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Existe aún bastante controversia acerca de la capacidad de los taninos para 

modular el proceso de biohidrogenación ruminal (BH) de los ácidos grasos (AG) y 

mejorar el perfil lipídico de la leche o la carne sin afectar negativamente a la utilización 

digestiva de la dieta. A partir de esta base, este trabajo se llevó a cabo con el objetivo 

de investigar el efecto de la presencia de taninos en la dieta (en concreto, en el heno 

de esparceta, Onobrychis viciifolia) sobre la BH de los ácidos linoleico (18:2n-6) y 

linolénico (18:3n-3) y el proceso de fermentación ruminal. 

El estudio se realizó in vitro, mediante cultivos discontinuos de microorganismos 

ruminales y la técnica de producción de gas. Como donantes del inóculo microbiano se 

utilizaron ovejas canuladas en el rumen. Los sustratos incubados fueron dos henos de 

leguminosas: uno de alfalfa (prácticamente libre de taninos) y otro de esparceta 

(similar al anterior en cuanto a su composición química pero con un 3,5% de taninos 

totales en equivalentes de ácido tánico). Ambos henos se enriquecieron con aceite de 

girasol (como fuente de ácido linoleico) o aceite de lino (como fuente de ácido 

linolénico). La parte analítica incluyó determinaciones de taninos, del perfil lipídico del 

contenido ruminal (centrado fundamentalmente en metabolitos de interés como 18:0, 

trans-11, trans-10 y cis-9 18:1, cis-9 trans-11 18:2 -principal isómero del ácido linoleico 

conjugado; CLA-, trans-11 cis-15 18:2, 18:2n-6 y 18:3n-3) y de algunos parámetros 

indicativos de la fermentación en el rumen (e. g., producción de gas, concentración de 

amoniaco, desaparición de materia seca, etc.). 

La mayor parte de los resultados relativos a los metabolitos intermedios de la BH 

(e. g., mayores concentraciones de 18:3n-3, 18:2n-6, trans-11 cis-15 18:2, cis-9 18:1 o 

AG poliinsaturados totales en las incubaciones de esparceta) muestran la capacidad de 

esta leguminosa, posiblemente atribuible a su contenido de taninos, para inhibir la BH 

ruminal de los AG insaturados de la dieta. Por otra parte, no se detectaron diferencias 

significativas (P>0,10) en la acumulación de cis-9 trans-11 CLA, CLA total o 18:0, y la 

variación en el trans-11 18:1 no siguió un patrón regular. 

En cuanto a la fermentación ruminal, se observó que la producción de gas era 

inferior en las incubaciones del heno de esparceta (-17%), lo cual coincide con lo 

señalado previamente por muchos autores cuando se utilizan taninos. De acuerdo con 

esto, las concentraciones de amoniaco también mostraron un valor más bajo en la 
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esparceta (-23%), al igual que la producción de ácidos grasos volátiles totales (-11%), 

siendo las proporciones molares de butírico y valérico las que mejor reflejaron esta 

diferencia. 

En conjunto, el estudio muestra la capacidad de Onobrychis viciifolia, 

seguramente gracias a su contenido moderado de taninos, para modificar la BH 

ruminal de los AG insaturados de la dieta, lo cual podría redundar en una mejora del 

perfil lipídico de los productos finales (carne y leche). Sin embargo, los resultados 

observados no son tan prometedores como cabría esperar a priori o como se han 

conseguido con otras estrategias nutricionales. 
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There is still controversy surrounding the ability of tannins to modulate the 

process of biohydrogenation (BH) of fatty acids (FA) in the rumen and improve the lipid 

profile of milk or meat without conferring a negative response in the digestive 

utilization of the diet. Based on this, the current work was performed with the aim of 

investigating the effect of dietary tannins (particularly those from sainfoin -Onobrychis 

viciifolia- hay) on the BH of linoleic (18:2n-6) and linolenic (18:3n-3) acids and on the 

ruminal fermentation. 

This study was carried out in vitro, using batch cultures of rumen microorganisms 

and the gas production technique. Rumen cannulated sheep were used as donors of 

microbial inocula. Two legume hays, alfalfa (virtually free of tannins) and sainfoin (with 

a similar chemical composition but containing 3.5% total tannins, expressed as tannic 

acid equivalents), were utilized as incubation substrates. Both hays were enriched with 

either sunflower oil (as a source of linoleic acid) or linseed oil (as a source of linolenic 

acid). The analytical techniques included the determination of tannins, of the lipid 

profile of rumen contents (focused primarily on relevant metabolites such as 18:0, 

trans-11, trans-10 and cis-9 18:1, cis-9 trans-11 18:2 -the main isomer of the 

conjugated linoleic acid; CLA-, trans-11 cis-15 18:2, 18:2n-6 and 18:3n-3) and of some 

rumen fermentation parameters (e.g., gas production, ammonia concentration, dry 

matter disappearance, etc.). 

Most results related to intermediate BH metabolites (e.g., greater concentrations 

of 18:3n-3, 18:2n-6, trans-11 cis-15 18:2, cis-9 18:1 or total polyunsaturated FA in 

sainfoin incubations) show the ability of this legume, possibly due to its tannin content, 

to inhibit the ruminal BH of dietary unsaturated FA. On the other hand, no significant 

differences (P>0,10) were detected in the accumulation of cis-9 trans-11 CLA, total CLA 

or 18:0, and variations in trans-11 18:1 did not follow a regular pattern.  

Regarding the rumen fermentation, it was observed that gas production was 

lower in the incubations with sainfoin hay (-17%), which is consistent with previous 

findings when using tannins. Accordingly, ammonia concentrations and total volatile 

fatty acid (VFA) production also presented smaller values with sainfoin (-23% and -

11%, respectively); differences in VFA being especially clear in the molar proportions of 

butyrate and valerate. 
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Overall, the study shows the ability of Onobrychis viciifolia, probably by means of 

its moderate tannin content, to modify the ruminal BH of dietary unsaturated FA, 

which could result in improvements in the lipid profile of final products (meat and 

milk). Nonetheless, the present results are not as promising as expected or as obtained 

before with other nutritional strategies. 
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Il existe encore une controverse sur la capacité des tannins pour moduler le 

processus de biohydrogenation ruminale (BH) des acides gras (AG) et améliorer le 

profil lipidique du lait ou de la viande sans altérer l’utilisation digestive du régime. 

Dans ce contexte, cette étude a été menée dans l’objectif d’examiner l’effet de la 

présence de tannins dans le régime (plus précisément, dans le foin de sainfoin, 

Onobrychis viciifolia) sur la BH des acides linoléique (18:2n-6) et linolénique (18:3n-3) 

et la fermentation ruminale.  

L’étude a été conduite in vitro, moyennant des cultures discontinues de 

microorganismes ruminaux et la technique de production de gaz. Des brebis équipées 

d’une canule ruminale ont été utilisées en tant que donatrices d’inoculum ruminal. Les 

substrats incubés étaient deux types de foins de légumineuses : un de luzerne 

(presque libre de tannins) et un autre de sainfoin (avec une composition chimique 

similaire à celui précédent mais avec 3,5% de tannins totaux, exprimés en équivalents 

d’acide tannique). Tous les deux ont été enrichis en huile de tournesol (comme source 

d’acide linoléique) ou de lin (comme source d’acide linolénique). La partie analytique 

inclut des déterminations des tannins, du profil lipidique du contenu ruminal (ciblé sur 

des métabolites d’intérêt comme 18:0, trans-11, trans-10 et cis-9 18:1, cis-9 trans-11 

18:2 -l’isomère principal de l’acide linoléique conjugué; CLA-, trans-11 cis-15 18:2, 

18:2n-6 et 18:3n-3) et de quelques paramètres indicatifs de la fermentation ruminale 

(par exemple, production de gaz, concentration d’ammoniac, disparition de la matière 

sèche, etc.). 

La majorité des résultats relatifs aux métabolites intermédiaires de la BH (par 

exemple, augmentations des concentrations de 18:3n-3, 18:2n-6, trans-11 cis-15 18:2, 

cis-9 18:1 ou AG polyinsaturés totaux dans les incubations avec du sainfoin) montrent 

la capacité de cette légumineuse, probablement imputable à la présence de tannins, à 

inhiber la BH ruminale des AG insaturés du régime. En outre, l’accumulation de cis-9 

trans-11 CLA, CLA totale ou 18:0 n’a pas été modifiée significativement (P>0,10) et  la 

variation de celle du trans-11 18:1 ne suivit pas un schéma régulier. 

En ce qui concerne la fermentation ruminale, les résultats ont montré que la 

production de gaz était inférieure dans les incubations avec du sainfoin (-17%), en 

accord avec ce qui a été rapporté par des nombreux auteurs lors de l’utilisation des 
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tannins. De même, les concentrations d’ammoniac ont montré une valeur plus basse 

avec le sainfoin (-23%), ainsi que la production d’acides gras volatiles totaux (-11%), 

dont les proportions molaires de butyrique et valérique étaient celles qui ont le mieux 

reflété cette différence. 

Globalement, les résultats de cette étude montrent la capacité d’Onobrychis 

viciifolia, certainement en raison de son contenu modéré de tannins, à modifier la BH 

ruminale des AG insaturés du régime, ce qui à son tour pourrait améliorer le profil 

lipidique des produits finals (viande et lait). Toutefois, les résultats obtenus ne sont pas 

si encourageants comme on pourrait a priori s’y attendre ou comme le démontrent 

d'autres stratégies nutritionnelles. 
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La elevada incidencia de enfermedades de tipo cardiovascular, metabólico y 

degenerativo fomentadas por una dieta inadecuada (OMS, 2003) está siendo un 

detonante para que la población se mentalice de la necesidad de mejorar los hábitos 

alimentarios y conseguir que la dieta pase de ser un factor de riesgo a un pilar de 

prevención (Toral et al., 2009). Esto ha supuesto un estímulo para la modificación del 

perfil lipídico de las grasas de los alimentos derivados de los rumiantes (i. e., carne y 

leche), de modo que se fomente su carácter potencialmente saludables para el 

consumidor (Shingfield et al., 2008b). 

Entre los ácidos grasos (AG) considerados más deseables cabría destacar los n-3 

de cadena muy larga (tipo DHA, DPA o EPA) y, especialmente, el ácido linoleico 

conjugado (CLA). Diversos trabajos basados en estudios epidemiológicos y modelos 

celulares señalan que este conjunto de isómeros geométricos y posicionales del ácido 

linoleico (18:2n-6) posee propiedades antiaterogénicas, antiinflamatorias o 

inmunomoduladoras, entre otras (Lock y Bauman, 2004; Shingfield et al., 2008b). 

El cis-9 trans-11 18:2 (ácido ruménico, RA) es el isómero más abundante del CLA 

y se supone que es el principal responsable de los efectos potencialmente beneficiosos 

para la salud de los humanos que se le atribuyen al CLA. El RA que aparece en la leche 

o en la carne de los animales rumiantes deriva fundamentalmente de su síntesis 

endógena, gracias a la enzima ∆9-desaturasa o estearoil-CoA desaturasa, a partir del 

trans-11 18:1 (ácido vaccénico, VA), aunque una parte también puede formarse en el 

rumen, mediante el proceso de biohidrogenación ruminal (BH) del ácido linoleico (LA; 

cis-9 cis-12 18:2 o 18:2n-6). 

