

eupla

Universidad
Zaragoza

ESCUELA UNIVERSITARIA POLITÉCNICA

DE LA ALMUNIA DE DOÑA GODINA (ZARAGOZA)

ANEXOS

**CONSTRUCCIÓN DE VIVIENDAS DE
NUEVA PLANTA**

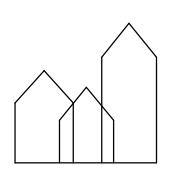
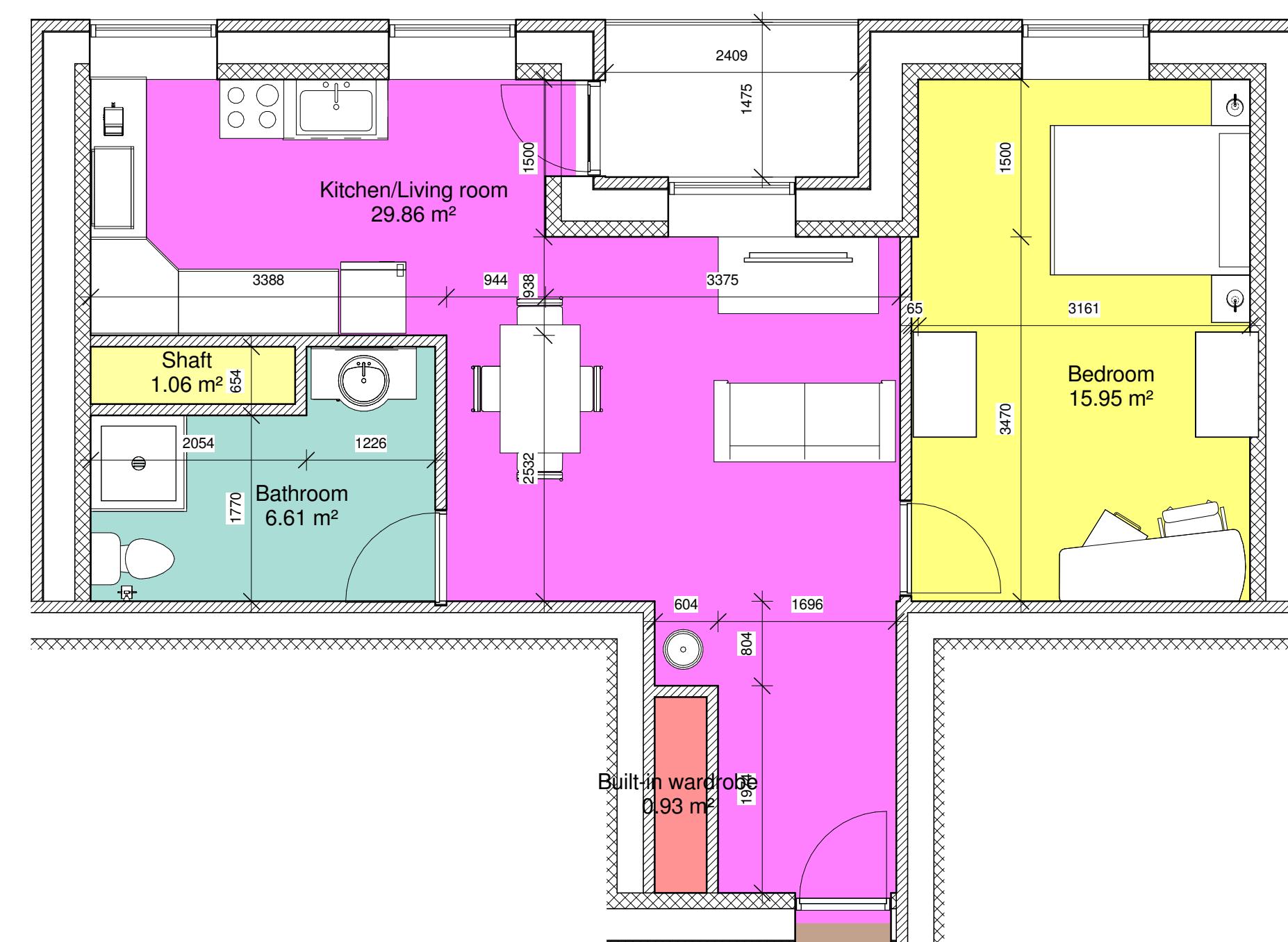
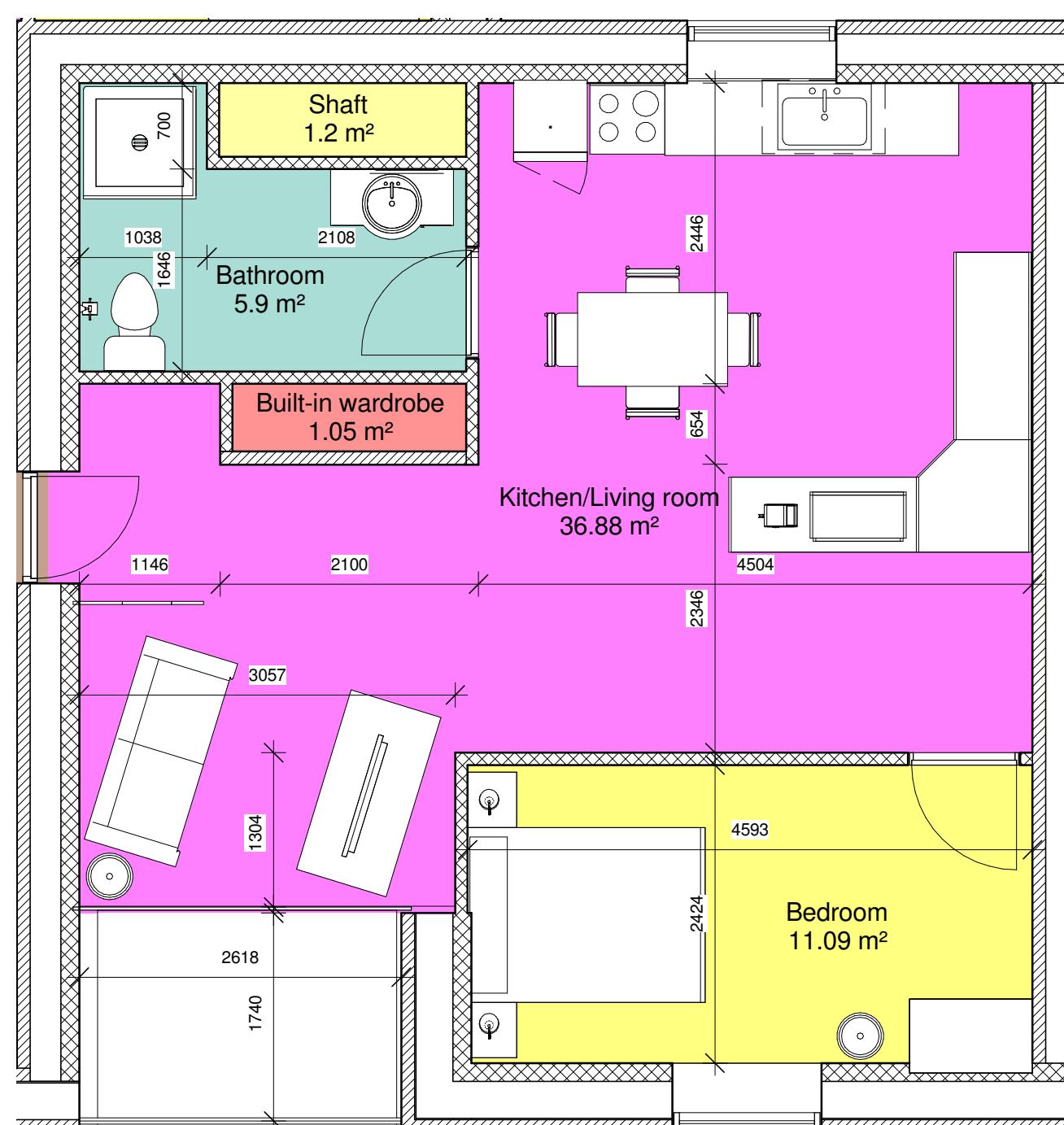
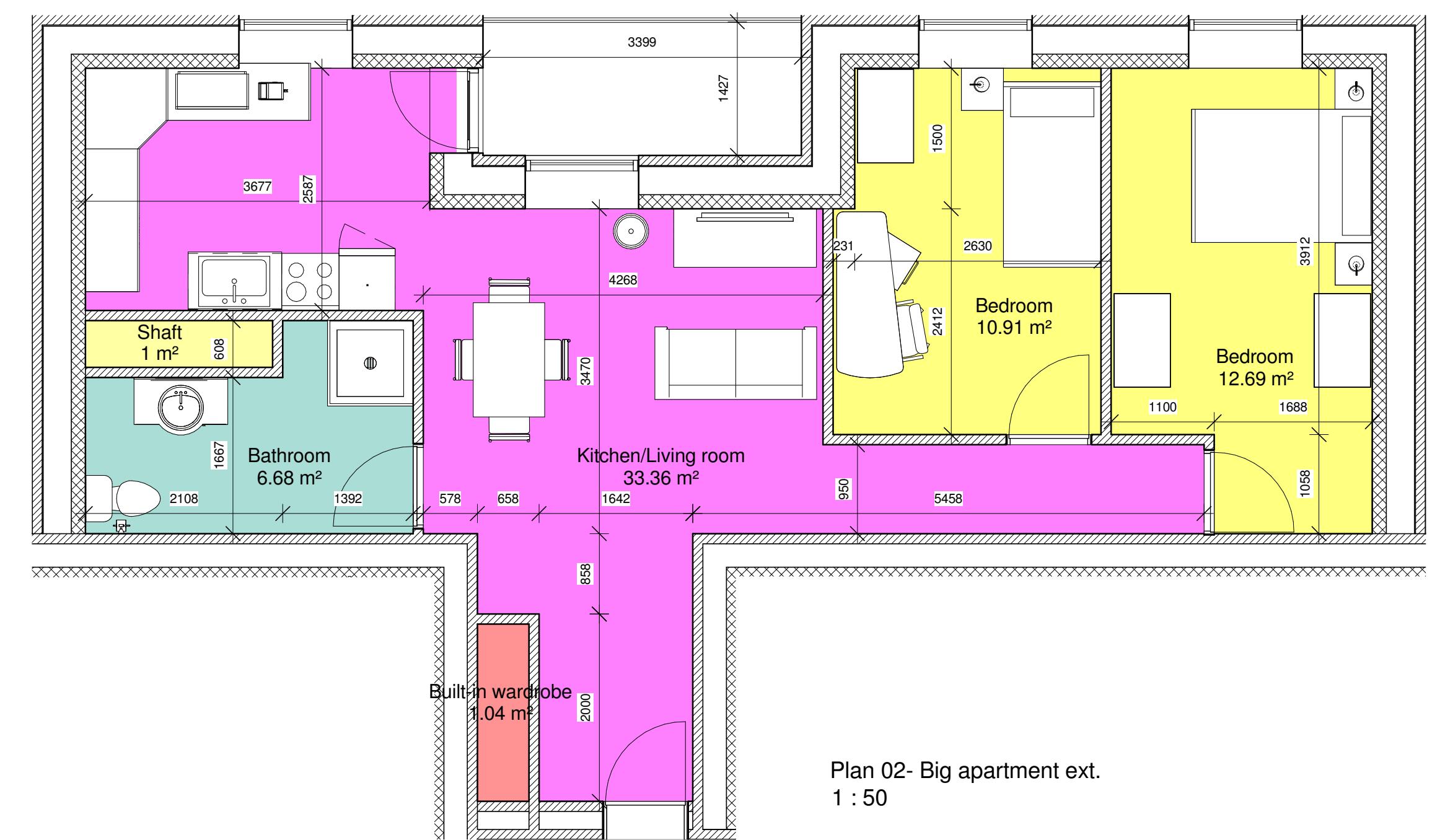
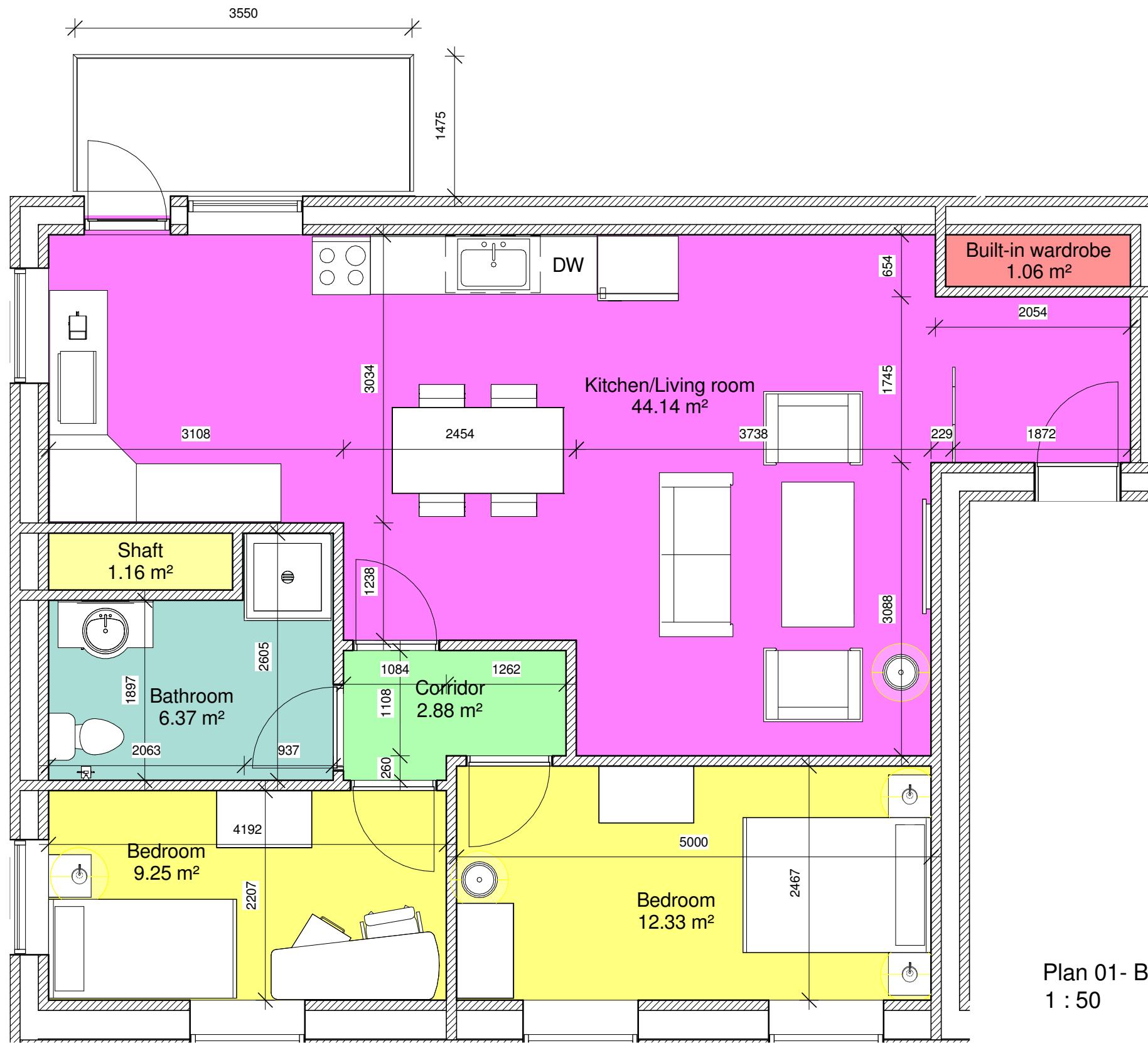
422. 13. 195

Autor: María Julián Martín

Director: José Ángel Pérez Benedicto

Fecha: 8 de septiembre de 2015

INDICE DE CONTENIDO






1. ANEXO1 (OUTLINE PROPOSAL)	1
1.1. BUILDING DESIGN	1
1.1.1. <i>Apartment analysis</i>	1
1.1.2. <i>Bathroom Analysis</i>	3
1.1.3. <i>Kitchen Analysis</i>	7
1.1.4. <i>Fire Analysis</i>	11
1.1.5. <i>Site Analysis</i>	15
1.1.6. <i>Sustainability Analysis</i>	17
1.1.7. <i>Render</i>	19
1.2. BUILDING AND PLANNING MANAGEMENT	21
1.2.1. <i>Project cost</i>	21
1.2.2. <i>Area calculation</i>	26
1.2.3. <i>Project Planning</i>	30
1.3. BUILDING SERVICES	32
1.3.1. <i>U-Value analysis</i>	32
1.3.2. <i>Sound analysis</i>	35
1.3.3. <i>Installations shaft</i>	40
1.4. STRUCTURAL DESIGN	41
1.4.1. <i>Structural analysis</i>	41
1.4.2. <i>Deck elements plan</i>	45
2. ANEXO 2 (SCHEME DESIGN)	46
2.1. BUILDING DESIGN	46
2.1.1. <i>Details</i>	46
2.2. BUILDING AND PLANNING MANAGEMENT	59
2.2.1. <i>Building Component Analysis</i>	59
2.2.2. <i>Life cycle costing</i>	72
2.2.3. <i>Building Site plan</i>	82
2.2.4. <i>Rent Apartment</i>	84
2.3. BUILDING SERVICES	86
2.3.1. <i>Ventilation Plan</i>	86
2.3.2. <i>Heating Plan</i>	88
2.3.3. <i>Water Plan</i>	90

2.4. STRUCTURAL DESIGN	92
2.4.1. <i>Structural Design Report</i>	92
3. ANEXO 3 (DETAIL 1)	123
3.1. BUILDING DESIGN	123
3.1.1. <i>Floor Plans</i>	123
3.1.2. <i>Sections</i>	128
3.1.3. <i>Elevations</i>	130
4. ANEXO 4 (DETAIL 2)	133
4.1. DESIGN SPECIALIZATION – BALCONIES	133
4.2. CONTRACTOR SPECIALIZATION – SOIL WORKS	136
4.2.1. <i>Terrain analysis</i>	136
4.2.2. <i>Method analysis</i>	138
4.2.3. <i>Working stages and steps</i>	140
4.2.4. <i>Quantities</i>	154
4.2.5. <i>Machine Hours</i>	158
5. ANEXO 5 (ELECTIVE SELF STUDY REPORT – DIFFERENCES BETWEEN DANISH AND SPANISH METHODS OF FOUNDATION)	168

1. ANEXO1 (OUTLINE PROPOSAL)

1.1. BUILDING DESIGN

1.1.1. *Apartment analysis*

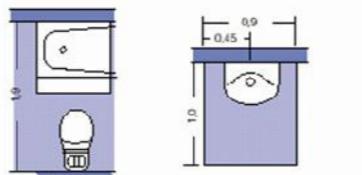
1.1.2. *Bathroom Analysis*

BUILDING REGULATION

Bathroom

-The washing and WC fitted at the corners of two adjoining walls such the washing basin can be reached by a person on the WC.

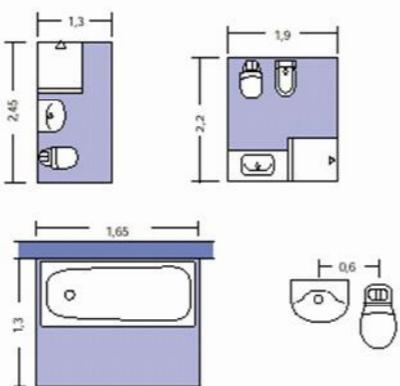
-There must be less than 0.9 m in the side if the WC that faces away from the washbasin.

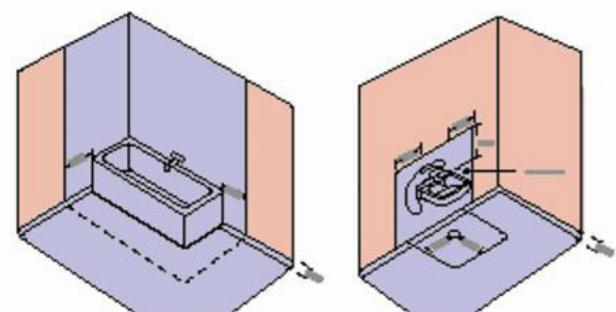

-No fixed furniture must be mounted on the wall next to the WC that faces away from the washbasin.

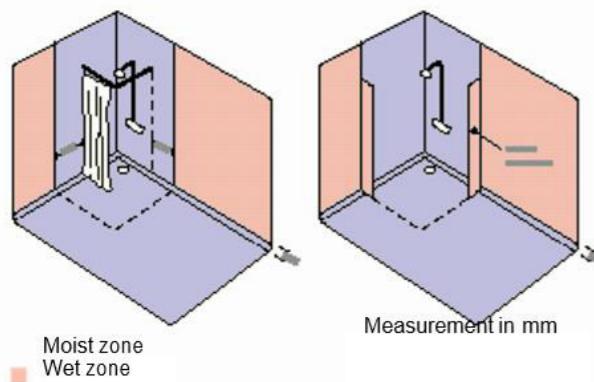
-There must be clear maneuvering area with a diameter of 1.5 in front of the WC, clear of the opening arc of the door.

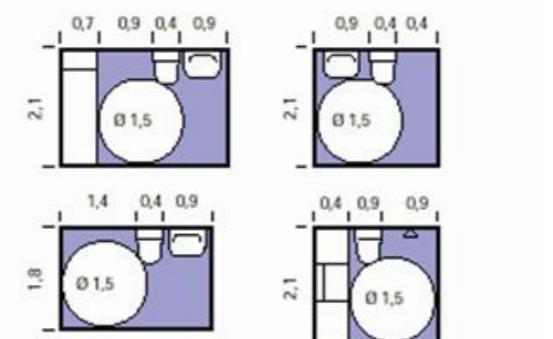
-The toilet seat must be at a height of 48 cm.

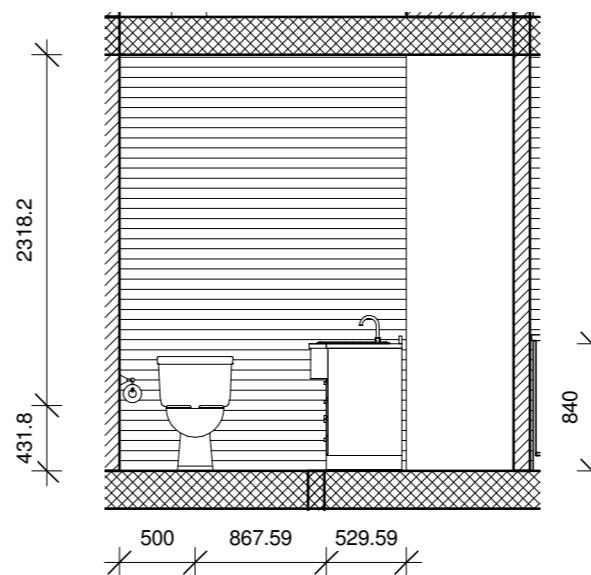
-Lifting armrests must be fittest at a height of 0.8 m both sides of the WC.

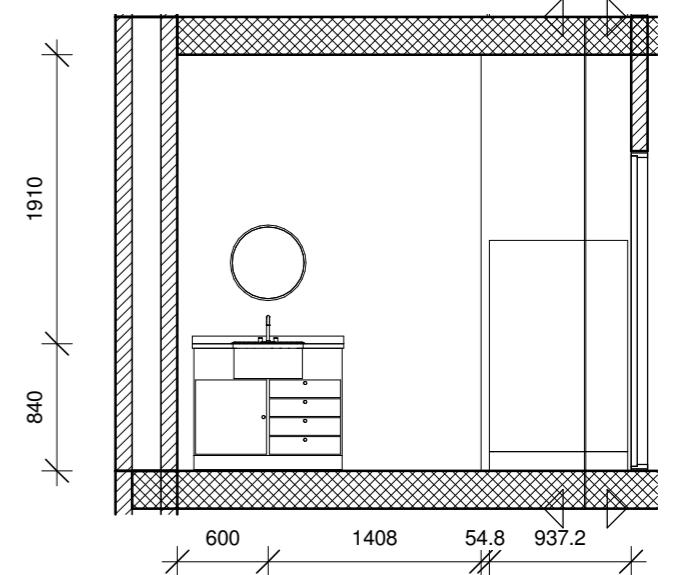

-The washbasin must be fittest at a height of 0.8 m with the drain recessed below of the washbasin.

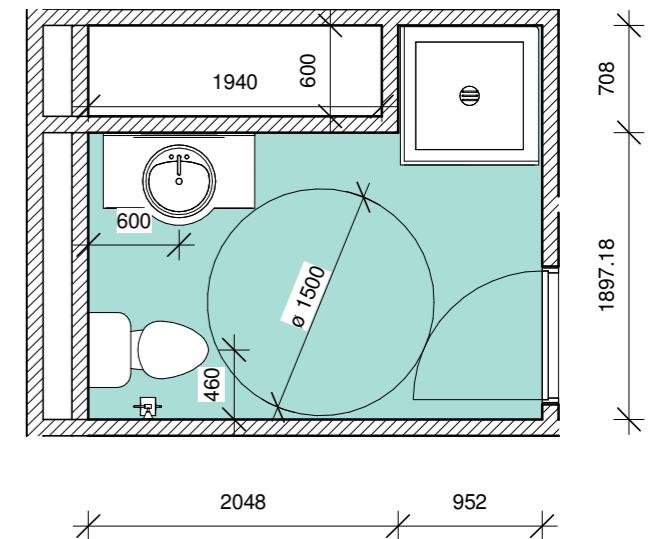

Measurement in m

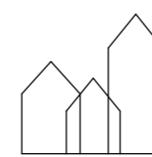

Measurement in m


Measurement in m

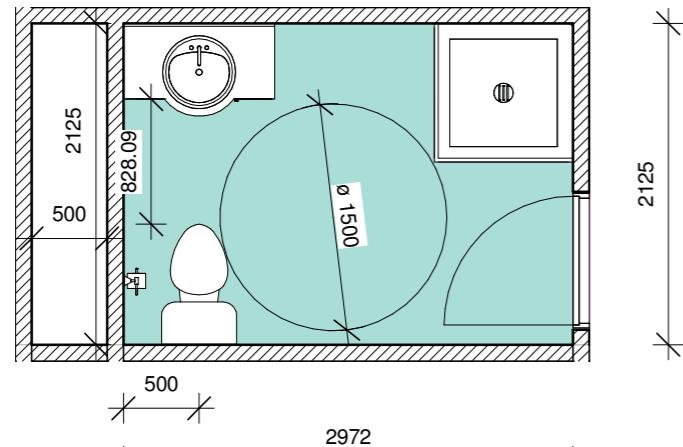

Moist zone
Wet zone

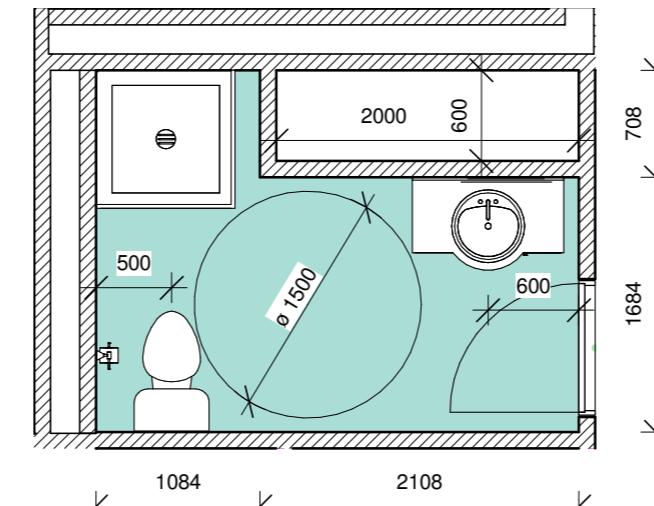

Moist zone
Wet zone


Measurement in m

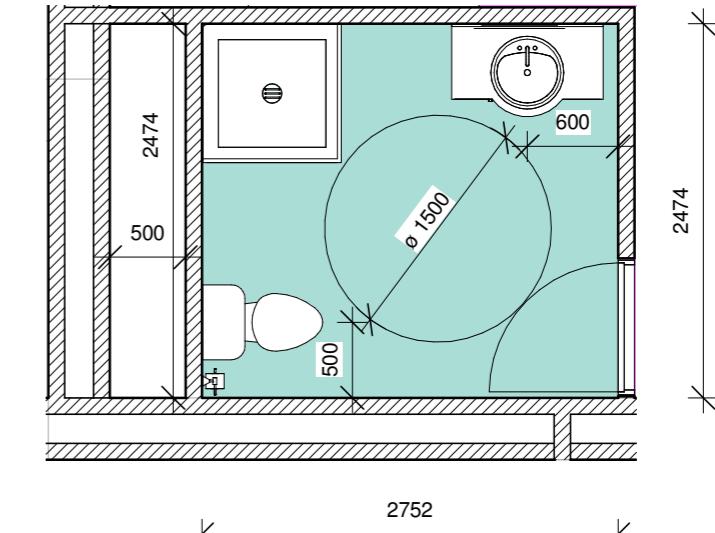

Section 2 bathroom (Big apartment)
1 : 50

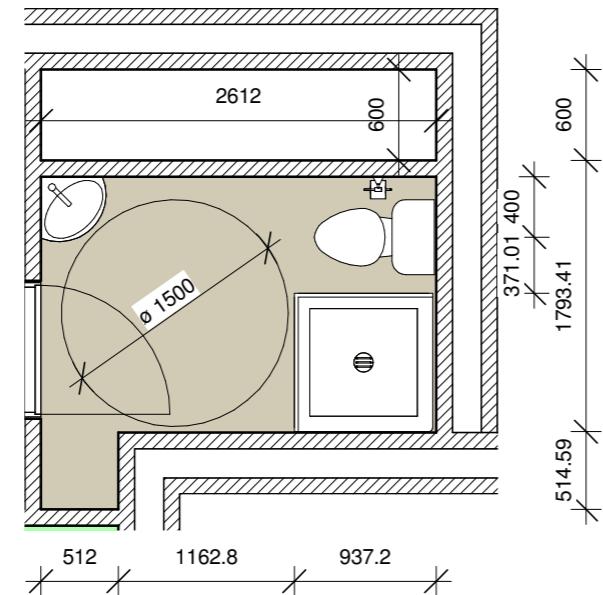
Section 3 bathroom (Big apartment)
1 : 50

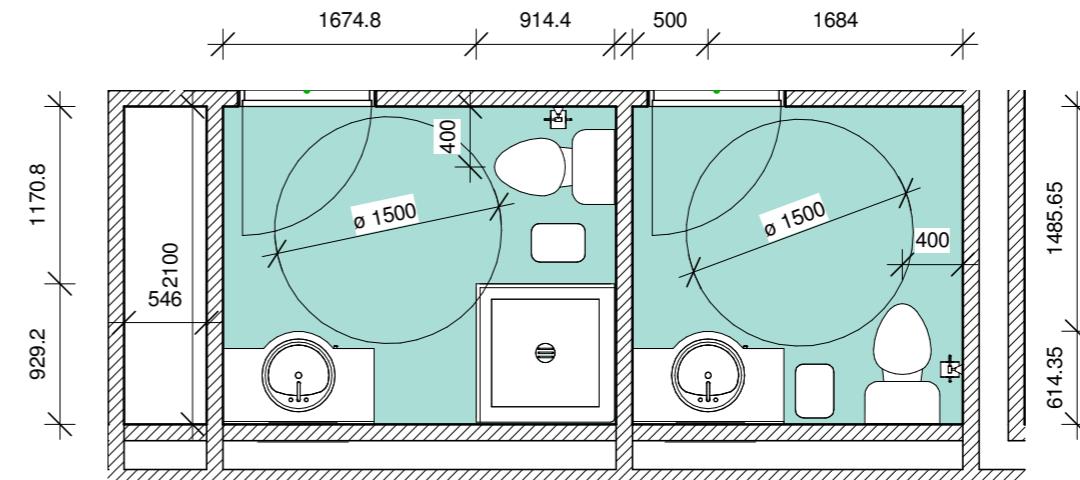

Plan 01.1- Bathroom Big apartment
1 : 50


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

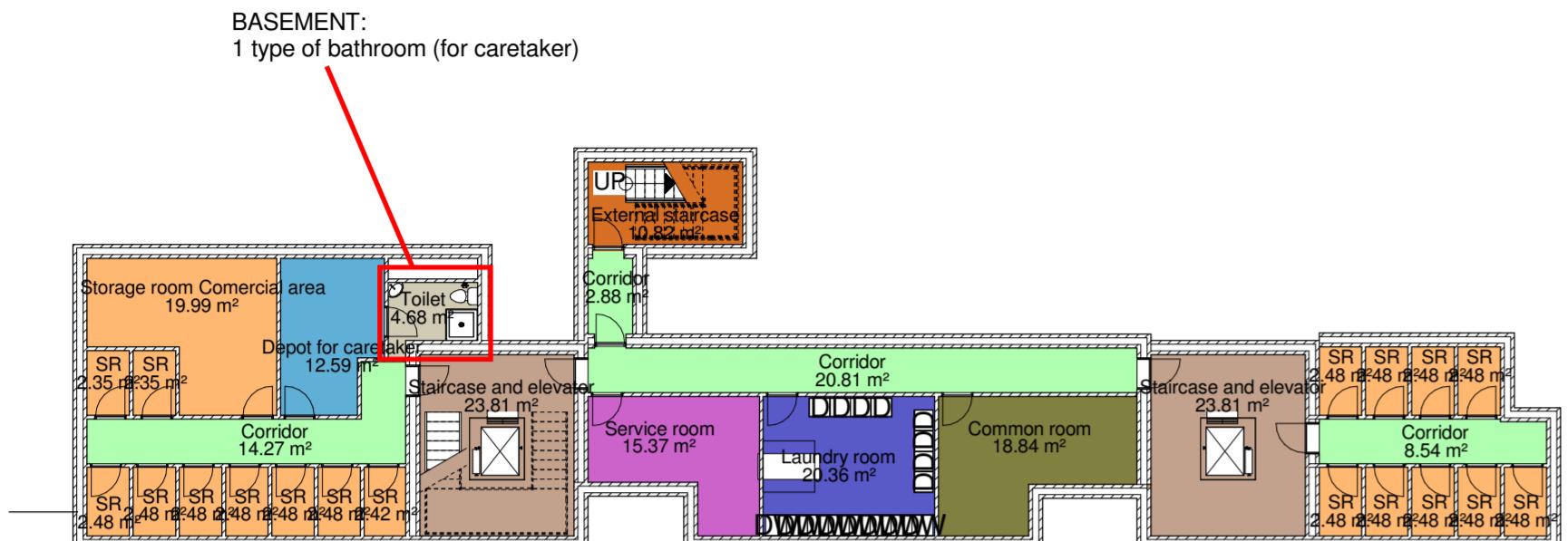

PROJECT: Multi-storey housing	DATE: 03/25/15
SUBJECT: 1. Bathroom analysis	SCALE: 1 : 50
DRAWN BY: a 14W011a 1401	CLASS: 4thSemAH42

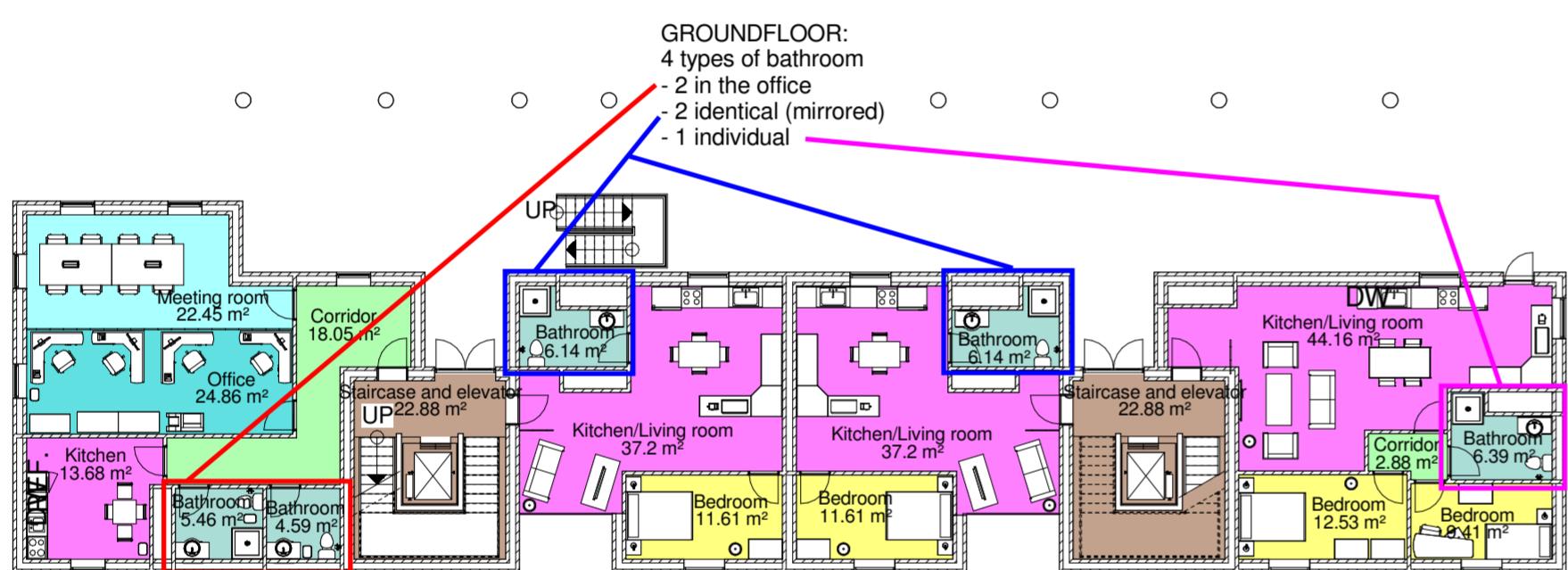

Plan 02.1- Bathroom Big apartment ext.
1 : 50


Plan 03.1- Bathroom Small apartment
1 : 50

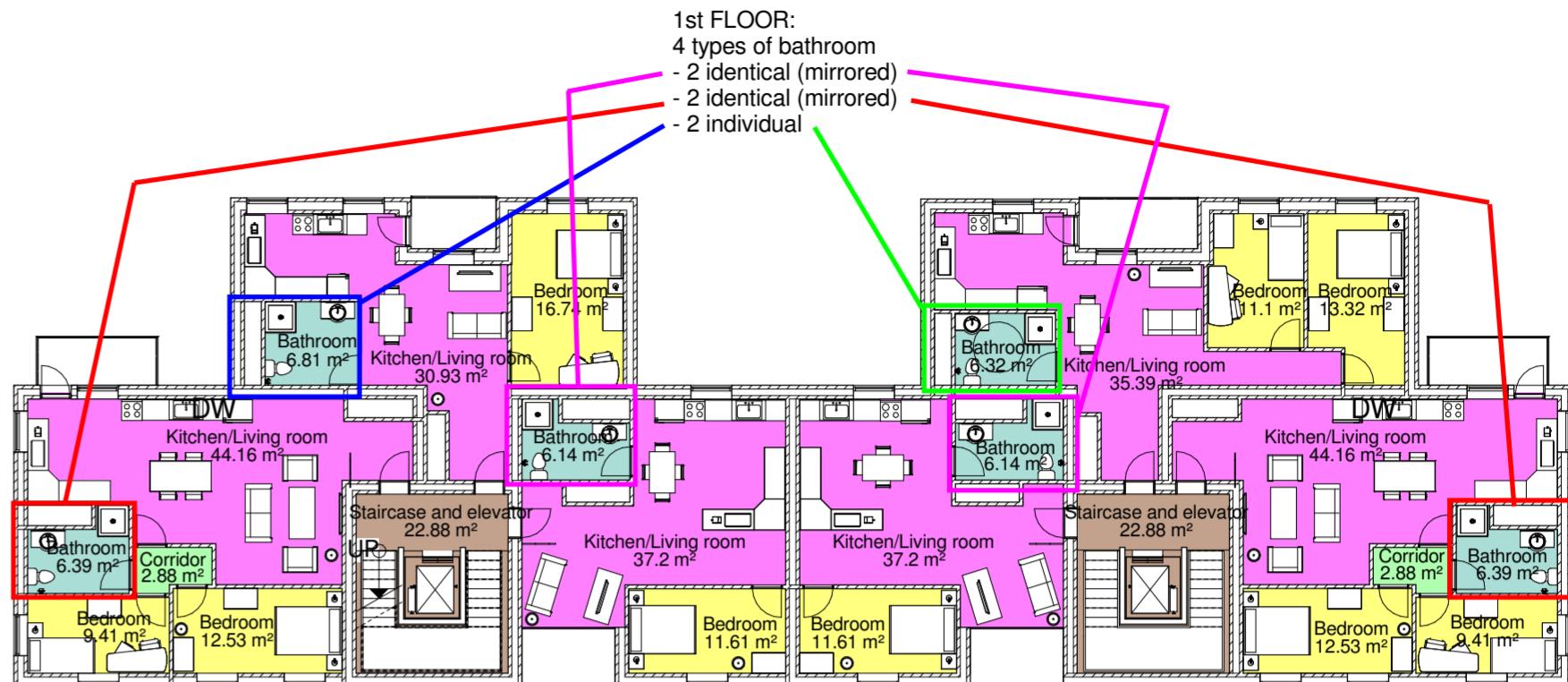
Plan 04.1- Bathroom Small apartment ext.
1 : 50

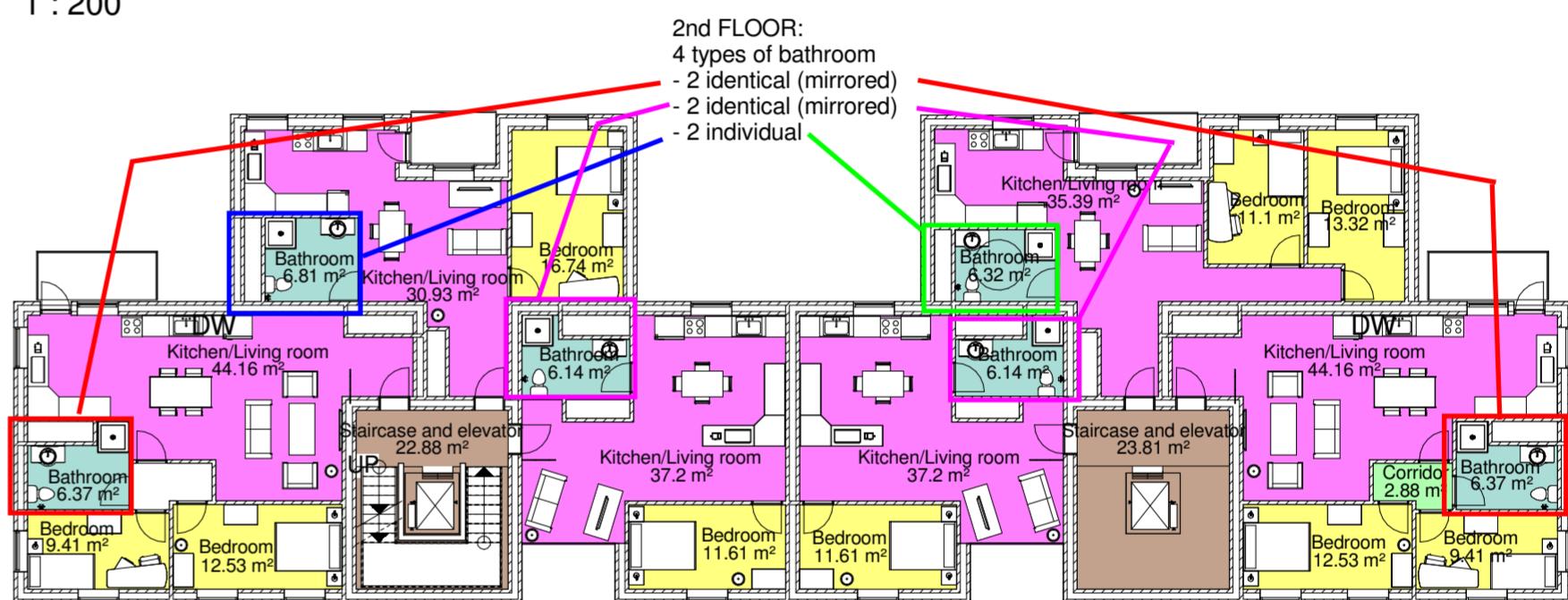
Plan 05- Depot of caretaker - Bathroom
1 : 50

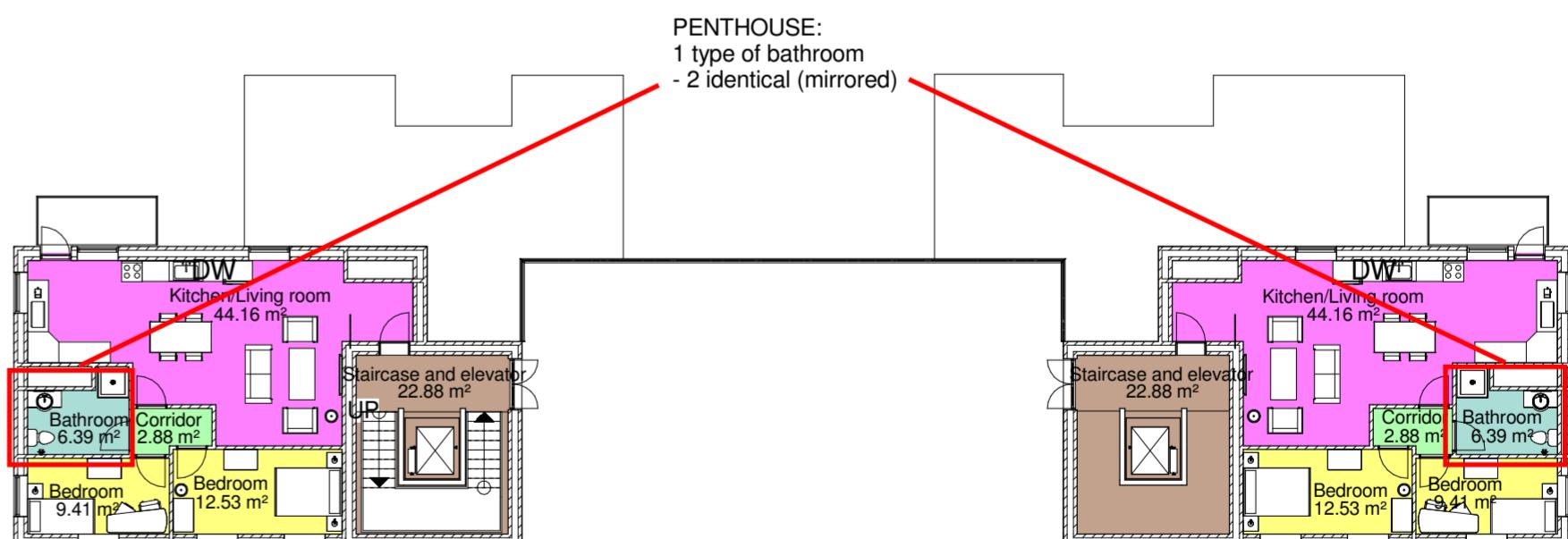

Plan 06.1- Office Bathroom
1 : 50


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: Multi-storey housing	DATE: 03/25/15	02
SUBJECT: 2. Bathroom analysis	SCALE: 1 : 50	
DRAWN BY: a L ¹ W ² U ³ a L ¹ W ² U ³	CLASS: 4thSemAH42	


01 Basement Rooms
1 : 200

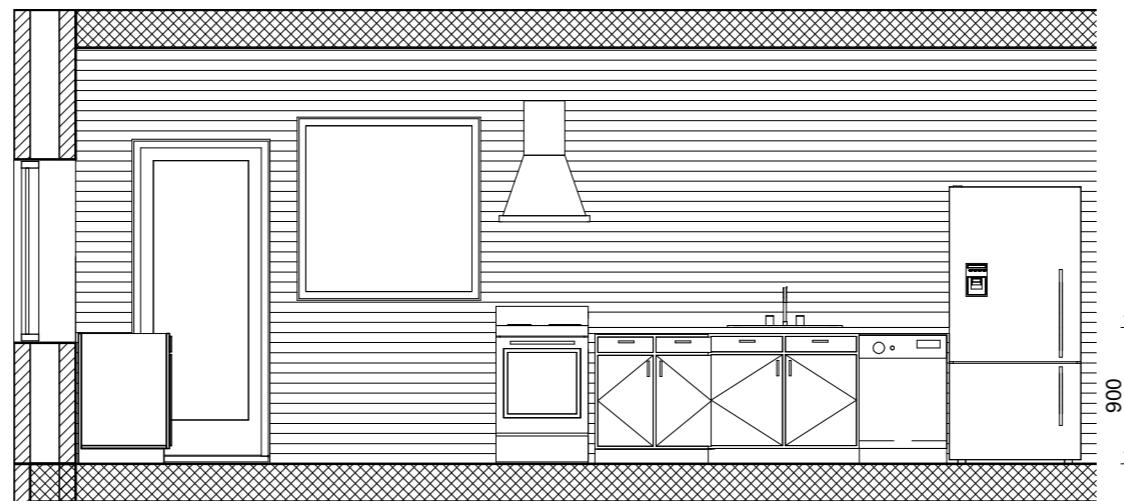

02 Groundfloor, terrain Rooms
1 : 200

03 1 Floor Rooms
1 : 200

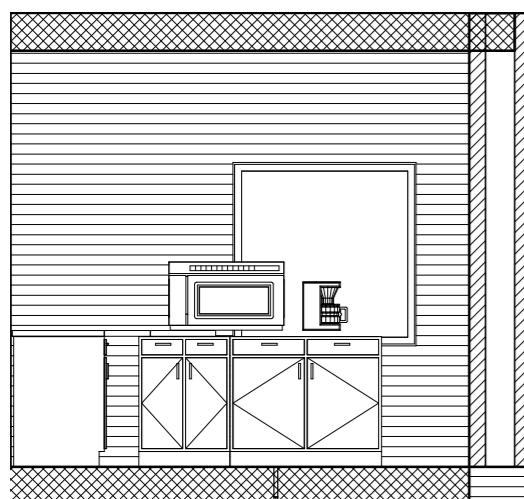
04 2 Floor Rooms
1 : 200

05 Penthouse Rooms
1 : 200

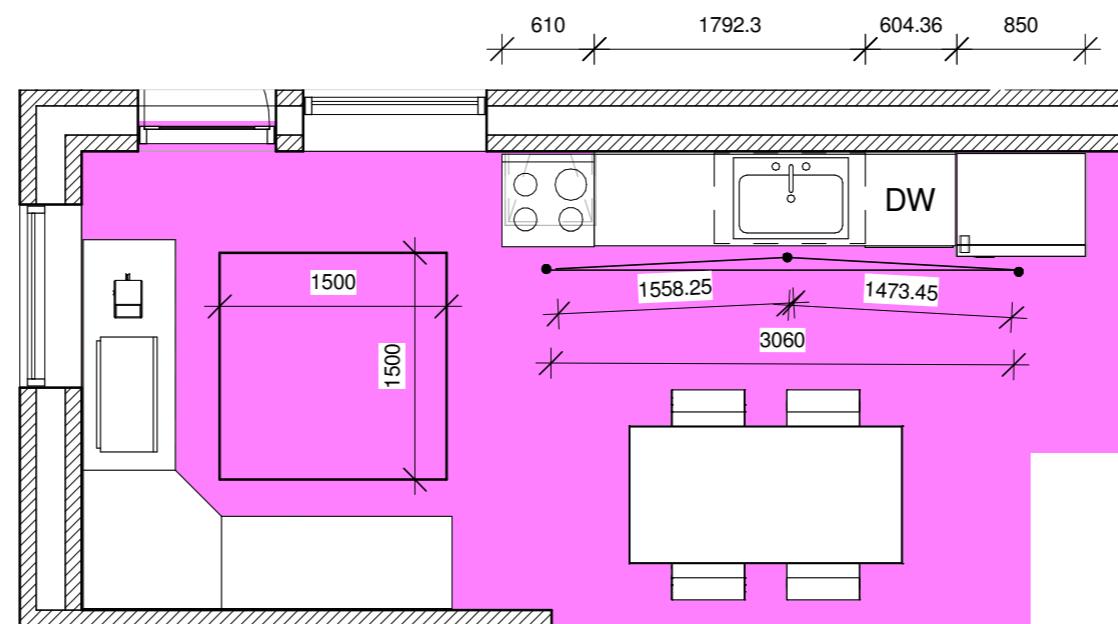
Bring ideas to life
VIA University College

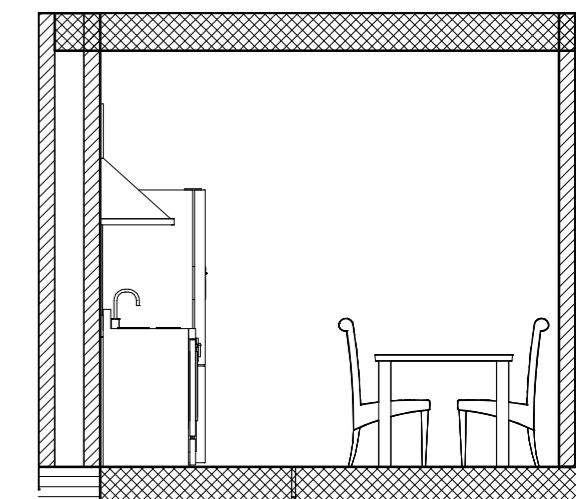

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 03/25/15
SUBJECT: 3. Bathroom analysis	SCALE: 1 : 200
DRAWN BY: a LUNWOLLA LUNWOLLA	CLASS: 4thSemAH42


1.1.3. *Kitchen Analysis*

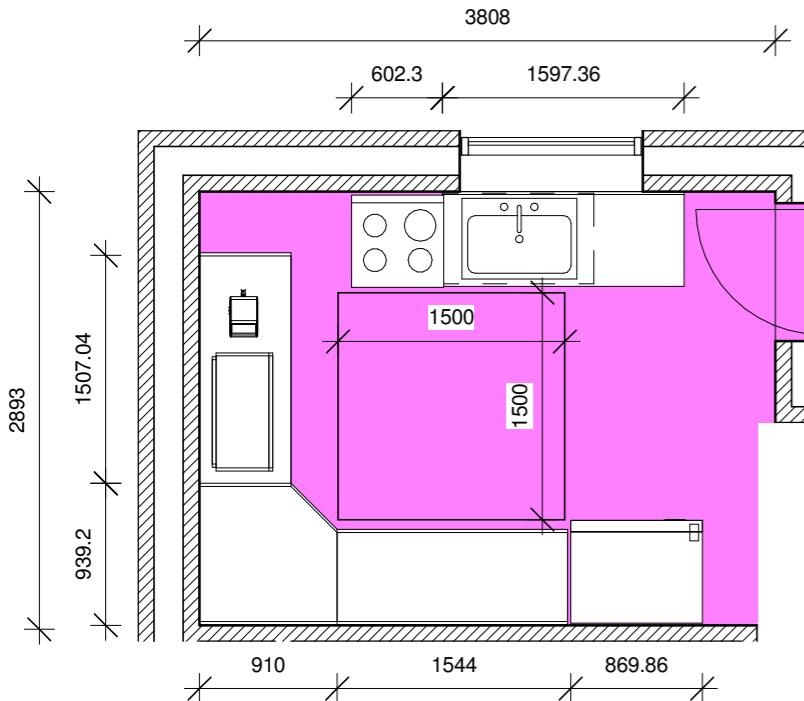
BUILDING REGULATION

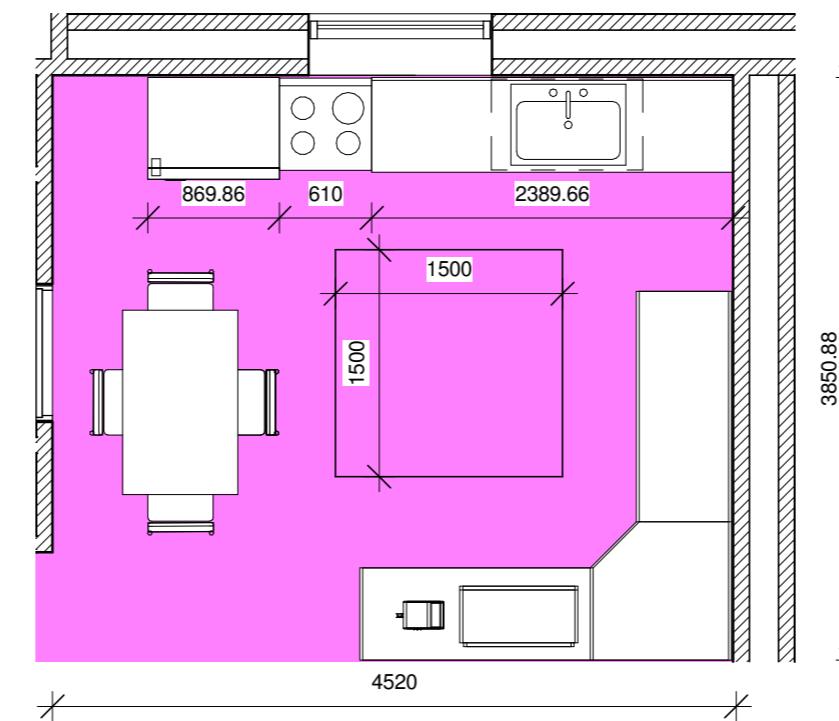

The kitchen may be either a separate room or may form part of a habitable room, or it may be a cooking recess in residential units of less than 50 m².


Section 4 kitchen (Big apartment)
1 : 50

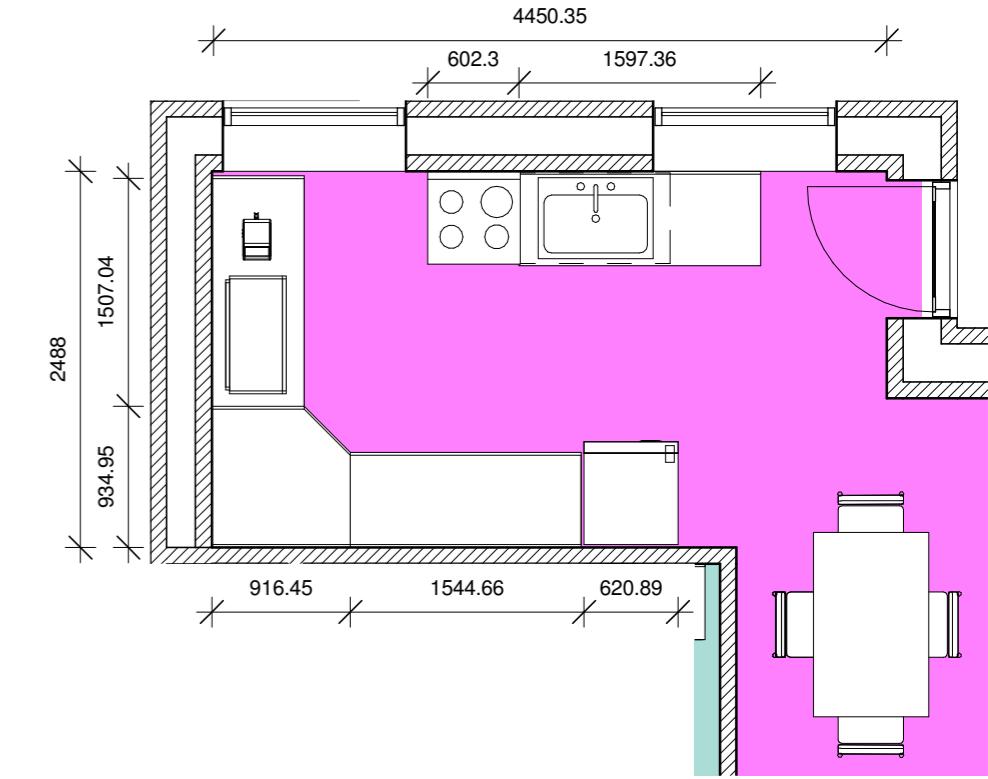
Section 5 kitchen (Big apartment)
1 : 50

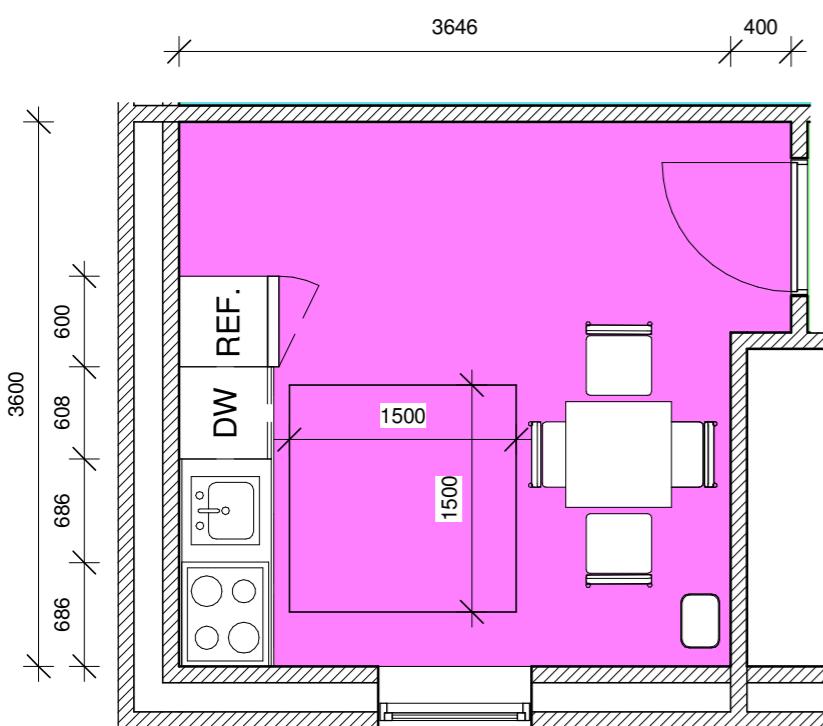
Plan 01.2- Kitchen Big apartment
1 : 50


Section 6 kitchen (Big apartment)
1 : 50


Bring ideas to life
VIA University College

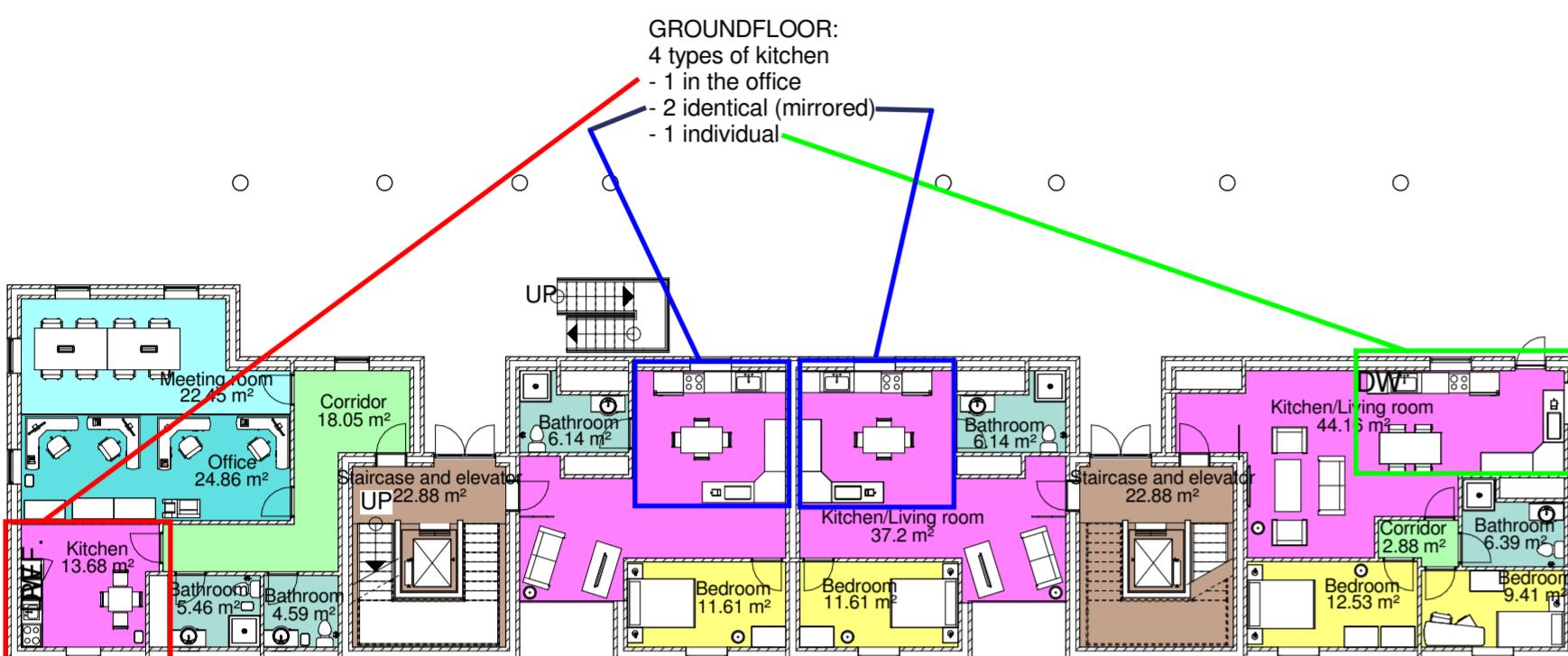
SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: Multi-storey housing	DATE: 03/05/15	04
SUBJECT: 1. Kitchen analysis	SCALE: 1 : 50	
DRAWN BY: a VIA University College	CLASS: 4thSemAH42	

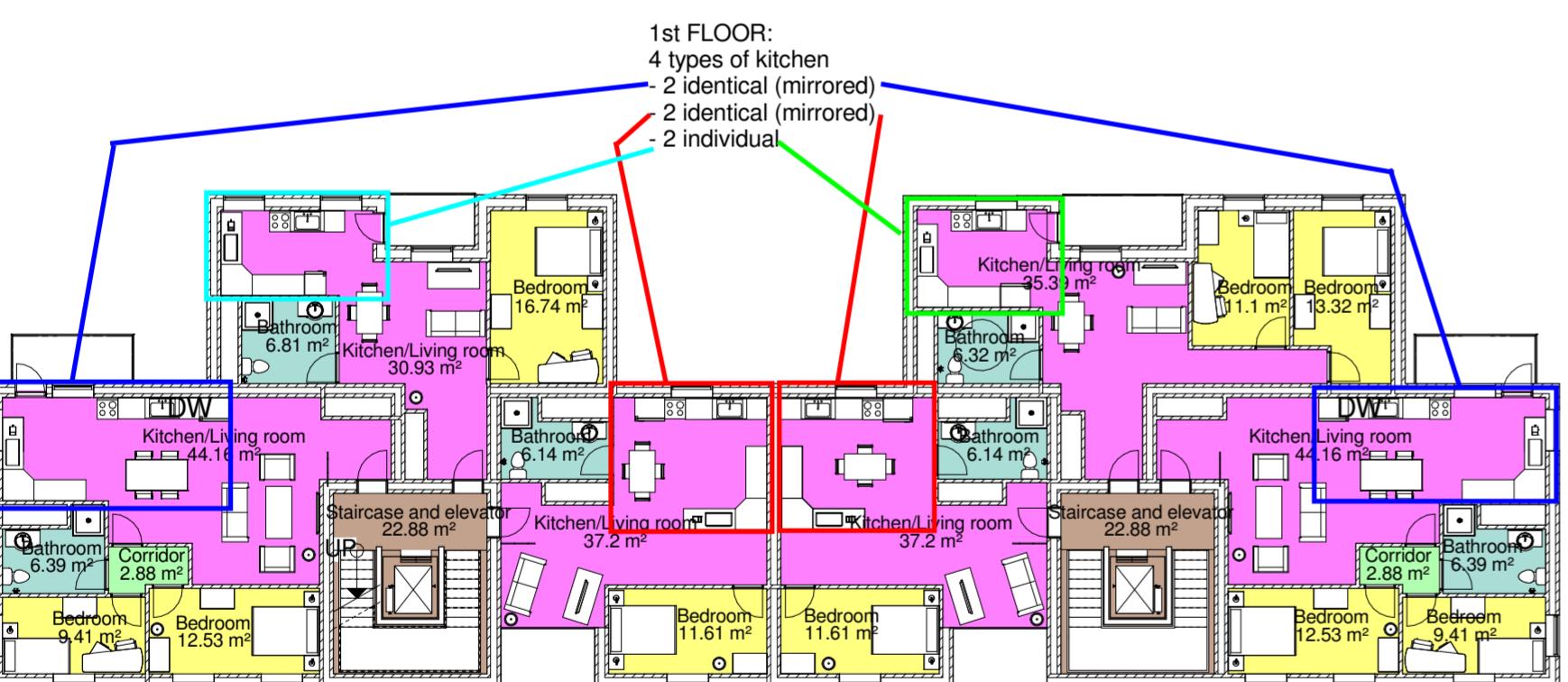

Plan 02.2- Kitchen Big apartment ext.
1 : 50

Plan 03.2- Kitchen Small apartment
1 : 50

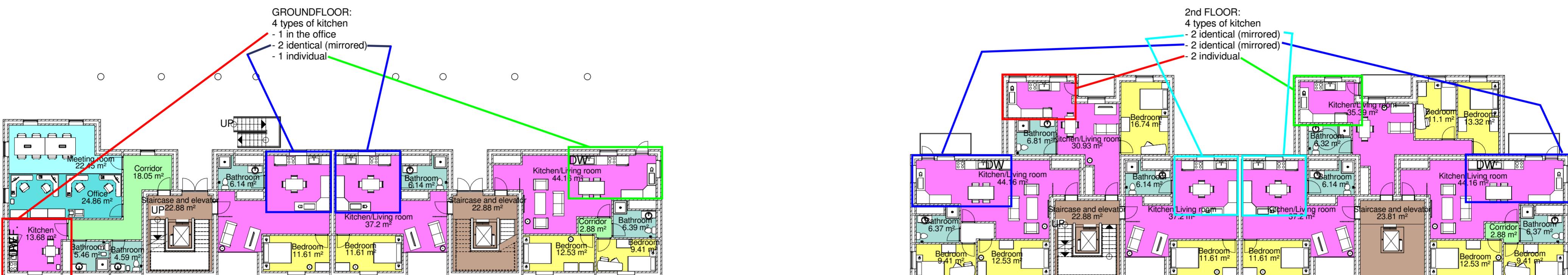
Plan 04.2- Kitchen Small apartment ext.
1 : 50


Plan 06.2- Kitchen Office
1 : 50

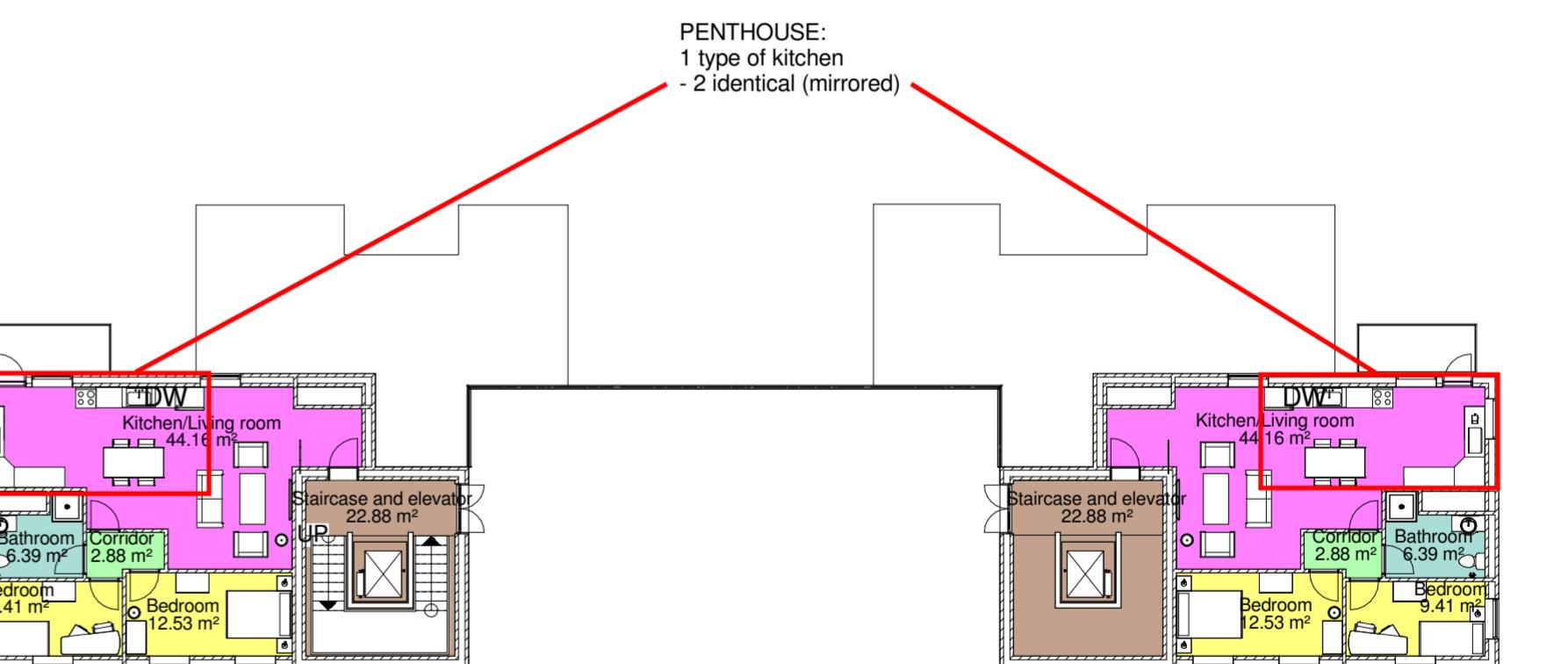
Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

