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Prologo

El funcionamiento del cerebro es un campo de investigaciéon que actualmente se aborda desde
muchas disciplinas. Entender cémo se transmite la informacién en una red de neuronas nos ayudard a
entender como se transmite la informacién en el cerebro. Uno de estos enfoques viene dado desde las
matemadticas, suponiendo la neurona como un sistema dindmico cuyo comportamiento viene determi-
nado por un sistema de ecuaciones diferenciales ordinarias. Uno de los modelos mds utilizado es el de
Hodgkin-Huxley, que con tres ecuaciones modeliza la propagacién de ondas eléctricas en la neurona
tras la recepcion de un estimulo (potenciales de accién). Sin embargo, estudiar el comportamiento de
una red de neuronas y obtener resultados analiticos, teniendo en cuenta la complejidad de su dindmica,
es una tarea realmente complicada. Una de las opciones es buscar otros sistemas cuya dindmica sea
mads sencilla pero con la suficiente riqueza como para tener la posibilidad de encontrar en su estudio
comportamientos que pueden aparecer en dindmicas mds complejas, y utilizarlos como posible guia.
Este es el objetivo de este trabajo: realizaremos un andlisis del sistema replicador mutador desde la
perspectiva de la Teoria de Bifurcaciones para dimensién tres, que veremos que puede interpretarse
como una red de tres nodos, cada uno con una dindmica determinada por una de las tres ecuaciones
que forman el sistema, y, posteriormente, comprobaremos mediante un estudio cualitativo del sistema
que este tipo de comportamientos también van a aparecer en una red de tres neuronas, proporciondn-
donos en este caso informacién sobre los distintos patrones de sincronizacién que pueden darse en
dicha red.

La estructura concreta del trabajo es la siguiente.

En el primer capitulo realizamos una introduccién a la Teoria de Bifurcaciones donde se muestran
los conceptos necesarios sobre sistemas dindmicos para comprender qué es una bifurcacién y algunos
de los posibles tipos que pueden existir. Entramos a explicar de forma més concreta las bifurcaciones
locales que aparecen en el estudio basdndonos en los conceptos anteriores: bifurcacién silla-nodo,
bifurcacién tridente, bifurcacion transcritica S3-simétrica y bifurcacién de Hopf.

En el siguiente capitulo se presenta el sistema replicador mutador, un modelo de dindmica de
evolucién de una gran poblacién compuesta por N subpoblaciones, cada una de ellas subscrita a una
estrategia competitiva distinta, aceptando que cada individuo de cada subpoblacién puede cambiar de
forma espontdnea de una estrategia a otra. En primer lugar se describe el modelo a estudiar y los re-
sultados que motivan el andlisis del mismo. Posteriormente mostramos un estudio de bifurcaciones de
puntos de equilibrio y 6rbitas periddicas del sistema para dos y tres dimensiones, apoydndonos en los
conceptos de Teoria de Bifurcaciones definidos previamente. Este capitulo se basa fundamentalmen-
te en los resultados obtenidos en [20] y [21], probando finalmente dos teoremas que nos garantizan
existencia y unicidad de ciclos limite en el sistema replicador mutador para dimension tres.

Por dltimo, en el tercer capitulo presentaremos la neurona como un sistema dindmico cuyo com-
portamiento viene determinado por un sistema de tres ecuaciones diferenciales no lineales depen-
dientes de pardmetros. En [15] consideran una pequefia red de tres neuronas y observan qué tipos
de patrones de sincronizacién pueden darse entre ellas, a través del andlisis de los desfases entre las
mismas. Comentaremos algunos de los resultados obtenidos en [15] donde podremos ver que, en di-
ndmicas mds complejas como ésta, se tienen resultados similares a los obtenidos en dindmicas mas
sencillas, como los mostrados en el Capitulo 2 para el sistema replicador mutador al conectar tres
nodos.
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Summary

How the brain works is a field of research which is currently addressed from very different disci-
plines. Understanding how the information is beamed in a neural network will help us to understand
how the information is beamed in the brain. One of these approaches is given from the mathematics,
assuming the neuron as a dynamical system whose behaviour is determined by a nonlinear differential
equation system. One of the most used models is the Hodgkin- Huxley model, modelling with a three
equation system the propagation of electric waves in the neuron after the reception of a stimulus (ac-
tion potentials). However, studying the behaviour of a neural network and obtaining analytical results
is a very complicated task, particularly considering the complexity of the dynamic. One of the options
is to search for other systems whose dynamic is simpler but rich enough to be able to find behaviours
which may appear in the analysis of more complex dynamics, and use them as a reference . This is
the objective of this paper: we make an analysis of the replicator-mutator system from the bifurcation
theory perspective for the three dimensional case, which we will see that it can be interpreted as a
three-node network, each one with a dynamic determined by one of the three equations which form
the system; and later we verify through a qualitative study of the system that this kind of behaviours
will also be observed in a three-neuronal cell network, in this case providing us with some information
about the different synchronization patterns that can be observed in this network.

Bifurcation Theory

Now consider a continuous-time dynamical system that depends on parameters

x = f(x,a)

where x € R" y o0 € R” represent phase variables and parameters, respectively. A dynamical system
{T,R", 9"} is called locally topologically equivalent near an equilibrium x( to a dynamical system
{T,R", @'} near an equilibrium yy if there exists a homomorphism & : R" — R” that is defined in
a neighborhood U C R”" of x, satisfies yo = h(xp) and maps orbits of the first system in U onto
orbits of the second system in V. = h(U) C R” preserving the direction of time. The appearance of
a topologically nonequivalent phase portrait under variation of parameters is called a bifurcation and
a local bifurcation is a bifurcation that can be analysed purely in terms of a change in the linearisa-
tion around single invariant set or attractor. In Chapter 1, we will introduce some local bifurcations.
In particular, those that will appear in our study: saddle-node bifurcation, pitchfork bifurcation, S3-
symmetric transcritical bifurcation and Hopf bifurcation, which are codimension-one bifurcations of
fixed points and periodic orbits.

Replicator-Mutator dynamics

Consider a large population of agents and N distinct strategies S;, i = 1,...N. Let strategy frequency
x; € [0, 1] be the fraction of individuals in the population with strategy S; such that ):ﬁvzl x; = 1. Let the
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VI Capitulo 0. Summary

distribution vector x = [x|,...,xy]”. The fitness f; of agents with strategy S, is given by
N
fi=Y buxi. (1)
k=1

Let £ = [fi,..., fv]". Then f = Bx, where B = [b;;] € RV*V and the average population fitness is
¢ = fTx = x” Bx. B is known as the payoff matrix where b; ;> 0 represents the payoff to an agent
with strategy S; on interacting with an agent with strategy S;. The payoff matrix B can be interpreted
from a graph theoretic perspective as the adjacency matrix of a directed graph. The nodes of the graph
corresponds to the strategies S; and the payoffs b;; corresponds to the weight of a directed edge from
node S; to node S;. In this study we have considered the payoff matrices B which has in every row and
column at least one nonzero off-diagonal element.

Next we define ¢;; to be the probability that agents with strategy S; mutate spontaneously to
strategy S;. In this paper we define each element depending on a mutation parameter u < [0,1] as
follows

Kbij
Yiribik

The replicator-mutator dynamics describe the dynamics of the population distribution x as a result of
replication driven by fitness f and mutation driven by Q:

gGi=1—U, qij= parai# j. (2)

N
Xi = Z xjfj(x)q,-j — )Cl'¢ = gi(X) parai: 1,...N. (3)
j=1
Define the n-simplex as A, = {x € R""! | x; >0, x'1= 1} where 1 is a column vector of ones

of appropiate dimension. The dynamics evolve on the (N — 1)-dimensional simplex space, so the
N-dimensional dynamics can be reduced to an (N — 1)-dimensional system of equations:

X = h[(f), i€ {1,2, N*l},

N—-1 (4)
h,(f) = g,'(xl, X2y eeey XN—1, 1 — ij>

J=1

where % = [xq,..., xy—1)T and h: RV-1 — RN-1,

The motivation to prove the existence of limit cycles in replicator-mutator dynamics comes in part
from simulations of the dynamics 4 for random payoff matrices, which frequently exhibit oscillations.
In the second section of Chapter 2 we show some of these simulations.

In the third section, we make a bifurcation analysis of the N = 2 strategies case, in which we
can observe that the system has a pitchfork bifurcation at u = 0,2. Next, we analyse the N =3
strategies case, and we obtain some results. We make some simulations of the system with circulant
payoff matrices, depending on the connections of the three nodes. It’s important to remark the all-to-
all and the directed cycle interconnection cases. In the first one, the replicator-mutator dynamics has
two bifurcation points: in one of them, it suffers a S3-symmetric transcritical bifurcation and in the
other point six equilibria disappear via three symmetric saddle-node bifurcations. In the other one, the
equilibium that we call x,,,;, exists for all values of . At the first bifurcation point, three symmetric
saddle-node bifurcations occur and stable limit cycles appear about X,,;,. These are followed by a
Hopf bifurcation at the second bifurcation point, where X,,;, changes stability from an unstable to a
stable focus and the limit cycles disappear. In the final part of the chapter, we include some lemmas
(and their proofs) which are necessary to prove two theorems that give us necessary conditions and
sufficient conditions for the existence of limit cycle in the replicator-mutator dynamics with directed
cycle interconnection among three nodes.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas



VII

Three-neuronal cell network

A central pattern generator (CPG) is a circuit of neuronal cells whose synergetic interactions
can autonomously produce rhythmic patterns of activity that determine some vital motor behaviours.
Individual neurons can generate various complex oscillations known as bursting, formed by alternating
fast repetitive spiking and quiescent or subthreshold oscillatory phases. We are interested in exploring
the constituent building blocks -or “motifs”- that may make up more complex CPG circuits, and the
dynamic principles behind stable patterns of bursting that may co-exist in the circuit’s repertoire of
available states. We will refer to such multi-stable rhythmic patterns as “polyrhythms”. We consider
the range of basic motifs comprising three biophysical neurons and their chemical synapses. The
objective is to gain insight into the rules governing pattern formation in complex networks of neurons,
for which we should first investigate the rules underlying the emergence of cooperative rhythms in
smaller network motifs. In this chapter we present the neuron as a dynamical system whose behaviour
is determined by a three nonlinear differential equations system with parameter dependence. The most
important model of a neuron is the Hodgkin-Huxley model and in the third chapter, we use a model
derived from it:

dv
CE = —Ing—Ig2 +1L — Iapp - Isyn
dh
TNaﬂ = h;.\?a(v> —h ®)
dt
dmg> o
k2 df = mgy(V) —mka

In [15], they apply a novel computational tool that reduces the problem of stability and existence
of bursting rhythms in large networks to the bifurcation analysis of fixed points and invariant circles of
Poincaré return maps. The phase relationships between the coupled cells are defined through specific
events ,{‘L'l("), ‘52(”), 13(")} ,when their voltages cross a threshold from below. We define a sequence of
phase lags by the delays in burst initiations relative to that of the reference cell 1, normalized over the
current network period o the burst recurrent times for the reference cell as follows:

(n+1) (Vll) (n+1) (n)

A T B A('f) _ B~ 7331 mod(1)

An ordered pair, M,, = (AEPZ? ,A((p';? ), defines a forward iterate, or a phase point, of the Poincaré return

map for the phase lags IT : M, — M,.;. A sequence {(Afpzz ,Afg?) N s
trajectory of the Poincaré return map on a 72 with phases defined on mod 1.

