x1 − u1t, x1 + u2t]

u2, ∀xǫ
[

x1 + u2t, x2 +
u2−u1

2
t
]

(3.19)

Nuevamente, la información viaja hacia la derecha y únicamente será necesaria la
condición de contorno de entrada. Igual que en caso anterior, será igual a la base del
pulso. En la Figura 3.5 se comprueba el comportamiento de un pulso rectangular como el
indicado con valores x1=32,5 ,x2=77,5, u1=1, u2=2 y se halla la solución transcurrido un
tiempo t=20 [4]. Se compara la solución obtenida con la solución anaĺıtica y coinciden.
Por tanto, el método numérico se ha implementado correctamente y se puede pasar a
analizar el sistema de ecuaciones.

-2

-1

 0

 1

 2

 3

 0  20  40  60  80  100

u(
x)

x

t=0
t=20

Analítica

Figura 3.5: Propagación de un pulso rectangular en la ecuación no lineal

3.3. Sistema de ecuaciones no lineales

El sistema de ecuaciones escogido es el compuesto, respectivamente, por las ecuaciones
(2.22) y (2.23):

(E1)
∂p

∂t
+ u

∂p

∂x
+ ρc2

∂u

∂x
= 0 (3.20)
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(E2)
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (3.21)

Para dar la presión, muchas veces se utiliza la altura piezométrica de la siguiente
manera:

p = ρgH (3.22)

Una forma de determinar las direcciones caracteŕısticas es:

(E2) + λ(E1) = 0 (3.23)

Agrupando de forma conveniente queda:

∂u

∂t
+ (u+ λρc2)

∂u

∂x
+ λ

(

∂p

∂t
+

(

u+
1

ρλ

)

∂p

∂x

)

= 0 (3.24)

Lo que implica:

dx

dt
= u+ λρc2 = u+

1

ρλ
⇒ λ = ± 1

ρc
(3.25)

De esta forma se tiene:

∂u

∂t
+ (u+ c)

∂u

∂x
+

1

ρc

(

∂p

∂t
+ (u+ c)

∂p

∂x

)

= 0 (3.26)

Y queda:

D

Dt

(

u+
p

ρc

)

=
D

Dt

(

u+
g

c
H
)

= 0 , sobre
dx

dt
= u+ c (3.27)

D

Dt

(

u− p

ρc

)

=
D

Dt

(

u− g

c
H
)

= 0 , sobre
dx

dt
= u− c (3.28)

Estas dos ecuaciones implican que las ĺıneas caracteŕısticas van a ser ĺıneas de pen-
diente u+ c y u− c a través de las cuales se van a conservar las magnitudes u± gH/c.

El tamaño relativo de las cantidades u y c define el número de Froude, Fr = u/c. Si
Fr < 1, u + c > 0 y u − c < 0, hablamos de régimen subcŕıtico. Si Fr > 1, u + c > 0 y
u− c > 0, hablamos de régimen supercŕıtico.

Este mismo resultado podŕıa haberse obtenido de otra manera, en la cual se define el
sistema como un conjunto de vectores:
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Figura 3.6: Ĺıneas caracteŕısticas en el sistema de ecuaciones no lineales

U =

[

p
u

]

(3.29)

A continuación se define una matriz Jacobiana, que permite reescribir el sistema:

∂U

∂t
+ J

∂U

∂x
= 0 (3.30)

Los autovalores de J son las direcciones caracteŕısticas de nuestro sistema y, cam-
biando a la base de autovectores de J se obtienen las dos invariantes de Riemann que se
conservan [4].

Para explicar la elección del paso de tiempo se utiliza la Figura 3.6. Cada punto
tendrá dos ĺıneas con pendientes u + c y u − c. Se definen para cada punto ∆t+i y ∆t−i ,
que son los ∆ti asociados a las pendientes ui + c y |ui − c| respectivamente. El ∆t0 debe
elegirse siguiendo el mismo criterio que en la ecuación de Burgers pero adaptado a nuestro
sistema de ecuaciones, es decir, como el mı́nimo ∆ti de entre todos los ∆t+ y ∆t−.

∆t0 = min{∆t+i ,∆t−i } (3.31)

Como la velocidad se reflejará en los ĺımites, adoptará tanto valores positivos como
negativos, por tanto, se define para cada punto:

∆timin =
∆x

|ui|+ c
(3.32)

Se escoge como ∆t0 al menor de los ∆tmin.