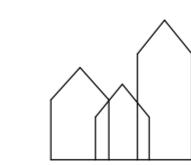
PROJECT: Multi-storey housing	DATE: 03/26/15
SUBJECT: 2. Kitchen analysis	SCALE: 1 : 50
DRAWN BY: Group 6	CLASS: 4thSemAH42


02 Groundfloor, terrain Rooms 2

1 : 200


03 1 Floor Rooms 2

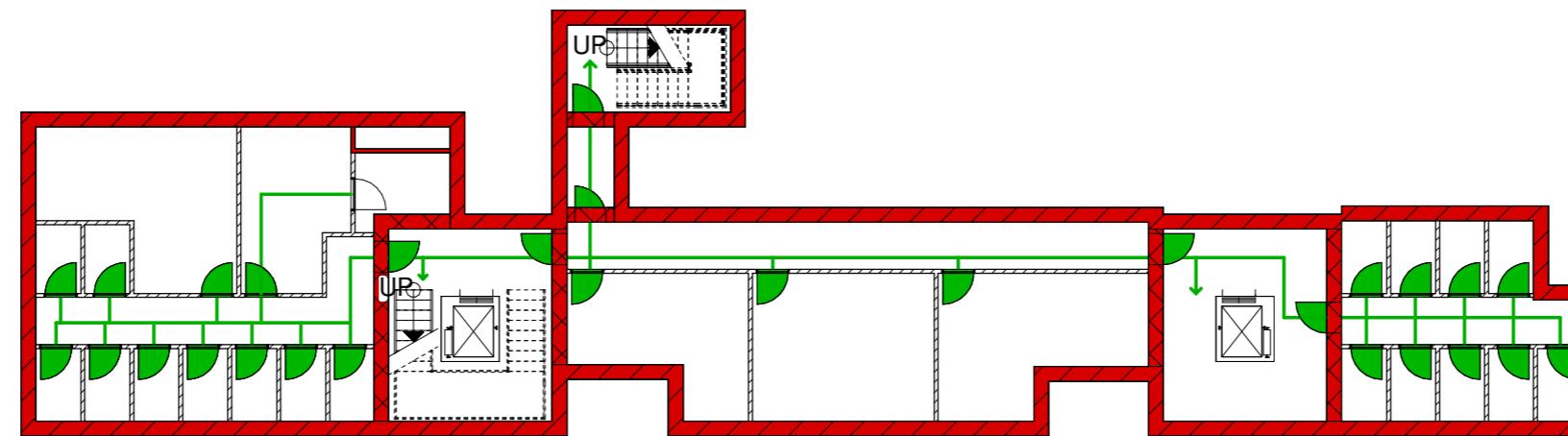
1 : 200


04 2 Floor Rooms 2

1 : 200

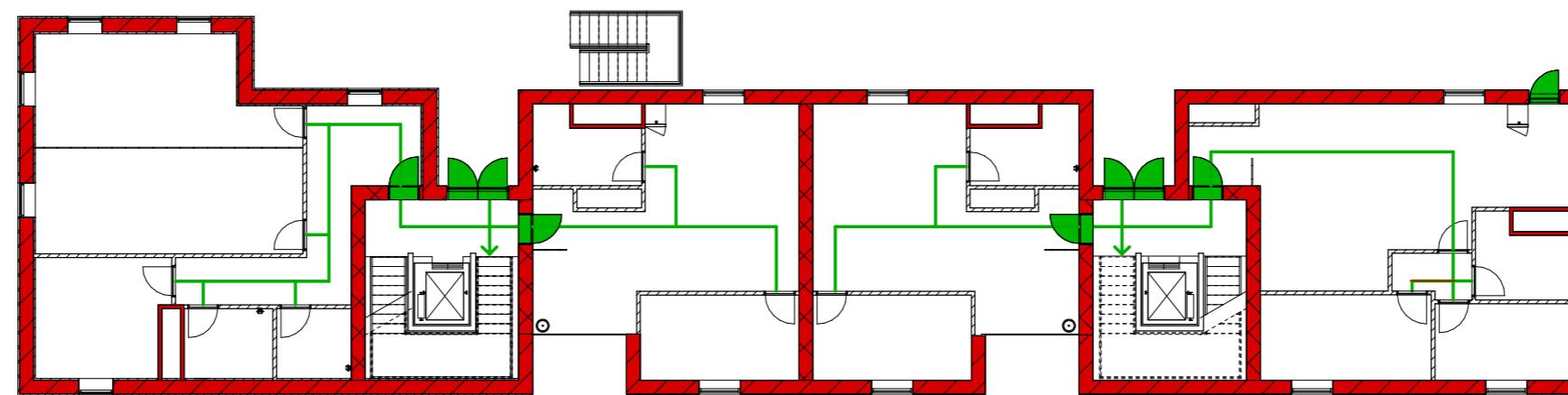
05 Penthouse Rooms 2

1 : 200

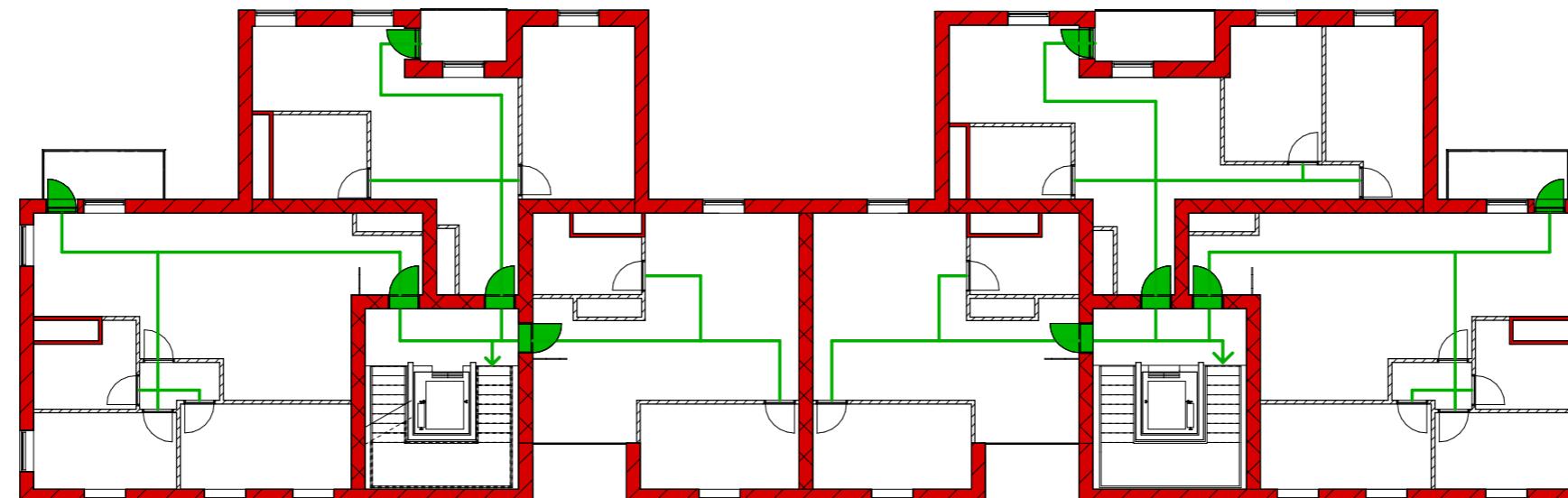


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: Multi-storey housing	DATE: 03/26/15	06
SUBJECT: 3. Kitchen analysis	SCALE: 1 : 200	
DRAWN BY: Group 6	CLASS: 4thSemAH42	

1.1.4. *Fire Analysis*


01 Basement FIRE

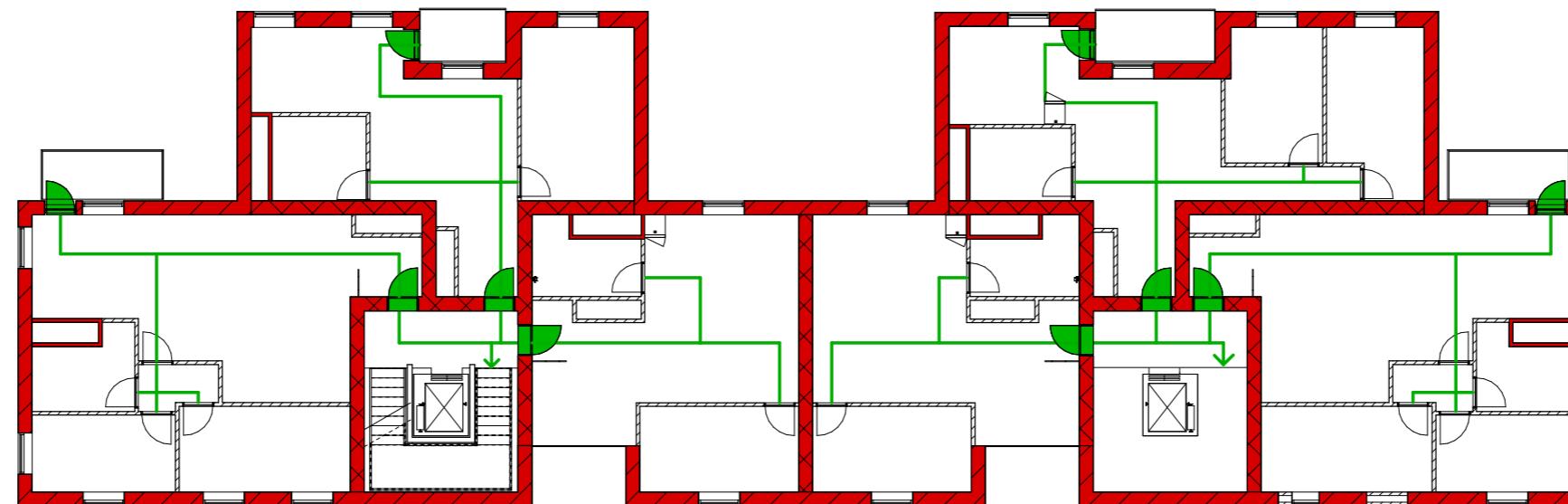
1 : 200

02 Groundfloor, terrain FIRE

1 : 200

03 1 Floor FIRE

1 : 200


- EXTERNAL BEARING WALLS
- SEPARATION BEARING WALLS
- INTERNAL WALLS
- DOORS
- ESCAPE ROAD

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 04/09/15	13
SUBJECT: 1. Fire analysis	SCALE: 1 : 200	
DRAWN BY: a 4thSemAH42	CLASS: 4thSemAH42	

04 2 Floor FIRE
1 : 200

05 Penthouse FIRE
1 : 200


- EXTERNAL BEARING WALLS
- SEPARATION BEARING WALLS
- INTERNAL WALLS
- DOORS
- PENTHOUSE EXTERNAL BEARING WALLS
- ESCAPE ROAD

Bring ideas to life
VIA University College

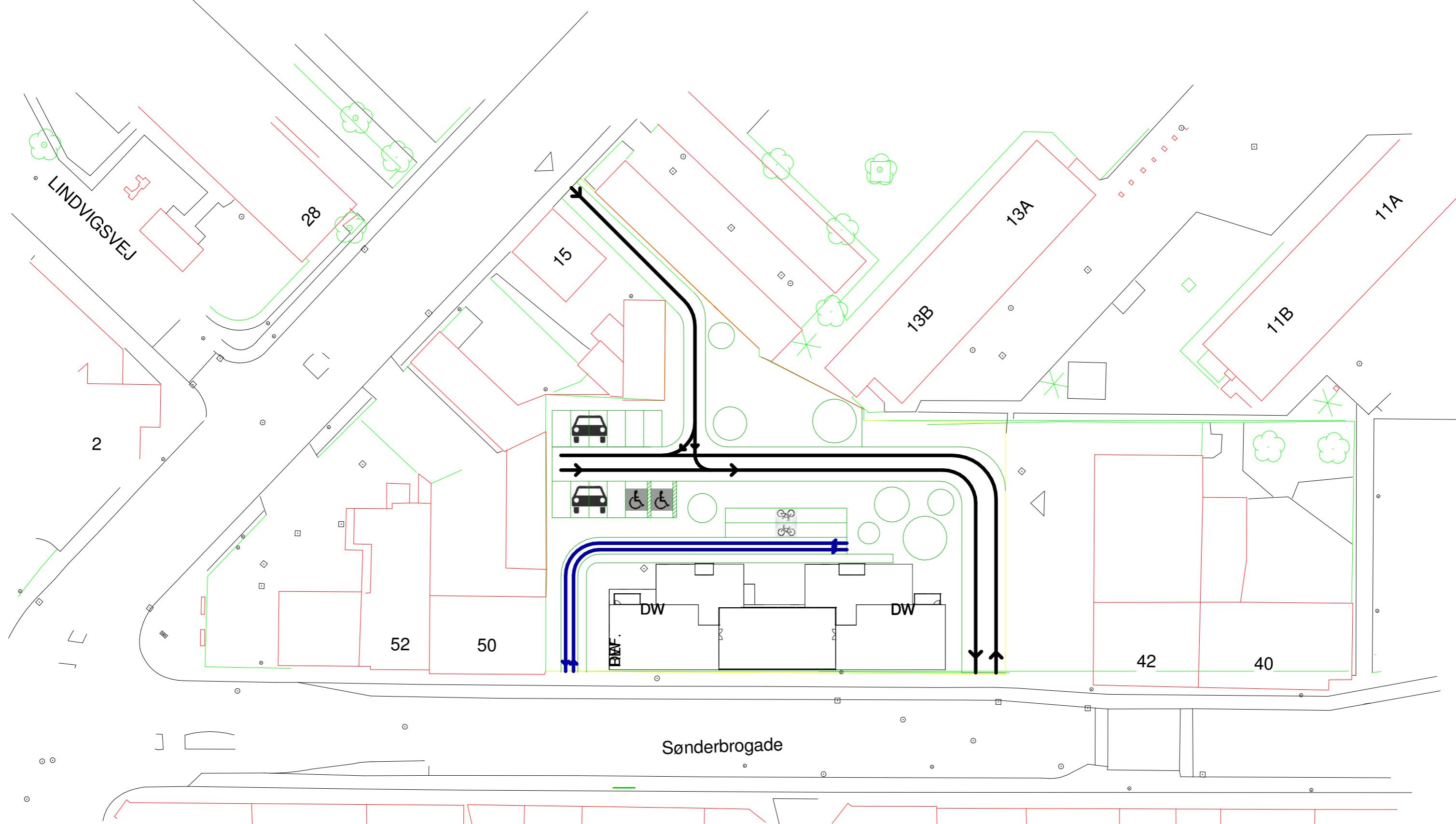
SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 04/09/15	14
SUBJECT: 2. Fire analysis	SCALE: 1 : 200	
DRAWN BY: a VIA University College	CLASS:	

1. Section FIRE
1 : 200

2. Section FIRE
1 : 200

- EXTERNAL BEARING WALLS
- SEPARATION BEARING WALLS
- INTERNAL WALLS
- DOORS
- PENTHOUSE EXTERNAL BEARING WALLS



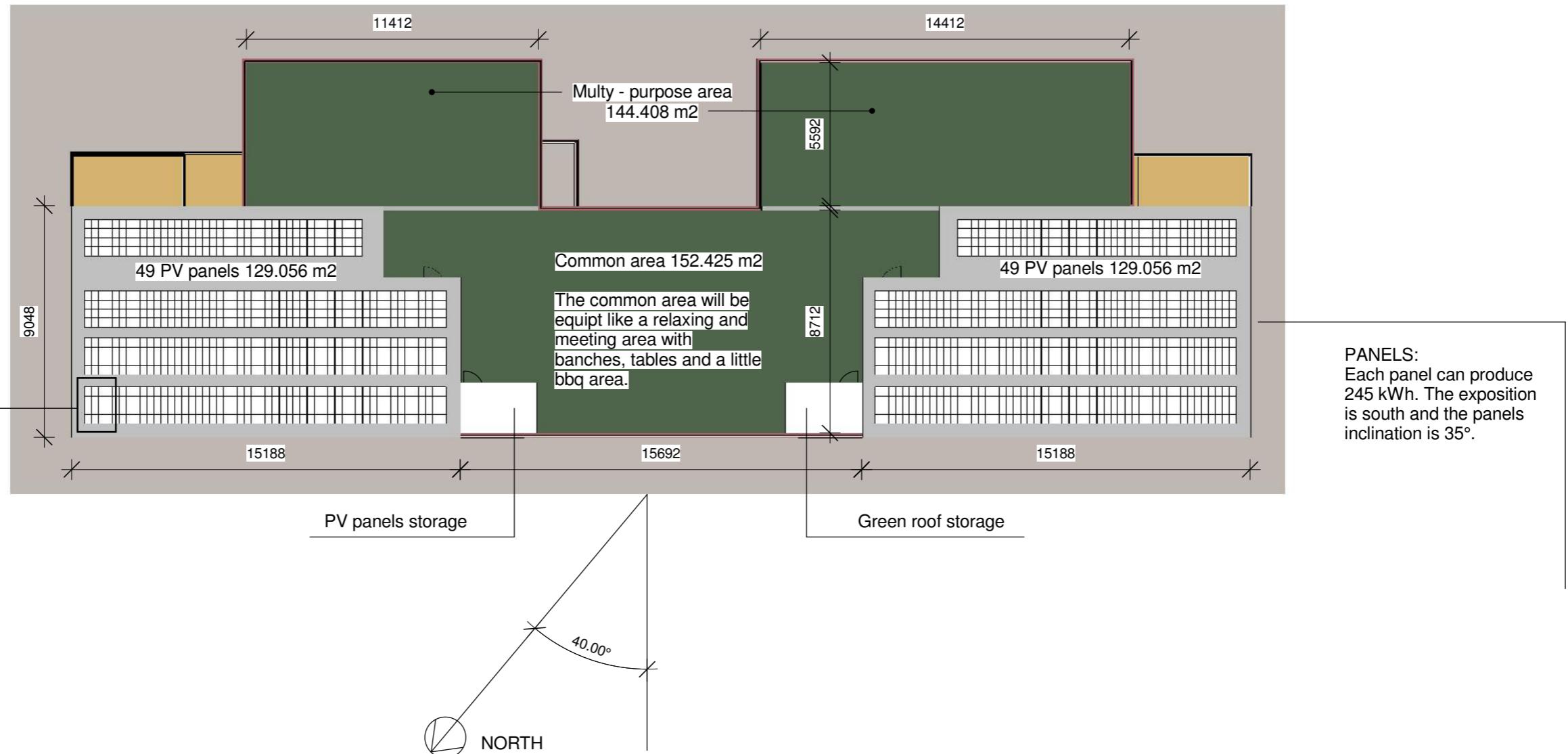
Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 04/09/15	15
SUBJECT: 3. Fire analysis	SCALE: 1 : 200	
DRAWN BY: a LUGWELLa LUGWELL	CLASS:	

1.1.5. *Site Analysis*

Site
1 : 500


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 04/09/15	16
SUBJECT: Site analysis	SCALE: 1 : 500	
DRAWN BY: a VIA student	CLASS:	

1.1.6. *Sustainability Analysis*

sustainability analysis
1 : 200

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGI AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/22/15
SUBJECT: sustainability analisys	SCALE: 1 : 200
DRAWN BY: a LUNGEN La LUNGEN	CLASS: AH42S15

K01_TXX_H7_EX_N1

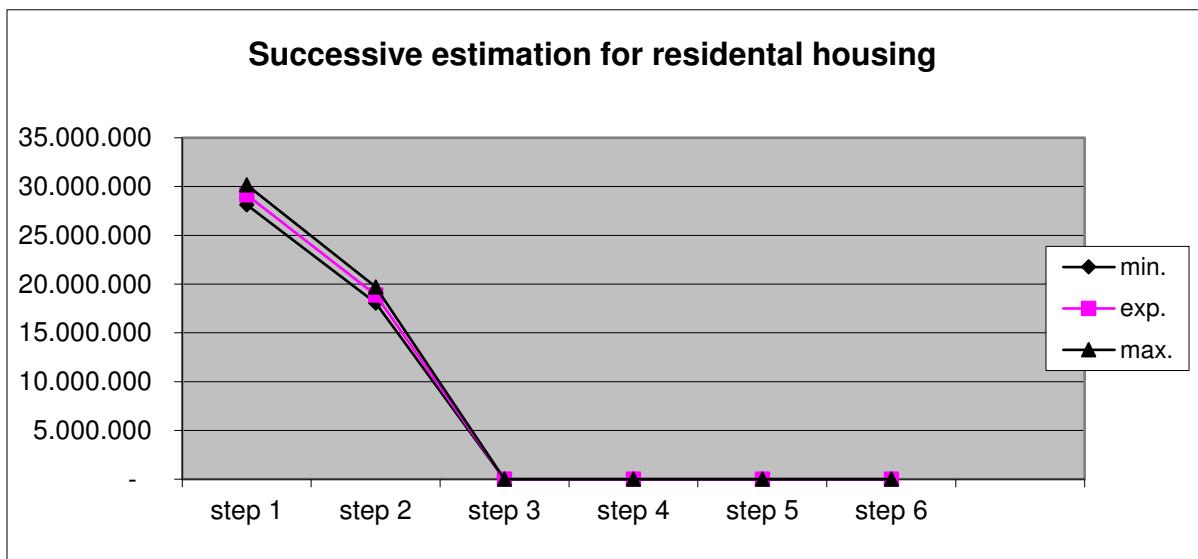
1.1.7. *Render*

1.2. BUILDING AND PLANNING MANAGEMENT

1.2.1. *Project cost*

Total cost including VAT	Dkr./m2	Cost DKr. Included VAT	Successive estimation DKr. Included VAT	Calculation Scheme design	What is relevant for our project? Where do we find the prices?
Plot acquisition sum	1.464	3.241.196	7.175.788.535	15.886.707.861.793	According to your Tender material
Extra ordinary foundation/piling	243	537.985	1.191.063.261	2.636.933.067.224	Key figures
Main carcass (ground sub-structure)	583	1.290.346	2.856.738.273	6.324.624.278.066	V&S and According to your project
Establish of common outside areas	270	597.762	1.323.403.623	2.929.925.630.249	Key figures
Gas- and sewer contribution	254	562.339	1.244.979.705	2.756.300.407.715	According to your project-se connections Horsens
Charges for connections	562	1.244.230	2.754.640.134	6.098.585.941.481	According to your project-se connections Horsens
Establishing roads and pavements	340	752.737	1.666.508.266	3.689.535.978.832	Key figures
Charges, taxes and interest costs	16	35.423	78.423.918	173.625.222.533	Key figures
Total plot costs	3.732	8.262.018	18.291.545.715		

Primary building components	5.072	11.228.598		V&S and According to your project
Completions (windows, doors, etc.)	2.019	4.469.995		V&S and According to your project
Surfaces	2.432	5.383.220		V&S and According to your project
Heat, water and sanitary installations	1.323	2.928.235		V&S and According to your project
Mechanical and Electrical installations	110	244.020		V&S and According to your project
Fixed furnishings	802	1.774.688		V&S and According to your project
Other construction costs (other elements)	611	1.353.200		V&S and According to your project
Other costs	692	1.531.155		V&S and According to your project
Total construction costs	13.060	28.913.111	-	


Technical consultancy costs included VAT	1.134	2.510.599	5.558.295.217	12.305.687.647.044	Your planing &Fee calculation / Key figures
Other consultants' costs	124	274.528	607.785.368	1.345.595.474.633	Key figures
Project fee/business manager	342	757.165	1.676.311.256	3.711.239.131.648	Key figures
Board of Directors' costs	21	46.493	102.931.393	227.883.104.575	Key figures
Interest on construction loan	218	482.637	1.068.525.888	2.365.643.657.016	Key figures
Drying out building	70	154.975	343.104.643	759.610.348.583	Key figures
Commission on guarantees, etc.	325	719.528	1.592.985.843	3.526.762.332.707	Key figures
State per mille charge	29	64.204	142.143.352	314.695.715.842	Key figures
Charges to local council	36	79.702	176.453.816	390.656.750.700	Key figures
Insurance certificates + charges	96	212.537	470.543.510	1.041.751.335.200	Key figures
Contribution to the building defects fund	146	323.234	715.618.255	1.584.330.155.616	Key figures
Total administration costs	2.541	5.625.601	12.454.698.542		

	Cost per m2	Total cost	After Successive estim.
Total acquisition sum	19.332	42.800.730	30.746.244.257
Your max budget	20240	44.682.553	
Difference - are you ok?	908	(1.881.823)	30.746.244.257

	min.	exp.	max.
step 1	28.131.863	29.151.117	30.170.371
step 2	18.068.228	18.887.506	19.706.783
step 3	-	-	-
step 4	-	-	-
step 5	-	-	-
step 6	-	-	-

1.2.2. *Area calculation*

APARTMENT	Area 1	Nr	Area 2	Subsidised area	Total area (m2)
Ap1	94,23	7	110,86		776,05
Ap2	67,86	6	84,50		507,01
Ap3	86,90	2	103,53		207,07
Ap4	73,09	2	89,73		179,46
Nr Apartments		17			
Staircase and elevator	29,57	9	266,13	15,65470588	
External staircase	16,73	1	16,73	0,984117647	

Maria J Julian Martin

Apartment 1 (Big apartment)			
Area (different depends the floor) m2	Nr	Total	Media
95,32	3	285,96	
93,6	2	187,2	
93,21	2	186,42	
	7	659,58	94,23

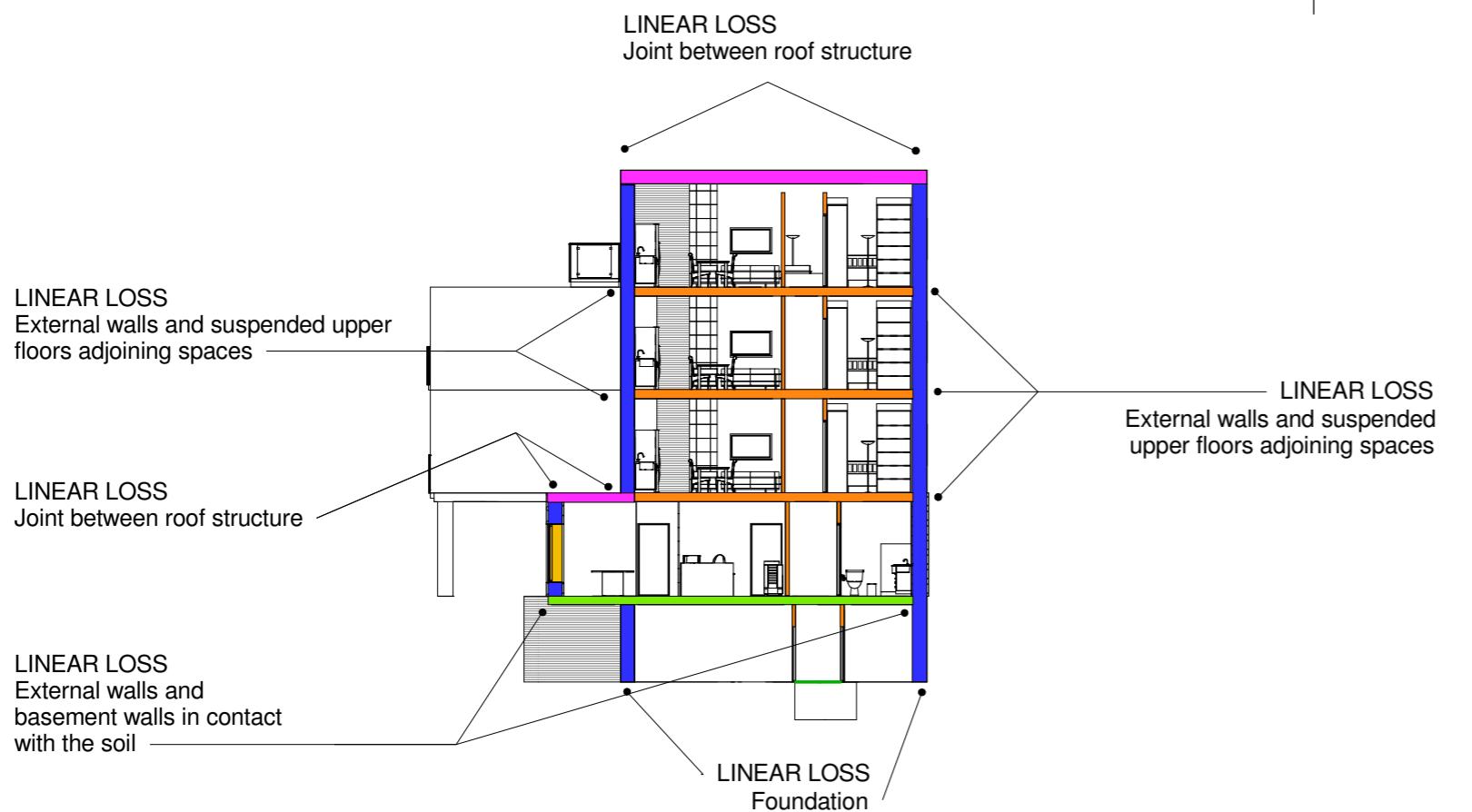
Apartment 2 (Small apartment)			
Area (different depends the floor) m2	Nr	Total	Media
68,79	2	137,58	
67,32	2	134,64	
67,48	2	134,96	
	6	407,18	67,86

Apartment 3 (Ext. Big apartment)			
Area (different depends the floor) m2	Nr	Total	Media
86,8	1	86,8	
86,99	1	86,99	
	2	173,79	86,90

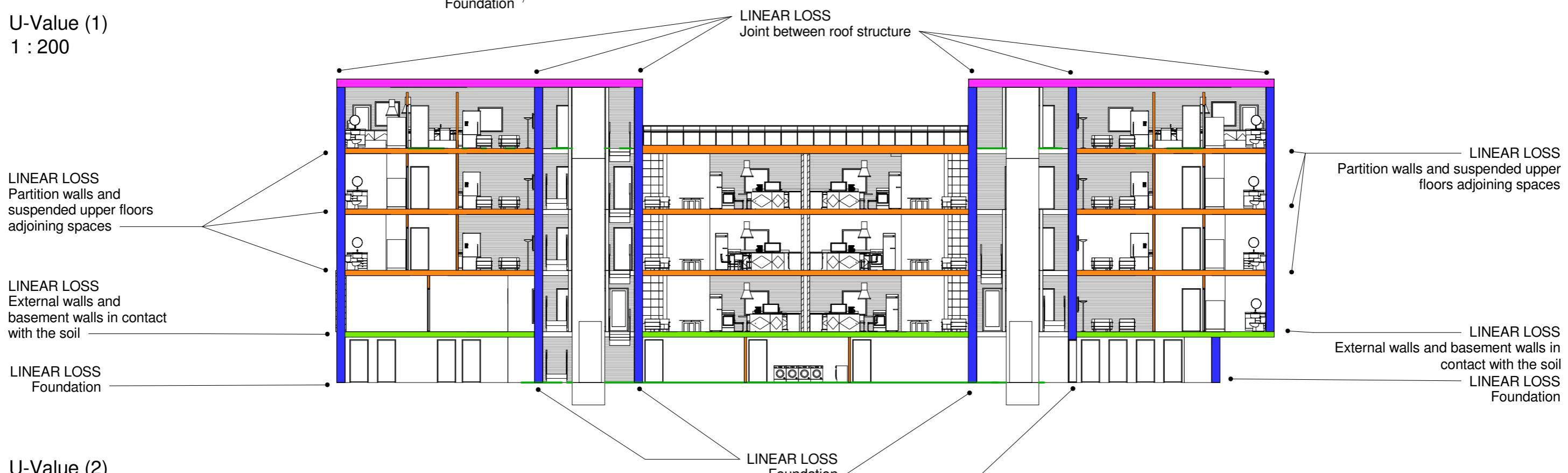
Apartment 4 (Ext. Small apartment)			
Area (different depends the floor) m2	Nr	Total	Media
73,12	1	73,12	
73,06	1	73,06	
	2	146,18	73,09

Staircase and elevator			
Area (different depends the floor) m2	Nr	Total	Media
29,33	6	175,98	
29,91	2	59,82	
30,33	1	30,33	
	9	266,13	29,57

FLOOR	AREA
Basement	314.428
Groundfloor	411.139
1 st floor	549.519
2 nd floor	549.519
Penthouse	389.327
TOTAL	2213.932


1.2.3. *Project Planning*


PROJECT PLANNING


а ЦРЦШС па ЦРЦ

1.3. BUILDING SERVICES

1.3.1. *U-Value analysis*

		DEMAND	RECOMMENDED	BE 2015
	EXTERNAL AND BASEMENT WALLS	0.30	0.15	0.10
	PARTITION AND SUSPENDED FLOORS	0.40	0.40	0.28
	GROUND SLABS AND BASEMENT FLOOR	0.20	0.10	0.07
	CEILING AND ROOF STRUCTURE	0.20	0.20	0.07
	WINDOWS	1.80	1.40	0.98

Bring ideas to life VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS TYPE CITY

PROJECT: Multi-storey housing	DATE: 03/26/15	10
SUBJECT: U-Value	SCALE: 1 : 200	
DRAWN BY: a 4th year student	CLASS: 4thSemAH42	

U-VALUE Calculation

	DEMAND	RECOMMENDED	BE 2015
EXTERNAL AND BASEMENT WALLS	0.30	0.15	0.75
PARTITION WALLS	0.40	0.40	0.08
GROUND SLABS AND BASEMENT FLOOR	0.20	0.10	0.02
CEILING AND ROOF STRUCTURE	0.20	0.10	0.02
WINDOWS	1.80	1.40	0.28
SUSPENDED FLOORS	0.50	0.40	0.08

1.3.2. *Sound analysis*

5 Demands for sound classification of dwellings

5.1 Airborne sound insulation

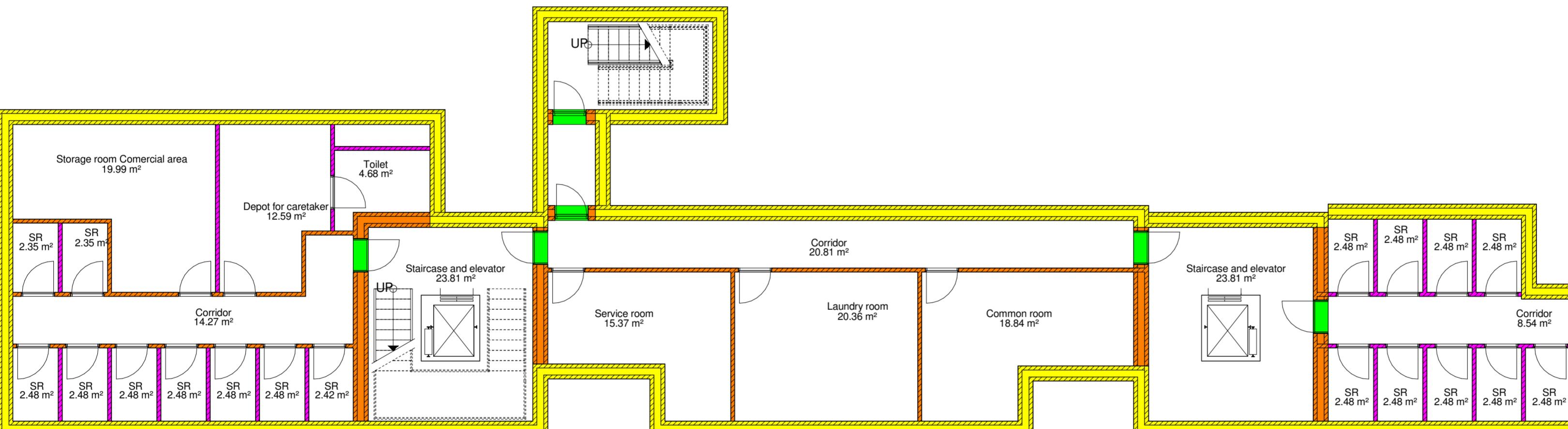
The limit value for airborne sound insulation for each sound class is shown in table 1.

Table 1 – Airborne sound insulation. Limit values indicated as lowest values for weighted reduction number,
 R'_{w} or $R'_{w} + C_{50-3150}$

Room type	Class A $R'_{w} + C_{50-3150}$ in dB	Class B $R'_{w} + C_{50-3150}$ in dB	Class C R'_{w} in dB	Class D R'_{w} in dB
Between a dwelling or shared living room and premises with noisy activities (business or common spaces)	68	63	60	55
Between a dwelling and spaces outside the dwelling	63	58	55	50
Between shared living rooms mutually	63	58	55	50
Door between dwelling and common spaces	32	32	32	27

NOTE - For class A and B is provided for the airborne sound insulation at low frequencies by adding the spectrum correction, $C_{50-3150}$, to the R'_{w} value. This spectrum correction is used as a protection against inconvenient low frequency noise.

5.2 Impact sound level


The limit values for impact sound level for each sound class are shown in table 2.

Balconies as well as floors and slabs at spaces with a floor space less than 2.5 m^2 must not comply with demands for impact sound level.

Table 2 - Impact sound level. Limit values indicated as highest values for weighted, normalized impact sound level,
 $L'_{n,w}$ or $L'_{n,w} + C_{1,50-2500}$

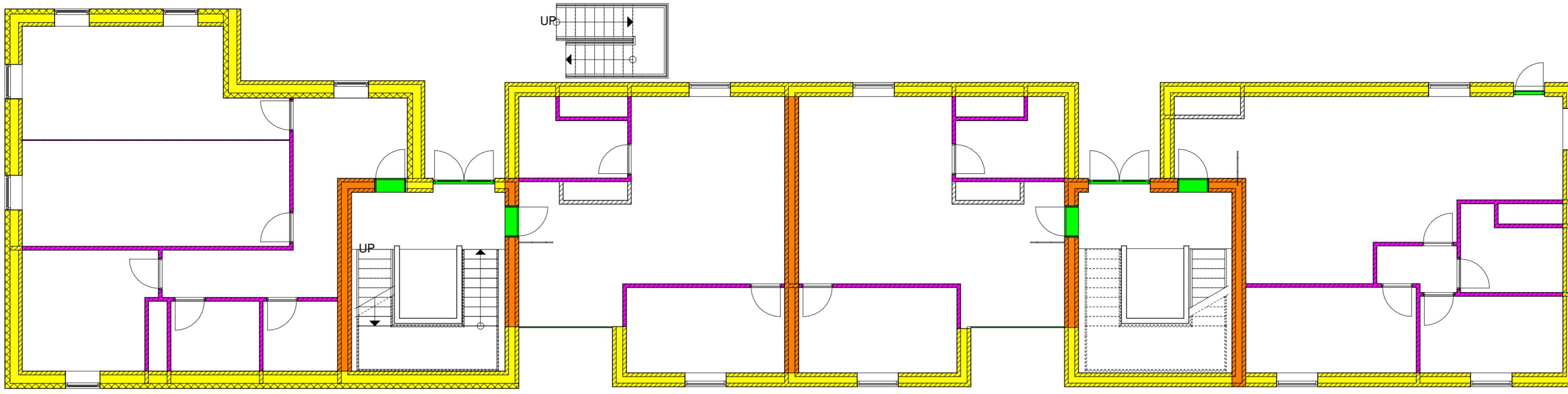
Room type	Class A $L'_{n,w} + C_{1,50-2500}$ in dB	Class B $L'_{n,w} + C_{1,50-2500}$ in dB	Class C $L'_{n,w}$ in dB	Class D $L'_{n,w}$ in dB
In living rooms and kitchens as well as at shared living rooms - from premises with noisy activities (business or common spaces)	38	43	48	53
In living rooms and kitchens - from other dwellings and from common spaces	43	48	53	58
In living rooms and kitchens - from shared stairways and passages, from balconies or similar, as well as from toilet- and bath rooms in other dwellings	48	53	58	63
In shared living rooms - from living rooms, other common spaces, stairways, passages, balconies or similar, as well as from toilet- and bath rooms	48	53	58	63

NOTE - For class A and B is provided for the impact sound level at low frequencies by adding the spectrum correction, $C_{1,50-2500}$, to the $L'_{n,w}$ -value. This spectrum correction is used as a protection against inconvenient low frequency noise, which is an ordinary problem in connection with light building-constructions. The spectrum correction is however only to be included, if it is $\geq 0 \text{ dB}$.

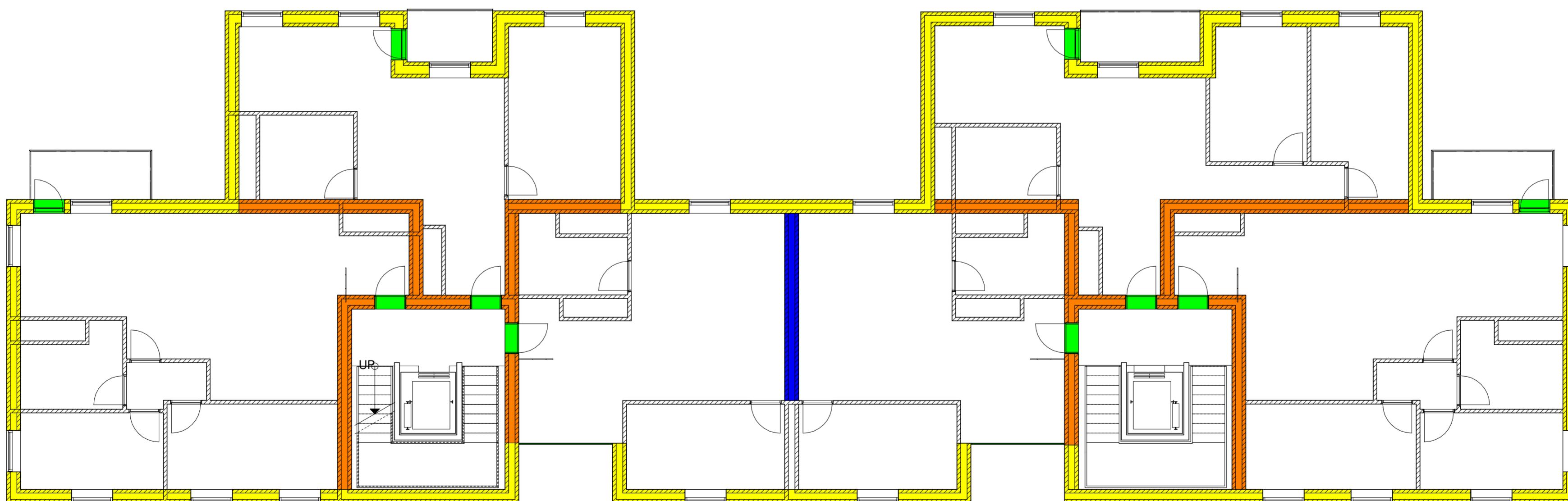
Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

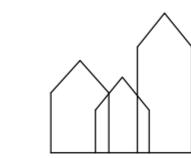
PROJECT: Multi-storey housing


DATE: 04/16/15

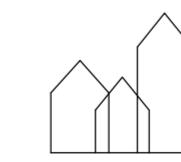
SUBJECT: 1. Sound analysis

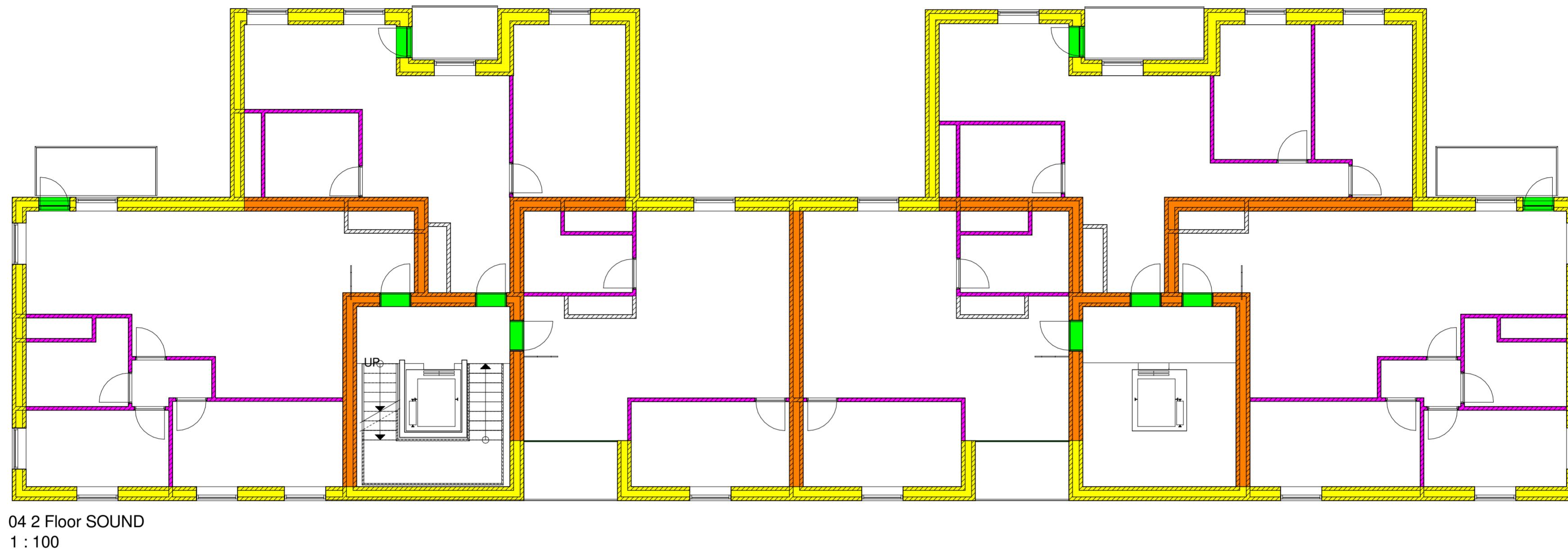

SCALE: 1 : 100

DRAWN BY: a L11W11a L11II


CLASS: 4thSemAH42

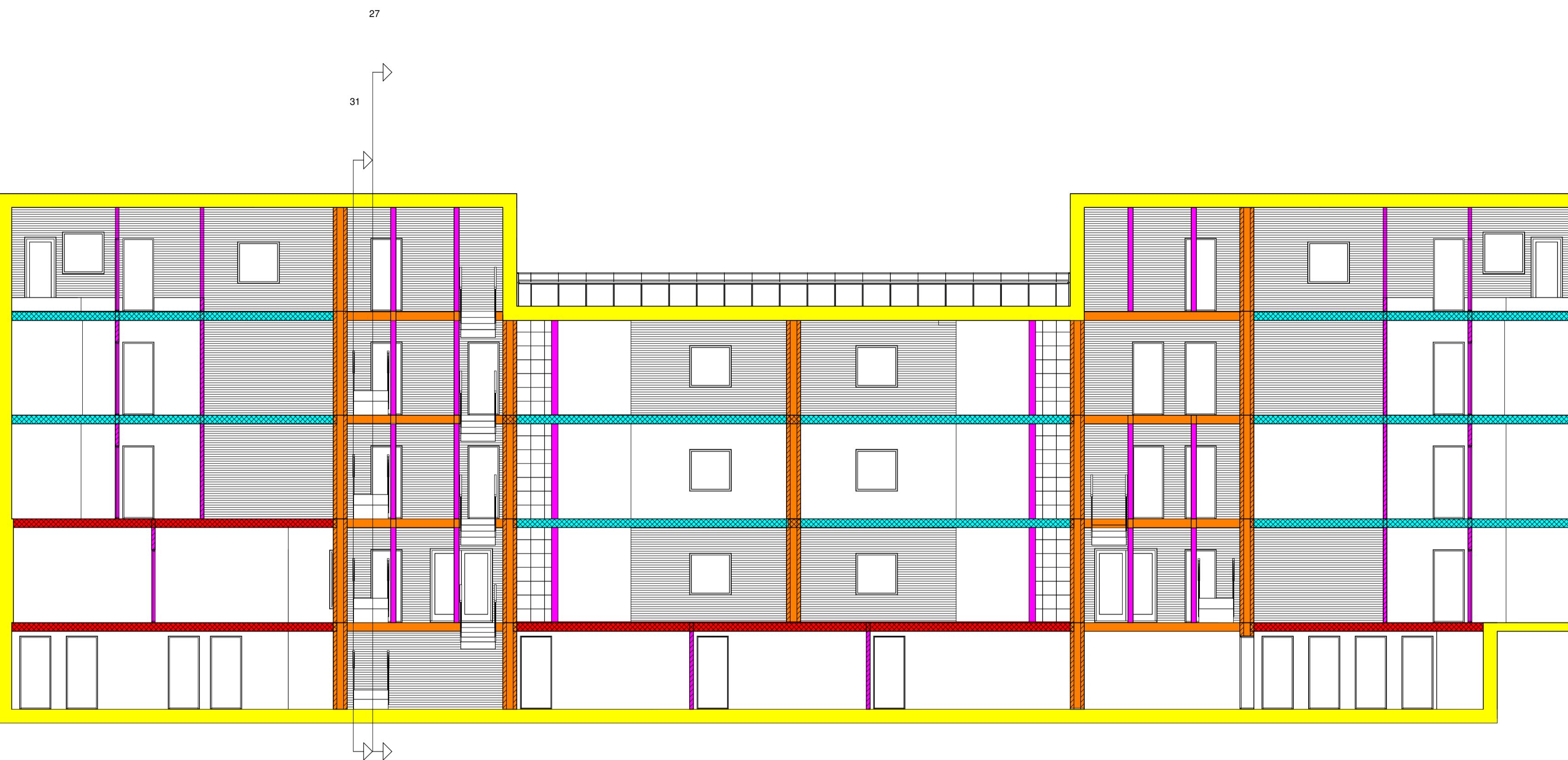
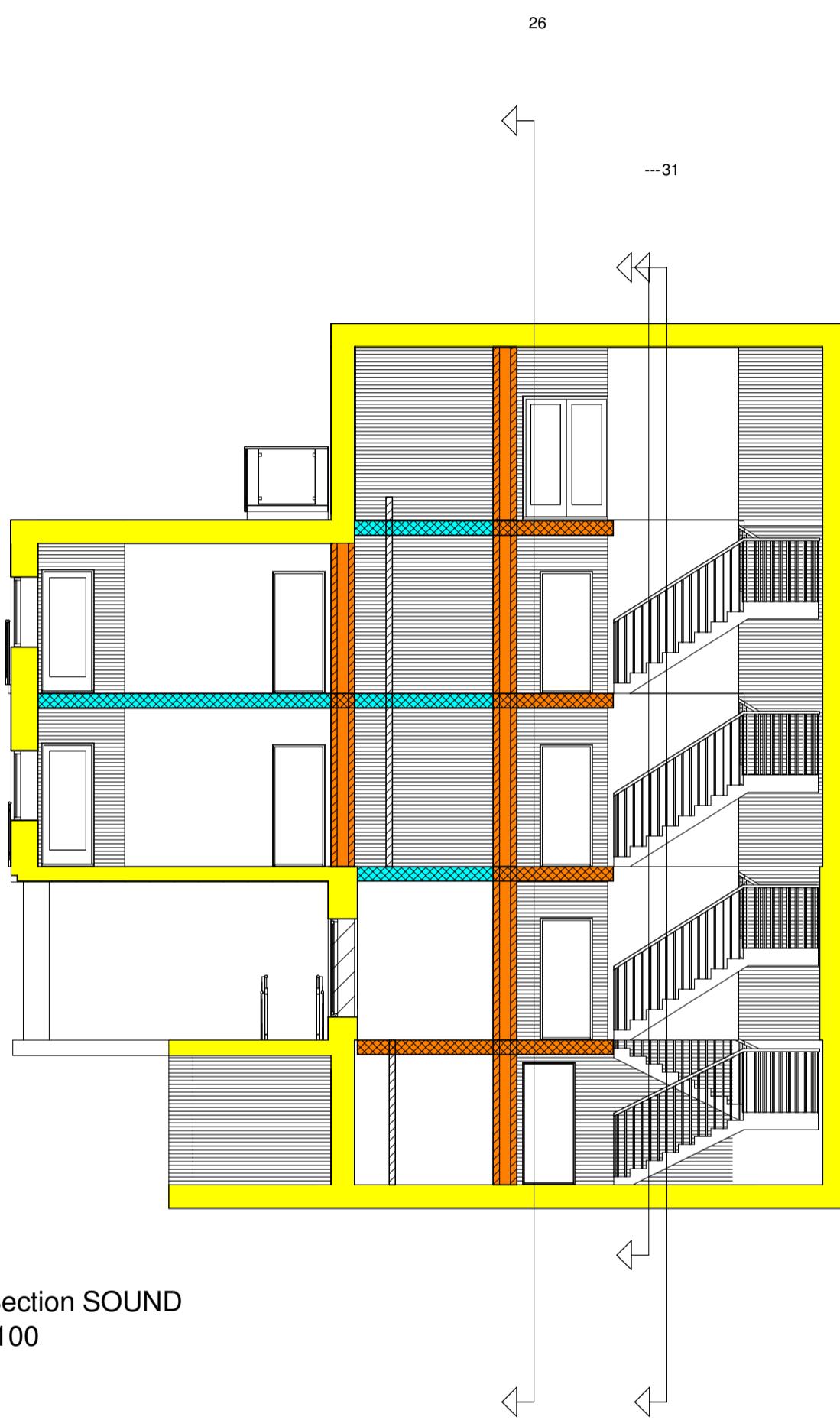
02 Groundfloor, terrain SOUND
1 : 100

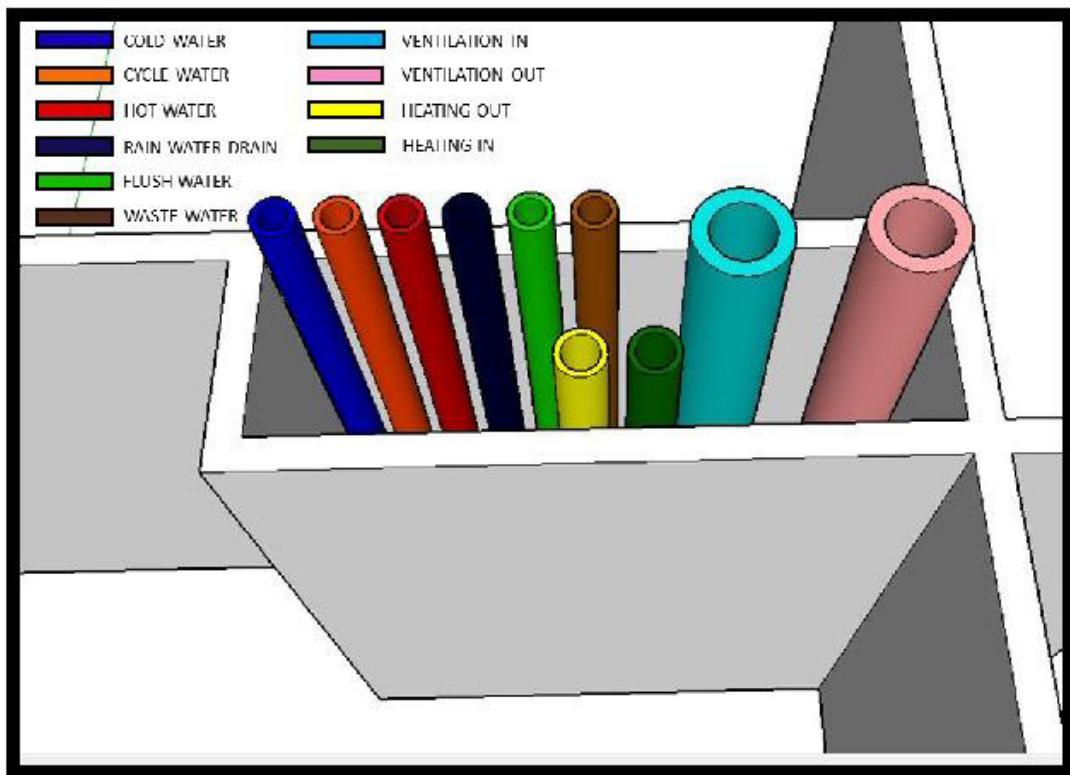



03 1 Floor SOUND
1 : 100

Bring ideas to life
VIA University College

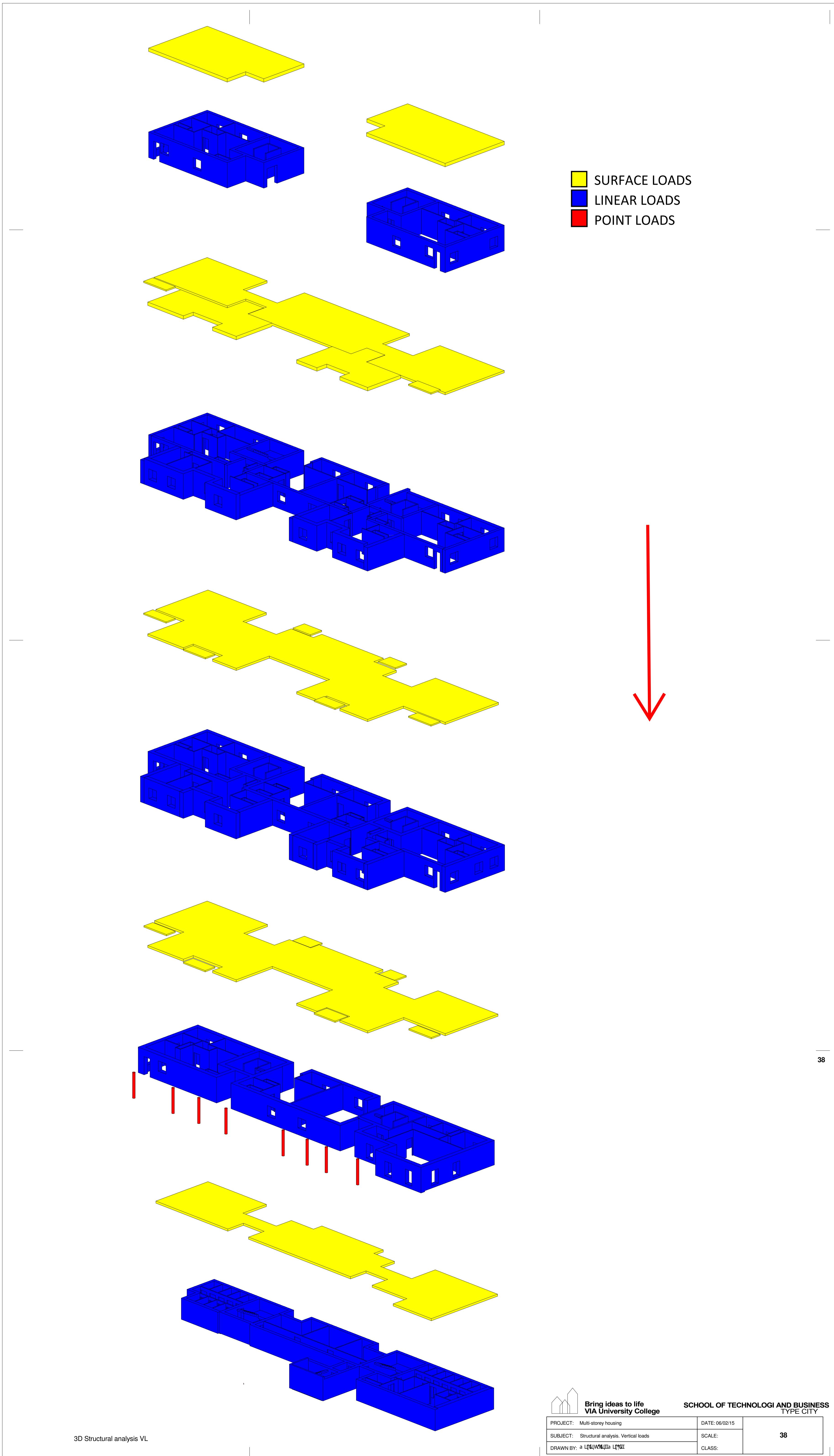
SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

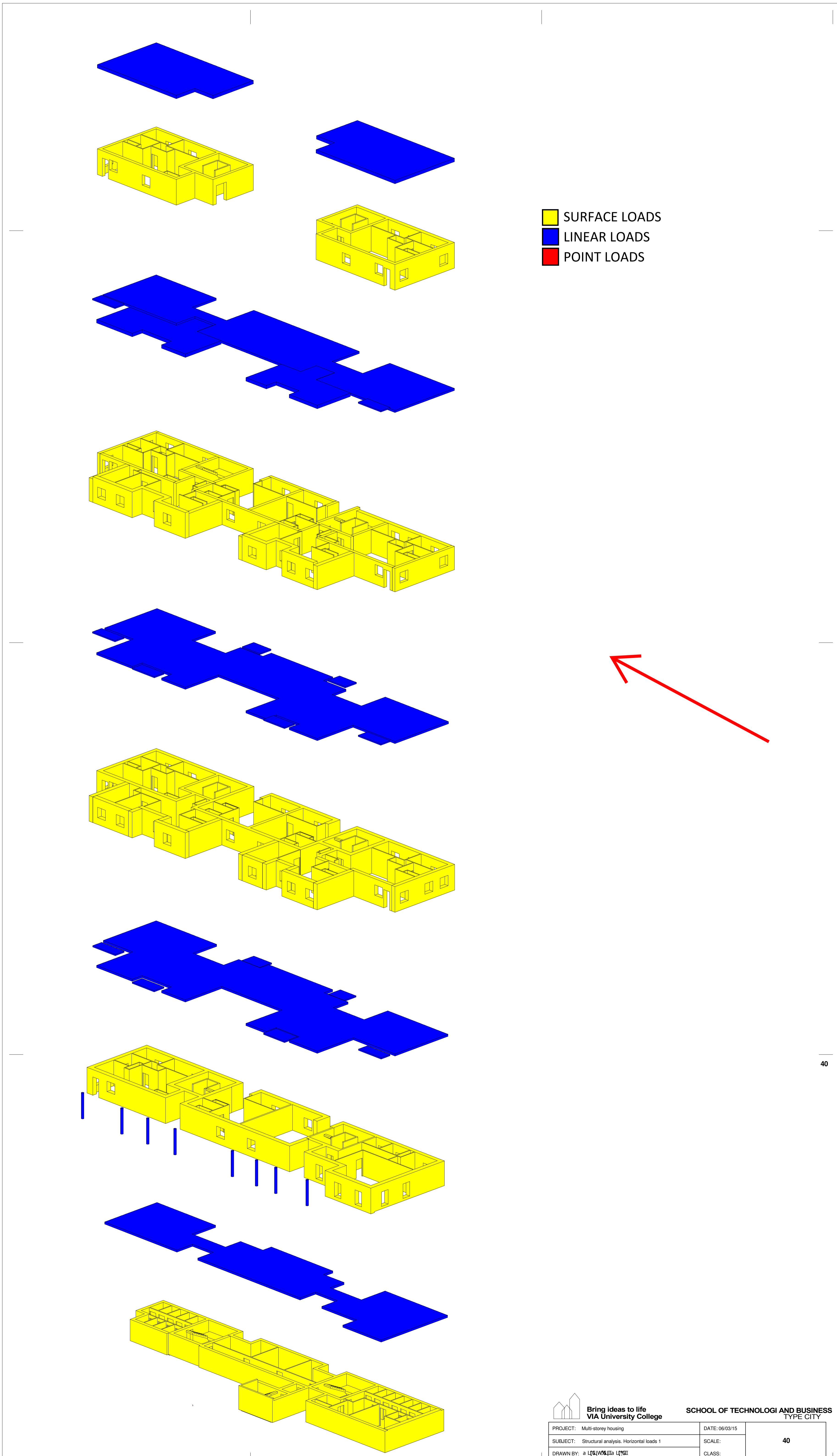


PROJECT: Multi-storey housing	DATE: 04/16/15
SUBJECT: 2. Sound analysis	SCALE: 1 : 100
DRAWN BY: a LUNWELLa LUNWELL	CLASS: 4thSemAH42

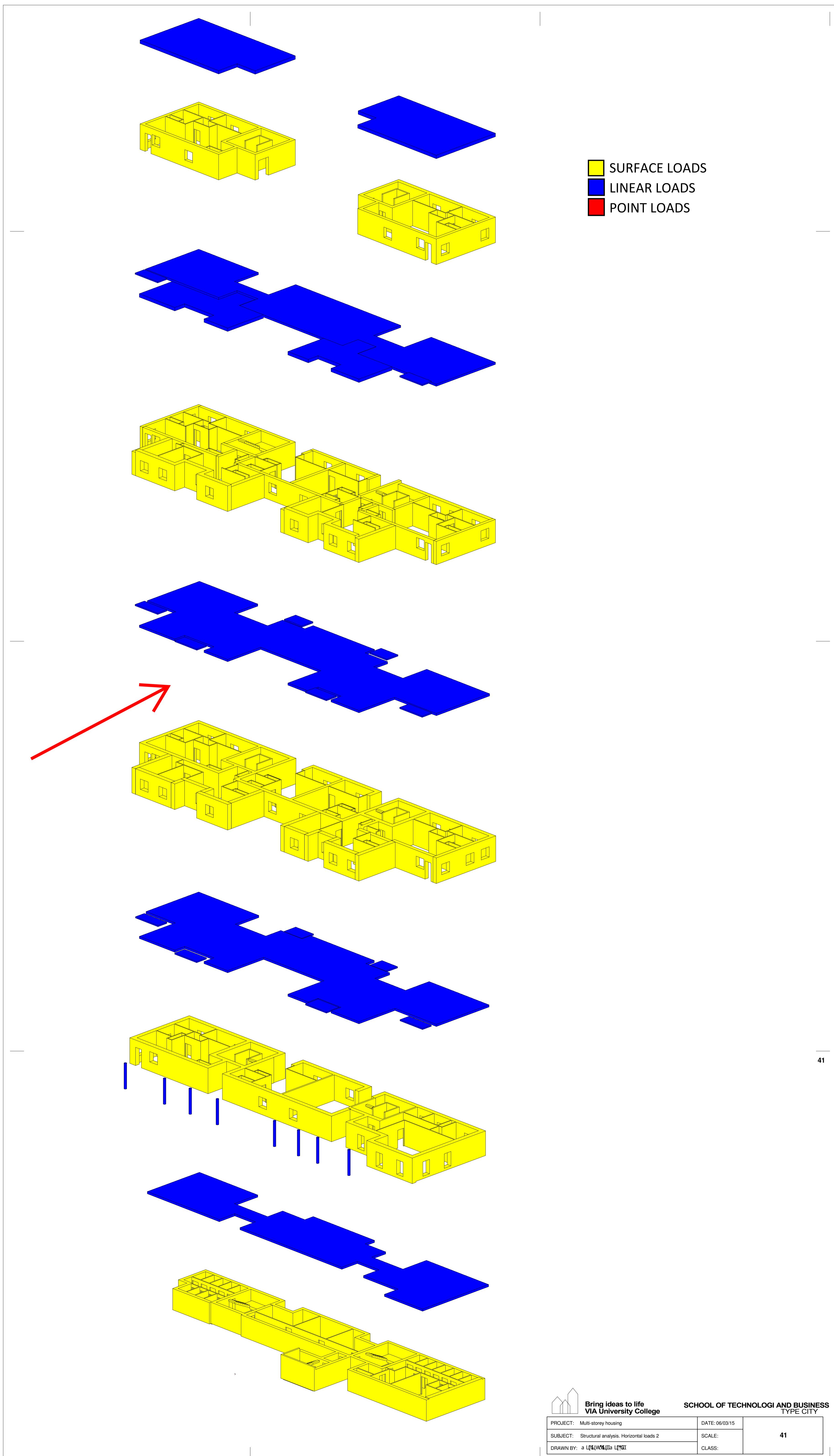

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

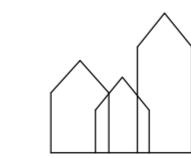
PROJECT: Multi-storey housing	DATE: 04/16/15
SUBJECT: 3. Sound analysis	SCALE: 1 : 100
DRAWN BY: a LUNA DA LUNA	CLASS: 4thSemAH42