In Chapter 3 we show some simulations of phase portraits of the Poincaré return map IT for
different kinds of interconnections among the three cells. In one of them, we can see that the phase
lags converge to several phase locked states after 90 bursts cycles. The phase lag Poincaré map reveals
five stable fixed points, corresponding to different synchronization patterns. At the end of the chapter,
there is other simulation. It shows that, for a different connection and bifurcation parameter, the system
has a supercritical Hopf bifurcation.

Finally, we can conclude that some behaviours observed in a network whose nodes has a simple
dynamic can be observed in other ones with more complex dynamic. The difference is that in the
simplest one, we can obtain some analytical results and in the complex one we have to be content with
a qualitative analysis, at least for now. However, it is enough information to confirm us that analyse
simplest dynamical systems is a right track for gaining insight in the research of other complex ones.

yields a forward phase lag

Autor: Lorena Romero Medrano
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Capitulo 1

Teoria de Bifurcaciones

En este capitulo vamos a realizar una introduccién a la Teoria de Bifurcaciones. En primer lugar
definiremos algunos conceptos bdsicos y posteriormente presentaremos distintos tipos de bifurcacio-
nes de puntos de equilibrio y oOrbitas periédicas que aparecen en los estudios de los capitulos 2 y
3.

1.1. Conceptos basicos

Definicion 1.1.1. Un sistema dindmico es una terna {T,S,¢'} donde T =R 0 Z, S es el espacio de
fases 'y @' es una familia de aplicaciones ¢' : S — S definida para cada t > 0 que satisface:

(1) ¢° = Ids;
(II) ¢+ = ¢ 0 9", V1,12 > 0.

Si T =7 se dice sistema dindmico en tiempo discreto y viene expresado por una ecuacion re-
cursiva. Por otro lado, si T = R, se dice sistema dindmico en tiempo continuo y viene expresado
por una ecuacién diferencial ordinaria. Consideremos ahora un sistema dindmico en tiempo continuo
dependiente de pardmetros

x = f(x,a)

donde x € R" y @ € R™ representan el espacio de variables y pardmetros respectivamente.

Definicion 1.1.2. Un sistema dindmico {T,R",¢'} es topologicamente equivalente cerca de un equi-
librio xo a un sistema dindmico {T,R", @'} cerca de un equilibrio yq si existe un homeomorfismo
h : R" — R" tal que:

(1) estd definido en un entorno U C R" de xo;
(I) satisface yo = h(xp);

(I1l) hace corresponder las orbitas del primer sistema en el entorno U con orbitas del segundo
sistema en el entorno V.= h(U) C R", preservando la orientacion de las trayectorias.

Consideremos el retrato de fases del sistema dindmico anterior. A medida que los pardmetros
varian, el retrato de fases del sistema también varia. Ante esto hay dos posibilidades: que el sistema
se mantenga topoldgicamente equivalente al inicial, o que su topologia cambie.

Definicion 1.1.3. La aparicion de un retrato de fases del sistema que no es topoldgicamente equiva-
lente al inicial debida a la variacion de pardmetros se llama bifurcacion.



2 Capitulo 1. Teoria de Bifurcaciones

En particular, los puntos fijos del sistema pueden crearse o desaparecer, o puede cambiar su esta-
bilidad. Podemos clasificar las bifurcaciones en dos tipos:

Definicion 1.1.4. Una bifurcacion local es aquella que puede ser analizada completamente mediante
cambios en las propiedades de la estabilidad local, bien sean éstas de puntos de equilibrio, orbitas
locales u otros conjuntos invariantes, conforme los pardmetros atraviesan umbrales criticos. Por otro
lado, una bifurcacion global ocurre cuando grandes conjuntos invariantes, como orbitas periddicas,
colisionan con equilibrios. Esto causa cambios en la topologia de las trayectorias en el espacio de
fases que no pueden ser restringidos a un pequeiio entorno, como ocurre con las bifurcaciones locales.

Algunos ejemplos de bifurcacién local son la bifurcacién silla-nodo, bifurcacién tridente, de du-
plicacién de periodo o la bifurcacion de tipo Hopf . Por otra parte, ejemplos de bifurcacién global son
las bifurcaciones homoclinicas y heteroclinicas. (Véase [1, 2])

En este trabajo estudiaremos Unicamente bifurcaciones locales. Definimos en lo que sigue dos
conceptos importantes para la realizacién del analisis y la visualizacién de las bifurcaciones.

Definicion 1.1.5. Un diagrama de bifurcacion de un sistema dindmico es una estratificacion de
su espacio de pardmetros inducida por la equivalencia topologica, junto con los retratos de fase
representativos de cada estrato.

Es decir, se trata de una representacion de conjuntos invariantes del sistema frente a un pardmetro
de bifurcacién u, indicando la estabilidad.

Definicion 1.1.6. La codimension de un punto de bifurcacion es la diferencia entre la dimension del
espacio de pardmetros y el correspondiente conjunto de bifurcacion.

Alternativamente, la codimensidn de una bifurcacién es el nimero de pardmetros que necesitamos
variar para afiadir de manera genérica la bifurcacion al sistema.

Definicion 1.1.7. La forma normal de una bifurcacion de codimension k es un sistema universal con
k pequerios pardmetros y solo las no linealidades esenciales de forma que todo sistema que sufra la
bifurcacion sea topologicamente equivalente a la forma normal.

El concepto de forma normal es un concepto fundamental a la hora de identificar las distintas
bifurcaciones.

1.2. Bifurcaciones locales

Como hemos dicho previamente, en este trabajo solo vamos a estudiar bifurcaciones locales. En
esta seccidn presentaremos algunas de las bifurcaciones de codimensién uno de puntos fijos y érbitas
periddicas mds comunes y que posteriormente aparecerdn en el estudio de sistemas concretos: bifur-
cacion silla-nodo, bifurcacién tridente, bifurcacion transcritica S3-simétrica y bifurcacién de Hopf.

1.2.1. Bifurcacion silla-nodo

La bifurcacion silla-nodo es el mecanismo bdsico por el cual puntos de equilibrio son creados y
destruidos. El ejemplo prototipo de bifurcacion silla-nodo viene dado por el sistema unidimensional
siguiente:

x=r+x, reRr (1.1)

El pardmetro r puede ser positivo, negativo o cero, y en funcién de eso varia el nimero de puntos de
equilibrio del sistema y su estabilidad.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas



1.2. Bifurcaciones locales 3

(a) r<0 (b) r=0 ©) r>0

Vemos como a medida que el pardmetro de bifurcacion r aumenta acercdndose a cero, los dos pun-
tos de equilibrio del sistema (uno estable y otro inestable) se acercan el uno hacia el otro colisionando
para r = 0 y desapareciendo en cuanto r toma valores positivos. En este caso por tanto la bifurcacién
se produce para r = 0. Otra forma de visualizar la bifurcacién es mediante el diagrama de bifurcacién.

unstable ~ .

stable =

Teorema 1.2.1 (Forma normal para la bifurcacion silla-nodo). Supongamos el sistema dindmico uni-
dimensional
X = f(x,r) con xeR, reR, (1.2)

con f suficientemente diferenciable tal que para r = 0 posee un equilibrio en x = 0 con f,(0,0) = 0.
Si el sistema satisface las condiciones de no degeneracion:

(SN.1) a(0) = 3 £x(0,0) # 0,
(SN.2) £,(0,0) # 0,
entonces el sistema es topologicamente equivalente cerca del origen a la forma normal

i = B£n?

Podemos encontrar la caracterizacion del caso multidimensional en [4].

1.2.2. Bifurcacion tridente

Esta bifurcacién es comin en problemas fisicos que poseen simetrias. Por ejemplo, muchos pro-
blemas tienen simetria espacial a izquierda y a derecha; en estos casos, los puntos de equilibrio tienden
a aparecer y a desaparecer en parejas simétricas. Hay dos tipos de bifurcaciones tridente: supercritica
y subcritica.

Bifurcacion tridente supercritica
La forma normal de la bifurcacién tridente supercritica viene dada por

F=rm—-x (1.3)

Notar que es invariante bajo el cambio x — —ux, lo que expresa matematicamente la simetria res-
pecto del eje x mencionada previamente. Méas técnicamente se dice que el campo vectorial es equiva-

riante.

Autor: Lorena Romero Medrano



4 Capitulo 1. Teoria de Bifurcaciones

NN
, x Y

(a) r<0 () r=0 ©) r>0

Vemos que cuando r < 0, el origen es el inico punto de equilibrio, y es estable. Cuando r > 0 se
convierte en inestable y aparecen dos nuevos puntos de equilibrio estables, uno a cada lado del ori-
gen, colocados simétricamente en x* = +./r. En la imagen siguiente se muestra el diagrama de
bifurcacién de la forma normal (1.3).

stable

stable ———Z unstable
K
stable

Bifurcacion tridente subcritica

La forma normal de la bifurcacién tridente subcritica viene dada por
i=rm+x (1.4)

Este caso es muy similar al anterior. La diferencia la encontramos en que ahora, para r < 0 hay tres
equilibrios: el origen, que es estable, y dos inestables situados de forma simétrica a ambos lados del
origen en x* = 4+/—r. En el momento en que r toma el valor 0 los equilibrios inestables colisionan
con el origen y desaparecen, mientras que el origen continda siendo punto de equilibrio del sistema,
aunque ahora es inestable. En la imagen siguiente se muestra el diagrama de bifurcacién de la forma
normal (1.4).

unstable , _
stable  m— - - e - - - unstable

unstable

Teorema 1.2.2 (Definicion formal de una bifurcacién tridente). Dada la ecuacion
= flxr), x€R, reR
satisfaciendo — f(x,r) = f(—x,r)y las condiciones

9/
ox

92 A d 02
On) =0, S30.m) =0, S0 £ 0, Zom) =0 T 0m) #0

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas



1.2. Bifurcaciones locales 5

entonces el sistema tiene una bifurcacion tridente en (x,r) = (0,ry). La forma de la bifurcacion viene
dada por el signo de la tercera derivada:

f (0,70) < 0, tridente supercritica,
o3 0 > 0, tridente subcritica.

1.2.3. Bifurcacion transcritica S;-simétrica

Esta bifurcacién es menos comun pero la incluimos puesto que aparece en el estudio. Se trata
también de una bifurcacion de codimension uno y es habitual en sistemas con simetria. Para entenderla
mejor vamos a hablar brevemente sobre otra bifurcacién mds comin que no hemos explicado: la
bifurcacién transcritica. Se explica con mds detalle en [3].

Bifurcacién transcritica

Esta bifurcacién tiene dos particularidades: por un lado, uno de los puntos de equilibrio del sistema
sigue siendo punto de equilibrio para todos los valores del pardmetro de bifurcacién, aunque cambia
su estabilidad cuando la bifurcacién se produce. Por otro lado, tanto el nimero de puntos de equilibrio

como el de puntos estables e inestables del sistema antes y después de producirse la bifurcacién es el
mismo.

La forma normal de la bifurcacion transcritica es
. 2
XxX=rx —x°, rekR.