∆t0 = min{∆timin} (3.33)

Con esto se garantiza que ambas rectas de todos los puntos vayan a parar a un punto
entre i,i− 1 e i,i+ 1 según corresponda. Nuevamente, el ∆t vendrá dado por:

∆t = CFL∆t0 (3.34)

Una vez escogido el ∆t, se computan los valores de u y H en el paso de tiempo
siguiente. La notación utilizada se presenta en la Figura 3.7.
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|u-c|Δt

Δx

Figura 3.7: Método numérico en el sistema de ecuaciones no lineales

Las caracteŕısticas AL y AR con pendientes u + c y u− c, respectivamente, pasan a
través del punto A, en el cual se quieren obtener los valores de u y deH. Los valores de u,H
en L y R (uL,HL,uR,HL) se pueden computar fácilmente por medio de una interpolación
lineal de los valores conocidos uni−1, u

n
i , u

n
i+1, H

n
i−1, H

n
i , H

n
i+1. La interpolación es análoga

a la realizada para una ecuación lineal. De esta manera, se tiene:

uL = uni +
(

uni−1 − uni
) (u+ c)∆t

∆x
(3.35)

uR = uni +
(

uni+1 − uni
) |u− c|∆t

∆x
(3.36)

HL = Hn
i +

(

Hn
i−1 −Hn

i

) (u+ c)∆t

∆x
(3.37)

HR = Hn
i +

(

Hn
i+1 −Hn

i

) |u− c|∆t
∆x

(3.38)

Una vez obtenidos estos valores, se computan los de las cantidades auxiliares AL y
AR:

AL = uL +
g

c
HL (3.39)

AR = uR − g

c
HR (3.40)

Finalmente se computan los valores de un+1
i y Hn+1

i de la siguiente manera:

(

u+
g

c
H
)n+1

i
=

(

u+
g

c
H
)n

L
= ALn (3.41)

(

u− g

c
H
)n+1

i
=

(

u− g

c
H
)n

R
= ARn (3.42)

Sumando y restando las dos ecuaciones anteriores obtenemos, respectivamente:

un+1
i =

AL+ AR

2
(3.43)

Hn+1
i =

c

g

AL− AR

2
(3.44)
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El caso que se va a estudiar es el llamado ”water hammer”[7] [12]. En este caso, se
tiene una tubeŕıa en el que uno de los extremos es mantenido a presión constante y en el
otro se cierra de forma repentina una válvula, lo cual se traduce como que la velocidad
en el punto de salida es nula. Hasta que la válvula se cierra, todos los puntos poseen la
misma presión y velocidad (H0 y u0). Una vez cerrada la válvula, el punto de entrada
se mantiene a presión H0 y el punto de salida a velocidad 0. Por tanto, en este caso se
aplican dos condiciones de contorno, una en el punto de entrada y otra en el punto de
salida. Según estas condiciones se tiene para el punto de entrada:

Hn+1
1 = H0 (3.45)

un+1
1 =

g

c
Hn+1

1 + ARn
1 =

g

c
H0 + ARn

1 (3.46)

Para el punto de salida:

un+1
imax

= u0 = 0 (3.47)

Hn+1
imax

=
c

g

(

ALn
imax

− un+1
imax

)

=
c

g
ALn

imax

(3.48)

En [7] y [12] se ve que la solución al problema water hammer es una onda rectangular
de la presión en el punto de salida y de la velocidad en el punto de entrada, en las que se
tienen las siguientes propiedades:

c =

√

K
ρ

1 +
(

KD
eE

) (3.49)

T =
4L

c
(3.50)

∆H =
c

g
∆u (3.51)

Donde D es el diámetro interior de la tubeŕıa, e es el espesor de la pared, E es el
módulo de elasticidad de la pared de la tubeŕıa, ρ es la densidad del fluido, K es el módulo
de elasticidad del fluido, T es el periodo, ∆u la amplitud de u y ∆H es la amplitud de
H. Los valores utilizados en el programa son los siguientes: D=0.5 m, e=4 mm, H0=5
m, u0=9.9 m/s, L=6000 m; donde L es la longitud de la tubeŕıa y H0 y u0 los valores
iniciales de presión y velocidad hasta que se cierra la válvula. Introduciendo estos valores
en la ecuación (3.49) obtenemos c=2980 m/s.

Además, se utilizan los siguientes valores de programación: ∆x=10 m, CFL=0,5 y
CFL=1. En la Figura 3.8 se representan la presión en el punto de salida y la velocidad
en el punto de entrada para comprobar que se cumple todo lo recogido en las ecuaciones
anteriores y para ver cómo afecta el CFL:
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Figura 3.8: u en el punto de entrada (Arriba) y H en el punto de salida (Abajo) con a)
CFL=1, b) CFL=0,5.