1.3.3. *Installations shaft*



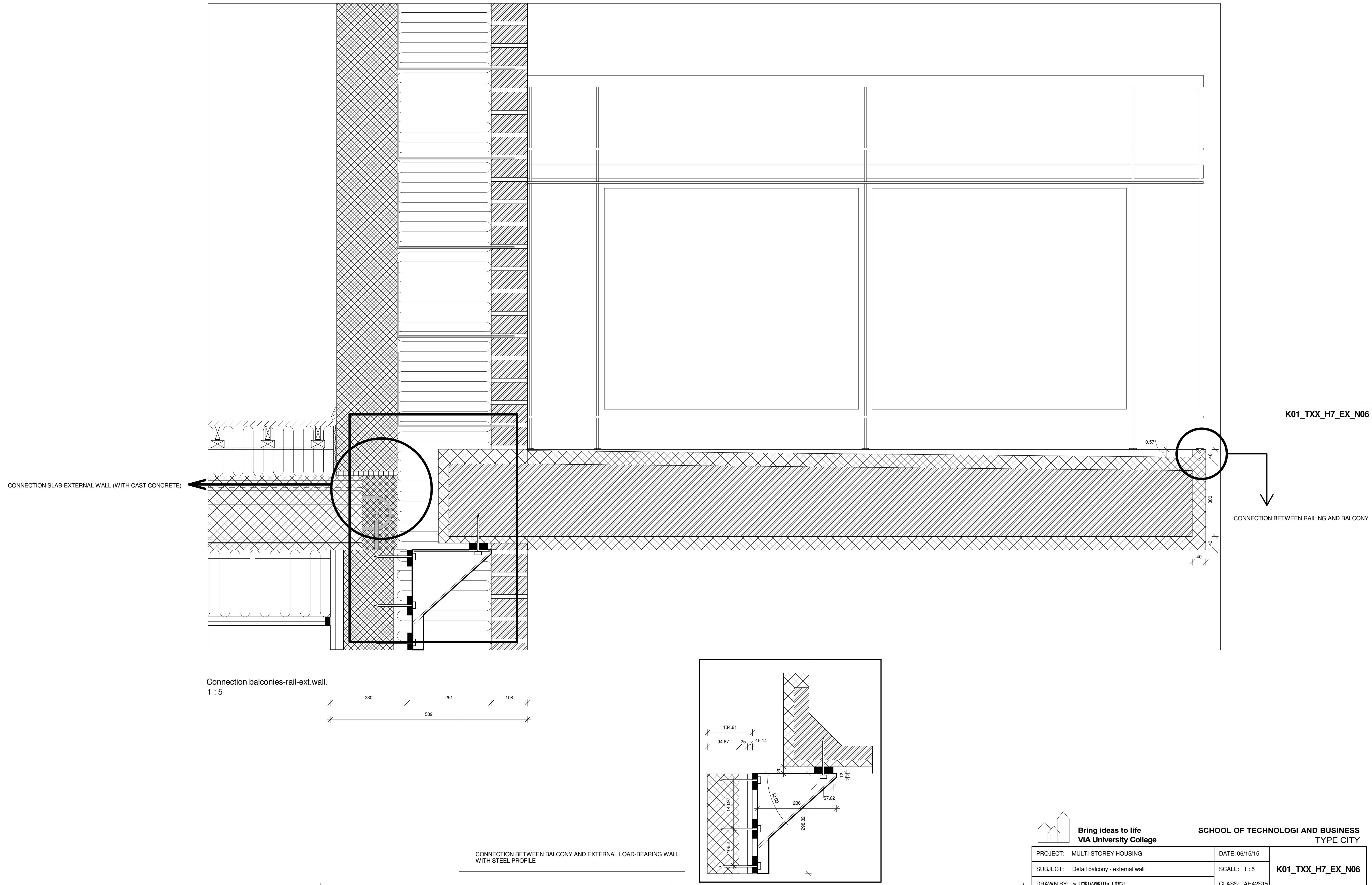
1.4. STRUCTURAL DESIGN

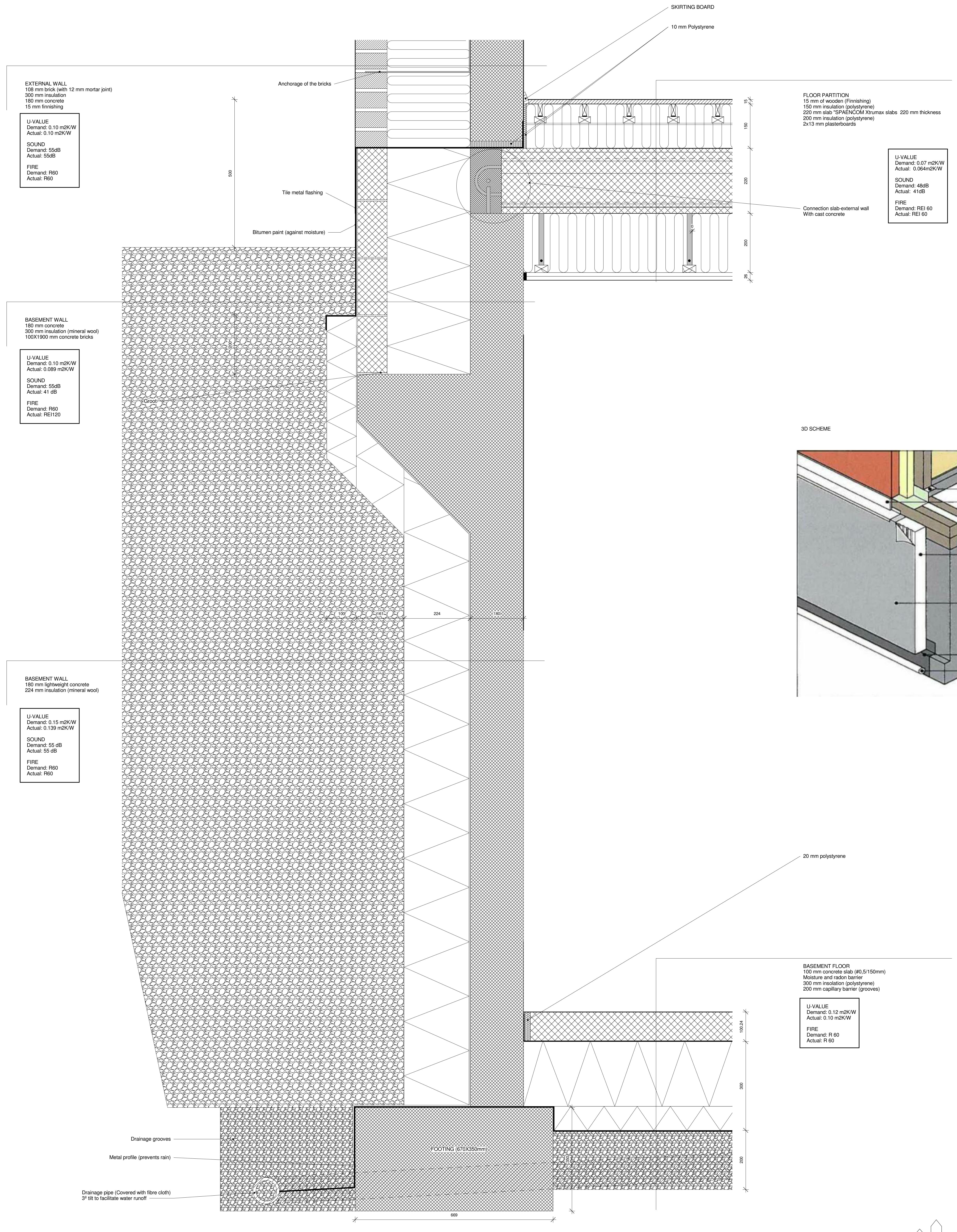


1.4.1. *Structural analysis*

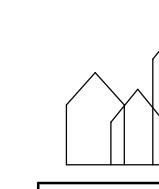
1.4.2. *Deck elements plan*

Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

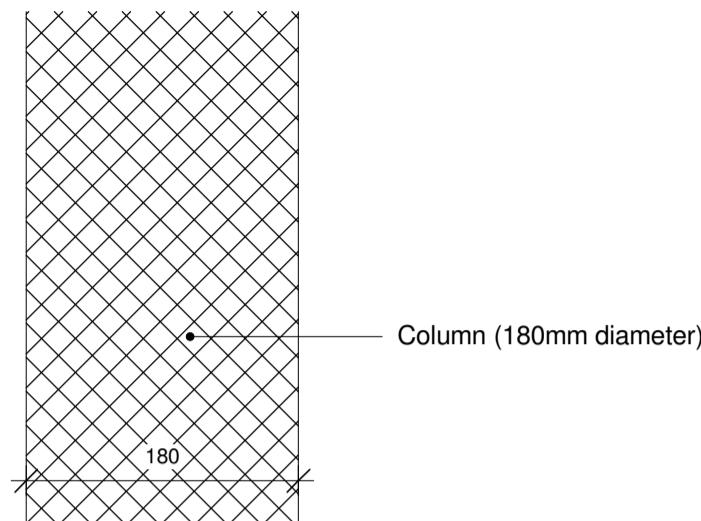

PROJECT: MULTI-STOREY HOUSING	DATE: 05/15/15	K01_TXX_H7_EX_N17
SUBJECT: Deck elements plan	SCALE: 1 : 100	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	

2. ANEXO 2 (SCHEME DESIGN)

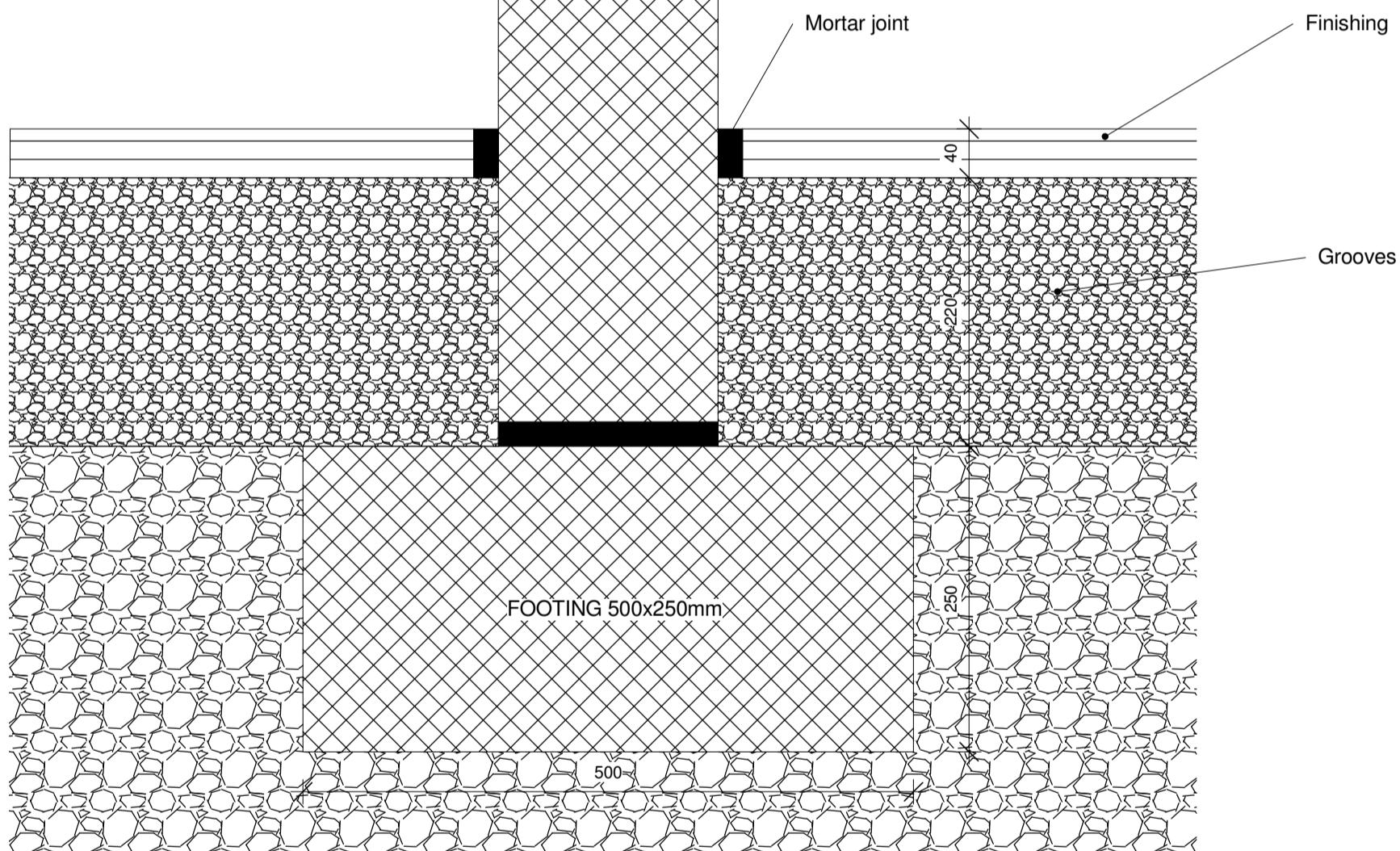

2.1. BUILDING DESIGN

2.1.1. *Details*

K01_TXX_H7_EX_N07

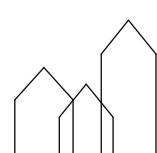


Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

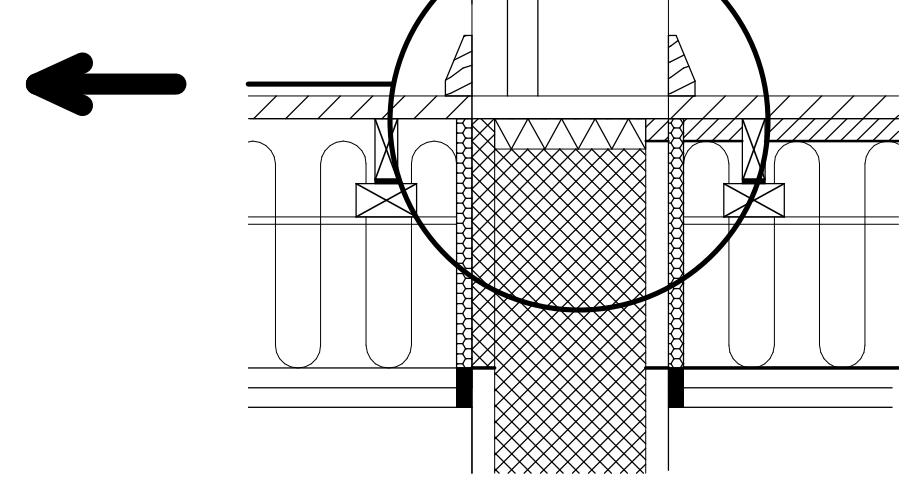
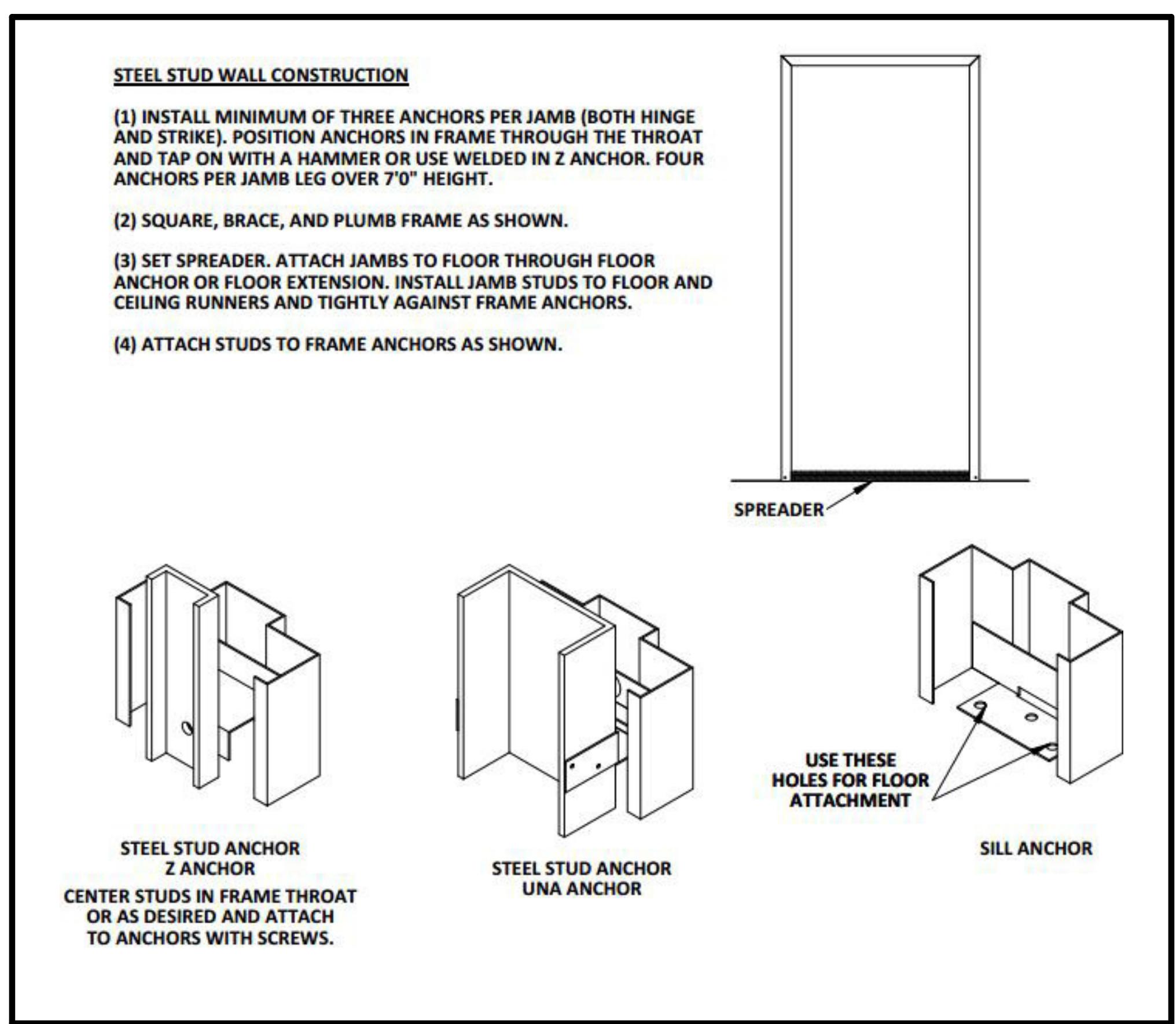
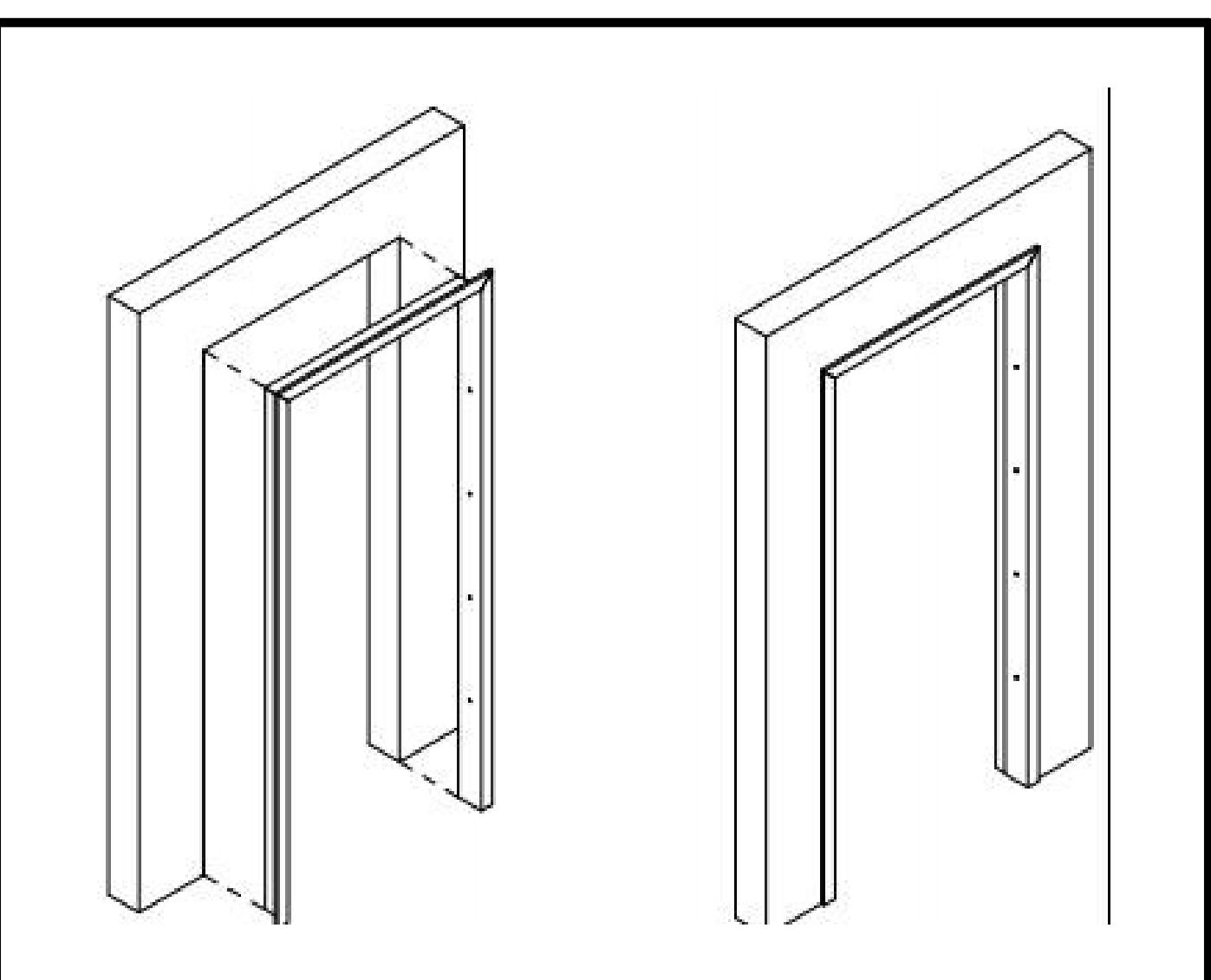
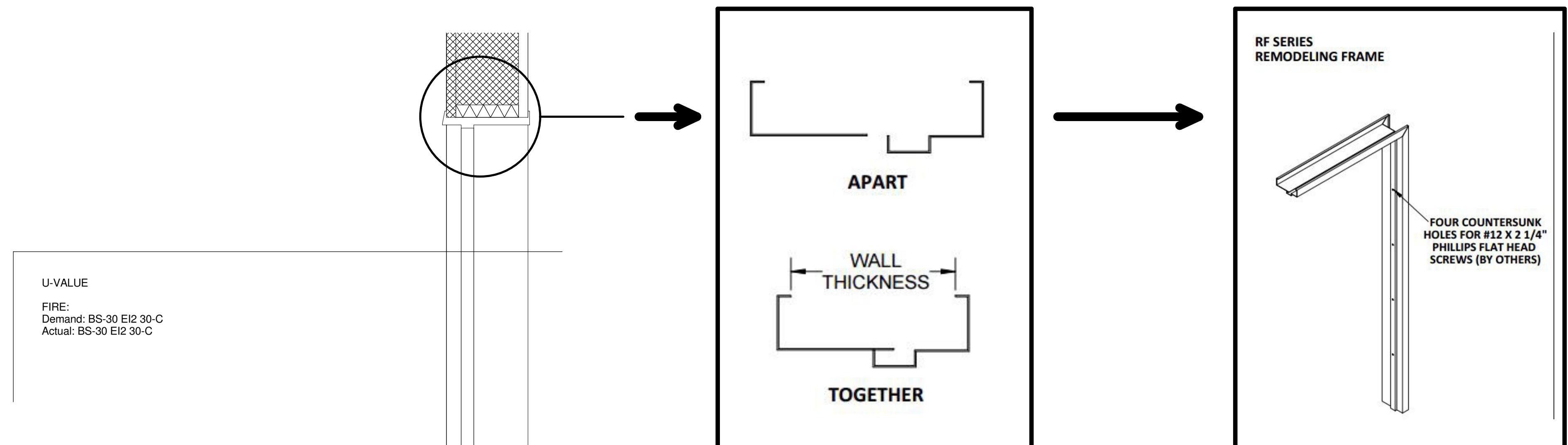
PROJECT:	MULTI-STOREY HOUSING	DATE: 25/05/15
SUBJECT:	Detail Basement wall - foundation	SCALE: 1 : 5
DRAWN BY:	Maria Julian Martin	CLASS: AH42S15

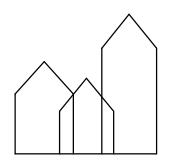
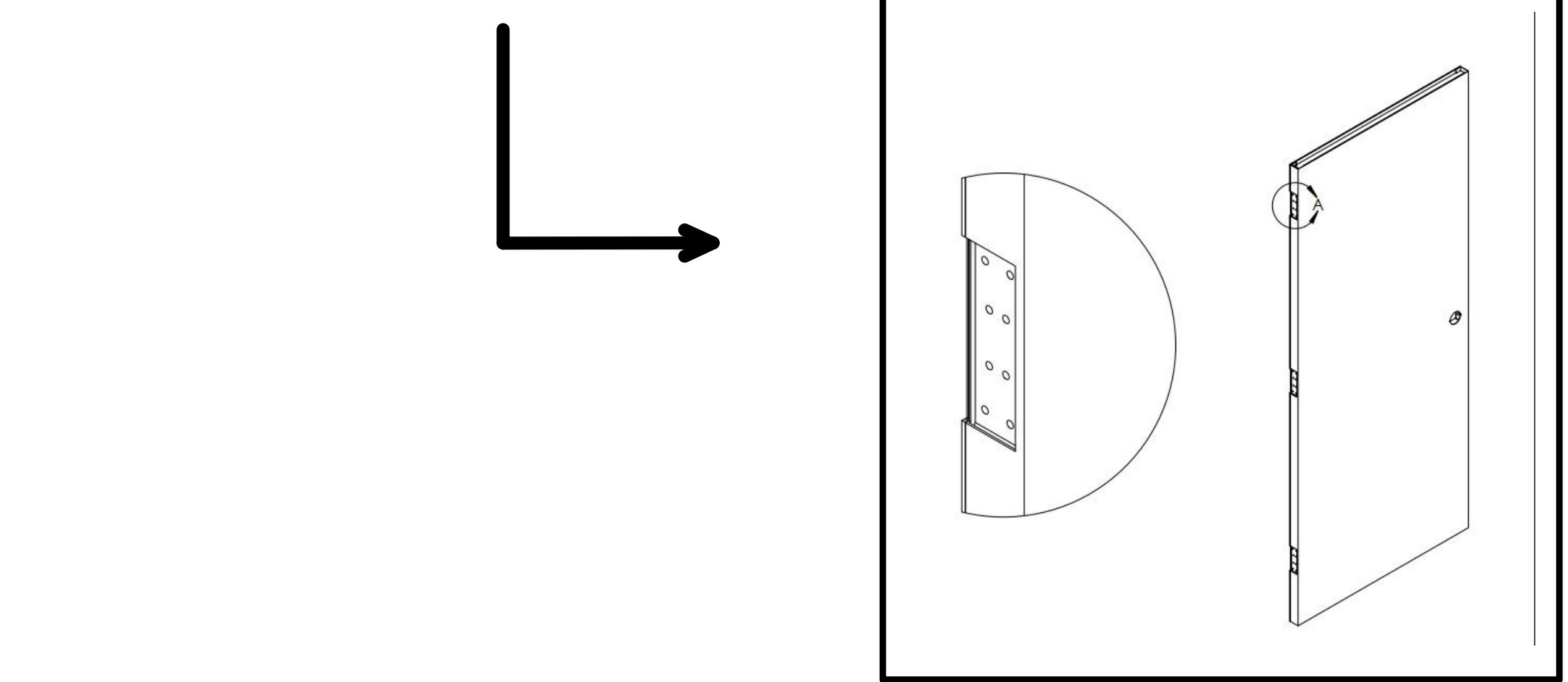
K01_TXX_H7_EX_N07



K01_TXX_H7_EX_N10

Connection column-foundation.





1 : 5



Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/14/15	K01_TXX_H7_EX_N10
SUBJECT: Detail column - foundation	SCALE: 1 : 5	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	

Connection wall-door-floor.
1 : 5

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STORY HOUSING	DATE: 06/15/15
SUBJECT: Detail door - wall	SCALE: 1 : 5
DRAWN BY: a LILWELL LTD	CLASS: AH42S15

K01_TXX_H7_EX_N13

CLASS: AH42S15

DATE: 06/15/15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

SUBJECT: Detail door - wall

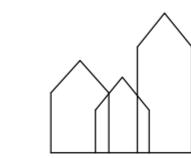
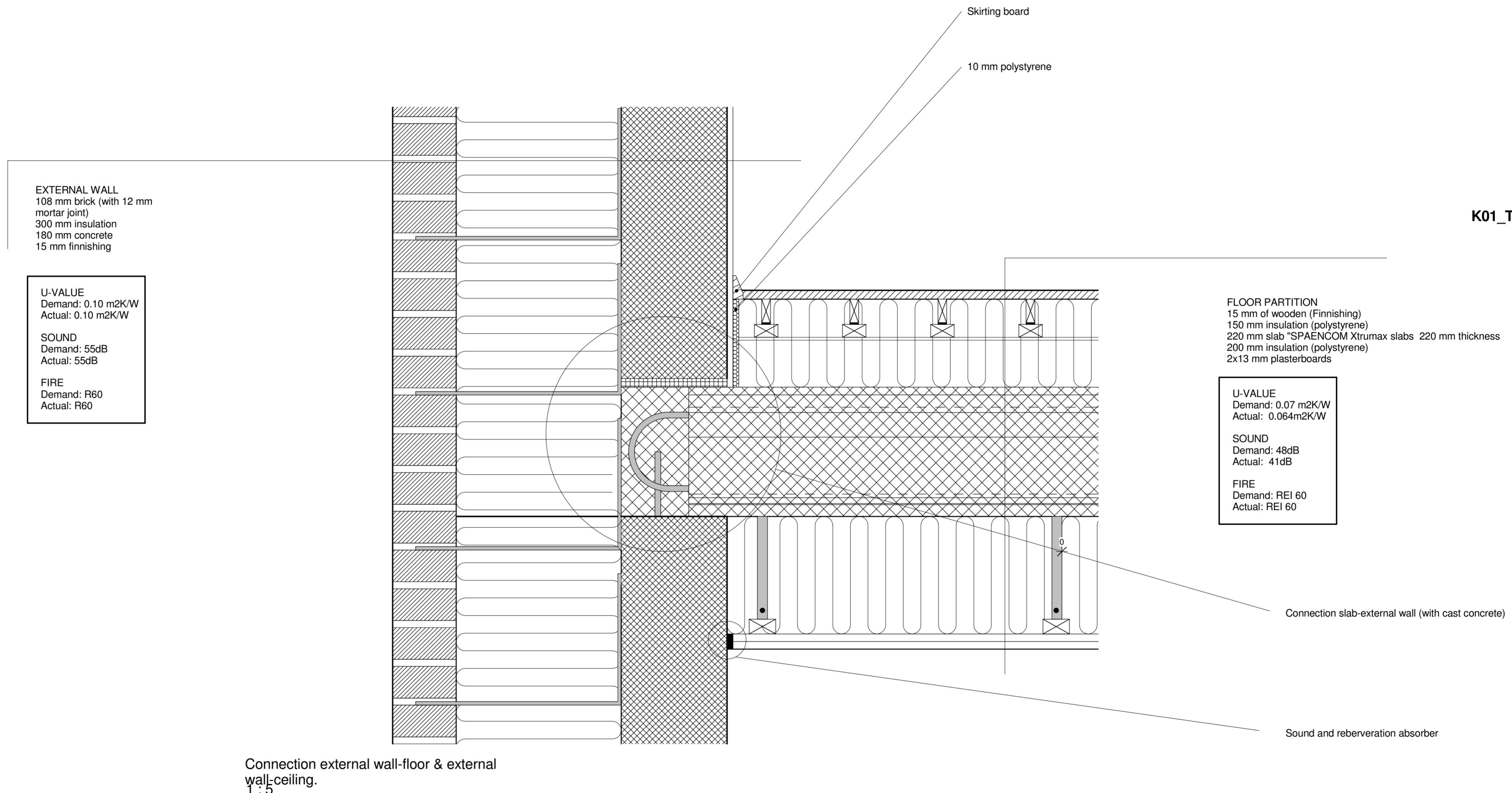
PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5

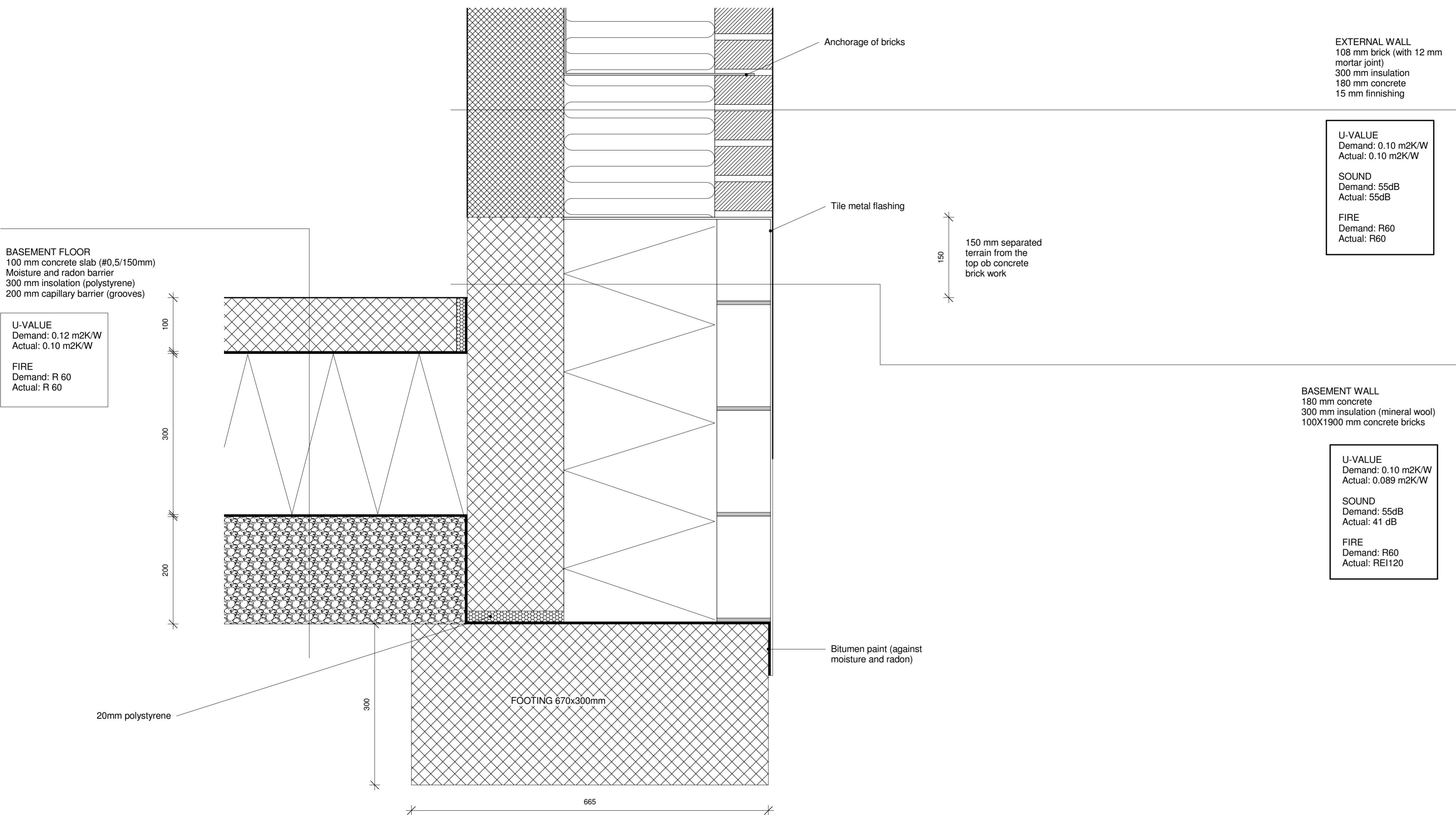
SUBJECT: Detail door - wall



PROJECT: MULTI-STORY HOUSING

DATE: 06/15/15

CLASS: AH42S15

SCALE: 1 : 5


SUBJECT: Detail door - wall

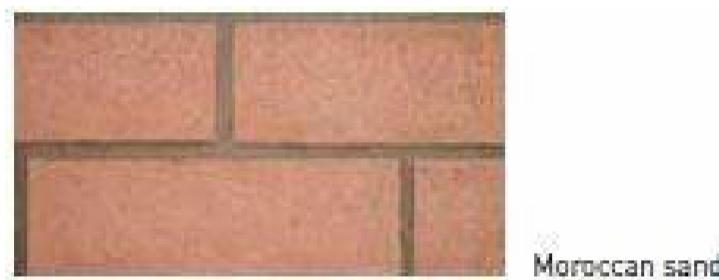
Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/13/15	K01_TXX_H7_EX_N04
SUBJECT: Detail external wall - floor partition	SCALE: 1:5	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	

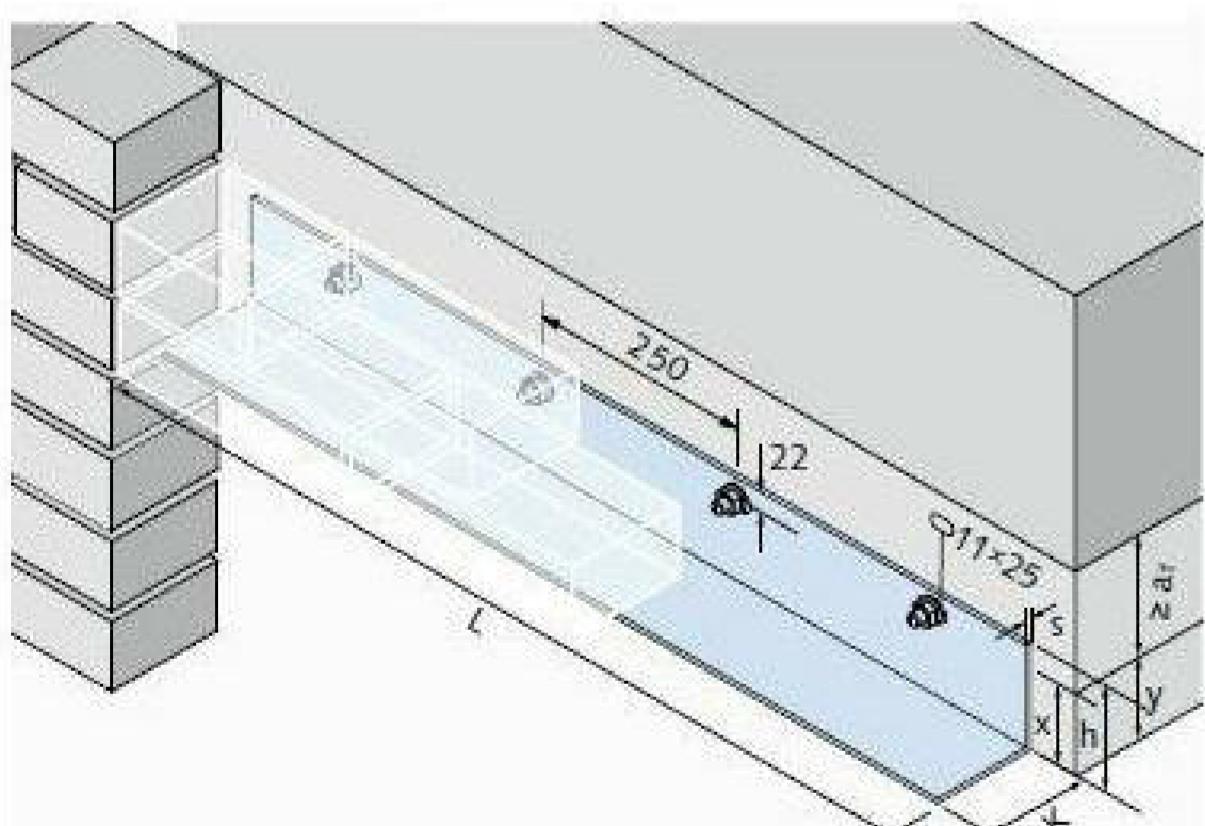
Connection external wall-foundation.

1 : 5

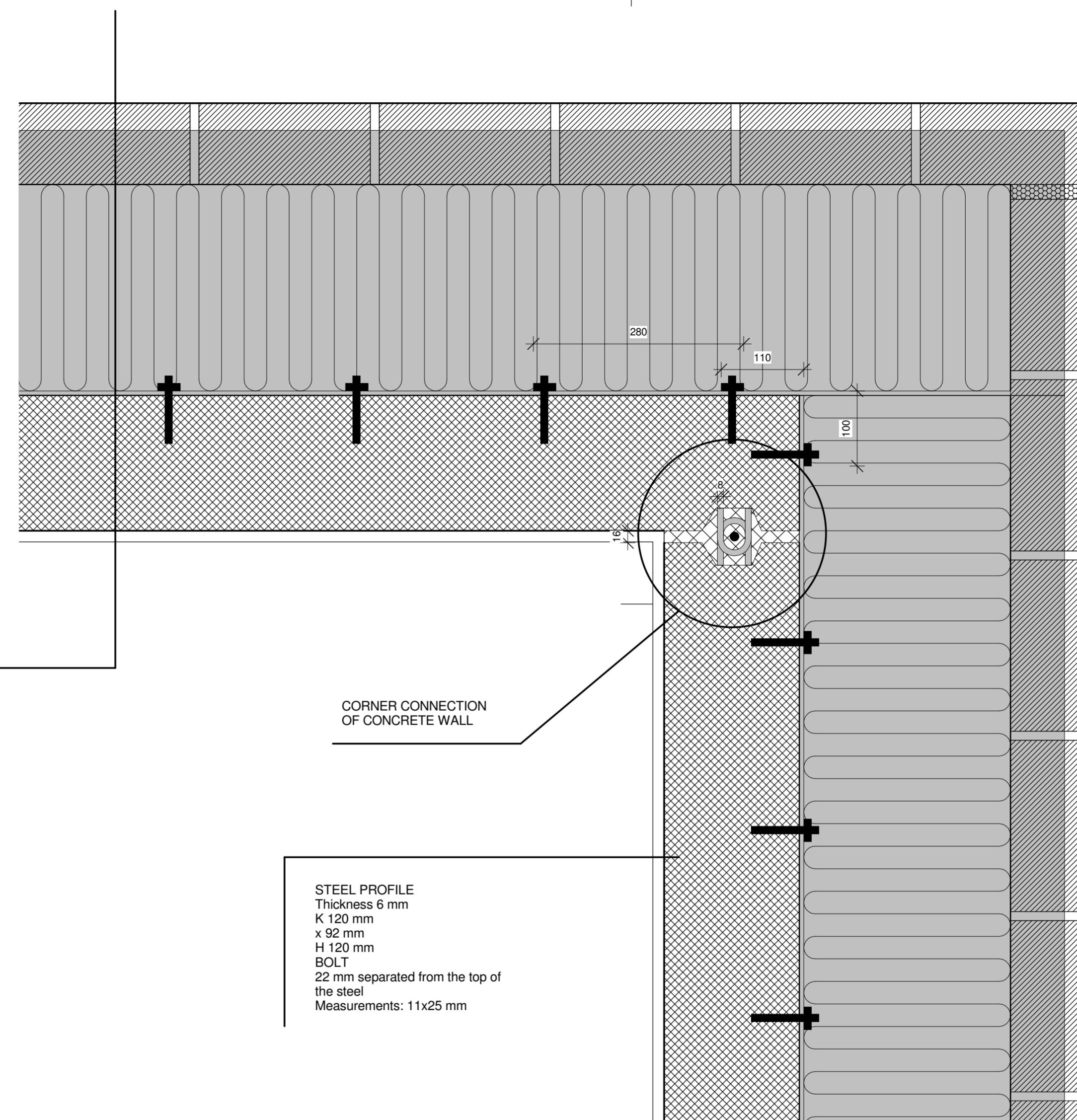

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

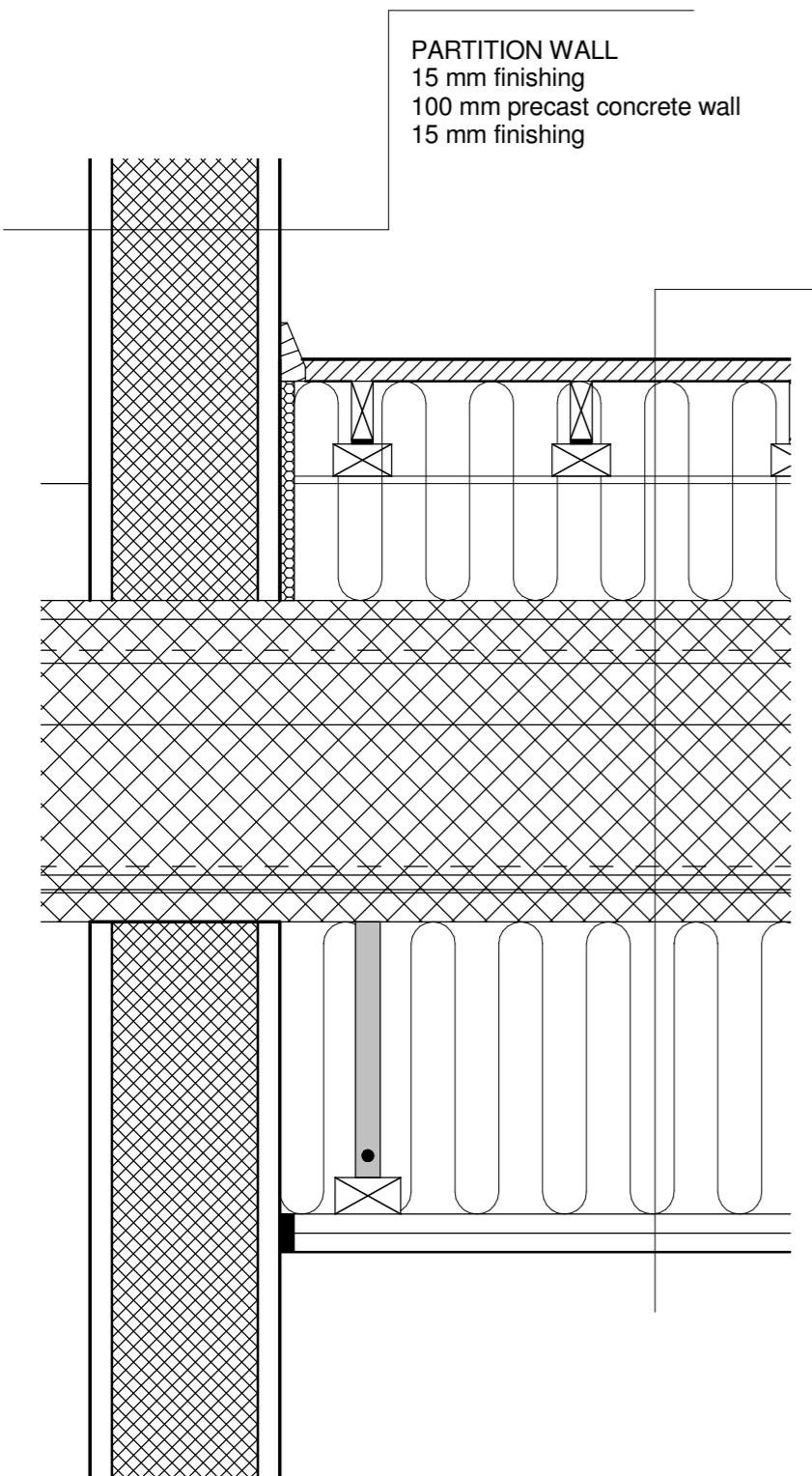
PROJECT: MULTI-STOREY HOUSING	DATE: 06/14/15	K01_TXX_H7_EX_N09
SUBJECT: Detail external wall - foundation	SCALE: 1 : 5	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	


U-VALUE
Demand: 0.10 m ² K/W
Actual: 0.10 m ² K/W
SOUND
Demand: 55dB
Actual: 55 dB
FIRE
Demand: R 60
Actual: R 60

BRICKWORK
Bricks "Rockwool-moroccan sand" 108x228x54 mm


EXTERNAL WALL
108 mm brick (with
12 mm mortar joint)
281 mm insulation
180 mm concrete
15 mm finishing

STEEL PROFILE



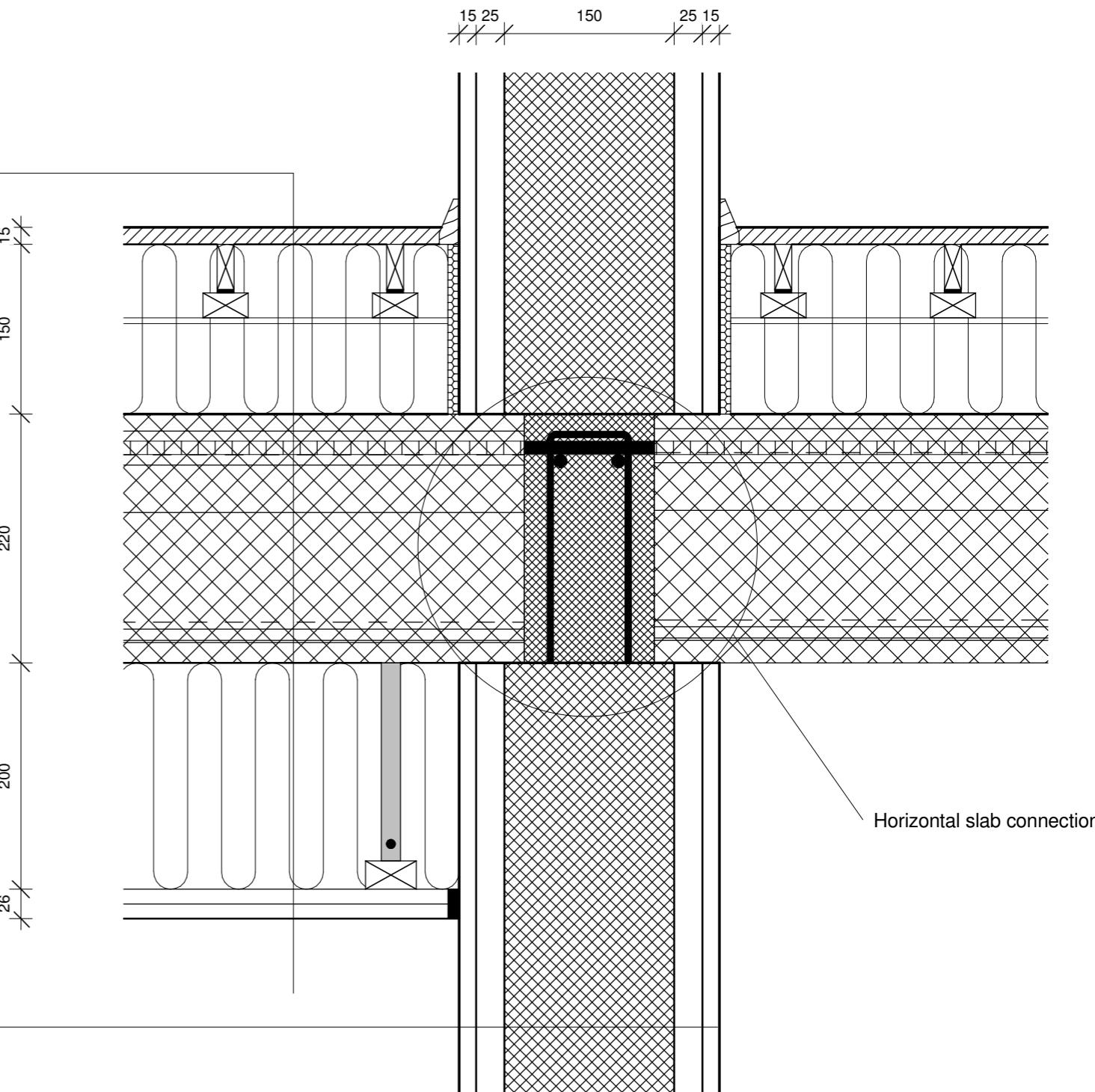
dimensions in mm	material thickness s	spacing a from wall [mm]	allowable load F _v = 1.2 kN ^② (F _{rd} = 1.6 kN)			allowable load F _v = 2.1 kN ^② (F _{rd} = 2.8 kN)			allowable load F _v = 3.2 kN ^② (F _{rd} = 4.3 kN)			
			length K x h			length K x h			length K x h			
			10 - 20	100	74	100	100	72	100	100	70	100
		30 - 40	120	94	120	120	92	120	120	90	120	8

① other brick dimensions are also possible
② load range/bolt-on angle

Connection external wall corner
1 : 5

Connection wall-ceiling. 1 : 5

wall-floor & partition

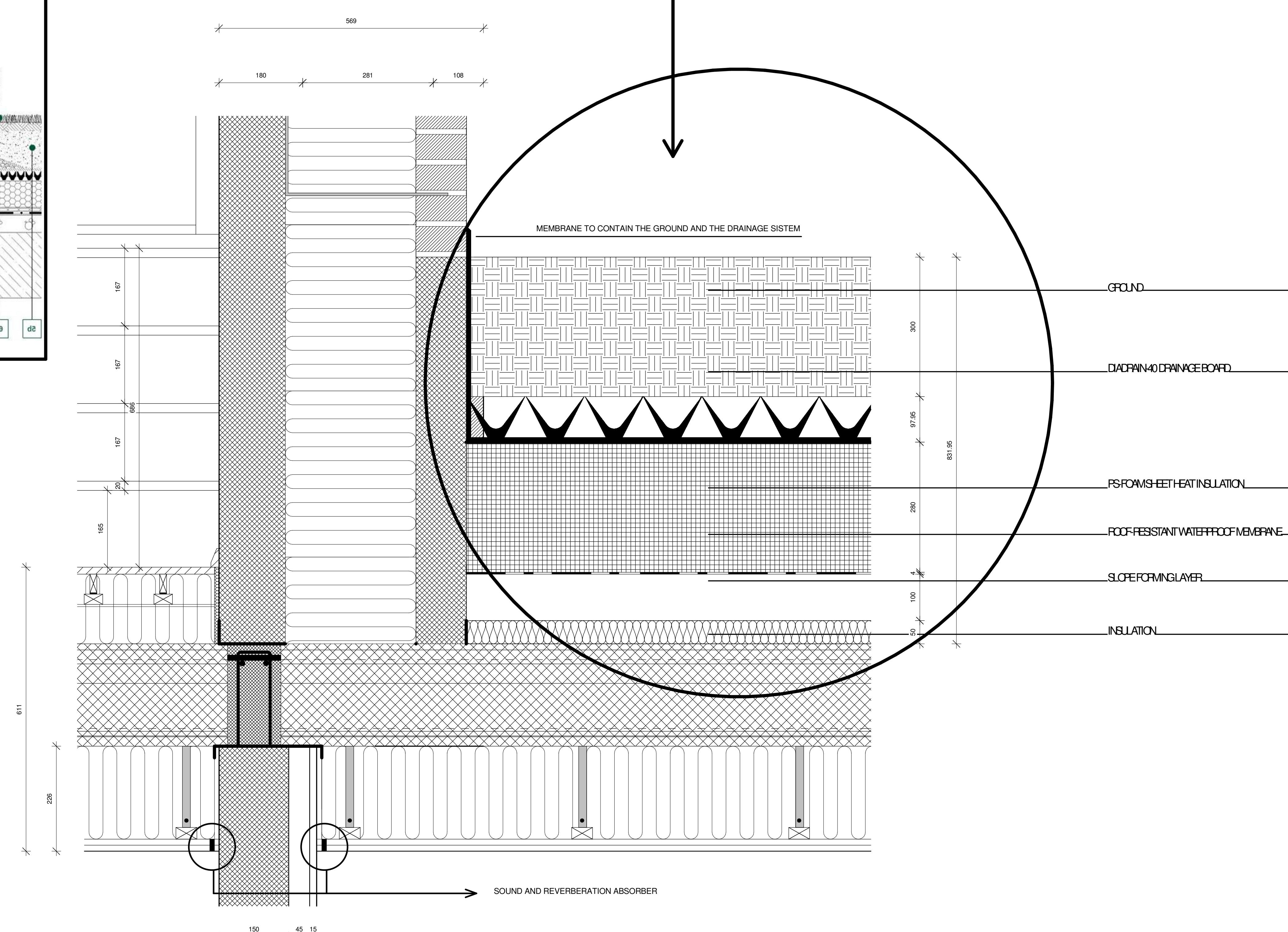
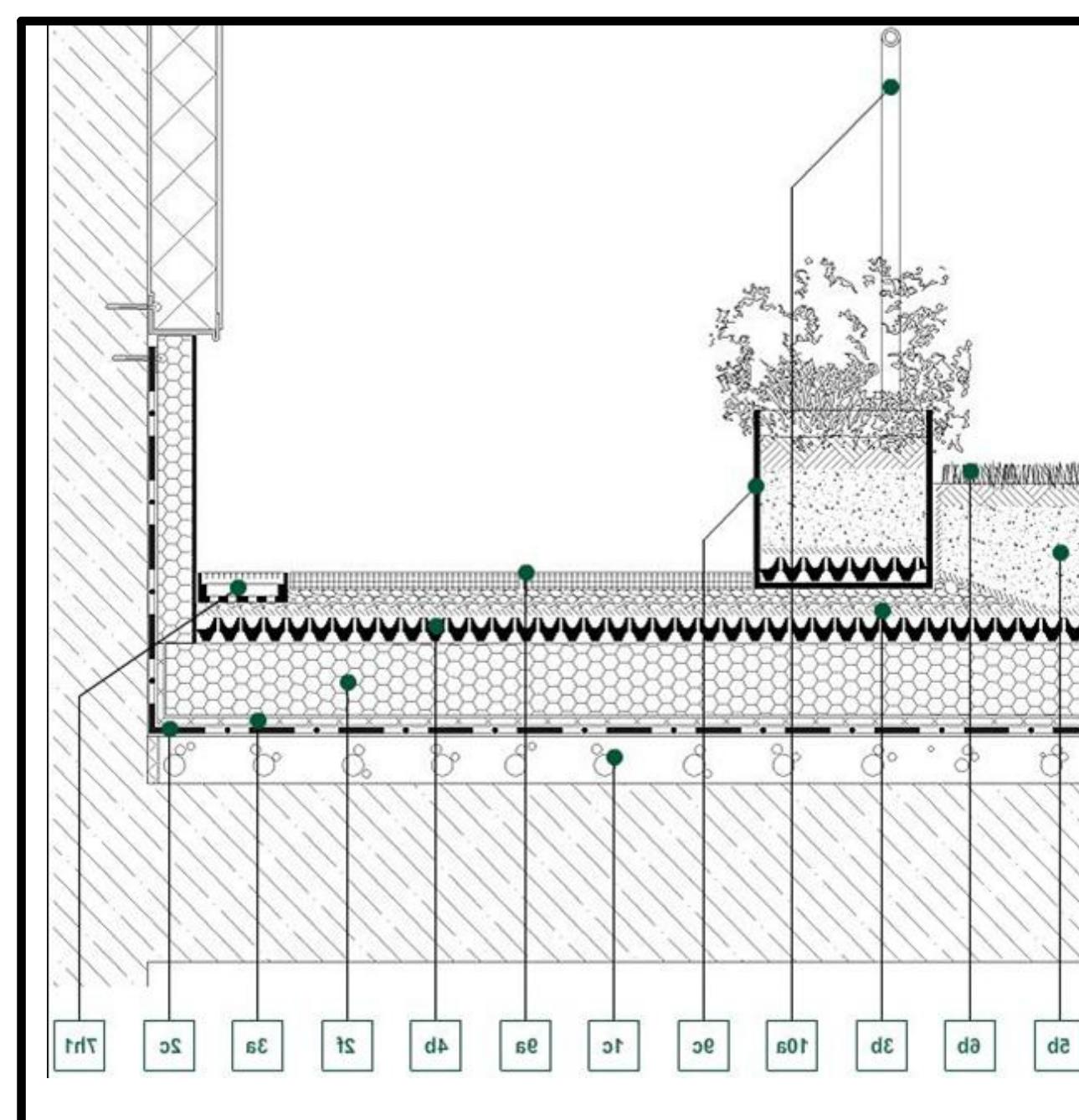

FLOOR PARTITION
15 mm of wooden (Finishing)
150 mm insulation (polystyrene)
220 mm slab "SPAENCOM Xtrumax slabs
220 mm thickness
200 mm insulation (polystyrene)
2x13 mm plasterboards

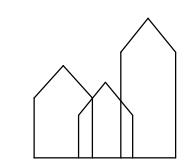
U-VALUE
Demand: 0.07 m²K/W
Actual: 0.064m²K/W

SOUND
Demand: 48dB
Actual: 41dB

FIRE
Demand: REI 60
Actual: REI 60

INTERNAL LOAD BEARING WALL
15 mm finishing
25 mm insulation (polystyrene)
180 mm precast concrete wall
25 mm insulation (polystyrene)
15 mm finishing

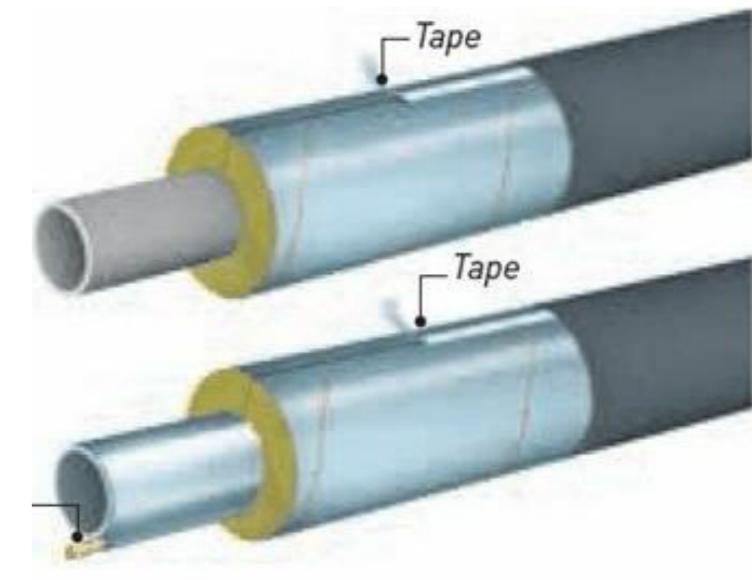


Connection internal load bearing wall- floor partition.


Bring ideas to life
VIA University College

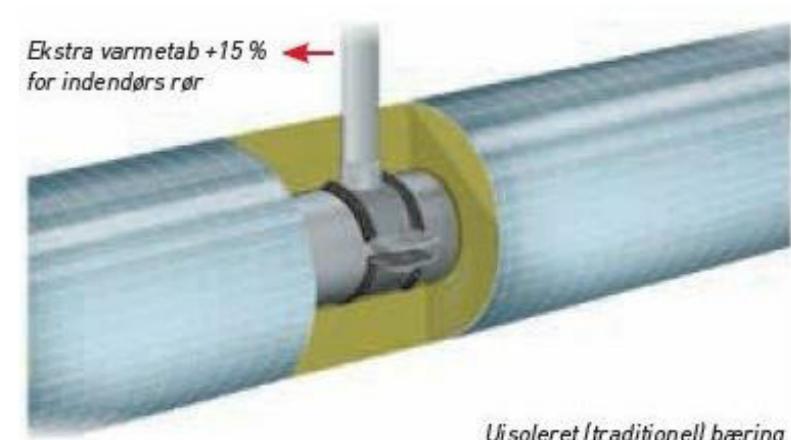
SCHOOL OF TECHNOLOGY AND BUSINESS TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/13/15	K01_TXX_H7_EX_N05
SUBJECT: Details internal walls-floor partition	SCALE: 1 : 5	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	

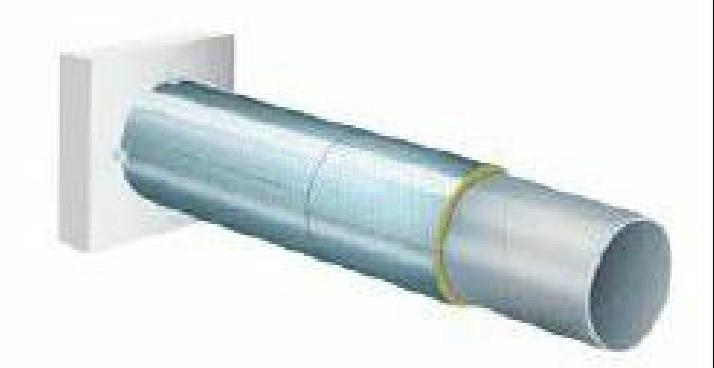
Connection green roof-external wall
1 : 5

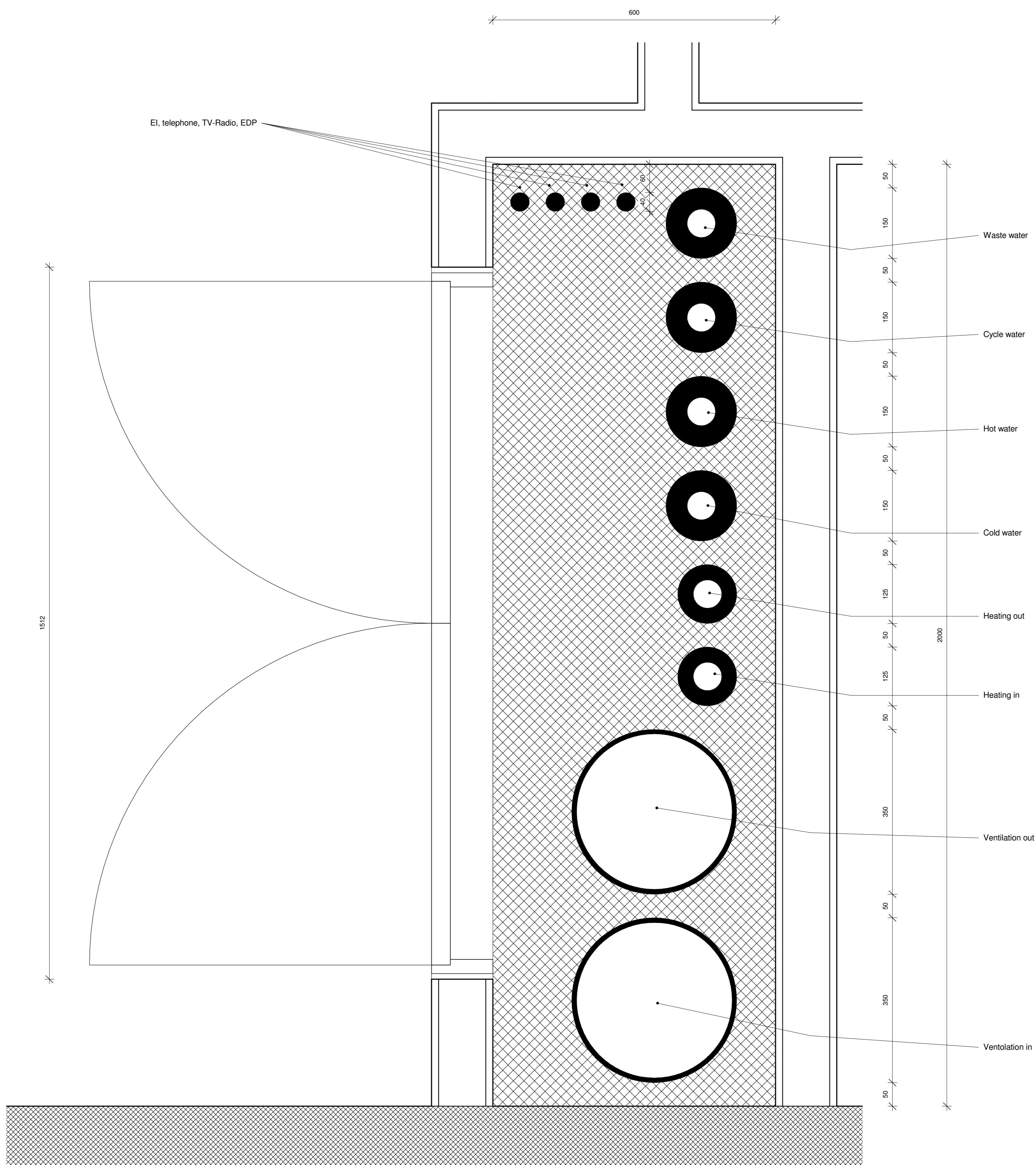


Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

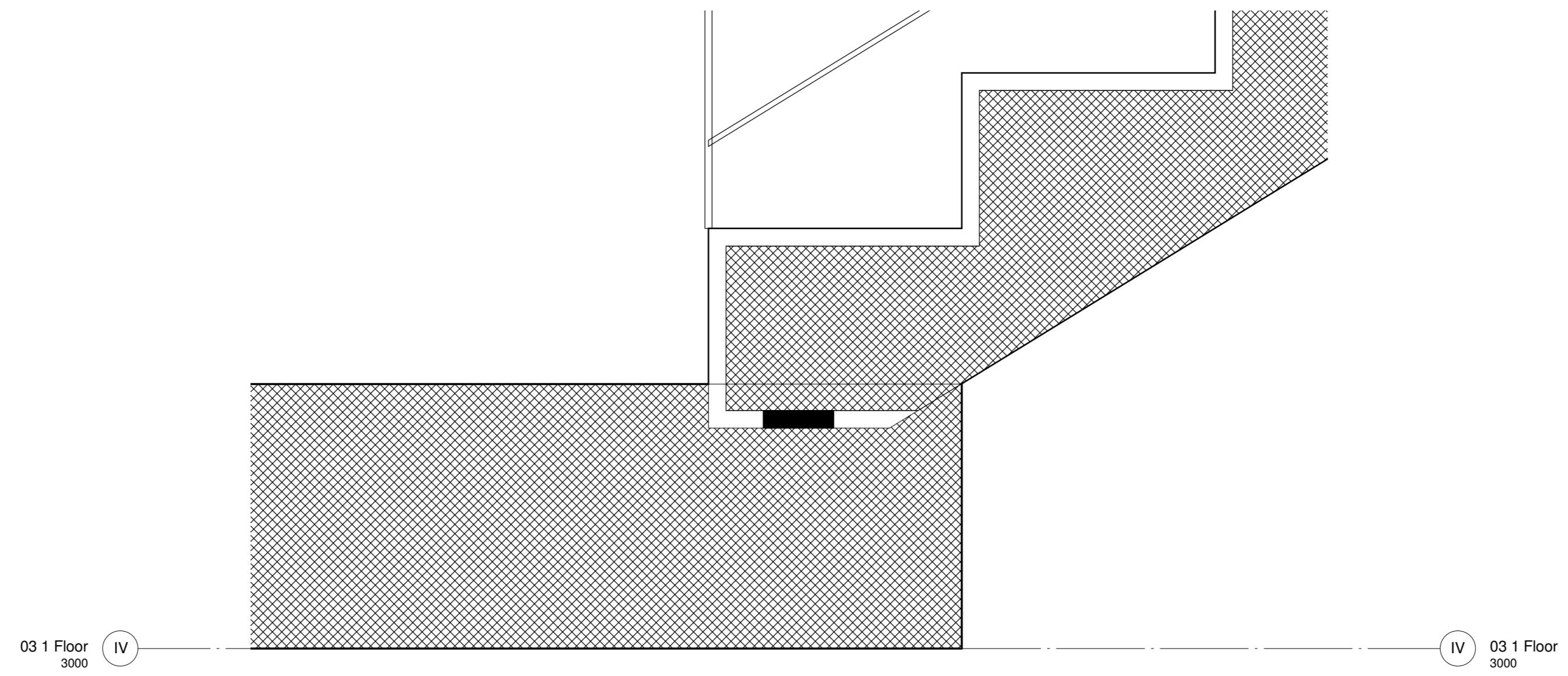
PROJECT: MULTI-STOREY HOUSING	DATE: 06/15/15
SUBJECT: Detail green roof - wall	SCALE: 1 : 5
DRAWN BY: a LULWULIA LPMII	CLASS: AH42S15

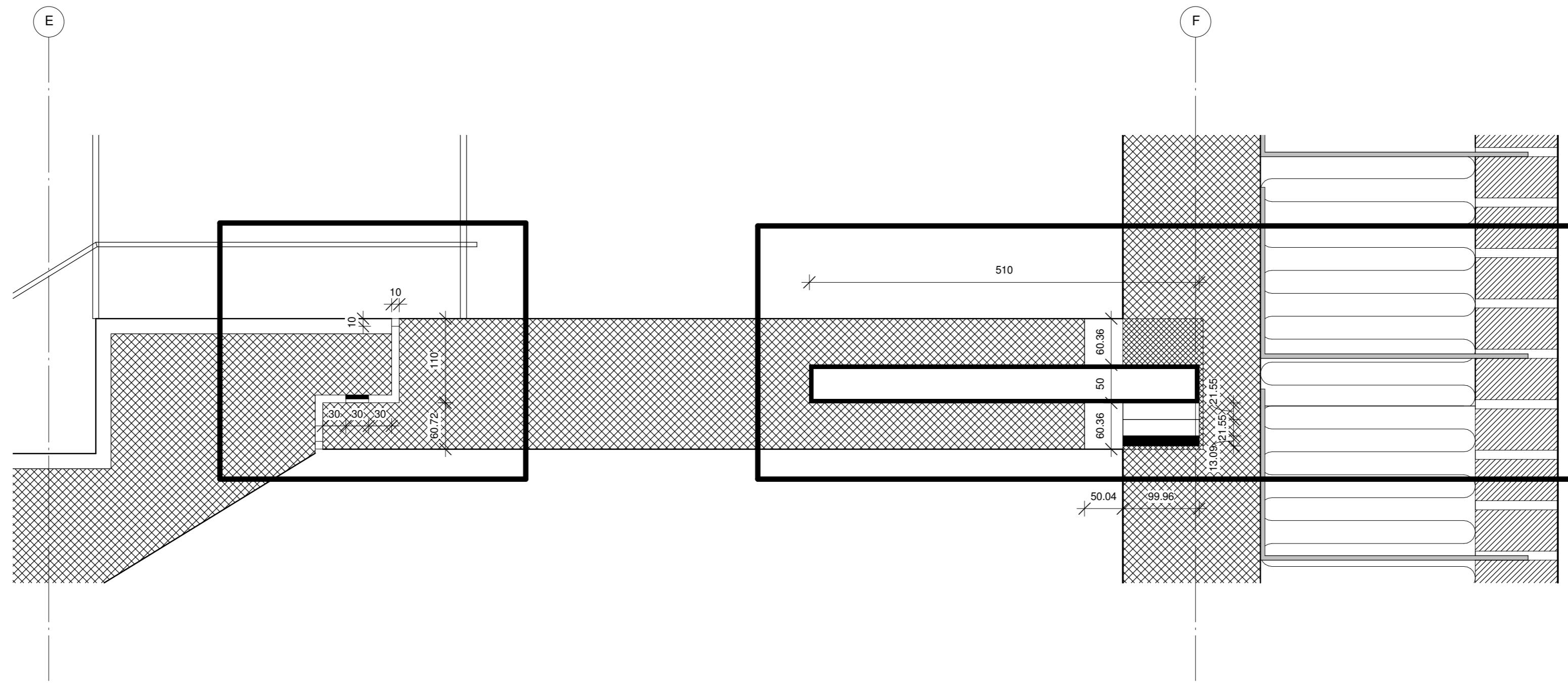

K01_TXX_H7_EX_N12


HOT WATER INSULATION

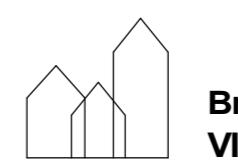
VENTILATION INSULATION

K01_TXX_H7_EX_N08

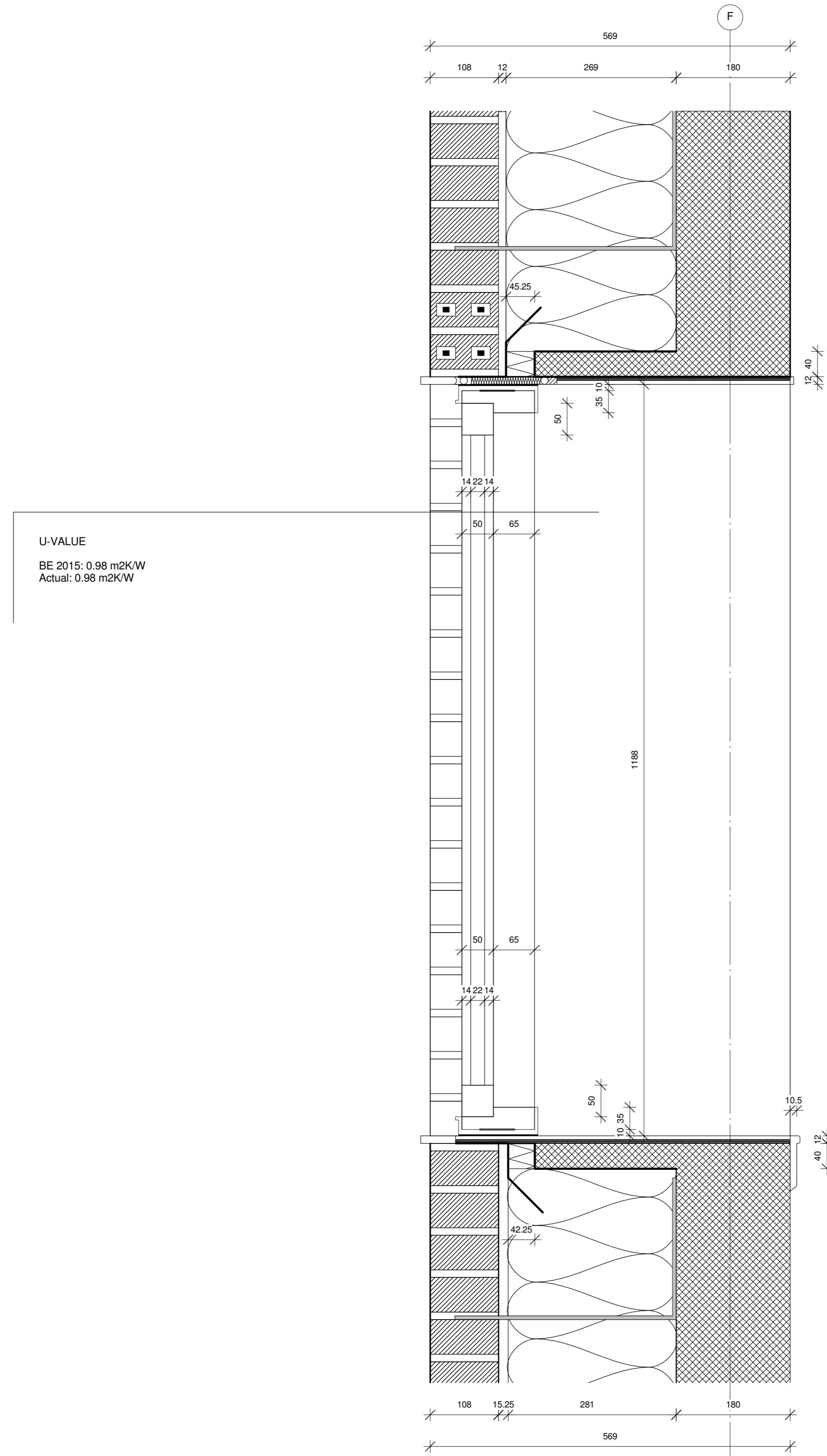

Detail shaft.
1 : 5


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: MULTI-STOREY HOUSING	DATE: 06/14/15	K01_TXX_H7_EX_N08
SUBJECT: Detail - Shaft	SCALE: 1 : 5	
DRAWN BY: Maria Julian Martin	CLASS: AH42S15	