A continuacién se muestra el diagrama de bifurcacién de la forma normal anterior.

X stable

Stable memmmm—— - - - - - - - unstable

unstable

Se observa como para valores negativos del paraimetro de bifurcacién r, el sistema tiene dos puntos
de equilibrio en x* = 0 y x* = r, estable e inestable respectivamente. Tras pasar el valor critico de la
bifurcacién, vemos que siguen existiendo los dos puntos de equilibrio, pero que han intercambiado su
estabilidad.

Veamos entonces la bifurcacién transcritica Ss;-simétrica. En este caso, de nuevo hay un punto
de equilibrio que existe para todos los valores del pardmetro de bifurcacién y que, cuando dicha
bifurcacion se produce, cambia su estabilidad. La diferencia estd en que el cambio se produce cuando,
al variar el pardmetro de bifurcacién, colisionan con €l tres puntos de equilibrio que estdn situados de
manera simétrica alrededor de dicho equilibrio.

En la imagen siguiente tenemos un ejemplo del retrato de fase antes, durante y después de una
bifurcacidn transcritica S3-simétrica.

Autor: Lorena Romero Medrano



6 Capitulo 1. Teoria de Bifurcaciones

(@) () (c)

Vemos como antes de producirse la bifurcacion tenemos tres puntos silla localizados de forma
simétrica alrededor del origen, que es estable y que, tras producirse la bifurcacién, cambia a inestable
y aparecen tres nuevos puntos silla.

1.2.4. Bifurcacion de Hopf

Sea un sistema bidimensional dependiente de un pardmetro con un punto de equilibrio. A medida
que hacemos variar dicho parametro, este punto puede perder su estabilidad. La clave estd en los
valores propios de la matriz Jacobiana: la bifurcacién correspondiente a la presencia de valores propios
A2 = Fimy, > 0 esllamada bifurcacién de Hopf. Es decir, la bifurcacion se da cuando tenemos
dos valores propios complejos conjugados que cruzan el eje imaginario a medida que el pardmetro de
bifurcacién varia.

Definicion 1.2.3. Un ciclo limite es una orbita periddica del sistema que es un conjunto limite de
otras trayectorias.

Definicion 1.2.4. Una bifurcacion de Hopf es el nacimiento de un ciclo limite a partir de un equili-
brio en un sistema dindmico cuando dicho equilibrio cambia su estabilidad via una pareja de valores
imaginarios puros conjugados.

Asi, la bifurcaciéon de Hopf estd asociada con la aparicidon de orbitas o ciclos limite estables o
inestables, y gracias a ella podemos garantizar la existencia de ciclos limite en sistemas de dimensién
mayor que el caso planar, el cual queda recogido en el Teorema de Poincaré-Bendixon (2.3.3). Por
tanto el estudio de esta bifurcacién nos proporciona también una herramienta con la que justificar la
aparicion de ciclos limite en sistemas de dimensién mayor que dos.

Las bifurcaciones de Hopf también pueden ser de dos tipos, como ocurria con la bifurcacién
tridente: supercriticas o subcriticas, dependiendo si el ciclo limite resulta estable o inestable respecti-
vamente.

Definimos a continuacién lo que se conoce como primer coeficiente de Lyapunov, y que nos dird
ante qué tipo de bifurcacion de Hopf nos encontramos.

Definicion 1.2.5 (Primer coeficiente de Lyapunov para o = 0). Consideramos el desarrollo de Taylor
de f(x,0) enx =0,

1 1
£(05,0) = Aox + S B(x.3) + Clxx.2) + O( ),

donde B(x,y) y C(x,y,z) son las funciones multilineales con componentes,

_ v 98,0
BJ('x?y) _kJZZI aékagl ’ :OkaM
Lo 9f(8,0)
k]; 1 agkgélaém

donde j=1,...,n. Sea g € C" un autovector complejo de la matriz jacobiana Ay = A(O) correspon-
diente al autovalor iwy: Agg = iwpg. Sea p € C" el autovector adjunto que satisface Ao p = —iypp,

(p,q) = 1.

j(xX,,2)

XiYiZm 5
£=0

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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Entonces se define el primer coeficiente de Lyapunov como,

L(0) = 2(100Re [(p.C(q.4.9)) — 2(p,B(q.A; ' B(q,7))) + (p,B(q, (2icnl, — Ao)'B(q,q)))]

Notar que el valor (pero no el signo) de /;(0) depende del autovector ¢ escogido. Una forma de
eliminar la ambigiiedad es tomar el vector normalizado (g,q) = 1.

Teorema 1.2.6 (Forma normal para la bifurcacion de Hopf). Dado el sistema bidimensional
¥ = f(x,r), xeR? reR,

con f suficientemente diferenciable, tal que para |r| pequeiio posee un equilibrio en x = (0,0) con
valores propios de la matriz jacobiana de f en x =0,

Ap(a) = p(a) tio(a),

que se hacen imaginarios puros para & =0, es decir, (t(0) =0y @(0) = @y > 0. Si el sistema satisface
las condiciones de no degeneracion:

(H.1) ,(0) # 0, con (&) primer coeficiente de Lyapunov,
(H.2) 1'(0) # 0,
Entonces el sistema es topologicamente equivalente a la forma normal
y1 = Byi—y2+0y1(37 +3)
V2 = yi4By2+on(i+)
dondey = (y1,y2) €R? B €R, 0 = signo [;(0) = +1.
Asi, el signo del primer coeficiente de Lyapunov nos dice de qué tipo es la bifurcacién de Hopf:

Si 0 = —1: Vemos que para 8 < 0 el origen en la forma normal es estable y que, tras la bifurcacién
en B = 0 pierde la estabilidad surgiendo, ademds, un ciclo limite estable asociado a €I, situacién que
se mantiene V § > 0. Esta seria una bifurcacién de Hopf supercritica.

Y2 Y2 Y2
Y1 Y1 :) Y1
B<O B=0 B>0

Si 6 = +1: Vemos que para B < 0 el sistema presenta un ciclo limite inestable asociado a un punto
critico estable y que, después de producirse la bifurcacién en 8 = 0, el ciclo limite desaparece y el
punto critico que previamente era estable pasa a ser inestable para 8 > 0. Esta seria una bifurcacién
de Hopf subcritica.

p<0 p=0 B>0

Podemos encontrar la caracterizacion del caso multidimensional en [5].

Autor: Lorena Romero Medrano






Capitulo 2

Sistema Replicador Mutador

La teoria de la evolucién de Darwin estd basada en tres principios fundamentales: reproduccion,
mutacién y seleccidn, que describen cémo las poblaciones cambian en el tiempo y codmo nuevas
estructuras sustituyen a las viejas.

Los sistemas dindmicos evolutivos son el resultado de intentar modelar estos principios basicos
de seleccidn natural en un marco matematico en el que puedan ser simulados, interpretados y frecuen-
temente analizados de forma rigurosa. La teoria neutralista de la evolucién de Kimura, la seleccién
de parentesco de Hamilton y la teorfa evolutiva de John Maynard estdn basadas en descripciones
matematicas de la dindmica de la evolucion. [8]

Los sistemas replicadores son el modelo mds simple de dindmica de evolucién de una gran po-
blacién compuesta por N subpoblaciones, cada una de ellas subscrita a una estrategia competitiva
distinta. Sin embargo, el interés aparece cuando dotamos a cada individuo de cada subpoblacién de la
posibilidad de cambiar espontaneamente de estrategia. Es decir, los sistemas replicadores mutadores
modelan las interacciones entre distintas subpoblaciones y determinan cémo cada subpoblacién cam-
bia de tamafio como consecuencia de estas interacciones. Aparecen en varios contextos biolégicos
como la genética de poblaciones [6], bioquimica y modelos de la evolucién del lenguaje [7].

En este capitulo realizaremos un estudio de bifurcaciones de puntos de equilibrio y 6rbitas pe-
riddicas del sistema replicador mutador para dos y tres dimensiones, apoydndonos en los conceptos
de Teoria de Bifurcaciones definidos previamente. Este capitulo se basa fundamentalmente en los
resultados obtenidos en [20] y [21].

2.1. Presentacion del modelo

En este apartado daremos los detalles del sistema replicador mutador utilizado y el espacio de
fases en el que se desarrolla.

Consideremos una poblacion grande de individuos y N estrategias distintas S;, i =1,2,...,N. De-
notaremos por x; € [0,1] a la frecuencia de cada una de las estrategias, es decir, la fraccion de in-
dividuos de la poblacién con estrategia S;, que satisfardn por tanto ):f’zlxi = 1. De esta forma, la
conveniencia f; de los individuos con estrategia S; viene dada por:

N
fi=Y bax. (2.1)
k=1

Es decir, sea X = [x1,...,xy]? el vector de distribucién de la poblacién, entonces el vector de
conveniencia f = [fi,..., fy]7 vendrd dado por f = Bx, donde B = [b;;] € R"*N con b;; > 0 es la
llamada matriz de recompensas, y cada b;; representa la recompensa que recibe un individuo con
estrategia S; al interactuar con un individuo con estrategia S;. A partir de lo anterior definimos también
la media de conveniencia de la poblaciéon

¢ =f'x =x'Bx. (2.2)

9



10 Capitulo 2. Sistema Replicador Mutador

Asumiremos que las recompensas son todas no negativas y que un individuo recibe una recom-
pensa maxima (normalizando a 1) al interactuar con otros individuos con la misma estrategia que éI.
De esta forma B satisface:

bi=1, b;jje0,1)parai# j. (2.3)

La matriz de recompensas B puede interpretarse, desde la perspectiva de la Teoria de Grafos,
como la matriz adyacente de un grafo dirigido. Los nodos del grafo corresponden a cada una de las
estrategias S;, los elementos b;; fuera de la diagonal son los pesos de cada una de las aristas dirigidas
del grafo desde el nodo S; al nodo S; y los elementos de la diagonal b;; son lo pesos de los ciclos que
van de un nodo a él mismo.

Esta interpretacidn es importante en el andlisis de este trabajo puesto que supone una buena he-
rramienta para facilitar la visualizacién de la estrucutra de la matriz B, y con ello reducir el estudio de
todas las matrices al estudio Unicamente de las distintas topologias de un grafo para una dimensién
determinada.

Nos restringiremos a estudiar las matrices B que posean en cada fila y columna al menos un
elemento de fuera de la diagonal que sea distinto de cero. Desde nuestra interpretaciéon como grafo
esto se traduce como que cada nodo del grafo posea al menos una arista que sale de él y otra que llega
aél.

Pasamos ahora a definir la matriz de mutacion Q = [g; j] € RV*N Cada uno de los elementos qij
de esta matriz se definen como la probabilidad de que un individuo con estrategia S; cambie esponté-
neamente a una estrategia S;. Asi, para cadai=1,..,N tenemos que 21}’:1 gij =1, y por tanto la matriz
0 es estocastica por filas. Cada uno de los elementos de la matriz Q estdn definidos en términos de un
pardmetro i € [0, 1] llamado pardmetro de mutacion. Este representa la probabilidad de error en la
replicacién, siendo por tanto el caso u = 0 el de perfecta replicacién y no mutacién, y el caso u =1
el de mutacién pura.