Se ve en la Figura 3.8 que ∆H≃10 y ∆u≃3000. Introduciendo estos valores en las
fórmulas (3.50) y (3.51) debe cumplirse que:

T ≃ 8 (3.52)

c

g
= 304,08 =

∆H

∆u
≃ 300 (3.53)

La segunda relación se cumple y se puede apreciar que el periodo es el que debe ser.
Por tanto, el método numérico se ha implementado correctamente. Además, de nuevo se
ve como para CFL = 1 la onda permanece rectangular, mientras que para CFL=0,5
se deforma. En algunos casos se desprecian los términos convectivos con el objetivo de
linealizar el sistema. De esta manera queda:

∂p

∂t
+ ρc2

∂u

∂x
= 0 (3.54)

∂u

∂t
+

1

ρ

∂p

∂x
= 0 (3.55)

Este sistema es lineal y, por tanto, su resolución es más sencilla que en el sistema no
lineal, lo cual supone una gran ventaja. En este trabajo se ha resuelto también el sistema
lineal [8] pero no se ha expuesto ya que el método para comprobarlo es el mismo que en
el sistema no lineal (water hammer).
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4. Aplicación al sistema de flujo en
arterias

4.1. Tratamiento caracteŕıstico de las ecuaciones

En ausencia de rozamiento y de fuerza viscosa, nuestro sistema es el compuesto por
las ecuaciones (2.20) y (2.21):

∂A

∂t
+
∂Q

∂x
= 0 (4.1)

∂Q

∂t
+
∂(Qu)

∂x
= −A

ρ

∂p

∂x
(4.2)

Es preciso formular la relación entre el área del conducto y la presión del mismo [13].
Para obtener dicha relación, hay que realizar varias hipótesis. La primera es suponer
simetŕıa circular. Además, se supone que la pared realizará desplazamientos radiales, es-
to quiere decir que el radio r del conducto variará respecto del inicial r0. La siguiente
hipótesis es que los esfuerzos a los que la pared arterial es sometida son planos, es decir,
están contenidos en la superficie de la pared arterial (despreciando aśı los esfuerzos ra-
diales). Además, se supone comportamiento elástico lineal. De esta manera se obtiene la
expresión:

p = pext + β
(√

A−
√

A0

)

= pext + β
√
A− β0 (4.3)

donde:

β =

√
πh0E

(1− ν2)A0

(4.4)

con h0 el espesor del conducto, E el módulo de elasticidad y ν es el radio de Poisson.
Usando (2.19):

c2 =
β
√
A

2ρ
(4.5)

A partir de las dos primeras ecuaciones puede definirse el siguiente sistema:

∂U

∂t
+
∂F(U)

∂x
= S(U, x) (4.6)

con:

U =

[

A
Q

]

, F(U) =

[

Q
Q2

A

]

(4.7)

y:
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S(U) =

[

0

−A
ρ

∂p

∂x

]

(4.8)

Es posible definir una matriz Jacobiana HF que linealice el flujo F como:

HF =
∂F(U)

∂U
=

[

0 1
−u2 2u

]

(4.9)

Como S(U) depende de p, podemos reescribir:

S = HS

∂U

∂x
(4.10)

donde:

HS =
∂S

∂U
=

(

0 0
−c2 0

)

(4.11)

Es posible definir una nueva matriz:

J = (HF −HS) =

[

0 1
c2 − u2 2u

]

(4.12)

que permite expresar el sistema (4.6) como:

∂U

∂t
+ J

∂U

∂x
= 0 (4.13)

Diagonalizando J y cambiando el sistema a su base de autovectores obtenemos dos
ecuaciones (una con cada autovalor) que cumplen:

Dw1

Dt
= 0, dw1 =

1

2c
(A(u+ c)−Q) (4.14)

Dw2

Dt
= 0, dw2 = −1

2
(A(u− c)−Q) (4.15)

a lo largo de las curvas caracteŕısticas dx/dt = u∓c. El término gravitacional y la variación
espacial de β, β0 y pext se van a despreciar, por tanto ψ1=ψ2=0 (ya que dependen de
estos términos). Para la primera cantidad caracteŕıstica queda:

dw1 = d

(

1

2c
(A(u+ c)−Q)

)

= 0 (4.16)

y desarrollando la expresión e integrando se obtiene:

u− 4(c− c0) = constante (4.17)

sobre dx/dt = u − c. Para la segunda cantidad se realiza un desarrollo análogo y se
obtiene:

u+ 4(c− c0) = constante (4.18)

sobre dx/dt = u+ c. El desarrollo completo se encuentra en el Anexo 3.
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4.2. Método numérico

El método numérico va a ser análogo al del sistema de ecuaciones no lineales, por ello
se utilizará la misma notación (AR,AL). La manera de escoger el ∆t en cada paso es
exactamente la misma aśı que no se explica de nuevo.

