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1. RESUMEN 

La Esclerosis Lateral Amiotrófica es una enfermedad neurodegenerativa devastadora y sin 

tratamiento. Por ello, es de vital importancia el desarrollo de terapias que permitan, por lo 

menos, mejorar la calidad de vida de los pacientes. Resultados previos de nuestro laboratorio 

han demostrado el efecto beneficioso del tratamiento con el quimioterápico 5-Fluorouracilo 

(5-FU) en el modelo murino de ELA SOD1G93A. En este contexto, el objetivo de este Trabajo 

de Fin de Grado fue determinar si el efecto del tratamiento con dicho fármaco modificaba la 

expresión de genes implicados en alguno de los procesos patológicos de la enfermedad: 

autofagia, apoptosis e inflamación. 

Los resultados obtenidos indican que el tratamiento con 5-FU no modula los procesos de 

autofagia ni apoptosis en el músculo esquelético de los animales modelos; y sugieren que la 

vía inflamatoria CCL2/CCR2 podría estar implicada en el mecanismo de acción del tratamiento 

con 5-FU. 

SUMMARY 

Amyotrophic Lateral Sclerosis is a devastating neurodegenerative disease without treatment. 

Therefore, it`s very important to develop therapies that allow, at least, improve the quality of 

life of patients. Previous studies in our laboratory has demonstrated the therapeutic effect of 

the treatment with the chemotherapeutic agent 5-Fluorouracil (5-FU) in the ALS murine model 

SOD1G93A. In this context, the objective of this Final Degree Work was to determine if the 

treatment with this drug modified the expression of genes involved in some of the pathological 

processes of the disease: autophagy, apoptosis and inflammation.  

The results indicate that 5-FU treatment does not modulate the processes of autophagy or 

apoptosis in skeletal muscle of this murine model; and suggest that CCL2 / CCR2 inflammatory 

pathway may be involved in the mechanism of action of the treatment with 5-FU. 
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2. INTRODUCCIÓN 

2.1 - ESCLEROSIS LATERAL AMIOTRÓFICA 

2.1.1 - DEFINICIÓN 

La Esclerosis Lateral Amiotrófica (ELA) es la enfermedad de motoneurona más frecuente en 

personas adultas. Se caracteriza por una degeneración progresiva de las motoneuronas superiores 

(MNS) de la corteza motora, e inferiores (MNI) del tronco del encéfalo y de la médula espinal; lo 

que desencadena debilidad, fasciculaciones, espasticidad, parálisis y atrofia muscular; y 

generalmente este fallo en el sistema neuromuscular culmina con la muerte por fallo respiratorio, 

de 2 a 5 años tras la aparición de los síntomas [1]. 

La incidencia de esta enfermedad es de aproximadamente 2 o 3 nuevos casos al año por cada 

100.000 personas, y la prevalencia es de unos 4 pacientes por cada 100.000 habitantes. La edad 

media de aparición de los síntomas es de 55 a 60 años y el riesgo de padecerla es ligeramente 

mayor en los hombres que en las mujeres [2]. Además se ha propuesto que diversos factores 

medioambientales (pesticidas, ejercicio intenso, metales pesados, tabaco, accidentes cerebrales 

traumáticos, etc.) puedan ser factores de riesgo; pero por el momento la edad es el factor de riesgo 

más aceptado [3]. 

2.1.2 - CLASIFICACIÓN 

En función del origen, la ELA se clasifica en 2 categorías: 

- ELA familiar: supone tan solo un 5-10% de los casos de ELA. El origen de la enfermedad es 

genético, generalmente ligado una herencia autosómica dominante; y de forma más 

excepcional, con una herencia autosómica recesiva, maternal (genes mitocondriales) o 

ligado al cromosoma X. Las primeras mutaciones asociadas a la enfermedad fueron 

detectadas en el gen de la superóxido dismutasa 1 (Cu/Zn SOD1) que codifica para la 

enzima SOD1 de carácter antioxidante [4]. A pesar de que se han encontrado nuevas 

mutaciones, fue el descubrimiento de estas mutaciones asociadas a la SOD1 las que han 

permitido generar modelos animales que se han utilizado tanto en el estudio de la 

enfermedad como en la búsqueda de tratamiento, siendo el modelo con la mutación  G93A 

el más utilizado. Dicho modelo ha sido utilizado en la realización de este trabajo. 

- ELA esporádico: representa la mayor parte de los casos (90-95%) en los que no se conoce 

una historia familiar de ELA previa, es decir, no asociada a mutaciones [4]. 
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2.1.3 - PATOGENIA DE LA ELA 

Son varios los mecanismos moleculares afectados por la acumulación de agregados proteicos 

patológicos o por las mutaciones en genes afectados; y en muchas ocasiones éstos se encuentran 

interrelacionados (Figura 1). Entre los mecanismos moleculares afectados encontramos la 

exocitotoxicidad mediada por glutamato, la disfunción mitocondrial, el estrés oxidativo, la 

agregación proteica, la autofagia, la apoptosis y la inflamación, de los que hablaremos con más 

detalle a continuación. Además está descrita una alteración del transporte axonal, transporte que 

resulta fundamental para movilizar los componentes esenciales de la neurona, y que está mediado 

por neurofilamentos, que en la ELA se encuentran alterados provocando la retracción del axón, que 

a su vez provoca la denervación de la motoneurona en el músculo conduciendo a la muerte celular 

[2, 5]. También se encuentra la alteración del tráfico endosomal, asociada en la ELAf a mutaciones 

en el gen de la Alsina, proteína implicada en la fusión y el tráfico endosomal, además de otras 

mutaciones relacionadas con variantes raras de la ELA [3]. 

 

 

 

 

Figura 1. Mecanismos patogénicos en la neurona motora implicados en la ELA [5]. 

Exocitotoxicidad mediada por glutamato 

El glutamato es el principal neurotransmisor excitatorio en el Sistema Nervioso Central y mediante 

la unión a sus receptores post-sinápticos NMDA y AMPA  incrementa la entrada del ion calcio (Ca2+) 

al interior celular. La señal excitatoria está limitada por la recaptación de glutamato por parte de 

los EAATs (transportadores de aminoácidos excitatorios), que mantienen una concentración 

fisiológica.  
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La exocitotoxicidad inducida por glutamato provoca un daño neuronal como resultado de una 

excesiva activación de los receptores de glutamato, que puede estar causada por un aumento de 

los niveles de glutamato a nivel sináptico, o por un aumento de la sensibilidad de la neurona al 

glutamato [6]. Algunas investigaciones han observado que esta exocitotoxicidad provoca 

alteraciones electrofisiológicas, alteraciones de la expresión de la subunidad receptora de AMPA, y 

reducción en la expresión y en la actividad del receptor EAAT2, lo que provoca la muerte neuronal 

[9]. Sin embargo, y aunque la exocitotoxicidad inducida por glutamato es un evento patológico 

característico en la ELA, continúa sin resolverse la cuestión de si es un defecto primario de la 

degeneración de la motoneurona, o si es resultado de la enfermedad [10]. 

Disfunción mitocondrial 

La mitocondria juega un papel importantísimo para la supervivencia celular regulando la apoptosis, 

como orgánulo generador de energía intracelular y en la homeostasis del calcio. Se han observado 

mitocondrias dañadas en tejidos afectados por ELA (médula y músculo sobre todo), especialmente 

en casos de ELAf causados por mutaciones de SOD1 [2].  

En el ratón mSOD1, se ha demostrado una disfunción mitocondrial, al impedirse la importación de 

proteínas mitocondriales a causa de agregados proteicos depositados en vacuolas en el interior del 

espacio intermembranoso de la mitocondria, provocando alteraciones en estado redox y secuestro 

del factor antiapoptótico Bcl2 [7]. Además, se ven afectados tanto el intercambio de calcio entre la 

mitocondria y el retículo endoplasmático, como el taponamiento de calcio; lo que aumenta la 

susceptibilidad de las células a la alteración de la homeostasis del calcio producida por la 

exocitotoxicidad mediada por glutamato. Todo ello desencadena la despolarización de la 

membrana mitocondrial, el aumento de la peroxidación de lípidos de membrana y la reducción en 

la producción de ATP, lo que origina un déficit energético [2]. 