Connection stair - floor
1 : 5


Connection stair - landing - ext. wall
1 : 5

Bring ideas to life
VIA University College

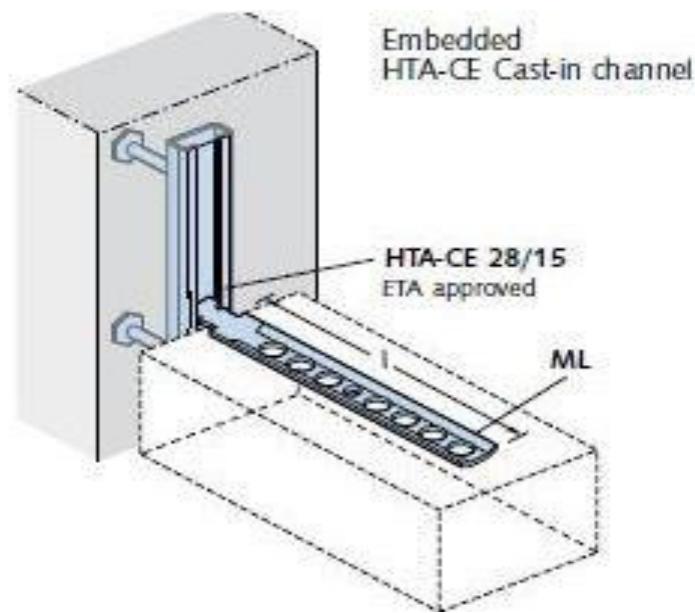
SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/15/15	K01_TXX_H7_EX_N14
SUBJECT: Detail Staircase - floor - wall	SCALE: 1 : 5	
DRAWN BY: a LUNGSIIa LUNGSII	CLASS: AH42S15	

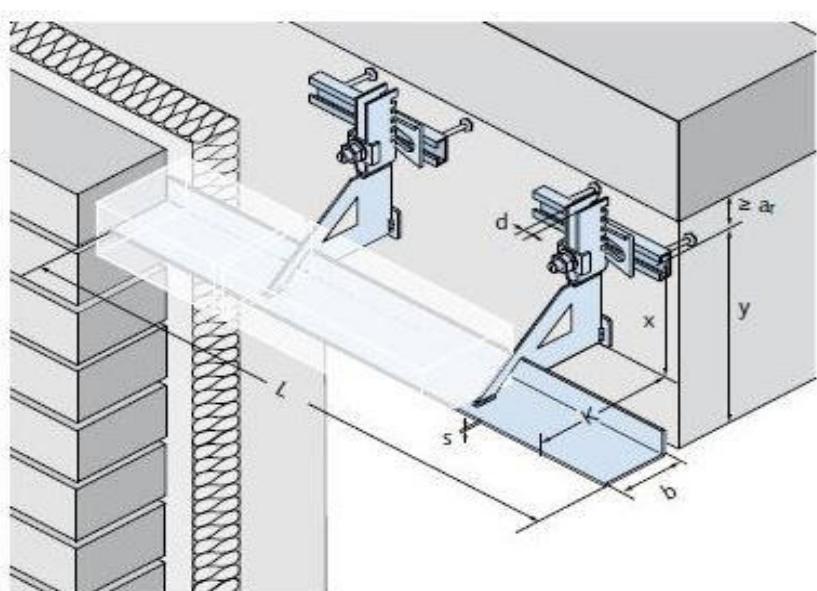
Connection window-wall
1 : 5

Bring ideas to life
VIA University College

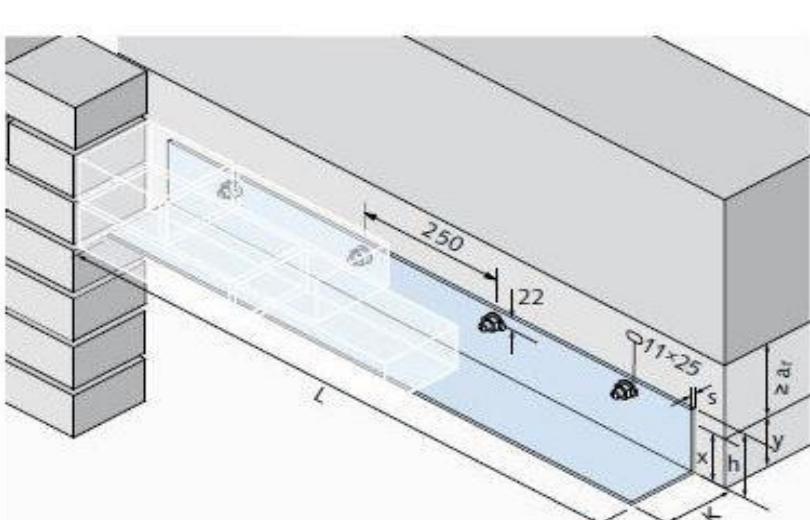
SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: MULTI-STOREY HOUSING	DATE: 06/15/15	K01_TXX_H7_EX_N11
SUBJECT: Detail window - wall	SCALE: 1 : 5	
DRAWN BY: a L T W H I L M	CLASS: AH42S15	

2.2. BUILDING AND PLANNING MANAGEMENT


2.2.1. *Building Component Analysis*

Building component analysis - Anchors brickwork

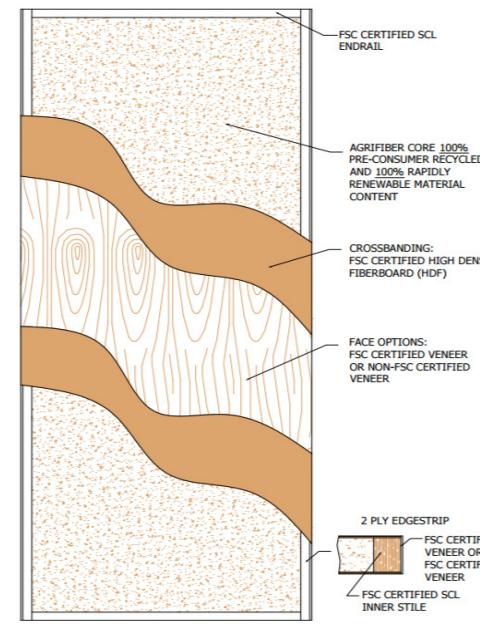
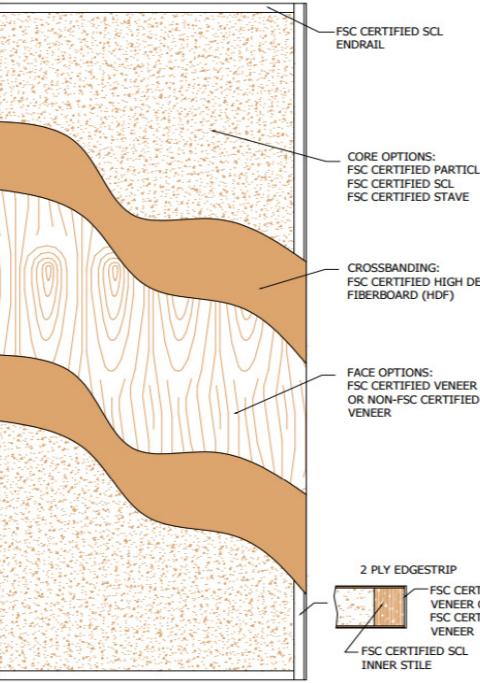

HALFEN Brick Tie Anchor System ML

Type: HALFEN Continuous HK4-F Angle Support bracket

Type: HALFEN KW Bolt-on angle

BR demand:	Subject:			External walls			Name: Maria Julian Martin	Class: AH-42 S15 Group6
	Fire	Sound	U-value	Date: 20/05/2015	👎	👍	👉	

Actual:	Appearance:	👎	👍	👉	Remarks:
-	Life expectancy:	👎	👍	👉	- HALFEN brick tie anchors ML are tried and tested efficient installation systems for securing brick walls, masonry in fills, partition walls, brick renders to concrete walls, concrete supports, steel or wooden structures.
-	Execution (of work):	👎	👍	👉	- They are able to move freely in the brick tie channels considerably reducing cracks caused by masonry settlement.
-	Operation & maintenance:	👎	👍	👉	- the profiles have a "Haropor" foam filling to prevent concrete ingress. The channels are attached to the concrete using standard nails.
-	Price:	👎	👍	👉	- The HALFEN Bricks tie anchors are inserted at the recommended intervals in the brick wall during the construction. The anchors are inserted in the bricks channels laid flat between the rows of brick and pressed into the mortar. The perforations in the anchors optimise anchorage with the mortar.
-	Environmental compatibility:	👎	👍	👉	- The anchorage to adjacent components (steel reinforced concrete supports or walls) meet the requirements for stability and fire resistance.



Actual:	Appearance:	👎	👍	👉	Remarks:
-	Life expectancy:	👎	👍	👉	- They are for support of low-height brickwork cladding (parapets above window openings; allows larger brackets spacing)
-	Execution (of work):	👎	👍	👉	- Support the brick work while work is in progress until sufficient stability has been reached to avoid excessive deflection of the angle support bracket.
-	Operation & maintenance:	👎	👍	👉	- Brick have to be suitable for application in soldier courses (rough surfaces)
-	Price:	👎	👍	👉	
-	Environmental compatibility:	👎	👍	👉	

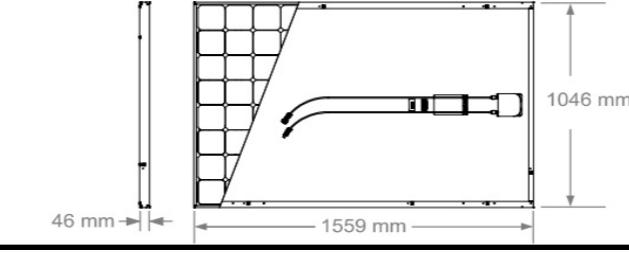
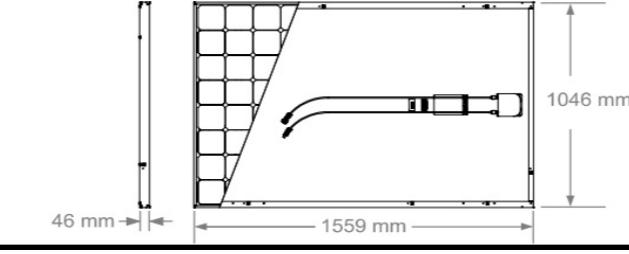
Actual:	Appearance:	👎	👍	👉	Remarks:
-	Life expectancy:	👎	👍	👉	- The KW bolt-on angle provide a simple alternative for supporting continuous brick veneer. They are used when the support structure is intended to remain visible from below but the ventilation gap and the thermal insulation are to be concealed.
-	Execution (of work):	👎	👍	👉	
-	Operation & maintenance:	👎	👍	👉	
-	Price:	👎	👍	👉	
-	Environmental compatibility:	👎	👍	👉	

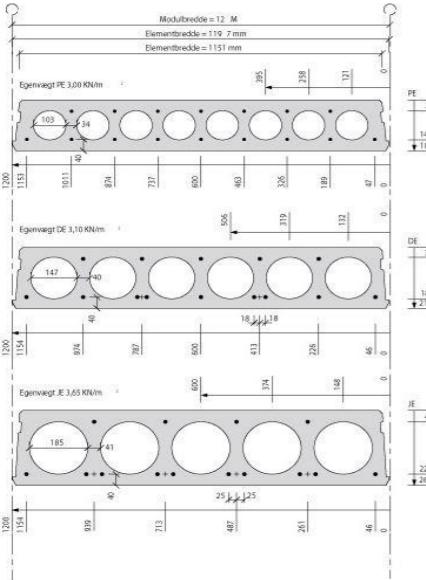
Building component analyses			Subject: Balcony						Name: a L1W1G1Ta L1M1				Class: AH-42 S15 Group6													
			BR demand:			Date: 19/09/2014	D	C	B	Remarks:																
Type: Schöck Novomur				Fire	Sound	U-value	Appearance:			X		Fire resistance class F 30 and F 90. No water absorption, $w = 0,11 \text{ kg}(\text{m}^2 \text{ h}^{0,5})$. water resistant														
Type: Schöck Novomur							Life expectancy:			X		Termal characteristic value tested														
							Execution (of work):			X																
							Operation &maintenance:			X																
							Price:			X																
							Environmental compatibility:			X																
							file:///C:/Users/231622/Downloads/Technical_Information_Schoeck_Novomur																			
Type: Halfen HIT system				Fire	Sound	U-value	Date: 19/09/2015	D	C	B	Remarks:															
Type: Halfen HIT system							Appearance:			X																
							Life expectancy:			X																
							Execution (of work):			X																
							Operation &maintenance:			X																
							Price:			X																
							Environmental compatibility:			X																
							http://downloads.halfen.com/catalogues/uk/media/catalogues/industry_issues/																			
Type: Schlüter-DITRA-PLUS				Fire	Sound	U-value	Date: 19/09/2016	D	C	B	Remarks:															
Type: Schlüter-DITRA-PLUS							Appearance:			X																
							Life expectancy:			X																
							Execution (of work):			X																
							Operation &maintenance:			X																
							Price:			X																
							Environmental compatibility:			X																
							http://downloads.halfen.com/catalogues/uk/media/catalogues/industry_issues/																			
Type: Schlüter-DITRA-PLUS				Fire	Sound	U-value																				

Building component analysis - Brickwork			BR demand:				Subject: External wall			Name: Maria Julian Martin		Class: AH-42 S15 Group6		
Type:	Fire	Sound	U-value	Date:	20/05/2015				Remarks:					
Type: Nutmeg	-	-	-	Appearance:					- Applications in social/domestic housing refurbishment or new build, apartment blocks and high-rise buildings, community regeneration developments, public infrastructure. - The system features a stone wool insulation core and offers the choice of different insulation thickness and fixing methods to suit different substrate conditions and client requirements. Thermal efficiency, fire safety and exceptional weather protection are combined in a system that could last the life of the building. - Health and safety: In accordance with REACH health and environment regulations, there are no hazardous classifications associated with ROCKWOOL mineral wool in respect to physical, health and environmental considerations.					
	-	-	-	Life expectancy:										
	Actual:		- - - - -	Execution (of work):										
	-	-		Operation &maintenance:										
	-	-		Price:										
	-	-		Environmental compatibility:										
Type: Roman stone	-	-	-	Appearance:					- Applications in social/domestic housing refurbishment or new build, apartment blocks and high-rise buildings, community regeneration developments, public infrastructure. - The system features a stone wool insulation core and offers the choice of different insulation thickness and fixing methods to suit different substrate conditions and client requirements. Thermal efficiency, fire safety and exceptional weather protection are combined in a system that could last the life of the building. - Health and safety: In accordance with REACH health and environment regulations, there are no hazardous classifications associated with ROCKWOOL mineral wool in respect to physical, health and environmental considerations.					
	-	-	-	Life expectancy:										
	Actual:		- - - - -	Execution (of work):										
	-	-		Operation &maintenance:										
	-	-		Price:										
	-	-		Environmental compatibility:										
Type: Moroccan sand	-	-	-	Appearance:					- Applications in social/domestic housing refurbishment or new build, apartment blocks and high-rise buildings, community regeneration developments, public infrastructure. - The system features a stone wool insulation core and offers the choice of different insulation thickness and fixing methods to suit different substrate conditions and client requirements. Thermal efficiency, fire safety and exceptional weather protection are combined in a system that could last the life of the building. - Health and safety: In accordance with REACH health and environment regulations, there are no hazardous classifications associated with ROCKWOOL mineral wool in respect to physical, health and environmental considerations.					
	-	-	-	Life expectancy:										
	Actual:		- - - - -	Execution (of work):										
	-	-		Operation &maintenance:										
	-	-		Price:										
	-	-		Environmental compatibility:										

Building component analyses	BR demand:						Subject: Doors	Name: a L1W1U1a L1M1	Class: AH-42 S15 Group6
	Fire	Sound	U-value	Date: 19/09/2014	D	C	B		
Type: AGRIFIBER CORE DOOR	<p>AGRIFIBER CORE (20% PRE-CONSUMER RECYCLED AND 70% RAPIDLY RENEWABLE MATERIAL CONTENT)</p> <p>CROSSBANDING: FSC CERTIFIED HIGH DENSITY FIBERBOARD (HDF)</p> <p>FACE OPTIONS: FSC CERTIFIED VENEER OR NON-FSC CERTIFIED VENEER</p> <p>2 PLY EDGESTRIPE</p> <p>FSC CERTIFIED VENEER OR NON-FSC CERTIFIED VENEER</p> <p>FSC CERTIFIED SCL INNER STILE</p>	BS-30 EI2 30-C	1.80	Appearance:			X	<p>FSC MIX 100% CERTIFIED NEW WOOD W/ FSC CERTIFIED VENEER</p> <p>70% PRE-CONSUMER RECYCLED CONTENT</p> <p>70% RAPIDLY RENEWABLE MATERIAL CONTENT</p> <p>FSC MIX 85% CERTIFIED NEW WOOD W/ NON-FSC CERTIFIED VENEER</p> <p>COMPLIES WITH LEED[®] EQ 4.4 LOW-EMITTING MATERIALS (NAUF) AND CARB PHASE 2</p>	<p>http://eggersindustries.com/pdf/technical-info/100FSC.pdf</p> <p>http://www.vtindustries.com/docs/awd-website-brochures/vt_industries_archit</p>
Life expectancy:						X			
Execution (of work):					X				
Actual: BS-30 EI2 30-C	1.12	Operation & maintenance:		X					
		Price:		X					
		Environmental compatibility:		X					
Type: FSC CERTIFIED CORE DOOR	<p>FSC CERTIFIED SCL ENDRAIL</p> <p>CORE OPTIONS: FSC CERTIFIED PARTICLEBOARD, FSC CERTIFIED SCL, FSC CERTIFIED STAVE</p> <p>CROSSBANDING: FSC CERTIFIED HIGH DENSITY FIBERBOARD (HDF)</p> <p>FACE OPTIONS: FSC CERTIFIED VENEER OR NON-FSC CERTIFIED VENEER</p> <p>2 PLY EDGESTRIPE</p> <p>FSC CERTIFIED VENEER OR NON-FSC CERTIFIED VENEER</p> <p>FSC CERTIFIED SCL INNER STILE</p>	BS-30 EI2 30-C	1.80	Appearance:			X	<p>FSC MIX 100% CERTIFIED NEW WOOD W/ FSC CERTIFIED VENEER</p> <p>FSC MIX 97% CERTIFIED NEW WOOD W/ NON-FSC CERTIFIED VENEER</p> <p>COMPLIES WITH LEED[®] EQ 4.4 LOW-EMITTING MATERIALS (NAUF) AND CARB PHASE 2</p>	<p>http://eggersindustries.com/pdf/technical-info/100FSC.pdf</p> <p>http://www.vtindustries.com/docs/awd-website-brochures/vt_industries_archit</p>
Life expectancy:						X			
Execution (of work):					X				
Actual: BS-30 EI2 30-C	1.12	Operation & maintenance:		X					
		Price:		X					
		Environmental compatibility:		X					

About the doors: the first type will be used for internal doors. The second will be used for access doors.

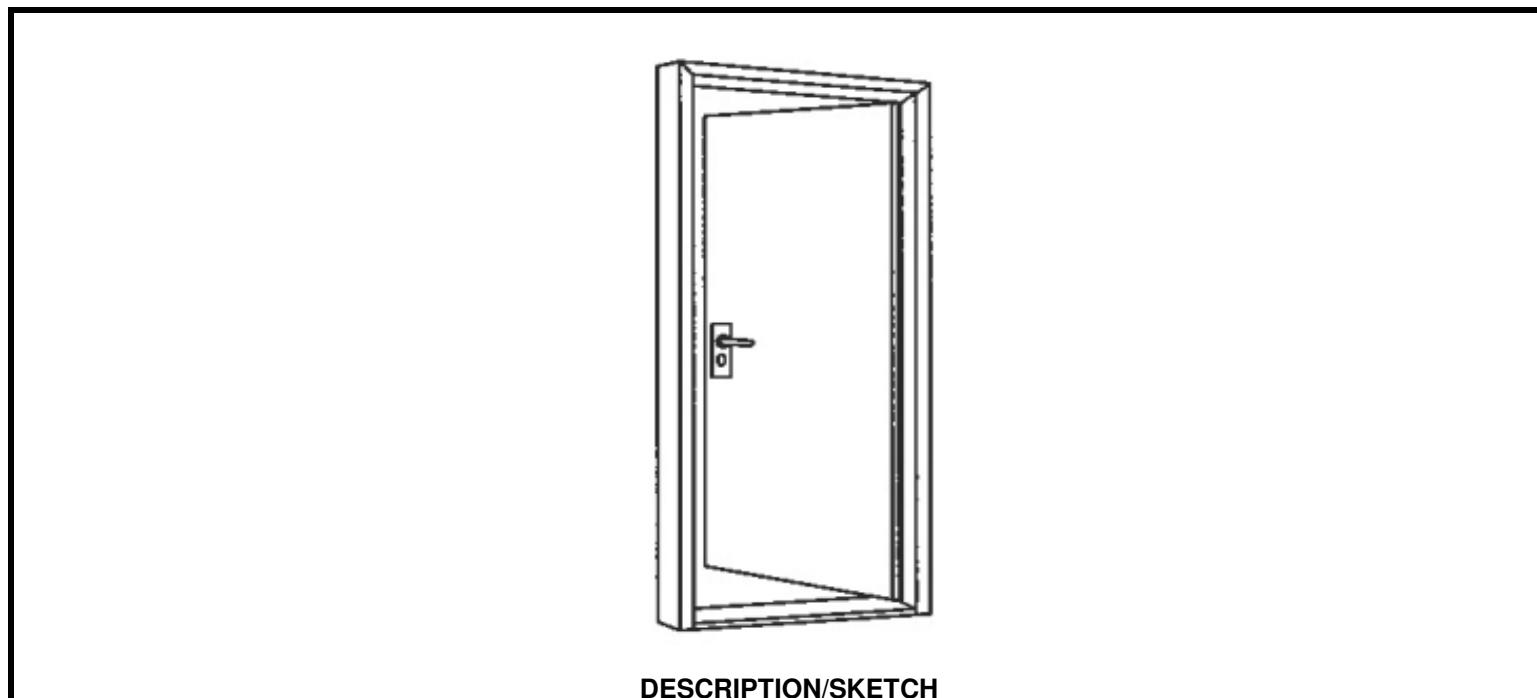


Notes: The second link on the first two typologies of doors is about u-value, fire and sound.


Building component analyses			BR demand:				Subject: Green roof				Name: a DIADEM DIADEM DIADEM		Class: AH-42 S15 Group6	
			Fire	Sound	U-value	Date: 19/09/2014	D	C	B	Remarks:				
Type: DIADEM 350 DRS PLANTER AND RNF CHANNEL						Appearance:				Decking construction	1c : Slope-forming layer	Vegetation	6b : Perennials, lawn	
						Life expectancy:				Water isolation	2c : Roof-resistant waterproof membrane	Hydrotechnical products	7h1 : RNF-8 channel with die-stamped net	
						Execution (of				Geotextile layers	3a : VLU-300 mechanical protecting layer	Terrace accessories	9a : FK-5 cross spacer	
						Actual:				3b : VLF-150 filter layer	9c : PGE-110 flower boxes			
						Operation & maintenance:				4b : DiaDrain-40 drainage board	Safety technology	10a : DRS-Standard safety railing system		
						Price:				5b : SIM-30 extensive growth medium	Total height			
						Environmental compatibility:								
						http://www.diademroof.com/Documents/1307623490.pdf http://www.diademroof.com/junction?csid=17								
Type: DIADEM 150 ROOF/MAINTENACE FLG SAFETY						Appearance:				Decking construction	1a : Steel trapezoidal sheet sloped floor structure	Growth media	5a : SEM-12 extensive growth media	
						Life expectancy:				Water isolation	2b : FLW-400 ext. Root barrier, Vapour control layer	Vegetation	6a : Drought-resistant, herbaceous perennials	
						Execution (of				Geotextile layers	2c : Root-resistant waterproof membrane	Edging element	8a : KLR-AL-8/12 gravel lath	
						Actual:				2h : Stone wool heat insulation	Safety technology	10b : FLG-30 fall arrest system		
						Operation & maintenance:				3a : VLU-300 mechanical protecting layer	Total height	1.55 m		
						Price:				3b : VLF-150 filter layer				
						Environmental compatibility:				Drainboards				
						http://www.diademroof.com/Documents/1307623490.pdf http://www.diademroof.com/junction?csid=11								

Building component analysis - Insulation			BR demand: Subject: External wall insulation						Name: Maria Julian Martin		Class: AH-42 S15 Group6					
Type: ROCKWOOL HP Partial Fill Cavity Walls																
	Fire	Sound	U-value	Date: 20/05/2015					Remarks:							
		55dB	0,1	Appearance:						<ul style="list-style-type: none"> - Robust front-face resists damage - Slabs knit together to eliminate gaps - Maximises thermal performance - Water repellent - HP Partial Fill Cavity Slab has a thermal conductivity of 0.034 W/mK. 						
				Life expectancy:						<ul style="list-style-type: none"> - Fire classification: HP Partial Fill Cavity Slab is deemed non-combustible and achieves a reaction to fire classification of A1 (BS EN 13501-1) 						
				Execution (of work):						<ul style="list-style-type: none"> - Dimensions: HP Partial Fill Cavity Slabs are produced in 1200 x 455mm to suit a vertical wall-tie spacing of 450mm. The slabs are available in standard thicknesses of 50, 80, 100, 120 and 135mm. 						
	Actual:			Operation &maintenance:												
				Price:												
				Environmental compatibility:												
Type: KNAUF INSULATION Mur Isolering				Fire	Sound	U-value	Date: 20/05/2015				Remarks:					
					55dB	0,1	Appearance:						<ul style="list-style-type: none"> - Glass wool insulation non combustible with a water-repellent additive - It is used for external walls. Each piece is perforated, this way it is easily for the mounting - There are standard dimensions for the pieces, but also can be produced with another measurements - Thermal conductivity: 0,032 W/mK - Glass wool is odorless, not hygroscopic and does not promote the apparition of fungus or mold 			
							Life expectancy:									
							Execution (of work):									
	Actual:						Operation &maintenance:									
							Price:									
							Environmental compatibility:									
Type: BioFoam 2700				Fire	Sound	U-value	Date: 20/05/2015				Remarks:					
					55dB	0,1	Appearance:						<ul style="list-style-type: none"> - Typically the heavy hitter out of the Biofoam Spray Foam Insulation products, Biofoam 2700 is the insulation for heavy duty application. - Also acting as a moisture vapour barrier to reduce the risk of moisture intrusion. - Water absorption: 0,33 Kg/m2 - Water vapour permeability: 1,48 Mg/m2HourPa - THERMAL CONDUCTIVITY: 0,032W/mK - Density: 33Kg/m3 			
							Life expectancy:									
							Execution (of work):									
	Actual:						Operation &maintenance:									
							Price:									
							Environmental compatibility:									

Building component analyses								Name: a L1W1H1a L1G1	Class: AH-42 S15 Group6
	BR demand:			Subject:		Lift			
Type: ARE Miniwatt	Fire	Sound	U-value	Date: 19/09/2014	D	C	B	Remarks:	
				Appearance:			X	Max capacity: 250 kg Max velocity: 0,15m/sec Feeding: 230 V Power used: 0,15 kW Overall height: 1400 mm ARE® elevators offer superior performance to a hydraulic elevator. They use 50% energy less. There is no need space to house hydraulic power units and control panels. The motor is located in the shaft and the control panel is integrated into a landing door.	
				Life expectancy:			X		
				Execution (of work):			X		
Actual:				Operation &maintenance:			X		
				Price:		X			
				Environmental compatibility:			X		
	http://www.areascensori.it/img2/Immagini/ascensori/Miniwatt---1200-x-800-AF http://www.areascensori.it/prodotti/piattaforma-elevatrice-miniwatt.html http://www.areascensori.it/								
Type: ECOPHASE Lift	Fire	Sound	U-value	Date: 19/09/2015	D	C	B	Remarks:	
				Appearance:		X		kW used: 3kW - 220 V usage for 1000 kW/h: 440 € - 3280.94 dkk Total cost (1 year): 941,64 € - 7021.51 dkk	
				Life expectancy:			X		
				Execution (of work):		X			
Actual:				Operation &maintenance:			X		
				Price:		X			
				Environmental compatibility:		X			
	http://www.ascensorirerman.it/ascensore_basso_consumo.php								
Type: ECOFLUID Power box MRL	Fire	Sound	U-value	Date: 19/09/2016	D	C	B	Remarks:	
				Appearance:			X	Low uphill No power down No power in standby 6 people lift 480 kg ECU 4.4 kW	
				Life expectancy:			X		
				Execution (of work):		X			
Actual:				Operation &maintenance:		X			
				Price:		X			
				Environmental compatibility:			X		
	http://www.tulfer.it/it/ecofluid.php http://www.tulfer.it/public/pagine_allegati/16-catalogo-ecofluid.pdf								

Building component analyses	BR demand:						Subject: Photovoltaic panel	Name: a L'UWU la L'UWU	Class: AH-42 S15 Group6																																							
	Fire	Sound	U-value	Date: 19/09/2014	D	C	B																																									
Type: SunPower serie X21	<p>MODULO X21 - 345</p>	Fire	Sound	U-value	Appearance:			X	<p>This serie can produce 44% electricity more per each module and 75% per meter square in 25 years. The first year we have production around 8-10%, then it will improve until 21%. SunPower solar cells Majeon has a long durability and high returns. It is the only one who has a copper base. This serie is the first about Fraunhofer durability test and it kept 100% of power during PVDI complete Atlas 25+ durability test.</p>																																							
					Life expectancy:			X																																								
					Execution (of work):			X																																								
					Operation &maintenance:			X																																								
					Price:		X																																									
					Environmental compatibility:			X																																								
					http://www.enerevolution.it/custom/enerevolution/writable/downloads/Schede-techniche-SunPower-X21.pdf																																											
Type: Super Solar serie ES250		Fire	Sound	U-value	Date: 19/09/2015	D	C	B																																								
					Appearance:		X																																									
					Life expectancy:		X																																									
					Execution (of work):			X																																								
					Operation &maintenance:			X																																								
					Price:		X																																									
					Environmental compatibility:			X																																								
					http://www.supersolar.it/solare-fotovoltaico/solare-fotovoltaico-schede-tecniche-ES250.pdf																																											
Type: SunPower serie E18/300		Fire	Sound	U-value	Date: 19/09/2016	D	C	B	<p>Remarks:</p> <table border="1"> <tr> <td>DIMENSIONI</td> <td>PARAMETRI ELETTRICI</td> <td>ES 250</td> </tr> <tr> <td>Lunghezza 1663 mm</td> <td>Potenza massima 250 Wp</td> <td></td> </tr> <tr> <td>Larghezza 998 mm</td> <td>Tensione a circuito aperto 37,65 V</td> <td></td> </tr> <tr> <td>Altezza 35 mm</td> <td>Corrente di corto circuito 8,88 A</td> <td></td> </tr> <tr> <td>Intelaiatura Alluminio</td> <td>Tensione alla massima potenza 30,56 V</td> <td></td> </tr> <tr> <td>Peso 18,4 kg</td> <td>Corrente a massima potenza 8,18 A</td> <td></td> </tr> <tr> <td>CARATTERISTICHE TERMICHE</td> <td>PARAMETRI PER INTEGRAZIONE NEL SISTEMA</td> <td></td> </tr> <tr> <td>Coefficiente di deriva termica di tensione -123 mV/°C</td> <td>Tensione massima di sistema classe II 1000 VDC</td> <td></td> </tr> <tr> <td>Coefficiente di deriva termica di corrente 2,571 mA/°C</td> <td>Corrente inversa massima ammissibile Non applicare al modulo tensioni esterne superiori a Voc</td> <td></td> </tr> <tr> <td>MATERIALI IMPIEGATI</td> <td>ULTERIORI DATI</td> <td></td> </tr> <tr> <td>Celle per modulo 60</td> <td>Tolleranza sulla potenza ±3%</td> <td></td> </tr> <tr> <td>Tipo di cella Silicio policristallino</td> <td>Scatola di connessione IP 65</td> <td></td> </tr> <tr> <td>Dimensione della cella 156 mm x 156 mm ±0,5 mm</td> <td>Connettore MC type 4</td> <td></td> </tr> </table>	DIMENSIONI	PARAMETRI ELETTRICI	ES 250	Lunghezza 1663 mm	Potenza massima 250 Wp		Larghezza 998 mm	Tensione a circuito aperto 37,65 V		Altezza 35 mm	Corrente di corto circuito 8,88 A		Intelaiatura Alluminio	Tensione alla massima potenza 30,56 V		Peso 18,4 kg	Corrente a massima potenza 8,18 A		CARATTERISTICHE TERMICHE	PARAMETRI PER INTEGRAZIONE NEL SISTEMA		Coefficiente di deriva termica di tensione -123 mV/°C	Tensione massima di sistema classe II 1000 VDC		Coefficiente di deriva termica di corrente 2,571 mA/°C	Corrente inversa massima ammissibile Non applicare al modulo tensioni esterne superiori a Voc		MATERIALI IMPIEGATI	ULTERIORI DATI		Celle per modulo 60	Tolleranza sulla potenza ±3%		Tipo di cella Silicio policristallino	Scatola di connessione IP 65		Dimensione della cella 156 mm x 156 mm ±0,5 mm	Connettore MC type 4	
DIMENSIONI	PARAMETRI ELETTRICI	ES 250																																														
Lunghezza 1663 mm	Potenza massima 250 Wp																																															
Larghezza 998 mm	Tensione a circuito aperto 37,65 V																																															
Altezza 35 mm	Corrente di corto circuito 8,88 A																																															
Intelaiatura Alluminio	Tensione alla massima potenza 30,56 V																																															
Peso 18,4 kg	Corrente a massima potenza 8,18 A																																															
CARATTERISTICHE TERMICHE	PARAMETRI PER INTEGRAZIONE NEL SISTEMA																																															
Coefficiente di deriva termica di tensione -123 mV/°C	Tensione massima di sistema classe II 1000 VDC																																															
Coefficiente di deriva termica di corrente 2,571 mA/°C	Corrente inversa massima ammissibile Non applicare al modulo tensioni esterne superiori a Voc																																															
MATERIALI IMPIEGATI	ULTERIORI DATI																																															
Celle per modulo 60	Tolleranza sulla potenza ±3%																																															
Tipo di cella Silicio policristallino	Scatola di connessione IP 65																																															
Dimensione della cella 156 mm x 156 mm ±0,5 mm	Connettore MC type 4																																															
				Appearance:			X																																									
				Life expectancy:			X																																									
				Execution (of work):			X																																									
				Operation &maintenance:		X																																										
				Price:		X																																										
				Environmental compatibility:			X																																									
				http://www.tettosolare.it/imag/item/Sunpower_300_serieE18_black.pdf																																												


Building component analysis - Slabs	BR demand: Subject: Floor partition							Name: Maria Julian Martin	Class: AH-42 S15 Group6
	BR demand:			Subject:	Floor partition				
Type: EXPAN	Fire	Sound	U-value	Date: 21/05/2015				Remarks:	
	REI 60	48	0,07	Appearance:				<ul style="list-style-type: none"> - Declared values for materials and characteristics concerning hollow core slabs shown in EC-compliant meles Declaration. - Hollow core slabs are produced as standard in tighter control class. - Environmental class: hollow core slabs are produced as standard in passive environmental class. Can also be produced for use in a modified moderate environmental class by appointment, however, will line ends stand free and untreated. 	
				Life expectancy:					
				Execution (of work):					
	R60	-	0,16	Operation & maintenance:					
				Price:					
				Environmental compatibility:					
Type: SPAENCOM X22	Fire	Sound	U-value	Date: 21/05/2015				Remarks:	
	REI 60	48	0,07	Appearance:				<ul style="list-style-type: none"> - Spæncom produces extruded deck in thicknesses of 180, 220, 270, 320 and 400 mm for passive and moderate environmental class. For aggressive environmental class produced tires in 200, 240, 290, 340 and 420 mm. We call them Xtrumax, so whether the job is residential, commercial, institutional or retail shops may Spæncom meet your requirements for floor separation Xtrumax. Xtrumax plates cut to form the table and can be supplied in any length. 	
				Life expectancy:					
				Execution (of work):					
	R60	-	-	Operation & maintenance:					
				Price:					
				Environmental compatibility:					

Building component analyses	BR demand:							Name: a UW Uw Uw Uw	Class: AH-42 S15 Group6
	Subject: Window								
Type: VELFAC Classic	Fire	Sound	U-value	Date: 19/09/2014	D	C	B	Remarks:	
				Appearance:			X	External elements aluminium (no maintenance needs). Internal elements wood. 10 years warranty. Window Options: 32mm 2-layer , 48mm 3-layer VELFAC Classic alloy with 2-layer standard glazing meets the requirements of BR10 and design for LE2015 . VELFAC Classic aluminum with 3-layer standard glazing meet the expected requirements for BR2020 . Energy class : A, B or C (depending on the pane selection). Eref : up to 0.4 of a standard window. Uw value: down to 0,8.	
				Life expectancy:			X		
				Execution (of work):			X		
			0,8	Operation &maintenance:			X		
				Price:		X			
				Environmental compatibility:		X			
	http://velfac.dk/vinduer-erhverv/Produkter/VELFAC-Classic/								
Type: VELFAC Ribo	Fire	Sound	U-value	Date: 19/09/2015	D	C	B	Remarks:	
				Appearance:			X	External elements aluminium (no maintenance needs). Internal elements wood. 10 years warranty. Window Options: 28mm 2-layer , 52mm 3-layer. VELFAC Classic alloy with 2-layer standard glazing meets the requirements of BR10 and design for LE2015 . VELFAC Classic aluminum with 3-layer standard glazing meet the expected requirements for BR2020 . Energy class : A, B or C (depending on the pane selection). Eref : up to 0.4 of a standard window. Uw value: down to 0,8.	
				Life expectancy:			X		
				Execution (of work):			X		
			0,8	Operation &maintenance:			X		
				Price:		X			
				Environmental compatibility:		X			
	http://www.tubeliteinc.com/wp-content/uploads/2014/02/Vent-Window-Detail								
	http://www.tubeliteinc.com/technical-data-index-windows-3700/								
Type: VELFAC 200 ENERGY	Fire	Sound	U-value	Date: 19/09/2016	D	C	B	Remarks:	
				Appearance:			X	External elements aluminium (no maintenance needs). Internal elements wood. 10 years warranty. Window Options: 24mm 2-layer and 48mm 3-layer. VELFAC 200 ENERGY with 48mm 3-layer standard glass with a rim temperature of 12.4 ° C meets the expected requirements for BR2020 . VELFAC 200 with 2-layer standard glazing meets the requirements of BR10 and design for LE2015 . Energy class : A, B or C (depending on the pane selection). Eref : up to +8 for a standard window. Uw value: down to 0,8.	
				Life expectancy:			X		
				Execution (of work):			X		
			0,8	Operation &maintenance:			X		
				Price:		X			
				Environmental compatibility:			X		

The chosen window has three glazed layers and a steel profile to be connected to the external wall.
It is respecting the fire and sound value and the u-value: windows and skylights 1.65 W/m2k.

2.2.2. *Life cycle costing*

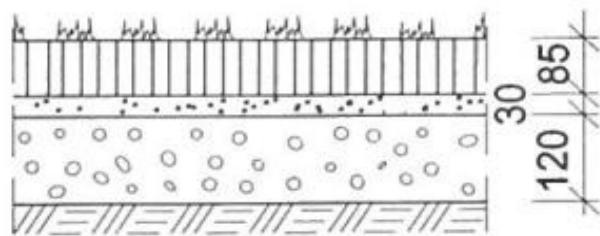
Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Doors	Responsible	а ЦУВСИИА ЦУМГИ	Date:	16 - 06 - 15

Periodic maintenance	Year	Price
Cleaning	1	0
Cleaning	2	0
Cleaning	3	0
Cleaning	4	0
Cleaning	5	0
Cleaning	6	0
Cleaning	7	0
Cleaning	8	0
Cleaning	9	0
Cleaning	10	0
Cleaning	11	0
Cleaning	12	0
Cleaning	13	0
Cleaning	14	0
Cleaning	15	0
Cleaning	16	0
Cleaning	17	0
Cleaning	18	0
Cleaning	19	0

Only write in yellow areas

Construction costs	4040	DKr
Lifespan from	30	Years
to	50	Years
Reconstruction	130%	
Yearly maintenance	2%	
The real interest rate	3%	

Construction costs	4040	DKr
Sum, current value	1188	DKr
Total investment	5228	DKr

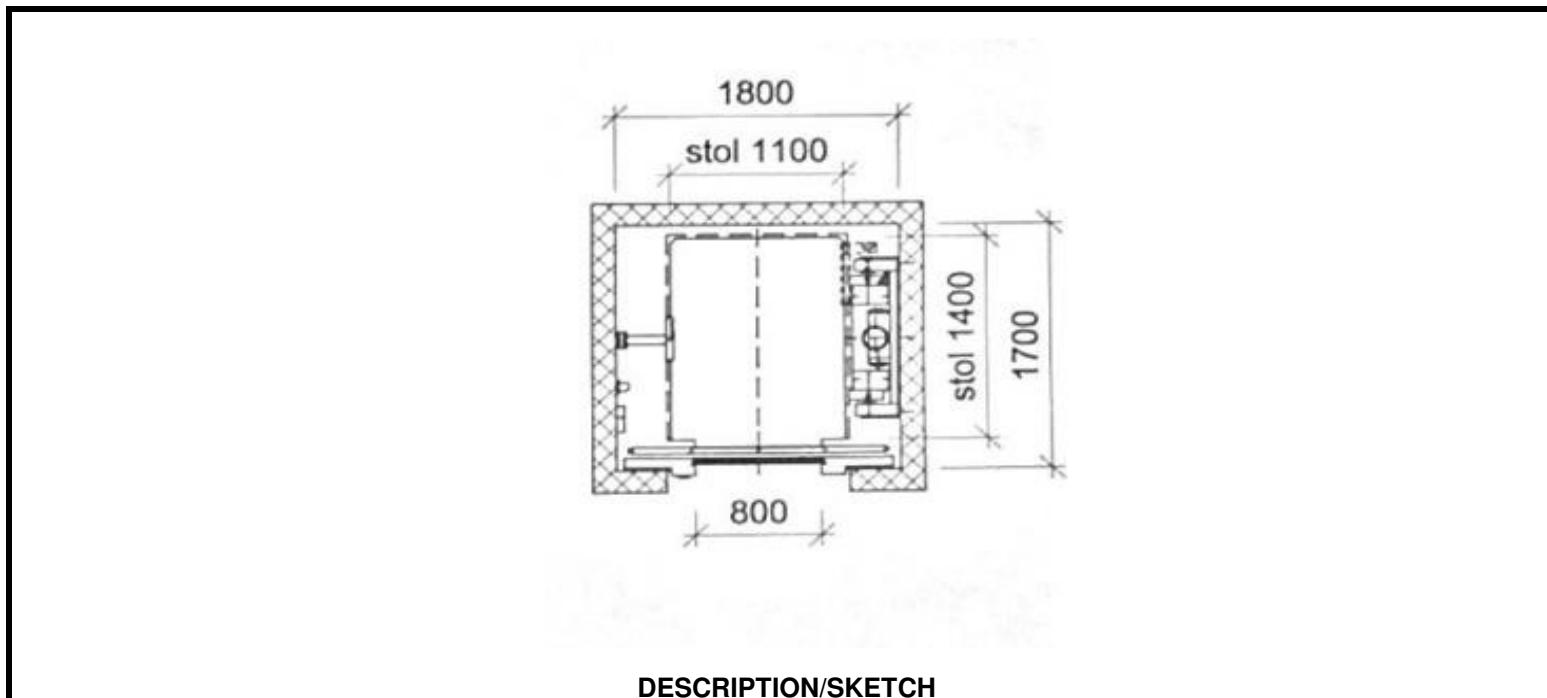

The Constructing Architects Manual
Life cycle costing, Page 98 - 104

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Yearly maintenance	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	60,6	
Periodic maintenance/repair	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Reconstruction	5252																													
Current value	59	57	55	54	52	51	49	48	46	45	44	43	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	

Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Green roof	Respons.	а. ЧЕЧЕЛТАУ АМН	Date:	16 - 06 - 15

DESCRIPTION/SKETCH

Periodic maintenance	Year	Price
Cleaning	1	1000
Maintenance	2	2706
Cleaning	3	1000
Maintenance	4	2706
Cleaning	5	1000
Maintenance	6	2706
Cleaning	7	1000
Maintenance	8	2706
Cleaning	9	1000
Maintenance	10	2706
Cleaning	11	1000
Maintenance	12	2706
Cleaning	13	1000
Maintenance	14	2706
Cleaning	15	1000
Maintenance	16	2706
Cleaning	17	1000
Maintenance	18	2706
Cleaning	19	1000


Only write in yellow areas

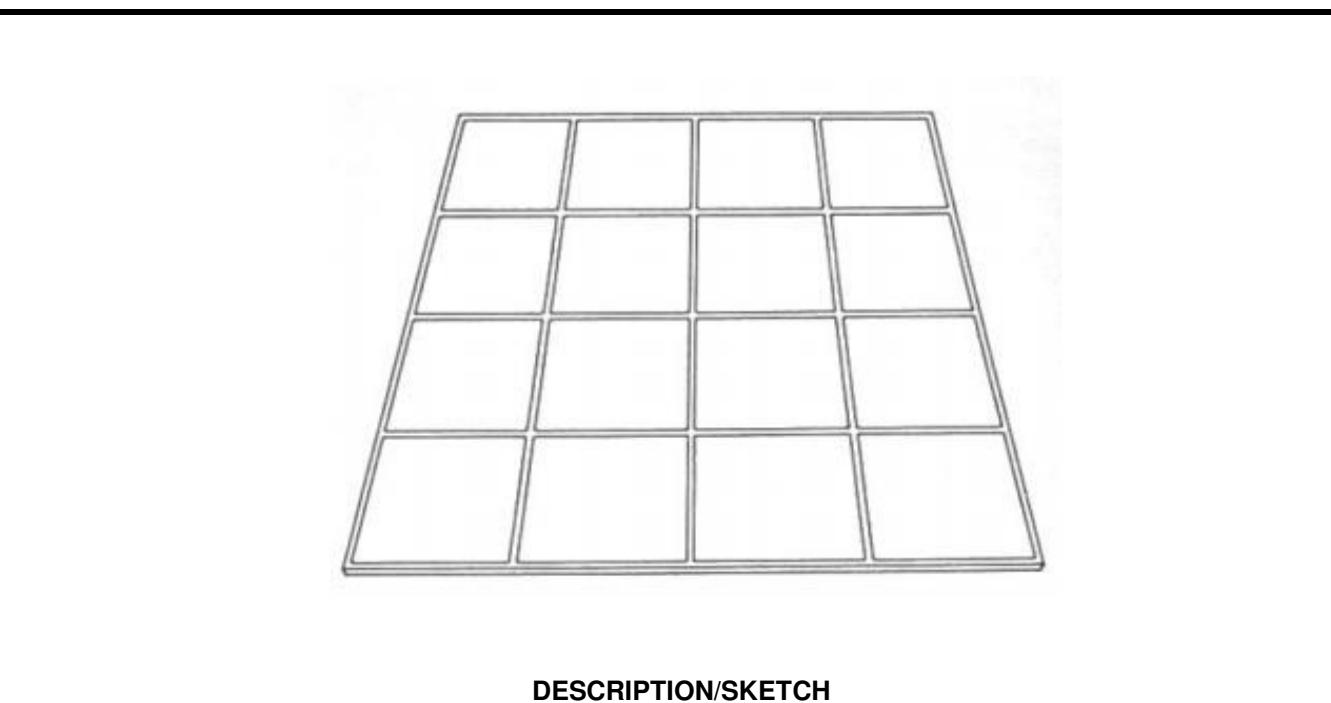
Construction costs	600	DKr
Lifespan from	20	Years
to	40	Years
Reconstruction	75%	
Yearly maintenance	1%	
The real interest rate	3%	

Construction costs	600	DKr
Sum, current value	55770	DKr
Total investment	56370	DKr

The Constructing Architects Manual
Life cycle costing, Page 98 - 104

Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Lift	Respons.	a LIFTWELLa LIFT	Date:	16 - 06 - 15

Periodic maintenance	Year	Price
Cleaning	1	487
Cleaning	2	487
Cleaning	3	487
Cleaning	4	487
Maintenance	5	1589
Cleaning	6	487
Cleaning	7	487
Cleaning	8	487
Cleaning	9	487
Maintenance	10	1589
Cleaning	11	487
Cleaning	12	487
Cleaning	13	487
Cleaning	14	487
Maintenance	15	1589
Cleaning	16	487
Cleaning	17	487
Cleaning	18	487
Cleaning	19	487


Only write in yellow areas

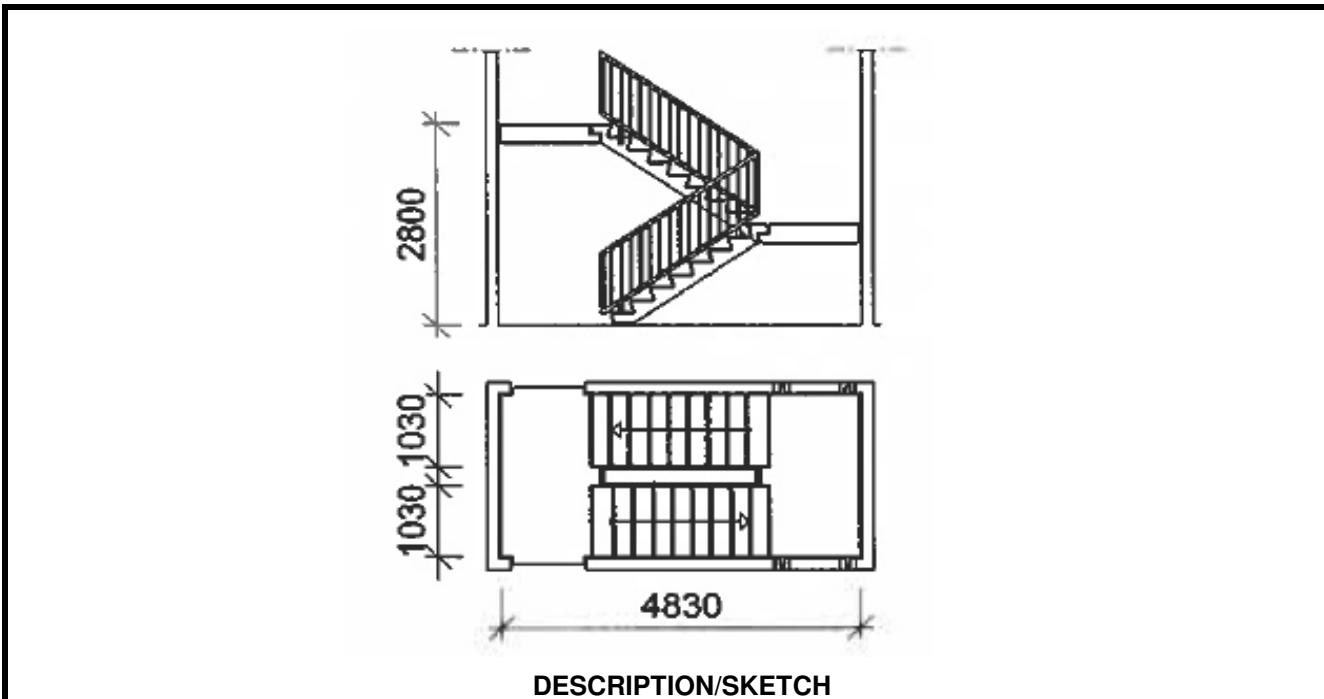
Construction costs	342000	DKr
Lifespan from	20	Years
to	40	Years
Reconstruction	150%	
Yearly maintenance	2%	
The real interest rate	3%	

Construction costs	342000	DKr
Sum, current value	226422	DKr
Total investment	568422	DKr

The Constructing Architects Manual
Life cycle costing, Page 98 - 104

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Yearly maintenance	6840,0	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840	6840		
Periodic maintenance/repair		487	487	487	487	1589	487	487	487	1589	487	487	487	1589	487	487	487	487	1589	487	487	487	1589	487	487	487	1589	487		
Reconstruction	513000																													
Current value		7327	7327	7327	7327	8429	7327	7327	7327	8429	7327	7327	7327	8429	7327	7327	7327	7327	8429	7327	7327	7327	8429	7327	7327	7327	8429	7327	7327	

Periodic maintenance	Year	Price
Cleaning	1	360
Cleaning	2	360
Cleaning	3	360
Cleaning	4	360
Cleaning	5	360
Cleaning	6	360
Cleaning	7	360
Cleaning	8	360
Cleaning	9	360
Cleaning	10	360
Cleaning	11	360
Cleaning	12	360
Cleaning	13	360
Cleaning	14	360
Cleaning	15	360
Cleaning	16	360
Cleaning	17	360
Cleaning	18	360
Cleaning	19	360


Only write in yellow areas

Construction costs	133000	DKr
Lifespan from	35	Years
to	40	Years
Reconstruction	130%	
Yearly maintenance	1%	
The real interest rate	3%	

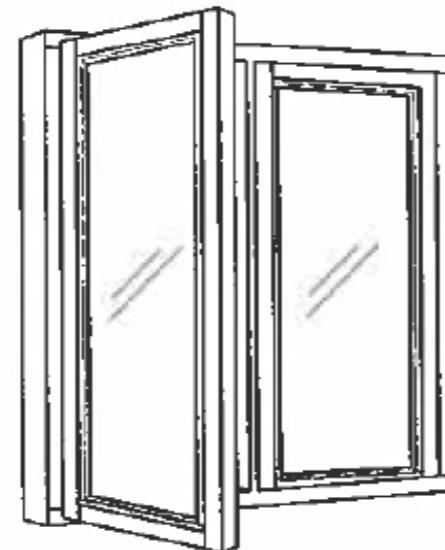
Construction costs	133000	DK
Sum, current value	21600	DK
Total investment	154600	DK

The Constructing Architects Manual
Life cycle costing, Page 98 - 104

Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Stairs	Respons.	a LNUW31a LNUW31	Date:	16 - 06 - 15

Periodic maintenance	Year	Price
Cleaning	1	150
Cleaning	2	150
Cleaning	3	150
Cleaning	4	150
Cleaning	5	150
Cleaning	6	150
Cleaning	7	150
Cleaning	8	150
Cleaning	9	150
Cleaning	10	150
Cleaning	11	150
Cleaning	12	150
Cleaning	13	150
Cleaning	14	150
Cleaning	15	150
Cleaning	16	150
Cleaning	17	150
Cleaning	18	150
Cleaning	19	150

Only write in yellow areas


Construction costs	79100	DKr
Lifespan from	60	Years
to	120	Years
Reconstruction	130%	
Yearly maintenance	1%	
The real interest rate	3%	

Construction costs	79100	DKr
Sum, current value	18444	DKr
Total investment	97544	DKr

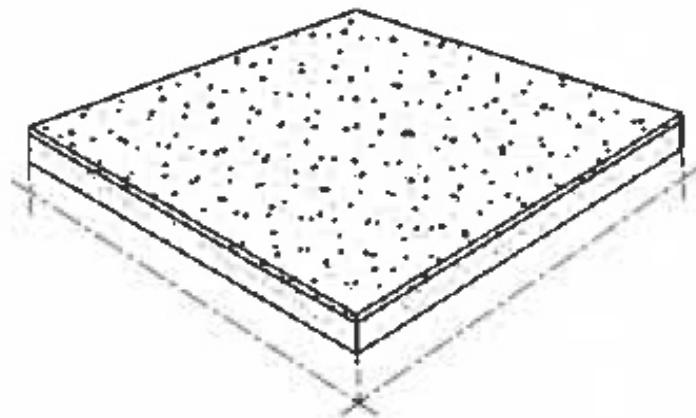
The Constructing Architects Manual
Life cycle costing, Page 98 - 104

Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Yearly maintenance	791,0	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791	791		
Periodic maintenance/repair	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150		
Reconstruction	102830																													
Current value	914	887	861	836	812	788	765	743	721	700	680	660	641	622	604	586	569	553	537	521	506	491	477	463	449	436	424	411	399	388

Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Window	Respons.	а. ЦВОДА ЧМО	Date:	16 - 06 - 15

DESCRIPTION/SKETCH

Periodic maintenance	Year	Price
Cleaning	1	50
Cleaning	2	50
Cleaning	3	50
Cleaning	4	50
Cleaning	5	50
Cleaning	6	50
Cleaning	7	50
Cleaning	8	50
Cleaning	9	50
Cleaning	10	50
Cleaning	11	50
Cleaning	12	50
Cleaning	13	50
Cleaning	14	50
Cleaning	15	50
Cleaning	16	50
Cleaning	17	50
Cleaning	18	50
Cleaning	19	50


Only write in yellow areas

Construction costs	5870	DKr
Lifespan from	50	Years
to	70	Years
Reconstruction	150%	
Yearly maintenance	3%	
The real interest rate	3%	

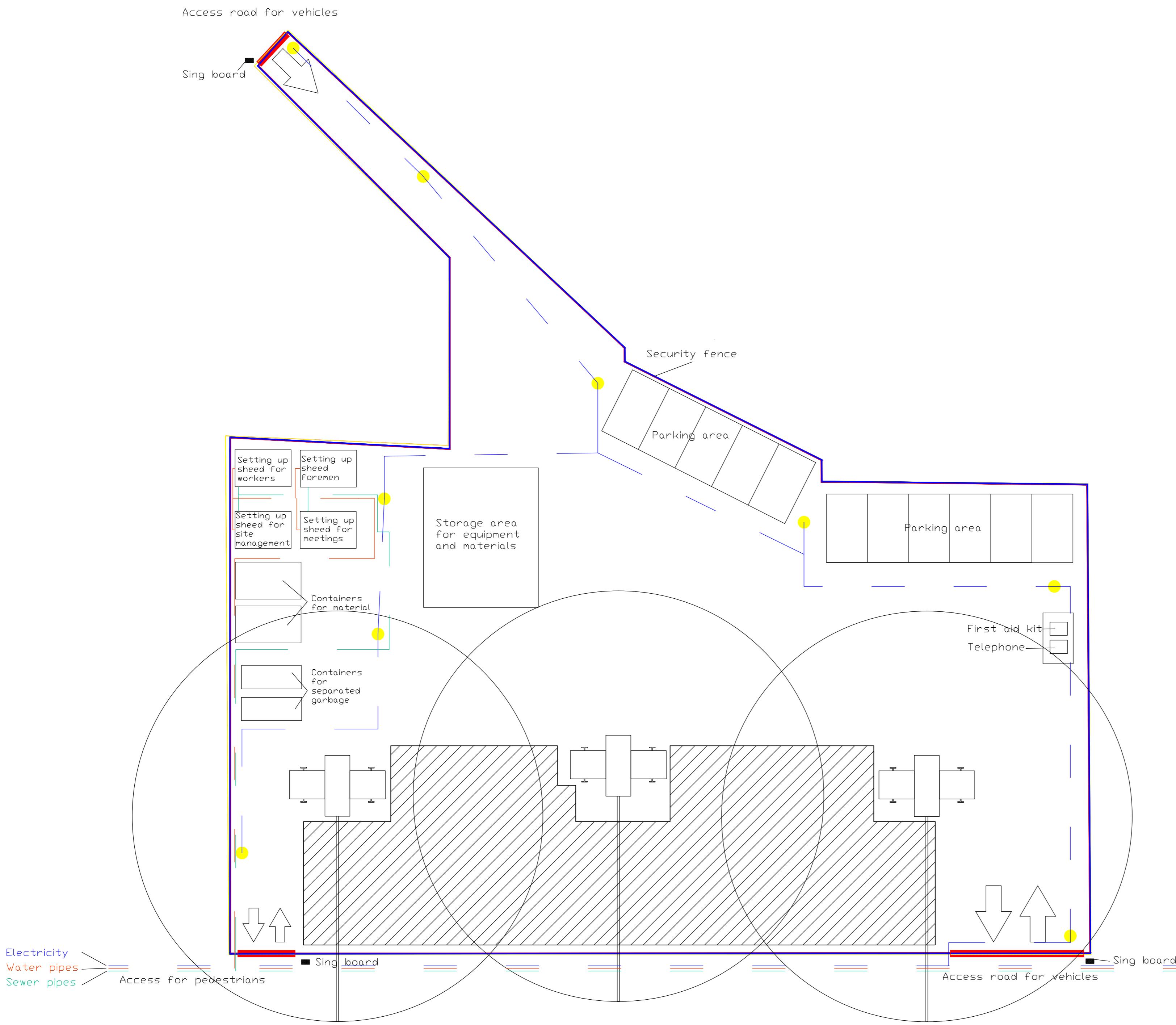
Construction costs	5870	DKr
Sum, current value	6783	DKr
Total investment	12653	DKr

The Constructing Architects Manual
Life cycle costing. Page 98 - 104

Project		Phase		Page	
Subject	Calculation of life cycle costing	Group	6	of pages	
Building component	Balcony	Respons.	а. ЦИЧАДА ЦИИ	Date:	16 - 06 - 15

DESCRIPTION/SKETCH

Periodic maintenance	Year	Price
Cleaning	1	0
Cleaning	2	0
Cleaning	3	0
Cleaning	4	0
Cleaning	5	0
Cleaning	6	0
Cleaning	7	0
Cleaning	8	0
Cleaning	9	0
Cleaning	10	0
Cleaning	11	0
Cleaning	12	0
Cleaning	13	0
Cleaning	14	0
Cleaning	15	0
Cleaning	16	0
Cleaning	17	0
Cleaning	18	0
Cleaning	19	0


Only write in yellow areas

Construction costs	2830	DKr
Lifespan from	40	Years
to	60	Years
Reconstruction	150%	
Yearly maintenance	0%	
The real interest rate	3%	

Construction costs	2830	DKr
Sum, current value	171	DKr
Total investment	3001	DKr

The Constructing Architects Manual
Life cycle costing, Page 98 - 104

2.2.3. *Building Site plan*

2.2.4. Rent Apartment

Project	Multi-storey Housing	Group	6	Class	AH-42
---------	----------------------	-------	---	-------	-------

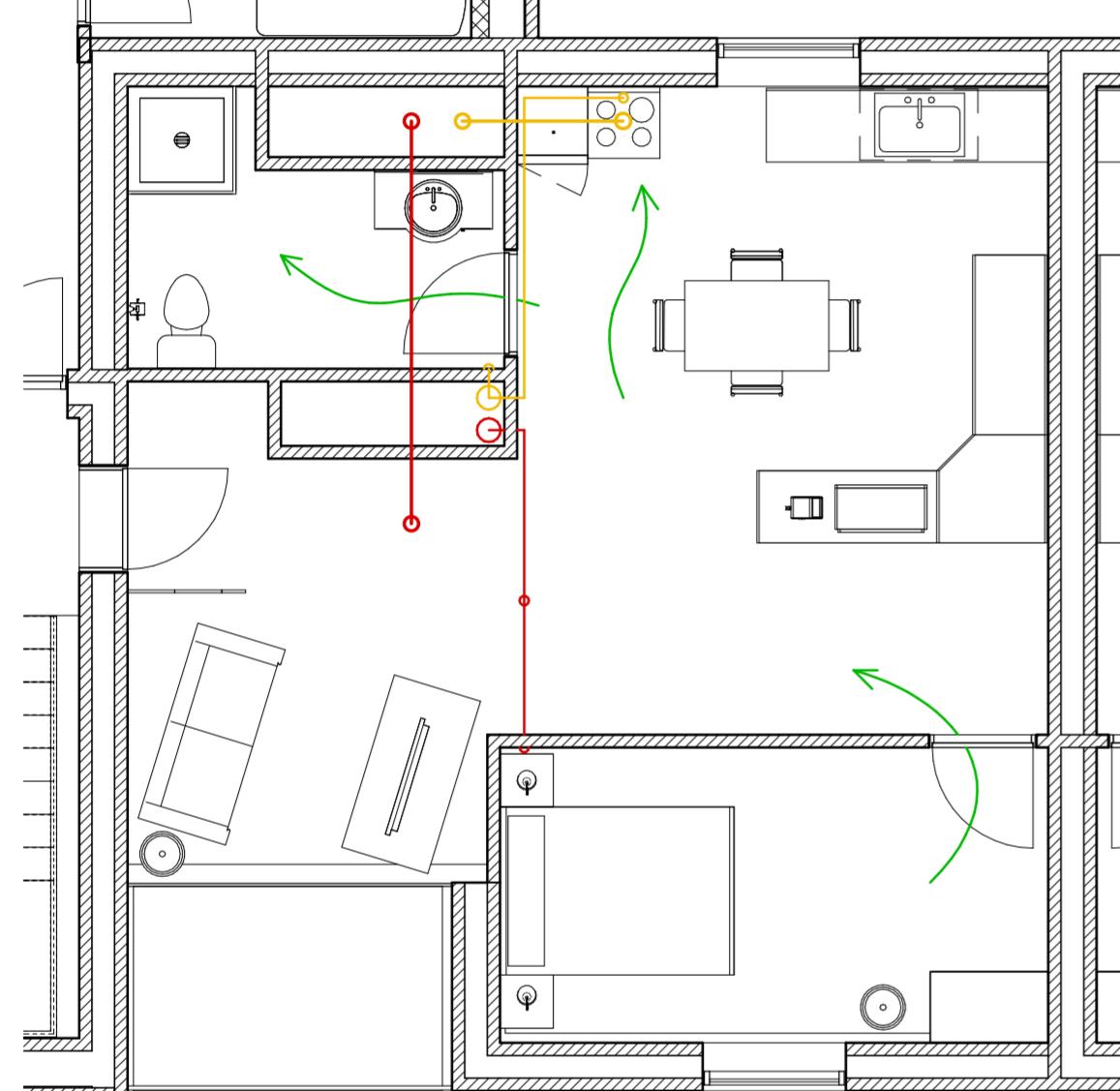
Apartments - Total xx					
	Gross m2	items			
Apartment 1	110,86 m2	7		total	776 m2 gross
Apartment 2	84,5 m2	6		total	507 m2 gross
Apartment 3	103,53 m2	2		total	207 m2 gross
Apartment 4	89,73 m2	2		total	179 m2 gross
				total	0 m2 gross
m2 total Gross (subsidized area)					1.670 m2 gross
Maximum cost pr gross m2			20.240	kr. per m2 gross	
Maximum cost total			33.791.490	kr.	
Total cost - Your tenderbid			44.682.553	kr.	
Financing - Social Housing projects - by					
The City council (Kommunal grundkapital)	10% of the total cost			4.468.255	kr.
Loan (Realkredit låن)	88% of the total cost			39.320.647	kr.
Resident Deposits	2% of the total cost			893.651	kr.
Total				44.682.553	kr.

