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 INTRODUCTION 
 

 

Nowadays coal is the most generous fossil resource in the world and because of this it plays a 

decisive role as a primary source of energy.  More than 27 % of the energy consumed and more 

than 34 % of the electricity generated in the world originates from pulverized coal combustion 

(BP Statistical review of world energy, 2006).  In the future, power companies and power 

equipment makers suggest a significant switch from gas to coal as the preferred fuel in the 

coming decade.  This re-emergence of coal as a primary fuel for power generation is the result 

of technological changes that have reduced the amount of pollutants and particulate emissions to 

the atmosphere and recent international worries about the security of our gas supply.  

Consequently, in the next decades coal will continue constituting an essential energy source.  

Nevertheless, it is necessary to have a sensible and efficient use of this resource, pursuing two 

main objectives: to observe the environmental legislation and to obtain competitive generating 

costs in a free market.   

 

It’s some time since both these objectives have forced power plant managers to look for the 

most efficient combustion conditions using the cheapest fuel.  The immediate consequences of 

this change in energy policy has led to the establishment of new technologies that minimize 

pollutant emissions and has encouraged the search for more flexible fuel supply alternatives 

such as co-combustion and blending coals.   

 

Increasing efficiency, controlling particulate and gas emissions and minimizing unburned 

carbon losses are partially attained by improving the combustion process.  For this reason, 
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predicting combustion efficiency in utility boilers, and particularly, determining unburned 

carbon levels are essential to reach both objectives.  Unburned char particles that leave the 

furnace represent a heat loss in the combustion process, reducing the thermal efficiency of the 

unit.  Moreover, they increase heat exchangers’ erosion, may reduce the efficiency of dust 

separation/collection equipment and may impede the utilization of fly ash as a replacement for 

Portland cement or additives to concrete. 

 

In this chapter the main problems associated with an unburned carbon increase in utility boilers 

that leads to the aforementioned situations is presented.  Finally, the experimental and predictive 

systems that allow us to identify and avoid those boiler operating conditions that lead to 

excessive fuel consumption, are also described.   

 

 

1.1 Coal combustion process in a utility boiler 

 

Before studying in detail the causes and problems derived from unburned carbon losses, it is 

interesting to review the history of the coal as it travels around the power plant, from its 

reception at the coal yards to its emission from the chimney stack by means of exhausted gases 

and the micrometric particles suspended on them.  A rigorous study of the combustion process 

in a utility boiler cannot be limited exclusively to the boiler.   

 

The first step is the coal type selection.  The coal that arrives at the power plant is stored in the 

coal yard.  From this point, the incoming fuel to the different coal piles is managed and a 

different coal analysis is conducted to determine its composition and properties.  This analysis 

allows the verification of the condition of the coal, since most of the plant equipment is 

designed to operate with a specific coal rank and coal properties.  The price of coal represents 

the greatest cost to the plant.  For this reason, a small saving in its price may imply a significant 

reduction in the power plant expenditure.  Since generation costs are very similar for many 

power stations, a reduction in the coal price may determine if a power plant can offer a lower 

generation cost assuming a lower risk, and then to come into operation instead of another power 

station. Nowadays, it is a common practice to blend coals.  There exist two main reasons for 

this:  to reduce the fuel cost or to improve some property within any particular coal.  Reducing 

the fuel cost is probably the most common reason.  However, if a coal presents a known 

problem such as a low ash fusion point, sulphur content or low reactivity, it is possible to blend 

different, compatible coals to modify the properties of the original coal, thus, obtaining a better 

performance of the plant equipment.  Another reason that has promoted power plant managers 

to blend coals is to obtain a higher coal supply availability (Haas et al., 2001). 



Chapter 1   Introduction 
_____________________________________________________________________________________  

_____________________________________________________________________________________  
3 
 

The coal that meets the quality standards required by the plant is conducted via conveyor belts 

to storage hoppers from which the mills are fed.  In the mills, coal undergoes a simultaneous 

drying and milling process after which the coal particles are pneumatic conveyed by the primary 

air to the burners.  In the case of front wall fired boilers equipped with swirl burners, the 

primary flow (air and coal) in the burner starts mixing with the secondary air coming from the 

wind box. Both streams are then introduced into the boiler where a pilot gas burner starts 

combustion.  The secondary air rotates ensuring the flame stability.  Depending on the type of 

burners, there may exist an additional air inlet, called tertiary air, with the purpose of stepping 

down the combustion and decreasing the peak temperature to reduce NOx emissions.  