Además se produce una alteración en el transporte axonal mitocondrial, una disfunción 

mitocondrial junto a una disminución de mitocondrias en el axón distal, lo que provoca la 

axonopatía por “dying-back” como consecuencia del agotamiento energético [8]. 

Estrés oxidativo 

Las especies reactivas de oxígeno (ROS), entre las que se incluyen el Peróxido de Hidrógeno (H2O2), 

los aniones superóxido (O2-), el ácido hipocloroso y los radicales hidróxido (–OH) se forman como 

consecuencia del normal metabolismo de la célula eucariota. El estrés oxidativo se produce cuando 

hay un desequilibrio entre la generación de ROS y su eliminación, junto con la capacidad de la 

maquinaria celular de eliminar o reparar el daño inducido por las mismas.  
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Dicho estrés provoca daños estructurales y cambios en las vías de señalización redox; además de 

incrementar otros procesos fisiopatológicos, contribuyendo al daño en la neurona motora, 

provocando la muerte neuronal y, por consiguiente, el comienzo de la neurodegeneración [9].  

Las mutaciones de SOD1 que afectan a su actividad, puede ser la principal causa del daño oxidativo 

y, por tanto, activar la apoptosis o causar alteraciones en la mitocondria como la disminución en la 

actividad de los complejos respiratorios, la despolarización de la membrana y la liberación de 

citocromo C [9]. Además, se han encontrado evidencias de daño oxidativo en RNA del sistema 

nervioso central tanto en pacientes como ratones mSOD1. También se ha demostrado que se 

mantiene activa la enzima Rac1, con el consiguiente aumento en la producción de ROS [10]. 

Agregación proteica 

Uno de los rasgos característicos de la ELA, así como de otras enfermedades neurodegenerativas 

(Parkinson, Alzheimer, Huntington), es la formación de agregados proteicos, consistentes en 

proteínas mal plegadas con conformación en lámina β [11]. 

La proteína mSOD1 mal plegada se une a ubiquitinas para ser eliminada a través del proteasoma; 

sin embargo esto no sucede y se acumula en dímeros y más tarde en agregados proteicos, 

pudiendo tener un efecto directo tóxico sobre la respiración mitocondrial o el transporte axonal, o 

indirecto sobre la proteostasis celular, provocando alteraciones en el correcto desarrollo de estos 

mecanismos [12]. También se ha identificado a la proteína TDP-43 como el principal constituyente 

de los agregados proteicos tanto en la ELAf como en la ELAe [13]. 

Autofagia 

La autofagia es un proceso citoprotector que consiste en la degradación de componentes 

intracelulares a través de lisosomas. Los lisosomas son el principal componente de este sistema 

proteolítico y contienen en su lumen una gran variedad de hidrolasas celulares, entre las que se 

encuentran las lipasas, las glicolasas, las proteinasas, y las nucleotidasas; que son las responsables 

de degradar los productos de deshecho [14]. El objetivo de la autofagia es el de proteger la célula 

de situaciones de estrés (como el que suponen los agregados proteicos tóxicos) mediante el 

secuestro del contenido citoplasmático causante de dicho estrés en los autofagosomas y su 

posterior  transporte a los lisosomas, donde se lleva a cabo su degradación [15]. 

Mediante la autofagia no sólo se produce la simple eliminación de materiales, sino que además 

sirve como un sistema dinámico de reciclaje en el que se producen nuevos sustratos y energía para 

la renovación celular y la homeostasis celular [16]. No obstante, cuando se produce la pérdida del 

control del proceso autofágico y éste se encuentra excesivamente inducido, se puede producir la 

muerte celular. Este proceso se conoce como muerte programada de tipo II [17]. 
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En el caso de la ELA y otras enfermedades neurodegenerativas, en un intento de eliminar los 

agregados proteicos,  la autofagia está incrementada. La degeneración y muerte de las 

motoneuronas se produce ya en la fase final de la enfermedad a causa de la disminución de la 

autofagia, ya sea por fallo o por bloqueo de la misma, produciéndose una agregación de proteínas 

mutadas (siendo SOD1 y TDP43 las principales) estando dicha agregación implicada en la muerte 

neuronal. Por otro lado, la disminución de la autofagia puede promover una disfunción 

mitocondrial y un aumento de la susceptibilidad a la muerte celular [18]. 

La mayor parte de los estudios sobre el proceso de la autofagia en el modelo murino SOD1G93A 

están relacionados con las motoneuronas, e indican que  tanto la presencia de abundantes 

vacuolas autofágicas como el aumento de proteínas relacionadas con el proceso de la autofagia 

son debidos a un defecto en la progresión de la misma [12, 19] y a la falta de un mecanismo 

compensatorio. Estas alteraciones se demostraron en un estudio en el que se relacionó el 

comienzo de la enfermedad y los síntomas con un proceso autofágico defectuoso con acumulación 

de autofagosomas. Además, esta alteración de la autofagia está presente en estadios 

presintomáticos de la enfermedad [20]. 

En el caso del musculo esquelético, se ha observado que la eliminación de mSOD1 es más eficiente 

en células musculares que en motoneuronas posiblemente por una mayor inducción de  la 

autofagia por mSOD1 [21]. Por otro lado, otro estudio parece indicar que, además, las células 

musculares son más resistentes a la acumulación de mSOD1 [22]. Sin embargo, todavía se 

desconoce si el efecto tóxico de mSOD1 se debe a una alteración del proceso autofágico o a la 

propia acumulación de mSOD1 [21]. 

Apoptosis 

La apoptosis es un tipo de muerte celular programada, que está caracterizada por una serie de 

cambios morfológicos, como son la condensación (pyknosis) y la fragmentación (karyorrhexis) del 

núcleo; así como la formación de cuerpos apoptóticos. Además, está acompañado por una serie de 

cambios bioquímicos característicos entre los que se incluyen la permeabilización de la membrana 

mitocondrial exterior (MOMP, mitochondrial outer membrane permeabilization), la activación de 

caspasas efectoras (caspasa 3, 6 y 7) y la activación de hidrolasas catabólicas que degradan la 

mayoría de las macromoléculas celulares, incluyendo el DNA [23].  

En general, existen dos tipos de apoptosis (Figura 2): la intrínseca que se induce intracelularmente, 

estimulada por estímulos mitocondriales, y puede ser dependiente o independiente de caspasas; y 

la extrínseca, cuya activación extracelular, es estimulada por la unión de moléculas solubles que se 



  

INTRODUCCIÓN 8 

 

unen a receptores de membrana, y que puede estar mediada por receptores de dependencia o por 

receptores de muerte [24], como consecuencia de situaciones de estrés. 

 

 

 

 

 

 

 

 

 

Figura 2. Apoptosis extrínseca (a) e intrínseca (b) [23]. 

La vía intrínseca se inicia a raíz de estímulos intracelulares, como daños en el DNA, la hipoxia, el 

estrés oxidativo o la privación del factor de crecimiento; induciendo la permeabilización de la 

membrana mitocondrial externa [25]. Dicha integridad es controlada por moléculas de la familia de 

Bcl-2, ya sean proapoptóticas (como Bax o Bak) o antiapoptóticas (Bcl-2, MCL-1). Tras la 

permeabilización se libera al citosol el citocromo c, que se une a la proteína apoptótica factor 

activador 1 (Apaf-1) e inicia la formación del apoptosoma, el cual se une a la caspasa 9 e inicia la 

cascada de caspasas efectoras. En la apoptosis independiente de caspasas se liberan proteínas AIF 

o EndoG que translocan el núcleo y promueven la fragmentación del DNA  [24]. 

