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Resumen

En este trabajo se ha realizado una simulacién computacional del flujo en arterias. Para
ello, en primer lugar se han derivado las ecuaciones diferenciales que rigen el comporta-
miento del sistema y después, se han resuelto por medio del método de las caracteristicas.
Dicho método aprovecha una propiedad de las ecuaciones hiperbélicas, que consiste en
que en ciertas familias de curvas, llamadas curvas caracteristicas, la solucién de dichas
ecuaciones varia de una forma especifica, que depende de dichas ecuaciones. El objetivo
es proponer un modelo de simulacion numérica de flujos transitorios en vasos elasticos.
Los resultados numéricos se han validado por comparacién con soluciones exactas de
problemas simplificados. Se ha analizado la sensibilidad de dichas soluciones a diver-
sos parametros tanto fisicos como numéricos. Para dar por finalizado el trabajo, se han
expuesto una serie de conclusiones obtenidas de las distintas simulaciones realizadas.
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1. Introduccion

1.1. Descripcion del sistema circulatorio

El sistema cardiovascular, o circulatorio, transporta oxigeno y nutrientes a todos los
tejidos del cuerpo, desde donde se elimina diéxido de carbono y otros desechos que se
producen. La sangre pobre en oxigeno penetra en el corazon desde el cuerpo y sale hacia los
pulmones. Una vez que en los pulmones se recarga de oxigeno, vuelve a entrar al corazon
desde donde sale hacia el cuerpo a través de la arteria aorta. La aorta se divide en otras
arterias y arteriolas, que transportan la sangre hasta los capilares. En los capilares tiene
lugar el intercambio de oxigeno, agua, didoxido de carbono y otros muchos nutrientes y
sustancias entre la sangre y los tejidos de alrededor de los capilares. Entonces, los capilares
se transforman en vénulas, que a su vez se juntan para formar las venas que retornan la
sangre desoxigenada al corazén.

El corazén proporciona la energia para mover la sangre a través del sistema circulato-
rio. Consiste en cuatro cavidades: dos ventriculos y dos auriculas, cuyos tamafios varian
durante el ciclo cardiaco debido a la actividad del corazon. La auricula derecha recibe la
sangre del sistema venoso. La sangre fluye de la auricula derecha al ventriculo derecho
y sale a los pulmones a través de los vasos pulmonares. De los pulmones vuelve a la
auricula izquierda a través de las venas pulmonares, baja al ventriculo izquierdo y sale
por la aorta hacia el resto del cuerpo. Ademas, existen cuatro valvulas, una a la salida
de cada vavidad, que regulan el flujo de sangre en el corazén y se aseguran de que solo
haya movimiento en un sentido. La sangre consiste en una solucién acuosa (plasma) que
transporta las distintas sustancias que hemos comentado antes (oxigeno, nutrientes...) en
suspension. Estos materiales entran y salen de la sangre cuando pasan a través de los
capilares. Debido a que més del 90/100 del plasma es agua y a que los materiales en sus-
pension son varios ordenes de magnitud més pequenos que el didmetro de las arterias, la
sangre se aproxima como un fluido homogéneo e incompresible de densidad 1050 Kg/m?.
Esta aproximacion no es valida en los capilares ya que son mucho méas estrechos que las
arterias y, en ellos, el tamano de los materiales en suspensién no es despreciable.

En la eyeccién ventricular de la sangre y su interaccion con las paredes distensibles de
las arterias se generan ondas de presién y de flujo (o velocidad). La sangre se aproxima a
un fluido incompresible. Debido a esto, la aorta y el resto de las arterias deben distenderse
para acomodarse al repentino flujo de sangre producido por la expulsion ventricular.
Cuando la sangre es eyectada, las arterias se distienden debido a un incremento de la
presion y los tejidos de las paredes acumulan energia elastica. La distensién empieza en
la aorta y se propaga a lo largo del sistema arterial. Cuando la energia elastica acumulada
durante la distension es liberada, las arterias se contraen de la misma forma que se habian
distendido. Los cambios en la velocidad y en la presion se propagan como ondas a través
de las arterias. Por tanto, las arterias presentan un latido regular, llamado pulso, que
sigue el latido del corazon. La velocidad de estas ondas es uno o dos érdenes de magnitud



mayores que la velocidad del flujo. Por tanto, durante un ciclo cardiaco son capaces de
llegar a los capilares y reflejarse. La velocidad del pulso depende del médulo elastico
(médulo de Young) de tal manera que cuanto mayor es el médulo més rapido viajan las
ondas.

1.2. Simulaciéon numérica y objetivos

La aplicacion de modelos numéricos en el estudio y en la simulacién de la circulacién
de la sangre en el cuerpo humano es frecuente en la actualidad [2] y podria jugar un
papel importante en el diagndstico y el tratamiento de enfermedades cardiovasculares,
las cuales son la principal causa de mortalidad en paises desarrollados [1]. Varias de
estas enfermedades introducen algunas variaciones en las propiedades fisicas que pueden
cambiar de forma significativa la forma de los pulsos de onda que viajan por el sistema. Por
ejemplo, la aterosclerosis, que es una enfermedad comtn y bastante peligrosa, consiste en
la formacion de depdsitos dentro de los vasos, venas o arterias. Debido a ello, disminuye
el didmetro de dichos vasos y disminuye, o incluso se frena, el flujo de sangre. Estas
variaciones también afectan al patrén de los pulsos de presion y velocidad.