Gracias a la BH, a partir del 18:2n-6 y también del ácido linolénico (LNA; cis-9 cis-

12 cis-15 18:3 o 18:3n-3), principales AG consumidos con la dieta, se produce trans-11 

18:1 en el rumen. Después, una parte elevada y muy variable de este isómero 18:1 

será reducida a 18:0 (ácido esteárico) como paso final de la BH (Jenkins et al., 2008). 

Cuantos más AG insaturados se acumulen en el rumen y pasen al intestino, mayor será 

su aparición en los productos finales de los rumiantes. 

Por lo tanto, existe un incuestionable interés en conseguir modificar el proceso 

de BH ruminal para inhibir el último paso y permitir así una acumulación de VA en el 
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rumen que podría dar lugar, posteriormente, a una mayor concentración de CLA en la 

leche o en la carne. 

Algunos estudios previos, especialmente in vitro (e. g., Vasta et al., 2009; 

Buccioni et al., 2011), han señalado que los taninos son capaces de inhibir el último 

paso de la BH, consiguiendo así una mayor acumulación de VA. 

Sin embargo, los trabajos llevados a cabo por el equipo con el que se realizó esta 

tesis de máster, tanto in vivo (Toral et al., 2011 y 2013) como in vitro (Benhissi et al., 

2013b; Carreño et al., 2015) apuntan más bien a una inhibición general del proceso del 

BH y no a una inhibición específica del último paso.  

A pesar de ello, dadas las enormes variaciones existentes entre diferentes tipos 

de taninos (Carreño et al., 2015), es preciso continuar la investigación para poder 

llegar a seleccionar un tipo y dosis de tanino que permita, como objetivo final, mejorar 

la calidad nutricional de la leche o la carne sin afectar negativamente a la utilización 

digestiva de la dieta y, consecuentemente, al rendimiento productivo de los animales. 

Este objetivo representa la base sobre la que se asienta este trabajo, cuyos objetivos 

específicos se describen en un capítulo posterior. 

Por otro lado, es importante indicar que muchos estudios acerca del uso de 

taninos se han realizado con extractos comerciales (e. g., Buccioni et al., 2011; Toral et 

al., 2011 y 2013; Carreño et al., 2015) pero resultaría de especial interés práctico 

encontrar un forraje con un buen contenido de estos compuestos fenólicos que 

permitiera su uso directo por los animales. 

En este sentido, diversos trabajos sobre la esparceta (Onobrichys viciifolia) 

describen resultados muy prometedores atribuibles a su contenido de taninos 

condensados (Khiaosa-Ard et al., 2009; Girard et al., 2015) y sugieren la posibilidad de 

su utilización, en condiciones prácticas de explotación, para modular la BH ruminal de 

los AG poliinsaturados de la dieta. 
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1. TANINOS 

Aunque los taninos fueron ignorados durante mucho tiempo en los estudios de 

nutrición animal, en las últimas décadas se ha prestado mayor atención a su incidencia 

en este campo, especialmente en aquellos sistemas de producción basados en el 

aprovechamiento de pastos o de forrajes que contienen estos compuestos secundarios 

(Frutos et al., 2004b). 

1.1. Definición, clasificación y propiedades químicas de los taninos 

Dada la complejidad de estos compuestos, en la literatura existen numerosas 

definiciones del término tanino. Quizás la más aceptable sea la que considera que los 

taninos son un grupo muy complejo de compuestos fenólicos, con un alto peso 

molecular, que poseen la capacidad de formar complejos reversibles o irreversibles 

con las proteínas principalmente, y también con otras moléculas como los 

polisacáridos (celulosa, hemicelulosa, pectina, etc.), alcaloides, ácidos nucleicos, 

minerales, etc. (McLeod, 1974; Hervás, 2001). 

Basándose en su estructura molecular, aunque quizás de modo simplista, los 

taninos se suelen clasificar en dos grupos (McMahon et al., 2000): taninos hidrolizables 

(TH) y taninos condensados (TC), como se muestra en la Figura 1. 

Los taninos hidrolizables son polialcoholes constituidos por un glúcido cuyos 

grupos hidroxilo se encuentran esterificados con el ácido gálico o el ácido 

hexahidroxidifénico (galotaninos y elagitaninos, respectivamente). Son compuestos 

fácilmente hidrolizables tanto por ácidos y bases como por vía enzimática. Los taninos 

condensados son oligómeros o polímeros de hidroxiflavonoles. También se les 

denomina proantocianidinas debido a que, sometiéndolos a calor en soluciones ácidas, 

dan lugar a antocianidinas. Carecen de núcleo glucídico y no son susceptibles de ser 

hidrolizados debido a los enlaces C-C que presentan (para más detalles, ver las 

revisiones de Doce, 2010 y Mueller-Harvey, 2006). 
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Figura 1. Moléculas de (a) tanino hidrolizable (galoil) y (b) condensado (flavan-3-ol). 
Extraído de Hervás (2001). 

Como ya se ha mencionado, la propiedad más singular de los taninos es su 

elevada afinidad por las proteínas, aunque también puede unirse a otros polímeros, 

con los que tiende a formar complejos estables. Los múltiples grupos fenólicos y anillos 

arilos confieren a los taninos su efectividad para formar estos complejos, que puede 

producirse mediante distintos tipos de uniones químicas, siendo la más importante la 

unión por puentes de hidrógeno reversibles (McLeod, 1974; Mueller-Harvey y McAllan, 

1992; Mueller-Harvey, 2006). 

Las interacciones producidas entre los taninos y las proteínas son específicas y 

dependen en gran parte de las características de ambos compuestos. Por parte de los 

taninos, intervienen su grado de polimerización, su estructura y flexibilidad 

conformacional o su solubilidad y por parte de las proteínas, la conformación 

estructural, el peso molecular o la composición en aminoácidos (Asquith y Butler, 

1986). Además, son también determinantes las condiciones de la solución donde se 

lleve a cabo la formación de los complejos con los taninos. Así, por ejemplo, se ha 

constatado que el mayor grado de estabilidad de las uniones tanino-proteína ocurre en 

rangos de pH comprendidos entre aproximadamente 3,5 y 8, en los que se sitúa el pH 

ruminal, frente a los valores observados en el abomaso (2,5-3) y duodeno (aprox. 8; 

McLeod, 1974; Mueller-Harvey y McAllan, 1992; Frutos et al., 2004b). 

Aunque la capacidad para formar complejos con las proteínas sea la 

característica más importante y conocida de los taninos, también cabe señalar su 

poder quelante y secuestrador de radicales libres, su capacidad reductora y su 

actividad antioxidante (ver la revisión de Doce, 2010).  
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1.2. Distribución de los taninos en la naturaleza 

Los taninos son posiblemente uno de los metabolitos secundarios más comunes 

de las plantas y tienen una amplia distribución en el reino vegetal, encontrándose 

fundamentalmente en hojas de árboles, en arbustos y en leguminosas herbáceas 

(McLeod, 1974; McMahon et al., 2000; Frutos et al., 2004b; Rodríguez et al., 2011). Por 

ello, a pesar de la idea generalizada de que los taninos solo aparecen en especies 

vegetales de zonas áridas o tropicales, también es posible encontrar numerosas 

especies con un contenido apreciable de taninos) en ambientes con influencia atlántica 

o mediterránea (Silanikove, 2000; Frutos et al., 2002). 

El contenido de taninos puede variar considerablemente entre los distintos 

órganos y tejidos vegetales, así como a lo largo del desarrollo fenológico de la planta y 

dependiendo de diferentes factores ambientales y estacionales (McMahon et al., 2000; 

Álvarez del Pino et al., 2005). Ello se explica, en parte, por la estrategia de defensa de 

las plantas, pues los taninos tienden a ser más abundantes en aquellas partes de más 

valía (hojas nuevas y flores), que son las más susceptibles de ser consumidas por los 

herbívoros (Van Soest, 1994; Álvarez del Pino et al., 2005). De igual manera, las altas 

temperaturas, el estrés hídrico o la baja calidad de los suelos pueden aumentar el 

contenido de taninos de las especies vegetales (Van Soest, 1994; McMahon et al., 

2000). 

Respecto a la presencia de taninos en especies comunes en la alimentación de 

los rumiantes, podrían destacarse algunas leguminosas como por ejemplo Onobrychis 

viciifolia (esparceta), Hedysarium coronarium (zulla) o Lotus corniculatus (McMahon et 

al., 2000; Tava et al., 2005; Copani et al., 2014). Gracias a sus contenidos moderados 

de taninos condensados, la inclusión de estas especies forrajeras en la dieta de los 

rumiantes podría ser especialmente útil para conseguir algunos de los efectos 

favorables de los taninos (e. g., disminución de la degradación de la proteína en el 

rumen, prevención del timpanismo o control de parasitosis digestivas), sin ejercer 

efectos tóxicos sobre los animales (Mueller-Harvey, 2006; Hayot Carbonero et al., 

2011). En el caso concreto de la esparceta, podría destacarse también su rusticidad y 

su tolerancia a los climas fríos y suelos pobres, así como a la sequía, además de que su 

cultivo es beneficioso para la regeneración de tierras de labor esquilmadas por otros 
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cultivos y para el mantenimiento de la diversidad de los agroecosistemas. Sin embargo, 

su cultivo ha caído en las últimas décadas por su baja productividad y la dificultad de 

su mantenimiento (Delgado et al., 2004; Hayot Carbonero et al., 2011). 

Recientemente, algunos trabajos han sugerido que la utilización de leguminosas 

ricas en taninos también podría ser interesante para modificar el metabolismo de los 

lípidos en el rumen (Turner et al., 2005; Cabiddu et al., 2009; Girard et al., 2015). Este 

punto será descrito a continuación con mayor detalle, debido a su repercusión en la 

calidad de los productos provenientes de los rumiantes y a su relevancia en esta tesis. 

2. UTILIZACIÓN DE LEGUMINOSAS RICAS EN TANINOS EN LA ALIMENTACIÓN DE LOS 
RUMIANTES Y ESPECIALMENTE EN LA BIOHIDROGENACIÓN RUMINAL DE LOS ÁCIDOS 
GRASOS DE LA DIETA 

Aunque aún son escasos los trabajos publicados al respecto, algunos estudios 

han señalado que la alimentación de los rumiantes con leguminosas ricas en taninos 

podría modular la biohidrogenación (BH) ruminal, constituyendo una estrategia natural 

para mejorar el perfil de AG de la leche y la carne en respuesta a la demanda de los 

consumidores (Abbedou et al., 2011; Vasta y Luciano, 2011; Girard et al., 2015). De 

estos estudios, una parte importante se ha llevado a cabo en pequeños rumiantes 

alimentados con zulla (Roy et al., 2002; Addis et al., 2005; Bonanno et al., 2013). Sin 

embargo, existe muy poca información disponible respecto a la utilización de otros 

forrajes como la esparceta, cuyo cultivo había caído prácticamente en desuso pero se 

está intentando recuperar y potenciar en la Península Ibérica (Delgado et al., 2004). 