Se ha propuesto que la apoptosis pueda estar implicada en la muerte celular que aparece en la 

Esclerosis Lateral Amiotrófica. En estudios en el modelo murino SOD1G93A se han encontrado 

mitocondrias con crestas dilatadas y desorganizadas en dendritas y axones de motoneuronas en el 

comienzo de la enfermedad [26].  Además la presencia de agregados proteicos de mSOD1 en la 

membrana externa mitocondrial sugiere que dicha proteína tenga un efecto directo sobre la 

función mitocondrial; siendo también capaz de unirse a Bcl-2 de forma aberrante en dicha 

membrana, desencadenando la toxicidad mediada por ésta proteína [27]. Dichos estudios sugieren 

que la alteración mitocondrial desempeñe un papel principal en la degeneración neuronal. 
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El  bloqueo de la proteína Bax (proapoptótica), retrasa el comienzo de la enfermedad y previene la 

muerte de las motoneuronas en el modelo mSOD1; no obstante la degeneración mitocondrial 

continúa, lo que sugiere que la apoptosis mediada por mitocondrias es secundaria a la 

degeneración neuronal [28]; mientras que en otro estudio en el mismo modelo se bloquearon Bax 

y Bak (proapoptóticas)  produciéndose un aumento de la supervivencia de los animales [29].  

En el caso del musculo esquelético, apenas se han realizado estudios sobre la atrofia muscular en la 

ELA asociada a la apoptosis. Sin embargo, en varios estudios se ha sugerido un patrón retrógrado 

en el que la degeneración y atrofia muscular precede a la muerte de la motoneurona, siendo dicha 

atrofia la que altere la unión neuromuscular produciendo a su vez una degeneración axonal 

retrógrada y la muerte neuronal; obteniéndose resultados que indicaban que la atrofia muscular 

asociada a la expresión de SOD1 modifica la expresión de algunos genes relacionados con 

apoptosis [30]. 

Inflamación 

Cuando se habla de inflamación en la ELA, se habla generalmente de neuroinflamación,  que afecta 

al SNC y está mediada por la microglía, células inflamatorias innatas del SNC siendo la más 

conocida y estudiada. En los animales modelo de la enfermedad la respuesta neuroinflamatoria se 

encuentra activada y juega un importante papel en la patogenia de la enfermedad, sugiriendo que 

en la degeneración de las motoneuronas también participan células no neuronales y hallándose 

una correlación entre la activación de la microglía y la patogénesis de la enfermedad[31]. 

Además los linfocitos T son capaces de regular la respuesta de la microglía mediante la secreción 

de diferentes interleucinas y citoquinas. Durante las fases iniciales de la enfermedad, los linfocitos 

T reguladores son abundantes en la médula espinal y mantienen a la microglía en el estado M2 de 

respuesta antiinflamatoria. Esta interacción parece ser beneficiosa, aunque en fases posteriores de 

la enfermedad, los linfocitos T reguladores disminuyen, y la microglía induce la muerte neuronal 

mediante el incremento de la respuesta citotóxica M1 en detrimento de la clásica respuesta 

neuroprotectora M2 [32, 33].  

Otras células que juegan un papel importante son los macrófagos, entre los cuales podemos 

distinguir a grandes rasgos los resultantes del reclutamiento de monocitos periféricos al SNC por 

parte de la microglía que promueven la muerte neuronal, y los macrófagos fagocíticos residentes 

que son capaces de activar los linfocitos B y T CD8+ dando lugar a una respuesta inmune citotóxica 

[32]. 
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Por último cabe destacar el papel de los oligodendrocitos, ya que degeneran continuamente, 

reduciéndose por tanto la expresión del transportador de lactato (MCT1), que junto a una falta de 

soporte trófico pueden dar lugar a la degeneración neuronal [32]. 

Se podrían conseguir efectos beneficiosos en la progresión de la enfermedad mediante la 

regulación de estos mediadores, y la reducción de la neuroinflamación, revertiendo el efecto 

neurotóxico que se produce en la enfermedad, y recuperando sus propiedades neuroprotectoras 

[34]. 

En referencia al músculo, apenas hay estudios sobre la inflamación en el mismo y la ELA, que es un 

interesante y amplio campo en el que se podría empezar a estudiar debido a la importancia que 

está adquiriendo la inflamación en el desarrollo de la ELA. 

2.1.4 - ELA Y MÚSCULO ESQUÉLETICO 

Hasta hace poco se asumía que las alteraciones y la degeneración muscular eran consecuencia de 

la pérdida de motoneuronas en el SNC, lo que conllevaba una pérdida de inervación muscular. Sin 

embargo, actualmente se ha demostrado la participación del músculo en la ELA, en el cual 

aparecen alteraciones con anterioridad a la aparición de las alteraciones en el soma de las 

motoneuronas, degeneración y muerte de las mismas. Las mencionadas alteraciones musculares 

observadas son un incremento en la captación de nutrientes, modificaciones en el metabolismo de 

los lípidos y los carbohidratos, y alteraciones tanto en la morfología como en las funciones 

mitocondriales; permitiendo de esta manera explicar el estado hipermetabólico del músculo típico 

de músculos con un estado avanzado de ELA [35, 36]. En nuestro grupo de investigación se está 

desarrollando una línea de investigación para conocer el papel del músculo en la enfermedad. 

También se ha observado una correlación entre la longevidad de los ratones mSOD1 con la 

expresión de genes en el músculo esquelético; así como alteraciones en genes relacionados con la 

degradación proteica, la producción de ATP y con procesos de crecimiento, diferenciación y muerte 

celular [37]. Además se ha demostrado que la expresión de microRNAs específicos de músculo se 

ve alterada por la enfermedad, por ejemplo, estando aumentado el microRNA-206 tanto en 

humanos como en modelos animales, desarrollando estos últimos más rápido la enfermedad y 

mostrando menor supervivencia [38]. 

Cabe destacar que varios estudios demuestran que las alteraciones a nivel mitocondrial 

encontradas en músculo aparecen mucho antes del comienzo de los primeros síntomas, sugiriendo  

que la atrofia muscular se produce con anterioridad a la alteración de la unión neuromuscular, 

alteración que origina degeneración axonal y muerte neuronal. Esto evidencia la gran importancia 

la relación entre músculo y SNC, y el mantenimiento de dicha unión [35, 39]. 



  

INTRODUCCIÓN 11 

 

Una de las explicaciones podría deberse a la capacidad del músculo esquelético de secretan 

factores que influyen en el crecimiento axonal, en el mantenimiento de las conexiones sinápticas y 

en la supervivencia neuronal; ya que si dicho aporte trófico desaparece se podría provocar una 

degeneración de las motoneuronas, abriéndose un campo terapéutico importante [40]. 

2.1.5 - TRATAMIENTO DE LA ELA 

El riluzol es el único fármaco aprobado por la Food and Drug Administraction (FDA) para el 

tratamiento de la ELA, el mecanismo de acción no está perfectamente definido, pero se cree que 

actúa sobre el receptor NMDA inhibiendo la liberación de glutamato por parte de la neurona 

presináptica. En cambio, otros antagonistas del glutamato como los aminoácidos de cadenas 

ramificadas no han mostrado efectos beneficiosos en los ensayos clínicos.  

No obstante, los efectos del riluzol sobre los pacientes con ELA no son tan beneficiosos como se 

desearía, ya que apenas prolonga la vida del paciente de 3 a 5 meses, sin observarse efecto en 

todos los pacientes. Por ello, el tratamiento está orientado a paliar los síntomas y se complementa 

con el cuidado de neurólogos, fisioterapeutas, etc.; además de otros tratamientos paliativos 

complementarios y suplementos en la dieta de vitamina E, vitamina C, vitaminas B, selenio, zinc, 

coenzima Q10 y otros antioxidantes (Guía para la atención de la Esclerosis Lateral Amiotrófica en 

España).  