En este trabajo la matriz de mutacién Q ha sido tomada particularmente de forma que sus elemen-
tos sean dependientes no solo del pardmetro de mutacién sino también de las distintas recompensas
b;j como sigue:

ub;;
Yiribik

Con la eleccion de esta matriz Q conseguimos que la mutacidén espontdnea a estrategias alternativas
esté determinada a favor de las estrategias que supongan una recompensa mayor.

gGi=1—-U, qij= parai# j. 2.4)

Ahora, definidos cada uno de los elementos que aparecerdn en el modelo, pasamos a ver la for-
ma del sistema. Este describe la dindmica de la distribucién de la poblacién x como resultado de
la replicacion y la mutacion conducidas por el vector de conveniencia f y la matriz de mutacién Q
respectivamente. Cada una de las ecuaciones de un sistema replicador mutador es de la forma:

N
%= Y, xifi(X)gij — xi¢ =: g(x) parai=1,..,N. 2.5)
=1

Definimos el n-simplex como A, = {x € R™"! | x; >0, x’1 =1} donde 1 es el vector colum-
na de unos de dimensién apropiada. Dada g(x) : RY — RY con g(x) = [g1(x),...,gn(x)T] donde
gi(x) ha sido definida en (2.5), podemos obtener directamente que x’1=1 = 0=1"x=1"g(x) y
por tanto que x 1 = 1 es un hiperplano invariante para el sistema dindmico. Por ser ZfV: lxgo) =1ly
xl@ >0V i, sabemos que el sistema dindmico (2.5) evoluciona en el simplex de dimensidon N-1, Ay _.

Dada la restriccion al simplex Ay_1, el sistema dindmico N-dimensional anterior puede reducirse
al de N — 1 dimensiones siguiente.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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X = hi(f(), i€ {1,2, N—l},
Nl (2.6)

hi(%) == gi| x1, %2, oy v, 1T — ) x;
=

donde & = [x,..., xy_1)T yh: RV-I — RN-1,

2.2. Motivacion del analisis del modelo

La motivacion para probar la existencia de ciclos limite en el sistema replicador mutador viene,
en parte, de la simulacién del sistema (2.5) para matrices de recompensa B aleatorias. En lo que
sigue veremos tres simulaciones para N = 3 estrategias realizadas para tres matrices B distintas, en
las que podremos observar, para distintos valores del pardmetro de mutacién i, cémo evoluciona la
distribucién de la poblacién a lo largo del tiempo. Se han escogido las matrices cuyas simulaciones
resultaban mas representativas.

Frecuencia_estrategia Frecuencia_estrategiz Frecuencia_estrategia

o 0.50
asl

, 00— . Va
02 / 0.25
(a) 1 =0,01 (b) u=0,15 (©) p=04
Figura 2.1

En la Figura 2.1 se ha realizado la simulacién utilizando la matriz de recompensas

1 0,727604 0,253674
B = [ 0253674 1 0,727604
0,727604 0,253674 1

En ella podemos ver como para valores bajos del pardmetro u, a lo largo del tiempo, siempre termina
dominando una tnica estrategia. Sin embargo, a medida que ( aumenta, podemos ver como todas las
frecuencias terminan valiendo %, llegando a ese valor mds rdpido cuanto mayor es (.

Frecuencia_estrategia Frecuencia_estrategia

1.0

0.5 0.5

[ 04
0.4
osf |
t 0.3,

Tiempo Tiempo Tiempo
20 40 60 80 100 50 100 150 200 250 300 50 100 150 200

(a) 1t =0,01 (b) 4 =0,25 © 1=04

Figura 2.2

Autor: Lorena Romero Medrano
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En la Figura 2.2 se ha realizado la simulacién utilizando la matriz de recompensas

1 0,333333 0
B = 0,635952 1 0,111723
0,166288 0,826376 1

En ella podemos observar de nuevo que para valores pequefios del pardmetro de mutacién y, a lo
largo del tiempo siempre termina dominando una tnica estrategia. Por otro lado, a medida que incre-
mentamos el valor de u , aunque variemos las condiciones iniciales, vemos que siempre la frecuencia

de una de las estrategias es mayor, pero que se da una coexistencia de las mismas.

Frecuencia_estrategia Frecuencia_estrategia Frecuencia_estrategia

08 0.8
0.8

YA

g wi/vvvvvvvul

50 100 150

= Tiempo
200

Tiempo Tiempo

200 300 400 500 600 20 40 60 80 100

(2) u=0,01 (b) p=0,15 () u=0,4

Figura 2.3

En la Figura 2.3 se ha realizado la simulacién utilizando la matriz de recompensas

1 0 0,253674
B = | 0253674 1 0
0 0,253674 1

En este caso, de nuevo para valores bajos del pardmetro de mutacién U, se observa a lo largo del tiempo
que siempre domina una Unica estrategia. Sin embargo, para valores intermedios del pardmetro, vemos
que la dominancia oscila entre las distintas estrategias y que finalmente, para valores més altos de y,
todas las estrategias terminan coexistiendo, tomando el valor % como ocurria en la Figura 2.1.

Podemos observar que realmente la evolucién de la distribucion de la poblacién a lo largo del
tiempo en funcidn del valor del pardmetro 1 es bastante distinta. Es cierto que llama la atencién la
simulacién de la Figura 2.3, ya que muestra la transicién de un estado de dominancia de una tnica
estrategia a un estado en que todas ellas toman el mismo valor, pasando por oscilaciones en la domi-
nancia para valores intermedios del pardmetro, y eso motiva el interés en probar la existencia de ciclos
Iimite. Este tipo de cambios en el comportamiento del sistema a medida que variamos el parametro
U hace que resulte intersante realizar un anélisis de bifurcaciones de puntos de equilibrio del sistema,
como se procede en el apartado siguiente.

2.3. Analisis del sistema y bifurcaciones

En este apartado realizaremos un andlisis de las bifurcaciones del sistema dindmico (2.5) para los
casos de N =2 y N = 3 estrategias que aparecen en funcién del pardmetro de mutacién u . Haremos
representaciones para distintos valores de las recompensas b;;, lo que visto como un grafo, supone
la existencia de distintos tipos de conexiones entre los nodos, y obtendremos condiciones para la
existencia de ciclos limite y bifurcaciones de Hopf para el caso de N = 3 estrategias.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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2.3.1. Caso N = 2 estrategias

En primer lugar volvamos de nuevo a la perspectiva de la Teoria de Grafos. La tnica condicién
que habiamos impuesto sobre las conexiones es que siempre exista al menos una arista que entre y
otra que salga de cada nodo. Asi, para el caso de dos estrategias, es claro que la tnica posibilidad es

la siguiente:
P
@—©0

Esto ya nos adelanta que el anélisis para esta dimensién va a ser relativamente sencillo. De hecho,
la reduccién de nuestro sistema (2.5) al sistema (2.6) hace que x, = 1 — x; y que por tanto el
sistema esté compuesto Uinicamente por una ecuacién que resulta:

X1 = xifiqu + x0hgn — Xifi — xixaf = xfign + (1=x1)fgu — x1fi — x(l—x1)f

Veamos la expresion del vector de conveniencia f para dejar la ecuacién tnicamente en funcién
de las recompensas bjp y by, la distribucién de la poblacion (para esta dimension sélo aparecerd x;
debido a la reduccién previa) y el pardmetro U:

I b2 x|
f=Bx= < boy 1 )( 1 —x ):(x1+(1—x1)b1, boxi+1—x; )
=(xi(1=b)+bi, 1+x(ba—1))

l—p g

Por otro lado la matriz Q = (
g 1-p

> es estocdstica por filas luego sabemos que parti-

cularmente:
Yai=1=qgi=1—-gn=1-(1-p)=pu
J
Asi, sustituyendo en la ecuacién anterior obtenemos que finalmente el sistema unidimensional
resulta:

i=xlby +x(1 —b)](1 = —x) + (1 — [ + x(by —1)](1 — x)

Realizaremos ahora un pequefio andlisis del tipo de bifurcacién que sufre el sistema (2.3.1) to-
mando b1y = 0,2 y distintos valores de by para el pardmetro de bifurcacién u:

Caso by; =0,2:

Para by} = 0,2, la bifurcacion que sufre el sistema es distinta de la que sufre para cualquier otro
valor de by;. Por ello, para este caso estudiaremos la situacién con un poco mds de detalle. Para este
valor, la ecuacién resulta:

¥ = —1,60° + (=21 — 0,8) x + 2,4x*> + (2.7)

1 0,2
0,2 1
bifurcacién que nos encontramos es una bifurcacién de tipo tridente. Por la simplicidad del sistema
podemos obtener las soluciones de la ecuacién —1,6x> 4+ (—2u — 0,8) x + 2,4x> + u = 0, que
son:

La matriz B = ( ) es simétrica y como es propio de los sistemas con simetrias, la

1

(14+/1=5p) x= (1—/1—5p)

Autor: Lorena Romero Medrano

X = X =

|
| =
| =
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Observando las funciones anteriores dependientes de ., es facil ver que la bifurcacion se produce
1
para L = 5 y por tanto el punto de bifurcacién es U¢c = (5, 5) Para probar que la bifurcacién es tipo
tridente trasladamos el origen del sistema a fic = (0, g), obteniendo la ecuacién
~ 2 8
£ = Flou) = (52 = 2
Sobre ella ya si podemos comprobar que se satisfacen las condiciones descritas en el Teorema 1.2.2

y asegurar que se da una bifurcacién de tipo tridente en fic = (0

11 *f —48
Uc = (5, g) Ademds, J;(;;’m(ﬂc) =3 < 0 luego podemos concluir que para by; = 0,2 el

sistema sufre una bifurcacién de tipo tridente supercritica.

1
,g) y, por tanto, (2.7) la sufre en

Proposicion 2.3.1. El sistema replicador mutador para N = 2 estrategias sufre una bifurcacion de
tipo tridente supercritica para el valor |1 = 5 del pardmetro de bifurcacion.

En lo que sigue se muestra el diagrama de bifurcaciones para este valor. Podemos ver tres ramas
de equilibrios. Una de ellas, x = 0,5, existe para todo valor de U, y cambia su estabilidad pasando de

inestable a estable en el punto uc = (E’ g) calculado anteriormente. Las otras dos ramas son estables y

existen para valores de it menores que ¢, donde finalmente colisionan entre si y con laramax = 0,5,
haciendo que el sistema sufra la bifurcacién de tipo tridente previamente mencionada.

x_equilibrio

1.0
0.8 -

0.6

0.4 -

0.2-

5 5 u
0.1 0.2 0.3 0.4 0.5

Figura 2.4: Bifurcacidn tipo tridente. Las lineas azules muestran los equilibrios estables y las rojas los equili-
brios inestables.

Casos by; = 0,1y by; =0,5:

Estos dos casos pueden presentarse juntos puesto que si representamos los respectivos diagramas
de bifurcaciones obtenemos dos diagramas muy similares. Notar que para el primer caso tomamos un
valor de b1 menor que 0,2, que es para el cual la bifurcacién que se da es de tipo tridente, y para el
segundo caso tomamos un valor de b»; mayor que 0,2.