 

Strictly speaking, coal combustion, may be divided into three stages.  Firstly, a rapid pyrolysis, 

also called devolatilization, takes place in which the volatile content of the coal is yielded; then 

the homogeneous combustion of the volatile products is produced; and finally, the remaining 

char residue oxidation takes place.  Not all the char residue is completely burned and this carbon 

fraction is called unburned carbon loss. 

 

The fluid flow in the region close to a burner may be divided into two zones (Unsworth et al., 

1991): 

 

- A near burner region (Figure 1.1, zone C), where two recirculation flows take place: an 

inner recirculation zone (Figure 1.1, zone A) where volatile products’ combustion is 

completed and an outer recirculation zone (Figure 1.1, zone B) of the combustion products 

that provides the heat release to ensure the flame stability.  

 

- A region downstream where combustion gases, the particles suspended on them, ash and 

unburned carbon, head for the boiler exit (Figure 1.1, zone D).  

 

 
Fig. 1.1  Flow in the near burner region (Unsworth et al., 1991) 
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Depending on the burner’s arrangement in the boiler, the possible flame to flame interactions 

and the reversed flow regions in the furnace, the trajectories tracked by the particles to the boiler 

exit may become more or less chaotic.  Some of the particles, around 20 - 40 %, either remain 

stuck to the walls and bank tubes leading to slagging and fouling phenomena that impedes heat 

transfer to the water tubes, or settle in the bottom hopper (Llera, 2002).  The product gases flow 

after passing through different heat exchangers, which vary depending on the boiler type 

(superheaters, reheaters, economizers, air preheaters).  Here, particles can also settle before they 

reach the dust separation/recollection equipments.  Electrostatic precipitators are the most 

widespread separation/recollection equipment used, with efficiencies over 95 %.  Finally, 

depending on coal rank and properties, other gas cleaning systems, such as NOx reduction 

reactors and desulphuration plants are introduced before expelling the exhausted gas flow to the 

atmosphere.   

 

 

1.2 Problems derived from unburned carbon losses 

 

Unburned char particles that leave the furnace represent a heat loss in the combustion process, 

reducing the thermal efficiency of the unit.  Furthermore, various related publications agree that 

other effects are derived from an increase in unburned carbon in ash levels as it will be 

presented subsequently (Walsh and Xie, 1992).   

 

First, unburned carbon levels may increase bank tubes erosion and the deposition over them 

thus decreasing heat transfer to the water tubes.  The formation of ash deposits on the furnace 

walls is a well studied phenomena since it has a great impact in the boiler operation.  The 

variation in type, shape and location of these deposits, depend very much on the coal type and 

the boiler design and operation.  For this reason, special attention is taken during the plant 

design, increasing the thermal exchange effective area using high resistant steel in the more 

exposed tubes and installing cleaning systems such as soot blowers that remove these ash 

deposits from the walls (Llera, 2002). 

 

Another disadvantageous effect of unburned carbon in ash reported by many authors is a 

decrease in the electrostatic precipitator efficiency.  However, within the literature empirical 

models do not exist that directly relate an increase in carbon in ash levels with a decrease in the 

electrostatic precipitator efficiency. This is because that while many parameters such as ash 

particles size, composition, morphology, cohesion index and resistivity, all have an impact on 

collection efficiency, there is not one parameter in particular that stands out over the others. 
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Instead, the collection efficiency depends on the coal composition and combustion conditions.  

In general, it can be stated that (Wu, 2000):  

 

- Greater particle size increases the electrostatic precipitator efficiency.  

 

- Irregular, highly porous and complex morphology particles register higher drag forces, 

decreasing the migration velocity to the electrodes and thus the collection equipment 

efficiency.  

 

Low rank coals tend to swell during combustion while they are burned from different fronts, 

increasing their porosity.  If a particle is fragmented due to a high pressure inside the pores, a 

number of small sized, highly porous particles with complex morphology are obtained.  

Therefore, the collection efficiency depends on the fragmentation level attained during 

combustion.  A higher fragmentation level will result in a greater number of small sized 

particles (negative effect), with less complex morphologies (positive effect).  The contrary 

effects are encountered when a lower fragmentation level is produced.  High rank coals have a 

low tendency to swell and facilitate cohesion with mineral matter inclusions.  Consequently, 

less porous morphologies (positive effect) and variable particle sizes are encountered depending 

on the cohesion level attained.  In spite of these general behaviours, particles from the same coal 

may exhibit different combustion behaviour as a function of coal macerals (rich vitrinite 

particles tend to swell during combustion, whilst exinite rich particles tend to fragment during 

pyrolysis), or as a function of the char residue matrix composition, especially the sulphur 

content which reduces ash resistivity expediting its capture.   