The first year payments of Loan, subsidize and maintaince

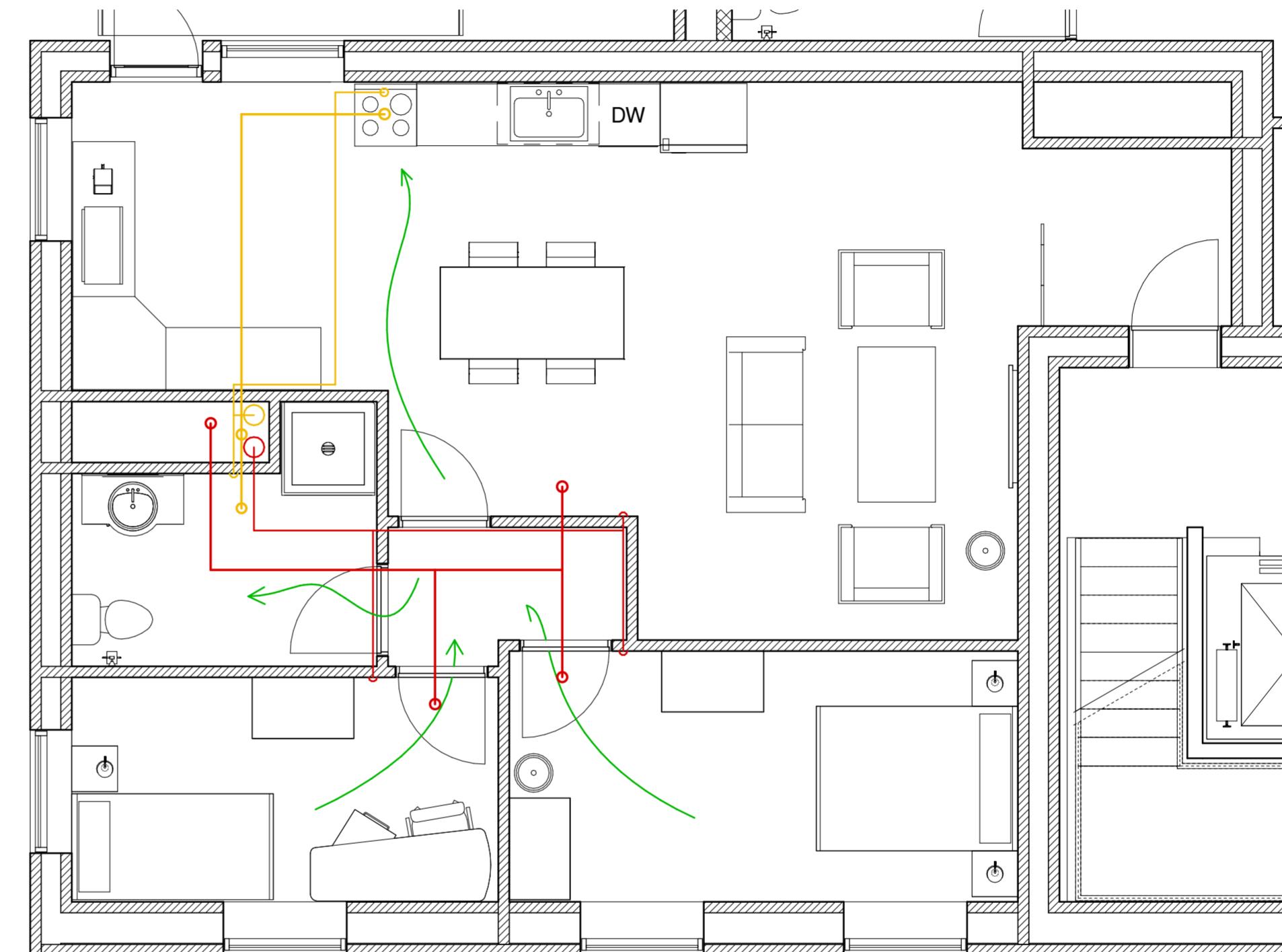
Application for loan:

Mail this document including the requested facts (yellow boxes) to your BPM-teacher

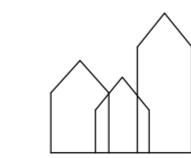
From BRF Creditinstitut (lån fra BRF's hjemmeside)			
Mortgage Credit (kontantlån 3,0 % 30 år kurs) rate 94,1			
Amount needed			
Loan (Lånets hovedstol)		-	kr.
Payment total (Ydelse i alt)		0	kr. per Year
Contribution (B 0,27% af hovedstolen)		0	kr. per Year
Payment without contribution (Ydelse ekscl. Bidrag)		0	kr. per Year
Public subsidize (Offentlige tilskud).			
Payment without contribution (Ydelse ekscl. Bidrag)		0	kr. per Year
Rent (paid by the residents) maximum	2,80% of the total costs (af anskaffelsessummen)	1.251.111	kr. per Year
Subsidize total (Ydelsesstøtte i alt)		-1.251.111	kr. per Year
Payment by the residents.			
Total payment of the loan (without government grants)	0	-	-1.251.111 1.251.111 kr. per Year
Cost for maintenance (Keyfigures) K42014	1.670	*	305 509.210 kr. per Year
Payment by the resident (Beboerbetaling ekscl. Forbrug)			1.760.321 kr. per Year


Rent	1.760.321	/	1.670	1.054	kr. pr. m2 per. Year
1. years Rent per Month					
Apartment 1	110,86	*	1.054	12	9.741 kr. per. Month
Apartment 2	84,5	*	1.054	12	7.425 kr. per. Month
Apartment 3	103,53	*	-	12	- kr. per. Month
Apartment 4	89,73	*	-	12	- kr. per. Month

Resident Deposits (payed before moving in)

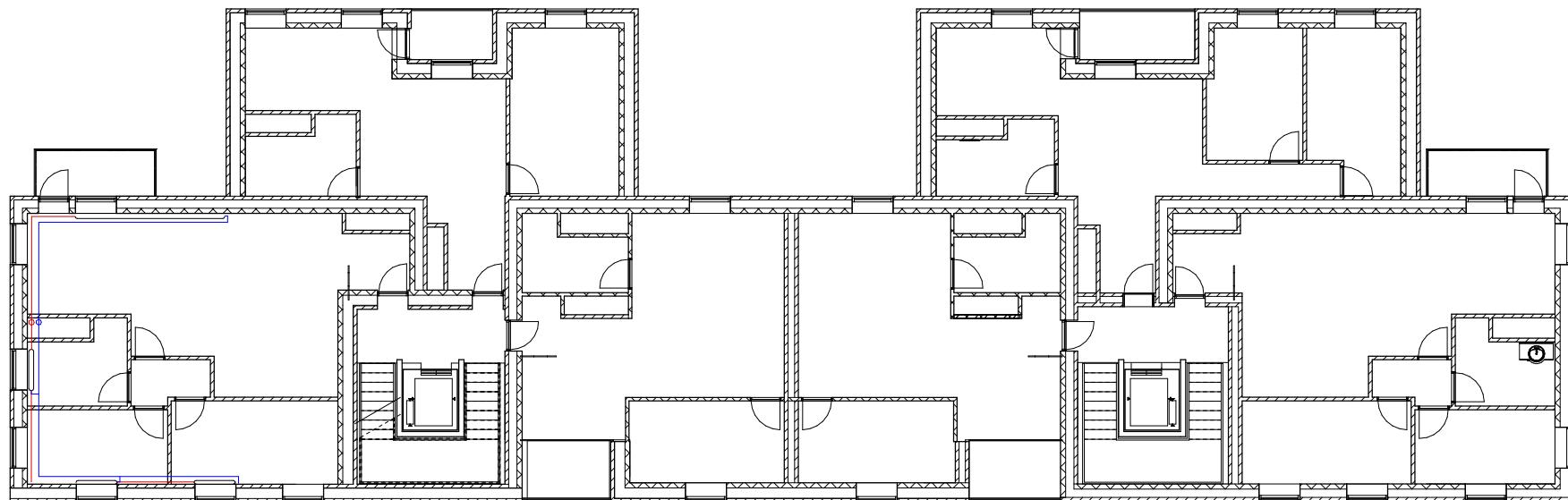

Resident Deposits per. m2 is	893.651	kr. devided m2	1.670	535	kr/m2
Resident Deposits 2-rooms apartment	535	776	7	59.340	kr.per apartment
Resident Deposits 3-rooms apartment	535	507	6	45.230	kr.per apartment
Resident Deposits 2-rooms apartment	535	207	2	55.416	kr.per apartment
Resident Deposits 3-rooms apartment	535	179	2	48.030	kr.per apartment
Resident Deposits 2-rooms apartment	535	0	0	#DIV/0!	kr.per apartment

2.3. BUILDING SERVICES


2.3.1. *Ventilation Plan*

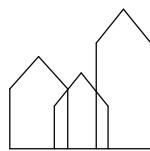
04 2 Floor - VENTILATION - Dettaglio 2
1 : 62

04 2 Floor - VENTILATION - Dettaglio 3
1 : 50


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

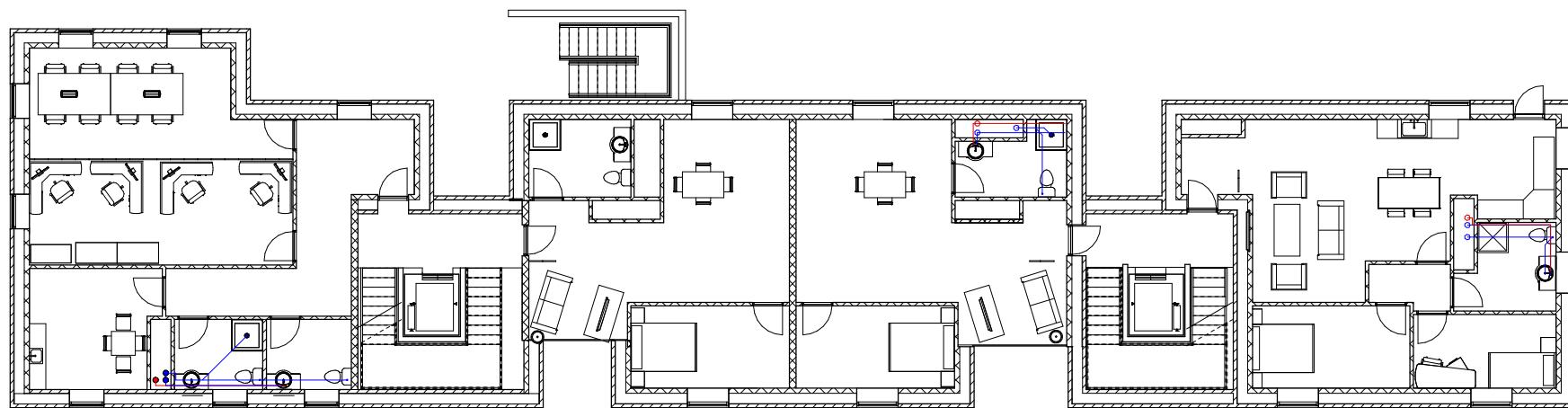
PROJECT: Multi-storey housing	DATE: 04/29/15
SUBJECT:	SCALE: As indicated
DRAWN BY: a LUNDWALL	CLASS:


ventilation

2.3.2. *Heating Plan*

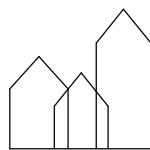
03 1 Floor - heating

1 : 200



Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT:	Multi-storey housing	DATE:	06/23/15
SUBJECT:	Unnamed	SCALE:	1 : 200
DRAWN BY:	a ԱՐՄԵՆԻԱ ԱՐՄԻ	CLASS:	44

2.3.3. *Water Plan*

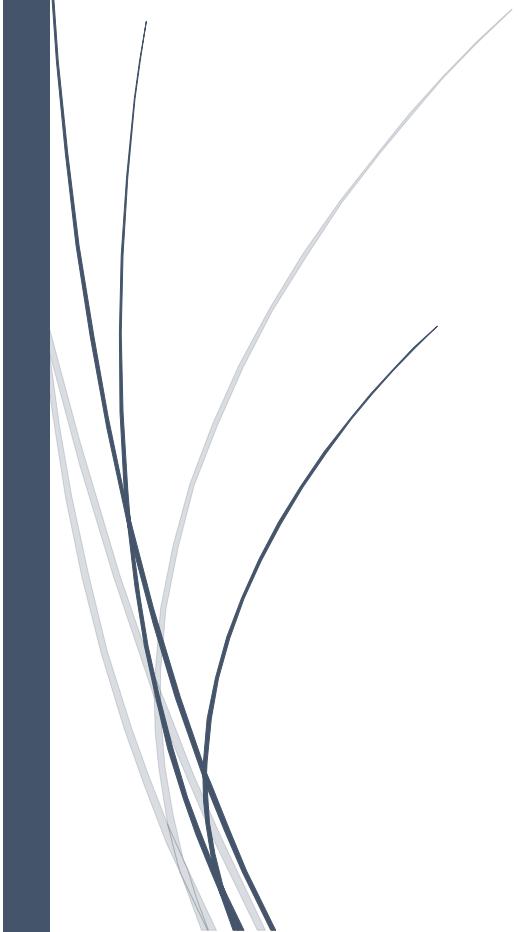
02 Groundfloor water

1 : 200

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: Multi-storey housing	DATE: 06/23/15	42
SUBJECT: Water plan	SCALE: 1 : 200	
DRAWN BY: a LUNWELLa LUNWELL	CLASS: AH42S15	


2.4. STRUCTURAL DESIGN

2.4.1. *Structural Design Report*

3-6-2015

STRUCTURAL DOCUMENTATION

VIA UNIVERSITY COLLEGE, Horsens
GROUP 6 CASH42

CONTENTS

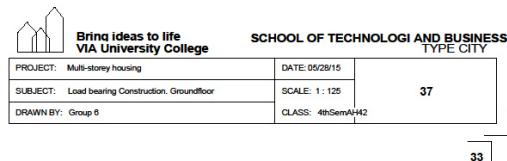
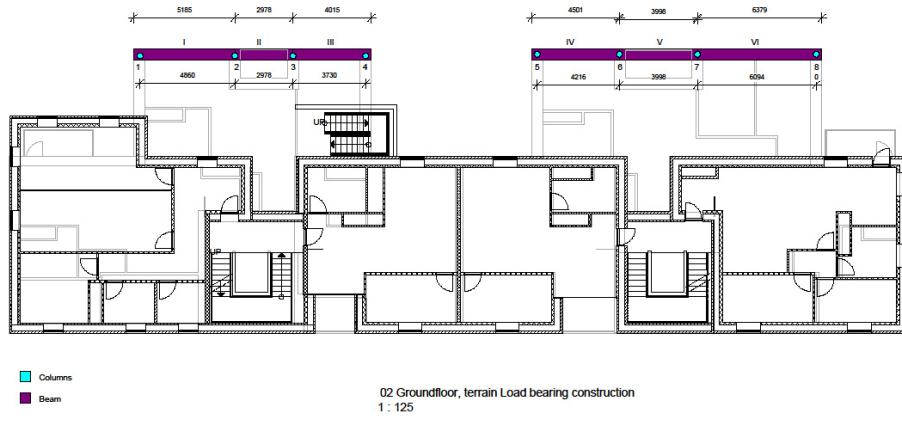
BUILDING DESCRIPTION	2
BASIS FOR CALCULATION	2
LOAD BEARING CONSTRUCTION	3
LOAD BEARING EXTERNAL WALLS.....	4
LOAD BEARING INTERNAL WALLS	5
BEAMS	7
COLUMNS	8
EXTERNAL WALLS	9
INTERNAL WALLS.....	9
LOADS.....	10
SNOW LOADS.....	10
IMPOSED LOADS.....	10
SELF WEIGHT	11
STAIRCASES ANALYSIS.....	16
SOIL PARAMETERS	18
FOUNDATION CALCULATION	22
STRUCTURE.....	22
STRUCTURAL ANALYSIS.....	25
HORIZONTAL LOADS.....	25
VERTICAL LOADS.....	26
HORIZONTAL LOADS.....	27
LOAD TRANSFER.....	28
DETAILS.....	29

BUILDING DESCRIPTION

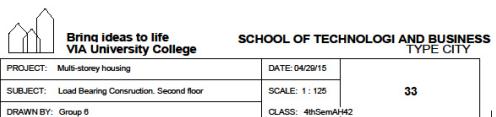
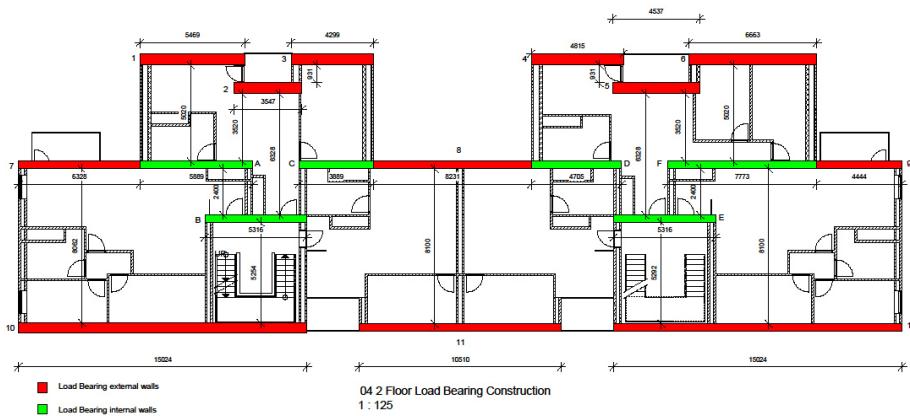
This document concerns the calculation of loads and safety for a Multi-story social housing site at Sønderborgade in Horsens, Denmark.

The groundfloor is divided in two parts; one residential and one for commercial usage. Other floors are only for residential usage. On the top of the building the green roof is the social area with the target to be a meeting place.

The basement is basically used for storage, laundry and placing the technical installations.



BASIS FOR CALCULATION

The calculations are based on the following standards:



- DS/EN 1990:2007, Eurocode 0: Basis of structural design.
- DS/EN 1991-1-1:2007, Eurocode 1: Action on structures – Part 1-1: General actions – Densities, self weight, imposed loads for buildings.
- DS/EN 1991-1-2:2007, Eurocode 1: Action on structures – Part 1-2: General actions – Actions on structures exposed to fire.
- DS/EN 1991-1-3:2007, Eurocode 1: Action on structures – Part 1-3: General actions – Snow loads.
- DS/EN 1992-1-1:2005, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings.

LOAD BEARING CONSTRUCTION

37

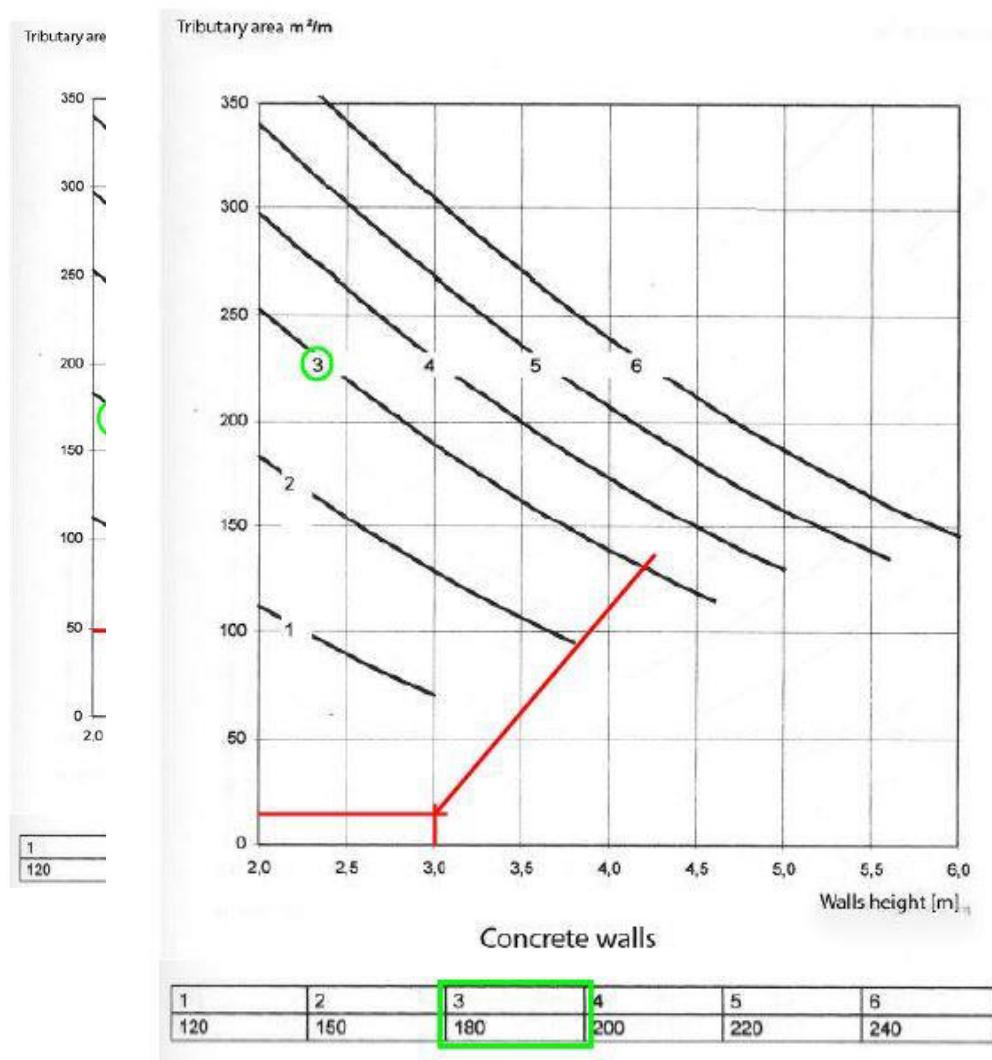
33

3

All the construction elements are made by prefabricated concrete. We are going to calculate every load bearing element of the plan, and for showing the difference between kinds of work, we colored each one with different colors.

Like the previous plan shows, the red colored walls are load bearing external walls, the green ones, load bearing internal walls; the purple ones are the beams, and the blue ones are the columns.

LOAD BEARING EXTERNAL WALLS


The external walls are made by prefabricated slabs concrete. Each one of them supports their own weight and the load area from center of the room. We calculate them this way:

The wall number 1 supports $(\frac{5.020}{2} + \frac{0.931}{2})$ of load area and its own weight.

Each wall has 3 meters of height, so:

$2.9755m * 1m * 2\text{storeys} + 3m * 1m * 2\text{storeys} = 11.95m^2/m$ of tributary area.

LOAD BEARING EXTERNAL WALL 1

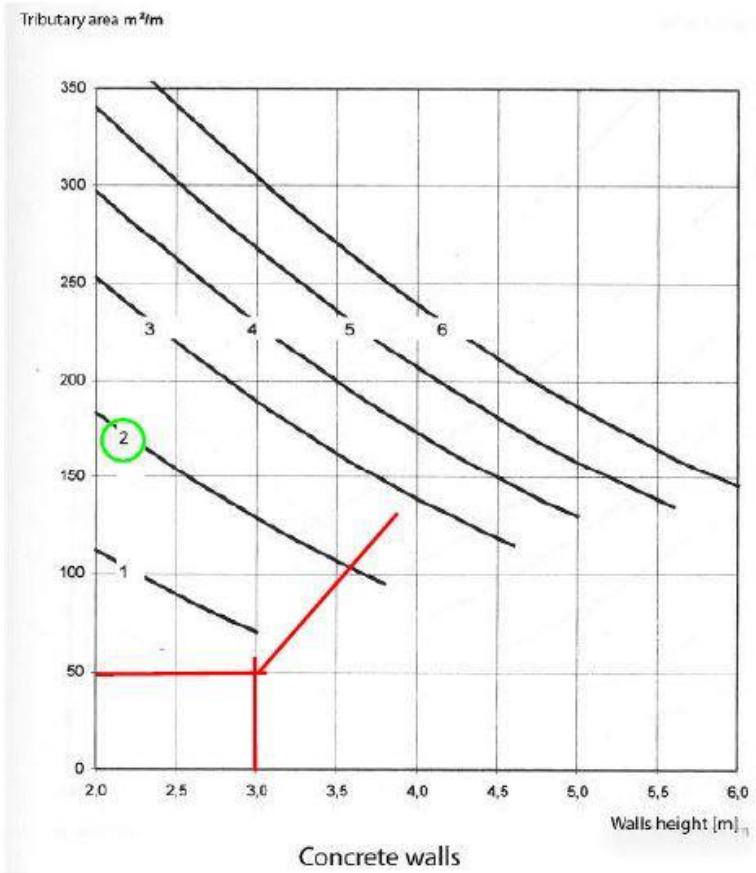
The wall number 1 has to be minimum 180mm weight.

For the knowledge of all load bearing external walls, we follow the same way:

LOAD BEARING EXTERNAL WALLS. TRIBUTARY AREA											
Nr. Wall	Surface (m2)			Length (m)	Nr. Storeys	Total 1	Height (m)	Length (m)	Storeys	Total 2	Tributary area m2/m
1	2,510	0,466		2,976	1	2	5,951	3	1	2	6,000
2	0,466	1,760	3,164	5,390	1	2	10,779	3	1	2	6,000
3	2,510	0,466		2,976	1	2	5,951	3	1	2	6,000
4	2,510	0,466		2,976	1	2	5,951	3	1	2	6,000
5	0,466	1,760	3,164	5,390	1	2	10,779	3	1	2	6,000
6	2,510	0,466		2,976	1	2	5,951	3	1	2	6,000
7	4,031			4,031	1	4	16,124	3	1	4	12,000
8	4,050			4,050	1	4	16,200	3	1	4	12,000
9	4,050			4,050	1	4	16,200	3	1	4	12,000
10	4,031	2,621		6,652	1	4	26,608	3	1	4	12,000
11	4,050			4,050	1	4	16,200	3	1	4	12,000
12	4,050	2,621		6,671	1	4	26,684	3	1	4	12,000

LOAD BEARING INTERNAL WALLS. MIN. WIDTH			
Wall	Length	Height	Min. Width
A	5,889	3	150
B	5,316	3	150
C	3,889	3	150
D	4,705	3	150
E	5,316	3	150
F	7,773	3	150

LOAD BEARING INTERNAL WALLS


The internal walls are used like partitions of the dwellings and support the slab to make their length shorter. The loaded area is from the centre of the dwelling and the weight of the wall above.

For the wall called A, the calculation is:

$$(2.510 + 1.760 + 4.031 + 1.200)m^2 * 1m * 4storeys + 3m * 1m * 4storeys \\ = 50.004m^2$$

The wall A has to be minimum 150mm weight. The other walls are calculated the same way:

LOAD BEARING INTERNAL WALL A

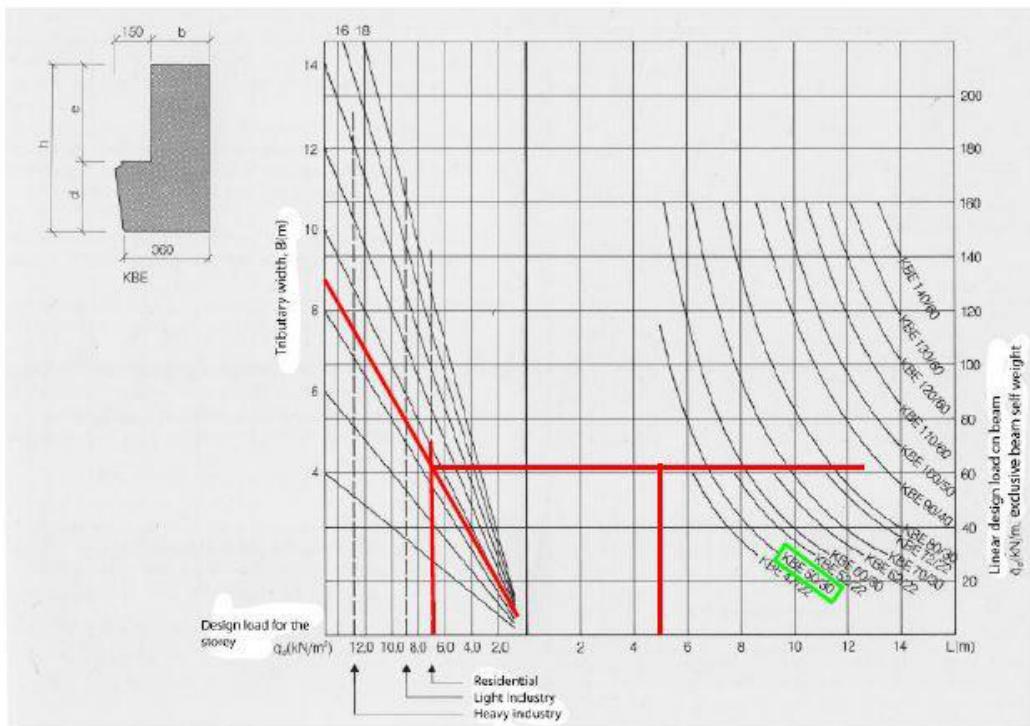
+

LOAD BEARING INTERNAL WALLS. TRIBUTARY AREA												
Nr. Wall	Surface (m ²)				Length (m)	Nr. Storeys	Total 1	Height (m)	Length (m)	Storeys	Total 2	Tributary area m ² /m
A	2,510 1,760 4,031 1,200				9,501	1	4	38,004	3	1	4	50,004
B	1,200 3,164 2,621				6,985	1	4	27,940	3	1	4	39,940
C	2,510 1,200 4,050				7,760	1	4	31,040	3	1	4	43,040
D	2,510 1,200 4,050				7,760	1	4	31,040	3	1	4	43,040
E	3,164 1,200 5,292				9,656	1	4	38,624	3	1	4	50,624
F	1,760 2,510 1,200 4,050				9,520	1	4	38,080	3	1	4	50,080

LOAD BEARING INTERNAL WALLS. MIN. WIDTH			
Wall	Length	Height	Min. Width
A	5,889	3	150
B	5,316	3	150
C	3,889	3	150
D	4,705	3	150
E	5,316	3	150
F	7,773	3	150

BEAMS

We have 6 different beams. They are placed in the facade where two apartments "go out" from the building. Each m² is loaded with:


- Slabs: 3.13 kN/m²
- Imposed loads: 2.25kN/m²

To calculate the tributary area:

$$\left(\frac{3.13kN}{m^2} * \frac{2.25kN}{m^2} \right) + (3m * 0.588m) * 2 \text{ storeys} = 8.908kN/m$$

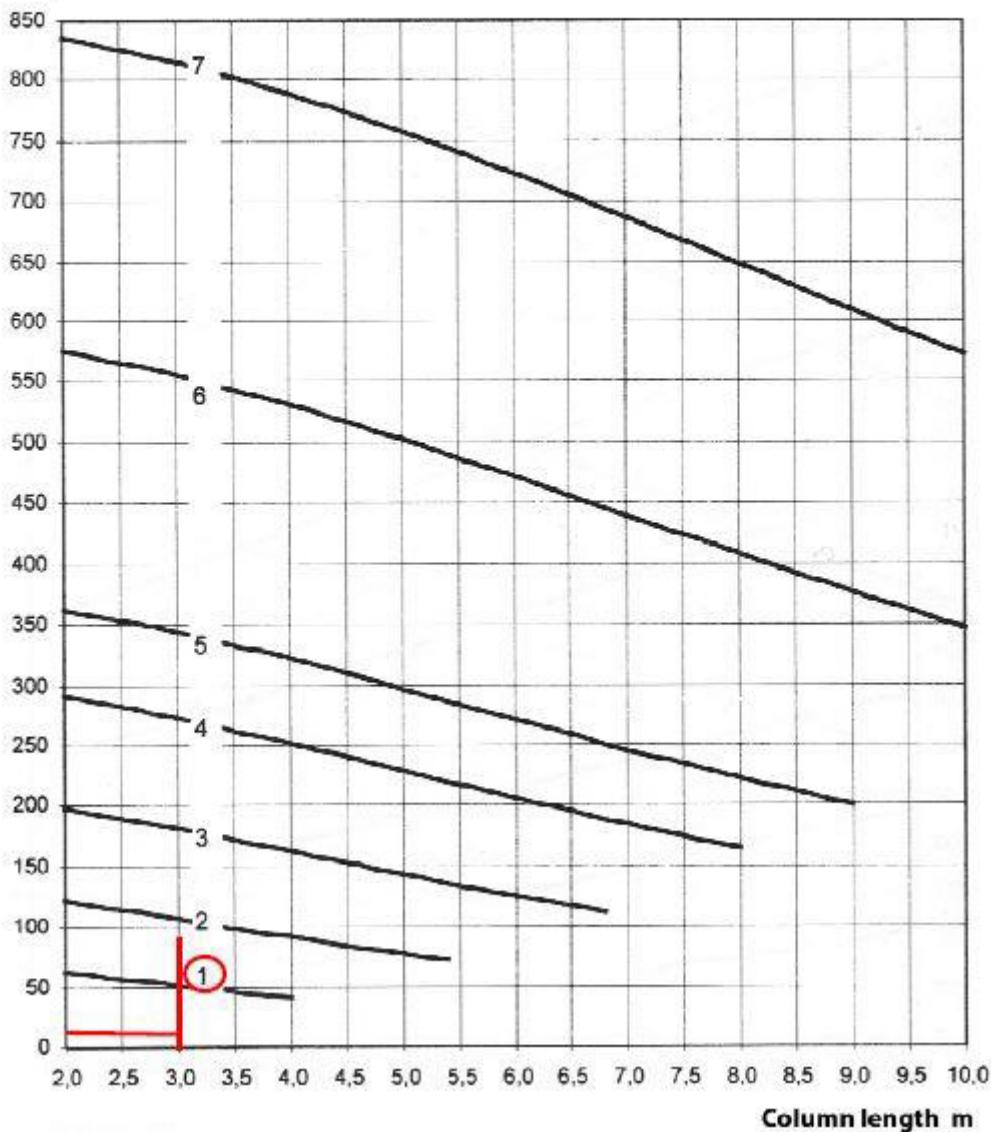
We are going to calculate the Beam I, and then a table with the results of the rest. Each beam, has the same properties, excepting the length, this way, we obtain the minimum dimensions of them:

BEAM I

BEAMS		
Beam	Lenght	Size of beam
I	5,185	KBE 50/30
II	2,978	KBE 50/31
III	4,105	KBE 50/32
IV	4,501	KBE 50/33
V	3,998	KBE 50/34
VI	6,379	KBE 50/35

COLUMNS

We have eight columns that support the beams.


- Slab: 3.13 kN/m²
- Imposed load: 2.25kN/m²
- Column: we decided to choose the ones with 180mm of diameter, this way its weight will be: $\pi * 0.90^2 * 3m * 25kN/m^2 = 5.30kN$

We are going to calculate the column 1:

- Span of beam on column: $\frac{4.860m}{2} = 2.43m$
- Tributary area $\frac{4.680}{2} * 2 \text{ storeys} + 3m * 2 \text{ storeys} = 10.68m^2$

1	2	3	4	5	6	7
$\varnothing 180$	$\varnothing 240$	$\varnothing 300$	$\varnothing 360$	$\varnothing 400$	$\varnothing 500$	$\varnothing 600$

Tributary area m²

Tributary area and minimum diameter							
Column	Span of beam on column (m)		Storeys	Height (m)	Tributary area (m ²)	Minimum diameter (mm)	
1	2,430		2,430	2	3	10,86	180
2	2,430	1,489	3,919	2	3	13,84	180
3	1,489	1,865	3,354	2	3	12,71	180
4	1,865		1,865	2	3	9,73	180
5	2,108		2,108	2	3	10,22	180
6	2,108	1,999	4,107	2	3	14,21	180
7	1,999	3,047	5,046	2	3	16,09	180
8	3,047		3,047	2	3	12,09	180

The columns meet the requirements

EXTERNAL WALLS

They only support their own weight. As they have not any structural function, they are not been colored in the plan.

INTERNAL WALLS

They only support their own weight. As they have not any structural function, they are not been colored in the plan.

LOADS

$$S = \mu \cdot C_e \cdot C_t \cdot S_k$$

μ : snow load shape coefficient

S_k : Snow load value on the ground for a given location

C_e : Exposure coefficient

C_t : Thermal coefficient

C_e and C_t are the same and they should be taken 1.0 otherwise specific areas in the topography.

Topography	C_e
Windswept ^a	0.8
Normal ^b	1.0
Sheltered ^c	1.2

^a Windswept topography: flat unobstructed areas exposed on all sides without, or little shelter afforded by terrain, higher construction works or trees.

^b Normal topography: areas where there is no significant removal of snow by wind on construction work, because of terrain, other construction works or trees.

^c Sheltered topography: areas in which the construction work being considered is considerably lower than the surrounding terrain or surrounded by high trees and/or surrounded by higher construction works.

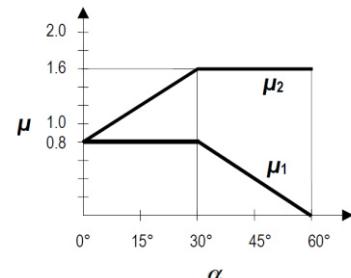


Figure 5.1: Snow load shape coefficients

$$S = \mu \cdot C_e \cdot C_t \cdot S_k = 0.8 \cdot 1.0 \cdot 1.0 \cdot 0.9 = 0.72 \text{ kN/m}^2$$

IMPOSED LOADS

- Multi storey house in Horsens, Denmark.
- Domestic area
- Category A (Areas for domestic and residential activities)

Eurocode 1. Part 1-1. Danish National Annex.

CATEGORIES OF LOADED AREA	Eurocode 1 part 1-1		Danish National Annex
	$q_K(\text{kN/m}^2)$	$q_K(\text{kN/m}^2)$	$q_K(\text{kN/m}^2)$
Floors	1.5 to 2.0		1.5
Stairs	2.0 to 4.0		3
Balconies	2.5 to 4.0		2.5
Lofts	-		1

Table 6.2 - Imposed loads on floors, balconies and stairs in buildings

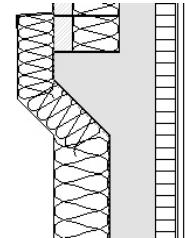
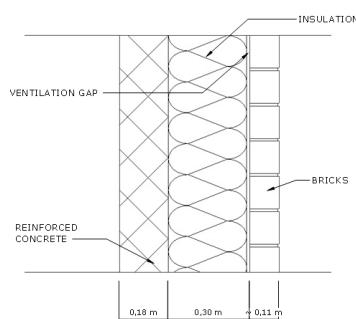
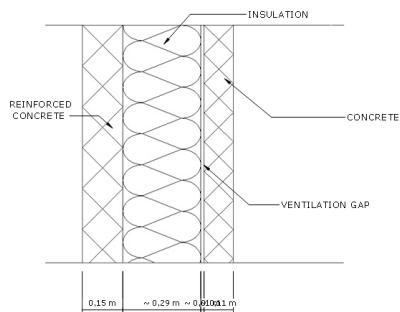
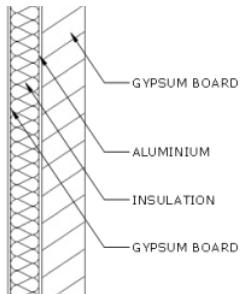

Categories of loaded areas	q_k [kN/m ²]	Q_k [kN]
Category A		
- Floors	1,5 to 2,0	2,0 to 3,0
- Stairs	2,0 to 4,0	2,0 to 4,0
- Balconies	2,5 to 4,0	2,0 to 3,0

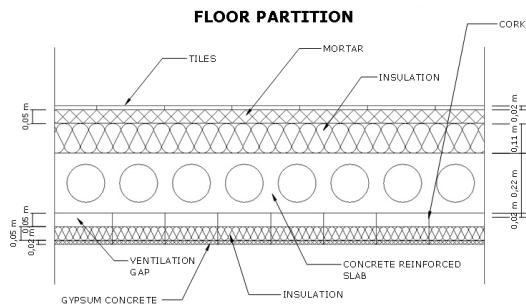
Table 6.2 - Imposed loads on floors, balconies and stairs in buildings

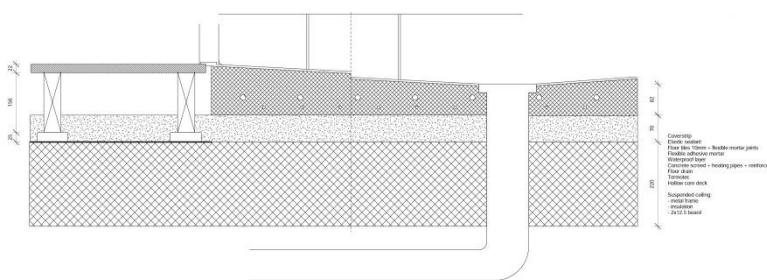

Categories of loaded areas	q_k [kN/m ²]	Q_k [kN]
Category A - dwellings		
- A1 dwellings and internal access routes	1,5	2,0
- A2 eaves voids	0,5	0,5
- A3 lofts	1,0	0,5
- A4 stairs	3,0	2,0
- A5 balconies	2,5	2,0

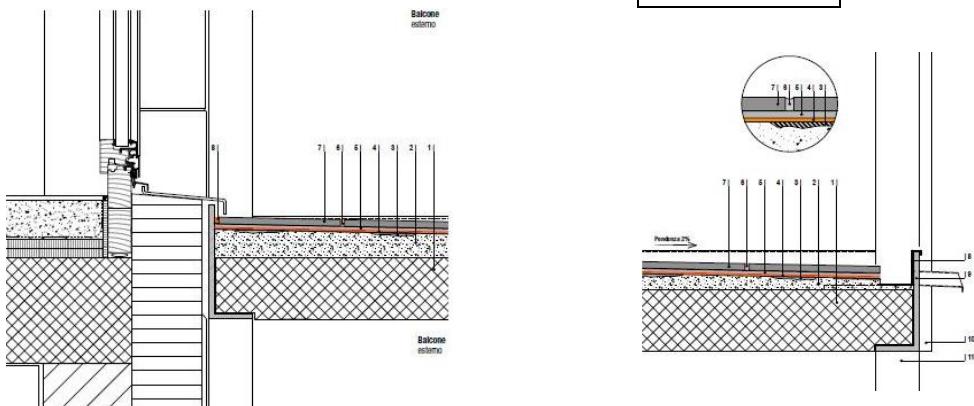
SELF WEIGHT

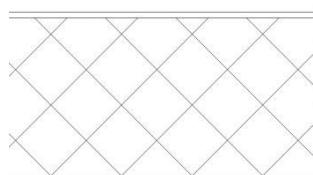

Basement walls				
Construction	CF	T [m]	Υ [kN/m ²]	g.k [kN/m ²]
Plaster	1	0,08	12	0,96
Polystyrene	1	0,31	0,4	0,124
Concrete	1	0,25	24	6
				7,084

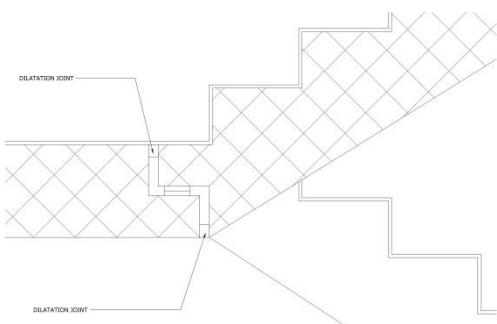

External walls				
Construction	CF	T [m]	Υ [kN/m ²]	g.k [kN/m ²]
Brick	1	0,108	21	2,268
Ventilation gap	1	0,012	0	0
Insulation	1	0,288	0,4	0,1152
Reinforced concrete	1	0,18	24	4,32
				6,7032

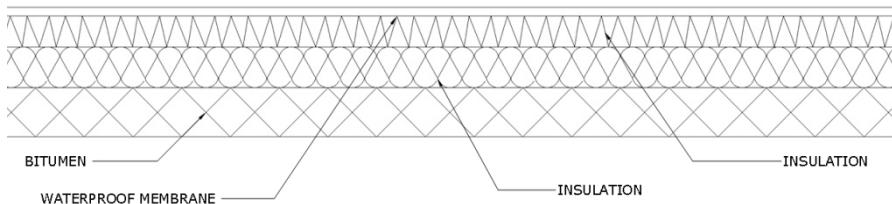

Internal load bearing walls				
Construction	CF	T [m]	Y [kN/m ²]	g.k [kN/m ²]
Concrete	1	0,108	20	2,16
Ventilation gap	1	0,012	0	0
Insulation	1	0,3	0,4	0,12
Reinforced concrete	1	0,15	24	3,6
				5,88

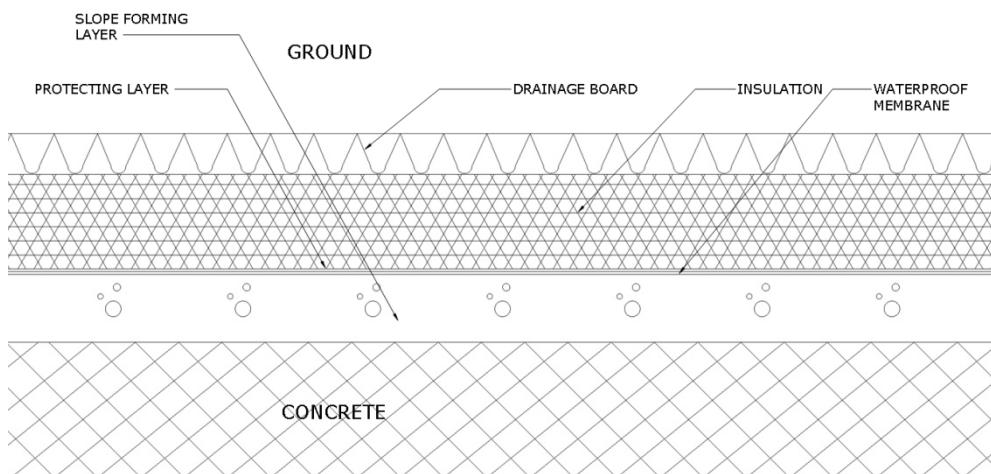

Internal non-loadbearing walls				
Construction	CF	T [m]	Y [kN/m ²]	g.k [kN/m ²]
Gypsum board	1	0,015	12	0,18
Aluminium	0,05	0,001	27	0,00135
Insulation	0,95	0,1	0,4	0,038
Aluminium	0,05	0,01	27	0,00135
Gypsum board	1	0,015	12	0,18
				0,41285


Floor partition				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Tiles	1	0,015	20	0,3
Mortar	1	0,07	19	1,33
Insulation	1	0,11	0,4	0,044
Concrete reinforced slab	1	0,22	3,13	0,6886
Ventilation gap	1	0,005	0	0
Insulation	1	0,005	0,4	0,002
Gypsum concrete	1	0,0015	12	0,018
Cork	1	0,115	0,2	0,023
				2,4056


Floor partition - wet room				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Concrete	1	0,082	16	1,312
Insulation	1	0,07	0,3	0,021
Concrete	1	0,22	20	4,4
				5,733


Balcony				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Concrete reinforced	1	0,22	24	5,28
Glass railing	1	0,02	25	0,5
Aluminium frame	1	0,04	27	1,08
				5,78


Staircase construction				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Rubber	1	0,1		0
Concrete	1	0,29	20	5,8
				5,8


Stairs				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Rise	1	0,1665	24	3,996
Tread	1	0,28	24	6,72
				10,716

Roof construction				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Bitumen	1	0,33	14	4,62
Polystyrene	1	0,15	0,4	0,06
Polystyrene	1	0,112	0,4	0,0448
				4,68

Green roof construction				
Construction	CF	T [m]	γ [kN/m ²]	g.k [kN/m ²]
Concrete	1	0,5	24	12
Slope forming layer	1	0,25	27	6,75
Water proof membrane	1	0,1	1,6	0,16
Protecting layer	1	0,1	1,2	0,12
Insulation	1	0,35	0,5	0,175
Drainage board	1	0,15	10	1,5
Ground	1	0,35	15	5,25
				25,955

STAIRCASES ANALYSIS

Material used M20 concrete FE 415 steel

Height between two floors 3000mm

Height of each flight 1500mm

Rise 166.5mm

Tread 280mm

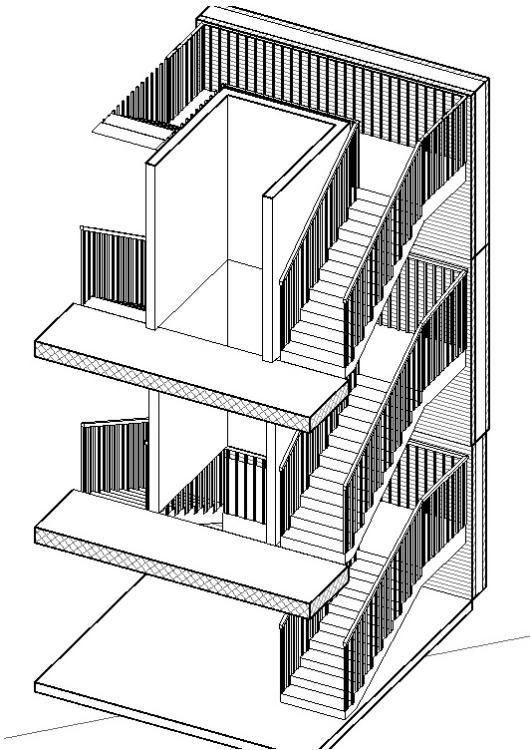
Assuming a rise of 166mm and tread of 280mm

Number of risers for in each flight 9

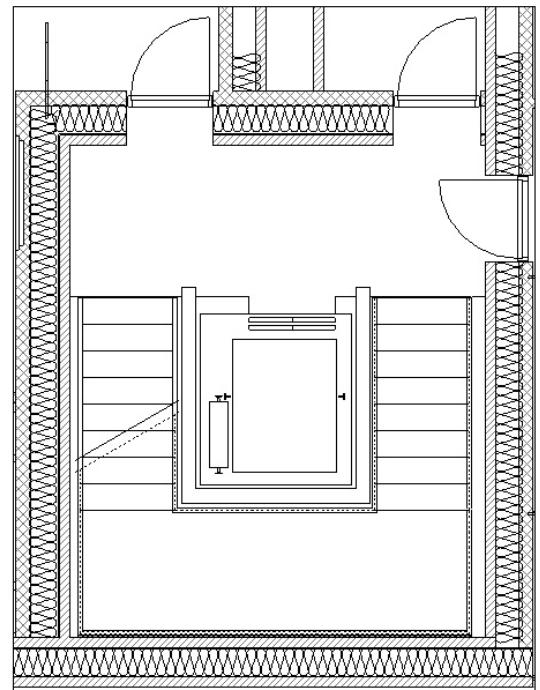
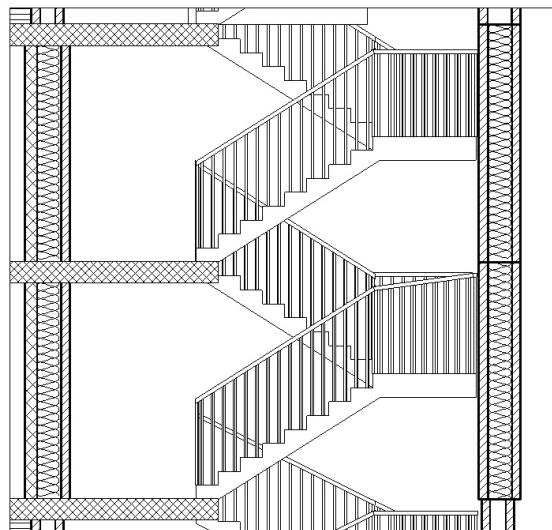
Number of treads 9

Length of each flight $280 \times 9 = 2520\text{mm}$

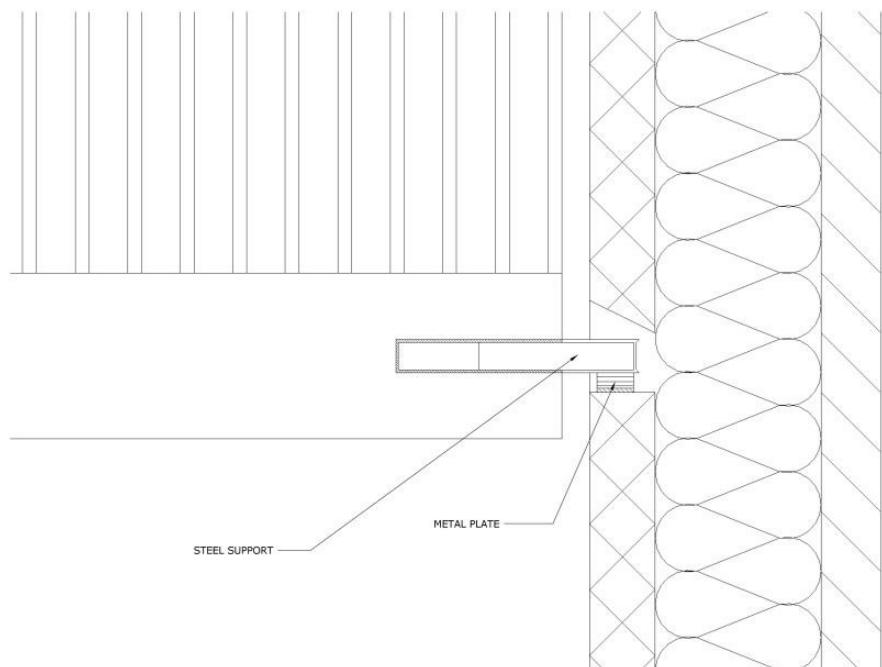
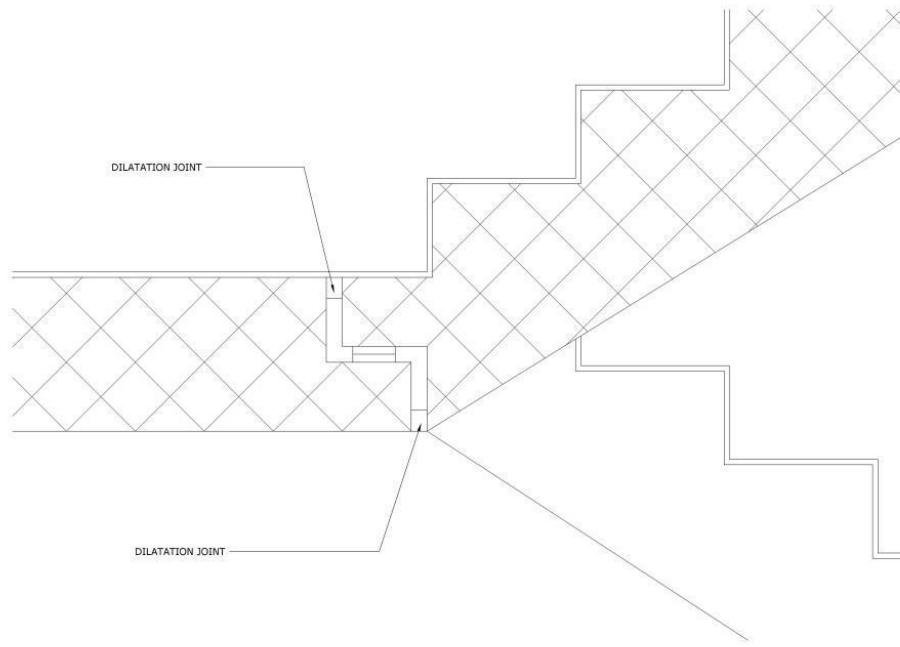
Available length for landing $1237 \times 4048 =$
 $= 5007\text{mm}^2$


Loads

Assume thickness of waist slab 240mm



Weight of each step $0.17 \times 0.28 \times 24 = 1.142 \text{ kN/m}^2$

Total number of treads 9



Total weight of steps in one floor $9 \times 1.142 =$
 $= 10.278 \text{ kN/m}^2$

SECTION AND PLAN

Details.

SOIL PARAMETERS

Type of soil.

- Material parameters for drained conditions.

The material parameters for cohesionless types of soil is angle of internal friction ϕ
Can be understood as the max. angle at which the material can be piled up.

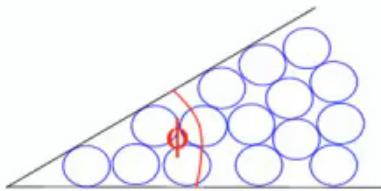


Fig. 8 Internal angle of friction

Angle of internal friction (ϕ)	
Rock	30°
Sand	30-40°
Gravel	35°
Silt	34°
Clay	20°
Loose sand	30-35°
Medium sand	40°
Dense sand	35-45°
Gravel with some sand	34-48°
Silt	26-35°

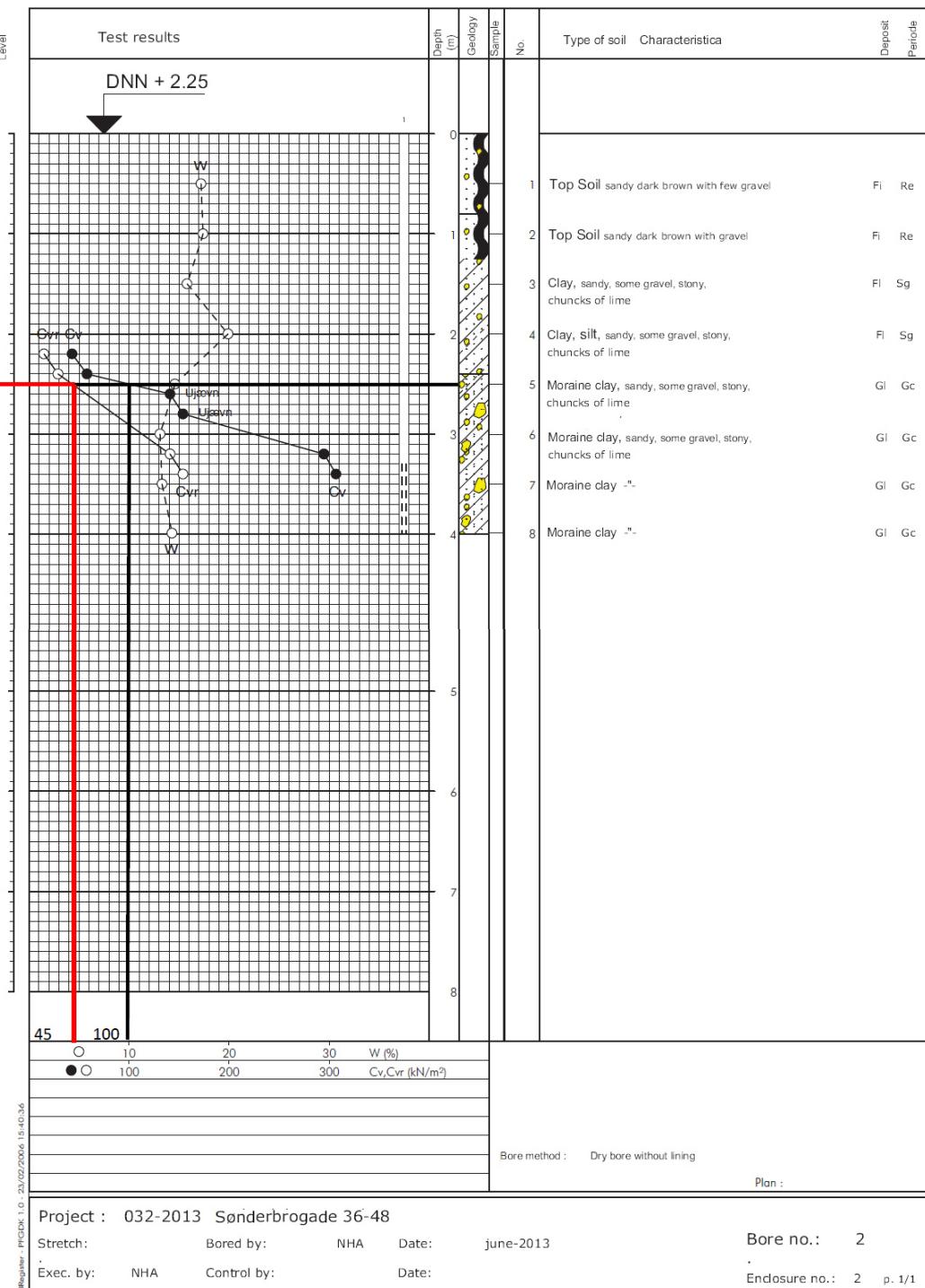
Fig. 9 Typical values of ϕ

The tributary area we are going to calculate the foundation has the conditions represented in Bore n.2 from level 38.25 to 37.45, and requires the following strength parameters:

Clay: $C_v = 35 \text{ kN/m}^2$

$\gamma/\gamma' = 18/8 \text{ kN/m}^3$

Situating the building in the site plan and going to its bore profile, we take 2500mm of basement walls and doing an intersection with C_v and C_v' lines and going down we get the numbers we will need later for the foundation calculation.


We get $C_v = 45$ and $C_v' = 100$. If we divide C_v' by C_v we should get a number less than 5. $100/45 = 2.2 < 5$.

If we look at the table we can check what type of soil we have.

With that height we will build the foundation in Moraine clay. Clay is not that good but we have also sand so we have to check both conditions.

The water table is under level foundation so we don't have problem with ground water. It also means that when we are excavating the ground water will not come into the excavation pit and we don't need to pump the water outside.

Bore profile

Group 6 CASH 42

We are going to calculate two conditions: Undrained and drained conditions.

Undrained conditions has the formula

$$R/A' = (\pi+2) c_u b_c s_c i_c + q$$

Where

R is the load on the top of the soil.

A' is the effective area which is compressed by foundations.

c_u is Cv.

The others are shape factors.

q is the overburden.

Drained conditions has the formula

$$R/A' = c' N_c b_c s_c i_c + q' N_q b_q s_q i_q + 0,5 y' N_y b_y s_y i_y$$

Where

C is clay part that will disappear because there is no clay in drained conditions.

q is the overburden, basically an extra soil construction permanent part that is there to reduce the uplift of the soil next to the foundation.

Y is the friction part.

The others factors are calculated by empiric formula and their result will be 1.

- $q_1 = 2,5 \text{ m} \times 18 \text{ kN/m}^3 = 45 \text{ kN/m}^2$
- $q_2 =$

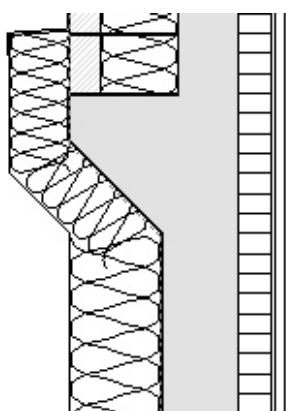
Load on facade, Imposed load, wind dominant										
Building component	Characteristic load			CC2	n	Ψ_n	γ	a_n	Reduction factor for openings	Notes
	g [kN/m ²]	q [kN/m ²]	Tributary area span [m]	Load pr. Consequence class factor [kN/m]	Category	Storeys	Combination factor	Safety factor	Storey reduction factor	
Dead load										
Roof	4,50	4,5	20,3	1,0		1	1,0		1,00	20,25
Top floor	5,00	2,6	13,0	1,0		1	1,0		0,85	11,05 85% due to openings
Second floor	5,00	2,6	13,0	1,0		1	1,0		0,85	11,05 85% due to openings
First floor	5,00	2,6	13,0	1,0		1	1,0		0,85	11,05 85% due to openings
groundfloor	5,00	2,6	13,0	1,0		1	1,0		0,85	11,05 85% due to openings
Basement	5,00	2,6	13,0	1,0		1	1,0		0,85	11,05 85% due to openings
Wall first floor	4,20	3,0	12,6	1,0		1	1,0		0,85	10,71 85% due to openings
Wall second floor	6,10	3,0	18,3	1,0		1	1,0		0,85	15,56 85% due to openings
Wall groundfloor	8,05	3,0	24,2	1,0		1	1,0		1,00	24,15 85% due to openings
Wall basement	8,05	3,0	24,2	1,0		1	1,0		1,00	24,15
Foundation	5,63	1,0	5,6	1,0		1	1,0		1,00	5,63 Estimate
										$\Sigma G_d = 155,70$ Total load pr. meter [kN/m]
Imposed loads										
Floors	1,50	0,6	0,9	1,0	A	2	0,5	1,5	0,75	0,68 non dominant imposed load, $\psi < a_n$
Staircase	3,00	1,5	4,5	1,0	A	2	0,5	1,5	0,75	3,38 non dominant imposed load, $\psi < a_n$
Balconies	2,50	1,5	3,8	1,0	A	2	0,5	1,5	0,75	2,81 non dominant imposed load, $\psi < a_n$
Lofts	1,00	2,5	2,5	1,0	A	2	0,5	1,5	0,75	1,88 non dominant imposed load, $\psi < a_n$
Office first floor	2,50	2,5	6,3	1,0	B	1	0,6	1,5	1,00	5,63 non dominant imposed load, $\psi < a_n$
										$\Sigma Q_d = 14,36$
Climatic loads										
Snow	0,72	16,1	11,6	1,0		0,3	1,5			5,21
										$\Sigma S_d = 5,21$ Total load pr. meter [kN/m]
										$\Sigma G_d + \Sigma Q_d + \Sigma S_d = 175,27$ Total load pr. meter [kN/m]


So finally we get:

$$A' = \frac{175,27 \text{ kN}}{5,14 \cdot 25 \cdot 5,25} = 0,25 \text{ m} = 250 \text{ mm}$$

FOUNDATION CALCULATION

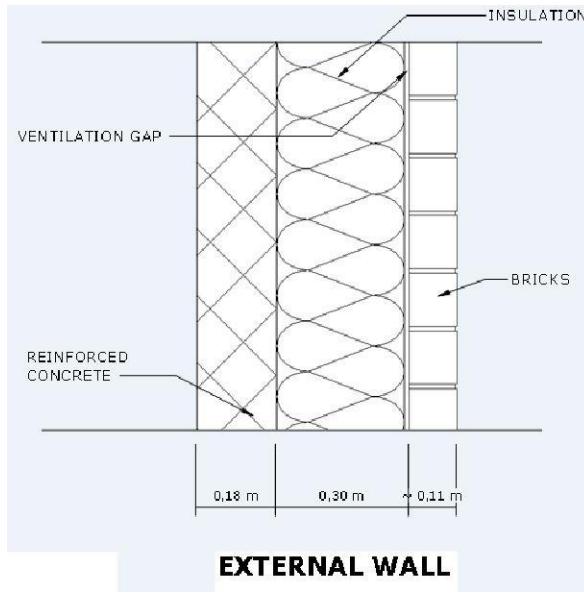
STRUCTURE


FLOOR PARTITION

- Tiles: $0.3 \text{ kN}/\text{m}^2$
- Mortar: $1.33 \text{ kN}/\text{m}^2$
- Insulation: $0.044 \text{ kN}/\text{m}^2$
- Concrete reinforced slabs: $0.6886 \text{ kN}/\text{m}^2$
- Insulation: $0.002 \text{ kN}/\text{m}^2$
- Gypsum concrete: $0.018 \text{ kN}/\text{m}^2$
- Cork: $0.023 \text{ kN}/\text{m}^2$

 TOTAL: $2.4056 \text{ kN}/\text{m}^2$

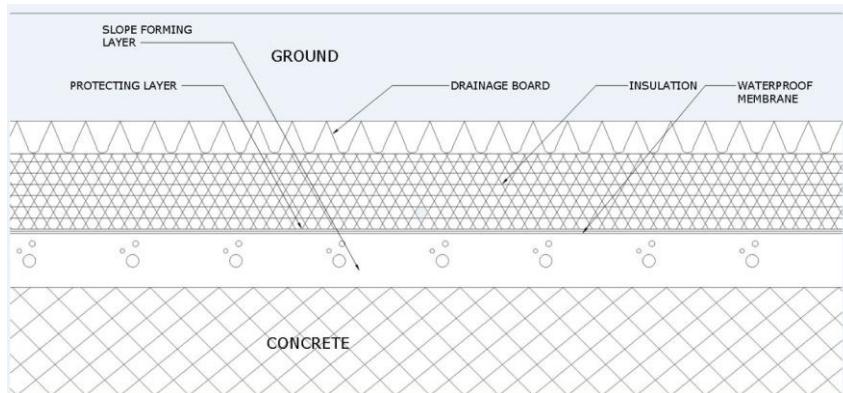
BASEMENT WALL



- Plaster: $0.96 \text{ kN}/\text{m}^2$
- Polystyrene: $0.124 \text{ kN}/\text{m}^2$
- Concrete: $6 \text{ kN}/\text{m}^2$

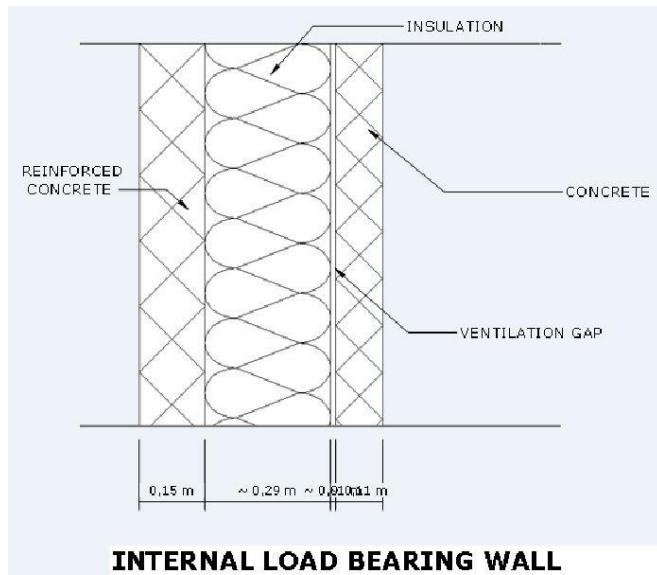
 TOTAL: $7.08 \text{ kN}/\text{m}^2$

EXTERNAL WALL


Group 6 CASH 42

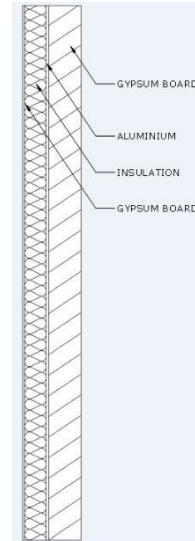
- Brick: 2.26 kN/m^2
- Insulation: 0.1152 kN/m^2
- Reinforced concrete: 4.32 kN/m^2

TOTAL: 6.7032 kN/m^2


GREEN ROOF

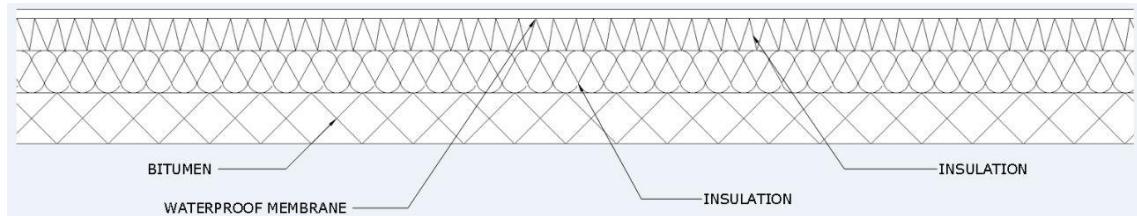
- Concrete: 12 kN/m^2
- Slope forming layer: 6.75 kN/m^2
- Water proof membrane: 0.16 kN/m^2
- Protecting layer: 0.12 kN/m^2
- Insulation: 0.175 kN/m^2
- Drainage board: 1.5 kN/m^2
- Ground: 5.25 kN/m^2

TOTAL: 25.955 kN/m^2


INTERNAL LOAD BEARING WALLS

- Concrete: 2.16 kN/m^2
 - Insulation: 0.12 kN/m^2
 - Reinforced concrete: 3.6 kN/m^2
- TOTAL: 5.88 kN/m^2**

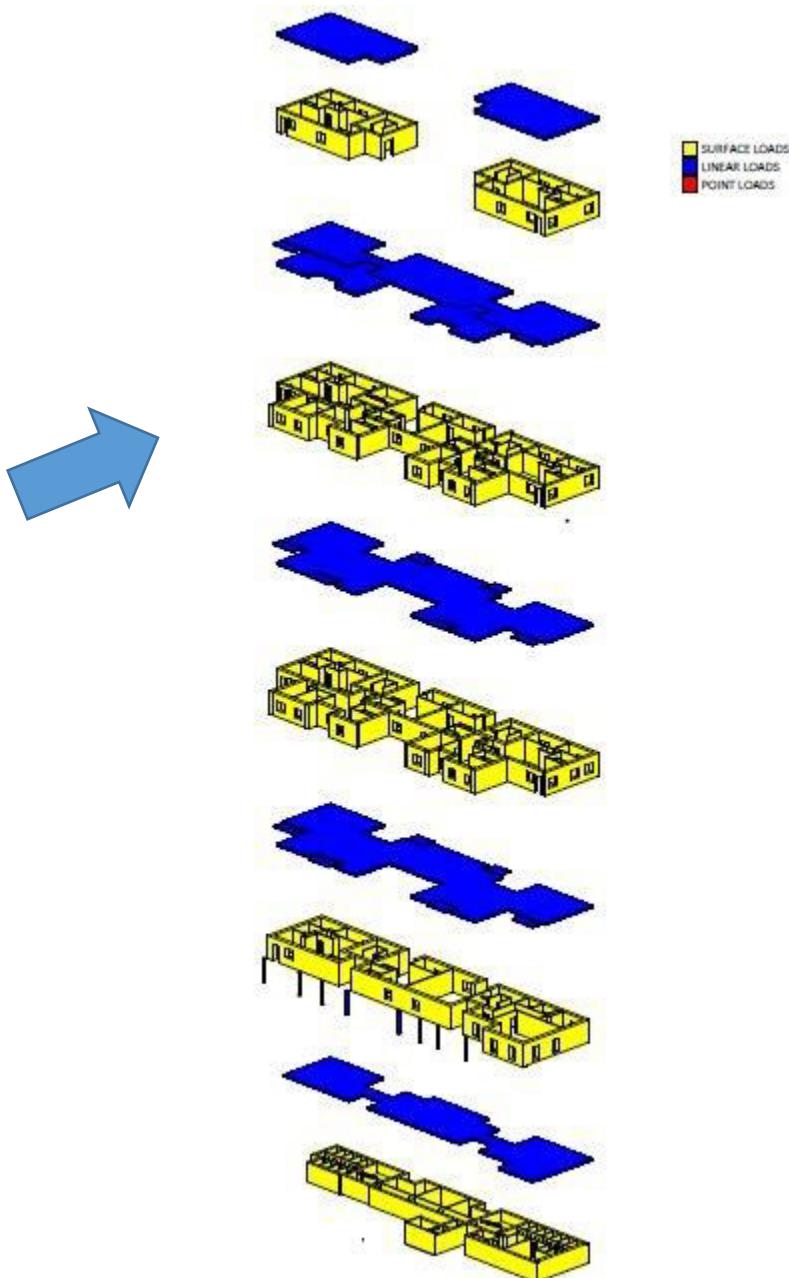
INTERNAL LOAD BEARING WALL


INTERNAL WALLS

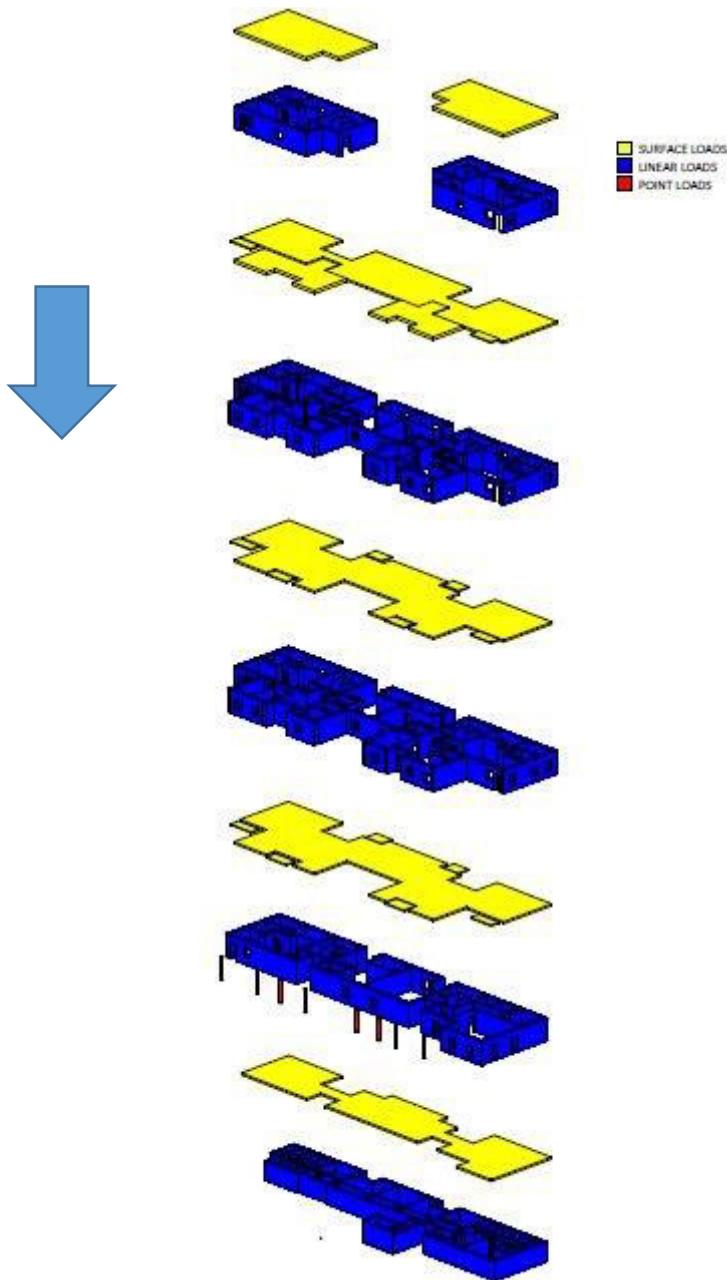
- Gypsum board: 0.18 kN/m^2
- Aluminium: 0.00135 kN/m^2
- Insulation: 0.038 kN/m^2
- Aluminium: 0.00135 kN/m^2
- Gypsum board: 0.18 kN/m^2