La zulla (Hedysarium coronarium) es una leguminosa semiperenne bianual típica 

de ambientes mediterráneos. Contiene una cantidad moderada de taninos 

condensados, principalmente monómeros de delfinidina y cianidina (Tava et al., 2005), 

y puede mejorar el rendimiento productivo de corderos y ovejas lecheras (Terrill et al., 

1992; Molle et al., 2003; Bonanno et al., 2007). Sus efectos sobre el perfil de AG de los 

productos de rumiantes son bastante consistentes, habiéndose observado en casi 

todos los casos un aumento de la concentración de los principales AG poliinsaturados 

procedentes de la dieta, 18:2n-6 y 18:3n-3, tanto en la carne (Priolo et al., 2005) como 

en la leche (Roy et al., 2002; Cabiddu et al., 2009; Bonanno et al., 2013). En algunos 

casos (Addis et al., 2005; Cabiddu et al., 2009), estos cambios se vieron acompañados 
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también por descensos en el contenido de ácidos ruménico (RA; cis-9 trans-11 CLA) y 

vaccénico (VA; trans-11 18:1), que derivan del metabolismo ruminal de los anteriores, 

lo cual sugiere que la zulla reduce la extensión de la BH de los AG insaturados en el 

rumen. La información disponible respecto al efecto de esta leguminosa forrajera 

sobre otros metabolitos intermedios menos abundantes es, sin embargo, sumamente 

escasa, por lo que no se sabe con seguridad si esta inhibición de la BH podría estar 

acompañada de alteraciones en sus rutas metabólicas. 

El loto corniculado (Lotus corniculatus) tiene un alto valor nutritivo y, gracias a 

sus taninos condensados (básicamente monómeros de prodelfinidina), numerosos 

trabajos han mostrado que su consumo permite aumentar el flujo de proteína no 

degradable al intestino (Waghorn et al., 1987). La inclusión de esta leguminosa en la 

dieta de ovejas y vacas lecheras también se ha asociado con aumentos en la 

producción de leche (Wang et al., 1996; Turner et al., 2005), pero se sabe poco acerca 

de sus posibles efectos sobre la BH ruminal. No obstante, la información disponible 

indica que su mecanismo de acción podría ser similar al de la zulla, pues los cambios en 

el perfil de AG de la leche (aumentos en la concentración de 18:2n-6 y 18:3n-3 y 

descensos en la de 18:0, VA y RA) sugieren una inhibición de la extensión de la BH 

ruminal (Turner et al., 2005; Girard et al., 2015). 

Los efectos beneficiosos de la esparceta (Onobrychis viciifolia) sobre el 

metabolismo proteico en los rumiantes también parecen explicarse por su contenido 

de taninos condensados (fundamentalmente procianidina y prodelfinidina; Hayot 

Carbonero et al., 2011). Sin embargo, se conoce aún muy poco sobre sus posibles 

efectos sobre el metabolismo ruminal de los AG. A este respecto, en un estudio con 

corderos en crecimiento se observó, de forma similar al caso de la zulla y del loto 

corniculado, un aumento significativo en la concentración de ácidos linoleico y 

linolénico y un descenso en el de AG saturados en el músculo (Girard et al., 2015). No 

obstante, no parece existir información disponible acerca de su acción sobre los 

principales isómeros trans 18:1 y otros metabolitos intermedios de la BH ruminal con 

características potencialmente bioactivas. 

Además, también persiste un gran desconocimiento sobre los mecanismos 

mediante los cuales los taninos ejercerían sus efectos sobre el metabolismo de los AG 
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en el rumen, si bien todo apunta a que estos podrían estar mediados por cambios en la 

comunidad bacteriana (Vasta et al., 2010; Carreño et al., 2015). 

3. SUPLEMENTACIÓN DE LA DIETA DE RUMIANTES CON ACEITES VEGETALES 
INSATURADOS 

Durante décadas, se han añadido lípidos vegetales a la dieta de los rumiantes 

para cubrir sus necesidades energéticas en las explotaciones situadas en áreas 

desfavorecidas (donde pueden escasear los alimentos en determinados periodos del 

año) o con altos niveles de producción (Gargouri et al., 2006; Pulina et al., 2006). En la 

mayor parte de los casos, se han utilizado aceites protegidos (como las sales cálcicas 

de aceite de palma) para mantener producciones altas de leche o grasa (Gargouri et 

al., 2006), pero hoy en día se pone un mayor énfasis en la inclusión de lípidos vegetales 

insaturados para modular la BH ruminal y, con ello, el perfil de AG de la leche o la 

carne. En este sentido, por ejemplo, cuando el objetivo es mejorar el contenido de RA 

de la grasa láctea, la suplementación de la dieta con lípidos ricos en 18:2n-6 y 18:3n-3 

es muy efectiva en vacas, ovejas y cabras (Shingfield et al., 2010). 

Los lípidos de origen vegetal se pueden suministrar en forma de semillas de 

oleaginosas, aceites protegidos o aceites libres, siendo estos últimos los que ejercen 

mayores efectos sobre el perfil de AG de la leche (Glasser et al., 2008). Cabe destacar 

que, si bien existe la idea generalizada de que los lípidos insaturados pueden afectar 

negativamente a la fermentación ruminal, la respuesta depende del tipo de aceite 

usado y especialmente de su nivel de inclusión en la dieta (Jenkins, 1993; Atkinson et 

al., 2006; Shingfield et al., 2008a). Las dosis de aceites que se añaden para modificar el 

perfil lipídico de los productos finales suelen ser bajas o moderadas (≤4% de la materia 

seca) y no tienen por qué asociarse con efectos negativos sobre los procesos de 

digestión en el rumen (Atkinson et al., 2006; Toral et al., 2010b; Shingfield et al., 

2008a). 
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3.1. Aceites ricos en ácido linoleico 

En los últimos años se ha avanzado de forma considerable en el estudio de las 

rutas de BH del ácido linoleico (cis-9 cis-12 18:2), ya que anteriormente se pensaba que 

implicaba únicamente tres pasos: una isomerización inicial a cis-9 trans-11 CLA, 

seguida de una hidrogenación a trans-11 18:1 y, a continuación, otra reducción a 18:0 

(Jenkins et al., 2008). Sin embargo, con el tiempo se han identificado numerosos 

metabolitos intermedios 18:2 y 18:1 (ver Figura 2; Jenkins et al., 2008; Shingfield et al., 

2010). También se ha demostrado que a pesar de la concentración relativamente baja 

de algunos isómeros minoritarios (por ejemplo, el trans-10 cis-12 y el trans-9 cis-11 

CLA), su efecto biológico en el animal podría ser de gran relevancia (Harvatine et al., 

2009). 

En las ovejas lecheras se ha llevado a cabo un buen número de estudios con el 

objetivo de evaluar la inclusión de aceites vegetales ricos en 18:2n-6 en la dieta sobre 

la composición de la grasa de la leche (e. g., Mele et al., 2006; Hervás et al., 2008). En 

ellos se observó, por ejemplo, que la suplementación de una dieta rica en alimentos 

concentrados con un aceite de girasol resulta más efectiva para aumentar el contenido 

de VA y CLA en la grasa láctea que la misma dosis de aceite de soja (Gómez-Cortés et 

al., 2008). Este tipo de estrategia es asimismo muy útil a la hora de disminuir la 

cantidad de AG saturados de cadena media (12:0, 14:0 y 16:0; Mele et al., 2006; Toral 

et al., 2010a), cuyo consumo en exceso podría suponer un riesgo para el desarrollo de 

enfermedades cardiovasculares (Lock et al., 2008). Sin embargo, el uso de suplementos 

ricos en 18:2n-6 no suele aumentar la concentración de este AG poliinsaturado en la 

leche, probablemente por un aumento en la extensión de su BH ruminal en respuesta 

a su mayor aporte con la dieta (Glasser et al., 2008; Shingfield et al., 2008a). 

Además, al contrario de lo que sucede con frecuencia en el ganado vacuno en 

condiciones similares, el rendimiento productivo de las ovejas no se ve perjudicado por 

el aporte de este tipo de aceites y el porcentaje graso de su leche no solo no 

disminuye, sino que incluso puede aumentar (Pulina et al., 2006; Hervás et al., 2008).



Revisión bibliográfica 

14 

 
Figura 2. Posibles rutas metabólicas del 18:2n-6 en el rumen. Las flechas con línea continua resaltan las principales rutas de biohidrogenación, 
mientras que las flechas con línea discontinua describen la formación de metabolitos minoritarios (extraído de Shingfield et al., 2010).
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A pesar de todos estos efectos positivos de la suplementación con aceites ricos 

en 18:2n-6, es de rigor puntualizar que, en algunos casos, también se observan 

concentraciones de trans-10 18:1 relativamente altas (Gómez-Cortés et al., 2008; 

Shingfield et al., 2010), cuyas implicaciones para la salud humana aún no están claras 

(Shingfield et al., 2008b). En el vacuno, los aumentos progresivos del contenido lácteo 

de este isómero 18:1 se acompañan con frecuencia de reducciones del trans-11 18:1 y, 

consecuentemente, del cis-9 trans-11 18:2 (Chilliard et al., 2007). Sin embargo, ante 

condiciones similares, los pequeños rumiantes se muestran menos propensos al 

desarrollo de estas alteraciones y niveles altos de trans-10 18:1 suelen ir acompañados 

de aumentos muy notables del VA y RA (Hervás et al., 2008; Toral et al., 2010a). 

3.2. Aceites ricos en ácido linolénico 

El ácido linolénico (cis-9 cis-12 cis-15 18:3) es el principal sustrato para la BH 

ruminal en los rumiantes que reciben forrajes frescos, al ser su AG más abundante 

(Chilliard et al., 2007). El metabolismo ruminal del 18:3n-3 guarda ciertas similitudes 

con el del 18:2n-6. Así, de acuerdo con la mayor parte de estudios, la BH del ácido 

linolénico comienza con la isomerización del doble enlace en posición cis-12, para dar 

lugar a cis-9 trans-11 cis-15 18:3, y continúa con la hidrogenación sucesiva de los 

dobles enlaces en posición cis-9 y cis-15, que llevan a la formación de trans-11 cis-15 

18:2 y trans-11 18:1, respectivamente (Jenkins et al., 2008). Este último es el principal 

metabolito de la BH del 18:3n-3 que se acumula en el rumen y se transfiere a los 

productos derivados (Glasser et al., 2008; Shingfield et al., 2010). La última etapa de la 

BH finaliza con la formación de 18:0.  