 

A last relevant effect of unburned carbon in ash is that it may impede the utilization of fly ash as 

a replacement for Portland cement or an additive to concrete.  If carbon in ash content exceeds a 

reference level established in the concrete quality regulations (BS8500 in the UK, BS EN206 in 

the rest of Europe), this ash cannot be used in concrete manufacture (Sear, 2001).  By 

substituting up to 30 % of the cement content in building applications with fly ash is 

advantageous for several reasons: it increases concrete strength, decreases its permeability, 

reduces its manufacturing costs and reduces the heat released in the hydration reactions leading 

to a net reduction in CO2 emissions of 30 % (Suuberg et al., 1999).  Nevertheless, fly ash used in 

concrete production should comply with different specifications related to its size, density, SO3 

and NH3 content, colour and carbon content.  Aggregates typically take up three quarters of the 

total volume in structural concretes.  The rest of the volume is made up of hard cement paste, 

and air bubbles.  Commonly, a controlled quantity of air in uniformly dispersed microscopic 

bubbles (air-entraining admixtures, AEA) is introduced to impart desirable properties to the 
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concrete, including increased durability.  The adverse effect of unburned carbon in the concrete 

matrix is that this carbon adsorbs these air additives (AEA) decreasing the number of bubbles, 

and then, degrading its strength (Külaots et al., 1999; Maroto-Valer et al., 2001).   

 

To determine the carbon in ash content, the loss of ignition test (LOI) is commonly carried out, 

the description of which is presented in Section 1.3.  LOI values of 5 % (BS EN206) or 7 % 

(BS8500) represent the unburned carbon limit in building applications (Sear 2001, 2002).  

However, since these kinds of tests are based on the determination of the carbon fraction in ash,  

recent studies have shown that it is probably more interesting and precise to determine the 

unburned carbon porosity and surface area as these parameters finally determine the capability 

of carbon to adsorb AEAs.  The ability of a particular fly ash to adsorb AEAs depends upon 

three main factors: the total surface area presented by the carbon in the ash, the accessibility of 

the surface area in the carbon and the nature of the carbon surface which is influenced by the 

degree of carbon surface oxidation (Külaots et al., 1999).  Most fly ash carbon samples have 

surface areas much larger than would be expected from the external geometric area, since 

carbon particles have a large amount of porosity including micropores (< 20Å), mesopores (20 

Å - 500 Å) and macropores (> 500 Å).  Standard LOI tests do not give information about the 

intrinsic morphology of the particle. For example, low rank coals give typically low LOI values 

indicting a conducive property for conforming with concrete while in reality they tend to be the 

more problematic coals for this application.  The reason for this is that low rank coals typically 

have larger porosity and surface areas than high rank coals.  The test used to determine the 

adsorption of AEAs is known as Foam index test (Suuberg et al., 1999). 

 

 

1.3 Factors influencing unburned carbon losses 

 

In order to predict and control unburned carbon levels in power plants, it is necessary to 

determine which factors influence their reduction and quantify their relevance.  As it was 

presented in Section 1.1, unburned carbon formation is not restricted to the combustion process 

in the furnace. 

 

The main factors affecting unburned carbon losses may be classified into three categories 

(Walsh and Xie, 1992):  

 

1. Coal and char related properties. 

 

2. Coal preparation and grinding pre-treatments. 
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3. Burner and boiler designs and operation conditions. 

 

Hereinafter, each source’s characteristics are summarized. 

 

1.  Coal and char related properties 

This first category comprises coal and char properties such as: elemental and maceral 

composition, high temperature pyrolysis yield, char intrinsic structure and reactivity and ash 

properties and composition.  Their influence on unburned carbon formation is explained through 

the combustion process itself.  