TOTAL: 0.41285 kN/m^2

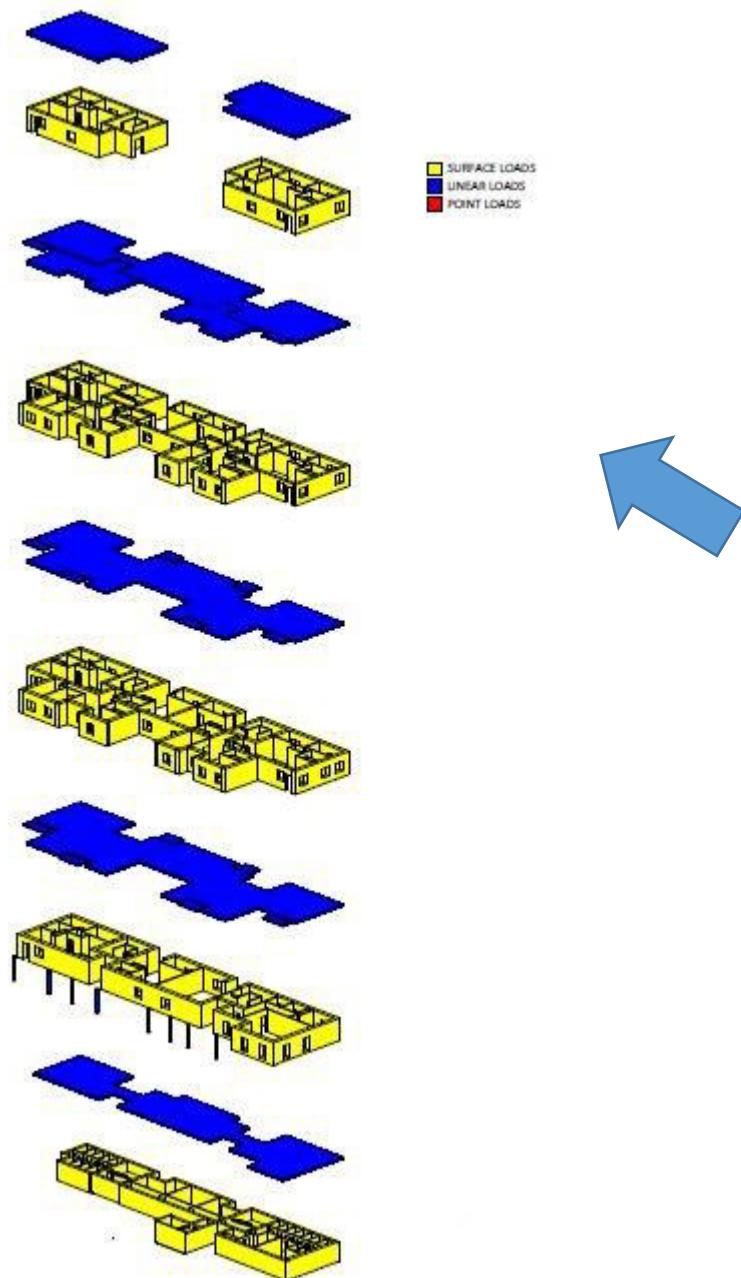
ROOF

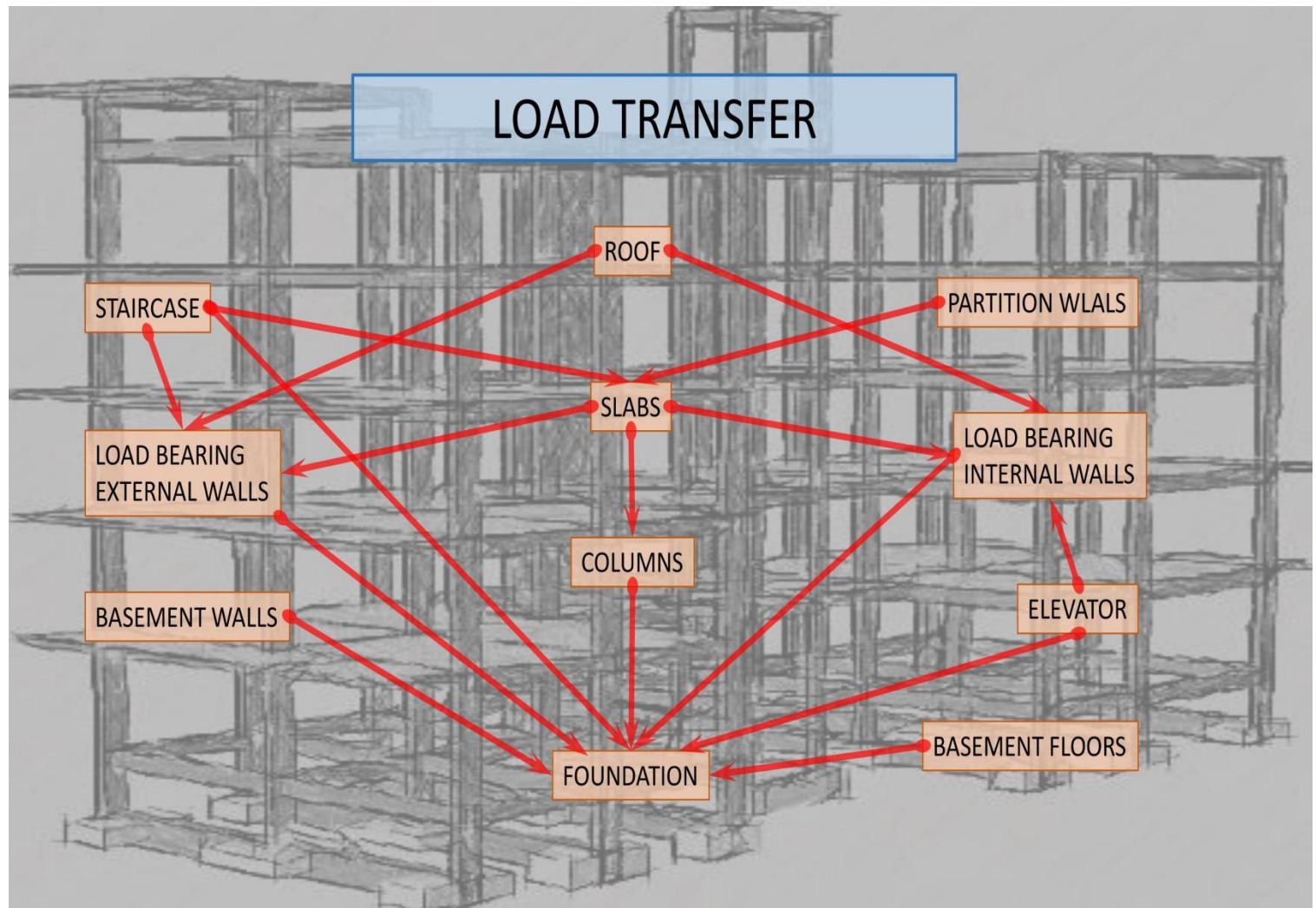


- Bitumen: 4.62 kN/m^2
- Polystyrene: 0.06 kN/m^2
- Polystyrene: 0.0448 kN/m^2

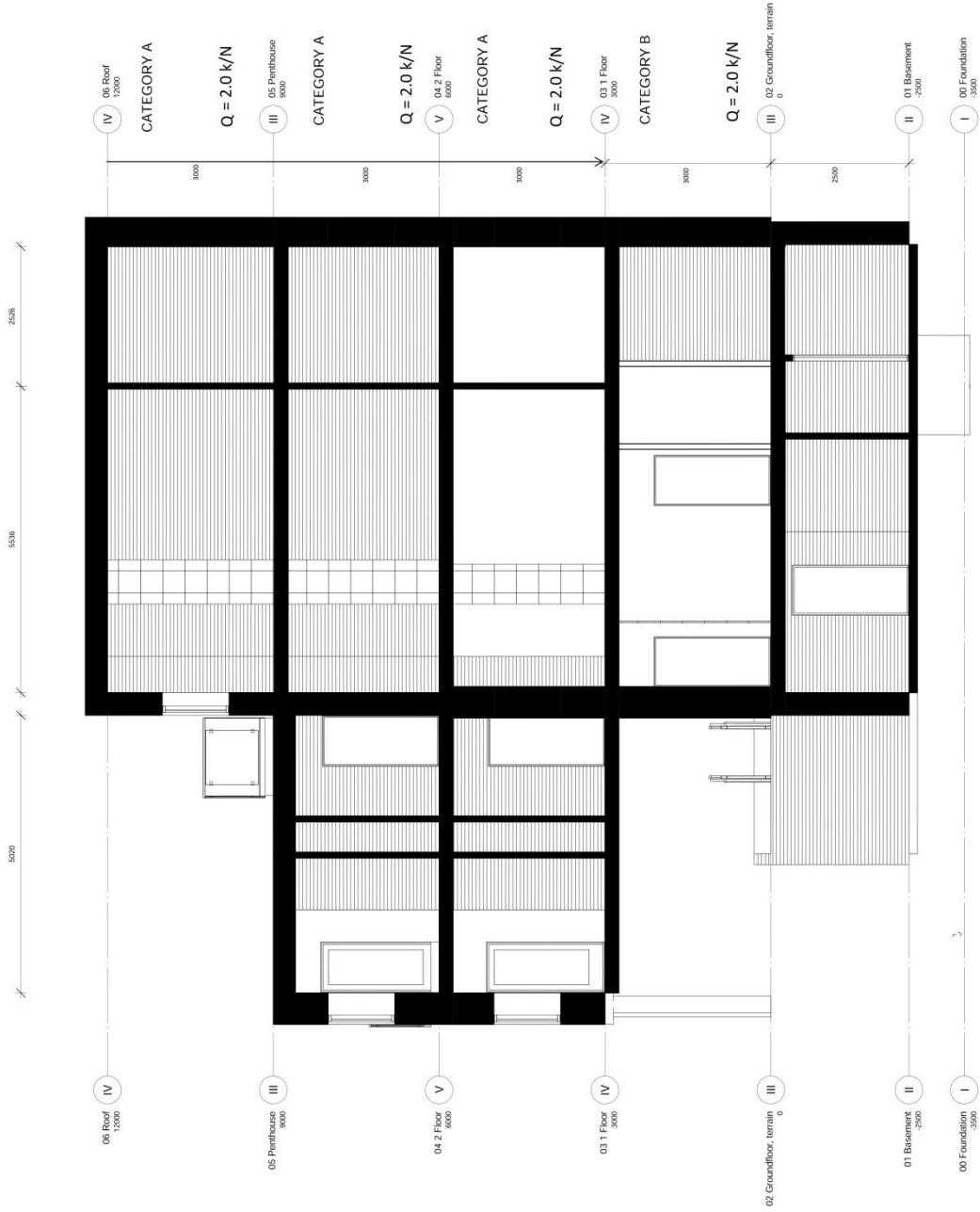

TOTAL: 4.68 kN/m^2

STRUCTURAL ANALYSIS


HORIZONTAL LOADS

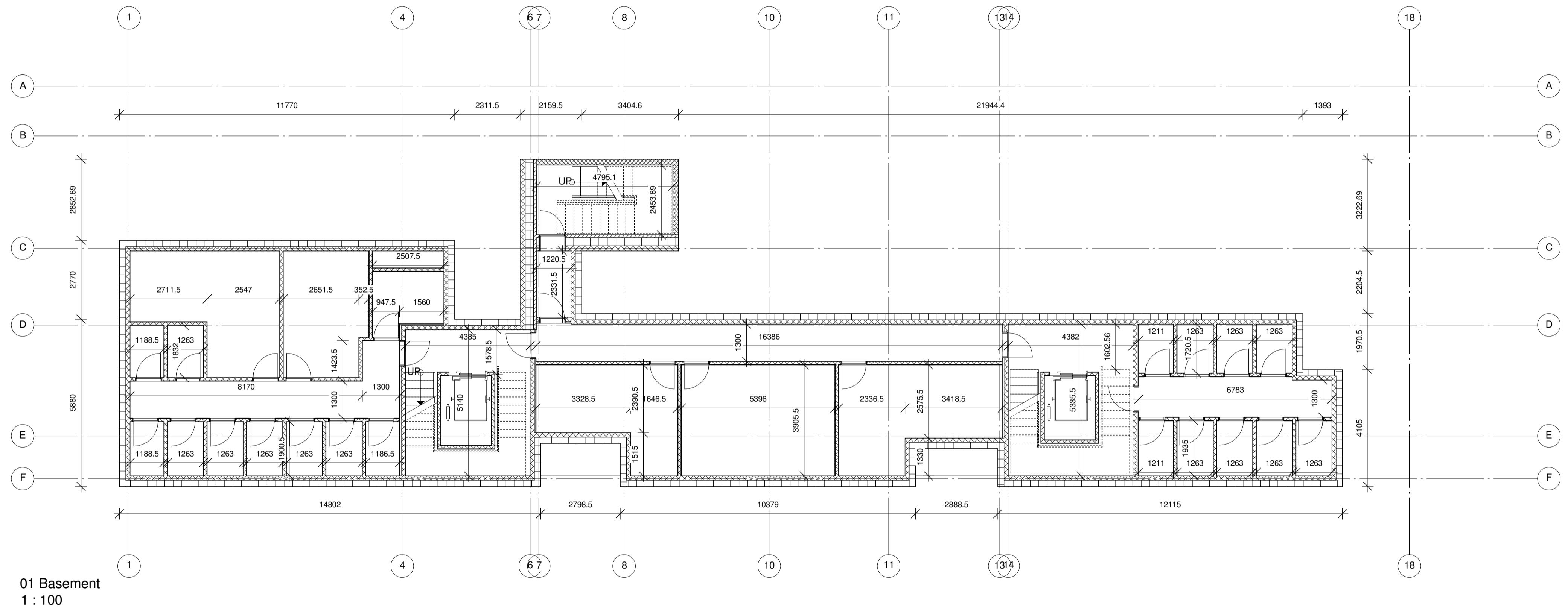

VERTICAL LOADS

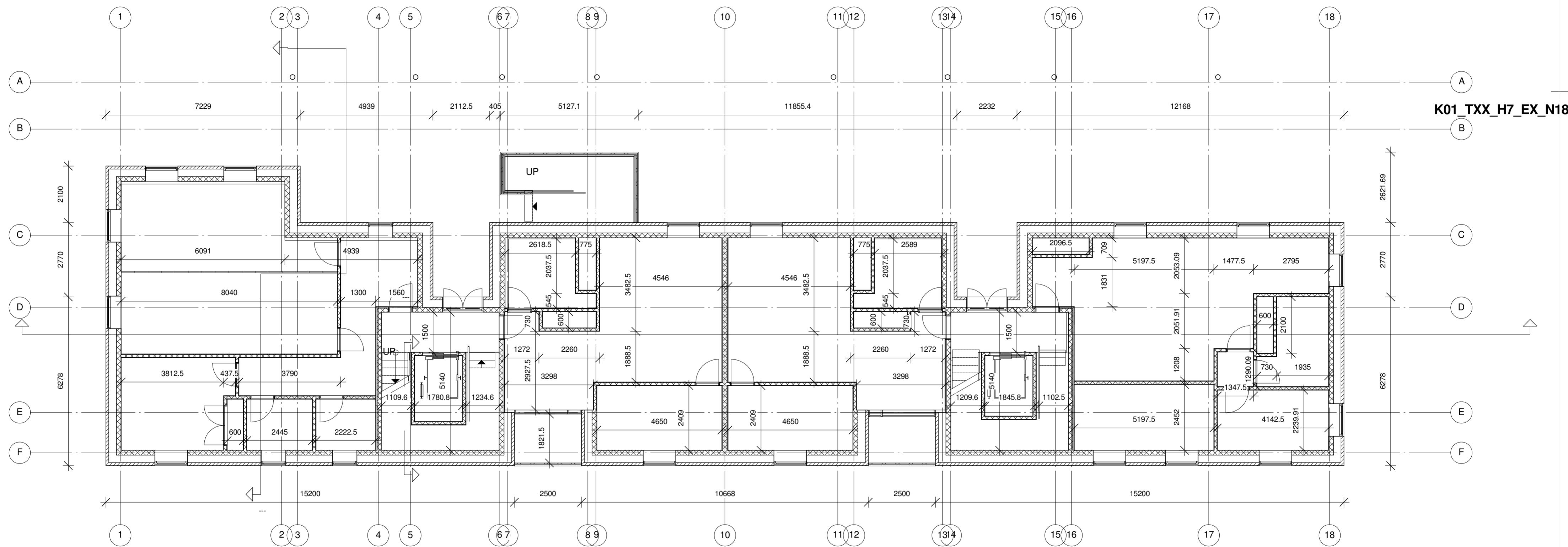
HORIZONTAL LOADS



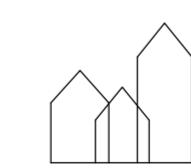
LOAD TRANSFER

DETAILS


Loads section.

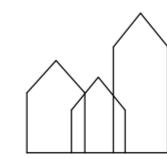
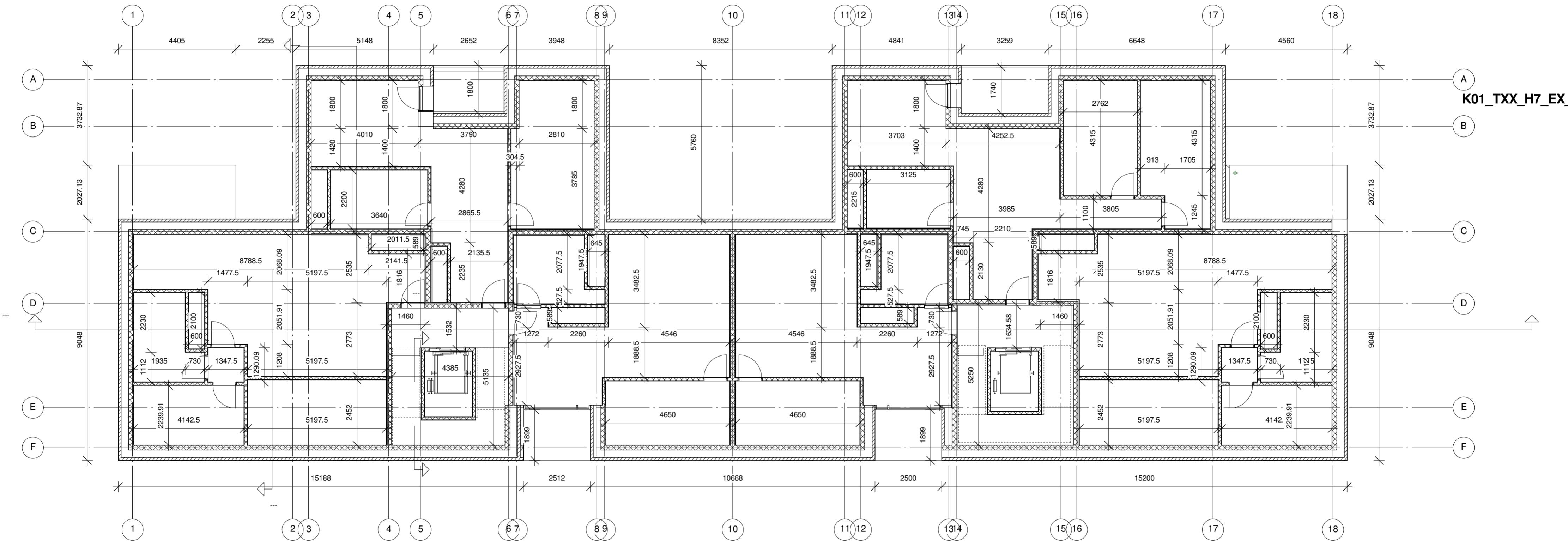


3. ANEXO 3 (DETAIL 1)


3.1. BUILDING DESIGN

3.1.1. *Floor Plans*

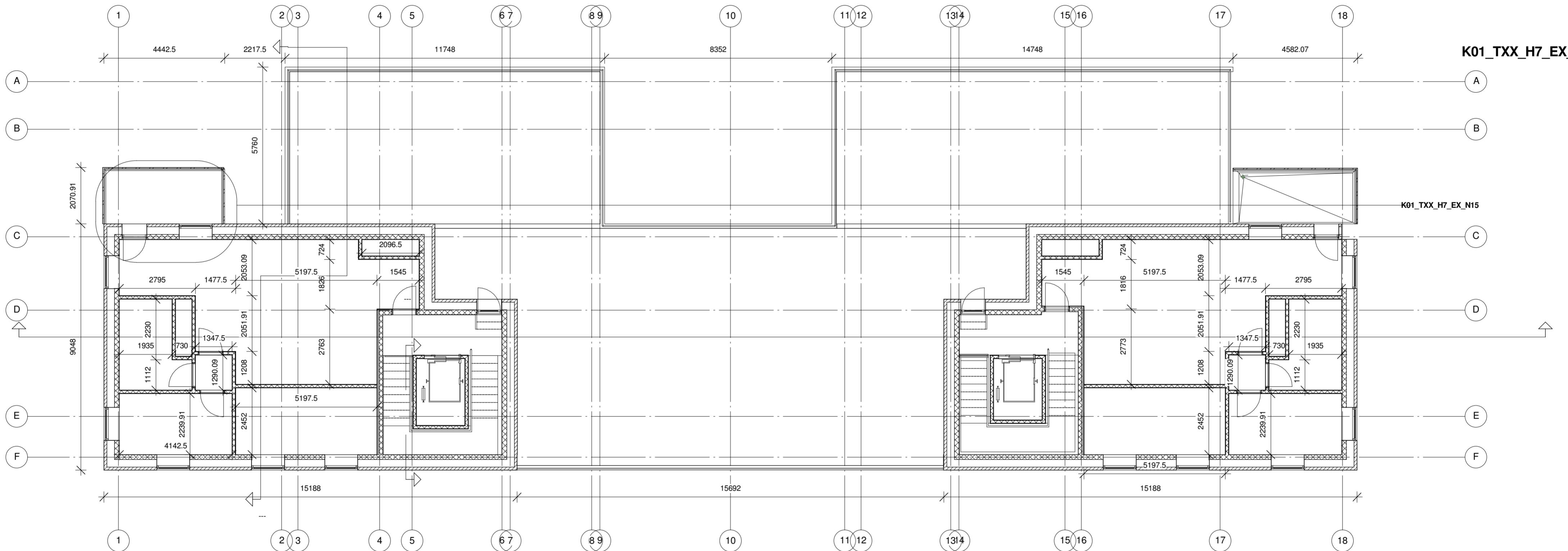
02 Groundfloor, terrain
1 : 100

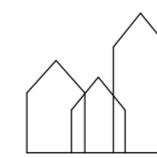
Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/22/15
SUBJECT: Ground floor plan	SCALE: 1 : 100
DRAWN BY: a LUNWELL	CLASS:


K01_TXX_H7_EX_N18

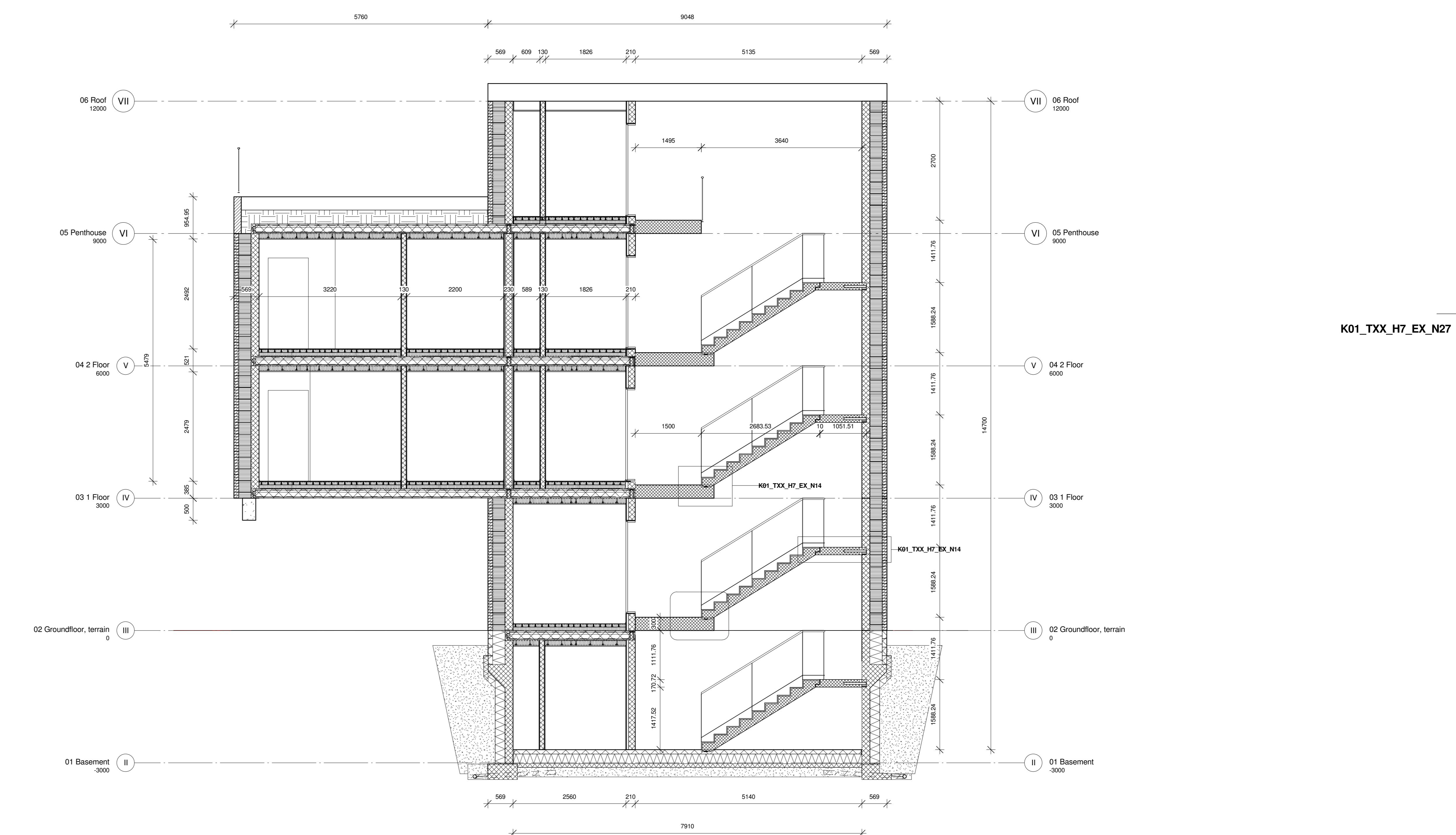
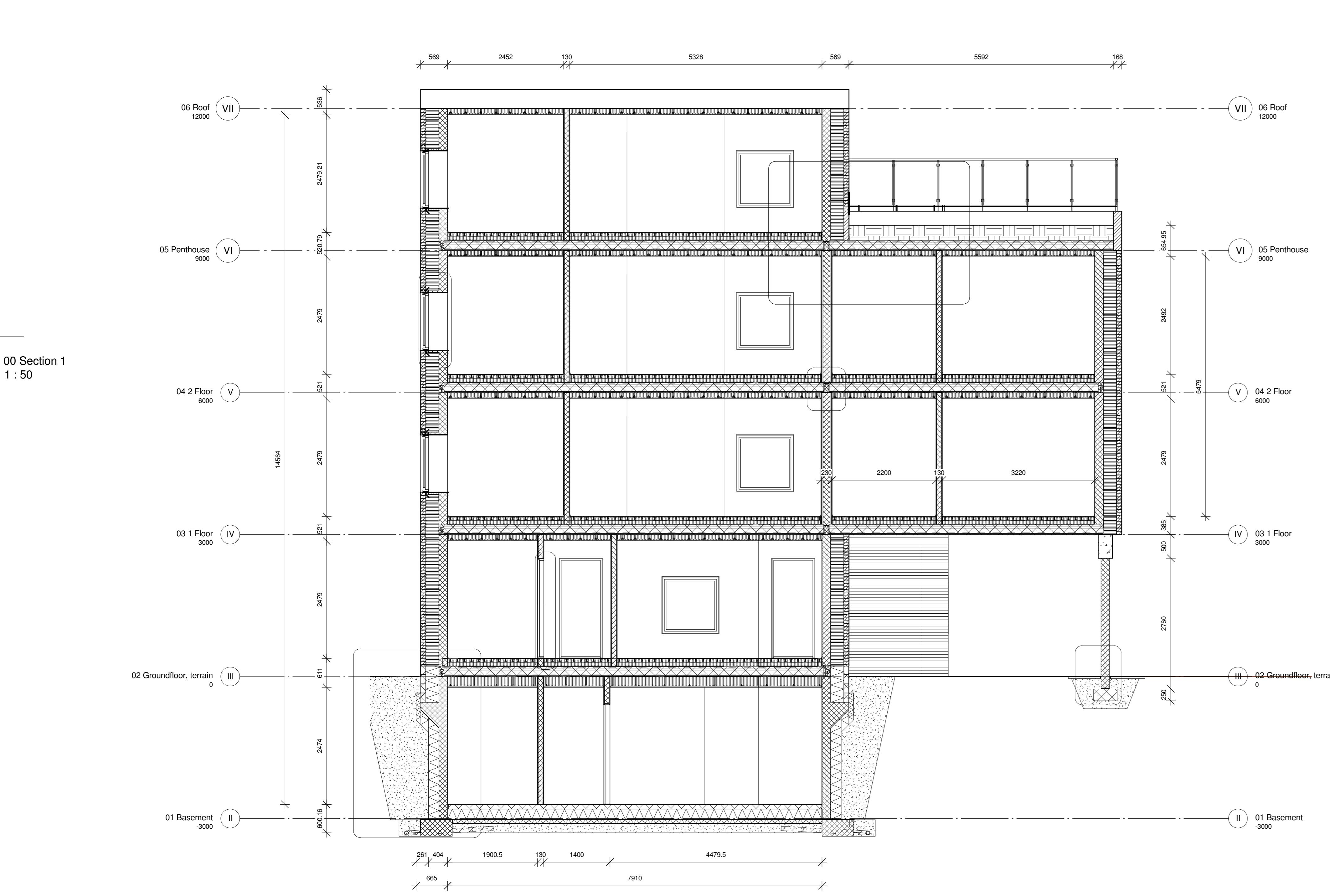
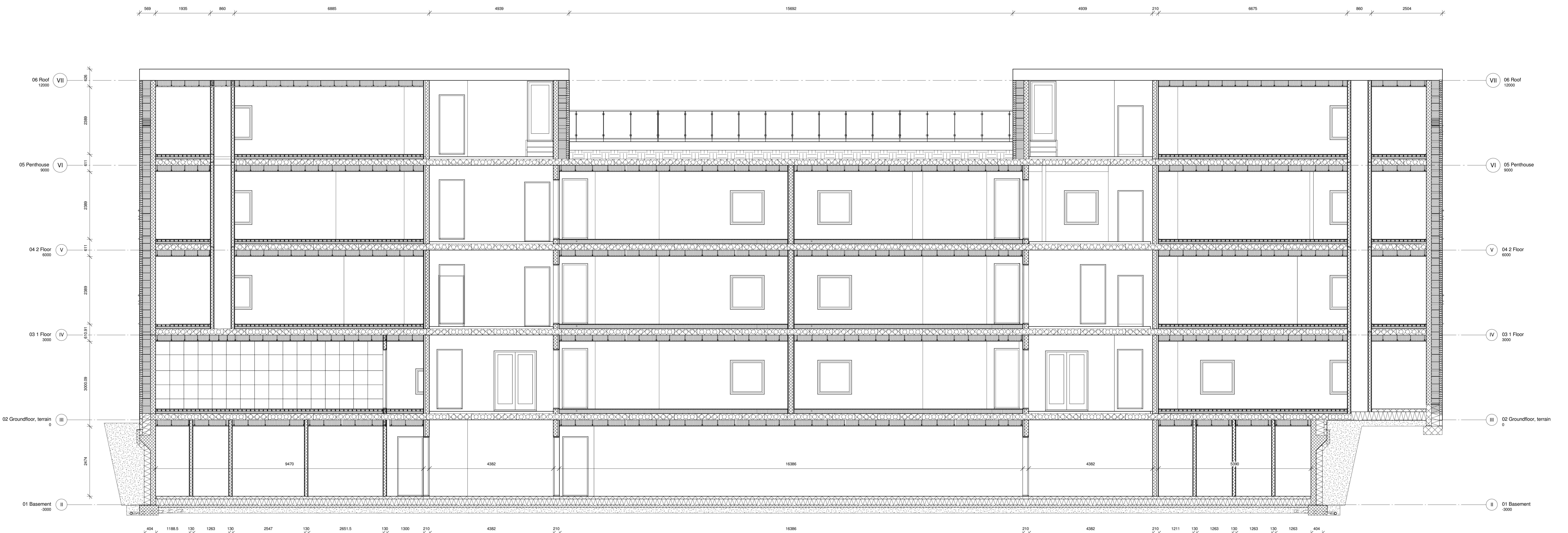
**Bring ideas to life
VIA University College**


SCHOOL OF TECHNOLOGY AND BUSINESS TYPE CITY

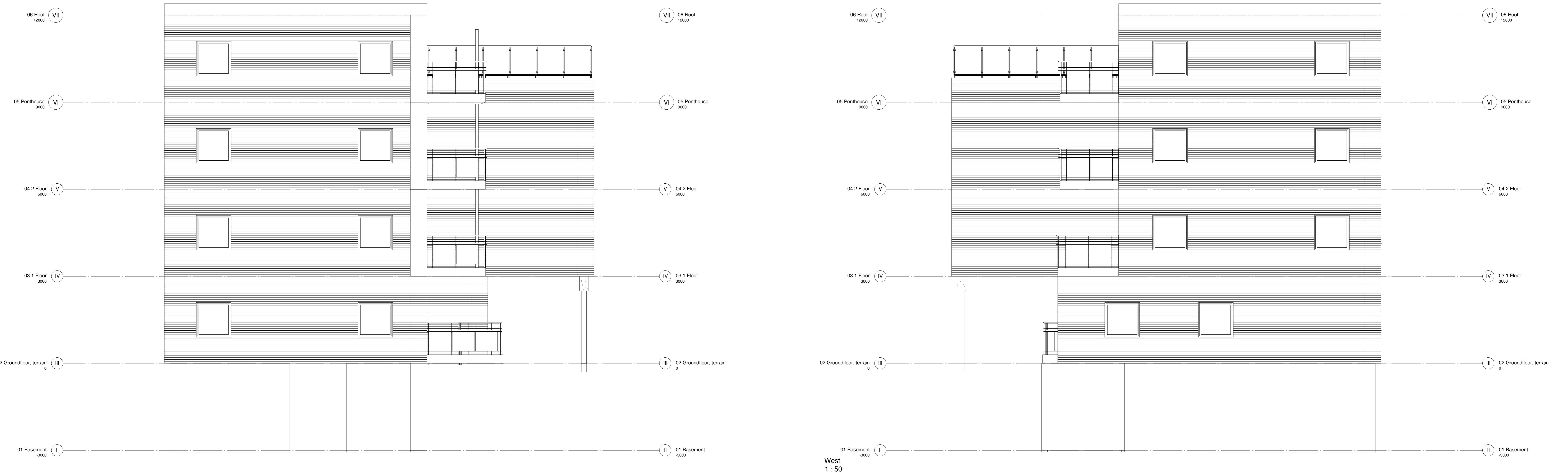
PROJECT: MULTI-STOREY HOUSING	DATE: 06/22/15	K01_TXX_H7_EX_N20
SUBJECT: First and second floor plan	SCALE: 1 : 100	
DRAWN BY: а. Цыбикова А.М.	CLASS: AH42S15	

05 Penthouse balcony

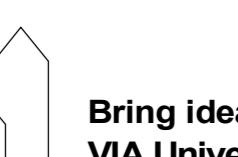
1 : 100

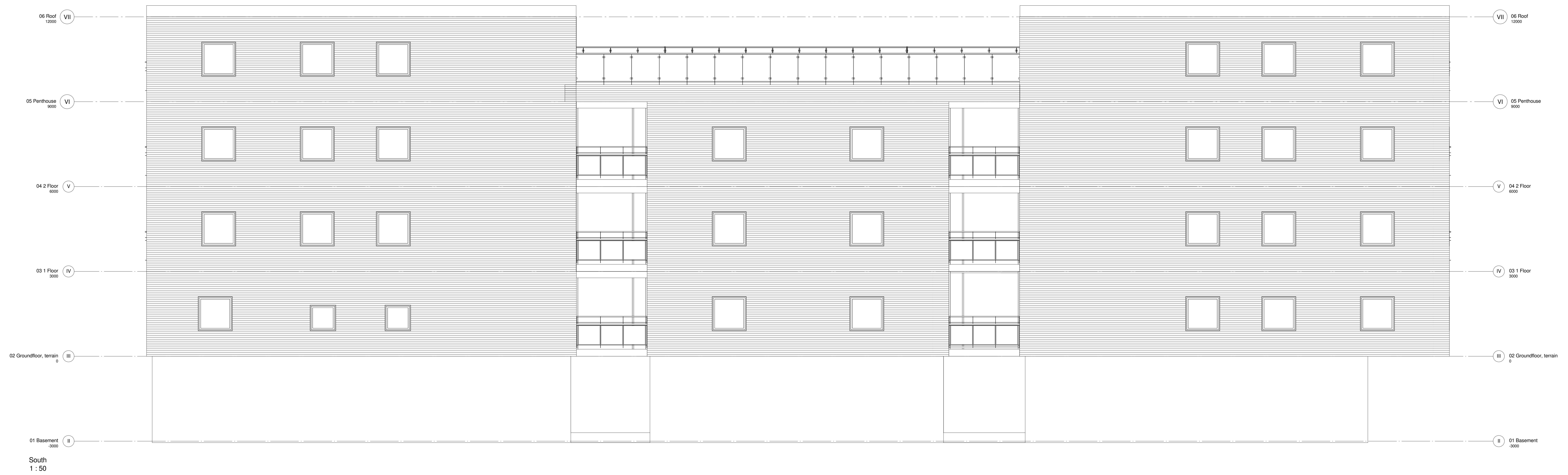
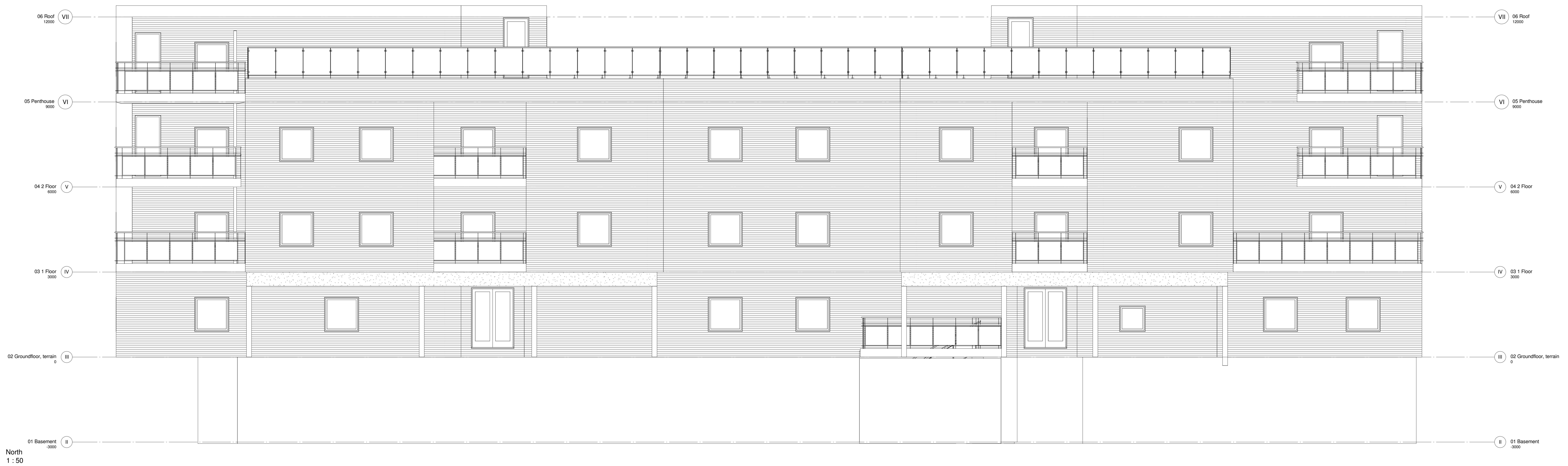
Bring ideas to life VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS TYPE CITY

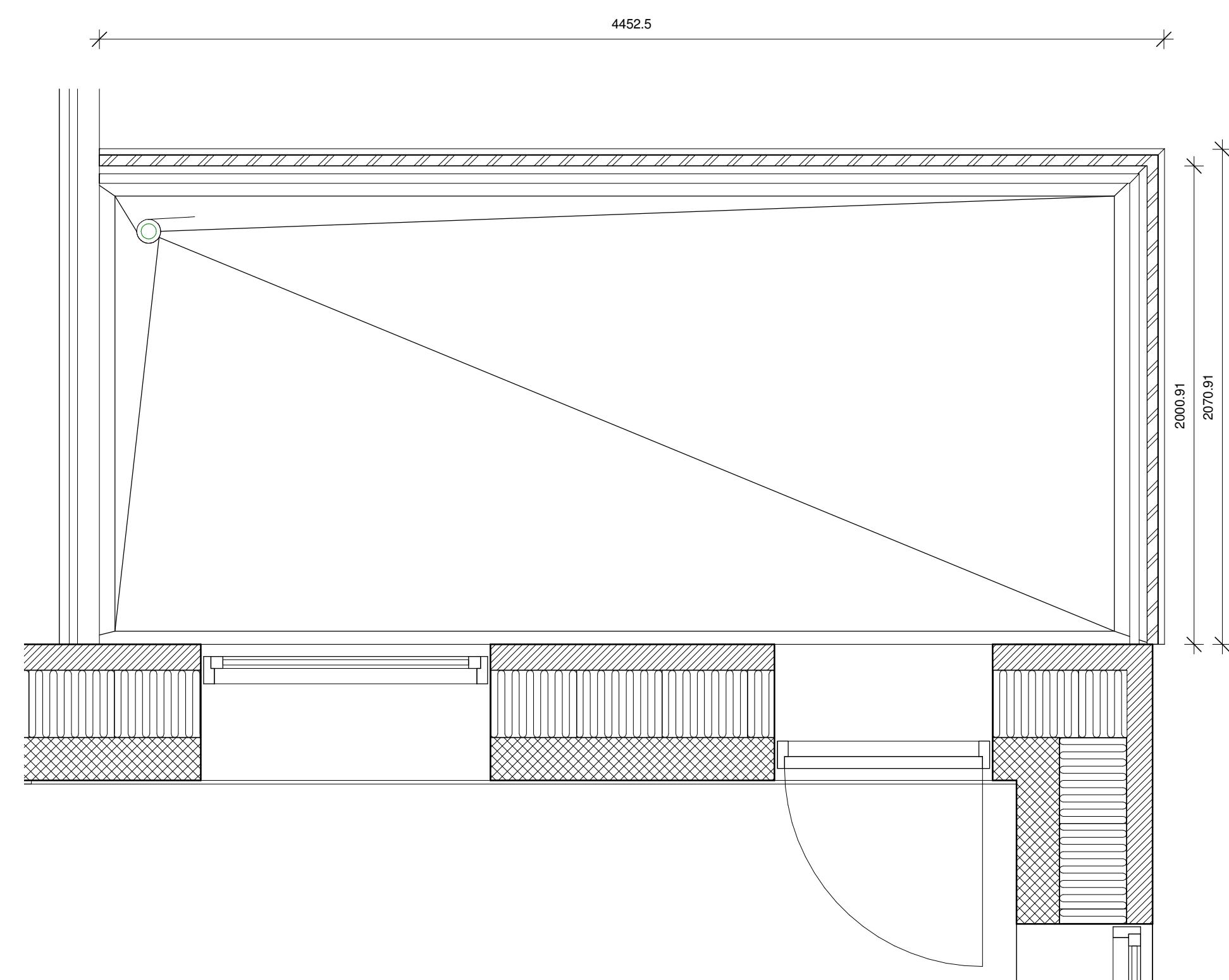
PROJECT: MULTI-STOREY HOUSING	DATE: 06/22/15	K01_TXX_H7_EX_N22
SUBJECT: Penthouse plan	SCALE: 1 : 100	
DRAWN BY: a ЧЛУСЧА ЧМП	CLASS: AH42S15	


3.1.2. *Sections*

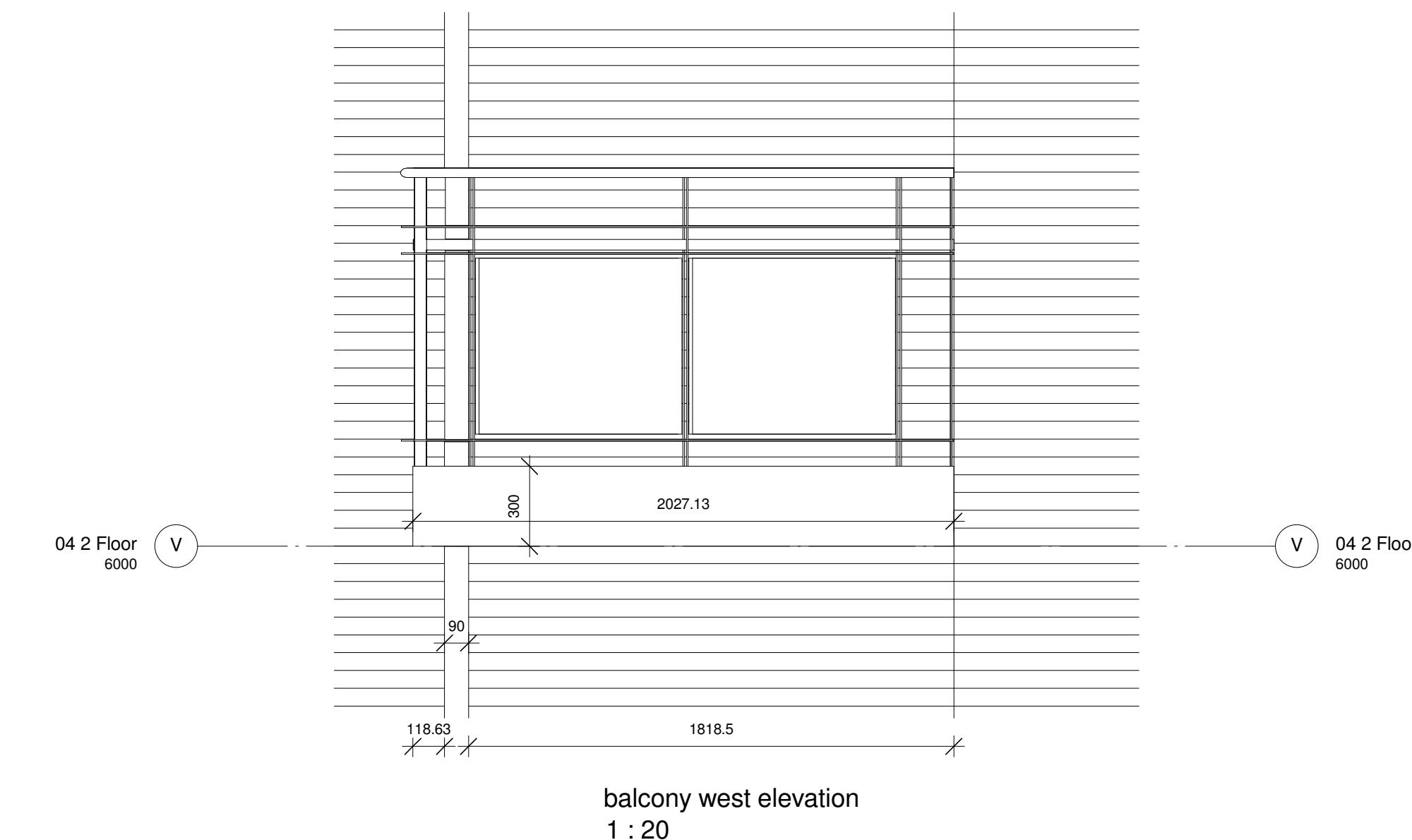
3.1.3. *Elevations*



East
1 : 50

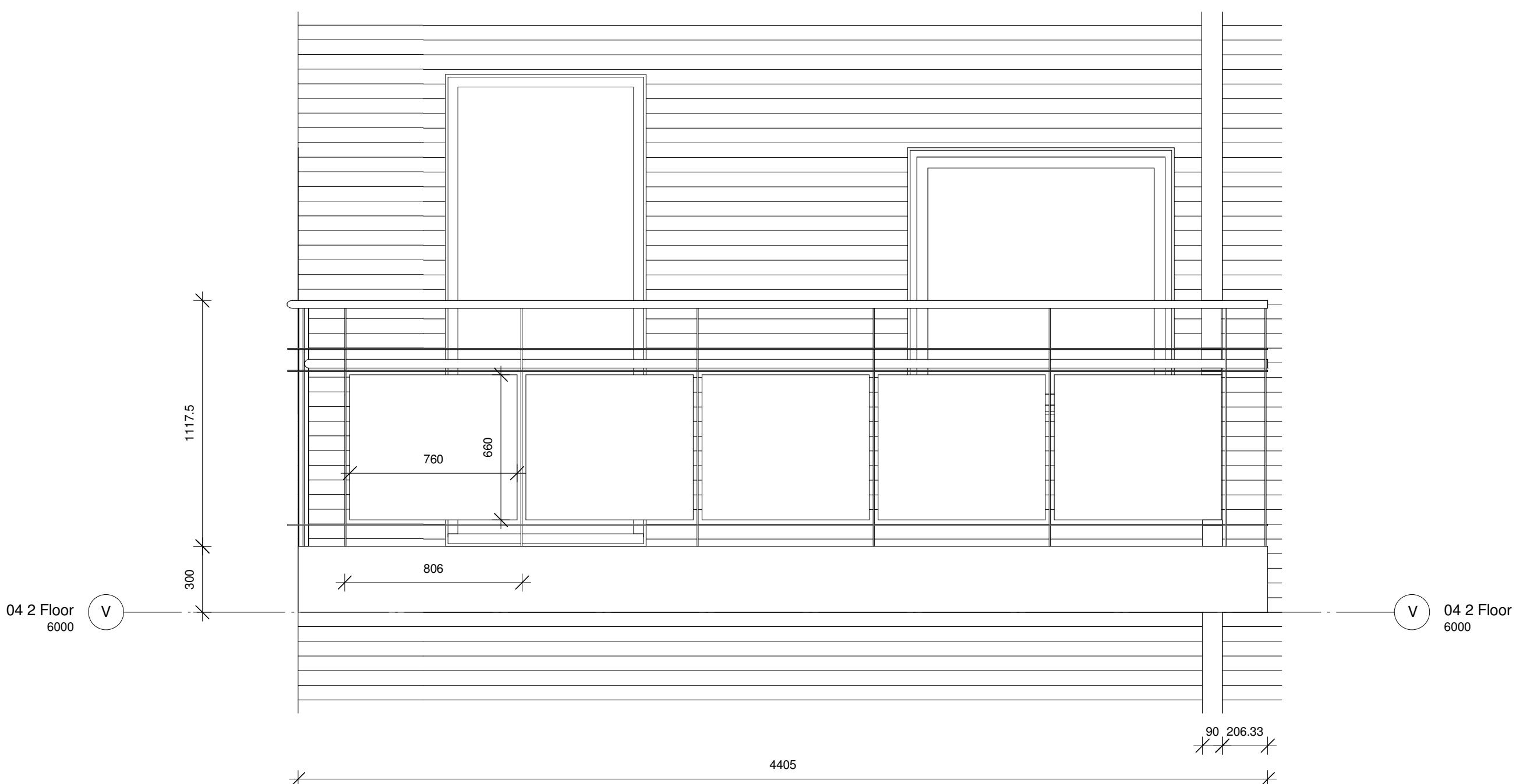
as to life iversity College

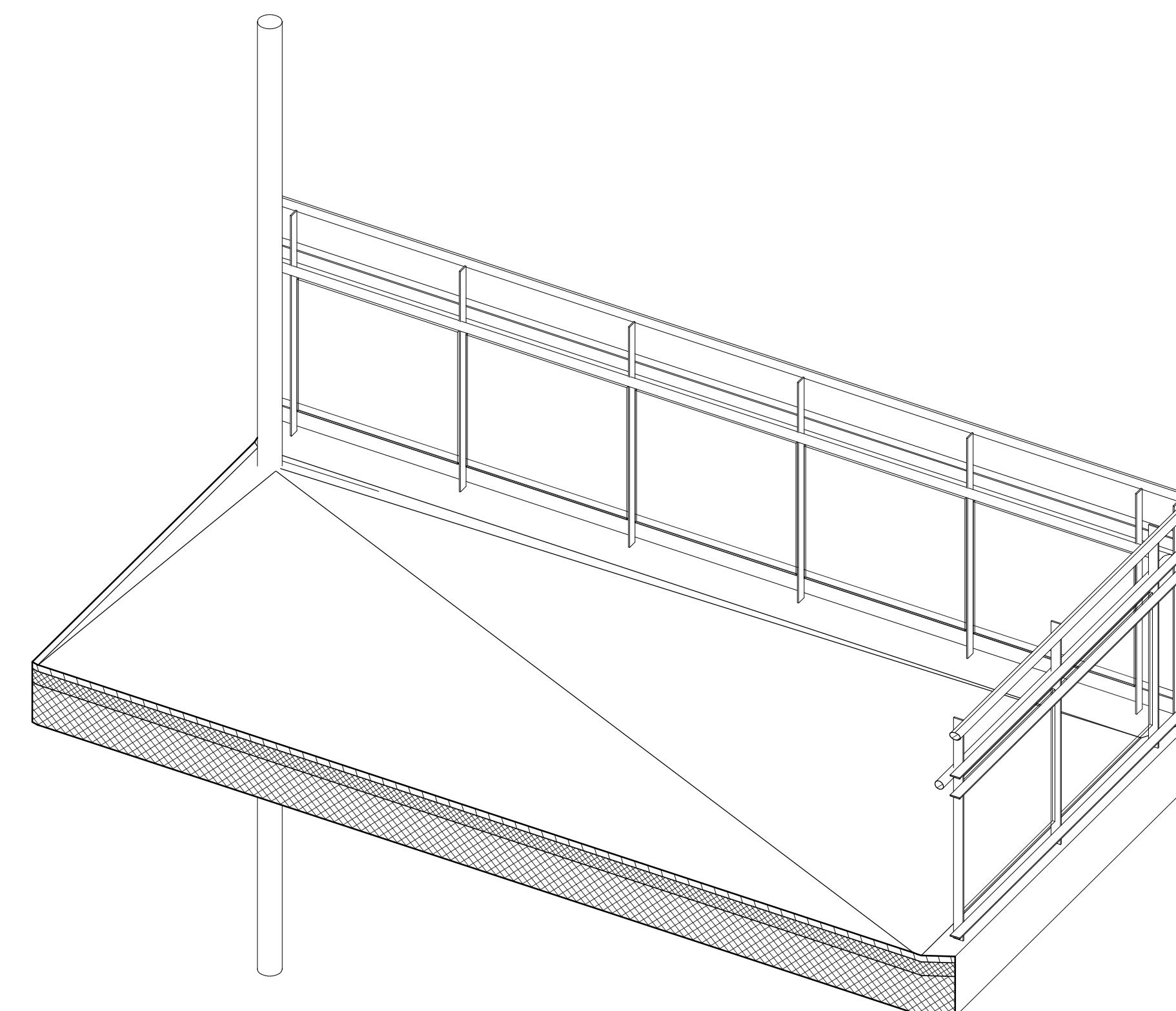

HOOL OF TECHNOLOGI AND BUSINESS TYPE CITY

DATE: 06/23/15	
SCALE: 1 : 50	K01_TXX_H7_EX_N30
CLASS: AH12S15	

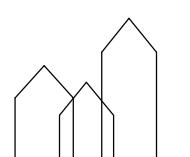


4. ANEXO 4 (DETAIL 2)

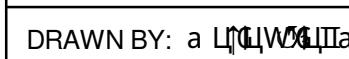

4.1. DESIGN SPECIALIZATION – BALCONIES


balcony plan
1 : 20

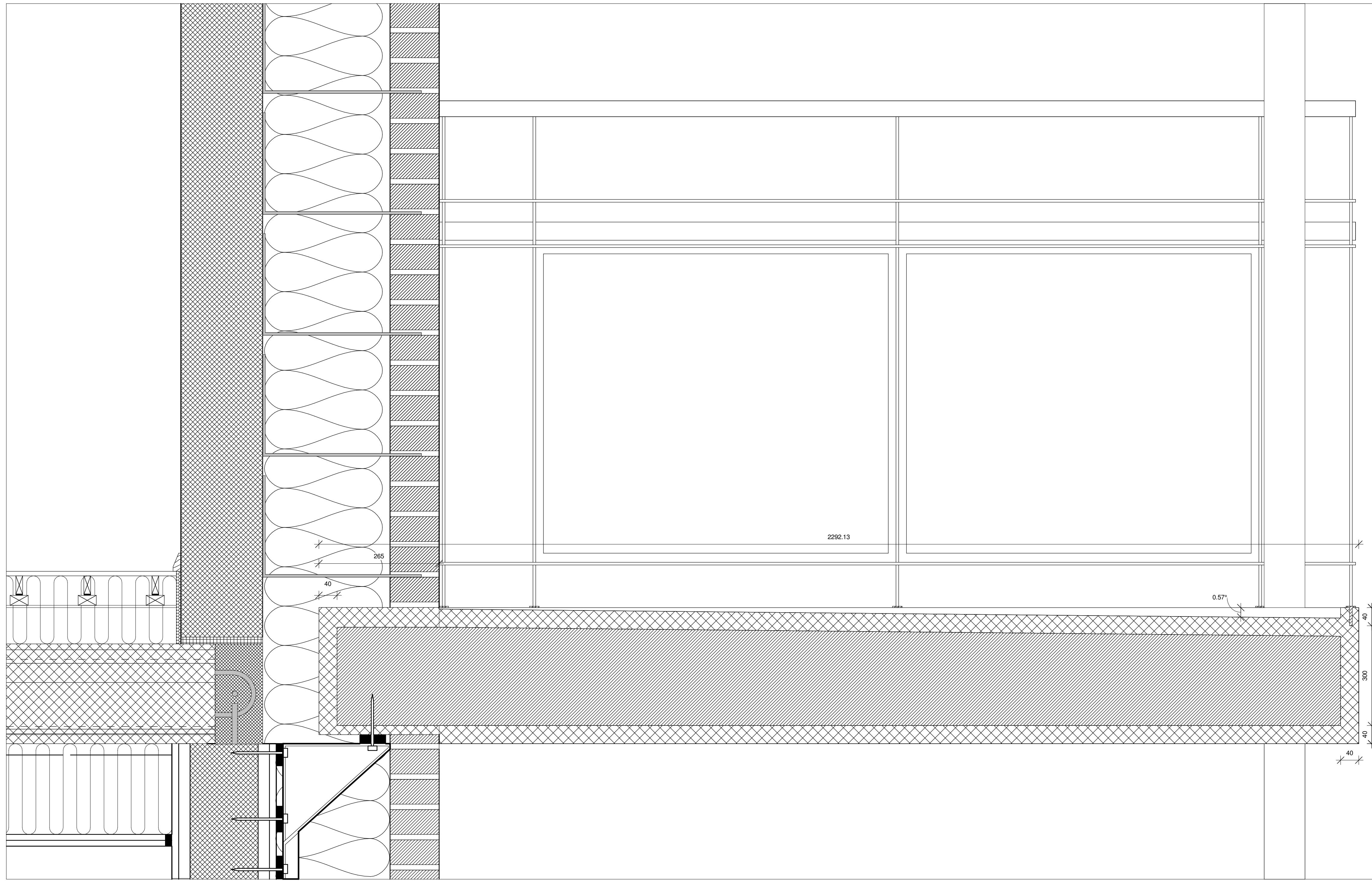
balcony west elevation
1 : 20



balcony north elevation
1 : 20


3D view BALCONY

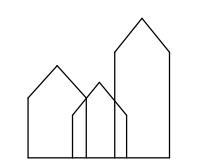
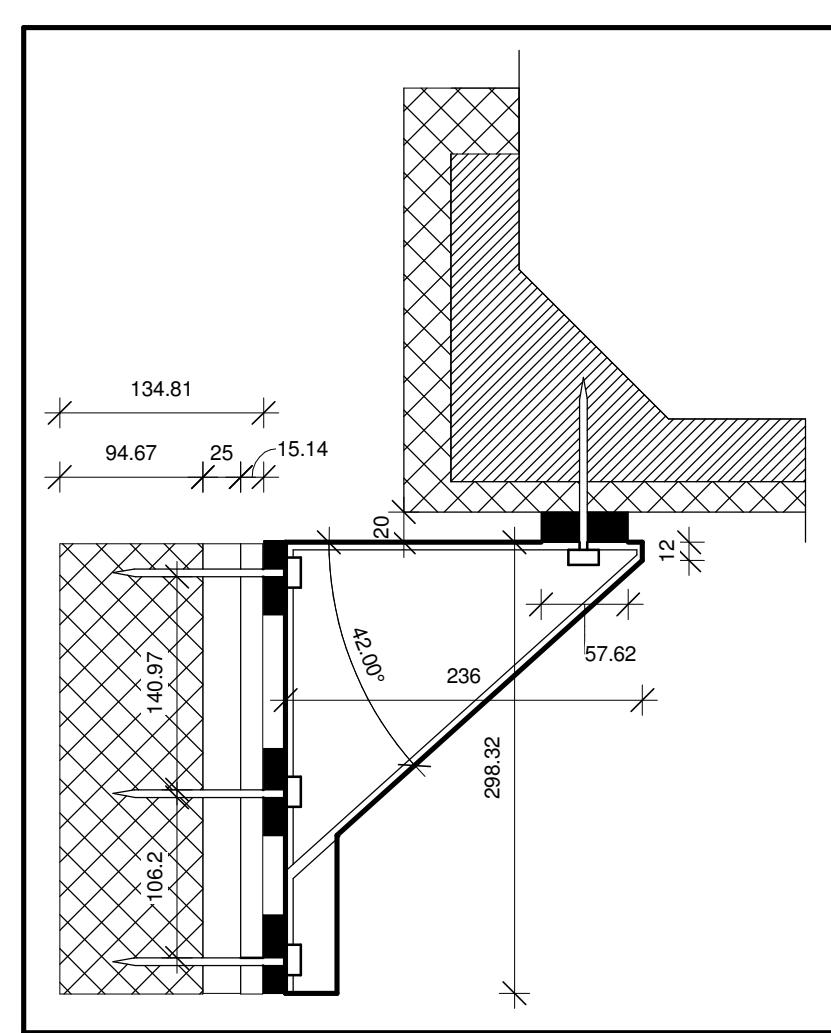
K01_TXX_H7_EX_N15



Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: MULTI-STOREY HOUSING	DATE: 06/20/15
SUBJECT: SPECIALIZATION - balcony	SCALE: 1 : 20
DRAWN BY: a	CLASS: AH42S15



K01_TXX_H7_EX_N15

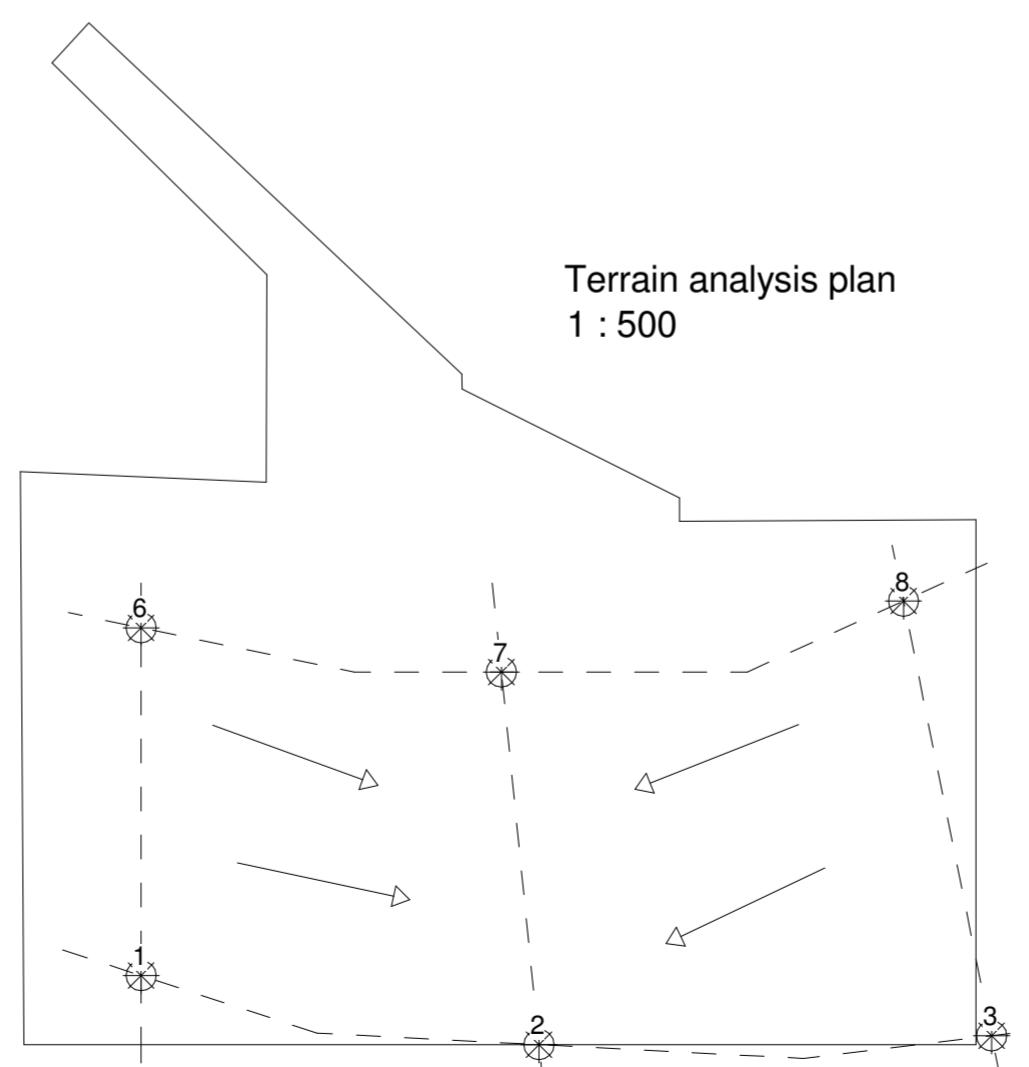
K01_TXX_H7_EX_N16

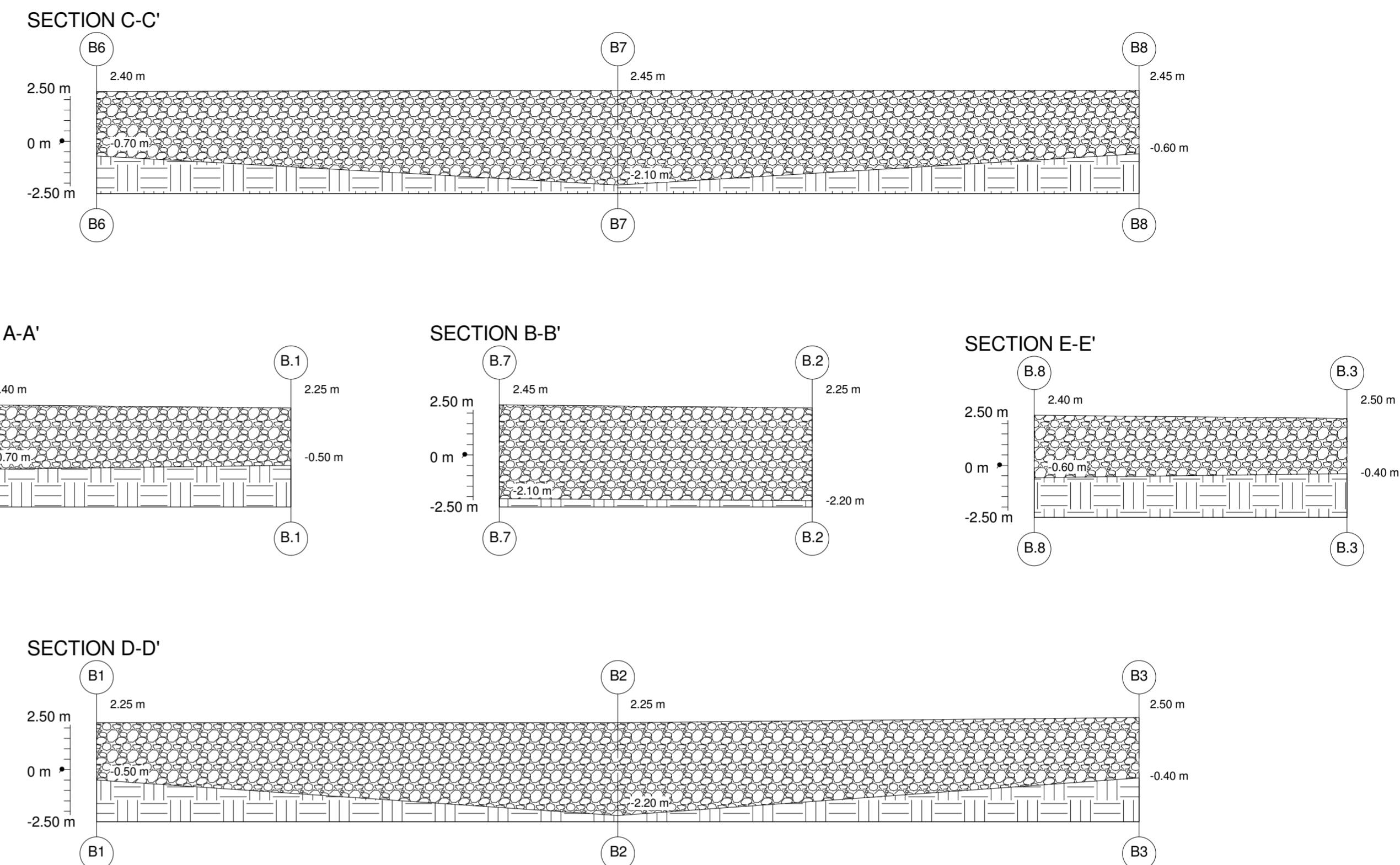
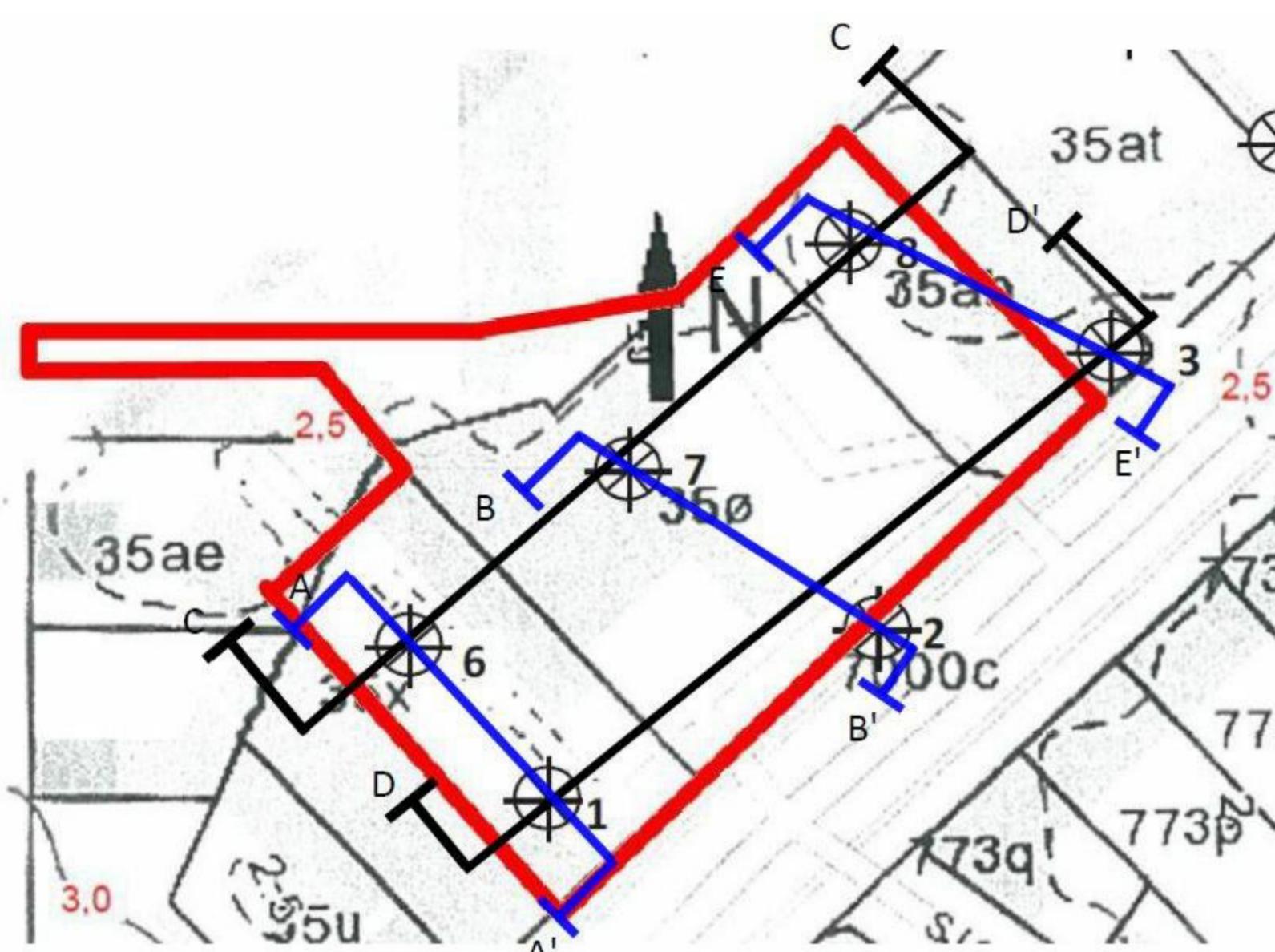
230 251 108
589

Connection balconies-rail-ext.wall.
1 : 5

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY





PROJECT: MULTI-STOREY HOUSING	DATE: 06/21/15
SUBJECT: SPECIALIZATION - balcony	SCALE: 1 : 5
DRAWN BY: a LUNIWA	CLASS: AH42S15

K01_TXX_H7_EX_N16

4.2. CONTRACTOR SPECIALIZATION – SOIL WORKS

4.2.1. *Terrain analysis*

TERRAIN ANALYSIS

- We want to align the existing terrain to 2.30 m because this way the evacuation of the water to public drain will be easily.
Also, the level of the main street is 2.25 m, so it provides easy access to the plot.