Por todo lo expuesto, es de gran importancia el estudio y desarrollo de las nuevas terapias. Las 

diferentes aproximaciones terapéuticas propuestas están encaminadas a modular los diferentes 

mecanismos moleculares implicados en la patogenia de la enfermedad e inducir un efecto 

beneficioso en la progresión de la misma que se encuentran en diferentes fases de desarrollo 

experimental: terapia antiglutamatérgica (busca disminuir los niveles de glutamato), protección 

frente a las alteraciones metabólicas en la mitocondria (pretende corregir la disfunción 

mitocondrial que se produce en la ELA), terapia antiagregados proteicos (trata de estimular la 

autofagia para disminuir el número de agregados proteicos), modulación de la respuesta inmune 

(consiste en el uso de inmunosupresores o inmunomoduladores con el objetivo de reducir la 

neuroinflamación), protección de la unión neuromuscular y del músculo esquelético (esta terapia 

busca preservar la integridad de la placa motora ya que la unión neuromuscular es una diana 

terapéutica accesible) y administración de neurotróficos (los factores neurotróficos son vitales 

para la supervivencia neuronal promoviendo la supervivencia y la diferenciación neuronal) 

(revisado por Rando en 2015 [41]). En los Anexos se presenta una tabla (Tabla 1) en la que se 

recogen todos los tratamientos que se están llevando a cabo actualmente [42]. 



  

INTRODUCCIÓN 12 

 

Además, actualmente se están desarrollando otras terapias más innovadoras como la terapia 

génica y la terapia celular. La primera consiste en la introducción en las células de material 

genético con un valor terapéutico y que puede aplicarse tanto in vivo, introduciendo el material 

genético directamente en las células del organismo; como ex vivo, donde las células a tratar son 

extraídas del paciente y sometidas al proceso de transferencia in vitro, para su posterior 

reintroducción en el paciente. En la ELA se ha buscado el silenciamiento de genes que codifican 

para proteínas mutadas asociadas a ELAs familiares.  La terapia celular consiste en la aplicación de 

las células a la reparación de tejidos destruidos o dañados; en la ELA se ha buscado el trasplante de 

células madre buscando por un lado el reemplazo celular, y por otro la neuroprotección mediante 

el aporte de factores neurotróficos y la modulación del ambiente tóxico extracelular en el que se 

encuentra la neurona [41].  

Finalmente, en el contexto de enfermedades huérfanas como la ELA, cobra especial importancia el 

reposicionamiento de fármacos, la búsqueda de nuevas aplicaciones terapéuticas a fármacos ya 

comercializados, fármacos que puedan actuar evitando o disminuyendo la alteración de alguno de 

los mecanismos moleculares afectados en la enfermedad; esta estrategia presenta ventajas 

comerciales y económicas, sobre todo acortando plazos para la venta del fármaco y reduciendo los 

costes de la comercialización. En nuestro grupo de investigación están llevando a cabo este tipo de 

aproximación, en particular con el anticancerígeno 5-FU. 

2.2 - 5-FLUOROURACILO 

El 5-Fluorouracilo (5-FU) es un análogo del uracilo ampliamente usado como agente 

quimioterápico en el tratamiento de varios tipos de neoplasias. La terapia basada en el 5-FU ha 

demostrado que aumenta significativamente tanto la tasa de respuesta, como la de supervivencia  

al cáncer de mama, de cabeza y de cuello; presentando también una alta efectividad en tumores 

digestivos de colon y recto avanzados, siendo el quimioterápico de elección en este tipo de 

tumores [43]. 

2.2.1 - DEFINICIÓN Y MECANISMO DE ACCIÓN 

El 5-Fluorouracilo (5-FU) es un análogo del uracilo, pertenece a la familia de los antimetabolitos, 

que actúan inhibiendo procesos biosintéticos esenciales para la célula, o incorporándose en 

macromoléculas como DNA o RNA a los que afecta en su funcionalidad. La actividad del 5-FU radica 

fundamentalmente en la inhibición de la enzima timidilato sintasa (TS), esencial para la síntesis de 

timidilato (dTMP), que es un nucleósido requerido para la replicación del DNA; induciendo, en 

consecuencia, la detención del ciclo celular, bloqueando las fases G1/S del ciclo celular, llevando a 
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la célula a la entrada en apoptosis, sobre todo para las células con una alta tasa de replicación, 

como lo son las células tumorales [44, 45]. 

El 5-FU es administrado de forma parenteral mediante bolo o infusión intravenosa en humanos, 

aceptándose como equivalente la administración intraperitoneal en ratones [41]. El 5-FU entra 

rápidamente a la célula usando los mismos mecanismos de transporte facilitado de las bases 

púricas y pirimidínicas y mediante difusión no facilitada [46]. Ya en el interior celular se incorpora a 

diferentes rutas del metabolismo anabólico transformándose en diferentes metabolitos activos, 

siendo la fluorodesoxiuridina monofosfato (FdUMP) el metabolito que inhibe la TS; y los otros 

metabolitos, el nucleótido trifosfato de desoxifluorouridina (FdUTP) y el nucleótido trifosfato de 

fluorouridina (FUTP), los que se incorporan a las hebras de DNA o RNA de forma aberrante. El 

catabolismo del 5-FU se produce principalmente en el hígado, donde la enzima dihidroprimidina 

deshidrogenasa (DPD) convierte el 5-FU en dihodrofluorouracilo (DHFU) que es posteriormente 

secretado [47] (Figura 1 en Anexos). 

2.2.2 - 5-FLUOROURACILO EN MÚSCULO 

No hay estudios que describan los efectos de la administración de 5-FU en el músculo esquelético 

ni a nivel in vivo ni in vitro; sin embargo los efectos sobre el músculo cardiaco sí que han sido 

estudiados, inhibiendo la proliferación de los miocitos cardiacos, mediante la inducción de la 

apoptosis de los mismos, provocando una desorganización del citoesqueleto de actina que está 

detrás de las alteraciones en la contractibilidad descritas en la literatura [48]. 

2.2.3 - 5-FLUOROURACILO Y SU POTENCIAL USO EN LA ELA 

Los citostáticos en dosis bajas se usan en la Esclerosis Múltiple (EM) por su efecto inmunosupresor, 

estando limitada su utilización por sus efectos secundarios. Sin embargo, en pacientes con EM que 

desarrollan un cáncer, el uso de estos fármacos mejora tanto el cáncer como la EM, pudiendo estar 

recomendado el uso de 5-FU u otros quimioterápicos en casos de EM de evolución clínica muy 

agresiva [49]. Además ya se han explicado previamente los efectos patológicos de la inflamación en 

la ELA, en la que se produce un infiltrado inflamatorio en el SNC formado principalmente por 

linfocitos T reguladores, que interaccionan con las células de la glía siendo la interacción 

beneficiosa en el inicio de la enfermedad y patológica según avanza ya que los linfocitos acaban 

produciendo un cambio en la respuesta de las células de la glía hacia un patrón neurotóxico. Por 

tanto, la administración de 5-FU en la ELA reduce los niveles de linfocitos circulantes y este hecho 

podría contrarrestar los efectos patológicos de la inflamación [41].  
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También hay que destacar estudios recientes que sugieren que el 5-FU puede bloquear la 

acumulación de mSOD1; pudiendo ser este efecto un fenotipo oculto del fármaco siendo solo 

biológicamente activo cuando se produce un mal plegamiento de la SOD; o un efecto 

independiente de la diana terapéutica [50]. 

Asimismo, la uridina es necesaria para el correcto funcionamiento de la mitocondria pudiendo ser 

beneficiosa en enfermedades en las que dicho funcionamiento está alterado como la ELA; y 

también tiene efecto neuroprotector e incrementa los niveles de ATP y optimiza la producción de 

energía por la vía glucolítica. Dichas propiedades son de interés en un candidato terapéutico para 

la ELA [51]. Y ahora además sabemos que la uridina es capaz de reducir los agregados proteicos in 

vitro, con lo que también podría tener un efecto beneficioso por reducción de dichos agregados. 