Como en el caso del 18:2n-6, durante años, las limitaciones en las técnicas de 

cromatografía dificultaron la descripción de otros metabolitos intermedios del 18:3n-3, 

lo que llevó a la simplificación en exceso de su proceso de BH (Jenkins et al., 2008). Sin 

embargo, actualmente se sabe que estas rutas metabólicas son mucho más complejas 

y que este proceso da lugar a la formación de numerosos metabolitos intermedios 

18:3, 18:2 y 18:1, incluyendo el trans-10 18:1 (ver Figura 3; Wasowska et al., 2006; 

Shingfield et al., 2010). 
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Figura 3. Posibles rutas metabólicas del 18:3n-3 en el rumen. Las flechas con línea continua resaltan las principales rutas de biohidrogenación, 
mientras que las flechas con línea discontinua describen la formación de metabolitos minoritarios (extraído de Shingfield et al., 2010). 
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En la mayor parte de los casos, la BH ruminal del 18:3n-3 varía entre un 85 y 

100% del total ingerido, lo que explica su baja tasa de transferencia a la leche (Doreau 

y Ferlay, 1994; Shingfield et al., 2008a). Sin embargo, la suplementación de la dieta con 

aceites ricos en ácido linolénico, como el de lino, resulta muy útil para modificar la 

concentración láctea de los isómeros 18:1 y 18:2. En este sentido, aunque algunos 

estudios han indicado que los aceites ricos en 18:2n-6 aumentan el RA en la leche en 

mayor medida que los aceites ricos en 18:3n-3, esto es algo en lo que no todos los 

resultados coinciden (ver el metanálisis de Glasser et al., 2008). Por otra parte, 

tampoco es extraño que ambos puedan dar lugar a aumentos similares en el contenido 

de RA en los productos finales, ya que este AG deriva fundamentalmente de su síntesis 

endógena en los tejidos a partir de VA, gracias a la acción de la enzima ∆9-desaturasa, y 

no de la captación del RA de origen ruminal (Palmquist et al., 2005; Bichi et al., 2012). 
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Este trabajo de tesis de máster se llevó a cabo con el objetivo de investigar el 

efecto de la presencia de taninos en la dieta, concretamente en el heno de esparceta 

(Onobrychis viciifolia), sobre: 

1) la biohidrogenación ruminal de los ácidos grasos 18:2n-6 y 18:3n-3, con 

especial atención a la acumulación de determinados metabolitos intermedios. 

2) la fermentación ruminal. 

 

El estudio se realizó in vitro, mediante cultivos discontinuos de microorganismos 

ruminales y la técnica de producción de gas. Como donantes del inóculo microbiano 

para las incubaciones se utilizaron ovejas canuladas en el rumen. 

Los sustratos incubados fueron dos henos de leguminosas: uno de alfalfa (i. e., 

libre de taninos) y otro de esparceta (que es muy similar al anterior en cuanto a su 

composición química pero contiene taninos condensados). De cada uno de estos henos 

se dispuso de dos muestras independientes. 

Por otra parte, los henos se enriquecieron con aceite de girasol (como fuente de 

ácido linoleico) o aceite de lino (como fuente de ácido linolénico) para favorecer el 

cumplimiento de la primera parte de los objetivos. Ahora bien, dada la diferente 

composición lipídica de los aceites de girasol y de lino, los datos se analizaron por 

separado para cada uno de ellos, ya que los resultados no serían comparables. Por lo 

tanto, el diseño no consistió en un factorial 2 × 2. 

Una vez finalizadas las incubaciones in vitro, la parte analítica incluyó 

determinaciones de taninos, del perfil lipídico del contenido ruminal (centrado 

fundamentalmente en metabolitos de interés como 18:0, trans-11, trans-10 y cis-9 

18:1, cis-9 trans-11 CLA, trans-11 cis-15 18:2, 18:2n-6 y 18:3n-3) y de algunos 

parámetros indicativos de la fermentación en el rumen (e. g., producción de gas, 

concentración de amoniaco, desaparición de materia orgánica, etc.). 
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1. CULTIVOS DISCONTINUOS DE MICROORGANISMOS RUMINALES Y TÉCNICA DE 
PRODUCCIÓN DE GAS 

Todos los procedimientos experimentales se llevaron a cabo en la Nave de 

Experimentación de Rumiantes del Instituto de Ganadería de Montaña (IGM) y fueron 

realizados de acuerdo con el Real Decreto 53/2013 para la protección de animales 

utilizados para experimentación y otros fines científicos. 

1.1. Sustratos de incubación 

En los cultivos in vitro se utilizaron dos muestras de heno de alfalfa (el mismo 

que se administraba a los animales) y otras dos de esparceta. Ambos henos procedían, 

respectivamente, del IGM de León y del Centro de Investigación y Tecnología 

Agroalimentaria (CITA) de Aragón. Las muestras se secaron en una estufa de aire 

forzado (P-Selecta, España) a 45 ºC durante 48 horas y, posteriormente, se molieron a 

1 mm de tamaño en un molino centrífugo (Retsch ZM 1000, Alemania). 

1.2. Animales donantes del inóculo ruminal 

Como donantes del inóculo ruminal para las incubaciones in vitro se utilizaron 3 

ovejas adultas, no gestantes ni en lactación, provistas de una cánula ruminal y con un 

peso vivo medio de 59,4 ± 4,77 kg, que pertenecían al rebaño experimental del IGM. 

Los animales se alojaron en jaulas individuales y recibieron, durante 18 días y en 

una sola toma diaria (aprox. a las 9.00 h), una cantidad restringida de heno de alfalfa 

(48 g MS/kg PV0,75) que correspondía a aprox. 1 mantenimiento (INRA, 2007). El heno 

que no fue consumido voluntariamente, que fue siempre una proporción pequeña, se 

introdujo a través de la cánula alrededor de las 19.00 h. Todos los animales 

dispusieron en todo momento de agua fresca y de un bloque corrector vitamínico-

mineral (Tegablock; Inatega, España). 

Los días de recogida del inóculo ruminal, los animales se mantuvieron en ayuno 

desde la tarde anterior. Aproximadamente 1 h antes de dicha recogida (i. e., desde las 

8.30 h) se evitó también el consumo de agua. 
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1.3. Procedimientos 

Tras 15 y 17 días de consumo de la dieta (i. e., del heno de alfalfa), se realizaron 

dos incubaciones in vitro (tandas) utilizando la técnica de producción de gas (Hervás et 

al., 2005). El objetivo de estas incubaciones fue examinar el perfil lipídico del 

contenido ruminal a distintos tiempos de incubación (tras 0, 6 y 24 h), así como 

diferentes parámetros indicativos de la fermentación en el rumen (tras 24 h). 

Para el estudio de los parámetros de la fermentación ruminal se utilizaron un 

total de 56 botellas [(2 tandas × 2 aceites × 2 sustratos × 2 réplicas/sustrato × 3 

botellas/réplica) + (2 tandas × 1 blanco × 3 botellas/blanco) + (2 tandas × 1 botella de 

“tiempo 0”)].  

Por su parte, para estudiar la biohidrogenación ruminal de los ácidos grasos se 

utilizaron otras 48 botellas (2 tandas × 2 aceites × 2 sustratos × 2 réplicas/sustrato × 1 

botella/réplica × 3 tiempos). 

Antes de iniciar las incubaciones, se preparó el medio de cultivo (Goering y Van 

Soest, 1970; ver Tabla 1), el cual contenía soluciones tampón, reductora, de 

macrominerales, de microminerales y de resazurina. La solución final se mantuvo en 

un baño de agua a 39,5 ºC, gaseando con CO2, durante aproximadamente 60 minutos 

(para asegurar su reducción). 

Mientras tanto, se recolectó el líquido ruminal a través de las cánulas de las tres 

ovejas (la recolección se llevó a cabo antes de la administración de la comida de la 

mañana). Cada uno de los 3 inóculos se filtró con dos capas de gasa y se transportó 

inmediatamente al laboratorio, procurando conservar en lo posible sus condiciones de 

anaerobiosis y temperatura. Una vez en el laboratorio, los inóculos se volvieron a 

filtrar a través de una membrana de nailon (400 µm; Fisher-Scientific S.L., España) y en 

condiciones de anaerobiosis, y una mezcla proporcional de los tres inóculos se 

combinó con el medio de cultivo en una proporción 1:4 (v/v; fluido ruminal/medio de 

cultivo). 

  



Material y métodos 

27 

Tabla 1. Composición química del medio de cultivo. 

Soluciones 
(compuestos químicos) 

Solución final 
(ml/l) 

Concentración parcial 
(/l) 

Solución tampón  208,1  
NH4HCO3  (g) 

 
4,00 

NaHCO3  (g) 35,00 
Solución reductora  0,1  

Cisteína-HCl (g) 

 

6,25 
NaOH 1M (ml) 40,00 
Na2S·9 H2O (g) 6,25 

Solución de macrominerales  208,1  
Na2HPO4·12 H2O  (g) 

 

9,45 
KH2PO4 (g) 6,20 
MgSO4·7 H2O (g) 0,60 

Solución de microminerales  62,4  
CaCl2·2 H2O (g) 

 

1,32 
MnCl2·4 H2O (g) 1,00 
CoCl2·6 H2O (g) 0,10 
FeCl3·6 H2O (g) 0,80 

Solución de resazurina  1,04  
Resazurina (g)  0,01 

Para la suplementación de los sustratos con los aceites, que se realizó justo antes 

de cada incubación, los aceites se disolvieron en etanol (1 g de aceite en 20 ml de 

etanol al 96%) y se sonicaron a 100 A durante 3 ciclos de 30 segundos 

(Ultraschallprozesor UP200H, Alemania). Después, se dosificaron 200 µl de la solución 

correspondiente en las botellas de incubación. A los blancos se les añadió únicamente 

el etanol. 

En cada una de las botellas de incubación de 125 ml, en las que ya se habían 

pesado 500 mg de cada sustrato y dosificado un 2% de aceite de girasol o lino (según 

correspondía), se añadieron 50 ml de la mezcla (10 ml de fluido ruminal y 40 ml de 

medio de cultivo). A continuación, estas se cerraron herméticamente con tapones de 

caucho y anillas de aluminio y se introdujeron en un incubador (Memmert UFP 500, 

Alemania) a 39,5 ºC. 

1.3.1. Parámetros indicativos de la fermentación ruminal 

Durante la incubación, la producción de gas se registró a intervalos regulares (6, 

12 y 24 horas post-incubación) mediante un transductor de presión (Gems Sensors 

2200, Reino Unido) conectado a una pantalla (Data Track Process Instruments 223, 

Reino Unido). La presión almacenada (psi) se midió pinchando cada botella con una 
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aguja de 0,6 mm de diámetro (Sterican B. Braun, España) conectada al transductor. 

Posteriormente, el transductor se retiraba de la aguja y esta se mantenía insertada 

unos segundos en cada botella para permitir la salida de todo el gas acumulado en la 

misma. Tras cada lectura, las botellas se agitaban individualmente y se volvían a 

depositar en el incubador hasta la próxima lectura. 

A partir de los valores de presión obtenidos, corregidos tanto para la cantidad de 

materia orgánica (MO) incubada como para la producción de gas de los blancos, se 

estimó el volumen de gas producido mediante la utilización de una ecuación de 

regresión lineal entre el volumen y la presión obtenida previamente a partir de 

numerosas medidas simultáneas de ambos parámetros (n= 17 790; Hervás et al., 

2005). 

Finalizada la incubación in vitro (i. e., 24 horas post-incubación), las botellas se 

sumergieron en agua y hielo picado para detener la fermentación, y se tomaron 

muestras para analizar una serie de parámetros indicativos de la fermentación 

ruminal. 

En cada botella, se midió el pH mediante un pH-metro provisto de una sonda de 

vidrio (Crison Instruments GLP-22, España) y se tomaron 8 ml en tubos de 10 ml de 

capacidad que posteriormente se centrifugaron (3000 rpm, 10 min, 4 ºC; Eppendorf 

5415C, España) para eliminar cualquier sólido en suspensión. Cuatro ml del 

sobrenadante de cada muestra se acidificaron con 4 ml de HCl 0,2 N y se almacenaron 

a -30 ºC hasta la determinación de la concentración de amoniaco. Así mismo, se 

recogieron 0,8 ml del sobrenadante de cada muestra en tubos Eppendorf de 2 ml de 

capacidad, se mezclaron con 0,5 ml de una solución desproteinizante (20 g/l de ácido 

metafosfórico disueltos en 0,5 ml de HCl 0,5 N, junto con 4 g/l de ácido crotónico) y se 

congelaron a -30 ºC hasta el análisis de ácidos grasos volátiles (AGV). 

