Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour
Resumen: Objective:
To show how random variables concern fatigue behaviour by a probabilistic finite element method.
Methods:
Uncertainties on material properties due to the existence of defects that cause material elastic constant are not the same in the whole dental implant the dimensions of the structural element and load history have a decisive influence on the fatigue process and therefore on the life of a dental implant. In order to measure these uncertainties, we used a method based on Markoff chains, Bogdanoff and Kozin cumulative damage model, and probabilistic finite elements method.
Results:
The results have been obtained by conventional and probabilistic methods. Mathematical models obtained the same result regarding fatigue life; however, the probabilistic model obtained a greater mean life but with more information because of the cumulative probability function.
Conclusions:
The present paper introduces an improved procedure to study fatigue behaviour in order to know statistics of the fatigue life (mean and variance) and its probability of failure (fatigue life versus probability of failure).

Idioma: Inglés
DOI: 10.1155/2015/825402
Año: 2015
Publicado en: BioMed Research International (2015), [7 pp.]
ISSN: 2314-6133

Factor impacto JCR: 2.134 (2015)
Categ. JCR: MEDICINE, RESEARCH & EXPERIMENTAL rank: 72 / 124 = 0.581 (2015) - Q3 - T2
Categ. JCR: BIOTECHNOLOGY & APPLIED MICROBIOLOGY rank: 81 / 161 = 0.503 (2015) - Q3 - T2

Factor impacto SCIMAGO:

Tipo y forma: Article (Published version)
Área (Departamento): Mec. de Medios Contínuos y Teor. de Estructuras (Departamento de Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2017-10-02-10:49:35)

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Mec. de Medios Contínuos y Teor. de Estructuras



 Record created 2015-12-16, last modified 2017-10-02


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)