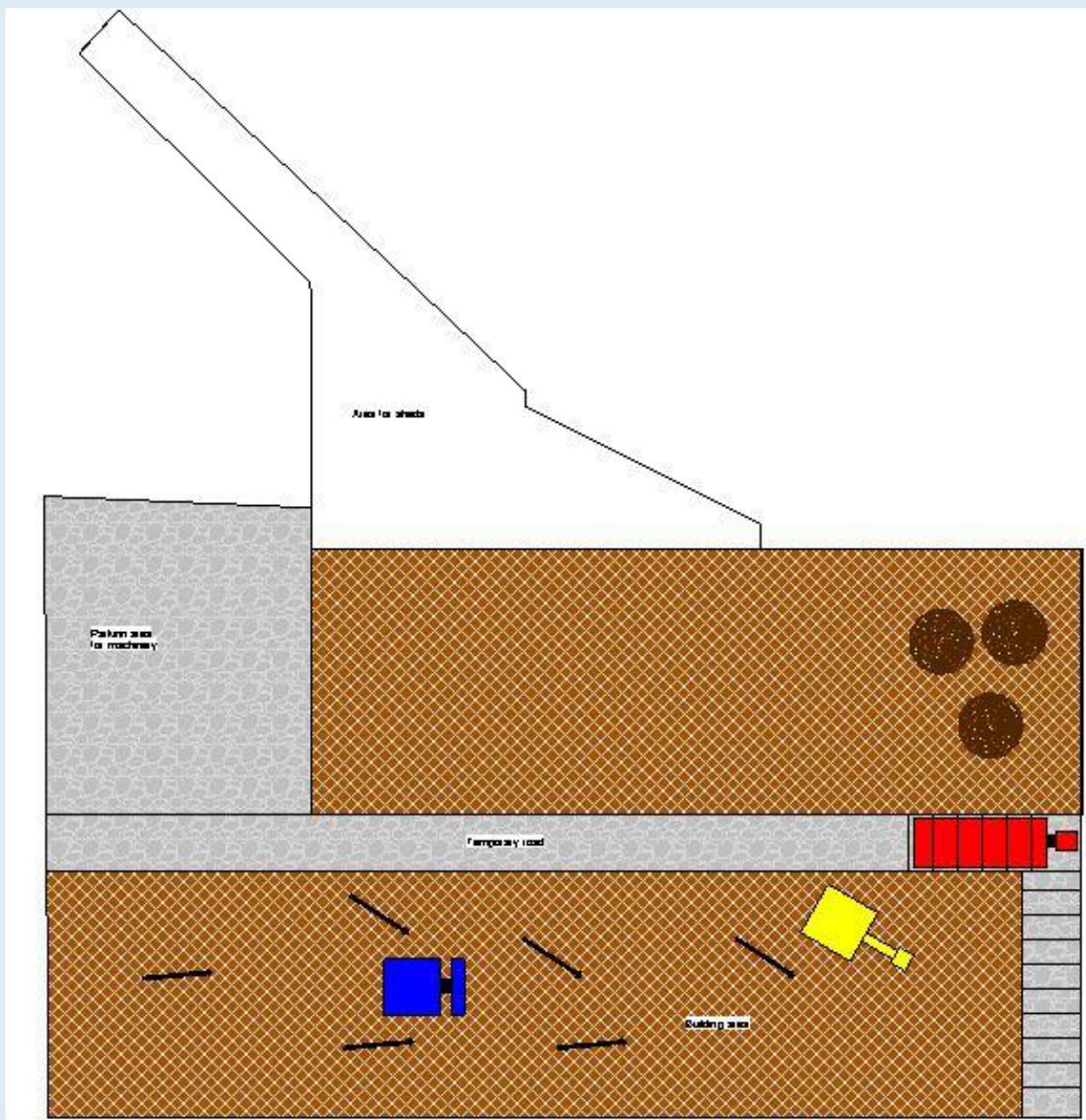
- The average of the topsoil is calculated summing the raw soil level and dividing this amount by 6 (because we have 6 bores):
Topsoil: $(0.50 + 2.20 + 0.40 + 0.70 + 2.10 + 0.60) / 6 = 1.083 \text{ m} = \text{Average}$

- Now we will calculate (estimate) the volume to take off from the plot (plot area are 2572 m² and the swelling coefficient is 1.20):
 $2572 \text{ m}^2 \times 1.083 \text{ m} \times 1.20 = 3343.6 \text{ m}^3$

Bore-no.	Terrain-level	Foundation conditions		Floors against soil
		OBL - depth u. terrain level	AFR - depth u. terrain	level
1	2.25	1.75 - 0.50 m	1.75 - 0.50 m	
2	2.25	0.05 - 2.20 m	0.95 - 1.30 m	
3	2.50	2.10 - 0.40 m	2.10 - 0.40 m	
4	2.25	1.95 - 0.30 m	1.95 - 0.30 m	
5	1.95	1.75 - 0.20 m	1.75 - 0.20 m	
6	2.40	1.70 - 0.70 m	1.70 - 0.70 m	
7	2.45	0.35 - 2.10 m	0.35 - 2.10 m	
8	2.45	1.85 - 0.60 m	1.85 - 0.60 m	
9	2.10	1.80 - 0.30 m	1.80 - 0.30 m	
10	2.05	1.75 - 0.30 m	1.25 - 0.30 m	

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY


PROJECT: TYPE PROJECT NAME	DATE: 06/20/15
SUBJECT: Terrain analysis	SCALE: As indicated
DRAWN BY: Maria Julian Martin	CLASS: K01_TXX_H7_EX_N03

4.2.2. *Method analysis*

Method analysis

The method I have chosen is based in the next points:

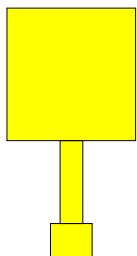
- We will need two excavators:
 - o One bigger which will take the soil from the level of the road.
 - o The small excavator will go to building area and pass soil as close to the big excavator as it is possible.
- We will need a truck which transports the soil.
- A crane truck to put steel plates at the beginning when the top soil is not excavated.
- The temporary road will be made from gravel (200 mm).

4.2.3. Working stages and steps

WORKING STAGES AND STEPS

STAGE I: TOP SOIL

- Step 1: Removal of top soil for temporary roads
- Step 2: Removal of topsoil for sheds
- Step 3: Removal of topsoil for building


STAGE II: RAW SOIL

- Step 1: Removal of raw soil to level 1 (groundfloor foundation)
- Step 2: Removal of raw soil to level 2 (basement foundationn)
- Step 3: Removal of raw soil to level 3 (elevator foundation)

STAGE III: SAND FILL

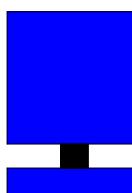
- Step 1: Fill elevator foundation
- Step 2: Fill basement foundation
- Step 3: Fill groundfloor foundation

STAGE IV: MAKE ONE LEVEK ON ALL BUILDING SITE (2.30 m)

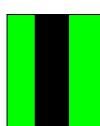
Excavator

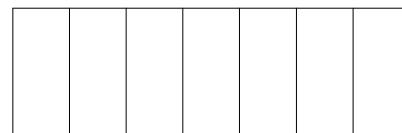
Dumper

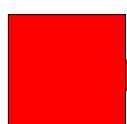
Sand

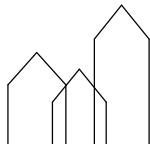

Topsoil

Raw soil


Gravel

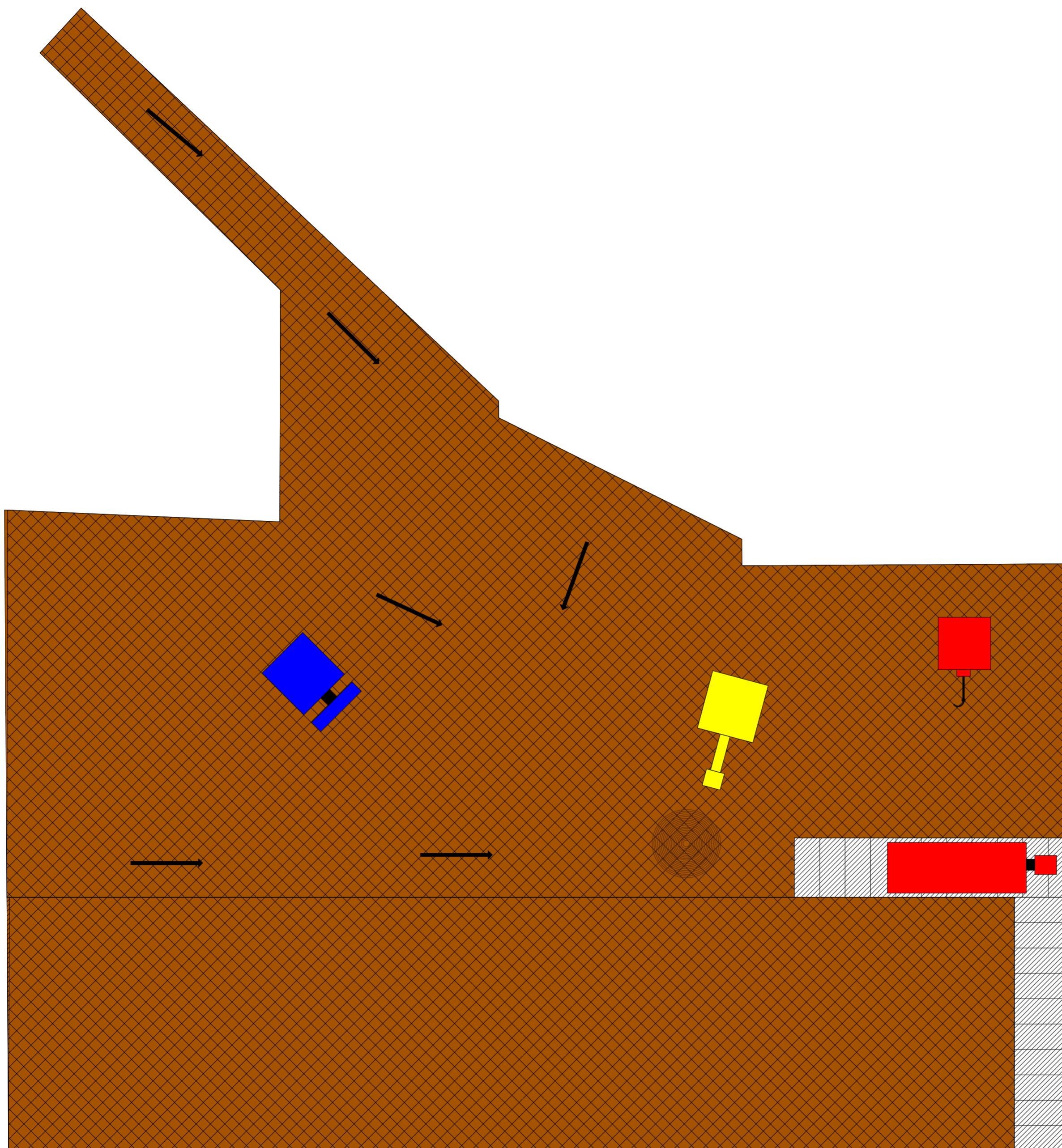

Dozer


Truck


Compactor

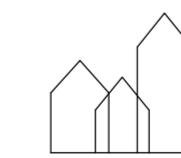
Steel plates

Crane


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: TYPE PROJECT NAME	DATE: 06/21/15	K01_TXX_H7_EX_N05
SUBJECT: Legend	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	

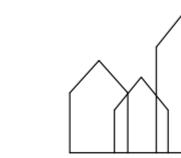
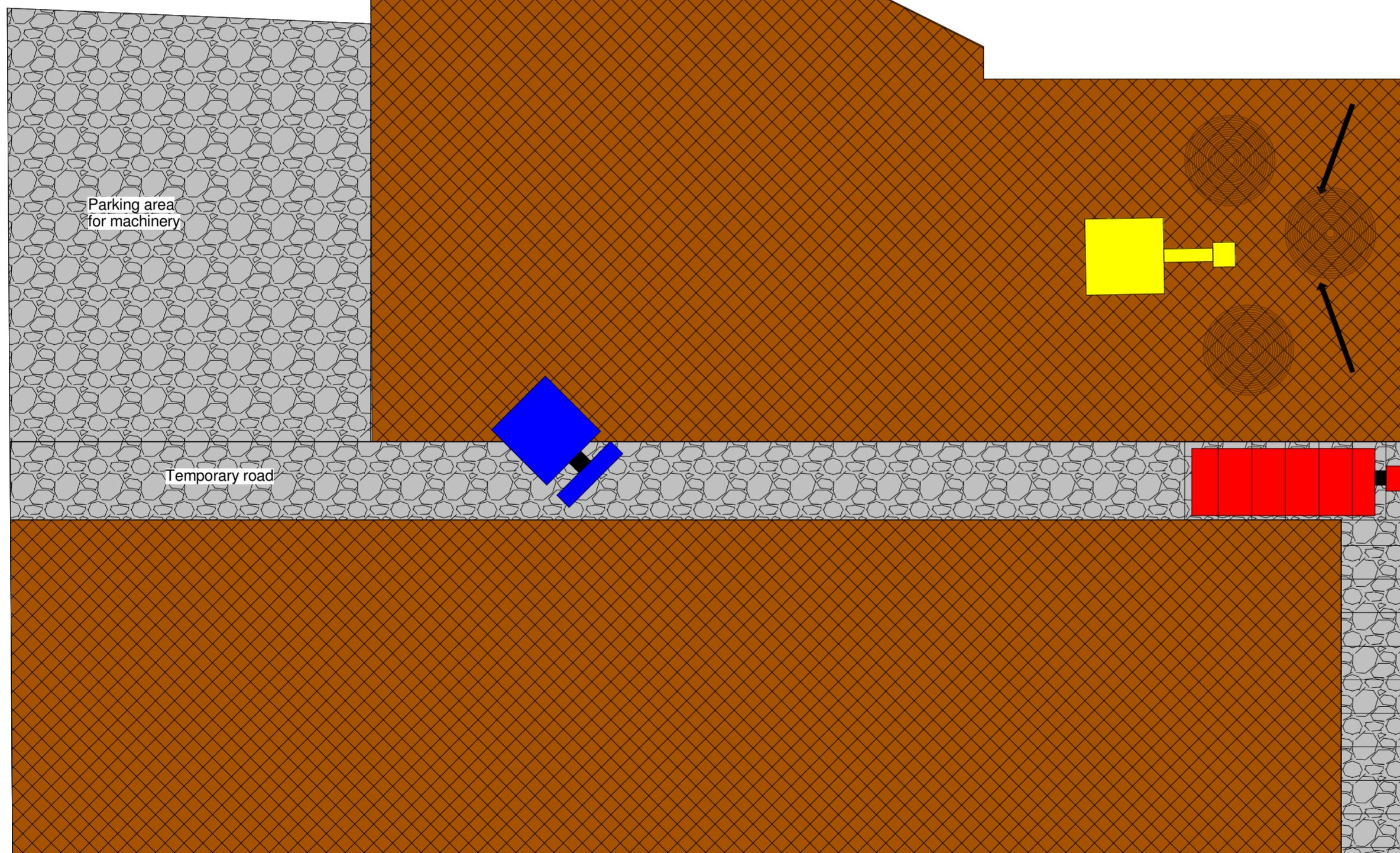

STAGE 1

Step 1: Removal o topsoil for temporary roads

K01_TXX_H7_EX_N06

The dozer lifts the topsoil and the excavator amount it .
On the other hand, the crane place the steel plates whit will
be the temporary road for the truck.

Bring ideas to life
VIA University College



SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS

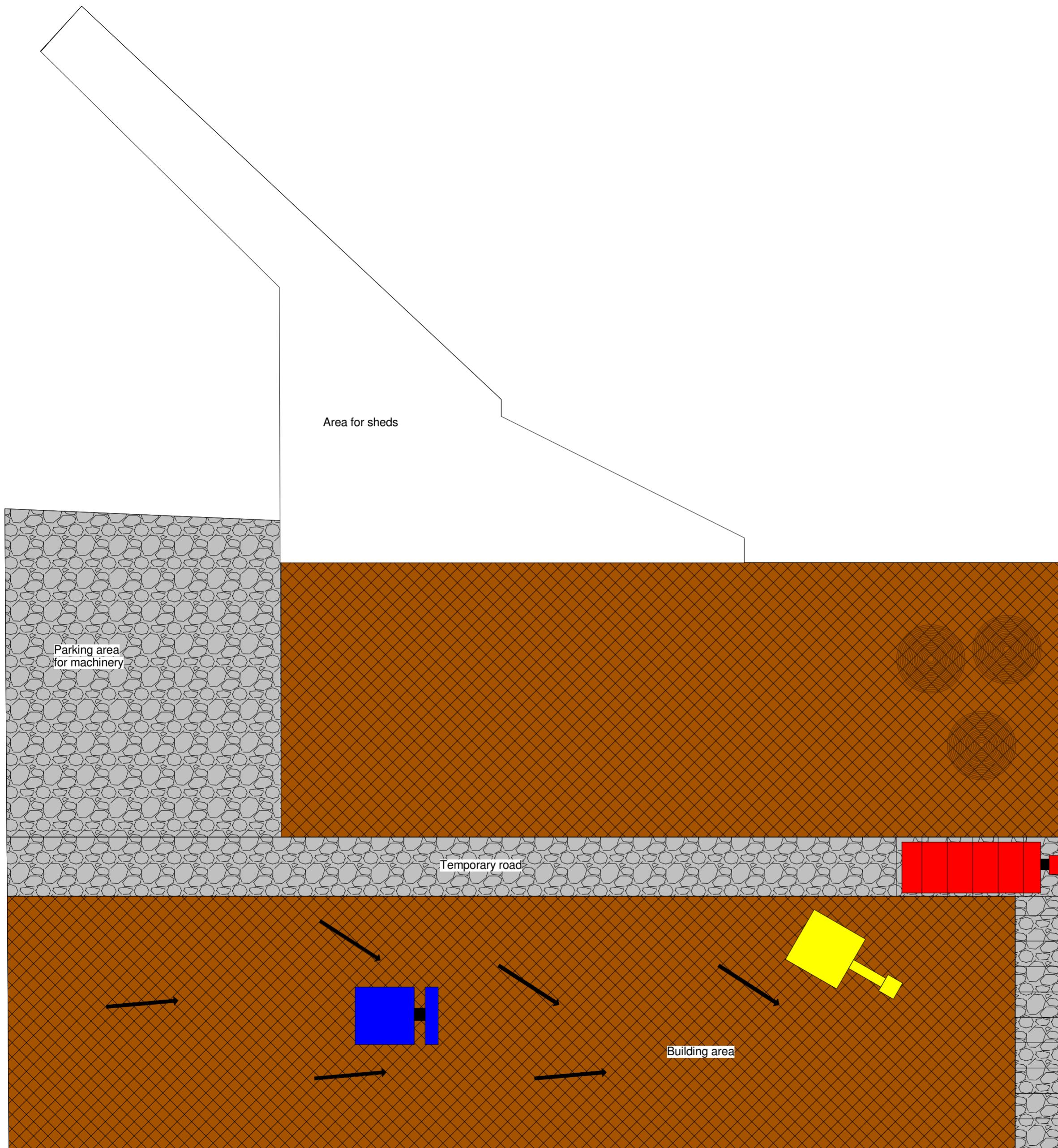
PROJECT: SOIL WORKS	DATE: 06/21/15	K01_TXX_H7_EX_N06
SUBJECT: Stage 1 - Step 1 - Removal of topsoil for temporary roads	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	

STAGE 1

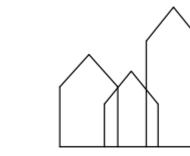
Step 2: Removal o topsoil for sheds

K01_TXX_H7_EX_N07

Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGI AND BUSINESS
HORSENS

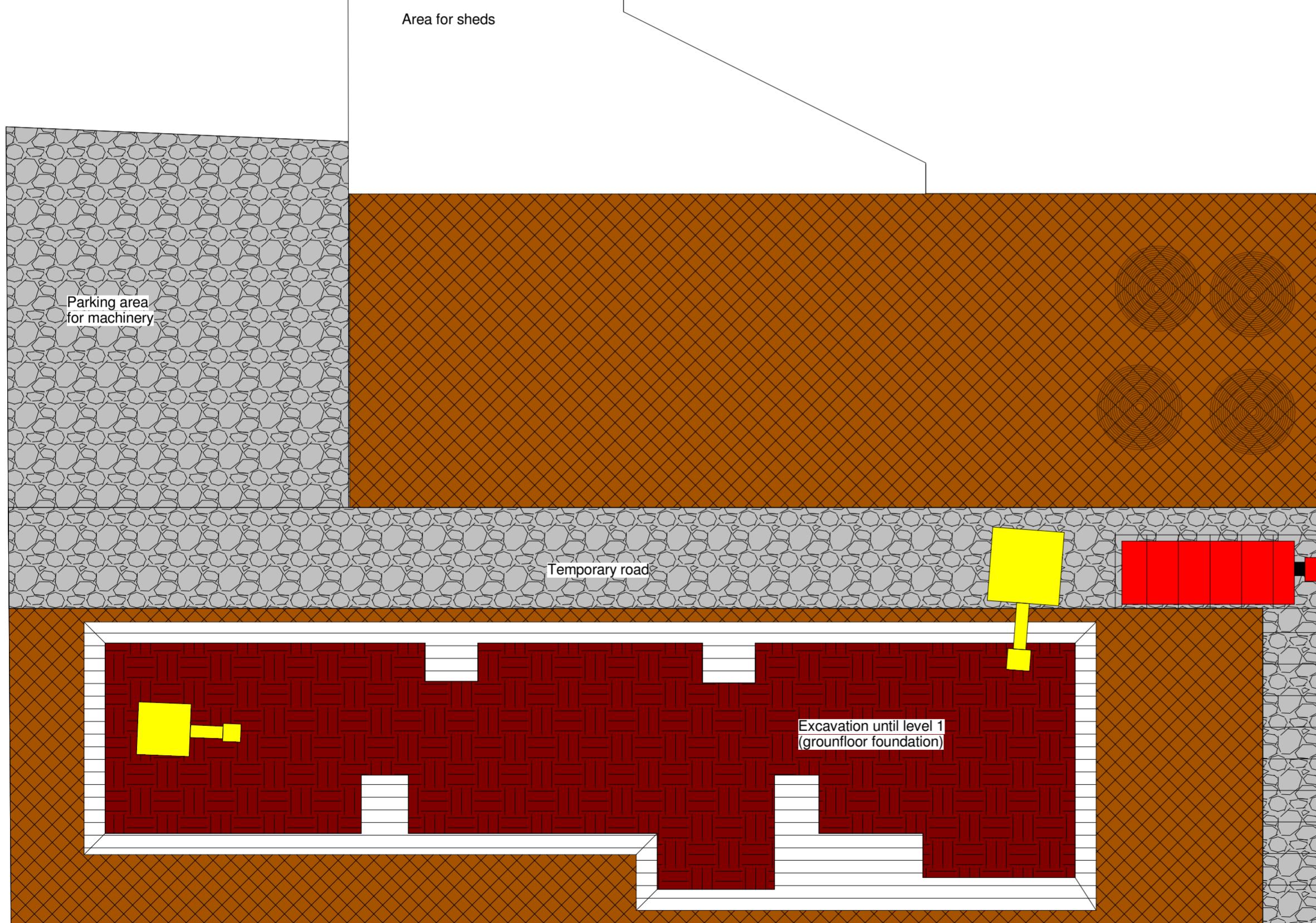
PROJECT: SOIL WORKS	DATE: 06/21/15
SUBJECT: Stage 1 - Step 2 - Removal of topsoil for sheds	SCALE: 1 : 200
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42


STAGE 1

Step 3: Removal of topsoil for building

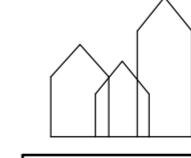
K01_TXX_H7_EX_N08

Working stages and steps 3
1 : 200


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS

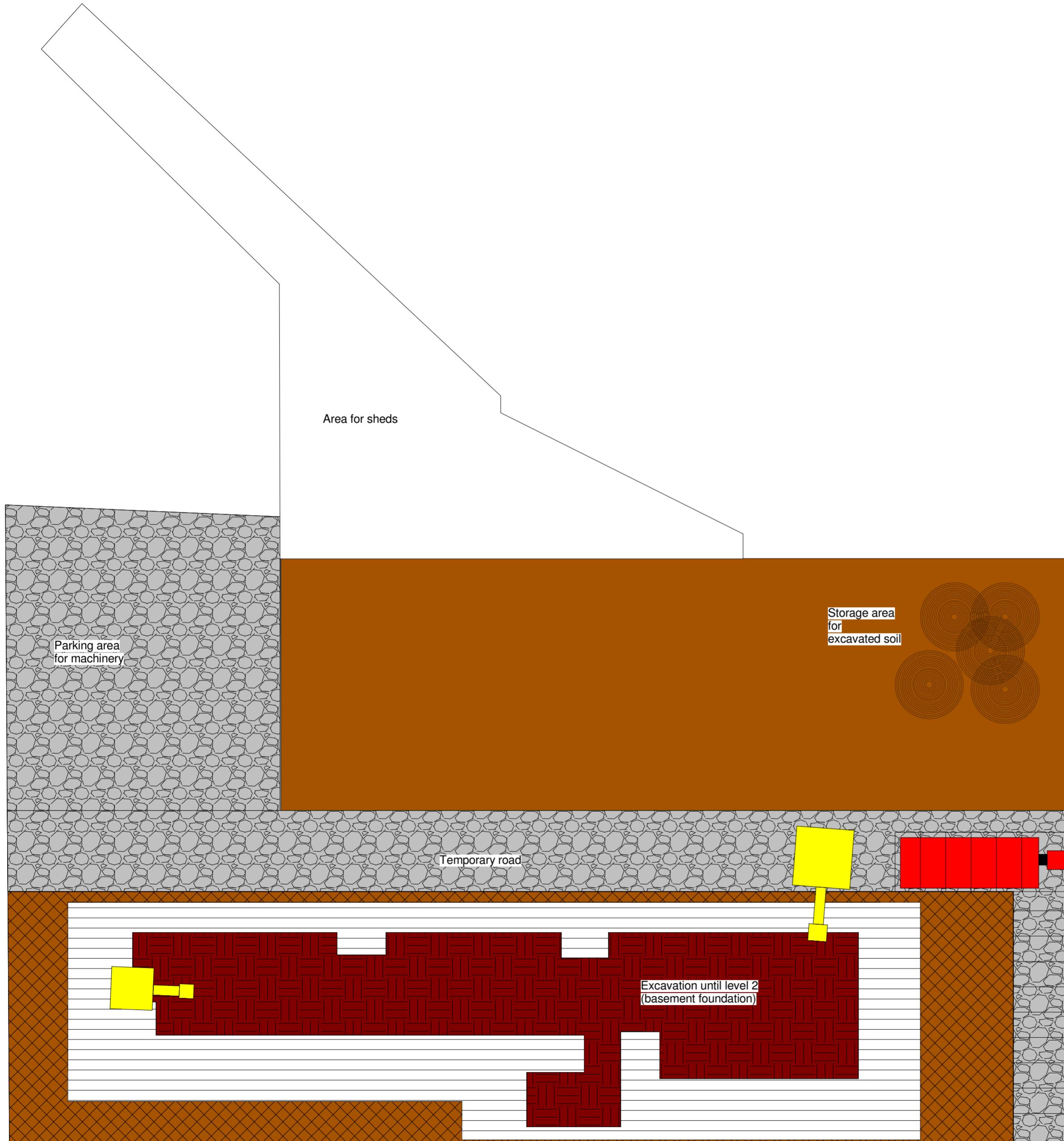
PROJECT: SOIL WORKS	DATE: 06/21/15	K01_TXX_H7_EX_N08
SUBJECT: Stage 1 - Step 3 - Removal of topsoil for building	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	


STAGE 2

Step 1: Removal of raw soil to level 1 (groundfloor foundation)

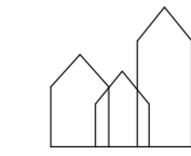
K01_TXX_H7_EX_N09

Working stages and steps 4
1 : 200


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS

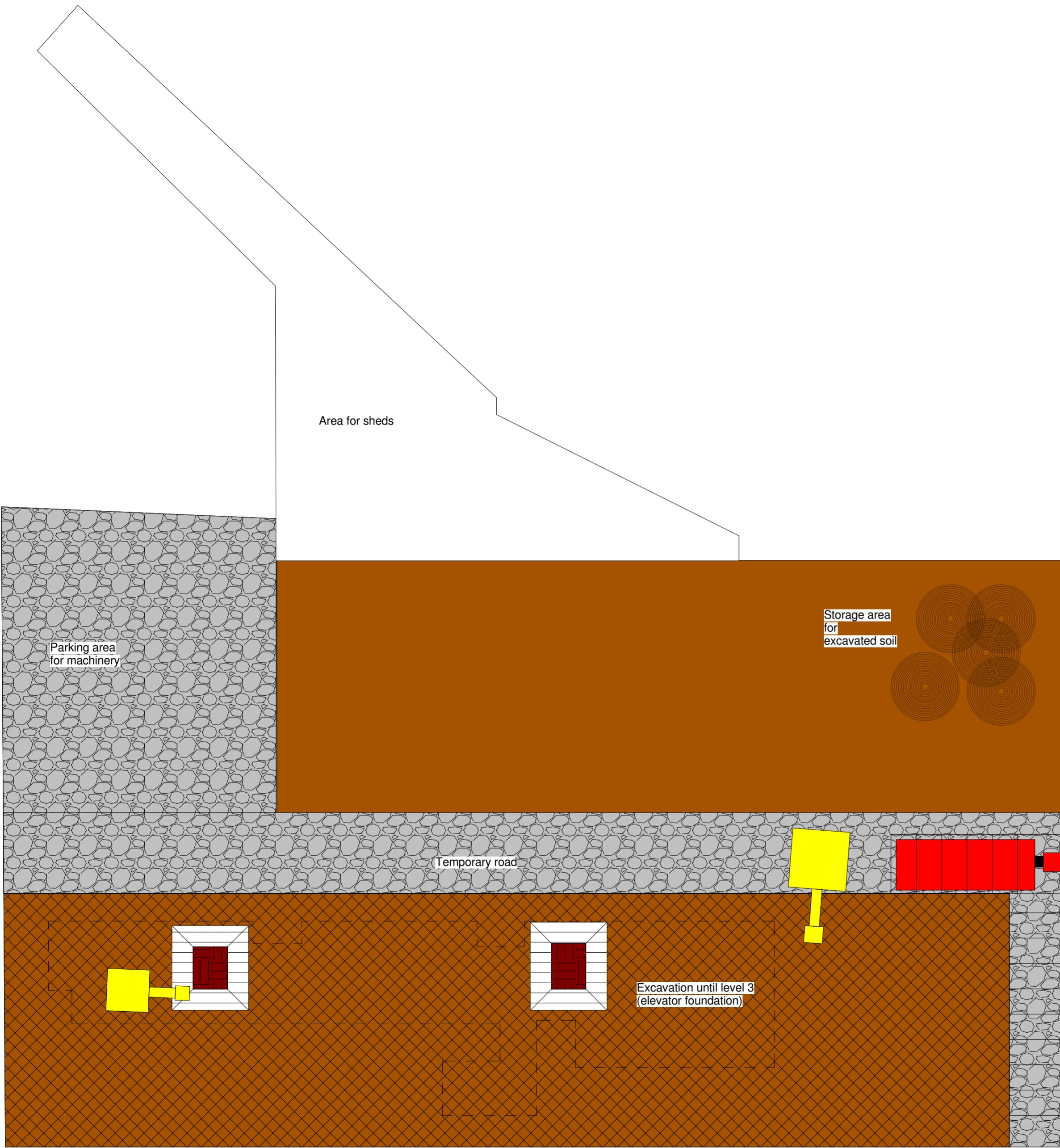
PROJECT: SOIL WORKS	DATE: 06/21/15	K01_TXX_H7_EX_N09
SUBJECT: Stage 2 - Step 1 - Removal of raw soil to level 1 - Groundfloor foundation	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	


STAGE 2

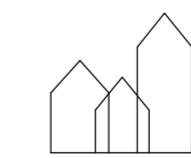
Step 2: Removal of raw soil to level 2 (basement foundation)

K01_TXX_H7_EX_N10

Working stages and steps 5
1 : 200

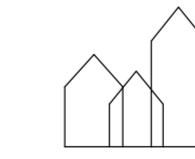
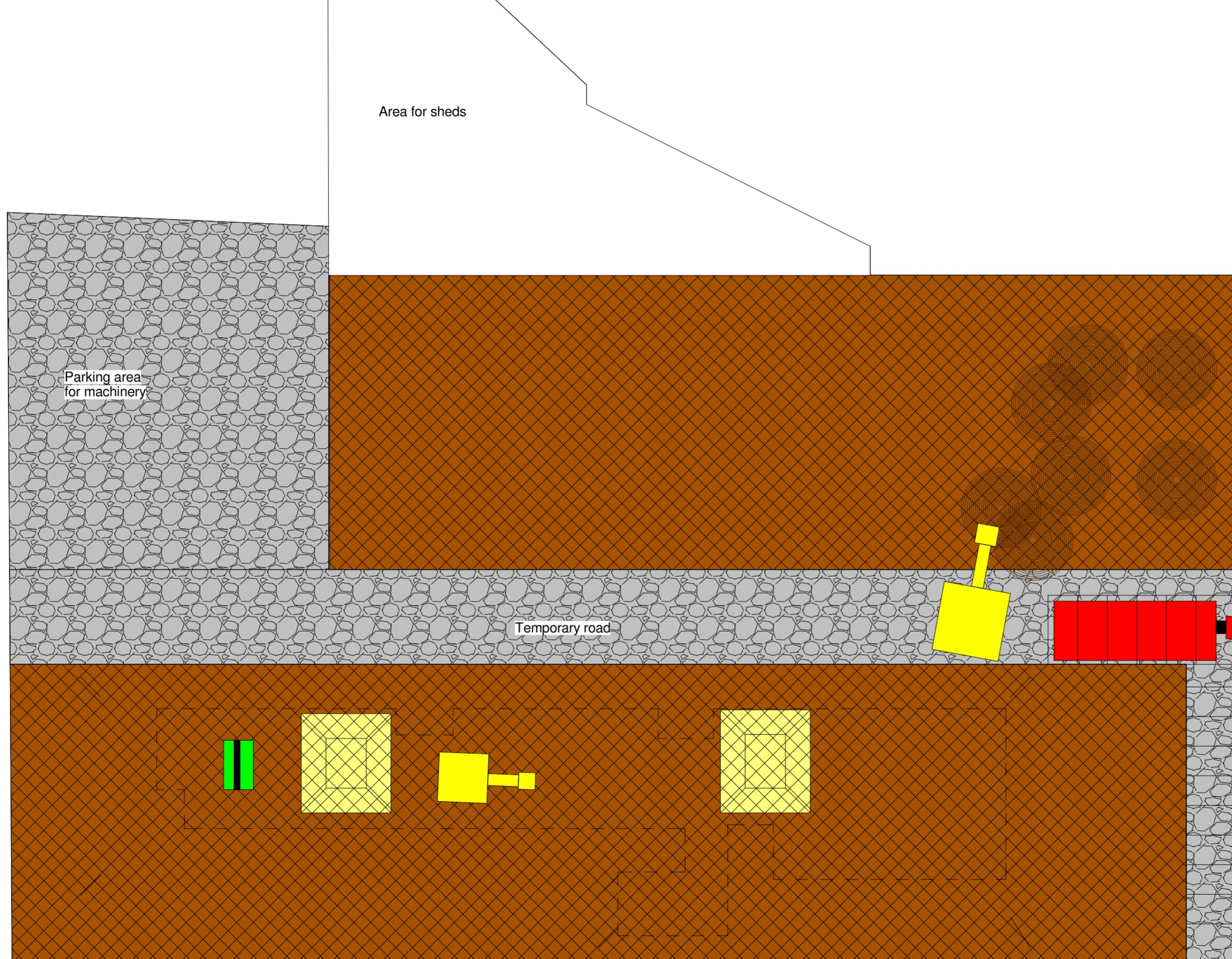

Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS


PROJECT: SOIL WORKS	DATE: 06/21/15	K01_TXX_H7_EX_N10
SUBJECT: Stage 2 - Step 2 - Removal of raw soil to level 2 - Basement foundation	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	

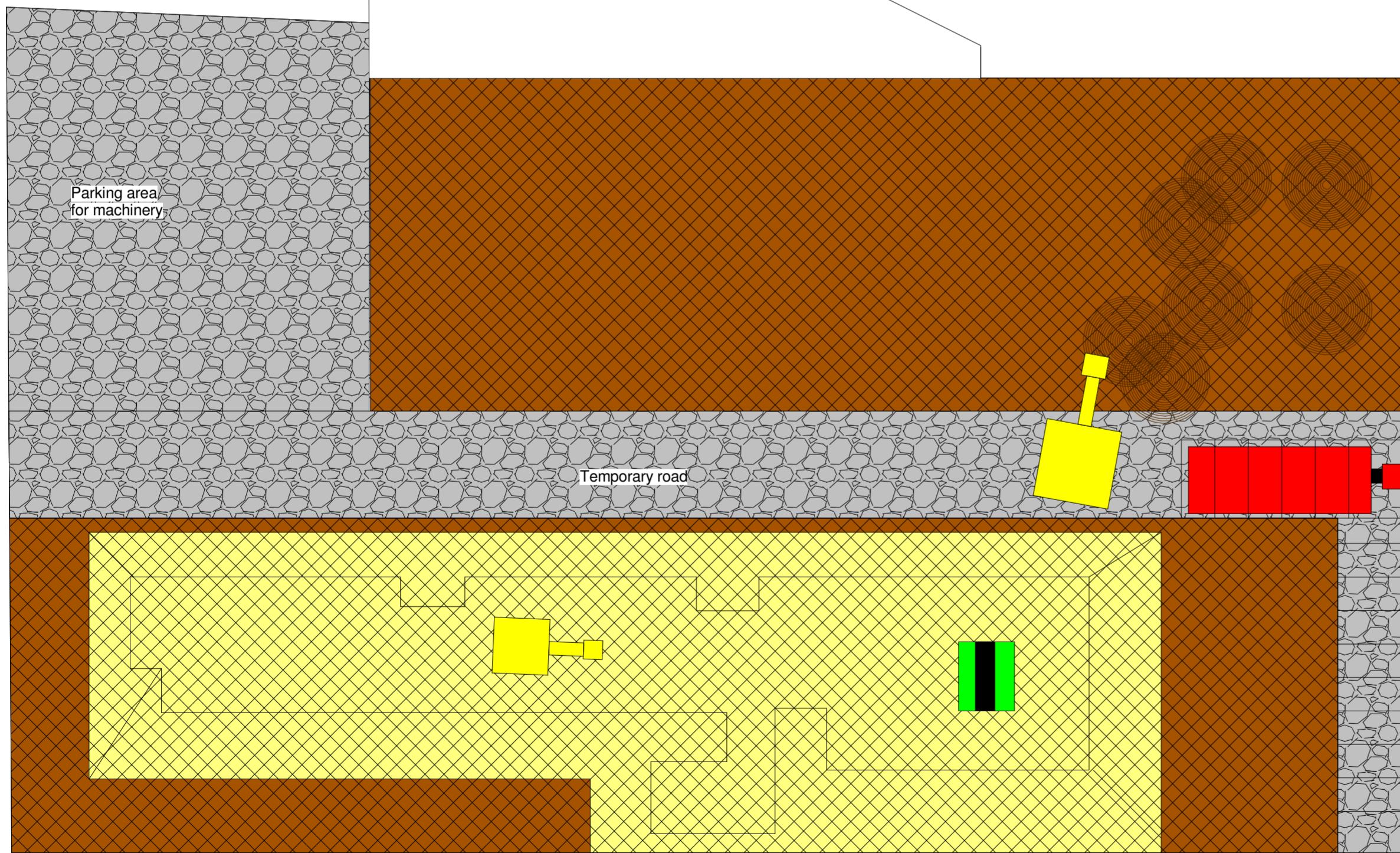
STAGE 2

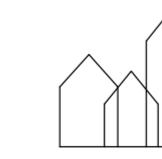
Step 3: Removal of raw soil to level 3 (elevator foundation)

K01_TXX_H7_EX_N11

STAGE 3

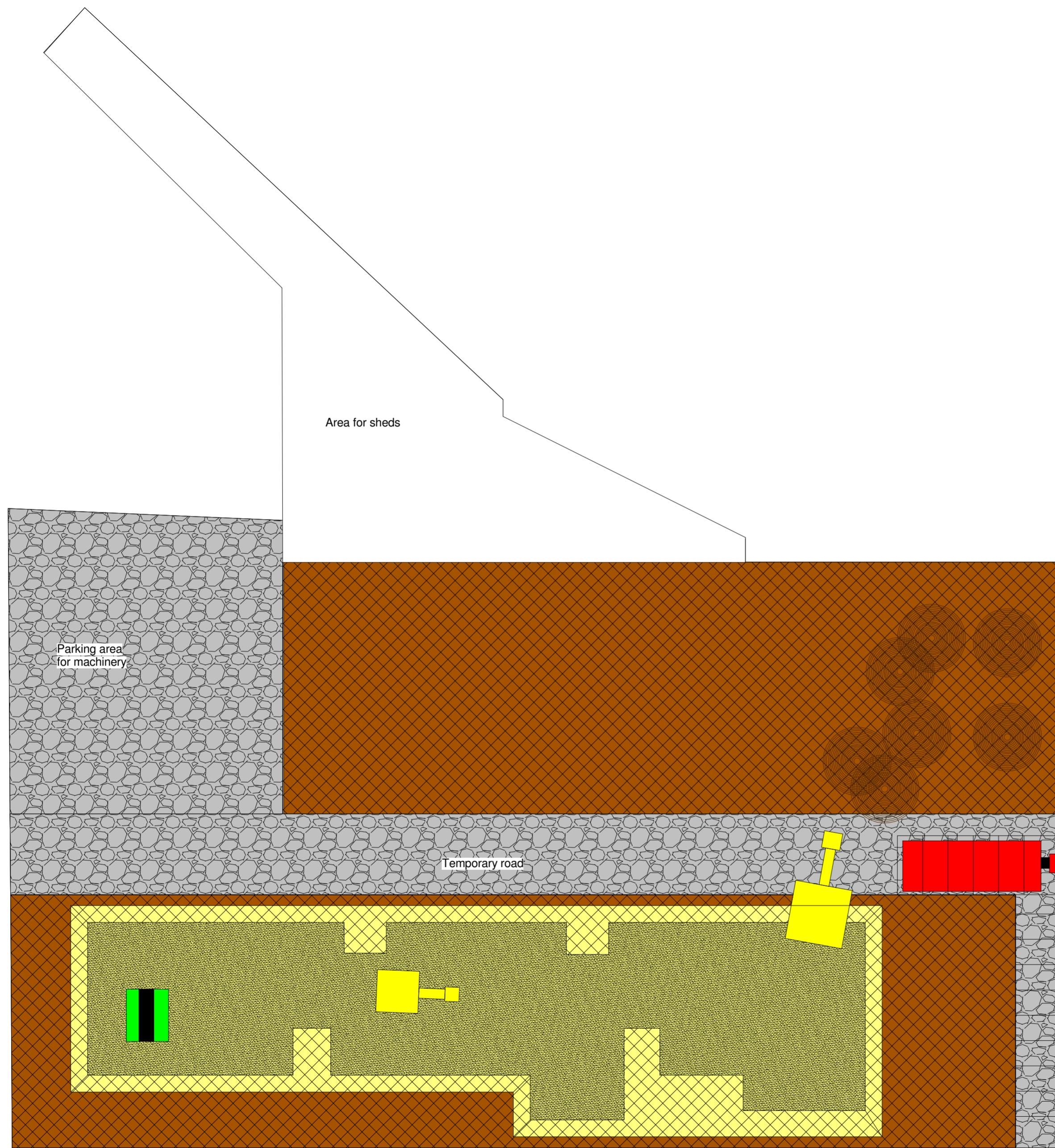

Step 1: Fill elevator foundation with sand


STAGE 3

Step 2: Fill basement foundation with sand

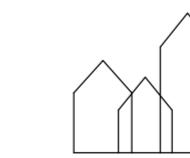
K01 TXX H7 EX N13

Working stages and steps 8


Bring ideas to life
VIA University College

SCHOOL OF TECHNOLOGY AND BUSINESS HORSENS

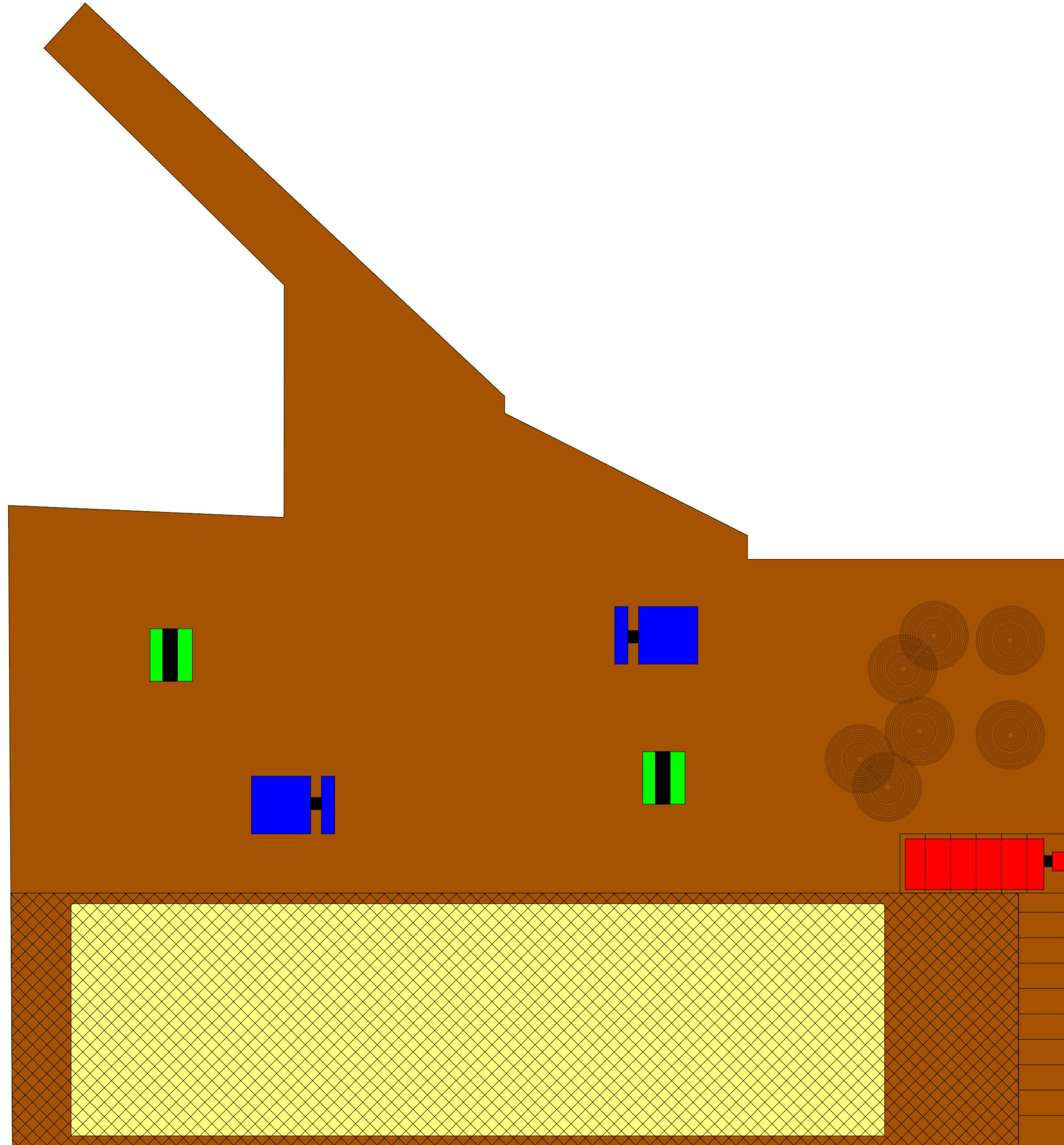
PROJECT: SOIL WORKS	DATE: 06/21/15	
SUBJECT: Stage 3 - Step 2 - Fill basement foundation with sand	SCALE: 1 : 200	K01_TXX_H7_EX_N13
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	


STAGE 3

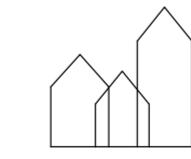
Step 3: Fill groundfloor foundation with sand

Working stages and steps 9
1 : 200

K01_TXX_H7_EX_N14



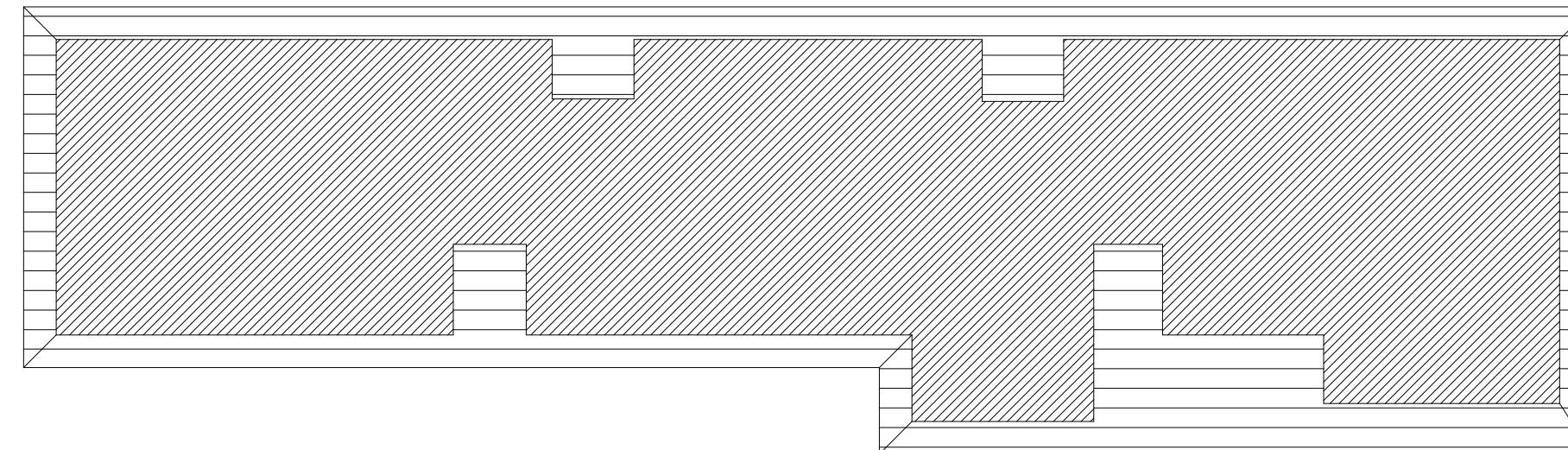
Bring ideas to life
VIA University College


SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS

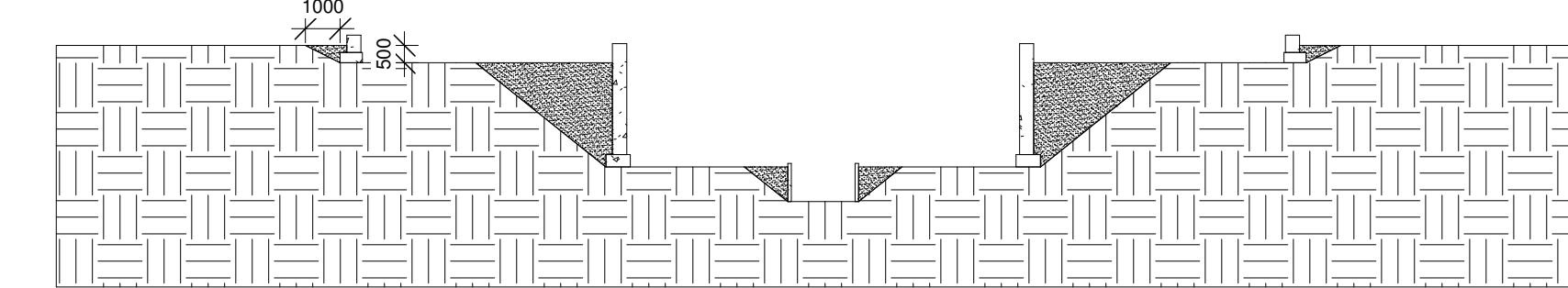
PROJECT: SOIL WORKS	DATE: 06/21/15	K01_TXX_H7_EX_N14
SUBJECT: Stage 3 - Step 3 - Fill groundfloor foundation with sand	SCALE: 1 : 200	
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42	

STAGE 4: Make one level on all building site (2.30 m)

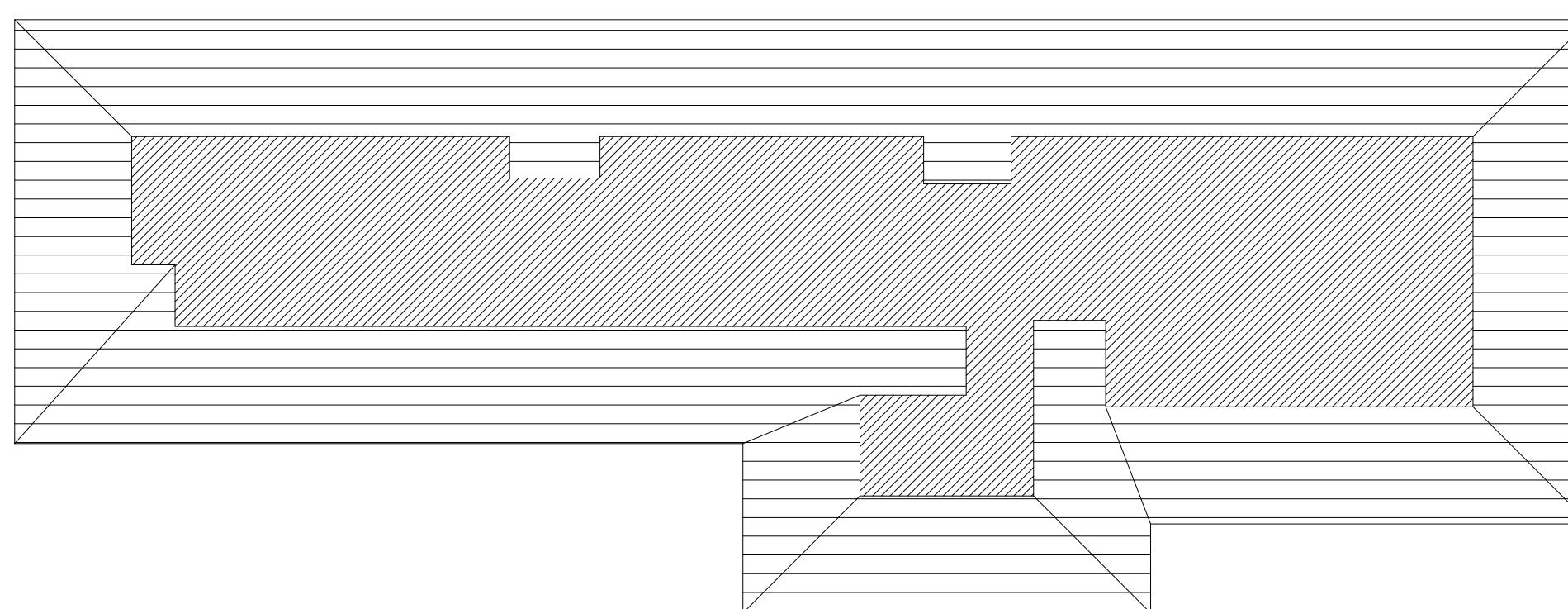
Working stages and steps 10
1 : 200

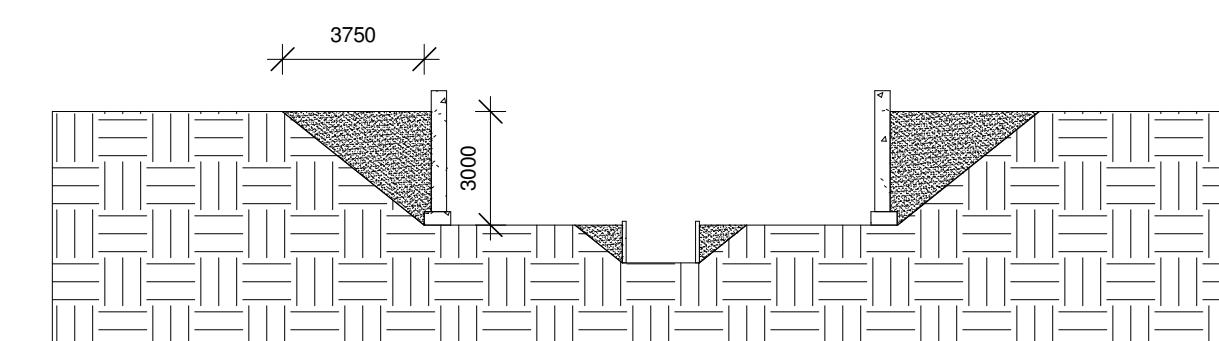

Bring ideas to life
VIA University College

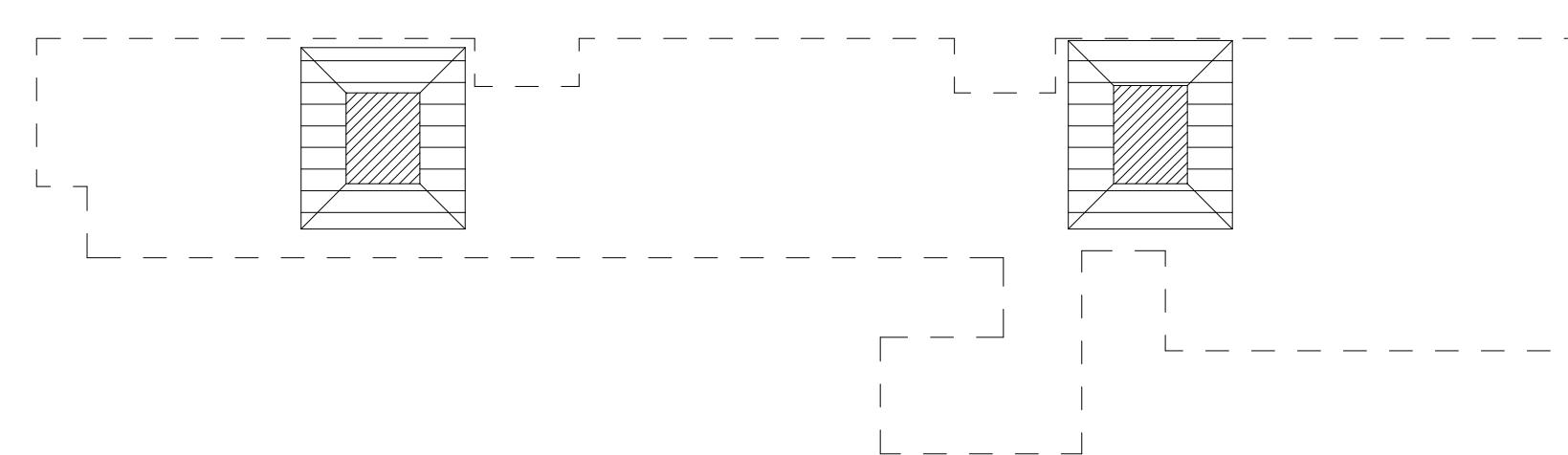
SCHOOL OF TECHNOLOGY AND BUSINESS
HORSENS

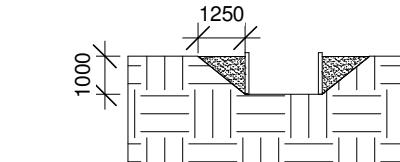

PROJECT: SOIL WORKS	DATE: 06/21/15
SUBJECT: Stage 4 - Make one level on all building site	SCALE: 1 : 200
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42

K01_TXX_H7_EX_N15

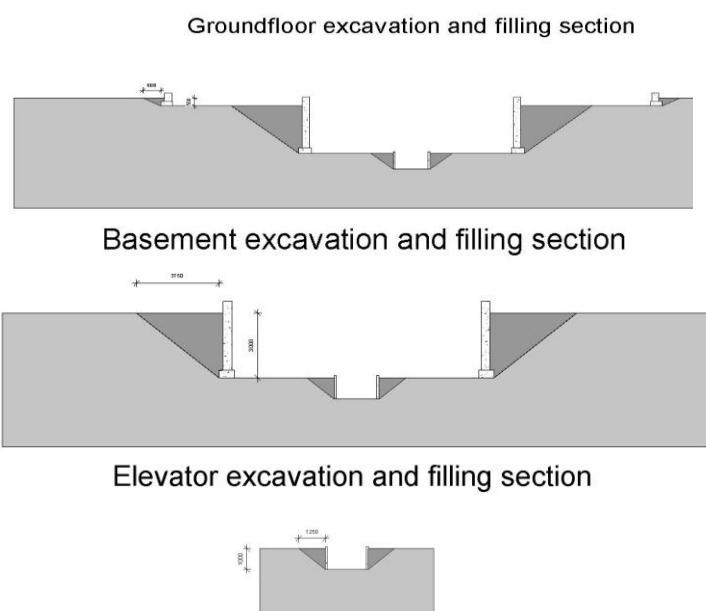
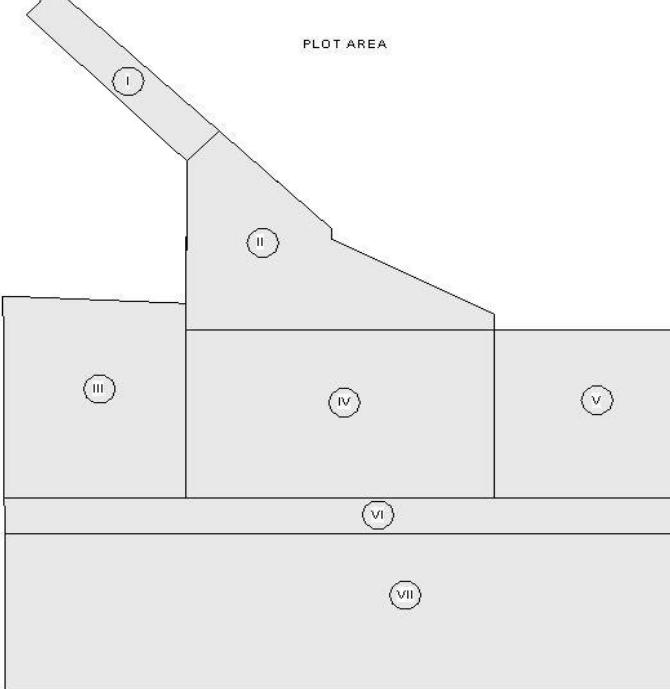

Groundfloor excavation and filling plan


Grundfloor excavation and filling section


Basement excavation and filling plan


Basement excavation and filling section

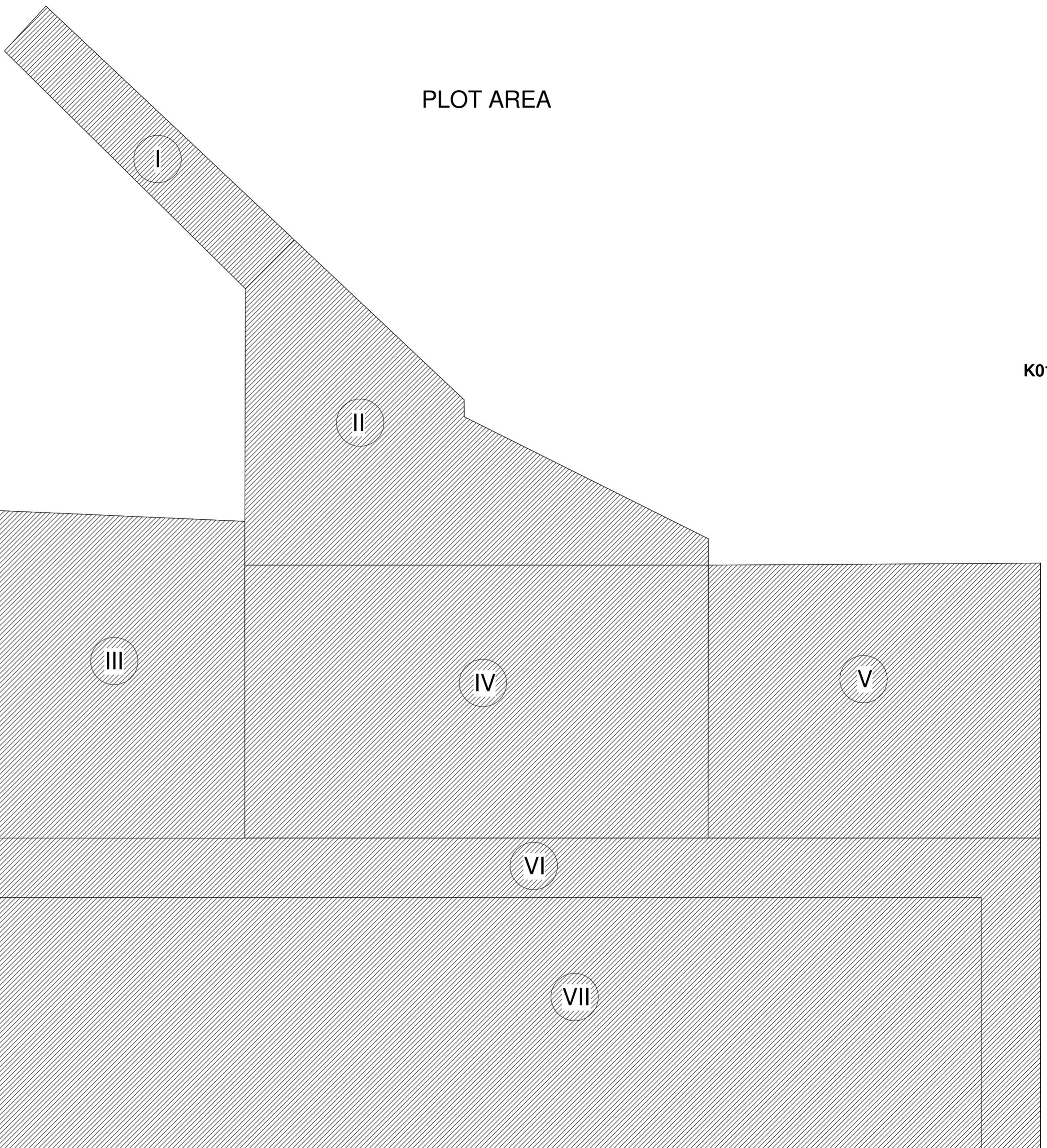
Elevator excavation and filling plan

Elevator excavation and filling section

4.2.4. *Quantities*

Calculation of quantities schedule																
Waste	Topsoil will be stored on site	Area	Excavation (1m3)	depot (1,2m3)	Volume per step	Total volume per Stage		Page	1							
								Pos. Nr	Area/ location	L	W	H	m2	m3	m3	m3
01.	TOP SOIL							3342,571								
01. 01	Removal topsoil from temporary roads					756,071										
	Area III		308,613	334,22788	401,07345											
	Area VI		273,159	295,8312	354,99744											
01. 02	Removal topsoil from sheds					451,372										
	Area I		76,924	83,308692	99,97043											
	Area II		270,392	292,83454	351,40144											
01. 03	Removal topsoil from building area					2135,128										
	Area IV		433,964	469,98301	563,97961											
	Area V		316,582	342,85831	411,42997											
	Area VII		892,366	966,43238	1159,7189											
02.	RAW SOIL					3827,781										
02. 01	Removal of raw soil to ground floor foundation		425,428	28,503676	34,204411	58,744										
02. 02	Removal of raw soil to basement foundation		302,859	908,577	1090,2924	3734,278										
02. 03	Removal of raw soil to elevatorfoundation		11,080	11,08	13,296	34,759										
03.	SAND FILL					2689,988										
03. 01	Fill elevator foundation with sand		17,886	17,886	21,4626	21,463										
03. 02	Fill basement foundation with sand		734,441	2203,3215	2643,9858	2643,986										
03. 03	Fill groundfloor foundation with sand		40,899	20,4495	24,5394	24,539										
Proces quantities/ methods																
Quantities netto																
Waste																
Quantities total																