Basándose en estos antecedentes,  un reciente estudio llevado a cabo por nuestro laboratorio, ha 

demostrado que el tratamiento de los ratones transgénicos para la mSOD1 humana con 5-FU, 

retrasa el inicio de la enfermedad, mejora el rendimiento motor de los animales y aumenta la 

supervivencia del modelo [41], aunque de momento, el mecanismo de acción por el que el fármaco 

produce su efecto beneficioso no está claro, siendo necesario la realización más estudios para 

conocer la diana o modificación de los procesos celulares que ocasiona el fármaco. 
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3. JUSTIFICACIÓN Y OBJETIVOS 

Ante estos antecedentes nos propusimos como objetivo general de este Trabajo de Fin de 

Grado conocer el efecto de la aplicación del fármaco 5-Fluorouracilo sobre procesos 

fisiológicos afectados en el modelo animal mSOD1 de Esclerosis Lateral Amiotrófica en el 

músculo esquelético. 

Para la consecución de este objetivo general se propuso la consecución de los siguientes 

objetivos específicos: 

1. Determinar el efecto del fármaco sobre la expresión de genes relacionados con el 

proceso de autofagia a nivel del músculo esquelético en los animales mSOD1. 

2. Determinar el efecto del fármaco sobre la expresión de genes relacionados con el 

proceso apoptótico a nivel del músculo esquelético en los animales mSOD1. 

3. Determinar la expresión de genes relacionados con el proceso inflamatorio en el 

músculo esquelético del modelo animal y conocer la modulación de dicha expresión 

tras la administración del fármaco. 
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4. METODOLOGÍA 

Para la realización del presente Trabajo Fin de Grado se ha empleado la metodología descrita a 

continuación. 

4.1 - EL MODELO ANIMAL SOD1G93A 

Para la realización de este Trabajo de Fin de Grado se ha utilizado el modelo murino de Esclerosis 

Lateral Amiotrófica SOD1G93A. Se trata de un ratón transgénico clásico de alta copia para el gen 

SOD1 humano mutado (G93A), con fondo genético de la cepa B6SJL (B6SJL-Tg (SOD1-G93A) 

1Gur/J) obtenidos de la casa comercial The Jackson Laboratory.  Los controles utilizados fueron 

hermanos de camada no transgénicos o wild-type (WT). 

Los grupos experimentales se realizaron teniendo en cuenta el sexo de los animales de forma 

equilibrada; se utilizaron 24 animales, 12 hembras y 12 machos, repartidos en 3 grupos: los 

animales no transgénicos (WT), los animales transgénicos tratados con suero salino fisiológico y 

los animales transgénicos tratados con 5-Fluorouracilo (n=8). 

Los animales fueron alojados en el Servicio de Animalario del Servicio General de Apoyo a la 

Investigación (SAI) de la Universidad de Zaragoza cumpliendo la normativa española relativa al 

Bienestar Animal. Además, todos los experimentos y procedimientos seguidos fueron aprobados 

por la Comisión Ética Asesora para la Experimentación Animal de la Universidad de Zaragoza 

(Procedimiento PI31/10). 

Los animales fueron alojados bajo ciclos de luz y oscuridad de 12 horas con unas condiciones 

ambientales de temperatura (21º-23ºC) y humedad relativa (55%) controladas. Además los 

animales recibieron agua y comida ad libitum. Las condiciones sanitarias fueron controladas 

mediante análisis bacteriológicos, parasitológicos y serológicos. 

4.2 - GENOTIPADO 

Previamente a la realización del experimento se procedió al genotipado de los animales para la 

identificación de los individuos transgénicos (que expresarán la mSOD1 humana) y de los Wild-

Type. Dicha identificación se realizó mediante la técnica de PCR (Reacción en Cadena de la 

Polimerasa) sobre el DNA extraído mediante la técnica HotSHOT [52] procedente de la cola de los 

ratones. Se sometió dicha fracción de tejido de la cola a lisis con Hidróxido de Sodio 50 mM a 98ºC 

durante 30 minutos, tras lo cual, se neutralizó con TRIS 1M y se centrifugó 12000 rpm durante 5 

minutos para separar el sobrenadante que es la fracción que contiene el DNA. 
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El genotipado se llevó a cabo amplificando simultáneamente el gen interleucina 2 (IL-2), como 

control de la amplificación, y un fragmento del gen SOD1 mutado humano; para posteriormente 

visualizar los productos amplificados en un gel de agarosa al 2% con tinción de bromuro de etidio. 

4.3 - ADMINISTRACIÓN DE 5-FLUOROURACILO 

Se inyectaron 150 mg de 5-Fluorouracilo por kilo de peso de ratón por vía intraperitoneal. El 5-

Fluorouracilo (Sigma-Aldrich) se resuspendió en suero fisiológico justo antes de cada 

administración (15 mg/ml). El tratamiento consistió en tres inyecciones de 5-Fluorouracilo (5-FU), 

cada dos semanas, comenzando a los 75 días de edad (10 semanas). Como controles se utilizaron 

animales transgénicos que recibieron únicamente solución salina, y animales no transgénicos. 

4.4 - ESTUDIO DE LA EXPRESIÓN GÉNICA 

El estudio de la expresión génica se realizó sobre muestras de músculo esquelético. Los ratones 

fueron eutanasiados a los 105 días de edad mediante inhalación de CO2 (Dióxido de Carbono), 

método aceptado para la eutanasia de pequeños roedores, e inmediatamente ambos músculos 

Quadriceps femoris fueron diseccionados, congelados en nitrógeno líquido y conservados a -80ºC. 

Como paso previo al uso de dichos músculos en estudios de estudios de expresión génica, éstos se 

pulverizaron con nitrógeno líquido por medio del sistema CellcrusherTM (Cellcrusher). 

A continuación se describen las técnicas de extracción de RNA, eliminación de DNA genómico y 

retrotranscripción de las muestras, previas al análisis de expresión de los distintos genes 

estudiados en este trabajo mediante la técnica de la PCR cuantitativa en tiempo real (qRT-PCR).  

4.4.1 - EXTRACCIÓN DE RNA 

La extracción de RNA procedente de muestras de músculo se realizó mediante el método de 

Trizol-Cloroformo. Se añadió al músculo pulverizado el reactivo Trizol Reagent (Invitrogen) y se 

homogenizó con un homogeneizador de muestras (IKA T10 UltraTurrax). Posteriormente el RNA 

se separó con cloroformo y se precipitó con isopropanol. A continuación, se lavó con etanol al 

75% y se resuspendió el RNA en agua DEPC. Por último, se eliminó el DNA genómico mediante el 

kit Turbo DNA-free de Ambion (Ref. 1907) siguiendo las indicaciones de la casa comercial; con el 

objetivo de evitar las amplificaciones inespecíficas debidas a la presencia de dicho DNA que 

podrían alterar los estudios de expresión génica. 

4.4.2 - SÍNTESIS DE DNA COMPLEMENTARIO O RETROTRANSCRIPCIÓN 

La concentración de RNA obtenida se midió mediante el espectrofotómetro (NanoDrop ND-1000, 

Thermo Scientific) y la cantidad de RNA a retrotranscribir se ajustó a 2 μg de RNA por muestra, 

que se evaporó en el speedvac. El resto del RNA obtenido se almacenó a -80ºC. 
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Para realizar la Retrotranscripción (RT) se empleó el kit Super-ScriptTM First-Strand Synthesis 

System (Ref. 12371-019), siguiendo las indicaciones del fabricante. El cDNA resultante se 

almacenó a -20ºC para su uso posterior. 