 

Coal composition and properties partly determine unburned carbon losses.  Coal ultimate 

analysis is used to determine the stoichiometric air and therefore the total air mass flow for a 

given firing rate and excess oxygen level consign.  As it was presented in Section 1.1, the 

combustion process may be divided into three stages: devolatilization, volatiles products’ 

homogeneous combustion and char oxidation.  During devolatilization, volatile matter, which is 

formed by hydrogen, nitrogen, sulphur, oxygen and part of the carbon not fixed to the char 

residue, is yielded.  This stage has a great influence on combustion since it controls the particle 

ignition.  It takes place during the first 100 ms at the near burner inner recirculation region and 

is also responsible for stabilizing the flame.  Moreover, coal pyrolysis has a great effect on the 

structural and reactive properties of char.  Standard proximate analysis of coal allows us to 

determine the coal volatile content.  However, under high temperature combustion processes, 

such as those found in real utility boilers, part of the carbon in the coal matrix is also volatilized 

yielding a higher volatile content than the one obtained from the proximate analysis.  The high 

temperature volatile released is determined as a function of temperature, heating rate and coal 

type, by means of thermogravimetric (TGA) and drop tube furnace (DTF) analysis. In order to 

give an idea of the importance in the determination of this high temperature released, the 

volatile yield may increase 20 – 75 % (dry ash free, d.a.f.) with respect to the proximate 

analysis. This can lead to a factor of two reduction in the weight of the char residue, whose 

oxidation rate is the determining step in coal combustion (Kobayashi et al., 1976).  Volatile 

products’ combustion controls flame temperature and oxygen concentration in the near burner 

region, directly influencing the char oxidation rate. 

 

Char morphology and porosity are determined by coal related properties and the devolatilization 

process history.  Char oxidation is the slowest stage in coal combustion and therefore has a great 

influence on the combustion behaviour as well as many other aspects such as: the coal structure 

and reactivity variations with burnout, diffusion effects through the porous structure or char 

fragmentation (Chan et al., 1999).  In Section 1.2, it was described how coal structure and 
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maceral content did not only have an effect on the combustion process, but also over the dust 

collection equipments’ efficiency and in the quality of fly ash used in the manufacturing of 

Portland cement and concrete.   

 

Coal ash content has a double effect on coal combustion kinetics.  Mineral matter content may 

produce a catalytic effect increasing char reactivity at low temperatures.  However, it also 

obstructs the combustion process since ash forms a film layer covering the particle surface as 

combustion proceeds, impeding oxygen diffusion to the active sites and therefore decreasing 

combustion efficiency.   

 

Finally, increasing coal moisture content results in a decrease of the flame temperature reducing 

the combustion efficiency followed by an increase in unburned carbon loss (Kurose et al., 

2001).  This behaviour is more relevant with bituminous and sub-bituminous coal blends since 

the latter has greater moisture content (Ikeda et al., 2002).  However, in general, coal moisture 

content is not a relevant cause of unburned carbon formation since the primary air (previously 

heated), that conveys the particles from the mills to the burners, removes most of it.   

 

2.  Coal preparation and grinding pre-treatments 

Another relevant factor affecting unburned carbon losses is the fineness of the particles entering 

the furnace.  Higher particle sizes result in greater carbon losses.  For this reason, the milling 

process has an outstanding importance in unburned carbon reduction and it is necessary to 

control the pulverized coal particle size distribution.  Again, many factors determine the final 

size distribution: primary air mass flow, coal mass flow, coal properties (composition and 

grindability index HGI) and also the mill’s classifier position and grinding pieces ageing since 

their last replacement.  Furthermore, since the primary air, that pneumatically conveys the 

pulverized coal particles to the burners, is pre-heated, it removes part of the moisture content 

improving combustion efficiency.  Finally, the design of the ducts and pipes that connect the 

mills to the burners may lead to mass flow imbalances in the load fed from each burner and this 

can produce flow asymmetries in the boiler that may produce an increase in the unburned 

carbon loss.  

 

3.  Burners and boiler designs and operation conditions 

This category comprises the characteristics and adjustments of burners, primary and secondary 

air inlets designs (and tertiary air inlets if available), swirling secondary air vanes, the number 

of burners in operation, primary and secondary air temperatures and boiler design and operation 

conditions.  The combination of these factors determine the air/coal mixing, combustion peak 

temperatures, residence times for particles and finally the operation conditions in which 
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combustion takes place.  Previously, the relevance was mentioned of the near burner region in 

burnout determination where the secondary air rotation helps to stabilize the flame mixing the 

hot combustion gases with the primary air and coal mixture that enters the furnace from the 

mills.  Moreover, the char structure is not only determined by coal properties but also by the 

temperature and oxygen partial pressure history of the particles on their way through the boiler.  

Consequently, these variables, together with the coal properties, determine the nature and yield 

of volatile products, its yielding rate and the morphology and microscopic porous structure of 

char.   

 

Porosity is particularly important since it controls species’ diffusion in and out of the char.  