Una vez recogidas las muestras para amoniaco y AGV, el resto del contenido de 

cada botella se filtró utilizando crisoles de porosidad 1 (100-160 µm; Pyrex, Reino 

Unido), con la ayuda de una bomba de vacío (KNF Neuberger VDE 0530, Alemania) y 

un baño de ultrasonidos (P-Selecta, España) cuando fue necesario. La desaparición de 

materia seca (DMS) se estimó introduciendo los crisoles en una estufa de aire forzado 

a 103 ºC durante 24 horas. Sobre el residuo se analizó el contenido de fibra neutro 
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detergente (Van Soest et al., 1991) para estimar la digestibilidad verdadera in vitro 

(ivDV; Frutos et al., 2004a). 

1.3.2. Biohidrogenación ruminal 

La fermentación de las 48 botellas destinadas a estudiar la biohidrogenación 

ruminal de los ácidos grasos se detuvo tras 0, 6 y 24 horas post-incubación. Para ello, 

como se ha señalado previamente, estas se sumergieron en agua y hielo picado, se 

congelaron a -80 ºC y, posteriormente, se liofilizaron (FTS LyoStar, Estados Unidos). El 

residuo resultante se homogenizó y se conservó a -80 ºC hasta la determinación de su 

perfil lipídico. 

2. ANÁLISIS QUÍMICOS 

2.1. Alimentos 

El análisis químico convencional de los alimentos, heno de alfalfa y heno de 

esparceta, se realizó en los laboratorios del IGM acreditados (Norma UNE-EN ISO/IEC 

17025:2005) por la Entidad Nacional de Acreditación (Acreditación ENAC N.º 

907/LE1609). 

El contenido de materia seca (MS) se determinó por desecación en una estufa de 

aire forzado (P Selecta, España) a 103 ºC hasta peso constante (ISO 6496:1999). 

Posteriormente, la muestra seca se quemó en un horno-mufla (Hobersal 12-PR/400, 

España) a 550 ºC durante 6 horas para determinar el contenido de cenizas (ISO 

5984:2002). 

El análisis de nitrógeno (N) se llevó a cabo en un autoanalizador Kjeltec (Foss 

KjeltecTM 2400, Suecia) y sulfato potásico y sulfato cúprico como catalizadores (ISO 

5983-2:2009). El contenido de proteína bruta (PB) se obtuvo multiplicando el valor de 

N de cada muestra por el factor de conversión 6,25 (PB = 6,25 × N). 

Los contenidos de fibra neutro y ácido detergente (FND y FAD) y el de lignina 

ácido detergente (LAD) se determinaron secuencialmente en un analizador Ankom2000 

(Ankom Technology Corp., Estados Unidos), de acuerdo con la metodología descrita 

por Van Soest et al. (1991) y las adaptaciones realizadas por Ankom 

(https://ankom.com). 
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El contenido de extracto etéreo (EE) se determinó mediante el sistema Ankom 

(Ankom Filter Bag Technology) y la técnica descrita por la AOCS (2008; Procedure Am 

5-04). 

El contenido de taninos totales (TT) en los henos de alfalfa y de esparceta se 

estimó mediante la técnica del Folin-Ciocalteu descrita por Makkar (2003b). Para ello, 

en primer lugar se eliminaron los pigmentos y los compuestos lipídicos que pudiesen 

contener las muestras mediante lavados consecutivos con una solución de éter 

dietílico con un 1% de ácido acético. Posteriormente, el residuo se secó en una estufa 

de aire forzado a 40 ºC durante 2 horas y se realizaron dos extracciones consecutivas 

de los fenoles totales mediante la adición de 10 ml de acetona al 70% en cada una de 

ellas. A continuación, se tomó una alícuota de cada extracción para obtener un único 

extracto con el que se llevarían a cabo los análisis. Al extracto obtenido se le adicionó 

el reactivo Folin-Ciocalteu y una solución de bicarbonato sódico al 20% para 

proporcionar un medio alcalino. Se leyó la absorbancia de las muestras en un 

espectrofotómetro de doble haz (Shimadzu UV-1603, Japón) a 725 ηm y la cantidad de 

fenoles totales se calculó a partir de una recta de calibración con ácido tánico (Merck, 

Alemania) como estándar de referencia (Makkar, 2003b). Para la determinación de los 

fenoles simples, el extracto que incluía los fenoles totales se sometió a un tratamiento 

con polivinilpolipirrolidona (PVPP; Sigma-Aldrich, Alemania) que provocó la 

precipitación de los taninos, quedando en el sobrenadante los fenoles simples. El 

contenido de estos se determinó de la misma forma descrita anteriormente para los 

fenoles totales. La diferencia entre los valores de fenoles antes y después del 

tratamiento con PVPP corresponde al contenido de TT de la muestra (expresado en 

equivalentes de ácido tánico). 

2.2. Amoniaco y ácidos grasos volátiles 

La determinación de la concentración de amoniaco se realizó por colorimetría de 

acuerdo con el método del salicilato descrito por Reardon et al. (1966). 

La concentración de AGV (acético, propiónico, butírico, valérico, isobutírico e 

isovalérico) se analizó por cromatografía de gases (Carro et al., 1999), utilizando ácido 

crotónico (Merck, Alemania) como patrón interno. Para ello, las muestras se 

descongelaron a 4 ºC, se centrifugaron (12 000 rpm, 10 min, 4 ºC) y el sobrenadante se 
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recogió en viales de cromatografía hasta el momento de su análisis en la Universidad 

de León. 

2.3. Perfil de ácidos grasos 

El perfil de ácidos grasos del contenido digestivo se analizó mediante 

cromatografía de gases siguiendo el método descrito por Shingfield et al. (2003). 

La preparación de los ésteres metílicos de ácidos grasos (FAME) se realizó 

siguiendo un procedimiento de extracción-transesterificación con cloroformo y ácido 

sulfúrico mezclado con metanol, incluyendo cis-12 13:1 (Larodan Fine Chemicals, 

Suecia) como estándar interno. Los lípidos de 200 mg de muestra liofilizada se 

extrajeron con 4 ml de una mezcla de hexano:2-propanol (3:2 v/v), tras el ajuste de pH 

de la digesta a 2 con HCl 2 N. Posteriormente, el extracto orgánico se evaporó bajo 

corriente de N a 50 ºC. A continuación, los lípidos disueltos en 2 ml de hexano se 

metilaron (i. e., se transformaron en FAME) mediante una transesterificación ácido-

básica con metóxido sódico 0,5 M en metanol, de 5 minutos a 20 ºC, seguida de una 

reacción con ácido sulfúrico al 1% en metanol a 50 ºC durante 30 minutos. 

Para el análisis de los FAME se usó un cromatógrafo de gases (Agilent 6890N, 

Estados Unidos) equipado con un inyector automático, un detector de ionización de 

llama (FID) y una columna capilar CP-Sil (100 m × 0,25 mm; 0,20 µm; Varian, Holanda), 

utilizando hidrógeno como gas portador, aire sintético e hidrógeno como combustible 

y helio como gas auxiliar. 

El perfil de los ácidos grasos metilados (FAME) en 2 µl de muestra líquida 

inyectada con un split de 1:50, se determinó usando el gradiente de temperatura 

descrito en Shingfield et al. (2003). Para conseguir un mejor análisis de los isómeros 

18:1 se realizó otro análisis en condiciones isotermas a 170 ºC (Shingfield et al., 2003). 

Los picos cromatográficos de las distintos FAME fueron identificados basándose en una 

mezcla de estándares comerciales (Larodan Fine Chemicals, Suecia; Nu-Chek Prep Inc., 

Estados Unidos; Sigma-Aldrich, España) y por comparación con muestras verificadas 

previamente mediante cromatografía de gases y espectrometría de masas (GC-MS) de 

los derivados 4,4-dimetiloxazolínicos (DMOX; e. g., Toral et al., 2010b). 
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Los AG identificados, de acuerdo con el orden correspondiente a los tiempos de 

retención, fueron los siguientes: 12:0, 13:0 iso, 13:0 anteiso, 13:0, 14:0 iso, cis-12 13:1 

(estándar interno), 14:0, 15:0 iso, 15:0 anteiso, 15:0, trans 15:1, 16:0 iso, 16:0, 17:0 iso, 

cis-6+7 16:1, cis-9 16:1, 17:0 anteiso, 3,7,11,15-tetrametil-16:0, cis-14 16:1, 17:0, 18:0 

iso, 18:0, trans-4 18:1, trans-5 18:1, trans-6+7+8 18:1, trans-9 18:1, trans-10 18:1, 

trans-11 18:1, trans-12 18:1, trans-13+14 18:1, cis-9 18:1, cis-10 + trans-15 18:1, cis-11 

18:1, cis-12 18:1, cis-13 18:1, trans-16 + cis-14 18:1, cis-15 18:1, trans-11 trans-15 18:2 

(+ 19:0), trans-9 trans-12 18:2, 18:2 (geometría de los dobles enlaces no determinada), 

cis-9 trans-12 18:2, cis-16 18:1, trans-9 cis-12 18:2, trans-11 cis-15 18:2, cis-9 cis-12 

18:2, 20:0, 18:3n-6, trans-9 trans-12 cis-15 + cis-9 cis-12 trans-15 18:3, cis-9 trans-12 

cis-15 18:3, trans-9 cis-12 cis-15 18:3, suma de isómeros 20:1 no resueltos, 18:3n-3 (+ 

cis-11 20:1), cis-9 trans-11 CLA, trans-9 cis-11 CLA, trans-10 cis-12 CLA, 21:0, trans-11 

trans-13 CLA, suma de trans-8 trans-10, trans-9 trans-11 y trans-10 trans-12 CLA no 

resueltos, cis-9 trans-11 cis-15 18:3, 22:0 20:3n-3, cis-13 22:1, 23:0, 24:0, 22:3n-6, cis-

15 24:1, 10-oxo-18:0 y 13-oxo-18:0. En la Figura 4 se muestra un ejemplo de una parte 

de un cromatograma y de la identificación de los diferentes picos. 

 
Figura 4. Sección parcial de un cromatograma obtenido a partir de una muestra de 
contenido ruminal. Se indican los tiempos de retención y la identificación de los ácidos 
grasos.  
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Para la preparación de los FAME de los henos y los aceites se siguió el 

procedimiento de extracción y transesterificación en una etapa utilizando cloroformo 

(Sukhija y Palmquist, 1988) y 20 ml/l de ácido sulfúrico en metanol (Shingfield et al., 

2003). 