4.4.3 - PCR CUANTITATIVA A TIEMPO REAL 

Es una técnica que permite la visualización inmediata de la cantidad de DNA que se ha 

amplificado en cada ciclo, y conocer la cantidad relativa de cDNA presente en esa muestra; tras 

normalizar con unos genes de referencia o housekeeping. Por tanto es una técnica que nos 

permite cuantificar la expresión relativa de los genes de estudio respecto a un grupo control o 

normalizador, que en el presente experimento son los ratones WT. La técnica se fundamenta en 

el uso de fluoróforos que emiten una cantidad de fluorescencia directamente proporcional al 

número de copias del fragmento amplificadas. Para la realización de este Trabajo de Fin de Grado 

se empleó la metodología de Sondas Taqman® y el fluoróforo SYBRGreen. 

Sondas Taqman 

Las sondas Taqman® son sondas de oligonucleótidos que se diseñan de forma complementaria al 

cDNA de interés y que tienen adheridas en sus extremos un reporter  o molécula fluorófora que 

emite fluorescencia; y un quencher que la absorbe. En un primer paso, la sonda se hibrida por 

complementariedad de bases al cDNA molde. Durante la síntesis del cDNA complementario y 

dada la actividad endonucleasa de la DNA polimerasa, la sonda se rompe, se separa el quencher 

del reporter y la fluorescencia emitida es registrada al final de cada ciclo por el aparato, reflejando 

de este modo la cantidad de DNA sintetizado (Figura 3).  

En cada ciclo se separarán más reporters provocando un aumento de la intensidad de la 

fluorescencia, que es proporcional a la cantidad de amplificación producida. Cuanto más alto sea 

el número inicial de copias del gen estudiado, antes se observará un aumento significativo de la 

fluorescencia. 

Figura 3. Funcionamiento de los reactivos Taqman (Modificado de Applied Biosystem). 

 

Paso 1: un reporter (R) y 

un quencher (Q) se unen a 

los extremos 5’ y 3’ de una 

sonda Taqman® 

Paso 2: cuando el reporter 

y el quencher están 

unidos a la sonda se 

inhibe la emisión del 

reporter. 

Paso 3: durante cada ciclo 

la DNA polimerasa separa 

el reporter de la sonda. 

Paso 4: una vez 

separado el quencher, el 

reporter emite 

fluorescencia. 
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SYBRGreen 

La molécula de SYBRGreen es una molécula capaz de intercalarse entre las dos hebras de la doble 

hélice de DNA y emitir fluorescencia. Conforme la DNA polimerasa crea nuevas copias de la hebra 

molde, incrementa la intensidad de la fluorescencia, ya que el SYBRGreen se une a todas las 

cadenas de doble hélice, obteniéndose un incremento en la intensidad de la fluorescencia que es 

directamente proporcional a la cantidad de producto de la PCR producido (Figura 4). 

Figura 4. Funcionamiento de los reactivos de SYBRGreen (Modificado de Applied Biosystem). 

Las reacciones de PCR se realizaron en el aparato StepOne Plus Real-Time PCR System (Applied 

Biosystems, Madrid, Spain). El sistema StepOne recoge datos de fluorescencia brutos en 

diferentes puntos de una PCR. Un punto de recogida de datos o una lectura consta de tres fases:  

1. Excitación: el instrumento StepOne™ ilumina todos los pocillos de la placa de reacción 

para excitar los fluoróforos de cada reacción. 

2. Emisión: la óptica del instrumento StepOne capta la fluorescencia residual que se emite 

desde los pocillos de la placa de reacción. La imagen resultante que capta el dispositivo 

sólo consta de luz que se corresponde con el rango de las longitudes de onda de emisión.  

3. Recogida: el instrumento StepOne crea una representación digital de la fluorescencia 

residual recogida en un intervalo de tiempo fijado. El software StepOne™ almacena la 

imagen fluorescente bruta para analizarla.  

Después de un proceso, el software StepOne utiliza datos de calibración (espacial, espectral y de 

fondo) para determinar la ubicación y la intensidad de las señales fluorescentes en cada lectura, el 

fluorocromo asociado a cada señal fluorescente y el significado de la señal. 

Paso 4: el SYBRGreen se une a todo el DNA de doble 

cadena obteniéndose un incremento en la intensidad de la 

fluorescencia proporcional al producto de la PCR 

producido. 

Paso 3: a continuación el SYBRGreen se une a cada copia 

nueva del DNA de doble cadena. 

Paso 2: el DNA se desnaturaliza disminuyendo 

considerablemente la fluorescencia. 

Paso 1: la molécula de SYBRGreen se intercala entre las 

dos hebras de DNA y emite fluorescencia. 



  

METODOLOGÍA 20 

 

Las sondas Taqman® empleadas estaban disponibles en el catálogo de Applied Biosystem y son las 

que se muestran en la tabla 2 en Anexos. La mayoría de ellas son complementarias a dos exones, 

para evitar la amplificación del posible DNA genómico residual en la muestra. Todas las reacciones 

se realizaron en un volumen final de 5 μl con 2X Taqman® universal PCR Fast Master mix (No 

AmpErase UNG, Applied Biosystems), 20X de la mezcla cebador/sonda Taqman® MGB específico 

para cada gen estudiado y 2 μl del cDNA diluido (1/10) obtenido tras la Retrotranscripción.  

Para llevar a cabo la qRT-PCR con SYBR Green se optimizaron las parejas de cebadores mediante 

PCR convencional y su posterior visualización en gel de agarosa. Todas las reacciones se realizaron 

en un volumen final de 10 μl con 5 μl Fast SYBR® Green Master Mix 2x, 300nM de cada primer y 2 

μl del cDNA diluido. Las parejas de cebadores empleados se recogen en la tabla 3 en Anexos. 

Como genes normalizadores o housekeeping se emplearon dos genes endógenos, GAPDH y β-

actina, cuya media geométrica se utilizó para corregir la expresión de los genes objeto de estudio 

[53]. Estos genes se seleccionaron basándose en estudios previos realizados por nuestro 

laboratorio, en función del tipo de tejido, para nuestro modelo animal [54]. Se estableció como 

grupo control los animales WT y la expresión relativa de RNA de cada grupo respecto al control se 

calculó empleando el método ΔΔCT [55].  

4.6 - ANÁLISIS DE LOS DATOS Y ESTADÍSTICA 

A la hora de procesar y analizar los resultados obtenidos en el presente trabajo, se utilizaron los 

programas informáticos que se enumeran a continuación: 

 Para el análisis de secuencias y productos amplificados por la qRT-PCR se ha empleado el 

StepOneTM software v2.0. (Applied Biosystems). 

 Paquete de Microsoft Office. 

 Para el análisis estadístico se ha empleado el programa GraphPad Prism 5. 

 Para la gestión de la revisión bibliográfica se ha empleado EndNote X5. 

Los datos se presentan como la expresión media de cada grupo y las barras de error corresponden 

al error típico de la media.  Para el  análisis estadístico se emplearon las pruebas ANOVA (análisis 

de varianza) seguida de la prueba post-hoc Turkey. Las diferencias entre grupos se asumieron 

como significativas cuando el valor de p fue menor de 0.05 (*p<0.05; **p<0.01; ***p<0.001).
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5. RESULTADOS Y DISCUSIÓN 

El apartado de resultados y discusión ha sido dividido en 3 subapartados, en los que se muestran la 

expresión génica en músculo de los procesos patológicos sobre los que se ha sospechado que el 5-FU 

pudiera tener un efecto beneficioso: proceso de autofagia (5.1), proceso apoptótico (5.2) y proceso 

inflamatorio (5.3). 

5.1 EXPRESIÓN DE GENES DE AUTOFAGIA EN MÚSCULO 

Como se ha explicado en el apartado de metodología, se ha cuantificado la expresión génica en 

músculo esquelético de los tres grupos de animales utilizados en este experimento: los animales no 

transgénicos (WT), los animales mSOD1 tratados con suero salino fisiológico (+NaCl) y los animales 

mSOD1 tratados con 5-Fluorouracilo (+5-FU).  Habiéndose realizado de igual forma para la expresión 

de los procesos apoptótico e inflamatorio. 