En este trabajo el sistema arterial se simula como un conjunto de tubos flexibles a
través de los cuales se propagan ondas de presion y de velocidad. Solamente se simula
la componente axial, ya que una simulacién tridimensional (3-D) no es factible debido a
su coste computacional, porque el sistema circulatorio contiene un niimero muy grande
de vasos. Una simulacién en una dimensién (1-D) es rapida y permite llevar a cabo un
analisis sensible. Aunque el modelo 1-D es méas simple y mas barato que el modelo 3-
D, proporciona informacion relevante, debido a que la propagacién de las ondas ocurre
principalmente en la direccién axial de las arterias.

El objetivo de este trabajo es realizar varias simulaciones que permitan determinar la
sensibilidad del sistema a variaciones de diversos parametros, como el radio del conducto
(vena o arteria), el espesor o el médulo de elasticidad del mismo. Para ello es necesario
familiarizarse con las ecuaciones que describen el comportamiento de un fluido incompre-
sible en conductos elasticos, asi como con las ecuaciones hiperbdlicas y el método de las
caracteristicas.



2. Ecuaciones gobernantes

Cada arteria es aproximada por un tubo impermeable de longitud [ en 1-D, cuya
direccién axial es x. El drea circular variable A(x,t) es normal a x y tiene espesor h.
El flujo de sangre estd descrito en la direccién axial a través de u(x,t), definido como
la velocidad media sobre el drea A(z,t). Ademéds, hablamos también del caudal Q(x,t)
que es igual al producto del drea por la velocidad media Q(x,t)=A(x,t)u(z,t). La pared
arterial se deforma por la accién de la presion interna, denotada por p(z,t), que se asume
constante en los puntos de cada érea.

2.1. Ecuacion de conservacion de la masa

Se va a utilizar un volumen de control, como en la Figura 2.1, para aplicar el teorema
de transporte de Reynolds [9]. Dentro de este volumen de control la variacién total en el
tiempo de la masa m debe ser igual a cero:

Dm D
_D _ 2.1
Dt Dt/pdv 0 (2.1)

Aplicando el teorema de transporte de Reynolds, se obtiene:

d
— pdV + j{ p(u-n)dS =0 (2.2)
dt Jye sc

con u la velocidad del fluido. La primera integral tiene en cuenta la variacion de la masa
dentro del VC debido al cambio de densidad o volumen en el tiempo y la segunda integral
tiene en cuenta la variacién de la masa dentro del VC debido a la existencia de un flujo
neto de masa distinto de cero a través de la SC. Desarrollando esta expresion, se llega a

la primera ecuacion:
0(p4) . 9(pQ)
ot ox

=0 (2.3)

vC

z Frente de onda

(p+ 4p)(A+4AA) (u+Au+c)

Figura 2.1: Volumen de control usado para la ecuacién de conservacion de la masa.



El desarrollo completo de esta expresion se encuentra en el Anexo 1.

2.2. Ecuacion de conservacion del momento

Utilizando un volumen de control en un fluido:
P = / pudV (2.4)
Ve

Se puede aplicar la segunda ley de Newton a un fluido dentro del volumen de control. La
variacion del momento P en el tiempo es igual a la suma de las fuerzas que actian en el
volumen de control:

D(P ~
b®) _ ?{ £, - 2dS + / FdV (2.5)
Dt sc() Ve

donde la primera integral tiene en cuenta las fuerzas de superficie y la segunda integral
las fuerzas de volumen que actian dentro del VC. Fj es el llamado tensor de esfuerzos.
Nuevamente, se aplica el teorema de Reynolds y se obtiene:

d -
— pudV +7{ pu(u-n)ds = ]{ F,-ndS + / F,dV (2.6)
dt Jyeow SC(t) sC(t) Vo)

Para completar esta ecuacién es necesario definir las fuerzas de volumen y de superficie
que aparecen en el lado derecho de la ecuacion. Las fuerzas de superficie vienen dadas
por la accién de la presién y la friccion en las paredes:

]{ F, - fdS = —]{ p(x,t)ﬁds+]§ 7, - 0dS (2.7)
SC(t) SC(t) sc

donde p es la presion en las paredes y 7, es el tensor de esfuerzos viscosos. Unicamente
es de interés la componente axial, por ello:

jq{ (Fn) dS:—% pnmdS—i—f (7, ), dS (2.8)
SC(t) x SC(t) SC

La tnica fuerza voluminica a incluir en la ecuacion es la fuerza gravitatoria. Dicha
fuerza gravitatoria por unidad de volumen en el eje x vendra dada por:

F, . = pgSina (2.9)
donde « es la inclinaciéon del conducto respecto a la horizontal. Ahora que todos los
términos estan definidos, se desarrolla la expresién y se obtiene la segunda ecuacion:

oQ N O(Qu)  Adp N foD

= — gASi 2.1
ot ox p Ox p gASina (2.10)

donde f, es la componente x de esfuerzo viscoso y u es la velocidad media u = Q/A.