Finally, to understand the great relevance of char intrinsic characteristics on the combustion 

process, it is necessary to highlight the efforts realized in recent years to describe how they vary 

and affect species’ diffusion and the chemical reaction processes.  Historically, pulverized coal 

combustion has been modelled as a process controlled by both oxygen diffusion and oxidation 

reaction rates at the particles’ surface (Zone II1).  However, experimental studies have shown a 

variation in the particle intrinsic structure as char oxidation proceeds, promoting a decrease in 

char reactivity in the late stages of combustion leading to a transition from Zone II to the Zone 

I1, controlled by reaction rate.  This phenomena known as thermal annealing of char, has given 

rise to new char oxidation kinetic models that are gradually replacing traditional models 

(Chapter 2).   

 

 

 

 

                                                 
1 Three-zone theory (Unsworth et al., 1991; Hong, 2000) (Chapter 2, Section 2.3.1): 

Zone I: Combustion controlled by reaction rate.  Oxygen diffuses to particle’s surface faster than it is 

consumed.  Oxygen partial pressure at the particle surface is almost identical to that of the bulk gas 

stream. The oxygen partial pressure penetrates the particle, which burns both on the outer surface and 

inside the pores.    

Zone II: Combustion controlled by both oxygen diffusion and reaction rate.  Oxygen diffuses to the 

particle surface and partially penetrates the particle since the oxygen is consumed by the oxidising carbon 

before it can completely penetrate the pores.  Consequently, its concentration is less inside than outside 

the particle.  

Zone III: Combustion controlled by oxygen diffusion.  Oxygen diffuses to the particle surface where, due 

to very high char reactivity, it immediately combines with carbon.  The oxygen partial pressure at the 

particle surface is close to zero and combustion takes place only on the particle outer surface.   
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1.4 Unburned carbon in ash measurements 

 

To follow-up unburned carbon levels in a power plant, ash samples from the different hoppers 

located in the chimney exhaust are regularly taken. Generally, ash samples are compiled from 

the hopper of the first dust separation/recollection equipment because of its easy accessibility.  

Before this, combustion gases flow through the economizer and air pre-heaters, where part of 

the fly ash deposits in both their respective hoppers and stagnation zones.  Three standardized 

methods are used to determine unburned carbon in ash: 

 

1. Carbon-in-ash (CIA).  This is the carbon percentage in ash after combustion.  It should be 

taken into account that fly ash generally represents 60-80 % of the total ash making it 

difficult to quantify this percentage in a power plant.   

 

2. Loss of ignition (LOI).  Expresses the heat released from the ash at specified test conditions, 

including effects of the char sulphur content.  The LOI test value is generally one or two 

percentage points higher than the CIA value.     

 

3. Combustion loss (CL).  This test involves measuring the heat remaining in the unburned 

carbon and expressing it as a percentage of the calorific value of the original coal.  

 

The unburned carbon in ash fraction also depends on the ash content of the parent coal.  Even if 

combustion efficiency is high, unburned carbon in ash values are greater for a low ash content 

coal than for a high ash content coal.  Therefore, it is difficult to compare the combustibility of 

different coals from this parameter.  To achieve this, the overall unburned carbon fraction may 

be calculated according to Eq. 1.1 (Kurose et al., 2001). 

 

ash
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Where Uc is the unburned carbon fraction per coal kg, η is the combustion efficiency, Ucash is 

the unburned carbon in ash fraction and Cash is the ash content of the parent coal.  
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1.5 Unburned carbon prediction systems 

 

Just as important as the empirical determination of the unburned carbon level is its prediction 

under any given operating conditions.  The combustion behaviour of pulverized coal can be 

investigated by means of pilot-scale experiments, advanced combustion kinetics models and 

CFD codes.  Pilot-scale testing suffers from two basic shortcomings.  Firstly, the physical 

processes involved in utility boilers are not completely scalable and as a consequence, small-

scale experiments can be only considered as approximations.  Also, an experimental rig 

involves very high investment and maintenance costs.  A complementary method to pilot-scale 

testing is using a detailed combustion kinetics model.  The basis of the method is to separate the 

influence of fuel properties and combustion conditions on coal burn-out behaviour.  The fuel-

related empirical parameters in the model have to be fitted from laboratory experiments.  These 

data are then used to predict burn-out behaviour under full-scale furnace conditions (Unsworth 

et al., 1991).  Coal combustion models are made up of a devolatilization submodel and a char 

oxidation submodel.  Traditional devolatilization submodels such as the single reaction model 

or the two competing reactions model are being progressively substituted by commercial codes 

that predict concentration and yield from major species, for example FG-DVC or 

FLASHCHAIN.  Single film char oxidation models have led to other advanced kinetics models, 

which account for variations in reactivity during combustion and internal pore structure.  In 

general, the benefit of using detailed combustion kinetics models is that their results can be 

obtained quickly and at low cost for boilers of different designs and operating conditions.  