3. ANÁLISIS ESTADÍSTICOS 

El análisis estadístico de los resultados, por separado para cada aceite, tal y como 

se explica en el capítulo previo, se llevó a cabo con el procedimiento MIXED del 

programa estadístico SAS (versión 9.4; SAS Inst. Inc., Estados Unidos), incluyendo en el 

modelo el efecto fijo del tipo de sustrato (alfalfa vs. esparceta). Dado que el diseño 

experimental no contemplaba 4 réplicas estrictas sino que, como ya se ha indicado, 

había 2 réplicas de cada sustrato más otras 2 de las tandas de incubación, se consultó 

con la Dra. Laura Barrios del Departamento de Bioestadística del CSIC la mejor manera 

de incluirlas en el modelo. Siguiendo sus recomendaciones, la réplica de cada sustrato 

se anidó al propio sustrato y se consideró además la interacción entre este 

componente (i. e., réplica anidada al sustrato) y la tanda de incubación como efecto 

aleatorio (random). 

Se admitieron como diferencias estadísticamente significativas aquellas con un 

nivel de significación inferior al 5% (P<0,05), considerándose P<0,10 una tendencia a la 

significación. 
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1. COMPOSICIÓN QUÍMICA Y PERFIL LIPÍDICO DE LOS HENOS Y DE LOS ACEITES 

En la Tabla 2 se muestran los resultados relativos a la composición química de los 

dos henos estudiados (el de alfalfa y el de esparceta) y a su perfil lipídico. Como puede 

comprobarse, ambos aportaron prácticamente la misma cantidad de PB, aunque los 

contenidos de FND, FAD y LAD fueron numéricamente algo superiores en la esparceta. 

La principal diferencia entre ambos radicó, como se contemplaba en el diseño de la 

prueba, en el contenido de taninos totales, ya que estos fueron muy bajos en la alfalfa 

(0,5%, expresados en equivalentes de ácido tánico), con lo cual podría considerarse un 

forraje prácticamente sin taninos, y de 3,5% en la esparceta. 

Tabla 2. Composición química y perfil de ácidos grasos (media ± error estándar de la 
media) de los henos de alfalfa y esparceta utilizados como sustrato en los cultivos in 
vitro1. 

 Alfalfa Esparceta 

Composición química2 
(g/kg MS, excepto para la propia MS que es g/kg de materia fresca) 

MS 901 ± 5,2 925 ± 1,3 
MO 878 ± 0,7 914 ± 3,3 
PB 189 ± 3,6 182 ± 2,9 
FND 321 ± 19,7 377 ± 0,4 
FAD 247 ± 12,6 295 ± 0,8 

LAD 44 ± 2,6 54 ± 2,7 
EE 26 ± 2,4 23 ± 4,6 
TT3 5 ± 1,1 35 ± 1,0 

Perfil de ácidos grasos (g/100 g AG totales) 
12:0 0,7 ± 0,03 0,2 ± 0,01 

14:0 2,4 ± 0,12 1,9 ± 0,08 

16:0 25,0 ± 0,04 23,3 ± 0,54 

18:0 5,6 ± 0,15 4,2 ± 0,84 

cis-9 18:1 2,3 ± 0,17 3,6 ± 0,36 

cis-9 cis-12 18:2 14,0 ± 0,27 14,8 ± 0,52 

cis-9 cis-12 cis-15 18:3 41,1 ± 0,02 42,7 ± 2,34 

Resumen4   

SFA 41,1 ± 0,47 37,3 ± 1,35 

MUFA 3,5 ± 0,09 4,8 ± 0,39 

PUFA 55,3 ± 0,38 57,9 ± 1,74 
1
n=2. 

2
MS= materia seca; MO= materia orgánica; PB= proteína bruta; FND= fibra neutro detergente; FAD= 

fibra ácido detergente; LAD= lignina ácido detergente; EE= extracto etéreo; TT= taninos totales. 
3
Expresados en equivalentes de ácido tánico. 

4
SFA= ácidos grasos saturados; MUFA= ácidos grasos monoinsaturados; PUFA= ácidos grasos 

poliinsaturados. 
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En principio, el contenido de taninos de la esparceta estaría por debajo del nivel 

del 5% que en muchas publicaciones se ha considerado repetidamente como negativo 

para los rumiantes. Sin embargo, esta generalización deriva de trabajos realizados con 

especies de Lotus y resulta totalmente incorrecta cuando se aplica a otras especies 

vegetales (Mueller-Harvey, 2006). Además, en muy pocas ocasiones se tiene en cuenta 

que la falta de estandarización tanto del compuesto en el que se expresa la 

concentración (ácido tánico, quebracho, catequinas, taninos extraídos de la propia 

especie, etc.) como del método de análisis, hacen que las comparaciones de los 

contenidos no tengan ningún sentido biológico (Makkar, 2003a; Álvarez del Pino et al., 

2005). 

Por último en lo que al contenido de taninos se refiere, aunque en la 

comparación de los henos de alfalfa y esparceta la mayor parte de las diferencias se 

atribuyen al papel de estos metabolitos secundarios, no puede olvidarse que la 

composición de ambos forrajes es muy similar pero no idéntica. Por ende, las 

pequeñas variaciones en su composición química podrían tener cierta implicación en 

algunos de los parámetros estudiados.  

En cuanto al perfil lipídico, aunque la esparceta parece aportar ligeramente 

menos ácidos grasos saturados y más poliinsaturados, en general son bastante 

similares. 

No ocurre lo mismo con la composición de los aceites de girasol y de lino (ver 

Tabla 3), ya que a pesar de las concentraciones parejas de 14:0, 16:0 y 18:0, el primero 

contiene un 61% de ácido linoleico y un 25% de oleico, en tanto que el segundo, el de 

lino, se caracteriza básicamente por una elevada cantidad (55%) de linolénico, AG n-3 

que apenas se detecta en el girasol, junto con un 18% de oleico y un 16% de linoleico. 

Esta composición, relativamente constante en estos aceites (Glasser et al., 2008; Toral 

et al., 2010a), formaba parte del diseño experimental y explica el análisis separado de 

los tratamientos. 
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Tabla 3. Perfil de ácidos grasos de los aceites de girasol y lino. 

 Ac. girasol1 Ac. lino2 

Perfil de ácidos grasos (g/100 g AG totales) 
14:0 0,1 0,1 
16:0 6,5 6,0 
18:0 3,9 4,1 
cis-9 18:1 24,8 17,6 
cis-9 cis-12 18:2 61,3 15,6 
cis-9 cis-12 cis-15 18:3 <0,1 54,5 

1
Carrefour S.A. (España). 

2
Vandeputte Oléochemicals S.A. (Bélgica). 

2. BIOHIDROGENACIÓN RUMINAL DE LOS ÁCIDOS GRASOS 

Antes de nada, quizás conviene mencionar que el uso de una metodología 

basada en un sistema cerrado (como es la de los cultivos discontinuos de 

microorganismos ruminales) permite detectar con facilidad los efectos de los 

compuestos secundarios de las plantas. Esto ha resultado muy útil en la identificación 

de la acción de los taninos sobre diferentes parámetros de fermentación ruminal 

(Getachew et al., 2000; Frutos et al., 2004a; Rodríguez et al., 2011). Sin embargo, 

según la experiencia del equipo de investigación implicado en la realización de este 

trabajo, el efecto de los taninos sobre el proceso de BH ruminal no resulta más patente 

en los estudios in vitro que en los in vivo (e. g., Benhissi et al., 2013b; Toral et al., 2013; 

Carriño et al., 2015). De todas formas, es importante tener siempre en consideración 

que los estudios in vitro resultan de enorme utilidad en el trascurso de la investigación 

(para screening, examen de mecanismos concretos de acción, etc.) pero sus resultados 

necesitan, en la mayor parte de los casos, ser corroborados después en pruebas in 

vivo. 

En las Tablas 4 y 5 se presenta la información relativa al perfil de AG del 

contenido ruminal, con especial atención al de aquellos de 18 carbonos. Parte de esta 

información se muestra también en gráficas (Figuras 5 y 6) para facilitar su 

comprensión. 
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Tabla 4. Concentraciones de diversos ácidos grasos de cadena larga del contenido 
ruminal (g/100 g AG totales) tras 0, 6 y 24 h de incubación con aceite de girasol. 
 Tiempo (h) Alfalfa Esparceta eed1 P2 

cis-9 cis-12 cis-15 18:3 0 7,98 8,74 0,935 ns 
 6 6,59 7,20 0,311 ns 
 24 3,22 4,57 0,789 ns 
cis-9 cis-12 18:2 0 35,95 38,73 3,149 ns 
 6 21,01 24,75 0,935 * 
 24 4,98 8,44 1,403 t 
trans-11 cis-15 18:2 0 0,08 0,07 0,020 ns 
 6 0,63 0,50 0,032 * 
 24 0,36 0,62 0,077 * 
cis-9 trans-11 18:2 0 0,09 0,08 0,015 ns 
 6 0,61 0,61 0,080 ns 
 24 0,49 0,61 0,078 ns 
CLA total3 0 0,34 0,26 0,048 ns 
 6 1,36 1,26 0,149 ns 
 24 1,84 2,19 0,143 t 
trans-11 18:1 0 0,79 0,54 0,214 ns 
 6 6,80 5,44 0,822 ns 
 24 11,59 12,89 0,564 t 
trans-10 18:1 0 0,07 0,06 0,016 ns 
 6 0,29 0,26 0,044 ns 
 24 0,53 0,66 0,108 ns 
cis-9 18:1 0 14,70 15,90 1,181 ns 
 6 10,06 11,48 0,607 t 
 24 5,82 8,16 1,140 ns 
18:0 0 14,00 11,61 2,235 ns 
 6 21,40 19,60 0,715 t 
 24 35,00 26,42 5,234 ns 
10-oxo-18:0 0 0,08 0,08 0,030 ns 
 6 0,14 0,13 0,018 ns 
 24 0,40 0,28 0,025 ** 
∑OBCFA3 0 3,21 3,09 0,473 ns 
 6 3,99 3,89 0,427 ns 
 24 5,90 5,76 0,370 ns 
∑SFA3 0 36,18 32,24 3,641 ns 
 6 45,73 42,46 1,768 ns 
 24 62,51 53,26 4,493 ns 
∑MUFA3 0 18,17 18,99 1,028 ns 
 6 23,18 22,53 1,044 ns 
 24 25,63 29,40 2,232 ns 
∑PUFA3 0 45,37 48,53 2,790 ns 
 6 30,70 34,66 0,858 * 
 24 11,28 16,76 2,430 t 

1
eed= error estándar de la diferencia. 

2
Probabilidad: ns, no significativo (P>0,10); t, P<0,10; *, P<0,05; **, P<0,01. 

3
CLA= ácido linoleico conjugado; OBCFA= ácidos grasos impares y ramificados; SFA= ácidos grasos 

saturados (n= 25); MUFA= ácidos grasos monoinsaturados (n= 30); PUFA= ácidos grasos 
poliinsaturados(n= 23). 
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Tabla 5. Concentraciones de diversos ácidos grasos de cadena larga del contenido 
ruminal (g/100 g AG totales) tras 0, 6 y 24 h de incubación con aceite de lino. 