bt



2.3. Velocidad de onda

La ecuacién de conservacién de la masa obtenida es:

0(p4) | 0(pAu)
ot ox

Separando las derivadas parciales queda:

—0 (2.11)

0A ap ou 0A dp

A A— —+ A 2.12
Par T PG Ty T A, =0 (2:12)
Dividiendo por pA y agrupando se obtiene:

1 [ 0p dp 0A 0A ou

- = — — =0 2.13

p(8t+ 8&:)+A(8t+u8x)+8x (2:13)
que puede reescribirse como:

1D 1 DA
P ou_,, (2.14)

Dt T ADE T ox

Donde D/Dt = 9/0t +ud/0x es la derivada sustancial en una dimensién espacial [5].
Como p = p(p) y A= A(p), la ecuacién anterior queda:

ldpDp 1dADp Ou
S et Nt R 2.15
pdth+Adth+6$ (2.15)

Sacando factor comun a % se llega a:

ldp ~1dA\ Dp  Ou

=0 2.16
(p dp A dp) o (2.16)

que se reescribe como:

1 Dp Ou
Sl A R | 2.17
pc? Dt * Ox (2.17)
con:
1 dp pdA

=y 2.18
¢ dp + A dp (2.18)
Siendo ¢ la velocidad de onda [5]. El primer término del lado derecho de la ecuacién

(2.18) representa el efecto de la compresibilidad de un fluido en la velocidad de onda y
el segundo término representa el efecto de la elasticidad del conducto. Por tanto, puede
resolverse la velocidad de onda de un fluido compresible en un conducto rigido por medio
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de dA/dp = 0. Sin embargo, el caso que se trata aqui es el de un fluido incompresible en
un conducto eldstico, que se obtiene por medio de dp/dp = 0 y que lleva a:

o Adp

=7 (2.19)

C

El sistema inicial, compuesto por la ecuacion de conservacién de la masa y por la
ecuacion de conservacion del momento, es:

A 0Q
=t o =0 (2.20)

0Q 0@ _ Adp frD

ot or  pox p

Manipulando dicho sistema, se ha llegado a otra formulacién del mismo:

— gASina (2.21)

1 Dp Ou
——+—=0 2.22
pc? Dt * ox (222)
1 Du 10p
— 2L 2.23
pc? Dt * pOox (2:23)

La primera formulacién es habitual para el caso de flujo en arterias y la segunda para el
flujo en tuberias pero ambas son equivalentes. Ademas, ambos son sistemas hiperbdlicos.



3. Método de las caracteristicas

Una vez que se han obtenido las ecuaciones que rigen el sistema, hay que resolverlo.
Para ello se utiliza el método de las caracteristicas debido a que el sistema de ecuaciones
es hiperbdlico. Sin embargo, para resolver numéricamente un sistema de ecuaciones no
lineales como el que se tiene, se ha partido del caso més simple (una ecuacién lineal) y
se ha ido avanzando progresivamente hasta llegar al sistema de ecuaciones no lineales.

3.1. Una ecuacion lineal

Se analiza la siguiente ecuacién diferencial en derivadas parciales:

dg =~ dg

con ¢ una constante. Esta ecuacién es hiperbdlica de primer orden como se explica en el
Anexo 2y se le denomina ecuacion del color o ecuacion de conveccion lineal [8]. Si en la
ecuacién (3.1) se reemplaza ¢ por:

c=— (3.2)

la ecuacién (3.1) queda:

0y , drdg _dy .
ot  dt Ox dt

Lo cual nos muestra que g es constante a lo largo de estas lineas caracteristicas
x = xo-+ct, como se aprecia en la Figura 3.1. La ecuacion del color describe la propagacion
de una senal a lo largo de una direccién del espacio. Si se conoce g en t = 0, g(z,0), la
solucién analitica a dicha ecuacién serd la traslacién de la funcién g(z,0) con velocidad
c en direccion positiva a lo largo eje z. Se va a implementar un método numérico y a
comparar los resultados obtenidos por dicho método con la solucién analitica. De esta
manera, se comprueba que el método numérico se ha realizado de forma correcta.

X = Xp+ct

Lt

Figura 3.1: Lineas de pendiente ¢ en el plano (x,t)




El dominio en el que se trabaja se discretiza, de tal manera que el punto (i,n) del
plano (z,t) va a indicar el punto espacial x = iAz y el momento temporal t = nAt.
Debido a esto, se habla de Az, que es la distancia entre dos puntos en el eje espacial y de
At, que es la distancia entre dos puntos en el eje temporal. Para explicar como se obtiene
el valor de la solucién en el punto 7 en el siguiente instante temporal n + 1, es decir, en
el punto (i,n + 1), se utiliza la Figura 3.2.

tA

e ; ,i(iyn”) t=(n+1)At

i A4
3 Poa A
P e
t=nAt

Figura 3.2: Discretizacién espacial y temporal

El valor de ¢ viene dado por las condiciones del problema. Ax se escoge y se deja
fijado inicialmente. Se define Atg:

Aty = % (3.4)

como el que hace que la recta que pasa por el punto (i,n + 1) salga del punto (i — 1,n).
El At utilizado se relaciona con dicho Aty de la siguiente manera:

At = CF LAt (3.5)

donde CFL es el nimero de Courant-Friedrichs-Levy [8]. Dicho nimero es el cociente
entre el paso de tiempo numérico, At y el tiempo caracteristico Aty. La condicién:

0<CFL<1 (3.6)

hace que el punto L sea tal que:

Tio1 S xp < (3.7)

Se va a utilizar esta condicién a lo largo de todo el trabajo. A partir de la Figura 3.2,
utilizando una aproximacion lineal se tiene:

n n
9gr — 9i-1 _ TL — Ti—1

= 3.8
S (38)
lo que da:
n n 9i" — 9y
= q Jv Sl — X 3.9
9r, = 9gi—1 T Ar (rp — i) (3.9)



Ademés:

Xy — L

c=—0 = xp = x; — cAt (3.10)
Llevando el resultado de (3.10) a (3.9) se obtiene:
=g =g+ % (i — At — 1) (3.11)
Para el caso en el que CFL =1 se tiene que At = At y la ecuacion (3.11) queda:
g =91 =g (3.12)

Siempre seran necesarias condiciones iniciales y, dependiendo del caso, una o dos
condiciones de contorno en los puntos de entrada y/o salida. Para la comprobacién del
método, se va a utilizar un pulso rectangular que actiia como condicién inicial. Ahora
son necesarias las condiciones de contorno para los puntos de entrada y de salida. Como
la solucion viaja hacia la derecha, es necesaria una condiciéon de contorno en el punto de
entrada. La condicién de contorno de entrada va a ser g(0,t) = b, con b la base del pulso.
Esta condicién de contorno va a suponer que el pulso viaje hasta el limite y desaparezca.

Se va a comprobar que el pulso viaje a la velocidad adecuada y cémo afecta el valor
de CFL. Los valores de programacion escogidos han sido Az = 0,1 y ¢ = 0,5, por su
parte se han utilizado dos valores de C'F'L: 0,5 y 1. En la Figura 3.3 se representa el pulso
en cinco instantes de tiempo y se ve que se propaga a la velocidad adecuada en ambos
casos y que por tanto el método numérico se ha implementado correctamente. Ademés
se ve que con C'F'L=1 la propagacion es perfecta mientras que con C'FL=0,5 el pulso
sufre una deformacion, debida a la disipacién de los valores de la solucién y a la difusion
espacial a lo largo del eje x. El siguiente paso es la ecuacién no lineal.

30 -
25

9(x)

Figura 3.3: Propagacién de un pulso en la ecuacién lineal con ¢=0,5. a) CFL=1. b)

CFL=0,5.
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3.2. Una ecuacion no lineal

La ecuacién que se va a tratar ahora es la llamada ecuacidn de Burgers no viscosa [3],
que tiene la siguiente forma:

ou ou B

a + U% =0 (313)

La solucion analitica de esta ecuacién puede calcularse de sus curvas caracteristicas.
Dado que u = u(z,t):

du_au 8u8:v_0u 8u_

ot tavor a0 T Var =" (3.14
de donde:
dx
- = u = u = constante (3.15)

Ahora, las curvas caracteristicas van a ser rectas de pendiente u, que tiene distintos
valores en los puntos del sistema. Para ilustrar esto, se utiliza la funcién inicial escalon.
En la Figura 3.4 se presentan los dos tipos de escalones. Cuando se produce la interseccion
de dos curvas caracteristicas se tiene una onda de choque, como es el caso del escalén (b).
Por otra parte, cuando existe una zona en la que no llega ninguna curva caracteristica lo
que se tiene es una onda de rarefaccion, como es el caso del escalén (a) [3] [6].

Uy

uz

u u, uy Uz

(a) Escalén 1 (b) Escalén 2

Figura 3.4: Funcién escalén y sus rectas caracteristicas. a) Escalén creciente. b) Escalén
decreciente.

Nuevamente, se fija el valor de Az. Cada punto tendra una velocidad distinta, wu;
(en nuestro ejemplo, como estamos explicando el escalén, tenemos dos grupos con dos
velocidades distintas) y, por tanto, una pendiente distinta y un At; distinto, At; = Ax/u;.
Se escoge Aty como el menor de todos los At;.
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At = CFLAt,, CFL <1 (3.17)

El motivo es que el punto que tenga menor pendiente sera el més restrictivo y esto
garantiza que todas las rectas vayan a parar a un punto situado entre (i —1,n) y (i,n). Si
se escogiese como Aty otro que no fuera el asociado al punto de menor pendiente (mayor
velocidad), alguna de las rectas de los otros puntos no irfa a parar a algin punto situado
entre (i — 1,n) y (¢,n) sino que se irfa mas hacia la izquierda y esto es algo que se evita
en este trabajo.