Vemos que los diagramas de bifurcaciones obtenidos muestran en ambos casos tres ramas de
equilibrios. Una de las ramas se mantiene estable para todo valor del pardimetro de mutacién y y
podemos ver que a medida que éste se aproxima a 1, la rama se aproxima a x = 0,5. Las otras dos
ramas son de estabilidad opuesta entre si y existen para it < ¢, donde L es el punto en que chocan
provocando una bifurcacién de tipo silla-nodo. Notemos la diferencia con el caso simétrico b = 0,2.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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x_equilibrio x_equilibrio

10F 1.0

0.8 [ 0.8 -
06F

04

0.2

u I I I I "
0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

(a) Caso by =0,1 (b) Caso bp; =0,5

Figura 2.5: Bifurcacion tipo silla-nodo. Las lineas azules muestran los equilibrios estables y las rojas los equi-
librios inestables.

2.3.2. Caso N = 3 estrategias

En este apartado realizaremos el andlisis de bifurcacién del sistema para N = 3 estrategias. Lo
interesante de analizar el sistema para tres estrategias es que el simplex es de dimensién dos, lo que
comparando con dimensiones mayores nos hace mas ficil probar condiciones necesarias y suficientes
para ciclos limite, asi como visualizar las bifurcaciones de codimensién uno.

Consideremos por tanto el sistema dindmico (2.5) con N = 3 y con valores de recompensa b;; o
iguales a cero o de valor constante b > (. En ese caso, existen cinco topologias de grafos no isomorfos
con tres nodos que satisfagan poseer al menos una arista que entre y otra que salga de cada nodo como
habiamos impuesto previamente. Las cinco posibilidades se muestran en la figura siguiente:

La matriz B adyacente de cada uno de los grafos representados es de la forma descrita en (2.3), es
decir, que aunque no se muestre en las imagenes, los nodos de los grafos considerados siempre poseen
ciclos en si mismos. Analizaremos cada caso por separado teniendo en cuenta las similitudes en las
conexiones.

1) Conexion total: En este caso tratamos el caso (A): El sistema replicador mutador con los tres nodos
conectados entre si de todas las formas posibles (teniendo en cuenta que se trata de un grafo dirigido)
e idénticos pesos b > 0. Asi, tenemos que las matrices de recompensas y de mutacidn respectivamente
resultan:

1 b b l-p 5 £
By=|b 1 b |y Qa= 5 1-u 5
b b 1 £ £ 1-n

En la Figura 2.6 que sigue hemos realizado una simulacién de las bifurcaciones del sistema en
funcién del pardmetro de mutacién u para tres estrategias con conexidn total, tomando como valor
constante » = 0, 2.

Este sistema sufre bifurcaciones en dos puntos que pueden calcularse debido a la ayuda que nos
proporciona la simulacién anterior (asi como otras realizadas para distintos valores de la constate b):

2(1—b) _2B+4b) 5 [ 14b

S R R (R K=

(2.8)

Autor: Lorena Romero Medrano
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@ Silla- nodo

@ Transcritica S3 - simétrica

Figura 2.6: Diagrama de bifurcacién del sistema (2.6) para b = 0,2 con conexion total. Las lineas azules repre-
sentan los equilibrios estables y las rojas los equilibrios inestables.

Para u < ucai, existen seis equilibrios situados de forma simétrica alrededor de X,y = %1. En
U = Uca el equilibrio Xx,,;, cambia su estabilidad, pasando de inestable a estable via una bifurcacién
transcritica S3-simétrica (1.2.3): tres ramas de equilibrios intersecan con X,,;, provocando esta bifurca-
cién y el consecuente cambio de estabilidad de equilibrio. Posteriormente, en t = Ucay desaparecen
los seis equilibrios via tres bifurcaciones de tipo silla nodo simultdneas, haciendo que a partir de este
valor de , el inico equilibrio del sistema sea Xy,;y.

2) Conexiones limitadas: Englobamos en este caso las tres situaciones (B), (C) y (D). Las matrices de
recompensas y de mutacién en cada caso son:

1 b b l-p 5 £
Bp = | b 1 yOp = 5 1l-u 5
b 0 1 u 0 1—u
1 b l-p & £
Bc = 1 yQc = g I—p 0
b 1 u 0 1—u
1 b b 1—pu % %
Bpb=| 01 b |yOp= 0 1-u u
b 0 1 u 0 1—u

En la Figura 2.7 mostramos la simulacién de las bifurcaciones que aparecen para los tres tipos de
conexion, tomando » = 0, 2.

Podemos ver que los tres casos son muy similares y que sus conexiones son resultado de pequenas
perturbaciones de la conexidn total analizada en el apartado (A). En todas ellas podemos observar
como para todo valor del pardmetro de mutacidén U existe una rama de equilibrios que permanece
estable. También encontramos para it = 0 que el sistema posee otros dos equilibrios estables mas y
cuatro inestables, que a medida que p incrementa, van desapareciendo via bifurcaciones de tipo silla
nodo. Notar que las simulaciones de las bifurcaciones obtenidas para estas conexiones en el sistema
son similares a los diagramas que han resultado del andlisis de bifurcaciones del sistema replicador
mutador para N = 2 estrategias en uno de los anteriores apartados.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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N Yy
| <

(a) Caso (B) (b) Caso (C) (c) Caso (D)

Figura 2.7: Diagrama de bifurcacion del sistema (2.6) para b = 0,2 con conexiones limitadas. Las lineas azules
representan los equilibrios estables y las rojas los equilibrios inestables.

3) Conexion en ciclo dirigida: En este caso los tres nodos estdn conectados cada uno con el siguiente,
creando un ciclo unidireccional como se muestra en la situacion (E). Asi las matrices de recompensas
y mutacién respectivamente son:

1 0 l—-pu u 0
Be=101b |yQr = 0 1-u pu
b 0 1 u 0 1—u

En las Figuras 2.8 y 2.9 mostramos una simulacién de las bifurcaciones del sistema realizada
tomando el valor b = 0,2. En el lado izquierdo de la Figura 2.8 tenemos el diagrama de bifurcacién
para este valor de b, y en el derecho vemos dos retratos de fase del sistema para valores del pardmetro
up = 0,15 (imagen superior) y Uy = 0,28 (imagen inferior). Vemos que para el valor u = 0,15 el
sistema tiene tres puntos de equilibrio estables y cuatro inestables y que para u = 0,28, el sistema
posee un ciclo limite estable asociado al punto de equilibrio X,y = %1, que es inestable. En esta
situacion, vemos que el equilibrio X, existe para todo valor del pardmetro i € [0, 1] y que el sistema
presenta dos puntos de bifurcacion: por un lado, para un primer valor de bifurcacién de u, tcg; seis
de los equilibrios desaparecen via tres bifurcaciones tipo silla nodo que ocurren simultineamente,
comenzando en ese instante la aparicion de ciclos limite estables alrededor del equilibirio X, como
muestra el retrato de fases. Por otro lado, tenemos que la matriz jacobiana del sistema reducido (2.6)

con una conexién de este tipo y evaluada en el equilibrio (x1,x) = (%, %) resulta
1 _4p by b _2u  2bu
_ 3 3
Jac = b 2w by 1 b 2u [ bu

y sus valores propios son

1 b
My = ——l—2 +
12 = 3717%

i
2V3

Vemos que la matriz posee una tnica pareja de valores propios imaginarios puros, que son

(21 — b+2bp)

i 1 b
+ —Qu-—->b+2b se dan para U = - =
2\@( u n)y para i HcE2

36
Ast, los ciclos limite del sistema conducen a una bifurcacién de Hopf que se produce cuando pt alcanza
el valor Ucg», instante en que ademads el equilibrio Xx,,,;, cambia su estabilidad pasando de inestable a
estable.

)'CI,Z =

Autor: Lorena Romero Medrano
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Figura 2.8: Izquierda: diagrama de bifurcacion del sistema (2.6) para b = 0,2 con conexiones en ciclo dirigidas.
Derecha: retratos de fase del sistema tomando u; = 0,15 (imagen superior) y up = 0,28 (imagen inferior). Las
lineas azules representan los equilibrios estables y las rojas los equilibrios inestables.

Estudiaremos ahora el comportamiento de los ciclos limite del caso (E), asi como la bifurcacion de
Hopf a la que estos nos conducen. Obtendremos resultados que nos dardn condiciones tanto necesarias
como suficientes para la existencia de ciclos limite estables para el sistema (2.5) con N = 3 estrategias
tomando como matriz de recompensas B una matriz circulante, de la cual el caso (E) es un caso
particular.

Definicion 2.3.2. Dado N € Ny (cy, ¢a, ... ,cn), la matriz N X N definida como

c1 ¢ ¢z - cCN

cN C1 2 ©rr CN—1
Circulant(cy, ca, ... ,cN)=

[ T CN C1 c)

¢ -+ CN-1 CN 1

se llama matriz circulante de orden N. Asi, la matriz queda definida por el vector ¢, que constituye la
fila (columna) primera y cada fila (columna) es la permutacion ciclica de la fila (columna) anterior.

En particular, para el andlisis de tres estrategias, la matriz circulante B utilizada ser4 :

1 oo B
Bcs = Circulant (1, o, B) = | B 1 «
o B 1

cona,, B € [0, 1) y o+ > 0.Las condiciones anteriores hacen que, tal y como hemos definido
la matriz de recompensas del sistema, B¢ 3 pueda actuar como la misma sin problema. De hecho, co-
mo ya hemos mencionado, el caso (E) es un caso particular tomando @ = by = 0.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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Figura 2.9: Diagrama de bifurcacion del sistema (2.6) para b = 0,2 con conexiones en ciclo dirigidas. Repre-
sentacion de frente y perfil.

Notar ademds que Bc 3 es invertible puesto que det(Bc3) = o+ B°—3af + 1y se puede probar
facilmente que es distinto de cero para &, B € [0, 1).

Condiciones necesarias para la existencia de ciclos limite

El resultado principal de esta seccién nos lo dard el Teorema 2.3.6 que nos asegurard un rango de
valores del parametro u para el cual no podran existir ciclos limite. Como hemos dicho anteriormente,
el hecho de que la dimensién del sistema para el caso N = 3 sea dos nos facilita la situacién y nos
permite en este apartado aplicar el Criterio de Bendixon. Su enunciado es el siguiente [9]:

Teorema 2.3.3 (Criterio de Bendixon.). Sea el sistema de ecuaciones dos dimensional dado por:

X= f(xvy)
y=2g(x,y)

con (x,y) € U CR? y f,g funciones suficientemente diferenciables. Entonces si en una region sim-

d d
plemente conexa D C U C R? la expresion —f + 78 es no nula y no cambia de signo, el sistema no

dx  dy

tiene Orbitas cerradas contenidas en D.

Para poder llegar a este resultado probaremos previamente dos lemas en los cuales obtendremos
una expresion para la divergencia del campo vectorial g(x) asi como condiciones sobre el signo de la
misma. Aunque el resultado principal se prueba para N = 3, los dos lemas siguientes los probaremos
para N € N.

Lema 2.3.4. La divergencia del campo vectorial g(x) restringido al simplex Ay_; viene dada por:
V-g(x)|ien, = V-hE = I"[(1 = w)B + "]x — x"[NB + B"]x

donde S := Qo B, es el producto elemento a elemento de Q y B.