Se estudió la expresión de los genes de autofagia Atg-5, Beclin, E2F1, LC3 y p62 en el músculo 

esquelético de los tres grupos experimentales. En un primer momento se determinó si la expresión 

de alguno de los genes estaba aumentada en los animales transgénicos frente a sus homólogos WT; y 

en segundo lugar, si la administración de 5-FU provocaba una disminución de la expresión de dichos 

genes alterados en los animales modelo de la enfermedad.  

Nuestros resultados indican que existen diferencias muy significativas entre animales WT y 

transgénicos, tanto tratados como sin tratar, en la expresión de los  genes LC3 y p62 (LC3: p<0.01 5 

entre WT y +NaCl y p<0.001 entre WT y +5FU; p62: p<0.01 entre WT y +NaCl y p<0.01 entre WT y +5-

FU) que son figuras claves en el proceso autofágico. Sin embargo, a pesar de que los animales 

tratados con el fármaco también mostraron diferencias significativas con el WT, no se observaron 

diferencias significativas en la expresión de los mismos entre los animales transgénicos tratados con 

suero salino fisiológico y los tratados con 5-FU. En la expresión génica del resto de genes estudiados 

no se observaron diferencias entre ninguno de los grupos analizados (Figura 5).  

Los resultados obtenidos concuerdan con el de otros autores que describen una mayor inducción de 

la autofagia en los animales transgénicos frente a sus controles debido a mSOD1 [21]. Por otra parte, 

debido a que se comunicó en el último congreso mundial de ALS que el 5-FU bloquea la formación de 

agregados de mSOD1 en cultivos celulares que son eliminados mediante autofagia [50], se propuso 

buscar un posible efecto del fármaco sobre la expresión génica del proceso de autofagia en músculo, 

con el planteamiento de que el 5-FU pudiera afectar aumentando la supervivencia y mejorando los 

síntomas en ratones transgénicos para la mSOD1 humana.  
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No obstante, nuestros resultados muestran que la administración de 5-FU no está afectando el 

proceso autofágico  en el músculo esquelético de nuestro modelo murino, en contraposición a lo 

esperado. Esto podría deberse a que el fármaco no actúe disminuyendo la expresión, sino 

aumentando la eficacia de eliminación de dichos agregados; o a que su efecto no sea a nivel de 

músculo esquelético. 

 

 

 

 

 

 

 

5.2 EXPRESIÓN DE GENES DE APOPTOSIS EN MÚSCULO 

Se realizó el estudio de la expresión de los genes de apoptosis Bax, Bcl-2, Caspasa 1 y Caspasa 3 en el 

músculo esquelético de los tres grupos experimentales. En un primer momento se determinó si la 

expresión de alguno de los genes estaba aumentada en los animales transgénicos frente a sus 

homólogos WT; y en segundo lugar, si la administración de 5-FU provocaba una disminución de la 

expresión de dichos genes alterados en los animales modelo de la enfermedad.  

Nuestros resultados indican que existen diferencias significativas entre animales WT y transgénicos, 

tanto tratados como sin tratar, en la expresión de los  genes Bax y Caspasa 3 (Bax: p<0.01 entre WT y 

+NaCl y  p<0.01 entre WT y +5-FU; Caspasa 3: p<0.001 entre WT y +NaCl y p<0.001 entre WT y +5-

FU). Sin embargo, a pesar de que los animales tratados con el fármaco también mostraron 

diferencias significativas con el WT, no se observaron diferencias significativas en la expresión de los 

mismos entre los animales transgénicos tratados con suero salino fisiológico y los tratados con 5-FU. 

En la expresión génica del resto de genes estudiados no se observaron diferencias entre ninguno de 

los grupos analizados (Figura 6). 

A pesar de que no existen estudios sobre la apoptosis asociada a una atrofia muscular en la ELA, sí se 

han realizado numerosos estudios sobre el SNC en el modelo murino para la mSOD1 humana en los 

que se han encontrado alteraciones en mitocondrias localizadas en dendritas y axones de 

Figura 5. Expresión de genes de autofagia en músculo esquelético 

en animales wild-type (-) y en animales SOD1G93A para la ELA 

tratados con suero salino fisiológico (+ NaCl) y con 5-Fluorouracilo 

(+ 5-FU); analizada por el método ΔΔCT.  
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motoneuronas [26], así como agregados proteicos de mSOD1 en la membrana externa mitocondrial 

[27] que sugieren un papel principal de las mitocondrias en la apoptosis y degeneración neuronal. Sin 

embargo, la importancia de la apoptosis en músculo esquelético como posible mecanismo patológico 

desencadenante de la degeneración neuronal está basada en estudios en los que se sugiere un 

patrón retrógrado, en el que la degeneración y la atrofia muscular preceden a la muerte de la 

motoneurona, siendo dicha atrofia la que altera la unión neuromuscular produciendo a su vez una 

degeneración axonal retrógrada y la muerte neuronal [30]. Por tanto, nos interesó conocer el posible 

efecto beneficioso del 5-Fluorouracilo sobre dicha apoptosis en músculo esquelético.  

Los resultados obtenidos indican un aumento en la expresión de Bax y Caspasa 3, relacionados con 

apoptosis en músculo esquelético de ratones mSOD1 respecto a los WT; estando en concordancia 

con las sospechas de otros estudios de que el aumento de la apoptosis no solo se produce en 

motoneuronas, sino también en músculo esquelético [30]. Contrariamente a lo esperado, no se 

observó el efecto del tratamiento sobre dicho proceso en el músculo esquelético de nuestro modelo 

murino. 

 

  

 

 

 

 

 

 

5.3 EXPRESIÓN DE GENES DE INFLAMACIÓN EN MÚSCULO 

Se realizó el estudio de la expresión de los genes de inflamación iNOS, TGF-β, TNF-α, CSF3R, CXCR4, 

CCR2 y CCL2 en el músculo esquelético de los tres grupos experimentales. Como en los casos 

anteriores se determinó si la expresión de alguno de los genes estaba aumentada en los animales 

transgénicos frente a sus homólogos WT; así como si la administración de 5-FU provocaba una 

disminución de la expresión de dichos genes alterados en los animales modelo de la enfermedad.  

Nuestros resultados indican que existen diferencias muy significativas entre animales WT y 

transgénicos, tanto tratados como sin tratar, en la expresión de los  genes TGF-β y CXCR4 (TGF-β: 

Figura 6. Expresión de genes de apoptosis en músculo esquelético 

en animales wild-type (-) y en animales SOD1G93A para la ELA 

tratados con suero salino fisiológico (+ NaCl) y con 5-Fluorouracilo 

(+ 5-FU); analizada por el método ΔΔCT.  
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p<0.001 entre WT y +NaCl y p<0.001 entre WT y +5-FU; CXCR4: p<0.01 entre WT y +NaCl y p<0.01 

entre WT y +5-FU).  Sin embargo, a pesar de que los animales tratados con el fármaco también 

mostraron diferencias significativas con el WT, no se observaron diferencias significativas en la 

expresión de los mismos entre los animales transgénicos tratados con suero salino fisiológico y los 

tratados con 5-FU. En la expresión génica de iNOS, TNF-α y CSF3R no se observaron diferencias entre 

ninguno de los grupos analizados (Figura 7). 

Por otra parte, sí se encontraron diferencias significativas entre los animales mSOD1 tratados y no 

tratados, así como entre los mSOD1 tratados y los WT (CCR2: p<0.05 entre WT y +NaCl y p<0.05 

entre WT y +5-FU)  observándose una reducción en la expresión de CCR2 en el grupo tratado 

respecto a los no tratados; además de observarse una tendencia en su ligando (CCL2), pero en este 

caso sin resultar significativa debido a la elevada variabilidad de la expresión de este gen en los 

animales, esta variabilidad puede ser consecuencia de la baja expresión del ligando en el músculo 

esquelético (Figura 8). 