Nuevamente, haran falta condiciones iniciales y de contorno. La condicién inicial
vendra dada por un pulso de la siguiente forma:

| —w, Vze(—o0,21) U (22,00)
u(z,0) = { us, Vaelzy, 7o) (3.18)

cuya solucién analitica es, segun [4]:

—uy, Vre(—o0,x1 — uit) U (xg, 25"t 00)
u(z,t) = 9 =2, Vae [z — uit, z1 + ust] (3.19)
Uy, Vre [:131 + ust, 2o + %t}

Nuevamente, la informacién viaja hacia la derecha y unicamente sera necesaria la
condicién de contorno de entrada. Igual que en caso anterior, sera igual a la base del
pulso. En la Figura 3.5 se comprueba el comportamiento de un pulso rectangular como el
indicado con valores x1=32,5 ,2o=77.,5, u1=1, us=2 y se halla la solucién transcurrido un
tiempo t=20 [4]. Se compara la solucién obtenida con la solucién analitica y coinciden.
Por tanto, el método numérico se ha implementado correctamente y se puede pasar a
analizar el sistema de ecuaciones.

" o

=
Analtica  +

X

Figura 3.5: Propagacion de un pulso rectangular en la ecuaciéon no lineal

3.3. Sistema de ecuaciones no lineales

El sistema de ecuaciones escogido es el compuesto, respectivamente, por las ecuaciones
(2.22) y (2.23):



(EZ)@ ou 1@_

ot "o T oo !

(3.21)

Para dar la presion, muchas veces se utiliza la altura piezométrica de la siguiente

manera:

p=pgH

Una forma de determinar las direcciones caracteristicas es:

(Es) + A(Ey) =0

Agrupando de forma conveniente queda:
ou ou dp 1\ op
— M) — + N[ = — )= =
8t+(u+ pc)8m+ (8t+<u+p)\> 837) 0
Lo que implica:

1

— =ut+ A =ut— = A=+—
PA

De esta forma se tiene:

CCOPH L (/L
ot T pc \ Ot Y% ) T

Y queda:

D D d
—<u+£) :—<u+gH>:0, sobred—f:u—i-c

D P D g dx
Z(u-L) =2 ——H):o bre 2% — 4 —
Dt (u pc) Dt <u c e T

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Estas dos ecuaciones implican que las lineas caracteristicas van a ser lineas de pen-
diente u + ¢ y u — ¢ a través de las cuales se van a conservar las magnitudes u + gH/c.

El tamano relativo de las cantidades u y ¢ define el nimero de Froude, Fr = u/c. Si
Fr<1l,u+c¢>0yu—c<0, hablamos de régimen subcritico. Si Fr > 1, u+c¢ >0y

u — ¢ > 0, hablamos de régimen supercritico.

Este mismo resultado podria haberse obtenido de otra manera, en la cual se define el

sistema como un conjunto de vectores:
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|u-c|

At;
c
+
(@]

U= m (3.29)

A continuacién se define una matriz Jacobiana, que permite reescribir el sistema:
ou ou
— +J—=0 3.30
ot Ox (3:30)

Los autovalores de J son las direcciones caracteristicas de nuestro sistema y, cam-

biando a la base de autovectores de J se obtienen las dos invariantes de Riemann que se
conservan [4].

Para explicar la eleccion del paso de tiempo se utiliza la Figura 3.6. Cada punto
tendrd dos lineas con pendientes u + ¢ y u — c. Se definen para cada punto At; y At;,
que son los At; asociados a las pendientes u; + ¢ y |u; — ¢| respectivamente. El Aty debe
elegirse siguiendo el mismo criterio que en la ecuacion de Burgers pero adaptado a nuestro
sistema de ecuaciones, es decir, como el minimo At; de entre todos los Att y At~

Aty = min{At}, At;} (3.31)

Como la velocidad se reflejard en los limites, adoptara tanto valores positivos como
negativos, por tanto, se define para cada punto:

: A
At =T (3.32)
lui| + ¢
Se escoge como Aty al menor de los At .
Aty = min{At! ;. } (3.33)

Con esto se garantiza que ambas rectas de todos los puntos vayan a parar a un punto
entre 7,0 — 1 e 7,0 + 1 segin corresponda. Nuevamente, el At vendra dado por:

At = CFLAt, (3.34)

Una vez escogido el At, se computan los valores de u y H en el paso de tiempo
siguiente. La notacién utilizada se presenta en la Figura 3.7.
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dx/dt=u+c dx/dt=u-c

At

(u+c)At |u-c|At
Ax Ax
- > >

Figura 3.7: Método numérico en el sistema de ecuaciones no lineales

Las caracteristicas AL y AR con pendientes u + ¢ y u — ¢, respectivamente, pasan a
través del punto A, en el cual se quieren obtener los valores de u y de H. Los valores de u, H
en Ly R (up,Hp,ug,Hy) se pueden computar facilmente por medio de una interpolacién

3 3 n n n n n n 3 A 4
lineal de los valores conocidos u;'_, u', uj,,, H* |, H{*, H ,. La interpolacién es andloga
a la realizada para una ecuacion lineal. De esta manera, se tiene:

n n o (u+c)At
(u+c)At
H; = H" H' —H') —— )
L 7 + ( i—1 7 ) ACE (3 37)
— c|At
Hp = H' + (H!'., — H}) % (3.38)

Una vez obtenidos estos valores, se computan los de las cantidades auxiliares AL y
AR:
AL =up + 21, (3.39)
c

AR = up — %HR (3.40)

Finalmente se computan los valores de ™ y H"™! de la siguiente manera:

(u + %H)jﬂ — <u + %H)Z = AL (3.41)
(u - %H)jH - (u - %H); — AR" (3.42)

Sumando y restando las dos ecuaciones anteriores obtenemos, respectivamente:

AL+ AR

n+1
+ 3.43
Z : (3.43)
AL — AR
g =C (3.44)
g 2



El caso que se va a estudiar es el llamado ”water hammer”[7] [12]. En este caso, se
tiene una tuberia en el que uno de los extremos es mantenido a presién constante y en el
otro se cierra de forma repentina una valvula, lo cual se traduce como que la velocidad
en el punto de salida es nula. Hasta que la valvula se cierra, todos los puntos poseen la
misma presion y velocidad (Hy y ug). Una vez cerrada la valvula, el punto de entrada
se mantiene a presion Hj y el punto de salida a velocidad 0. Por tanto, en este caso se
aplican dos condiciones de contorno, una en el punto de entrada y otra en el punto de
salida. Segun estas condiciones se tiene para el punto de entrada:

H' = Hy (3.45)
uit! = LH + ARy = D Ho + AR (3.46)
Para el punto de salida:
Ut =y =0 (3.47)
P = S(ALY - untl) = SAL (3.48)
max g max g max

En [7] y [12] se ve que la solucién al problema water hammer es una onda rectangular
de la presion en el punto de salida y de la velocidad en el punto de entrada, en las que se
tienen las siguientes propiedades:

K
— p 3.49
“=\17 (= (349)
47
T="= (3.50)
C
C
AH = -Au (3.51)
g

Donde D es el diametro interior de la tuberia, e es el espesor de la pared, E es el
moédulo de elasticidad de la pared de la tuberia, p es la densidad del fluido, K es el médulo
de elasticidad del fluido, T" es el periodo, Au la amplitud de u y AH es la amplitud de
H. Los valores utilizados en el programa son los siguientes: D=0.5 m, e=4 mm, Hy=5)
m, up=9.9 m/s, L=6000 m; donde L es la longitud de la tuberia y Hy y ug los valores
iniciales de presion y velocidad hasta que se cierra la valvula. Introduciendo estos valores
en la ecuacién (3.49) obtenemos ¢=2980 m/s.

Ademas, se utilizan los siguientes valores de programacién: Ax=10 m, CFL=0,5y
CFL=1. En la Figura 3.8 se representan la presion en el punto de salida y la velocidad
en el punto de entrada para comprobar que se cumple todo lo recogido en las ecuaciones
anteriores y para ver cémo afecta el C'F'L:
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10 T T 10
Vi

u(®
o
(®)
o

-10

(a) CFL 1 (b) CFL 0,5

3000 — 3000

2000 1 2000

1000 - 1 1000

H(Y
°
H()
°

-1000 1 -1000

-2000 -2000

-3000 £ L ’ L E} -3000 £

Figura 3.8: u en el punto de entrada (Arriba) y H en el punto de salida (Abajo) con a)
CFL=1, b) CFL=0,5.

Se ve en la Figura 3.8 que AH~10 y Au~3000. Introduciendo estos valores en las
férmulas (3.50) y (3.51) debe cumplirse que:

T ~38 (3.52)
c AH
— =304,08= — ~ 300 3.93

La segunda relacién se cumple y se puede apreciar que el periodo es el que debe ser.
Por tanto, el método numérico se ha implementado correctamente. Ademas, de nuevo se
ve como para CFL = 1 la onda permanece rectangular, mientras que para C'F'L=0,5
se deforma. En algunos casos se desprecian los términos convectivos con el objetivo de
linealizar el sistema. De esta manera queda:

Op 0u
a5 + pc i 0 (3.54)
Ou 190p
e + ;@ =0 (3.55)

Este sistema es lineal y, por tanto, su resolucion es mas sencilla que en el sistema no
lineal, lo cual supone una gran ventaja. En este trabajo se ha resuelto también el sistema
lineal [8] pero no se ha expuesto ya que el método para comprobarlo es el mismo que en
el sistema no lineal (water hammer).
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4. Aplicacion al sistema de flujo en
arterias

4.1. Tratamiento caracteristico de las ecuaciones

En ausencia de rozamiento y de fuerza viscosa, nuestro sistema es el compuesto por
las ecuaciones (2.20) y (2.21):
0A  0Q

St =0 (4.1)

0Q  0(Qu)  Adp
Tt o = 0 (4.2)

Es preciso formular la relacién entre el drea del conducto y la presion del mismo [13].
Para obtener dicha relacion, hay que realizar varias hipdtesis. La primera es suponer
simetria circular. Ademas, se supone que la pared realizara desplazamientos radiales, es-
to quiere decir que el radio r del conducto variara respecto del inicial ry. La siguiente
hipétesis es que los esfuerzos a los que la pared arterial es sometida son planos, es decir,
estdn contenidos en la superficie de la pared arterial (despreciando asi los esfuerzos ra-
diales). Ademas, se supone comportamiento eldstico lineal. De esta manera se obtiene la
expresion:

P:Pext‘*‘B(\/Z— \/A_U) :pezt‘i‘ﬁ\/z_ﬂo (43)

donde: .