Autor: Lorena Romero Medrano
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Demostracion. Remitiéndonos a (2.6) (nuestro sistema ya restringido al simplex Ay_1) la divergencia
resulta:

i=1

o Nom G dg dgi dgi
o =B e - £

ya que 28 — OV j#i, j=1,...,N—1 por definicion de h(X).
X

A

8xN

Calcul]amos ahora la expresion de cada uno de los dos miembros anteriores por separado usando
las definiciones y propiedades de cada uno de los elementos del sistema replicador mutador descritos
en la presentacién del modelo.

Obtenemos previamente la expresion de las siguientes derivadas parciales que usaremos durante
el desarrollo:

_ N
9fi - a(Zbikxk) =b;ijVi,j

Xj Xi \i=1
0 ¢ 0 N 9 N N N .
oy ox < LI > " ox ( Y (X bﬂxkx/)) = Y buxk+ ) bjixj+ 2 = Y (bij+bji)x; Vi
i i\ j=1 i\ j=1 k=1 ki Jj#i j=1
- Desarrollo del primer término:

dgi

N pa) N
Z P ;a*xi(;xjfﬂﬁ - xi9) =

IMz

a ijqu]l + xz(flq” - (P)) =

J#
af; 0
= ; ZXJQJI X; fl%z - (P) +xi(4iiafl az)}
=1 j#i
N N
= Y [ Y xabii + (figi — ) +xi(qibii—xi ) (bij+bji)x;)] =
=1 j#i j=1
N N
= ZZ)C Sjt+Q1tZ )i_N(P +Qii2xi_ Z xl(blj+b/’)xl =
i=1 ji i=1 i,j=1
N
= ZZx]s], —w)1"Bx — N(x"Bx) + (1—u)—x"(B + B")x =
i=1j#i
= 1[0 -w)B+S"x — x'[(N+1)B+B")x
donde la dltima igualdad se sigue de:
N N
ZZx]s], = ZZx]sﬂ lesl, = Z X),-—Zx,-q,-ibﬁ = lTSTx—(l—/.L)
i=1 j#i i=1j= i=1 i=1

- Desarrollo del segundo término:

. N J N N N
Lot = anln ; iian = 1¢ } = G L)~ 02 -

= —x"Bx

I
Mz

Y finalmente, restando el segundo término del primero obtenemos el resultado buscado. O

A partir de ahora, sea B € RM*N matriz circulante, denotaremos por rp ala suma de los elementos
de una fila de B. Es decir:
N
rg = Y b;j paracualquieri € {1,..N}
j=1

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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Lema 2.3.5. Sea la matriz de recompensas B circulante e invertible, entonces la divergencia del
campo vectorial g(x) en el simplex Ay_1 es menor o igual que cero si:

(N — rB)(rB — 1)
N(Vlzg — rBoB)

w>

Demostracion. En el Lema 2.3.4 hemos obtenido la siguiente expresion para la divergencia:

V-g(x)‘XGAN .= V-h(x) = 17[(1 — u)B + ST x — x'[NB + B"] x

De aqui es claro que V-h(X) <0 si:

max 17[(1 — u)B + "] x < min x'[NB + B"]x (2.9)

XEAN_ XEON_1

Estudiaremos previamente cada término por separado:

-Desarrollo del término de la izquierda de (2.9):

Desarrollando tenemos que 17[(1 — u)B + 87| x = ﬁ/j:l [(1 —W)bij + Sji:| xjconx;€ [0,1]

tal que ZIJ\-/: 1Xj = 1(en Ay_1), es decir, es la combinacion convexa de escalares no negativos y asi:

XEAN_1

N
mix 17[(1 — p)B + §T]x = me_ixz |:(1—,U)bij + Sji:| =
J j=1

N
= (1—u)max ) b; + max |:Z(Clji'bji + qn‘bii):| =
Joi= I Lizj
Lz b
= (I—p)-rpg + pmix #’b’__ +(1-p) =
J Zi;éj Ji
g — 1
= (- + 1) + p
I"B—l

donde hemos utilizado las definiciones de las matrices Q y B descritas al principio del capitulo.

-Desarrollo del término de la derecha de (2.9):

El término de la derecha es el minimo de una forma cuadrética que es positiva en el simplex.
Hemos tomado la matriz B circulante e invertible luego dicha forma cuadrética tiene un minimo en
Xpnix = %1. Asi:

N+1 N+1
. T T _ T —
nin x [NB + B'|x = Wl Bl = N B
Y asi tenemos que:
'BoB—1 N+1
1—p)(1 <
(1=w) ) + () < S
oB— N+1
= 1 trg (L (14 1)) < rs
I"B—l N
I’BoB_l—l—l(I’%—l) (N+1)TB—NTB rg—1
= < 1 =
u( rp—1 ) < N N
(}"B—l)(}"B—N) (N—I"B)(I"B—l)
4= 2 = 2
N(rpop —r3) N(rg—rpop)

O]

Autor: Lorena Romero Medrano
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Ahora estamos en condiciones de probar una condicién necesaria para la existencia de ciclos limite
en el sistema replicador mutador de dimensién tres. Nos basaremos en los lemas anteriores para poder
aplicar el Criterio de Bendixon, también enunciado previamente.

Teorema 2.3.6. El sistema replicador mutador (2.5) con matriz de recompensas B¢ 3 no tiene drbitas
cerradas en el simplex Ay para:

2—a—B)(a+p)

K2 slatprap) M

Demostracion. Es claro que el simplex Ay C R? es simplemente conexo y ademds es una regién

I a B
atractora para el sistema (2.5). Por otra parte, Bc3 = B 1 « es circulante e invertible y
a B 1

rg=14+0a+p, rpop =1+ o’ + [32. Por tanto podemos aplicar el Lema 2.4.4 obteniendo que la
divergencia del campo vectorial g(x) es menor o igual que cero para

B-(14+a+pB)(14+a+p—-1) 2-oa—PB)(a+p)

3[(1+a+B)?—(1+a2+B2)]  6(a+B+aP)

De hecho, si observamos la demostracién del Lema 2.3.4, en este rango de u la divergencia nunca es
justamente cero.

De esta forma se satisfacen todas las hipétesis del Criterio de Bendixon enunciado anteriormente,
y podemos concluir que para 1 > U el sistema no tiene Orbitas cerradas en A,. O

Condiciones suficientes para la existencia de ciclos limite y bifurcacién de Hopf

En este apartado enunciaremos el teorema que nos dotard de condiciones suficientes para la exis-
tencia de ciclos limite y la bifurcacion de Hopf. La demostracién del teorema consistird principalmente
en probar que se satisfacen las condiciones exigidas por el teorema que sigue (enunciado completo en

[9D:

Teorema 2.3.7 (Hopf, 1942). Supongamos que el sistemax = fu(x),x € R", u € R tiene un equi-
librio (xg, Wo) en el cual se satisfacen las siguientes propiedades:

H1) La matriz D, fy,(xo) tiene una pareja de valores propios imaginarios puros simples 'y ningiin
otro valor propio con parte real cero.

H2) 7 (Re A(W)],_,,, #0.

Antes probaremos el lema siguiente que serd utilizado en la demostracién del teorema. Lo proba-
mos para N € N.

Lema 2.3.8. Si la matriz de recompensas B es circulante, entonces Xy = %1 es un equilibrio del
sistema dindmico replicador mutador (2.5).

Demostracion. Supongamos que la matriz B es circulante. Entonces puesto que hemos definido rp
como la suma de los elementos de cada una de las filas de B, 1 es autovector de B asociado al valor
propio rg, es decir B-1 = rp-1.

Por otro lado, por ser B circulante, los elementos de la matriz Q resultan
ubij pb

ij .
Yizjbij  rg—1 para i 7j

gi=1-u, qij

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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de lo que se deduce que Q también es circulante. Pero ademds recordemos que es estocdstica por filas,
N N

luego Zqij = Zq,‘j = 1.
i=1 j=1

Tomando entonces X = Xix = %1 y aplicando definiciones tenemos

1 1 1 Ip rp
f= By = Bl = —rsl, o =x!,f = —IT =N

y sustituyendo en (2.5):

B 1 il 1 rp
X ZX’"UCJ f] qji — Xmix,i'(b = NN]:Zlqﬂ — Nﬁ = ﬁl — ﬁ =0

y se tiene como queriamos probar que X,,;, es equilibro del sistema replicador mutador. O

Teorema 2.3.9. El equilibrio X,y del sistema replicador mutador para N = 3 estrategias, matriz de
recompensas Bc 3, matriz de mutacion Q y pardmetro de bifurcacion [, sufre una bifurcacion de Hopf
supercritica en |1 = Uy conducida por ciclos limite estables para U < Uy cuando se satisfacen las

condiciones:
o B (&
2004+ 2B +5aB + o+ B2 #£2 (C2)

Demostracion. Para llevar a cabo esta demostracion probaremos que el sistema con las restricciones
dadas satisface las condiciones del Teorema 2.3.7, donde el tipo de bifurcacién de Hopf nos lo dar4 el
signo del primer coeficiente de Lyapunov /; (e, B) como explicamos en el Capitulo 1.
Para N = 3 estrategias, el sistema (2.5) se desarrolla en el simplex Ay C R? por lo que trataremos
con el sistema reducido (2.6):
X = h,‘(X],Xz), i€ {1,2}

1 11
La matriz de recompensas B¢ 3 es circulante e invertible luego por el Lema 2.3.8, X, = ( 330 §)
1 1
es un equilibrio del sistema replicador mutador (2.5), lo que implica que (xj, x2) = (3 3) el cual

definiremos como Xy, es un equilibrio del sistema reducido (2.6).
Si calculamos ahora la matriz jacobiana del campo vectorial A(xy,x2) = (hy(x1,x2),h2(x1,x2))
evaluada en Xq y hallamos sus valores propios obtenemos:

1 of 1 a—p
Alo,B,u) = |[=—u——-(a+ + i a+p-2u(l+a+
(@ Ba) = |3 glatB)- 2pu] £l D0 Ras poutivasp)
Buscamos encontrar qué valor del pardmetro u hace que el valor propio sea imaginario puro. Ve-
mos que la solucién a la ecuacién Re(A(a, B, 1)) = 0 para el parametro u es tnicamente el valor
2-a-B)(a+p)
6(a+p+aP)

, lo que en el Teorema 2.3.6 habifamos definido como .

Hemos encontrado que existe un tnico valor propio con parte real nula, y se da para py. Veamos

que ademds la parte imaginaria de A(a, 3, o) es distinta de cero. Esto ocurrird si @ # By to #
a+B

————— La primera condicion es precisamente C1 y la segunda se da debido a C2 puesto que:
200+ a+tp) p p y g p q

2-a-B)(a+p) _ y a+p
6(oc+ B+ apP) Ho 2(1+a+p)

S (l+a+B)2—a—B)# (a+B+af)

S2#200+2B +5ap + o + B2

Autor: Lorena Romero Medrano
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Asi hemos probado que D.hy,(Xo) posee una pareja de valores propios imaginarios puros y ningtin
otro con parte real nula. Es decir, que se satisface la condicién H1 del Teorema 2.3.7.

