000032756 001__ 32756
000032756 005__ 20210121114448.0
000032756 0247_ $$2doi$$a10.3389/fnins.2015.00305
000032756 0248_ $$2sideral$$a92919
000032756 037__ $$aART-2015-92919
000032756 041__ $$aeng
000032756 100__ $$aPinkernelle, J.
000032756 245__ $$aGrowth factor choice is critical for successful functionalization of nanoparticles
000032756 260__ $$c2015
000032756 5060_ $$aAccess copy available to the general public$$fUnrestricted
000032756 5203_ $$aNanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed.
000032756 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000032756 590__ $$a3.398$$b2015
000032756 591__ $$aNEUROSCIENCES$$b88 / 256 = 0.344$$c2015$$dQ2$$eT2
000032756 592__ $$a2.041$$b2015
000032756 593__ $$aNeuroscience (miscellaneous)$$c2015$$dQ1
000032756 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000032756 700__ $$aRaffa, V.
000032756 700__ $$0(orcid)0000-0001-9359-0019$$aCalatayud, M.P.
000032756 700__ $$0(orcid)0000-0003-1558-9279$$aGoya, G.F.$$uUniversidad de Zaragoza
000032756 700__ $$aRiggio, C.
000032756 700__ $$aKeilhoff, G.
000032756 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000032756 773__ $$g9 (2015), [14 pp]$$pFront. neurosci.$$tFrontiers in neuroscience$$x1662-4548
000032756 8564_ $$s2016604$$uhttps://zaguan.unizar.es/record/32756/files/texto_completo.pdf$$yVersión publicada
000032756 8564_ $$s96879$$uhttps://zaguan.unizar.es/record/32756/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000032756 909CO $$ooai:zaguan.unizar.es:32756$$particulos$$pdriver
000032756 951__ $$a2021-01-21-10:44:14
000032756 980__ $$aARTICLE