Proces quantities/ methods

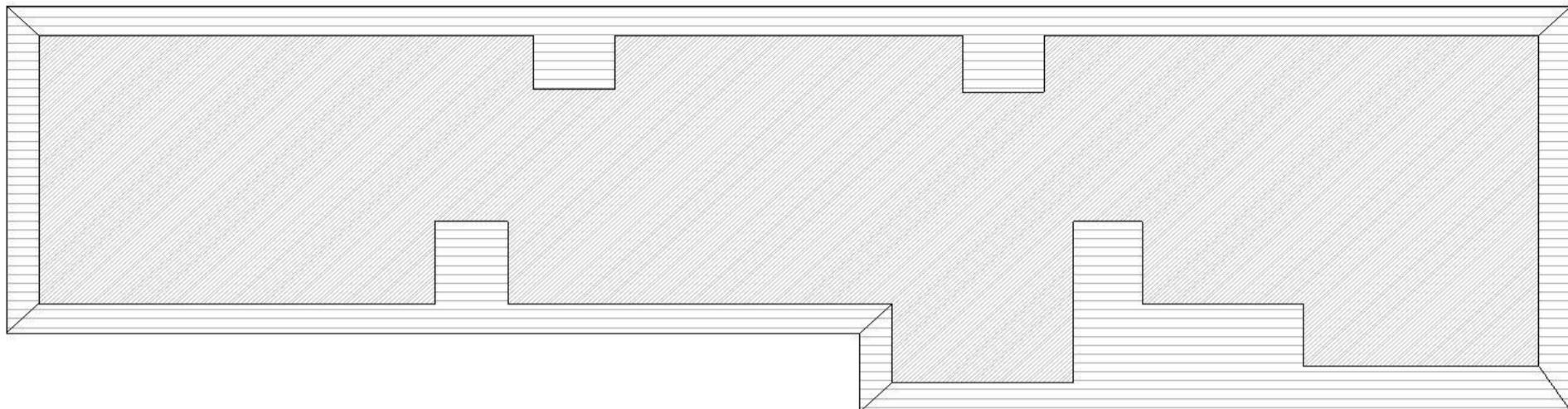
Quantities netto

Waste

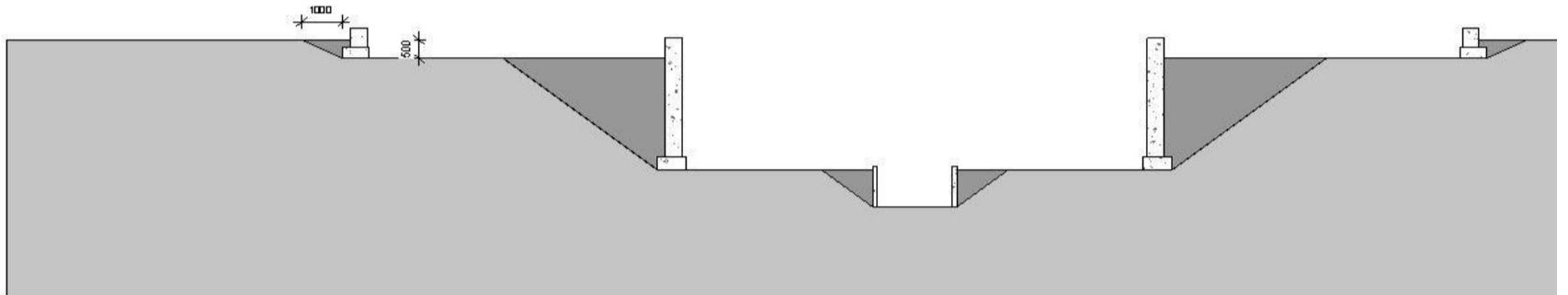
Quantities total

Page	1
Name	Maria Julian
Date	19.06.2015

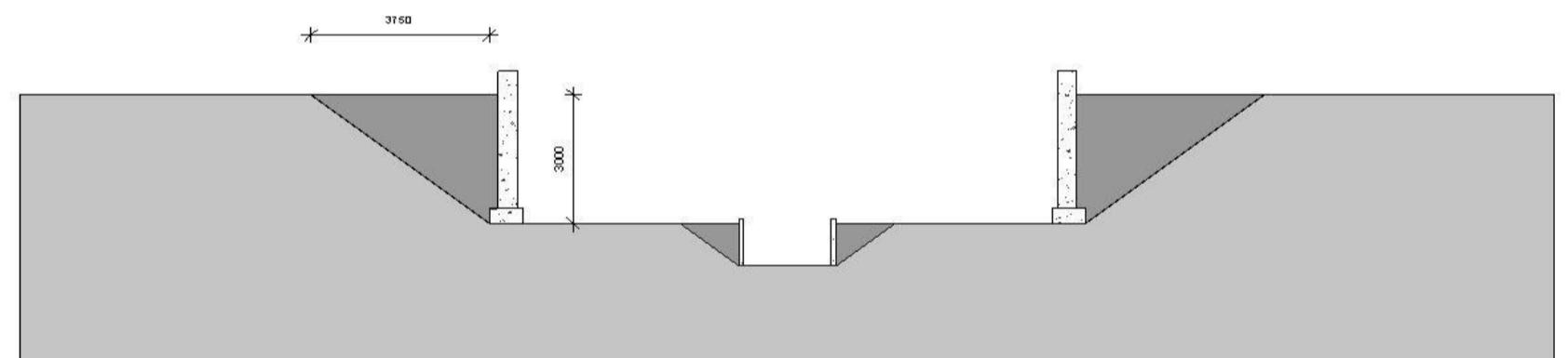
Bring ideas to life
VIA University College

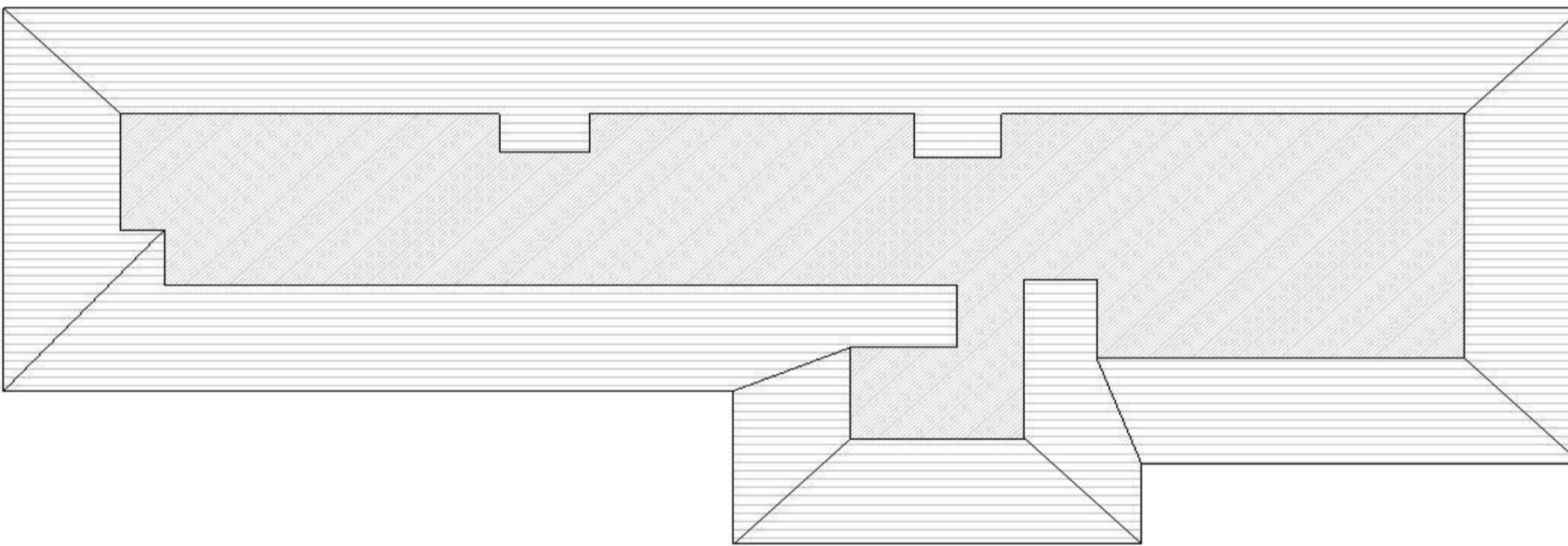

SCHOOL OF TECHNOLOGY AND BUSINESS
TYPE CITY

PROJECT: TYPE PROJECT NAME	DATE: 06/20/15
SUBJECT: Plot area	SCALE: 1 : 200
DRAWN BY: Maria Julian Martin	CLASS: 4SemAH42

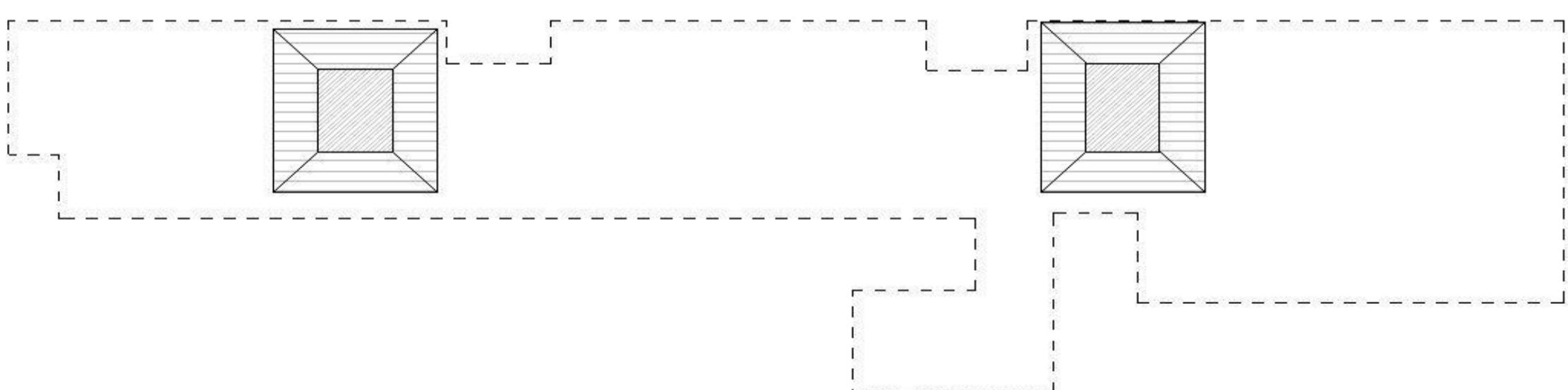
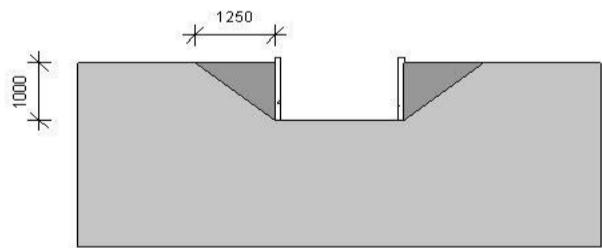

K01_TXX_H7_EX_N02

FLOOR PLAN		Height	Volume (floorplan)	Area'		Height'	Volume (all)	Volume (earthwork square)	Volume earthwork (triangle)
Groundfloor	425,428	0,5	212,714	589,024	0,5	294,512	81,798	40,899	
Basement	302,859	3	908,577	792,486	3	2377,458	1468,881	734,4405	
Elevator	10,666	1	10,666	46,437	1	46,437	35,771	17,8855	


Groundfloor excavation and filling plan


Groundfloor excavation and filling section

Basement excavation and filling section

Basement excavation and filling plan

Elevator excavation and filling plan

Elevator excavation and filling section

4.2.5. *Machine Hours*

Machine hour calculation: Excavation away				Calculation of transport							
Number of m ³ to be moved in solid measure				Choice of vehicle: Scania R114CB							
Bucket size				Max load pr vehicle:							
Choice of Machine: Excavator Volvo EC210C				21000 kg							
				Max number of m ³							
				12,00 m ³							
				Do not exceed the maximum payload							
22.200											
Pos.nr:											
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit				
Bucket size		2,00	m ³	Max. Weigth		22.200	kg				
		3342,5712	m ³	Distance to tip		5	km				
Density		1850	kg/m ³	Speed		40	km/t				
Efficiency		0,6	Faktor	Max volume.	(max weigth/soildensity)/loadingfactor	12,00	m ³				
Cyclus time		30	Sek	Drivingtime total	2*(distance*60min/h)/avarage speed	15,00	min				
Loadind factor	0,8	0,8	Faktor	Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min				
Bucket factor		1,1	Faktor	Unloading time		1,00	min				
Production.	Bucketsize*(3600/cyclus time) *Efficience.*bucket	126,72	m ³ /time	Maneuvretime		1,60	min				
				Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28	min				
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time				
				Number off trucks		4,1					
Hours total		26,378	Hours	Hours total		108,085	Hours				

Machine hour calculation: Excavation away				Calculation of transport			
Number of m ³ to be moved in solid measure				Choice of vehicle: Scania R114CB			
Bucket size				Max load pr vehicle:			
Choice of Machine: Excavator Volvo EC210C				21000 kg			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00	m ³	Max. Weight		22.200	kg
		756,071	m ³	Distance to tip		5	km
Density		1850	kg/m ³	Speed		40	km/t
Efficiency		0,6	Faktor	Max volume.	(max weight/soildensity)/loadingfactor	12,00	m ³
Cyclus time		30	Sek	Drivingtime total	2*(distance*60min/h)/avarage speed	15,00	min
Loadind factor	0,8	0,8	Faktor	Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min
Bucket factor		1,1	Faktor	Unloading time		1,00	min
Production.	Bucketsize*(3600/cyclus time) *Efficiency.*bucket	126,72	m ³ /time	Maneuvretime		1,60	min
				Circulationtime	Loadingtime+drivingtime+maneuver+ unload	23,28	min
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time
				Number off trucks		4,1	
Hours total		5,966	Hours	Hours total		24,448	Hours

Machine hour calculation: Excavation away				Calculation of transport			
Number of m ³ to be moved in solid measure				Choice of vehicle: Scania R114CB			
Bucket size				Max load pr vehicle:			
2,00 m ³				21000 kg			
Choice of Machine: Excavator Volvo EC210C				Max number of m3			
				12,00 m ³			
				Do not exceed the maximum payload			
				22.200			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00 m ³		Max. Weight		22.200	kg
		451,372 m ³		Distance to tip		5	km
Density		1850 kg/m ³		Speed		40	km/t
Efficiency		0,6 Faktor		Max volume.	(max weight/soildensity)/loadingfactor	12,00	m ³
Cyclus time		30 Sek		Drivingtime total	2*(distance*60min/h)/avrage speed	15,00	min
Loadind factor	0,8	0,8 Faktor		Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min
Bucket factor		1,1 Faktor		Unloading time		1,00	min
Production.	Bucketsize*(3600/cyclus time) *Efficience.*bucket	126,72 m ³ /time		Maneuvretime		1,60	min
				Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28	min
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time
				Number off truks		4,1	
Hours total		3,562 Hours		Hours total		14,596	Hours

Machine hour calculation: Excavation away				Calculation of transport			
Number of m ³ to be moved in solid measure				Choice of vehicle: Scania R114CB			
Bucket size				Max load pr vehicle:			
2,00 m ³				21000 kg			
Choice of Machine: Excavator Volvo EC210C				Max number of m3			
				12,00 m ³			
				Do not exceed the maximum payload			
				22.200			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00	m ³	Max. Weight		22.200	kg
		2135,128	m ³	Distance to tip		5	km
Density		1850	kg/m ³	Speed		40	km/t
Efficiency		0,6	Faktor	Max volume.	(max weight/soildensity)/loadingfactor	12,00	m ³
Cyclus time		30	Sek	Drivingtime total	2*(distance*60min/h)/avrage speed	15,00	min
Loadind factor	0,8	0,8	Faktor	Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min
Bucket factor		1,1	Faktor	Unloading time		1,00	min
Production.	Bucketsize*(3600/cyclus time) *Efficience.*bucket	126,72	m ³ /time	Maneuvretime		1,60	min
				Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28	min
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time
				Number off truks		4,1	
Hours total		16,849	Hours	Hours total		69,041	Hours

Machine hour calculation: Excavation away			Calculation of transport		
Number of m ³ to be moved in solid measure			Choice of vehicle: Scania R114CB		
Bucket size			Max load pr vehicle:		
2,00 m ³			21000 kg		
Choice of Machine: Excavator Volvo EC210C			Max number of m3		
			12,00 m ³		
			Do not exceed the maximum payload		
			22.200		
Pos.nr:					
Text	Formel.	Quantity	Unit	Text	Formel.
Bucket size		2,00 m ³		Max. Weigth	
		58,744 m ³		Distance to tip	5 km
Density		1850 kg/m ³		Speed	40 km/t
Efficiency		0,6 Faktor		Max volume.	(max weigth/soildensity)/loadingfactor
Cyclus time		30 Sek		Drivingtime total	2*(distance*60min/h)/avarage speed
Loadind factor	0,8	0,8 Faktor		Loadingtime	Max volum/bucketsize*(cyklustime/60)
Bucket factor		1,1 Faktor		Unloading time	1,00 min
Production.	Bucketsize*(3600/cyclus time) *Efficience.*bucket	126,72 m ³ /time		Maneuvretime	1,60 min
				Circulationtime	Loadingtime+drivingtime+maneuuvre+ unload
				Lorrys production	(60min/h/ circulationtime)*max.volume
				Number off truks	23,28 min
					30,93 m ³ /time
Hours total		0,464 Hours		Hours total	4,1
					1,900 Hours

Machine hour calculation: Excavation away Number of m ³ to be moved in solid measure 3734,278 m ³ Bucket size 2,00 m ³ Choice of Machine: Excavator Volvo EC210C				Calculation of transport Choice of vehicle: Scania R114CB Max load pr vehicle: 21000 kg Max number of m ³ 12,00 m ³ Do not exceed the maximum payload 22.200			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00	m ³	Max. Weigth		22.200	kg
		3734,278	m ³	Distance to tip		5	km
Density		1850	kg/m ³	Speed		40	km/t
Efficiency		0,6	Faktor	Max volume.	(max weigth/soildensity)/loadingfactor	12,00	m ³
Cyclus time		30	Sek	Drivingtime total	2*(distance*60min/h)/avarge speed	15,00	min
Loadind factor	0,8	0,8	Faktor	Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min
Bucket factor		1,1	Faktor	Unloading time		1,00	min
Production.	Bucketsize*(3600/cyclus time)	126,72	m ³ /time	Maneuvretime		1,60	min
	*Efficience.*bucket			Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28	min
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time
				Number off truks		4,1	
Hours total		29,469	Hours	Hours total		120,751	Hours

Machine hour calculation: Excavation away Number of m ³ to be moved in solid measure 14,09 m ³ Bucket size 2,00 m ³ Choice of Machine: Excavator Volvo EC210C				Calculation of transport Choice of vehicle: Scania R114CB Max load pr vehicle: 21000 kg Max number of m ³ 12,00 m ³ Do not exceed the maximum payload 22.200			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00	m ³	Max. Weigth		22.200	kg
		14,09	m ³	Distance to tip		5	km
Density		1850	kg/m ³	Speed		40	km/t
Efficiency		0,6	Faktor	Max volume.	(max weigth/soildensity)/loadingfactor	12,00	m ³
Cyclus time		30	Sek	Drivingtime total	2*(distance*60min/h)/avarge speed	15,00	min
Loadind factor	0,8	0,8	Faktor	Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68	min
Bucket factor		1,1	Faktor	Unloading time		1,00	min
Production.	Bucketsize*(3600/cyclus time)	126,72	m ³ /time	Maneuvretime		1,60	min
	*Efficience.*bucket			Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28	min
				Lorrys production	(60min/h/ circulationtime)*max.volume	30,93	m ³ /time
				Number off truks		4,1	
Hours total		0,111	Hours	Hours total		0,456	Hours

Machine hour calculation: Excavation away Number of m ³ to be moved in solid measure 34,759 m ³ Bucket size 2,00 m ³ Choice of Machine: Excavator Volvo EC210C				Calculation of transport Choice of vehicle: Scania R114CB Max load pr vehicle: 21000 kg Max number of m ³ 12,00 m ³ Do not exceed the maximum payload 22.200			
Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00	m ³	Max. Weigth		22.200	kg

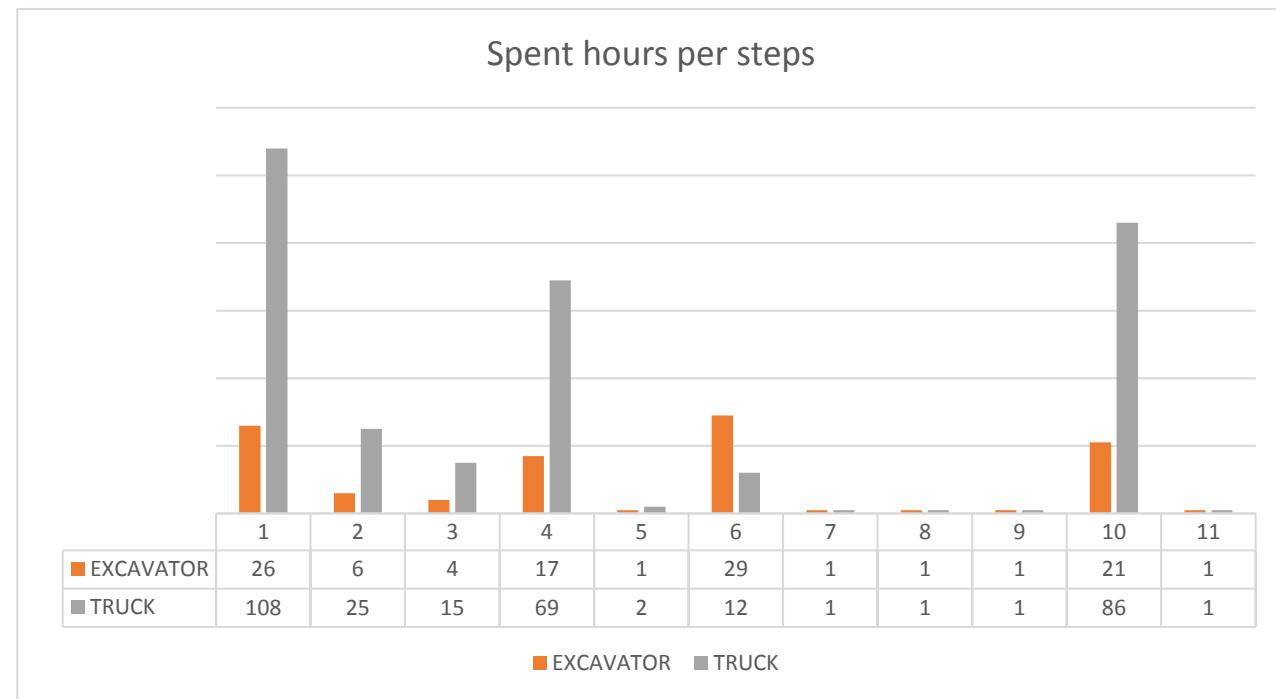
	34,759 m ³	Distance to tip	5 km
Density	1850 kg/m ³	Speed	40 km/t
Efficiency	0,6 Faktor	Max volume.	(max weight/soildensity)/loadingfactor
Cyclus time	30 Sek	Drivingtime total	2*(distance*60min/h)/avarage speed
Loadind factor	0,8	Loadingtime	Max volum/bucketsize*(cyklustime/60)
Bucket factor	1,1 Faktor	Unloading time	1,00 min
Production.	Bucketsize*(3600/cyclus time) *Efficiency.*bucket	Maneuvretime	1,60 min
		Circulationtime	23,28 min
		Lorrys production	(60min/h/ circulationtime)*max.volume
		Number off truks	30,93 m ³ /time
			4,1
Hours total	0,274 Hours	Hours total	1,124 Hours

Machine hour calculation: Excavation away	Calculation of transport
Number of m ³ to be moved in solid measure	21,463 m ³
Bucket size	2,00 m ³
Choice of Machine: Excavator Volvo EC210C	Choice of vehicle: Scania R114CB

Pos.nr:	
Text	Formel.
Bucket size	Quantity
	Unit
	2,00 m ³
	21,463 m ³
Density	1850 kg/m ³
Efficiency	0,6 Faktor
Cyclus time	30 Sek
Loadind factor	0,8
Bucket factor	1,1 Faktor
Production.	Bucketsize*(3600/cyclus time) *Efficiency.*bucket
	126,72 m ³ /time
	0,169 Hours
Hours total	Hours total
	0,694 Hours

Machine hour calculation: Excavation away	Calculation of transport
Number of m ³ to be moved in solid measure	2643,986 m ³
Bucket size	2,00 m ³
Choice of Machine: Excavator Volvo EC210C	Choice of vehicle: Scania R114CB

Pos.nr:	
Text	Formel.
Bucket size	Quantity
	Unit
	2,00 m ³
	2643,986 m ³
Density	1850 kg/m ³
Efficiency	0,6 Faktor
Cyclus time	30 Sek
Loadind factor	0,8
	Max. Weigth
	Distance to tip
	Speed
	Max volume.
	(max weight/soildensity)/loadingfactor
	Drivingtime total
	2*(distance*60min/h)/avarage speed
	Loadingtime
	Max volum/bucketsize*(cyklustime/60)
	Unloading time
	1,00 min
	Maneuvretime
	1,60 min
	Circulationtime
	Loadingtime+drivingtime+maneuvre+ unload
	(60min/h/ circulationtime)*max.volume
	Number off truks
Hours total	Hours total
	0,694 Hours


Bucket factor	1,1 Faktor	Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28 min
Production.	Bucketsize*(3600/cyclus time)	126,72 m ³ /time	Lorrys production (60min/h/ circulationtime)*max.volume	30,93 m ³ /time
	*Efficiency.*bucket		Number off trucks	4,1
Hours total	20,865 Hours	Hours total		85,496 Hours

Machine hour calculation: Excavation away	Calculation of transport
Number of m ³ to be moved in solid measure	24,539 m ³
Bucket size	2,00 m ³
Choice of Machine: Excavator Volvo EC210C	Choice of vehicle: Scania R114CB

Max load pr vehicle: 21000 kg
Max number of m³ 12,00 m³
Do not exceed the maximum payload 22.200

Pos.nr:							
Text	Formel.	Quantity	Unit	Text	Formel.	Quantity	Unit
Bucket size		2,00 m ³		Max. Weigth		22.200 kg	
		24,539 m ³		Distance to tip		5 km	
Density		1850 kg/m ³		Speed		40 km/t	
Efficiency		0,6 Faktor		Max volume.	(max weigth/soildensity)/loadingfactor	12,00 m ³	
Cyclus time		30 Sek		Drivingtime total	2*(distance*60min/h)/avarage speed	15,00 min	
Loadind factor	0,8	0,8 Faktor		Loadingtime	Max volum/bucketsize*(cyklustime/60)	5,68 min	
Bucket factor		1,1 Faktor		Unloading time		1,00 min	
Production.	Bucketsize*(3600/cyclus time)	126,72 m ³ /time		Maneuvretime		1,60 min	
	*Efficiency.*bucket			Circulationtime	Loadingtime+drivingtime+maneuvre+ unload	23,28 min	
				Lorrys production (60min/h/ circulationtime)*max.volume		30,93 m ³ /time	
				Number off trucks		4,1	
Hours total	0,194 Hours	Hours total				0,793 Hours	

STEP	EXCAVATOR	TRUCK
1	26	108
2	6	25
3	4	15
4	17	69
5	1	2
6	29	12
7	1	1
8	1	1
9	1	1
10	21	86
11	1	1

5. ANEXO 5 (ELECTIVE SELF STUDY REPORT – DIFFERENCES BETWEEN DANISH AND SPANISH METHODS OF FOUNDATION)

DIFFERENCES BETWEEN DANISH AND SPANISH METHODS OF FOUNDATION

4th semester Elective Subject

BATCoM Bachelor of Architectural
Technology and Construction
Management

Author: Maria Julian Martin

Consultant's name: Steen Fynbo Larsen

Name of institution: VIA University
College, Horsens, Denmark

Date Handed in : 26th May 2015

TITLE PAGE

Architectural Technology and Construction Management

BATCoM

TITLE of DISSERTATION: Differences between Danish and Spanish methods of foundation

CONSULTANT: Steen Fynbo Larsen

AUTHOR: María Julián Martín

Student number: 219844

Date / Signature: 26th of May 2015

Number of copies: 1

Number of pages: 24

Number of characters: 25388

Font: Calibri 12

All rights reserved – no part of this publication may be reproduced without the prior permission of the author.

NOTE: This dissertation was completed as part of a Bachelor of Architectural Technology and Construction Management degree course – **no responsibility is taken for any advice, instruction or conclusion given within!**

1 PREFACE

This report has been written as a compulsory research assignment in the 4th semester of Danish Bachelor of Architectural Technology and Construction Management.

This report is about foundation, such as Denmark as Spain, my home country. I would like to show the differences between both countries as well as the different information received as student by the teachers.

Lot of information given in this report is written, but also I want to show with pictures, drawings or details of the information. This way I think will be easily to understand almost technical words, constructive elements as well as constructive process.

Acknowledgements

I have to say thank you to my consultant teacher that have shown his dedication and interest by giving tips, advices and assistance that helped in creating this report, because without his support this report wouldn't be as good as it is.

As well, I would like to say thank you to one of my Spanish teacher who helped me with Spanish Technical part of this report.

2 ABSTRACT

My problem statement is "DIFFERENCES BETWEEN DANISH AND SPANISH FOUNDATION". Like I write in next steps of this report, I want to write about foundation because I think is one of the most important points in buildings. This semester I do details about foundation and basement walls and it is very important to take care of insulation, good drainage, dimensions that can support the load from the building to the soil, have knowledge of soil characteristics, groundwater level and all kind of conditions outside and inside the building that can produce damages to the foundation.

The report contains next Research Questions: 1) Kinds of foundation's methods in Denmark. 2) Kinds of foundation's methods in Spain. 3) Pathologies in foundations

In two first questions, I explain, like title says, different methodologies of foundation in each country, factors that we have to consider when we have to choose one type or other one. I want to write about pathologies in foundations because I think is very important consider all the problems we can find when we are going to build the foundation, like groundwater level, soil properties, loads to consider...

KEY WORDS: foundation, footing, terrain, soil, concrete, loads, stress.

3 LIST OF CONTENTS

1	Preface.....	2
2	Abstract	2
3	List of contents	3
4	Introduction	4
4.1	Background information and presentation of subject.....	4
4.2	Research questions	4
4.3	Delimitation.....	4
4.4	Choice of theoretical basis	5
5	Main quest	5
5.1	Kinds of foundation's methods in Denmark	5
5.2	Kinds of foundation's methods in Spain	10
5.2.1	Shallow foundation	10
5.2.2	Deep foundation	14
5.2.3	Concrete walls.....	16
5.3	Pathologies in foundations.....	17
5.3.1	Damages caused by ignorance of the terrain	17
5.3.2	Damages caused by the water	18
5.3.3	Foundations in expansive terrains	18
5.3.4	Foundations in stroking terrains	19
5.3.5	Damages caused by frostings	19
5.3.6	Foundations in unstable terrains	19
5.3.7	Foundations in terrains with organic field	20
5.3.8	Foundations in aggressive fields for the concrete	20
5.3.9	Pathologies caused by basement's excavations and execution.....	20
5.3.10	Pathologies caused by fillers	21
6	Conclusion	21
7	List of illustrations	22
8	List of references.....	23

4 INTRODUCTION

4.1 BACKGROUND INFORMATION AND PRESENTATION OF SUBJECT

This report has been written as a compulsory research assignment in the 4th semester of Danish Bachelor of Architectural Technology and Construction Management education for an educational, technical and potential career perspective.

The purpose of this report is, on the one hand, make a study of the different methods of foundation used in both Denmark and Spain, and make a study of pathologies we can find, how we can solve it and problems we can avoid in foundations.

The research method that have been used to find needed information is internet, books, building regulations and lectures from my Spanish subjects.

Foundation is one of the most important point in buildings. It is composed of a set of structural elements whose mission is to transmit the loads of the building to the soil, distributing so as not to exceed the allowable stress or not creating zonal loads. I am very interested in this subject because, as an Architectural Technology student, I love different ways to build construction elements, their functionality such as kind of materials used to build it.

I choose foundation because in Scheme Design Phase in 4th semester, I had to draw the details, prices and study of materials of this part of the building, and I realized that there are some differences between the ways we are used to build in Spain.

4.2 RESEARCH QUESTIONS

The next step in the report will be analysing foundation. We will focus on:

- Kinds of foundation's methods in Denmark
- Kinds of foundation's methods in Spain.
- Pathologies in foundations.

4.3 DELIMITATION

Because the delimitation can be sometimes hard to approve, I will try to find the best way to combine all the knowledge that I have gained after searching for information on different sources, in order to highlight the most important things that involves studying different methodologies of foundation, as well as pathologies or damages we can find in this part of the building.

4.4 CHOICE OF THEORETICAL BASIS

My research is based on information found in Building regulations (Spanish and Danish), lectures of different Spanish subjects I studied there, pictures I took in some visit works with university, drawings of construction books and some pictures of web pages.

5 MAIN QUEST

5.1 KINDS OF FOUNDATION'S METHODS IN DENMARK

This main quest is about, like the title said, foundation in Denmark. I am going to write about information I founded in “SBI Direction 189”, dimensioning of footings, kinds of concrete used to build this constructive elements and foundation control classes.

Foundation includes dimensioning and construction elements that transmit load from the building to soil bearing stratum.

Next I show some details of three possible solutions of foundation:

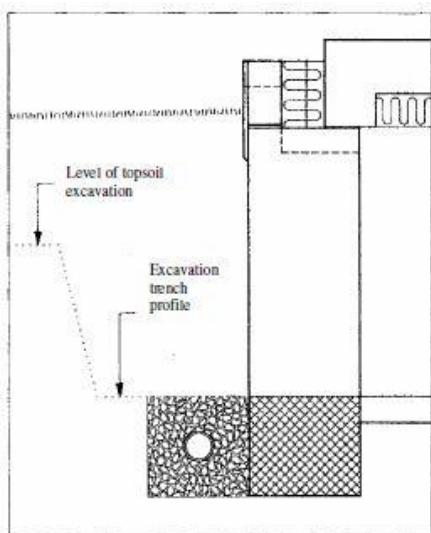


Figure 1. Foundation at ground supported floor

- Foundation at ground supported floor.

Normally in situ cast concrete as a deep strip foundation is used. The upper part is often built using clinker concrete blocks. Hollow concrete blocks may also be used especially where the topsoil excavation level is below the topside of the deep strip foundation, thus avoiding the use of formwork for casting the upper part of the foundation. The foundation shall have at least the same width as the wall above and should be symmetrically placed below this. The figure also shows the placement of a perimeter drain and a branch drain, which connect the capillary breaking layer beneath the floor with the perimeter drain.

- Foundation at crawl space.
- Often a concrete pad is cast in situ and the crawl space wall is then constructed using clinker concrete blocks or hollow concrete blocks cast with concrete. The wall can also be cast fully or partly fully in situ. The foundation shall have at least the same width as the wall above, and it should be symmetrically placed below this.

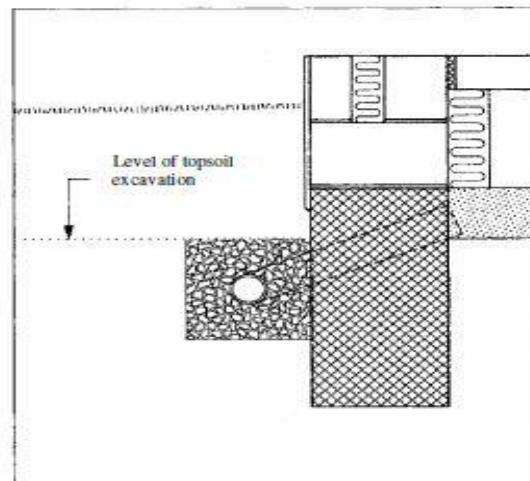


Figure 2. Foundation at crawl space

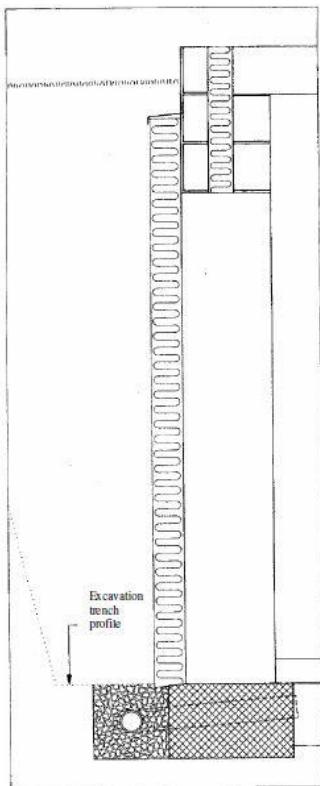


Figure 3. Foundation at basement

- Foundation at basement. Usually a concrete pad is cast in situ and the basement wall is then built using clinker concrete blocks or using hollow concrete blocks cast with concrete. Alternatively, the entire wall can be cast in situ. The foundation pad shall have at least the same width as the basement wall and it should be symmetrically placed below it. The figure also shows the placement of a perimeter drain and a branch drain which connect the capillary breaking layer under the floor with the perimeter drain.

FOUNDATION CONTROL CLASSES

In this section, I am going to write about low control class. This class only comprises small and simple foundations on virgin and stable stratum above the water table. Such foundations can under certain conditions be constructed based on empiric knowledge and

without prior geo-technical surveys. In such cases geo-technical surveys of the sub soil shall be undertaken.

LOW FOUNDATION CONTROL CLASS

Foundations shall be constructed to a dept where they will rest directly on firm bearing stratum. That is usually a packed mixture of clay, sand and stone. However, a bearing stratum can also consist of packed sand, gravel or coarse silt (called non-cohesive soil).

If the bearing stratum is deeper than 2m, it will usually be expedient to let an expert carry out the actual design work.

When inspecting finished excavations, it must always be verified that foundation is carried out on firm and stable sediments.

The local building authorities will demand to inspect the excavation before casting the first foundation.

Usually the following soil layers are not considerable stable: fill, soil which has been excavated before or frozen soil, sediments with content of organic material. The latter is characterised by not containing sand or stones and by having a high water content (25-40%).

Apart from resting on a bearing stratum, foundations shall be constructed at least to frost-free depth. Regarding external wall foundations, frost-free depth is usually 0.9m below the surface. However, with special soil conditions such as silty soil the depth may have to be high. Silt is a soil type with grains rougher than clay but finer than sand.

In low foundation control class there must be no digging below the level of the water table. It is therefore important to ensure that the water table is deeper than the planned level of foundation before starting the excavation.

The excavation must not constitute any risk of damages to neighbouring buildings, sewer and supply lines, public traffic areas or similar. Thus, conditions in the neighbouring areas can in some cases exclude foundation work according to conditions in low foundation control class.

DIMENSIONS

Based on presumptions deep strip foundation can be carried out without further investigations (using values of table nr. 2).

Type of house	Width of deep strip foundation in m	
	Under load-bearing and non-load-bearing external walls	Under load-bearing internal walls
1 storey with ground supported floor	0.30	0.20
1½ storeys with ground supported floor	0.30	0.20
2 storeys with ground supported floor	0.30	0.25
1 storey with crawl space	0.30	0.25
1½ storeys with crawl space	0.30	0.35
2 storeys with crawl space	0.35	0.35
1 storey with basement	0.35	0.25
1½ storeys with basement	0.35	0.35
2 storeys with basement	0.40	0.40

The foundation height should be chosen to at least 0.30 m under load-bearing internal walls. However, in houses with ground supported floor, at least 0.20 m. Brickwork chimneys and fireplaces require a foundation of the same height as stated for the deep strip foundations.

Figure 4. Dimensions of deep strip foundation under walls in small single length houses.

The dimensions are valid for traditional single length houses that is, houses with load-bearing facades and possible load-bearing longitudinal walls placed close to the centre line of the house.

Deep strip foundations shall have at least the same width as the wall above and should be placed symmetrically beneath this. In houses with basement where the foundation is used as abutment for the concrete slab in the basement floor, the foundation shall be at least 0.10m wider than the basement wall. This will usually be fulfilled if the width is chosen 0.50m.

Non-load bearing internal walls can usually be founded directly at the floor deck concrete slab. The maximum linear and point loads, which can be transmitted, depend on the concrete slab and the insulating material.

If bracing walls are not founded as load-bearing walls one must ensure that the vertical reaction can be absorbed by the bed on which the wall is resting.

WORKMANSHIP

Foundation work starts by excavating an area similar to the geometry of the building. However, topsoil must be removed to a depth where the stratum is no longer weak and compressible (removal of layers containing organic material). Hereafter commences the excavation of trenches for the foundation according to dimensions (widths and depths). Dug out material must under no circumstances be filled back into the trenches. Noticed that the foundation level (depth) shall at least correspond to the underside of the floor to be constructed later.

Internal walls foundations in houses with ground supported floor shall only be taken down to load bearing subsoil, as they will not exposed to frost.

If the over site excavation level is lower than the topside of the deep strip foundation the upper part of the foundation can be cast using formwork. Alternatively hollow blocks of concrete or clinker concrete as well as massive clinker concrete blocks may be used. The hollow blocks are stacked on the strip foundation with tight joints and bonding.

When casting no more than two courses must be cast at one time using 5 or better. The concrete is carefully compressed with immersion vibration. Horizontal construction joints shall be placed along the centreline of the blocks.

When over site excavation reaches deep down it might be expedient to build the entire foundation of hollow blocks on top of a concrete blinding.

The under site of the foundation shall be horizontal. It is showed in figure nr 4. Where service lines are taken across the foundation, the foundation must be carried out according to figure 5.

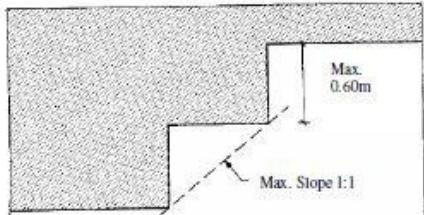


Figure 5.

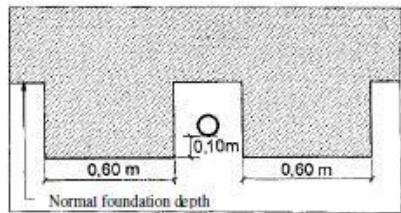
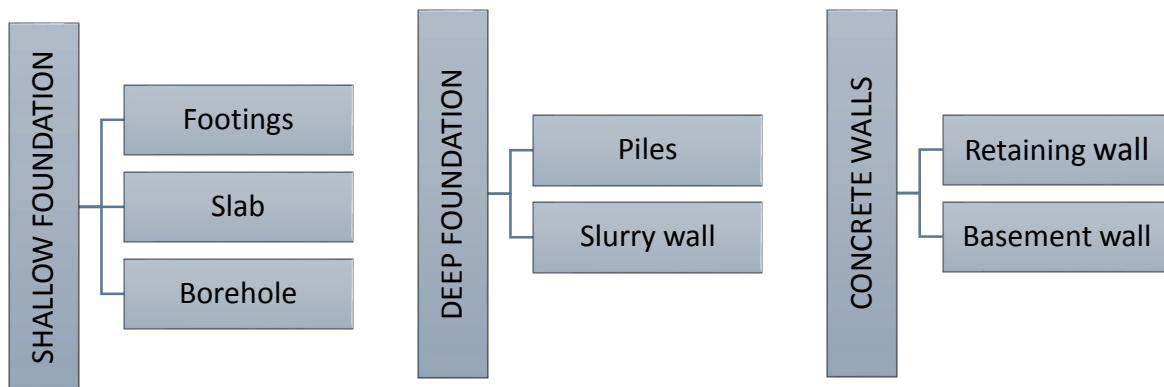


Figure 6

The under site of deep strip foundations shall be horizontal and even. Stepping must have a maximum height of 0.60m. The gradient depends on the soil conditions, but cannot slope more than 1:1.

Where service lines cross the deep strip foundation, the underside of the foundations shall be at least 0.10m deeper than the crossing line at a distance of minimum 0.60m on either side of the line.

Trenches for sewer and drain pipes which are dug parallel to the foundation must not be dug deeper than the bottom of the foundation.


INSERTS OR RECESSES

To ensure the stability of the house it is often necessary to anchor the roof construction and/or the walls to the foundation. The placement of anchors must be determined prior to casting the foundation because the fixing of anchors can be done either simultaneously to casting or recesses can be made in the concrete for later fixing. The same applies to the placement of branch drains.

5.2 KINDS OF FOUNDATION'S METHODS IN SPAIN

This part of the report contains information about how are differenced kinds of foundation depend of their function. All kinds of foundation have the same function, which is transmit the load from the whole building to the soil.

Following, I am going to show a scheme about kind of foundations depending on the depth to which they are built:

5.2.1 Shallow foundation

They are those transmit the load to the soil above a horizontal plan. They are used when the terrain has enough resistance to load bearing in an accessible depth and it is sufficiently homogeneous to have differential seats.

FOOTINGS

In this kind of foundation, each column rests above one footing, transmitting the load to the soil. The way of work of the footings is different depending of they are flexible or rigid. The first one works as flexion work, having compressed zones (absorbed by concrete) and traction zones (where we put reinforcement). When the footing has more high than the half of its width, it does not work as a flexion work, unless it does rigid way. In this case, it is applied connecting rods and braces. The pressing distribution above the soil is bigger in the edges than in the middle of the footing.

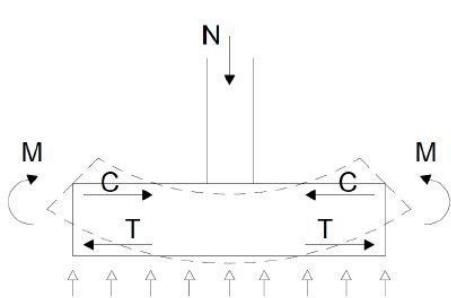
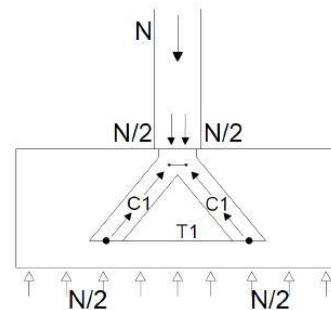



Figure 7.
Flexible and
rigid footing

- Single footing. They are those receive load from only one support. Its plant is used to be square or rectangular. The first step in the constructive process is throw around 10 cm of poor concrete and when it is hardened, it is placed the reinforcement with receptive spacer.

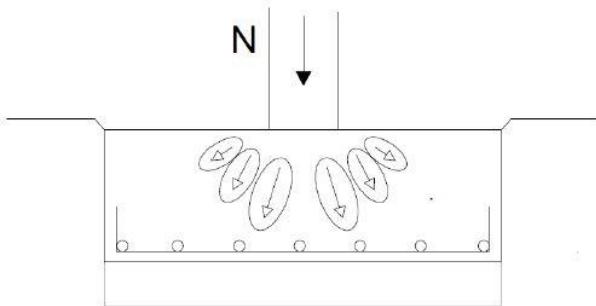


Figure 8. Section of single footing

Figure 9. Construction of single footing

- Strip footing. They are used as foundation of brickwork or concrete work load bearing walls. The longitudinal reinforcement serves to tie the footing and to avoid the footing does not crack transversally. If the wall is made of concrete, the footing will also carry vertical reinforcement to join it to the reinforcement of the wall.

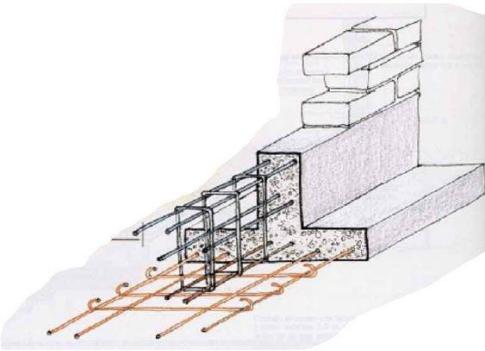


Figure 11. Drawing of strip footing

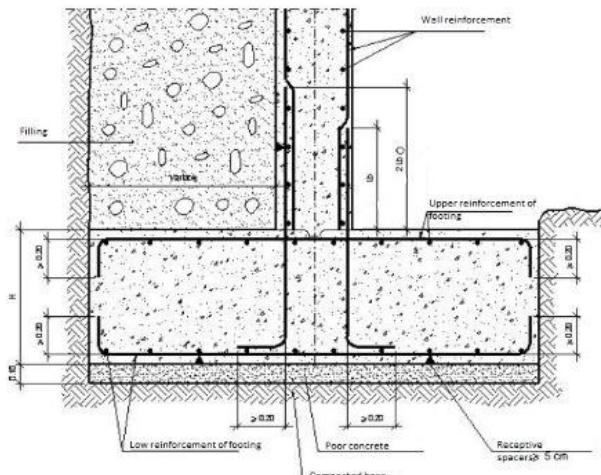
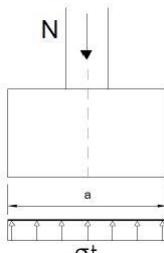
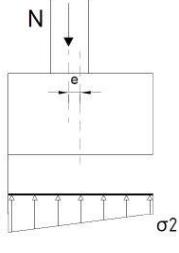
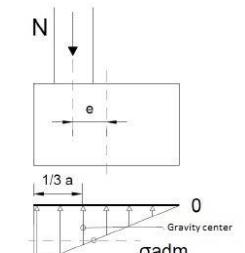
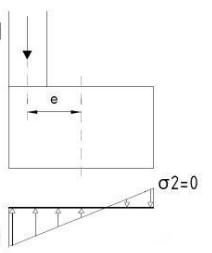
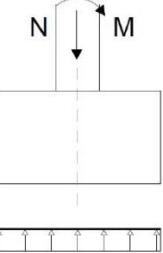
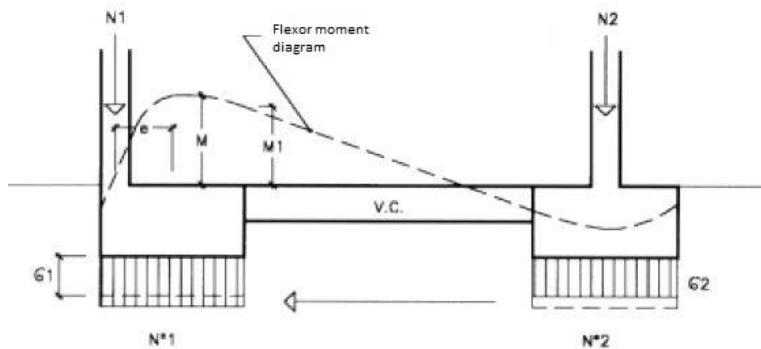








Figure 10. Section of strip footing

- Eccentric footing. Depending where the column is placed, we have different kind of eccentric solutions:

Centred column.	Column with a little eccentricity	Column with eccentricity	Column in the edge of the footing	Centred column, but with one load and as well as flexor moment
 Figure 12	 Figure 13	 Figure 14	 Figure 15	 Figure 16

- Bracing beam. They are elements which tie single footings horizontally, avoiding that they are scrolled. Usually it is placed one bracing beam tieing all the footings of the perimeter of the building, and another ones tieing interior footings.
- Strap footing. They tie one eccentric footing with another footing (might be eccentric or not). They counterbalanced the turnaround of the eccentric footing, with tractions placed in the upper side.

Figure 17. Section with strap footing

- Pooled footing. They are used when single footings are placed closed one each other and gather more than one column. It consists in that the gravity center of the footing plant concurs with the result of loads of the supports. One example of this kind of foundation is in the case when two columns and they have in the middle one dilatation joint of the building.

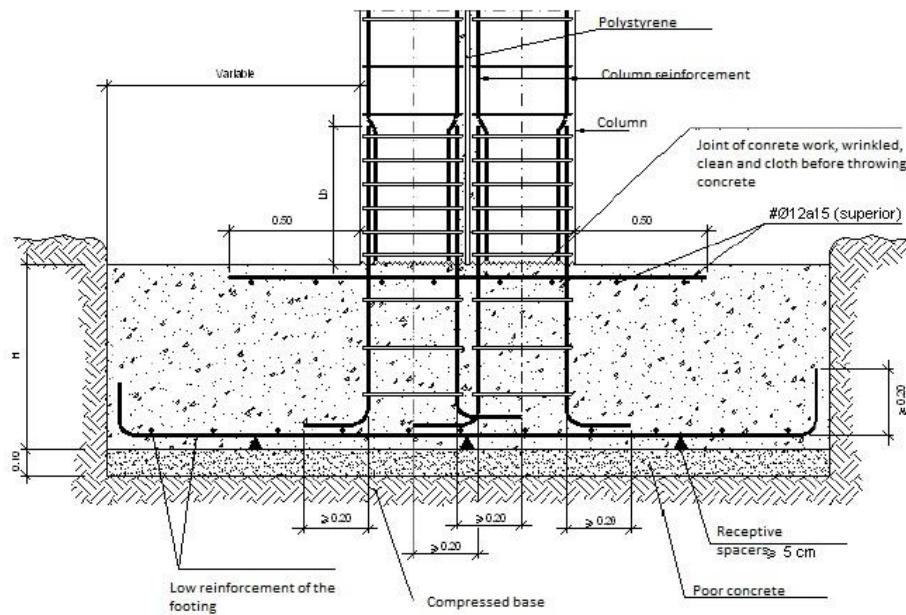


Figure 18. Section of pooled footing

SLABS and FOUNDATION BOARD

The theoretical difference between slabs and boardas is that the first one works in one direction and the other one in two directions.

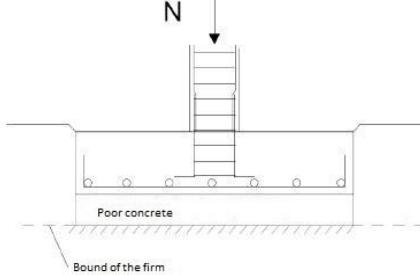
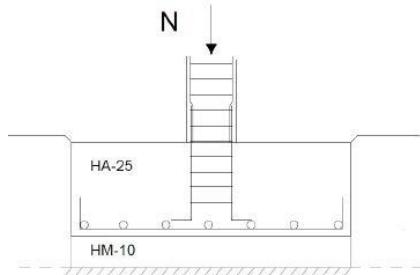
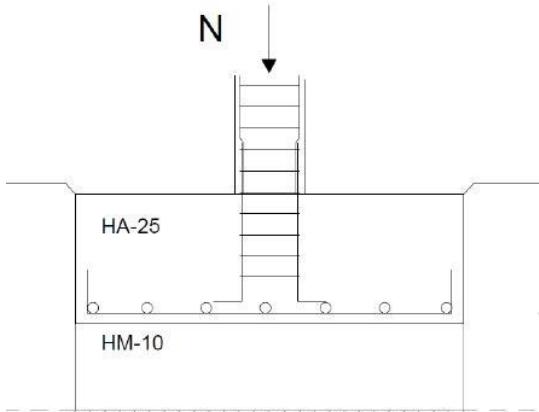
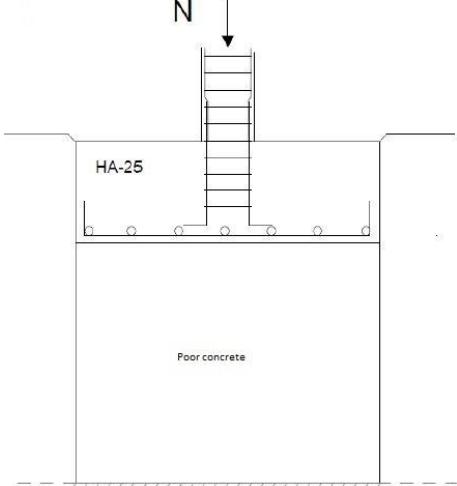
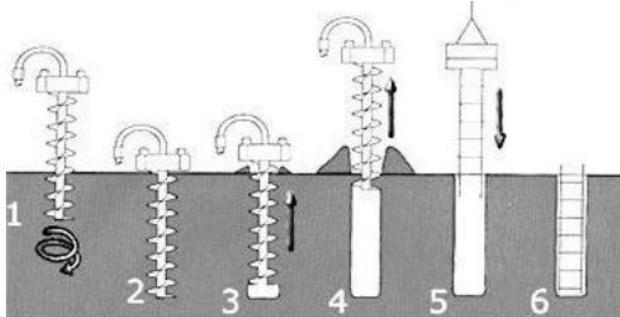
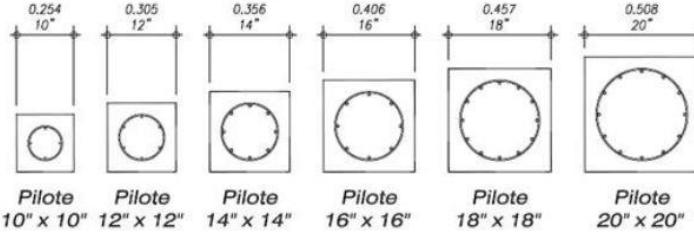
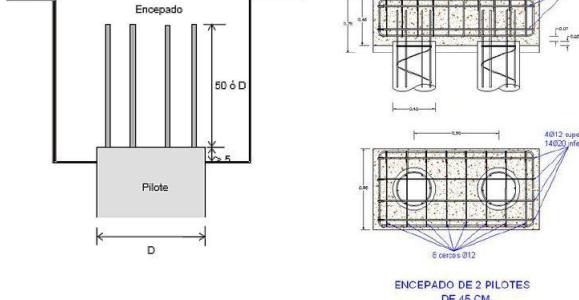




- Lineal slab. They are footings which support more than two columns. They are used when the building has columns close one each other, or when it is wanted to avoid excessive differential seats.
- Reticular slabs. They are those that are used when lineal slabs are placed in two orthogonal directions. This way, there is stress distribution in a flat surface without excessive shift. The bracing is perfect in this case and there is capacity with local fails of the terrain.
- Foundation boards. They are used in heterogeneous terrain, with low strength and when the structure does not permit differential seats.

Figure 20. Foundation board
Figure 19. Foundation board




BOREHOLE

When the firm of the terrain is next to the surface	When the firm is more depth, we
<p data-bbox="218 633 816 897">With higher depth of the firm, we might throw one layer of poor concrete more than 10 cm, or using one concrete footing in mass with more high</p>	<p data-bbox="816 633 1406 897">When the firm is placed in a depth of 2-5m, it is frequently used boreholes, which consists in fill the digging with poor concrete to optim height</p>
<p data-bbox="218 1372 816 1499">Figure 21</p>	<p data-bbox="816 1372 1406 1499">Figure 22</p>
<p data-bbox="218 1499 816 1499">Figure 23</p>	<p data-bbox="816 1499 1406 1499">Figure 24</p>

5.2.2 Deep foundation

When the foundation can't be made as a shallow foundation, because the firm is founded in more than 6-8 m of depth, where the back hole does not reach there.

- Piles. They are columns nailed in the terrain, which they found the firm. We can difference depending their way of execution:

<p>In situ: it is made a perforation in the soil where it is placed reinforcement inside and then it is filled with concrete</p>	<p>Figure 25</p>
<p>Prefabricated: they are nailed in the terrain by hitting or by a metallic blade equipped for this work. They are made for two reinforcement: one longitudinal and another one transversal</p>	<p>Figure 26</p>
<p>Pile cap: constructive element used to connect pile groups with other columns or load bearing walls of the building</p>	<p>Figure 27</p>
<p>Micro piles: foundation element combined for a steel tube placed inside a drilled hole in the terrain and received by injected cement</p>	<p>Figure 28</p>

- Slurry wall. They are land retaining elements, which are executed before cleaning the terrain, from the surface of the column. This kind of foundation is used in case when the soil would not be stable before cleaning the terrain.

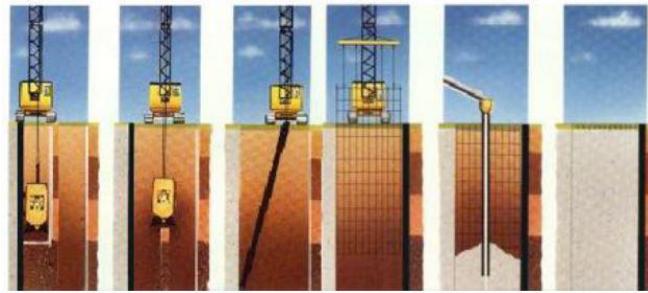


Figure 29. Slurry wall construction scheme

5.2.3 Concrete walls

Loads to considering in walls: self-weight, earth pressure, loads over the wall and loads over fill of stem.

The walls must be have vertical dilatation joints to absorbing deformations caused by temperature. They will placed each 30m maximum.

- Retaining walls/ basement walls.

In this walls, the stress produced by building loads are bigger than those produced by the terrain. The walls are braced horizontally by the edges. The constructive process is explained in the following lines:

Digging the basement alternatively in steps of 2-3m of width, but keeping a perimeter slope. Once the footing and the correspondent wall are concreting (form worked walls one side), it is excavated other non-consecutive stretch. Finally, when the perimeter is closed, one top of the wall beam is executed in the upper side of the wall.

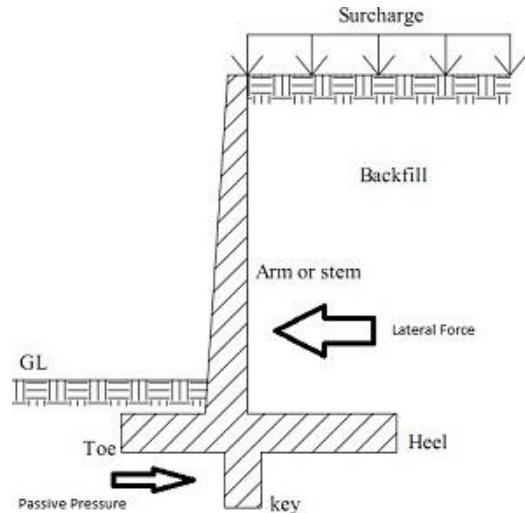


Figure 31. Parts of retaining wall

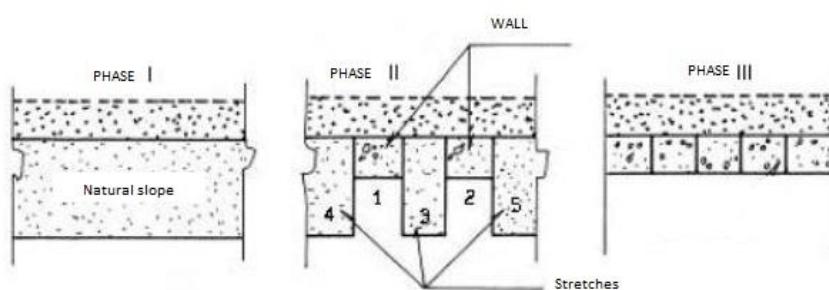


Figure 30. Retaining wall construction

Figure 32. Retaining wall image

5.3 PATHOLOGIES IN FOUNDATIONS

One of the first steps before we start with the project of one building is ordering the geotechnical study.

It should be ordered giving information about kind foundation to make, high of the building, loads to foundation, characteristics... with the objective of the report determines suitable alternative foundations, resistant stratum's depth, seats, precautions to take into account to foundation' execution, terrain's aggressive, groundwater level...

We can group the pathologies in this points:

5.3.1 Damages caused by ignorance of the terrain

The pressures bulb of one square footing affects the soil to depth around 1.5-2 times B (B =foundation width). This way, pressures distribution depends of the footing form.

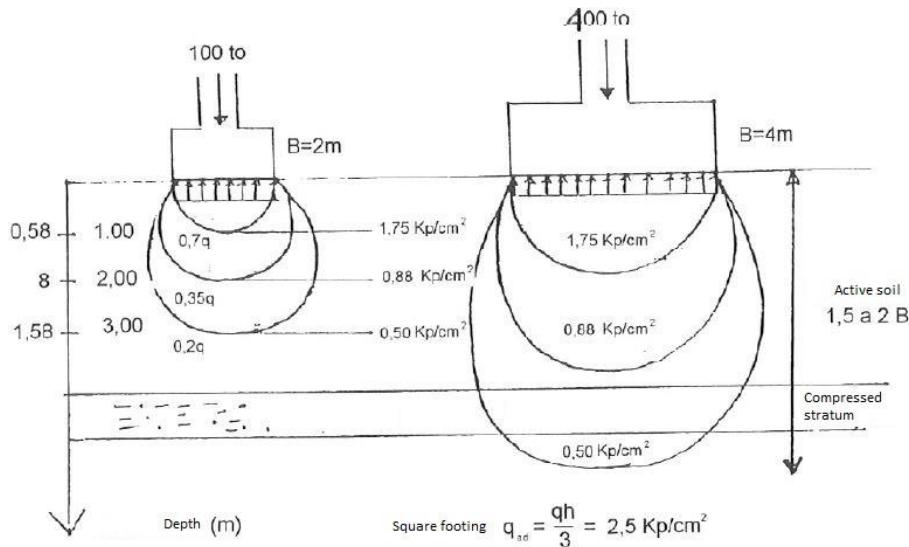


Figure 33. Possible different seats

5.3.2 Damages caused by the water

The moisture variations in soils can be produced by some points:

- Green area openings
- Water supply cracked
- New watercourse creation
- Diversion of currents for slurry wall construction, basements...

5.3.3 Foundations in expansive terrains

Expansive soils can swell when water is present and shrink back when they get drained. They are very fine grain soils, and as much smaller are the grains of their mineral structure, bigger is the phenomenon, because meniscus smaller are made and inter-granular strengths more potent appear which can produce cracking the soil.

The expansibility depends of:

- Particles size
- Mineralogical composition of them
- Moisture variation
- Weather
- Terrain (permeability)

This damages will worsen depending of next factors:

- Construction time
- Foundation's depth
- Number of floors and total weight of the building

- Rigidity or flexibility of the structure and work's resistance
- Situation and deformation capacity of water supply and sewer, to avoid leaks.
- Rainwater network design
- Perimeter pavement
- Gardens, trees existing close to the construction
- Heating system existing that may produce terrain dried

Expansively and retraction of expansive clay are manifested in every direction, giving rise to horizontal movements, that they produce horizontal thrust above foundation. Consequently, it produces vertical cracking in buildings and producing the walls to tip over.

Foundation must be treated to adequate to the phenomenon, what increase the process constructive price adopting solutions like:

- Solutions that delete or treat to mitigate moisture variations (making wider pavements...)
- Treating to insulate the foundation of the active terrain (piles, boreholes...)
- Solutions that adopt the structure rigidity to expected deformations, or in the other hand, making very rigid structures.

5.3.4 Foundations in stroking terrains

This soils have low density, big pores 'rate, with rigid appearance and they correspond to flabby silts bit cohesive non-saturated. When they are saturated, the water dissolves natural cement that gives rigidity to its mineral structure and produces collapse.

Appropriate foundations should be those one that transmit their loads to deeper strata non-stroking (piles). In the case it couldn't be possible, it could be cemented directly over a compressed soil (of 2-4m power) in function of stroking way of the soil and pressure bulb, with a density equal or higher than $1.60T/m^3$.

5.3.5 Damages caused by frostings

In wet soils, when some frozen is produced, the water get frozen and increases its volume. If the terrain has fine grain, when it gets frozen and interstitial water increases its volume, it is sponged and when the defrosting is produced, the opposite phenomenon is taken placed, this way one light foundation that is inside the frozen influence zone will have movements that it have to raise during the frosting and go down with the defrosting.

5.3.6 Foundations in unstable terrains

Instability in terrains may be due to superficial effects that may cover big zones, like movements of hillsides, and problems with subsidence and cavities.

Unstable hillsides used to be produced by plastic terrains, that above rock bases, impermeable, with a little angle, have tendency to get expanded because of the water.

The subsidence phenomenon is a generalized seat of the terrain for consolidation, dissolution or extraction of it in below layers.

5.3.7 Foundations in terrains with organic field

The soils with organic field, vegetal rests... are not able to make foundation, because of decomposition of organic field produces important seats. This way, it has to be necessary replace or cross them with deep foundations.

5.3.8 Foundations in aggressive fields for the concrete

The aggression of the terrain can be evaluated by:

- Water analysis: PH value, silicic acid content, calcic ion content, magnesium ion content, sulphate ion content, chlorine ion content, carbonic acid content, water hardness.
- Soil analysis: organic field content, soluble salts content, determination of PH of soil.

Once the aggression of the soil around the foundation is determined, it is used appropriate special cements.

5.3.9 Pathologies caused by basement's excavations and execution

When an excavation is made, one stress alteration in the next terrain, producing horizontal and vertical deformations.

Horizontal deformations are made by earth pressure, aggravating in the case of loads produced to close foundation exist.

Vertical deformations are made by different isostatic loads that the excavation soil is subdued.

There are some factors that take action in this movements:

- Soil conditions and characteristics of it
- Groundwater level existence
- Dimensions and excavation depth
- Systems and excavation times
- Retaining support rigidity and execution sequence
- Surrounding loads. Kind of buildings (New or old)
- Vibrations existence
- Weather conditions

5.3.10 Pathologies caused by fillers

When a filled soil is placed above one terrain, this load increase will produce some terrain seats, which will depend of the filled weight and soil compressibility. This seat will affect to adjacent plots, and next foundations will be affected, inducing differential seats in footings.

6 CONCLUSION

After completing this report, I have better idea how is used to work in foundations in Denmark. I had an idea of Spain, but this way, my knowledge about foundation is bigger.

As well, like I said in the beginning of this report, foundation is one of the most important points in the buildings, so we have to study carefully different pathologies, possible damages, soil where we are going to build and every characteristics that can produce any kind of problem in foundation build.

7 LIST OF ILLUSTRATIONS

Figure 1. Foundation at ground supported floor	5
Figure 2. Foundation at crawl space	6
Figure 3. Foundation at basement	6
Figure 4. Dimensions of deep strip foundation under walls in small single length houses.	8
Figure 5.....	9
Figure 6.....	9
Figure 7. Flexible and rigid footing.....	10
Figure 8. Section of single footing.....	11
Figure 9. Construction of single footing.....	11
Figure 10. Section of strip footing.....	11
Figure 11. Drawing of strip footing	11
Figure 12.....	12
Figure 13.....	12
Figure 14.....	12
Figure 15.....	12
Figure 16.....	12
Figure 17. Section with strap footing.....	12
Figure 18. Section of pooled footing.....	13
Figure 19. Foundation board.....	13
Figure 20. Foundation board.....	13
Figure 21.....	14
Figure 22.....	14
Figure 23.....	14
Figure 24.....	14
Figure 25.....	15
Figure 26.....	15
Figure 27.....	15
Figure 28.....	15
Figure 29. Slurry wall construction scheme	16
Figure 30. Retaining wall construction.....	16
Figure 31. Parts of retaining wall	16
Figure 32. Retaining wall image	17
Figure 33. Possible different seats	18

8 LIST OF REFERENCES

- Anon., s.f. *Construmatica*. [En línea]
Available at: www.construmatica.com
[Último acceso: 21 May 2015].
- Anon., n.d. *Google*. [Online]
Available at: www.google.com
[Accessed 20 May 2015].
- Fiol Femenia, F. & Fiol Olivan, F., 2006. *Manual de cimentaciones. Diseño y cálculo de cimentaciones superficiales y muros, geotecnia y patología..* Castilla y León(León): ISBN.
- Lundager, K., 199. Foundations. In: Second, ed. *SINGLE FAMILY HOUSES SBI 189*. s.l.:s.n., p. 101.
- Medina Sánchez, E., 2007. *Construcción de estructuras de hormigón armado*. Second ed. Pamplona(Navarra): DELTA.
- Orna Carmona, M., 2012. Cimentaciones de hormigón. En: *Materiales III*. Zaragoza: s.n., p. 65.
- Peralta Canudo, J. L., 2010. Tema IV. Cimientos. In: *Edificación I*. Zaragoza: s.n., p. 25.
- Peralta Canudo, J. L., 2010. Tema V. Cimentaciones Profundas. En: *Edificación I*. Zaragoza: s.n., p. 35.
- Pérez Cebrián, A., 2010. Tema 4. Patologías en cimientos. En: *Mantenimiento y rehabilitación de edificios*. Zaragoza: s.n., p. 253.
-

Relación de documentos

(_) Memoria	31	páginas
(X) Anexos	199	páginas

La Almunia, a 8 de septiembre de 2015

Firmado: María Julián Martín