_VThE (4.4)
(1 - 1/2)_/40

con hg el espesor del conducto, F el médulo de elasticidad y v es el radio de Poisson.
Usando (2.19):

8=

,_ BVA
= o (4.5)

A partir de las dos primeras ecuaciones puede definirse el siguiente sistema:

aa—tj + % =S(U,z) (4.6)
o[ ro-[4
y:
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S(U) = {_2@1 (4.8)

p Ox

Es posible definir una matriz Jacobiana Hg que linealice el flujo F como:

_OFU) [0 1
Hr = ou [—uQ 2u} (4.9)
Como S(U) depende de p, podemos reescribir:
ou
S=Hg— 4.10
S0 ( )
donde: o5
0 0
- oo = (o) (111)
Es posible definir una nueva matriz:
J— (Hp—Hg)= |, , . (4.12)
—F ST —u? 2u '
que permite expresar el sistema (4.6) como:
ou ou
—+J—= 4.1
ot + ox 0 (4.13)

Diagonalizando J y cambiando el sistema a su base de autovectores obtenemos dos
ecuaciones (una con cada autovalor) que cumplen:

Dw! 1

D = 0, dw' = Q—C(A(u +c)—Q) (4.14)
Duw? 1

D = 0, dw? = —§(A(u —c)—Q) (4.15)

alo largo de las curvas caracteristicas dz/dt = uc. El término gravitacional y la variacién
espacial de 3, By ¥ Pest S€ van a despreciar, por tanto ¥'=1?=0 (ya que dependen de
estos términos). Para la primera cantidad caracteristica queda:

dw' = d (%C(A(u +o)— Q)) ~0 (4.16)

y desarrollando la expresiéon e integrando se obtiene:
u—4(c — ¢p) = constante (4.17)

sobre dz/dt = u — c¢. Para la segunda cantidad se realiza un desarrollo andlogo y se
obtiene:
u+ 4(c — ¢o) = constante (4.18)

sobre dz/dt = u + c. El desarrollo completo se encuentra en el Anexo 3.
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4.2. Método numérico

El método numérico va a ser analogo al del sistema de ecuaciones no lineales, por ello
se utilizarda la misma notaciéon (AR,AL). La manera de escoger el At en cada paso es
exactamente la misma asi que no se explica de nuevo.

Para obtener los valores de u y ¢ en el siguiente paso de tiempo se van a obtener los
valores uy, ug, c;, v cg de la siguiente manera:

|lu — c|At
b= uy t— ) ———— 4.19
Up U, + (U’erl U, ) Ax ( )
= + (¢ — ¢ )T (4.20)
(u+ c)At
T=ul Tl —— 4.21
ur, U, + (uz—l Uy ) Ar ( )
(u+c)At
= noo_ e 4.22
cr G + (Cz—l G ) Ax ( )
Se definen:
AR} = (ur, — 4(cr — o))} (4.23)
Y finalmente, despejando los valores de u y ¢ en el punto siguiente:
ALY + AR?
uftt = — A% (4.25)
2
AL} — AR}
G = — o +a (4.26)

4.3. Condiciones de contorno y condiciones iniciales

Nuevamente, en régimen subcritico, se necesitan dos condiciones de contorno, una de
entrada y otra de salida.

Para la condiciéon de contorno de entrada, se considera que la sangre es bombeada
desde el corazon existiendo un pulso. Por tanto, la condicion de contorno de entrada va a
ser un pulso de velocidad que se representa a través de una Gaussiana caracterizada por
su valor maximo y por su anchura. Por tanto, se tiene:

(u—4(c—co))i™ = (u—4(c—co))p = AR} (4.27)
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t—t.)?
i = u(t) = upagexp Il O (4.28)

2( WP >2
2v/2In2
con u(t) la Gaussiana, e, €l valor méximo del pulso, WP la anchura del pulso y t.

el tiempo en el que el maximo alcanza el punto de entrada del sistema. Despejando, se
obtiene:

O AR? t) AR}
ntl _ Y1 1 o u(t) _ 1
C1 = —4 1 +co = —4 1 + ¢ (429)

La condicién de contorno de salida vendra dada por el coeficiente de reflexion, R, que
se define de la siguiente manera:

_w (A=)
R = w2 (u + 4(6 o CO))@-H (4.30)

donde i,,., hace referencia al ultimo punto de la red. Esto deriva en:
tmazx tmazx

(u—4(c—co))i*! = —R(u+4(c— )it = —R(u+4(c— o))} = —R- AL} (4.31)

que junto a:
(u+4(c—co))it = (u—4(c— )} = AL} (4.32)

3 imaz

nos permite despejar el valor de ¢ y u en el paso de tiempo siguiente:

1-R

uptt = —5 AL, (4.33)
1+ R
e — —Z ALY (4.34)

El factor R estara relacionado con los llamados modelos cerodimensionales (0-D) que
son los modelos que se utilizan para describir el efecto de la propagaciéon de un pulso
de onda en arterias pequenas, arteriolas y capilares. Aunque los modelos 0-D no hayan
sido objeto de estudio en este trabajo si que es necesario comentarlos. Los modelos 0-
D realizan una analogia eléctrica [14] [10] [11], donde el caudal se corresponde con la
intensidad, la resistencia de los vasos con la resistencia eléctrica y la presion sanguinea
con el potencial eléctrico. La gran ventaja de estos modelos es la posibilidad de hacer
modelos que abarquen gran parte del sistema cardiovascular con un coste computacional
bajo.