Se ha comprobado en un estudio de nuestro laboratorio que hay una disminución de linfocitos 

circulantes en animales mSOD1 hasta 4 días tras la administración del 5-FU, sugiriendo que pueda 

tener un efecto sobre la inflamación. No obstante, como ya se ha explicado previamente, cuando 

hablamos de inflamación en la ELA hablamos de neuroinflamación, no habiéndose realizado apenas 

estudios sobre la misma y el músculo; pero si se ha sugerido que la inflamación o neuroinflamación 

tiene un papel muy importante en la enfermedad, sospechándose que en la degeneración neuronal 

también participen células inflamatorias habiéndose hallado una correlación entre la activación de la 

microglía y la patogénesis muscular. De tal forma se sugiere que la inflamación contribuye a la 

aparición y progresión de los síntomas [31]. Cobra entonces vital importancia el estudio de la 

inflamación en el músculo, más si se tiene en cuenta, como se ha mencionado en apoptosis, los 

estudios que sugieren un patrón retrógrado en el que la degeneración y atrofia muscular precede a la 

muerte de la motoneurona [30], degeneración que podría deberse a la inflamación. Este ha sido 

nuestro argumento para buscar un posible efecto antiinflamatorio en músculo del 5-FU que explique 

la mejora de la enfermedad.  

Nuestros resultados demuestran la presencia de un aumento de la inflamación en el músculo 

esquelético de ratones transgénicos respecto a nuestros animales WT, estando en concordancia con 

resultados previos de nuestro grupo con el gen CXCR4 [56] y hallando, por primera vez, un aumento 

de la expresión génica de TGF-β en el modelo murino mSOD1. Estos resultados apoyarían la hipótesis 

planteada anteriormente de que la inflamación también podría tener un papel importante en 

músculo, incluso pudiendo ser el origen de la degeneración neuronal; creyéndose necesario la 
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continuación del estudio de este campo por su posible relevancia en la enfermedad, sobretodo en 

edades más tempranas con síntomas más leves. 

Además, los resultados muestran también diferencias significativas en la expresión génica de CCR2 

en el musculo esquelético entre los animales mSOD1 tratados y no tratados, observándose una 

reducción en la expresión de dicho receptor en el grupo tratado respecto a los no tratados (p<0.05); 

diferencia no descrita en la bibliografía. Dichas diferencias en la expresión de CCR2 parecen indicar 

que el 5-Fluorouracilo está modulando la expresión de dicho receptor; pudiendo ser necesaria la 

realización de más estudios para determinar la implicación de la vía CCL2/CCR2 en el mecanismo de 

acción del 5-FU.  

Por otra parte, se ha descrito un incremento en la expresión génica de CCL2 en líquido 

cefalorraquídeo tanto de pacientes con ELA, como en el modelo mSOD1 donde también se observó 

aumento de CCR2 [57]. A pesar de las diferencias encontradas en la expresión de CCR2 entre 

animales mSOD1 tratados y no tratados, no se encontraron diferencias significativas entre los WT y 

los ratones mSOD1 sin tratar; las discrepancias con el estudio anterior [57] pueden ser debidas al 

número de muestras o a su variabilidad; observándose, sin embargo, una tendencia en la expresión 

tanto del receptor como del ligando. 

CCR2 es el receptor de CCL2 o MCP-1, la cual es una proteína implicada en la quimiotaxis de 

monocitos, macrófagos y microglía, lo que conduce a una microgliosis patológica y a la activación de 

la respuesta inflamatoria. La disminución de la expresión de estos genes tras el tratamiento puede 

indicar que estos procesos están disminuidos y, por tanto, el músculo esquelético estaría más 

protegido.  

Figura 8. Expresión de genes de inflamación en 

músculo esquelético en animales wild-type (-) y en 

animales SOD1G93A para la ELA tratados con suero 

salino fisiológico (+ NaCl) y con 5-Fluorouracilo (+ 5-

FU); analizada por el método ΔΔCT.  

Figura 7. Expresión de genes de inflamación en músculo 

esquelético en animales wild-type (-) y en animales 

SOD1G93A para la ELA tratados con suero salino 

fisiológico (+ NaCl) y con 5-Fluorouracilo (+ 5-FU); 

analizada por el método ΔΔCT.  
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6. CONCLUSIONES 

Teniendo en cuenta los resultados obtenidos y bajo nuestras condiciones experimentales, 

podemos deducir las siguientes conclusiones: 

1. La expresión de determinados genes relacionados con los procesos de autofagia y 

apoptosis se encuentra incrementada respecto a sus controles en estado sintomático 

tras la aplicación del tratamiento con el quimioterápico 5-Fluorouracilo. 

2. La expresión de determinados genes relacionados con la respuesta inflamatoria, se 

encuentra incrementada en el músculo esquelético del modelo murino de ELA 

SOD1G93A respecto a sus controles en estado sintomático tras la aplicación del 

tratamiento con el quimioterápico 5-Fluorouracilo. 

3. El agente quimioterápico 5-Fluorouracilo modula la vía inflamatoria CCL2/CCR2, 

reduciendo la expresión génica de dicho receptor en el músculo esquelético del 

modelo murino de ELA SOD1G93A, pudiendo estar implicado en la mejora de la 

enfermedad tras el tratamiento. 

CONCLUSIONS 

Under our experimental conditions and taking into account the results obtained, we can 

conclude: 

1. The expression of certain genes related to autophagy and apoptosis processes is 

increased compared to controls in symptomatic state after applying the treatment 

with the chemotherapeutic agent 5-Fluorouracil. 

2. The expression of certain genes related to inflammatory response, is increased in the 

skeletal muscle of the ALS murine model SOD1G93A compared to their controls in 

symptomatic state after applying the treatment with the chemotherapeutic agent 5-

fluorouracil. 

3. The chemotherapeutic agent 5-Fluorouracil modulates the CCL2/CCR2 inflammatory 

pathway, reducing the genetic expression of this receptor in the skeletal muscle of the 

ALS murine model SOD1G93A, and this pathway may be involved in the improvement 

of the disease after the treatment. 
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ANEXOS 

 

Tabla 1. Ensayos clínicos de Terapias farmacológicas para la ELA actualmente en curso [42]. 

 

 

 



  

ANEXOS 32 

 

Figura 1. Metabolismo del 5-FU y efectos de sus metabolitos activos [47]. 

 

Tabla 2. Sondas Taqman® empleadas en la realización de este Trabajo de Fin de Grado. 

 

Tabla 3. Parejas de cebadores empleadas en la realización de dicho Trabajo de Fin de Grado. 

  

Forward (5´  ´) Reverse (5´   3´)

GAPDH AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA 60 Jon J et al 2013

b-actin AGAGGGAAATCGTGCGTGAC CAATAGTGATGACCTGGCCGT 60 Jon J et al 2013

TNF-a TATGGCCCAGACCCTCACA GGAGTAGACAAGGTACAACCCATC 60 Wang et al 2014

TGF-β GTGTGGAGCAACATGTGGAACTCTA TTGGTTCAGCCACTGCCGTA 60 Wang et al 2014

iNOS CAG CTG GGC TGT ACA AAC CTT CAT TGG AAG TGA AGC GTT TCG 60 Wang et al 2014

Genes
Secuencia Annealing 

temperature    
Referencia

Gen Symbol Part Number

Atg5 Mm00504340_m1

Beclin Mm00517174_m1

E2F1 Mm00432939_m1

LC3 Mm00458724_m1

p62 Mm00448091_m1

Bax Mm 00432050_m1

BCL2 Mm 00477631_m1

Caspasa 1 Mm 00438023_m1

Caspasa 3 Mm 01195085_m1

CSF3R Mm00432735_m1

CXCR4 Mm01996749_s1

CCR2 Mm01216173_m1

CCL2 Mm00441242_m1
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