However, these models cannot completely capture the complexity of the physical and chemical 

phenomena that occur in an industrial furnace such as burner to burner interactions or turbulent 

mixing and they generally under-predict carbon in ash levels for utility boilers.  Dealing with 

these aspects, the use of computational fluid dynamics (CFD) codes constitutes a powerful tool 

to study and characterize some complex processes that take place in the boiler providing a great 

amount of precise numerical values such as velocity, temperature and concentration fields, 

irradiation profiles, heat transfer distribution and pollutants formation.  In spite of this fact, most 

of the commercial CFD codes, due to the great variety of phenomena to be modelled, still use 

simple models to describe turbulence, thermal radiation or combustion kinetics.  Consequently, 

none of the advanced combustion kinetics models mentioned above has been fully coupled to a 

commercial CFD code (Pallarés et al., 2005). 
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1.6 Aims and objectives of thesis 

 

In the last decades, pulverized coal-fired steam generators have been progressively affected by 

more restrictive requirements for particulate and gas emissions, in order to reduce atmospheric 

pollution, acid rain and the greenhouse effect.  Thus, low NOx techniques and efficient gas 

cleaning systems have been implemented to satisfy the environmental legislations.  However, 

some drawbacks may arise when emission reduction techniques are applied.  Unburned carbon 

levels increase when excess air decreases, limiting the reduction in NOx formation which can be 

achieved by primary techniques through combustion modification.  As a consequence, power 

plant managers look for the most efficient combustion conditions, in order to maximize coal 

conversion while meeting the environmental legislations. 

 

To achieve this, the main goal of this thesis work is to develop an unburned carbon prediction 

system that provides an on-line estimation of carbon in ash losses for a given operating 

condition in a utility boiler.  At the same time, a system with such characteristics may allow the 

plant personnel to identify the source of an increase in the carbon in ash level or to look for the 

most suitable conditions to minimize this loss.   

 

Developing a system with these characteristics implies modelling all the processes that take part 

in pulverized coal combustion in a utility boiler.  It is necessary to model in detail the transport 

phenomena of the problem and the micrometric coal particles’ combustion.  Moreover, in order 

to use it in an on-line monitoring system of a power station, the computational time should be 

reasonably short.  Within the different predictive systems of combustion, CFD codes give a 

detailed treatment of the transport phenomena involved in the boiler.  However, commercial 

CFD codes use simplified combustion models that prove to be inadequate for quantitative 

unburned coal determination.  To balance this deficiency, we have developed a methodology 

that makes use of an advanced combustion model, which is used as a post-processor on the 

temperature and oxygen partial pressure profiles obtained from a CFD simulation.  Another 

disadvantage of CFD codes is their typically high computational cost, as creating and solving 

new simulations may take several days, which makes the use of this kind of tool in taking in situ 

real plant decisions impossible.  A system that includes a CFD code in its structure can be 

seriously restrictive.  In the beginning we proposed to use a zonal approach to characterize the 

fluid and thermal behaviour of the problem.  However, these zonal models also present serious 

limitations such as the impossibility to correctly characterize many relevant factors that affect 

the combustion process so finally we discarded this avenue of research.  To overcome the 

computational cost limitation, without leaving aside the detailed fluid and thermal description of 

the CFD codes, we have developed a neural network system. The neural network is trained with 
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data generated from the CFD simulations, namely, the temperature and oxygen profiles found 

by the particles in their trajectories through the boiler and their residence times.  The advantage 

of this system is that it allows us to obtain profiles under any other condition not specifically 

used during the training stage of the networks.  Moreover, the computational cost is negligible 

(less than a minute) when compared with CFD simulations.   

 

For the development and validation of this work, a unit from Lamarmora power plant (ASM 

Brescia, Italy) has been chosen as the case-study boiler.  This selection was taken as a result of 

the close partnership established between ASM and CIRCE Foundation during the European 

research project 7220-PR-130-130-CARNO.  The preliminary revision work and the 

development of the unburned carbon prediction system are presented in this thesis work and 

have been divided into the following chapters: 

 

- Chapter 2.  Combustion models’ revision: In this chapter a revision of pulverized coal 

combustion, explaining the different stages and mechanisms of the process (devolatilization, 

homogeneous combustion of volatile products and char oxidation), and the most 

representative combustion models in the literature are presented.  