Veamos ahora que el sistema también satisface H2, es decir, que los valores propios cruzan el eje
imaginario con velocidad no nula vy.

i o (Re( (et ),y = -

puestoque &, B € [0,1)y a+f >0.
Asf el sistema replicador mutador satisface las dos condiciones del Teorema 2.3.7 y por tanto sufre
2—a—p)(a+p)

6(a+pB+ap)
Probaremos ahora de qué tipo de bifurcacién de Hopf se trata. Esta informacién nos la propor-

cionard el coeficiente de Lyapunov /; (¢, 3) } (x0,110)° puesto que si es negativo, los ciclos limite serdn

. af _ a+f+ap
a+p a+p

£0

una bifurcacién en 4 = Ly =

estables y si es positivo, inestables. Utilizamos el proceso de célculo descrito en [4].
En este caso nuestra matriz es Ag = Dyhy,(Xo) con

11 2—a—PB)(a+

Ya hemos calculado que Ag tiene dos valores propios imaginarios puros dados por +iwy, donde
(a—B)(a®+B*>+2a+2B +5aB —2)
6V3(a+ B +af)

Dado el producto escalar entre dos vectores (u,v) = q-V, hallamos los autovectores q y p asociados
respectivamente a los autovalores i@y de Ag y —i@y de AL, normalizados de forma que (p,q) = 1, que

. _(3+i\@ iv6 _ ! iﬁ—l)
p= 3\/5 7?)7 q= ﬁv 2\/5

Abhora, sean las funciones multilineales 5 (u,v) y €(u,v,w) con componentes

X():(

>0

(ooz

B;(u,v) = i ﬂ\xzx vy ¢i(u,v,w) = i iym UV Wy
’ Pt oxox; ° ’ I Al 0x,0x;90x,,  °

definimos 71,7, y T3 como sigue:
= (p, ¥€q.9,9))
T, = (p, B(§ (2ic —Ao) 'B(q,q)))
Ty = —2(p, B(q.A,'B(q.q)))

donde tras calcular su valor para nuestro sistema, sus partes reales resultan:

Re(Ty)=3(—2+a+pB), Re(T») =0, Re(T3) =0
Asi obtenemos la expresion del coeficiente de Lyapunov [ (e, B) = ﬁRe(Tl +h+1T3) = 3(_22+§er,

donde wy ha sido calculado previamente.

En realidad, lo que nos interesa del coeficiente de Lyapunov es el signo, puesto que segin la
eleccion de los vectores el valor exacto puede variar. Analizando el signo podemos observar que bajo
las condiciones dadas /; (¢, ) < 0. En efecto, tenemos que el denominador es distinto de cero puesto
que se trata de la parte imaginaria del valor propio A (e, 3, Uy), que por C1 y C2 hemos probado
que era no nulo. Ademas, @y lo hemos tomado positivo, luego el signo nos lo dard el numerador
(=2+a+p).Como a,B € [0,1),esclaroque a+ B €10,2)yasil;(a,B) <0 Va,p.

Es decir, hemos probado que el sistema sufre una bifurcacién de Hopf para yu = iy conducida por
ciclos limite que ademas, por ser /; (o, ) < 0, podemos asegurar que son estables.

Por tanto, para el caso de dimensién tres y matriz circulante Bc 3, el sistema replicador mutador
sufre una bifurcacién de Hopf supercritica para cualquier valor de los pardmetros ot y f3. O

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas



Capitulo 3

Red de tres neuronas

En este capitulo presentaremos la neurona como un sistema dindmico cuyo comportamiento viene
determinado por un sistema de tres ecuaciones diferenciales no lineales dependientes de pardmetros.
En [15] consideran una pequeiia red de tres neuronas y observan qué tipos de patrones de sincroni-
zacion pueden darse entre ellas, a través del andlisis de los desfases entre las mismas. Comentaremos
algunos de los resultados obtenidos en [15] donde podremos ver que, en dindmicas mas complejas
como €sta, se tienen resultados similares a los obtenidos en dinimicas mas sencillas, como los mos-
trados en el Capitulo 2 para el sistema replicador mutador al conectar tres nodos.

Las neuronas transmiten ondas eléctricas originadas como consecuencia de un cambio transito-
rio de la permeabilidad en la membrana plasmética. Su propagacién se debe a la existencia de una
diferencia de potencial o potencial de membrana que surge debido a las concentraciones distintas de
iones a ambos lados de la membrana. Las membranas de las células presentan una serie de poros que
permiten el flujo de iones a través de la membrana. Hay dos tipos de poros: con compuertas o sin
éstas. Los primeros pueden estar abiertos o no, lo cual permite un flujo selectivo de iones mientras
que los segundos siempre permanecen abiertos. Los principales iones que constituyen dicho flujo son:
el sodio, Na™, el potasio, KT, y el cloro, C1~, donde el signo indica la carga que aportan, positiva
o negativa. La carga de una célula inactiva se mantiene en valores negativos (el interior respecto al
exterior), por lo general de -70 mV y varia dentro de unos estrechos margenes. Cuando la célula re-
cibe un estimulo, éste activa el intercambio de iones entre la parte interior y exterior de la membrana
produciendo asi diferencias en la carga de la misma. Si el potencial de membrana de la célula alcanza
un cierto umbral (de 65mV a 55mV) la célula genera (o dispara) un potencial de accién. Un potencial
de accion es una onda de descarga eléctrica que viaja a lo largo de la membrana celular modificando
su distribucidn de carga eléctrica y que dura unos milisegundos (Figura 3.1A).

Los potenciales de accidn son la via fundamental de transmisién de c6digos neuronales y por tanto
de informacion tanto en el cerebro como en el organismo en general.

El potencial de accidn estd sujeto al llamado principio “todo o nada”. La amplitud del potencial
de accién es independiente de la cantidad de corriente que lo produzca. Por tanto, los potenciales
de accién son sefiales “todo o nada”, puesto que u ocurren totalmente, o no ocurren. Esto contrasta
por ejemplo con los receptores de potencial [13], cuyas amplitudes si dependen de la intensidad del
estimulo. [10, 11, 12]

Vamos a hablar ahora de una de las dindmicas neuronales mds interesantes: el bursting (Véase
[14]). El bursting es un fenémeno de activacion de patrones neuronales en el sistema nervioso central y
la médula espinal que presentan oscilaciones complejas constituidas por fases repetitivas de estallidos
entre las cuales se suceden periodos de inactividad (Figura 3.1B). Existen varios tipos de patrones de
bursting y pueden coexistir.

El papel del bursting es especialmente importante para los movimientos ritmicos determinados por
los Generadores Centrales de Patrones. Un Generador Central de Patrones (CPGs) es un circuito
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Figura 3.1: (A) Vista esquematica de un potencial de accidn ideal, mostrando sus distintas fases. (B) Ejemplo
de bursting neuronal.

de células neuronales cuyas interacciones sinérgicas pueden producir de forma auténoma patrones
ritmicos de actividad que determinan comportamientos motores vitales (Véase [10]).

Actualmente, son de especial interés las dindmicas polirritmicas de bursting en CPGs multifun-
cionales en los cuales cada atractor corresponde a un ritmo especifico en una determinada escala de
tiempo asociada con un tipo particular de comportamiento de un animal.

Cada CPG puede conducir a multiples comportamientos y cambiar entre distintos ritmos neurona-
les bajo distintas condiciones. La multiestabilidad realza la complejidad y estabilidad de los sistemas
nervioso y locomotor. Los CPGs se han encontrado en varios animales, implicados en el control de

diversos comportamientos como el latir del corazén, el masticado y la locomocién en tierra y agua
[17].

Para estudiar modelos bioldgicos de CPGs, en [15] desarrollan una serie de herramientras compu-
tacionales que reducen el problema de estabilidad y existencia de patrones ritmicos en redes al andlisis
de bifurcacién de puntos de equilibrio y curvas invariantes de la aplicacién de Poincaré para los des-
fases de bursting entre neuronas. Para ello, se basan en el modelo matemadtico de la neurona de una

sanguijuela. Lo presentamos en el apartado siguiente sin entrar en explicaciones. Toda la informacién
sobre el modelo puede consultarse en [18].

3.1. Presentacion del modelo utilizado en el estudio

La descripcion determinista de las actividades oscilatorios de una neurona como el bursting en
sistemas neuronales estd basada en el estudio de distintas propiedades genéricas de varios modelos
matematicos derivados del de Hodgkin-Huxley [19].

El modelo de Hodgkin-Huxley es uno de los modelos matematicos mas utilizado y exitoso tanto
por su reconocimiento como por su aplicacion. Este explica el comportamiento eléctrico de las células
nerviosas a través de la generacién y propagacién de impulsos eléctricos.

Un animal muy util para el establecimiento de bases neuronales para los distintos comportamien-

tos ha sido la sanguijuela, particularmente la sanguijuela medicinal europea, Hirudo medicinalis, por
distintas razones (Véase [18]).

Existen varios modelos reducidos de una neurona del corazén de una sanguijuela. El modelo
menos complejo viene dado por las siguientes ecuaciones derivadas del modelo de Hodgkin-Huxley

con variables de control de acceso de flujo a través de los canales, que es el que utilizan en [15] para
su estudio.

Bifurcaciones en redes dindmicas: Aplicacion al estudio de redes de neuronas
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av
CE = —Ina—Ix2 +IL_Iapp_Isyn
dh .
a8 = B (V) —h (3.1)
dt
dm -
%2 dth = my,(V) —mg>

donde,
I = g, (V—EL)

Ixy = Zxomi(V —Ex) (32)
INa = gNam?VahNa(V _ENa)

mya = my,(V)

Ademds, C = 0,5 nF es la capacidad de membrana; V es el potencial de membrana; Iy, es la
intensidad de la corriente de sodio que pasa a través del canal activado por voltaje con activacion
rdpida del canal my, e inactivacién lenta hy,; Ix> es la intensidad de la corriente de potasio con
activacion mgo; I, es la intensidad de la corriente debida a fugas (constituida principalmente por iones
de cloro) e Iy, es la intensidad de la corriente externa aplicada. gg, =30 nS, gy, =200nS y g, =8
nS son las conductancias del potasio, sodio y de fugas respectivamente y Ex, = 0,045 V, Ex = —0,07
Vy Ep =—0,046 V son los potenciales de inversién. Tg» = 0,25 s y Ty, = 0,0405 s son los tiempos
de activacion de los canales.

Los valores estacionarios de las variables de control de acceso de flujo, A%, (V), m%,(V), mg,(V),
vienen dadas por las ecuaciones siguientes:

B, (V) = [14exp(500(0,0333 —V))] !
my, (V) = [1+exp(—150(0,0305 —V))] ! (3.3)
mg (V) = [14exp(—83(0,018 — V 4+ Vikity))-!

donde V,?Zif " es la desviacién de un valor medio para el voltaje V; /2 = 0,018 V correspondiente al
canal de potasio semiactivado.
Para mas detalles véanse [17, 18].

3.2. Red de tres neuronas

Volvamos de nuevo a hablar de los Centros Generadores de Patrones. En varios CPGs se ha ob-
servado que el circuito estd principalmente constituido por “bloques” conectados entre si (con una
conexién mds débil), donde cada bloque estd compuesto por tres neuronas conectadas entre si (con
una conexion mas fuerte). Ejemplos de estos son las redes piléricas de la langosta espinosa, el circuito
que controla el nado de la tritonia y los CPGs involucrados en la respiracién de la lymnaea (caracol
de agua) [15].