Para obtener los valores de u y c en el siguiente paso de tiempo se van a obtener los
valores uL, uR, cL y cR de la siguiente manera:

unR = uni + (uni+1 − uni )
|u− c|∆t

∆x
(4.19)

cnR = cni + (cni+1 − cni )
|u− c|∆t

∆x
(4.20)

unL = uni + (uni−1 − uni )
(u+ c)∆t

∆x
(4.21)

cnL = cni + (cni−1 − cni )
(u+ c)∆t

∆x
(4.22)

Se definen:

ARn
i = (uL − 4(cR − c0))

n
i (4.23)

ALn
i = (uL + 4(cL − c0))

n
i (4.24)

Y finalmente, despejando los valores de u y c en el punto siguiente:

un+1
i =

ALn
i + ARn

i

2
(4.25)

cn+1
i =

ALn
i − ARn

i

8
+ c0 (4.26)

4.3. Condiciones de contorno y condiciones iniciales

Nuevamente, en régimen subcŕıtico, se necesitan dos condiciones de contorno, una de
entrada y otra de salida.

Para la condición de contorno de entrada, se considera que la sangre es bombeada
desde el corazón existiendo un pulso. Por tanto, la condición de contorno de entrada va a
ser un pulso de velocidad que se representa a través de una Gaussiana caracterizada por
su valor máximo y por su anchura. Por tanto, se tiene:

(u− 4(c− c0))
n+1
1 = (u− 4(c− c0))

n
R = ARn

1 (4.27)
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un+1
1 = u(t) = umaxexp






− (t− tc)

2

2
(

WP

2
√

2ln2

)2






(4.28)

con u(t) la Gaussiana, umax el valor máximo del pulso, WP la anchura del pulso y tc
el tiempo en el que el máximo alcanza el punto de entrada del sistema. Despejando, se
obtiene:

cn+1
1 =

un+1
1

4
− ARn

1

4
+ c0 =

u(t)

4
− ARn

1

4
+ c0 (4.29)

La condición de contorno de salida vendrá dada por el coeficiente de reflexión, R, que
se define de la siguiente manera:

R = −w
1

w2
= −(u− 4(c− c0))

n+1
imax

(u+ 4(c− c0))
n+1
imax

(4.30)

donde imax hace referencia al último punto de la red. Esto deriva en:

(u− 4(c− c0))
n+1
imax

= −R(u+ 4(c− c0))
n+1
imax

= −R(u+ 4(c− c0))
n
L = −R ·ALn

imax

(4.31)

que junto a:
(u+ 4(c− c0))

n+1
imax

= (u− 4(c− c0))
n
L = ALn

imax

(4.32)

nos permite despejar el valor de c y u en el paso de tiempo siguiente:

un+1
imax

=
1−R

2
ALn

imax

(4.33)

cn+1
imax

=
1 +R

8
ALn

imax

(4.34)

El factor R estará relacionado con los llamados modelos cerodimensionales (0-D) que
son los modelos que se utilizan para describir el efecto de la propagación de un pulso
de onda en arterias pequeñas, arteriolas y capilares. Aunque los modelos 0-D no hayan
sido objeto de estudio en este trabajo śı que es necesario comentarlos. Los modelos 0-
D realizan una analoǵıa eléctrica [14] [10] [11], donde el caudal se corresponde con la
intensidad, la resistencia de los vasos con la resistencia eléctrica y la presión sangúınea
con el potencial eléctrico. La gran ventaja de estos modelos es la posibilidad de hacer
modelos que abarquen gran parte del sistema cardiovascular con un coste computacional
bajo.

Una vez explicadas las condiciones de contorno, hace falta comentar acerca de los
valores iniciales. Inicialmente se define un caudal nulo en todos los puntos, lo cual implica
que la velocidad sea nula. Además, en ausencia de caudal, todos los puntos tendrán
el mismo radio y por tanto, el misma área. Después, con la llegada del pulso, se irán
produciendo variaciones en todos estos valores.
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4.4. Simulación

En la Figura 4.1 se muestra cómo avanza el pulso y cómo se ven afectadas las diferentes
magnitudes que se tienen en cuenta (presión, área, caudal y velocidad). Como se simula
una arteria, se ha escogido una longitud L=0,5 m, un radio r0=1 cm, un espesor h0=1.5
mm y un módulo de Young de E=400000 Pa. La densidad de la sangre vendrá dada por
ρ=1000 kg/m3. Por otra parte, los valores numéricos han sido los siguientes: ∆x=0,01,
CFL=1 y R=0,3, lo que implica que se refleja el 30% del pulso.
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Figura 4.1: Evolución de las variables velocidad, caudal y presión.