 Tiempo (h) Alfalfa Esparceta eed1 P2 

cis-9 cis-12 cis-15 18:3 0 36,76 38,55 0,595 * 
 6 20,97 24,09 0,622 ** 
 24 5,33 7,12 1,787 ns 
cis-9 cis-12 18:2 0 12,16 12,22 0,180 ns 
 6 7,94 8,71 0,286 t 
 24 2,89 3,29 0,776 ns 
trans-11 cis-15 18:2 0 0,08 0,08 0,008 ns 
 6 1,71 1,39 0,208 ns 
 24 1,77 2,04 0,218 ns 
cis-9 trans-11 18:2 0 0,13 0,11 0,015 ns 
 6 0,32 0,32 0,057 ns 
 24 0,14 0,20 0,031 ns 
CLA total3 0 0,40 0,32 0,042 ns 
 6 1,20 1,04 0,210 ns 
 24 1,25 1,32 0,081 ns 
trans-11 18:1 0 0,57 0,58 0,026 ns 
 6 5,41 4,43 0,180 ** 
 24 8,55 10,10 0,587 t 
trans-10 18:1 0 0,06 0,05 0,012 ns 
 6 0,23 0,25 0,039 ns 
 24 0,45 0,49 0,087 ns 
cis-9 18:1 0 10,31 11,08 0,141 ** 
 6 7,57 8,86 0,354 * 
 24 4,61 5,36 0,664 ns 
18:0 0 13,35 12,87 0,533 ns 
 6 22,35 20,62 1,166 ns 
 24 35,34 31,72 6,286 ns 
10-oxo-18:0 0 0,09 0,08 0,007 ns 
 6 0,13 0,12 0,019 ns 
 24 0,32 0,28 0,044 ns 
∑OBCFA3 0 3,50 3,28 0,127 ns 
 6 4,25 3,75 0,168 * 
 24 6,06 5,89 0,653 ns 
∑SFA3 0 35,76 33,55 0,700 * 
 6 46,00 42,52 0,797 * 
 24 62,95 58,44 4,897 ns 
∑MUFA3 0 13,40 14,12 0,101 ** 
 6 19,48 19,83 0,553 ns 
 24 23,06 25,08 2,165 ns 
∑PUFA3 0 50,58 52,08 0,704 ns 
 6 34,02 37,22 0,440 ** 
 24 13,09 15,69 2,794 ns 

1
eed= error estándar de la diferencia. 

2
Probabilidad: ns, no significativo (P>0,10); t, P<0,10; *, P<0,05; **, P<0,01. 

3
CLA= ácido linoleico conjugado; OBCFA= ácidos grasos impares y ramificados; SFA= ácidos grasos 

saturados (n= 25); MUFA= ácidos grasos monoinsaturados (n= 30); PUFA= ácidos grasos 
poliinsaturados(n= 23). 
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Figura 5. Evolución (horas 0, 6 y 24) de las concentraciones (g/100 g AG totales) de 
diversos AG en las incubaciones de alfalfa (línea continua) y esparceta (línea 
discontinua) suplementadas con un 2% de aceite de girasol. 
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Figura 6. Evolución (horas 0, 6 y 24) de las concentraciones (g/100 g AG totales) de 
diversos AG en las incubaciones de alfalfa (línea continua) y esparceta (línea 
discontinua) suplementadas con un 2% de aceite de lino. 
  

0

5

10

15

20

25

30

35

40

45

0 6 24

cis-9 cis-12 cis-15 18:3

0

2

4

6

8

10

12

14

0 6 24

cis-9 cis-12 18:2

0

1

2

3

0 6 24

trans -11 cis-15 18:2

0,0

0,1

0,2

0,3

0,4

0 6 24

cis-9 trans -11 18:2

0

2

4

6

8

10

12

0 6 24

trans -11 18:1

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0 6 24

trans -10 18:1

0

2

4

6

8

10

12

0 6 24

cis-9 18:1

0

5

10

15

20

25

30

35

40

0 6 24

18:0

0,0

0,1

0,2

0,3

0,4

0 6 24

Tiempo (h)

10-oxo-18:0

0,0

0,5

1,0

1,5

0 6 24

Tiempo (h)

CLA total

**

**

t

**
t

*

*



Resultados y discusión 

44 

Aunque en el cromatograma se integraron e identificaron otros muchos AG (n= 

78, como se señala en el capítulo de Material y Métodos), en las tablas se presenta un 

perfil parcial que corresponde a aquellos de mayor relevancia en relación con los 

objetivos del trabajo. Por otro lado, en este capítulo no se va a hacer ninguna mención 

al efecto de la suplementación con aceites de girasol y de lino puesto que esto no se 

contempla en el diseño experimental de la prueba. 

Como puede observarse en la Tabla 4, cuando la dieta se suplementó con aceite 

de girasol, la concentración de LA a las 6 y 24 horas de incubación fue más alta en las 

incubaciones de esparceta (P<0,05 y P<0,10). Sin embargo, no se observaron 

diferencias significativas en el LNA (P>0,10). Prácticamente lo contrario se detectó en 

la dieta suplementada con aceite de lino; es decir, que los porcentajes de LNA fueron 

superiores en la esparceta (P<0,05) pero no hubo variaciones significativas en los de 

LA. Si se tiene en cuenta la composición lipídica de uno y otro aceite, parece que el 

efecto inhibidor de la BH, ejercido posiblemente por los taninos de la esparceta, sería 

más patente sobre el AG mayoritario de cada suplemento (LA en el aceite de girasol y 

LNA en el de lino). Sin embargo, es importante no perder de vista el hecho de que en 

cada momento (0, 6 y 24 horas) se está tomando una “foto fija” de un proceso en 

evolución continua y, por lo tanto, cualquier resultado ha de ser considerado con 

precaución y dentro del marco general de la BH en su conjunto. En este sentido, por 

ejemplo, los cambios en el trans-11 cis-15 18:2 (uno de los principales metabolitos de 

la BH del LNA) solo fueron significativos en las incubaciones con girasol. 

En cualquier caso, todos estos resultados confirmarían la inhibición que causan 

los taninos sobre la BH de los AG insaturados de la dieta y justifican el estudio de su 

empleo para mejorar el perfil lipídico de la leche y la carne de los rumiantes (Toral et 

al., 2013; Vasta y Luciano, 2011; Girard et al., 2015). 

Aunque podría esperarse algo diferente, ni el cis-9 trans-11 18:2, ni el CLA total 

se vieron afectados significativamente por el tratamiento, aunque en las incubaciones 

con girasol a 24 h se observó una tendencia (P<0,10) a un mayor contenido en la 

esparceta. También este resultado coincidiría con el efecto negativo de los taninos 

sobre la BH ruminal e iría a favor del uso de forrajes con taninos para modificar el 

metabolismo de los AG insaturados en el rumen. 
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En lo que se refiere al trans-11 18:1, un AG especialmente deseable por su papel 

como precursor del cis-9 trans-11 CLA en la glándula mamaria o el músculo de los 

rumiantes o incluso en los tejidos de los consumidores (Palmquist et al., 2005; Bichi et 

al., 2012), la variación atribuible al efecto de los taninos de la esparceta no siguió un 

patrón regular. Así, los datos relativos a las incubaciones de 24 h con aceite de girasol 

(superiores en el caso de la esparceta; P<0,10) apoyarían la teoría sugerida por algunos 

autores de que los taninos inhiben fundamentalmente el último paso de la BH, 

aumentando así la acumulación de VA en el rumen y su flujo posterior al intestino 

(Vasta et al., 2009; Buccioni et al., 2011). Sin embargo, los datos relativos a las 

incubaciones de 6 y 24 h con aceite de lino, son un buen ejemplo de la controversia 

existente acerca del efecto de estos compuestos fenólicos sobre el último paso de la 

BH. En este sentido, a las 6 h los valores fueron significativamente inferiores en el caso 

de la esparceta (P<0.01) pero esta tendencia se invirtió a las 24 h, con valores más 

altos en este forraje (P<0,10). Sería arriesgado, de todas formas, negar que estos 

cambios estén relacionados con el efecto de los taninos sobre la BH, ya que una 

inhibición del último paso aumentaría su contenido pero una inhibición de los 

primeros pasos lo reduciría. Aumentos en las concentraciones de 18:3n-3 y 18:2n-6 

acompañados por descensos en las de RA y VA han sido observados, por ejemplo, por 

Addis et al. (2005) y Cabiddu et al. (2009) en sus experimentos sobre la zulla. También 

Turner et al. (2005) y Girard et al. (2015) señalaron resultados similares trabajando con 

Lotus corniculatus. 

Sorprendentemente, aunque cabría esperar que el efecto inhibidor de los 

taninos sobre la BH, ya sea sobre el proceso en su conjunto o sobre el último paso, se 

reflejara en una menor acumulación de 18:0 en el rumen, en este experimento no se 

observó una variación significativa (P>0,10). Así, a pesar de que los resultados 

numéricos sí parecen corroborar lo esperado (i.e., valores más bajos en las 

incubaciones de esparceta), estos solo alcanzaron el nivel de significación P<0.10 en las 

botellas detenidas a las 6 h y suplementadas con aceite de girasol. 

En cuanto al trans-10 18:1, cuyo papel no solo sobre la salud de los 

consumidores sino también sobre el rendimiento productivo de los animales aún es 

incierto (Shingfield et al., 2008b), no se observaron diferencias significativas en ningún 
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caso. Este isómero de los 18:1 tiende a aumentar en grandes proporciones con ciertas 

estrategias nutricionales basadas en la suplementación de la dieta por ejemplo con 

lípidos de origen marino (Boeckaert et al., 2008; Toral et al., 2010a) y puede, sobre 

todo en el vacuno, llegar a sobrepasar los contenidos de trans-11 18:1 (Chilliard et al., 

2007). Esta transición en la relación trans-11 18:1/trans-10 18:1 es un claro indicativo 

de una elevada perturbación del ambiente ruminal. 

En lo que se refiere al ácido oleico, otro isómero 18:1, su concentración fue 

siempre numéricamente superior en las incubaciones de esparceta, aunque en varios 

casos (con girasol a las 0 y 24 h y con lino a las 24 h) no alcanzara el nivel de 

significación P<0,10. De todas maneras, también el comportamiento de este AG 

apuntaría a un efecto inhibidor de los taninos de la esparceta que podría resultar 

beneficioso para modular el perfil lipídico de la carne y la leche de los rumiantes 

(Khiaosa et al., 2009; Vasta y Luciano, 2011). 

En las tablas se muestran asimismo los contenidos de 10-oxo-18:0, un metabolito 

procedente de la hidratación y oxidación de los AG de la dieta (una vía alternativa a la 

BH ruminal). Aunque este ácido graso solo suele aparecer en perfiles bastante 

completos, es un buen indicador de alteraciones en el rumen (Toral et al., 2010b, 

2012). En nuestras incubaciones, sin embargo, no se detectó ninguna variación 

significativa (P>0,10). 

Esto coincide con la ausencia de diferencias en la mayor parte de las 

concentraciones de ácidos grasos de cadena impar o ramificados (OBCFA), con la única 

excepción de las incubaciones con lino a las 6 h (P<0,01). El sumatorio de dichos 

OBCFA, que se han utilizado también como biomarcadores de la microbiota ruminal 

(Fievez et al., 2012), se presenta en las Tablas 4 y 5. Sin embargo, tanto sobre este 

∑OBCFA como sobre los de AG saturados, monoinsaturados y poliinsaturados (∑SFA, 

∑MUFA y ∑PUFA) es conveniente hacer la siguiente consideración: el hecho de ser 

sumatorios implica que muchos de sus AG individuales podrían estar mostrando un 

comportamiento antagónico, es decir que mientras unos aumentan, otros podrían 

mantenerse constantes o disminuir en respuesta al mismo factor de variación. Por lo 

tanto, los resultados deben interpretarse con precaución. Además, dichos sumatorios 

corresponden a todos los AG identificados y no solo a los de 18C. 
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Las variaciones en estos grandes grupos fueron más claras en las incubaciones 

con aceite de lino que en las de girasol. En estas últimas, el efecto beneficioso de la 

esparceta solo fue significativo en el caso de los PUFA. Por el contrario, cuando las 

dietas se suplementaron con LNA, el efecto positivo se detectó también (aunque no 

alcanzó siempre con una P<0,10) en valores menores de los SFA. El hecho de que el 

mayor contenido de los MUFA solo se detectara a las 0 h (P<0,10) no permite atribuirlo 

a los taninos de la esparceta, ya que a este tiempo el efecto conjunto de otros factores 

(por ejemplo, de las pequeñas diferencias en el perfil lipídico de los henos o en el del 

inóculo ruminal) podría tener un mayor peso. 