Por tanto, para averiguar mds sobre las reglas que gobiernan la formacién de patrones en los CPGs,
es razonable estudiar previamente cudles son las reglas que hacen surgir patrones en cada uno de esos
bloques de tres células neuronales. Aqui presentamos algunos de los resultados obtenidos en [15]
donde como hemos dicho previamente, utilizan nuevas herramientras computacionales que consiguen
reducir el problema de existencia de patrones ritmicos en redes a un andlisis de bifurcacién de puntos
de equilibrio y curvas invariantes para los desfases de bursting entre tres neuronas.

Supongamos por tanto que tenemos tres células neuronales del corazén de una sanguijuela conec-
tadas entre si, donde la dindmica de cada una de ellas viene determinada por el modelo presentado
anteriormente.
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-60 mV =

)

Figura 3.2: La neurona de referencia 1 (azul) se activa cuando V) alcanza el umbral ®,; en Tl(n . Los desfases

en el tiempo de activacion 12(? y 1'3(’1') entre los burst entre la neuronas 1 y 2 (verde) y neuronas 1 y 3 (rojo),
normalizadas sobre 7\" ") — z{"), definen una secuencia de retrasos de fase {Afp?l Ag?l b

Las relaciones de fase entre las células acopladas vienen dadas a través de los detectores de activi-
dad {'L'](") , Té") , T§n) }, cuando sus voltajes cruzan un umbral ®;; concreto desde abajo. Cada uno de los
detectores indican el inicio del bloque de estallidos (burst) n-ésimo en cada célula. Definimos una se-
cuencia de desfases dada por los retrasos en las iniciaciones (Figura 3.2) de cada bloque de estallidos
relativas al inicio del bloque correpondiente para una neurona de referencia 1, normalizando sobre la
diferencia de tiempo entre el burst anterior y el actual de la neurona de referencia como sigue:

(n+1) (rll) (n+1) (n)

T - T -7
A — 1 2 y A 531 31 mod 1
021 Tl(n+1) _ Tl(n) 031 Tl(n—H) _ Tl(n)
Un par ordenado M, = (Ag’) ,A(n)) define una iteracién o un punto de fase de la aplicacién de
217 7931

Poincaré para los retardos:
IT: Mn — Ml’H—l

Una secuencia {(Agg,Ag;?) N, genera las trayectorias de los desfases {M,}"_, de la aplica-

cién de Poincaré en un toro 72 con trayectorias definidas mod 1 (Figuras 3.3B, 3.5y 3.6). En
las simulaciones posteriores cada trayectoria se realiza para N = 90 ciclos de bursting (90 itera-
ciones) y puede detenerse cuando la distancia entre iteraciones sucesivas sea menor que un valor
| M, — M, || < 103 y k=5, 1o que implica que la trayectoria ha convergido a un punto de equilibrio
M* en el mapa de fases. Este punto de equilibrio corresponde a un ritmo de fase fijo y sus coordenadas
corresponden a valores de desfase constantes entre las neuronas. Haciendo variar los retardos iniciales
entre las neuronas 2 y 3 con respecto a la neurona de referencia 1, podemos detectar todos los puntos
de equilibiro del diagrama e identificar las cuencas correspondientes a cada atractor y sus fronteras.

Consideramos un acoplamiento débil entre dos células de un bloque cuando la velocidad de con-
vergencia a un punto fijo estable del diagrama de fases es lenta. Es decir, que la distancia ente dos
iteraciones cualquiera permanece menor que un valor : max||M, — M,1|| < 0,05. Por tanto pode-
mos decir que el acoplamiento es relativamente fuerte si un punto inicial lejano alcanza un punto de
equilibrio del diagrama después de unas pocas iteraciones.

3.2.1. Comentario sobre los diagramas obtenidos

Aunque se trata de un sistema dindmico discreto, en los diagramas de fase aparecen lineas con-
tinuas que indican la direccién del flujo a lo largo de muchas iteraciones. Los puntos de equilibrio
se muestran como puntos de distintos colores. Los estables son mds grandes y de color rojo, verde y
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Figura 3.3: (A) Trayectorias de los desfases,A(n)1 (azul) y Ag;)l (gris), convergiendo a varios patrones fijos des-
pués de 90 iteraciones para un ciclo de trabajo medio.(B) El retrato de fases de la aplicacioén de Poincaré nos
muestra cinco puntos estables y sus cuencas de atraccién subdivididas por las separatrices generadas por seis
puntos silla-nodo (marrén).

(iv) (v)

Figura 3.4: Coexistencia y cambio entre los cinco polirritmos de bursting para un ciclo de trabajo medio.
(O(ALL2[3}), (@)1 <2=<3), (@)1 <3<2), (iv)(2L{1]3}) y (v) 3BL{1][2}).

azul, correspondiendo al color de la trayectoria de los desfases que se aproximan a ellos y mostrando
asi las cuencas de atraccidn.

En [15] examinan distintas configuraciones de la red con pricticamente las mismas conexiones.
Demuestran que los bloques de tres neuronas con conexiones simétricas son multiestables y asi pueden
producir y hacer posible la coexistencia de varios patrones de bursting.

Modificando los ciclos de trabajo (relacién entre el tiempo que la sefial se encuentra en estado
activo y el periodo de la misma) se obtienen distintos resultados. Nosotros no entraremos en cuestiones
tan especificas y nos limitaremos a comentar algunos de los diagramas obtenidos.

Supongamos ahora tres neuronas conectadas totalmente entre si, como tres nodos de un grafo
dirigido conectados de todas las formas posibles. Veamos qué ocurre por ejemplo para el caso concreto
de un ciclo de trabajo medio.

En la Figura 3.3A se ilustra la evolucion de Ay, y Ay, (mostrados en azul y gris) desde condi-
ciones iniciales uniformemente distribuidas en el intervalo. Uno puede observar como las trayectorias
terminan convergiendo a multiples estados de fase constantes (patrones).

El diagrama de fases correspondiente I1 se presenta en la Figura 3.3B. En este caso particular
vemos que coexisten cinco puntos de equilibrio estables: el rojo en el punto (%, 0), el azul en (%, %),
el negro en (%, %) y el gris en (%, %) Estos puntos de equilibrio representan cinco polirritmos: tres
patrones de bursting llamados de anti-fase y denotados por (3_L{1][2}), (2L{1||3}), (1L{2||3}) y dos
llamados ondas viajeras en el sentido de las agujas del reloj (1 <2 < 3), y en el contrario (1 <3 < 2)
(En la Figura 3.4 se muestra exactamente a qué tipo de patron se refiere cada expresion).

Para un nuevo pardmetro de bifurcacién y variaciones en el ciclo de trabajo se tienen los siguien-
tes resultados. Llamamos gy al parmametro de bifurcacién actual, con 0 < go < 1. Para gg = 0, las
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Figura 3.5: (A) Retrato de fases para go = 0,41: los tres puntos silla-nodo (marrén) alrededor del punto estable
(2, 1) se acercan anuldndose al chocar con los otros tres puntos estables mediante tres bifurcaciones silla-nodo

33
simultdneas mientras (%, %) permanece inestable. (B) Para go > 0,42, (%, %) es el unico atractor del sistema.
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Figura 3.6: (A) Para el caso gop = 0,185 se representa una curva invariante que va de un punto silla a otro
alrededor del punto de equilibiro (%, %) (B) El caso go = 0,32 ilustra el cambio en la estabilidad de ( %, %) al
aumentar el valor de go.

dos ondas (1 <2 <3)y (1 <3 <2) son inestables. Asi la red sélo puede generar los tres ritmos:
(BL{1]2}). 2L{1]3}) y (1L{2]3}).

En la Figura 3.5A se representa el diagrama de fases para gg = 0,41 y muestra el punto de equili-
brio (Ag,,,A¢y,) = (%, %) correspondiente a la onda (1 < 3 < 2), que es estable y por tanto es un ritmo
que puede darse en la red. Vemos que aqui ocurre una bifurcacién, puesto que un aumento del valor
del pardmetro go hace que los tres puntos silla y los tres estables desaparezcan anuldndose entre si
mediante tres bifurcaciones silla-nodo simultdneas. Vemos ademds que para go > 0,42 (Figura 3.5B),
el punto de equilibiro (%, %) correspondiente a la onda (1 < 3 < 2) se ha convertido en un atractor
global del sistema, mientras que la otra, (1 < 2 < 3), permanece inestable.

Ahora tenemos que caracterizar qué ha ocurrido para que el punto de equilibrio (1 < 3 < 2)
inicialmente inestable sea estable y atractor global del sistema para gy > 0,42. Para ello presentamos
los dos diagramas adicionales de la Figura 3.6, centrados en un drea cercana al punto y veamos qué
tipo de bifurcacién ha ocurrido.

En la Figura 3.6A se muestra un entorno del punto (%, %) en el diagrama para el valor del pardme-
tro go = 0,185. Se muestra una curva invariante estable que va de un punto silla a otro alrededor del
punto de equilibrio (%, %) que, aqui todavia es inestable. A medida que aumentamos el valor de go, la
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curva invariante estable se encoge, chocando finalmente con el punto inestable (%, %) correspondiente

ala onda (1 <3 < 2) y haciendo que se convierta en estable a través de una bifurcacién de Hopf
supercritica como se muestra en la Figura 3.6B.

Por tanto, hemos visto que los comportamientos que se dan al conectar tres nodos, cada uno de
ellos regido por una dindmica mds sencilla como es la del sistema replicador mutador (una Unica
ecuacién por nodo), también aparecen de alguna manera al analizar dindmicas mas complejas, como
en la red de tres neuronas estudiada en este capitulo. En el Capitulo 2 hemos mostrado resultados
analiticos que nos aseguran la existencia de ciclos limite y determinados puntos de equilibrio en el
andlisis de bifurcaciones de puntos de equilibrio y 6rbitas periddicas. Sin embargo, los resultados que
aparecen en el capitulo 3 se han obtenido numéricamente debido a la complejidad de la dindmica. No
obstante, las similitudes encontradas motivan el estudio de dindmicas més sencillas como método para
arrojar luz sobre el estudio de otras mds complejas. El método utilizado en [15] da la posibilidad de
estudiar qué determina la aparicion de distintos patrones de sincronizacién entre neuronas, analizando
las bifurcaciones del sistema al tomar como variables los desfases entre las mismas.

Autor: Lorena Romero Medrano






Apéndice: Herramientas utilizadas

Para la realizacién de este trabajo, principalmente para la obtencion de los resultados del Capitulo
2, se han utilizado los programas SAGE, Mathematica y Maple.

N = 2 estrategias

Para el cédlculo de puntos de equilibrio del sistema replicador mutador para N = 2 estrategias se han
utilizado SAGE y Maple, mientras que los distintos diagramas de bifurcacién se han elaborado con
Mathematica.

N = 3 estrategias

Para el caso de N = 3 estrategias, nos hemos ayudado de Maple y Mathematica para el andlisis de to-
dos los tipos de conexién entre los nodos. También han sido utilizados para llevar a cabo las distintas
demostraciones, principalmente la del Teorema 2.3.9, que exigia la realizacién de muchos cédlculos
con dependencia de pardmetros, asi como el cdlculo del primer coeficiente de Lyapunov para el estu-
dio del tipo de bifurcacién de Hopf. Los diagramas de bifurcacién para cada una de las conexiones y
los retratos de fases para valores concretos del pardmetro de bifurcacién se han obtenido con Mathe-
matica.
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