Se van a realizar simulaciones variando algunos parámetros. En primer lugar, veamos
cómo afecta el módulo de elasticidad. En la Figura 4.2 se utilizan los mismos valores que
en la Figura 4.1, lo único que vaŕıa es el valor del módulo de elasticidad, que será la
mitad, es decir, E = 200000Pa. Con un valor del módulo de elasticidad mayor los pulsos
se propagan más rápido. Además, los valores del pico de presión son más altos.

A continuación se va a ver qué ocurre con el radio del conducto(vena o arteria). Es-
te caso resulta particularmente interesante puesto que en la introducción se ha hablado
acerca de una enfermedad relacionada con la variación del radio del conducto (la ate-
rosclerosis). Esta enfermedad consiste en que se forman depósitos en las arterias y por
tanto, disminuye el valor efectivo del radio del conducto. En la Figura 4.3 se realiza la
simulación con los mismos valores que en la Figura 4.1 modificando únicamente el valor
del radio, que se reduce a la mitad (r0=0,5 cm). Se aprecia que los pulsos avanzan mucho
más rápido y que el área y el caudal disminuyen, como cab́ıa esperar. Por tanto, cuanto
menor sea el radio (dicho de otra forma, cuanto más tienda a 0) menor será el flujo de

22



-0.4

-0.2

 0

 0.2

 0.4

 0  0.1  0.2  0.3  0.4  0.5

U
(x

) 
 (

m
/s

)

x

t1
t2
t3
t4

(a) Velocidad

-0.00015

-0.0001

-5e-005

 0

 5e-005

 0.0001

 0.00015

 0  0.1  0.2  0.3  0.4  0.5

Q
(x

) 
(m

3 /s
)

x

t1
t2
t3
t4

(b) Caudal

 0

 1000

 2000

 3000

 4000

 5000

 0  0.1  0.2  0.3  0.4  0.5

P
(x

) 
 (

P
a)

x

t1
t2
t3
t4

(c) Presión

Figura 4.2: Comparación de la evolución de las variables con E=200000 Pa.

sangre que circule por el conducto, pudiendo llegar incluso a detenerse en el caso extremo.

Por último, se va a comprobar qué ocurre con el factor de reflexión. Todas las simula-
ciones hasta ahora se han realizado con R=0,3 y, en ellas, se refleja un 30% del pulso. Se
va a comprobar para una de las variables (el comportamiento será análogo para el resto
de variables) qué ocurre con R=1, que equivale a un conducto obstruido en el que se
refleja todo el pulso, y R=0, que equivale a que todo el pulso se transmita. En la Figura
4.4 se aprecia que para R=1 se refleja todo el pulso y que para R=0 no se refleja nada.

4.5. Conclusiones

Se han realizado varias simulaciones del sistema variando una serie de parámetros
relacionados con las propiedades del conducto tales como su módulo de elasticidad, su
radio o la unión de dicho conducto con otro. Se ha observado que cuanto menor sea
el radio del conducto, menor será el caudal de sangre a través del mismo y esto puede
llegar a suponer un problema. También se ha observado la dependencia con el módulo de
elasticidad, de forma que cuanto mayor es el módulo de elasticidad del conducto mayor
es la presión en el mismo. Por último, se ha visto cómo afecta el coeficiente de reflexión
R. Por tanto, puede concluirse que el modelo utilizado es adecuado para comprobar estos
aspectos del sistema.

Para el modelo se han utilizado algunas aproximaciones que faciliten la resolución del
problema, como por ejemplo despreciar el rozamiento. Utilizando aproximaciones más
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Figura 4.3: Comparación de la evolución de las variables con r0=0,5 cm.
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Figura 4.4: Distintos valores de R. a)R=1. b)R=0.

precisas podŕıa mejorarse el modelo hasta realizar una simulación que se aproxime mucho
a la realidad. Por ejemplo, si con nuestro sistema hemos comprobado como la disminu-
ción del radio hace que el caudal disminuya, con un modelo más preciso quizá podŕıan
obtenerse otros datos de interés al respecto, como por ejemplo algún valor cŕıtico a partir
del cual la persona empezaŕıa a tener problemas. De la misma manera, con un modelo
más preciso, pueden realizarse pruebas con respecto a otros parámetros. Por tanto, la
simulación computacional puede ser de una gran utilidad en este campo.
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