En cualquier caso, el menor contenido de SFA también debe tomarse con 

precaución, ya que a pesar de la generalización de su carácter potencialmente 

perjudicial para la salud, por el incremento del riesgo de enfermedad cardiovascular 

(Lock et al., 2008), esto solo es estrictamente aplicable al 12:0, 14:0 y 16:0, en tanto 

que otros como el 18:0 serían inocuos y, por ejemplo, el 4:0 es claramente beneficioso 

(Frutos et al., enviado). 

En conjunto, el estudio muestra la capacidad de la esparceta, posiblemente 

atribuible a su contenido de taninos, para modificar la BH ruminal de los ácidos grasos 

insaturados de la dieta, lo cual podría redundar en una mejorara del perfil lipídico de 

los productos finales (carne y leche). Sin embargo, los resultados observados in vitro 

no son tan prometedores como cabría esperar a priori o como se han conseguido con 

otras estrategias nutricionales. 

3. FERMENTACIÓN RUMINAL 

En las Tablas 6 y 7 se presentan los resultados de los parámetros de 

fermentación ruminal analizados tras 24 horas de incubación in vitro. El motivo para 

realizar esta parte del estudio fue que, en caso de que se detectase un efecto 

beneficioso de los taninos de la esparceta sobre el proceso de BH de los ácidos grados 

de la dieta y su aplicación resultara de interés práctico, se pudiera descartar una 

posible acción negativa sobre la fermentación ruminal. Este punto se consideraba de 

especial relevancia ya que una alteración de la digestión en el rumen podría perjudicar 
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seriamente a la utilización digestiva de la dieta y, consecuentemente, al rendimiento 

productivo de los animales. 

Tabla 6. Producción de gas, desaparición de materia seca (DMS), digestibilidad 
verdadera in vitro (ivDV), pH, concentración de amoniaco, producción de ácidos grasos 
volátiles totales (AGV total), proporciones molares de acético, propiónico, butírico, 
valérico e isoácidos, y relación acético/propiónico (A/P) tras 24 h de incubación con 
aceite de girasol. 

 Alfalfa Esparceta eed1 P2 

Gas (ml/g MO) 239 203 4,5 ** 
DMS (%) 60,8 57,0 1,25 * 
ivDV (%) 72,1 65,3 0,67 *** 
pH 6,77 6,74 0,006 ** 
Amoniaco (mg/l) 326 263 13,2 ** 
AGV total (mmol/l) 52,6 47,8 1,56 * 
Proporciones molares     

Acético 69,5 72,7 1,37 t 
Propiónico 20,2 20,9 0,52 ns 
Butírico 6,1 4,3 0,51 * 
Valérico 1,8 0,8 0,27 * 
Isoácidos 2,4 1,3 0,81 ns 

Relación A/P 3,44 3,49 0,106 ns 
1
eed= error estándar de la diferencia. 

2
Probabilidad: ns, no significativo (P>0,10); t, P<0,10; *, P<0,05; **, P<0,01; ***, P<0,001. 

Tabla 7. Producción de gas, desaparición de materia seca (DMS), digestibilidad 
verdadera in vitro (ivDV), pH, concentración de amoniaco, producción de ácidos grasos 
volátiles totales (AGV total), proporciones molares de acético, propiónico, butírico, 
valérico e isoácidos, y relación acético/propiónico (A/P) tras 24 h de incubación con 
aceite de lino. 

 Alfalfa Esparceta eed1 P2 

Gas (ml/g MO) 243 198 7,1 ** 
DMS (%) 59,1 57,9 2,45 ns 
ivDV (%) 70,9 66,1 0,95 ** 
pH 6,76 6,74 0,006 * 
Amoniaco (mg/l) 332 245 15,1 ** 
AGV total (mmol/l) 52,6 46,0 1,44 * 
Proporciones molares     

Acético 69,8 72,6 1,41 ns 
Propiónico 19,9 21,8 0,96 ns 
Butírico 6,2 3,8 0,72 * 
Valérico 1,8 0,8 0,31 * 
Isoácidos 2,4 1,1 0,88 ns 

Relación A/P 3,52 3,34 0,168 ns 
1
eed= error estándar de la diferencia. 

2
Probabilidad: ns, no significativo (P>0,10); *, P<0,05; **, P<0,01.  
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Tanto en las incubaciones con aceite de girasol como en las de lino, se observó 

que la producción de gas y la digestibilidad verdadera in vitro eran inferiores en la 

esparceta. Cuando la dieta se suplementó con aceite de girasol, la reducción numérica 

de la desaparición de MS también resultó significativa (P<0.05). Estos resultados 

coinciden con los observados por muchos otros autores cuando se utilizan taninos (e. 

g., Getachew et al., 2000; Frutos et al., 2004a; Rodríguez et al., 2011) y han sido 

atribuidos fundamentalmente a su efecto inhibidor de la capacidad de adhesión de las 

bacterias ruminales a las partículas de alimento (McAllister et al., 1994), así como de 

su crecimiento y actividad enzimática (McSweeney et al., 2003; Smith et al., 2005). 

También Lobón et al. (2015) encontraron una menor producción de gas en la esparceta 

que en la alfalfa cuando ambas se incubaron in vitro con inóculo ruminal de ovino, 

aunque cabe destacar que la calidad de su alfalfa era mucho más baja que la de la 

utilizada en este experimento. Los datos de ivDV deben tomarse con precaución dada 

la posible interferencia de los taninos en el análisis (Frutos et al., 2004a). 

En todo caso, es importante tener en cuenta que los efectos de los taninos sobre 

la fermentación ruminal, tal y como sucede con la BH, pueden ser muy variables 

dependiendo del tipo de tanino, la dosis utilizada, la adaptación de los animales a su 

consumo, etc. (Doce et al., 2009; Benhissi et al., 2013a; Carreño et al., 2015). Por otra 

parte, tampoco puede olvidarse que se están comparando dos forrajes con una 

composición química similar pero no idéntica. 

Aunque los valores de pH resultaron significativamente más bajos en las 

incubaciones con esparceta (P<0.05), no cabe esperar que variaciones de 2 o 3 

centésimas tengan ningún significado o implicación biológica. En cambio, las 

concentraciones de amoniaco sí mostraron un valor significativamente inferior 

(P<0.01) en el tratamiento que contenía taninos, tanto en los cultivos en los que se 

añadió girasol (-19%) como en aquellos con lino (-26%). Estos resultados confirmarían 

la conocida inhibición que ejercen los taninos sobre la proteolisis ruminal de la 

proteína de la dieta, lo cual se refleja en una menor concentración de amoniaco y 

deriva de la especial afinidad de los grupos hidroxilo de los taninos y los carbonilo de 

las proteínas (McLeod, 1974; Mueller-Harvey y McAllan, 1992). Esta característica es 

posiblemente la mejor documentada de estos compuestos fenólicos en lo que se 



Resultados y discusión 

50 

refiere a su uso en la nutrición de los rumiantes (Frutos et al., 2004b; Mueller-Harvey, 

2006). Es interesante señalar que aunque se trate de una inhibición, no puede 

considerarse un efecto “antinutricional” ya que, dependiendo del tipo de dieta, puede 

resultar claramente beneficioso para el animal, al aumentar el aporte al intestino de 

proteína no degradada en el rumen. Estos resultados coinciden con los observados en 

un estudio in vitro llevado a cabo con inóculo ruminal procedente de vacas 

alimentadas con ensilado de alfalfa o de esparceta (Romero-Pérez et al., 2011). 

Otro caso distinto es el de los AGV, principal fuente de energía de los rumiantes, 

puesto que su disminución en los cultivos con taninos implicaría una desventaja 

nutricional. Como puede observarse en las Tablas 6 y 7, la concentración de AGV 

totales de la esparceta fue, de media, un 10,8% más baja que la de los de alfalfa 

(P<0.05), y las proporciones molares que más reflejaron esta caída correspondieron al 

butírico y el valérico. Al contrario de lo que ocurre con el amoniaco, donde la inmensa 

mayoría de los trabajos coinciden en el efecto inhibidor de los taninos, las 

publicaciones sobre la respuesta de los AGV a la presencia de estos metabolitos 

secundarios en la dieta son sumamente variables, de modo que hay artículos que 

señalan aumentos, descensos o ausencia de variaciones en la producción (e. g., Hervás 

et al., 2003; Tiemann et al., 2008; Romero-Pérez et al., 2011). Estas discrepancias son 

aún más patentes cuando se trata de especificar el AGV que puede o no variar. 

Además, en este caso tampoco puede descartarse que los efectos no sean debidos a 

los taninos sino también a las diferencias entre los sustratos en su composición 

química, especialmente en lo relativo a la pared celular (Van Soest, 1994). 

Por otra parte, muchos estudios (e. g., Benchaar et al., 2008; Doce et al., 2009) 

coinciden en que el valérico y los isoácidos mostrarían un comportamiento paralelo al 

del amoniaco, ya que derivan de la descarboxilación y desaminación de determinados 

aminoácidos. En esta prueba, esto serviría para explicar el menor valor del valérico 

(P<0.05) pero contrastaría con la ausencia de diferencias significativas en los isoácidos 

(P>0.10), aunque esta fue probablemente debida a una elevada variación individual. 

Tampoco se detectaron diferencias entre la alfalfa y la esparceta en la relación 

acético/propiónico (P>0.10). 
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La mayor parte de los resultados relativos a los metabolitos intermedios de la 

biohidrogenación in vitro (por ejemplo, mayores concentraciones de 18:3n-3, 18:2n-6, 

trans-11 cis-15 18:2, cis-9 18:1 o ácidos grasos poliinsaturados totales en las 

incubaciones del heno de esparceta) muestran la capacidad de Onobrychis viciifolia, 

posiblemente atribuible a su contenido de taninos, para inhibir la biohidrogenación 

ruminal de los ácidos grasos insaturados de la dieta. Por otra parte, en las condiciones 

de este ensayo, no se detectan diferencias significativas entre los henos de alfalfa y de 

esparceta en la acumulación de cis-9 trans-11 18:2, CLA total o 18:0, y la variación en el 

trans-11 18:1 no sigue un patrón regular. 

En cuanto a la fermentación ruminal in vitro, la producción de gas es inferior en 

las incubaciones del heno de esparceta, lo cual coincide con el efecto esperable de los 

taninos. En esta misma línea, la concentración de amoniaco y la producción de ácidos 

grasos volátiles totales también son más bajas en los cultivos de esta leguminosa. 
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