000032768 001__ 32768
000032768 005__ 20210121114449.0
000032768 0247_ $$2doi$$a10.3390/sym7031519
000032768 0248_ $$2sideral$$a92969
000032768 037__ $$aART-2015-92969
000032768 041__ $$aeng
000032768 100__ $$0(orcid)0000-0001-9988-0287$$aSonsona, I.G.
000032768 245__ $$aEnantioselective organocatalyzed synthesis of 2-amino-3-cyano-4H-chromene derivatives
000032768 260__ $$c2015
000032768 5060_ $$aAccess copy available to the general public$$fUnrestricted
000032768 5203_ $$aThe structural motif that results from the fusion of a benzene ring to a heterocyclic pyran ring, known as chromene, is broadly found in nature and it has been reported to be associated with a wide range of biological activity. Moreover, asymmetric organocatalysis is a discipline in expansion that is already recognized as a well-established tool for obtaining enantiomerically enriched compounds. This review covers the particular case of the asymmetric synthesis of 2-amino-3-cyano-4H-chromenes using organocatalysis. Herein, we show the most illustrative examples of the methods developed by diverse research groups, following a classification based on these five different approaches: (1) addition of naphthol compounds to substituted a, a-dicyanoolefins; (2) addition of malononitrile to substituted o-vinylphenols; (3) addition of malononitrile to N-protected o-iminophenols; (4) Michael addition of nucleophiles to 2-iminochromene derivatives; and (5) organocatalyzed formal 4+2] cycloaddition reaction. In most cases, chiral thioureas have been found to be effective catalysts to promote the synthetic processes, and generally a bifunctional mode of action has been envisioned for them. In addition, squaramides and cinchona derivatives have been occasionally used as suitable catalysts for the substrates activation.
000032768 536__ $$9info:eu-repo/grantAgreement/ES/DGA/E104$$9info:eu-repo/grantAgreement/ES/MICINN/CTQ2013-44367-C2-1-P$$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2014-CIE-07
000032768 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000032768 590__ $$a0.841$$b2015
000032768 591__ $$aMULTIDISCIPLINARY SCIENCES$$b30 / 62 = 0.484$$c2015$$dQ2$$eT2
000032768 592__ $$a0.349$$b2015
000032768 593__ $$aChemistry (miscellaneous)$$c2015$$dQ2
000032768 593__ $$aComputer Science (miscellaneous)$$c2015$$dQ2
000032768 593__ $$aMathematics (miscellaneous)$$c2015$$dQ3
000032768 593__ $$aPhysics and Astronomy (miscellaneous)$$c2015$$dQ3
000032768 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000032768 700__ $$0(orcid)0000-0001-6832-8983$$aMarqués-López, E.$$uUniversidad de Zaragoza
000032768 700__ $$0(orcid)0000-0002-5244-9569$$aHerrera, R.P.$$uUniversidad de Zaragoza
000032768 7102_ $$12013$$2765$$aUniversidad de Zaragoza$$bDpto. Química Orgánica$$cÁrea Química Orgánica
000032768 773__ $$g7, 3 (2015), 1519-1535$$pSymmetry (Basel)$$tSYMMETRY-BASEL$$x2073-8994
000032768 8564_ $$s944573$$uhttps://zaguan.unizar.es/record/32768/files/texto_completo.pdf$$yVersión publicada
000032768 8564_ $$s88927$$uhttps://zaguan.unizar.es/record/32768/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000032768 909CO $$ooai:zaguan.unizar.es:32768$$particulos$$pdriver
000032768 951__ $$a2021-01-21-10:45:06
000032768 980__ $$aARTICLE