Una vez explicadas las condiciones de contorno, hace falta comentar acerca de los
valores iniciales. Inicialmente se define un caudal nulo en todos los puntos, lo cual implica
que la velocidad sea nula. Ademds, en ausencia de caudal, todos los puntos tendran
el mismo radio y por tanto, el misma area. Después, con la llegada del pulso, se iran
produciendo variaciones en todos estos valores.
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4.4. Simulacion

En la Figura 4.1 se muestra cémo avanza el pulso y como se ven afectadas las diferentes
magnitudes que se tienen en cuenta (presién, drea, caudal y velocidad). Como se simula
una arteria, se ha escogido una longitud L=0,5 m, un radio ro=1 c¢m, un espesor hy=1.5
mm y un modulo de Young de £=400000 Pa. La densidad de la sangre vendra dada por
p=1000 kg/m?. Por otra parte, los valores numéricos han sido los siguientes: Azr=0,01,

CFL=1y R=0,3, lo que implica que se refleja el 30 % del pulso.

U (mis)

QW) (ms)

(a) Velocidad

0.00015 -

0.0001 -

5e-005

0 ="—

-5e-005 |-

-0.0001 -

-0.00015

(b) Caudal

0.4

5000

4000

.
3000 N\

P(x) (Pa)

2000

1000 / \

(¢c) Presi6n
Figura 4.1: Evoluciéon de las variables velocidad, caudal y presion.

Se van a realizar simulaciones variando algunos pardmetros. En primer lugar, veamos
cémo afecta el modulo de elasticidad. En la Figura 4.2 se utilizan los mismos valores que
en la Figura 4.1, lo tnico que varia es el valor del médulo de elasticidad, que sera la
mitad, es decir, £ = 200000Pa. Con un valor del médulo de elasticidad mayor los pulsos
se propagan mas rapido. Ademds, los valores del pico de presién son més altos.

A continuacién se va a ver qué ocurre con el radio del conducto(vena o arteria). Es-
te caso resulta particularmente interesante puesto que en la introduccion se ha hablado
acerca de una enfermedad relacionada con la variacién del radio del conducto (la ate-
rosclerosis). Esta enfermedad consiste en que se forman depdsitos en las arterias y por
tanto, disminuye el valor efectivo del radio del conducto. En la Figura 4.3 se realiza la
simulacion con los mismos valores que en la Figura 4.1 modificando tinicamente el valor
del radio, que se reduce a la mitad (ro=0,5 cm). Se aprecia que los pulsos avanzan mucho
mas rapido y que el drea y el caudal disminuyen, como cabia esperar. Por tanto, cuanto
menor sea el radio (dicho de otra forma, cuanto més tienda a 0) menor sera el flujo de
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Figura 4.2: Comparacion de la evolucion de las variables con £=200000 Pa.

sangre que circule por el conducto, pudiendo llegar incluso a detenerse en el caso extremo.

Por 1ltimo, se va a comprobar qué ocurre con el factor de reflexién. Todas las simula-
ciones hasta ahora se han realizado con R=0,3 y, en ellas, se refleja un 30 % del pulso. Se
va a comprobar para una de las variables (el comportamiento serd analogo para el resto
de variables) qué ocurre con R=1, que equivale a un conducto obstruido en el que se
refleja todo el pulso, y R=0, que equivale a que todo el pulso se transmita. En la Figura
4.4 se aprecia que para R=1 se refleja todo el pulso y que para R=0 no se refleja nada.

4.5. Conclusiones

Se han realizado varias simulaciones del sistema variando una serie de parametros
relacionados con las propiedades del conducto tales como su médulo de elasticidad, su
radio o la unién de dicho conducto con otro. Se ha observado que cuanto menor sea
el radio del conducto, menor serd el caudal de sangre a través del mismo y esto puede
llegar a suponer un problema. También se ha observado la dependencia con el médulo de
elasticidad, de forma que cuanto mayor es el médulo de elasticidad del conducto mayor
es la presion en el mismo. Por ultimo, se ha visto como afecta el coeficiente de reflexién
R. Por tanto, puede concluirse que el modelo utilizado es adecuado para comprobar estos
aspectos del sistema.

Para el modelo se han utilizado algunas aproximaciones que faciliten la resolucién del
problema, como por ejemplo despreciar el rozamiento. Utilizando aproximaciones mas
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Figura 4.4: Distintos valores de R. a)R=1. b) R=0.

precisas podria mejorarse el modelo hasta realizar una simulacién que se aproxime mucho
a la realidad. Por ejemplo, si con nuestro sistema hemos comprobado como la disminu-
cién del radio hace que el caudal disminuya, con un modelo més preciso quiza podrian
obtenerse otros datos de interés al respecto, como por ejemplo algin valor critico a partir
del cual la persona empezaria a tener problemas. De la misma manera, con un modelo
mas preciso, pueden realizarse pruebas con respecto a otros parametros. Por tanto, la
simulaciéon computacional puede ser de una gran utilidad en este campo.
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