 

- Chapter 3.  CFD codes: In this chapter the general characteristics of CFD codes are 

described.  Since in this work we have made use of the commercial code CFX-4 (AEA 

Technology), the numerical resolution method and the physical and chemical models 

involved in the problem are particularized for this code.  Finally, the validation process 

followed in this work is presented.  

 

- Chapter 4.  Sensitivity study of main factors affecting unburned carbon loss: In this chapter, 

a sensitivity analysis is performed of the main factors affecting unburned carbon losses that 

the technical personnel in the plant can either actuate directly or indirectly.  To achieve this, 

we have carried out a double study of theses parameters.  Firstly, we have evaluated the 

contribution of each factor to the final unburned carbon level in the regular range of 

variation keeping the rest of parameters constant.  Subsequently, we have evaluated cross-

related effects and interactions among factors.  This study, in which we have made use of 

multi-parameter factorial analysis techniques, gives a more realistic view of the problem 

since the contribution of one factor may vary depending on the conditions of the rest of 

factors.   

 

- Chapter 5.  Local combustion conditions model: Throughout the chapter, the general 

characteristics of neural networks and their applications are introduced and the development 
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of the local combustion conditions’ model is described: design of the neural network system 

structure, training of the system from a number of CFD simulations of the plant and finally, 

its validation.  The aim of this model is to obtain an autonomous, fast and accurate model  

that may substitute the CFD code, generating for every simulated particle, the residence 

time and temperature and oxygen partial pressure history, for a given boiler operating 

condition.   

 

- Chapter 6.  Combustion model: This chapter analyzes the definition of the combustion 

model.  The description and development of the model is focused on the reactions that take 

place on the particle surface, i.e. devolatilization and char oxidation.  Devolatilization was 

modelled using a macromolecular network pyrolysis model (FG-DVC), whilst the char 

oxidation was modelled and programmed in Fortran using a developed intrinsic formulae 

based on the carbon burnout kinetic model (CBK8) (Sun and Hurt, 2000). This model 

allows the transition to Zone I and includes the variation in the porous structure and 

reactivity of the char as combustion proceeds, mineral matter effects and the influence of 

the coal’s maceral content. Finally, the validation of the combustion model was carried out 

considering nine operation scenarios of the case-study plant and comparing predictions from 

the burnout model against the plant values. 

 

- Chapter 7.  Unburned carbon prediction system: Throughout this chapter, the coupling of 

the local combustion conditions model and the advanced combustion model is described.  

Finally, the system is validated using standard plant instrumentation measurements gathered 

during three months at the Lamarmora plant (ASM Brescia) under different operation 

conditions.  From these results, an evaluation of the system is assessed hinting at the most 

significant conclusions and comparing its features and accuracy with other unburned carbon 

predictive systems.    
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Nomenclature  

 

Cash ash content in the parent coal (%, wt)  

Uc unburned carbon fraction 

Ucash unburned carbon in ash fraction 

 

η combustion efficiency 

 

 

Acronyms 

 

AEA  air entrainment admixtures 

CBK  carbon burnout kinetic 

CFD  computational fluid dynamics 

CIA  carbon in ash 

CL  combustion loss 

DTF  drop tube furnace 

HGI  hardgrove grindability index 

HTVM  high temperature volatile matter 

LOI  loss of ignition 

TGA  thermo-gravimetric analysis 
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 COMBUSTION MODELS’ REVISION       
 

 

One of the main goals in coal combustion research is the development of mathematical models 

to describe, in a realistic way, the combustion process undergone by a pulverized coal particle.  

To carry out a complete description of the coal combustion process, a particle reaction model 

must be included.  In general, coal combustion may be divided into the three following stages: 

coal devolatilization (R 2.1), homogeneous combustion of volatile products (R 2.2) and 

heterogeneous char oxidation (R 2.3) (Badzioch and Hawksley, 1970; Backreedy et al., 1999, 

2002) 

 

1. Coal  Volatiles + Char        (R 2.1) 

2. Volatile (HC) + O2  CO + CO2 + H2O     (R 2.2) 

3. ϕC(Char) + O2  2(ϕ-1)CO + (2-ϕ)CO2     (R 2.3) 

 

Nevertheless, the complexity of the physical and chemical phenomena, together with the 

conditions and duration variability of each stage, make the use of a global particle combustion 

models impossible (Figure 2.1).  Consequently, each stage must be modelled independently: 

 

- Coal devolatilization: This stage of the process takes place while the coal particle is rapidly 

heated in an oxidizing atmosphere.  During the process, the particle bears an inner 

transformation, in which tar and a mixture of reacting and non reacting gases are expelled 

from the particle, leaving a residual carbon rich core (Badzioch and Hawskley, 1970).  

Volatile release may exceed 50 % of the total weight of the particle and takes place in a few 
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milliseconds.  Furthermore, it has a great influence on the ignition of the particle and in the 

global combustion process, since it determines the reactive and structural nature of the 

resulting char (Smith, 1982).   

 

- Homogeneous combustion of volatile products: At this stage, the species released during 

devolatilization, including tar, hydrocarbons, CO2, CO, H2, H2O and HCN, react with the 

bulk oxygen increasing the particle temperature.  This reactive process has a great relevance 

on nitrogen oxides and soot formation, flame stability, and char ignition (Bartok and 

Sarofim, 1991).  

 

- Char oxidation:  At this stage, the char residue, at elevated temperature, reacts with the 

oxygen in the vicinities of the particle.  The gas-solid reactions take place when oxygen 

diffuses to the interior of the particle and reacts at its surface.  This heterogeneous process is 

much slower than devolatilization, requiring time scales of the order of seconds to be 

completed (Field, 1967).  The reaction rate depends on the reactive and structural 

characteristics of char and also on combustion conditions such as pressure, temperature and 

oxidant concentration (Unsworth et al., 1991).   

 

The aim of this chapter is to carry out a revision of each stage in the combustion process, 

describing the mechanisms and the more characteristic models available in the specialized 

literature.  Of course, it is not possible to perform a complete compilation of all the published 

models used for modelling coal combustion.  However, we have attempted to present the most 

classical models together with advanced models that go deeply into more particular aspects of 

pulverized coal combustion.  The selection criteria for the models described in this work 

responds to three premises:  

 

• The general applicability under typical pulverized coal combustion conditions. 

• The acceptance level in the scientific community.  

• That serves as reference and starting point for the coal combustion model development 

carried out in this work in Chapter 6.  

 

Finally, it should be mentioned that by analogy with most of the combustion related 

publications, and since the research work in this study is focused on the gas-solid reactions that 

take place at the particle’s surface, the stage corresponding to the homogeneous combustion of 

volatile products is only tackled in a descriptive way as a connection link between the other 

stages. 
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Fig. 2.1  Stages in the combustion process of a coal particle (Solomon et al., 1993) 

 

 

2.1 Devolatilization 

 

The study of coal devolatization kinetics and its influence on the global coal combustion 

process has aroused a special interest within the scientific community.  The reason for this 

motivation is not strange since more than 50 % of the coal mass (d.a.f.) fed into the boiler is 

volatilized and burned in the gas phase.  The volatile matter content of a coal indicates its 

reactivity and ignition capabilities.  In this way, the volatile matter content determines the boiler 

and burner design of a combustion facility.  Furthermore, devolatilization also determines the 

char mass fraction and its reactivity and porous structure.  This fact has great relevance, since 

char oxidation determines the burnout degree achieved.  That is, devolatilization indirectly 

determines the adequate particle residence time to minimize unburned carbon losses (Bartok and 

Sarofim, 1991). 
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2.1.1 Description of the process and more significant results 

Devolatilization is the first stage in coal combustion consisting of a process in which coal, at 

elevated temperature, is thermally decomposed producing gas, tar and char products.  In spite of 

the fact that it is extremely fast (takes place in about 10 to 200 ms) it has an outstanding 

importance in the global coal combustion process (Smoot and Smith, 1985). 

 

A hypothetical coal molecule is assumed to be a network formed by low molecular weight units 

–aromatic ring clusters– mainly made up of carbon, with a lower proportion  of oxygen, sulphur 

and nitrogen atoms, and connected to each other by means of covalent –aliphatic and oxygen 

and sulphur atoms– and non covalent bonds –van der Waals and hydrogen bonds– (Figure 2.2) 

(Solomon et al., 1988). 

 

The devolatilization process starts with a progressive heating of the particle by convection and 

radiation, until its temperature reaches 150 – 200 º C.  During this heating stage, the moisture 

content on the coal matrix is released.  Then, as long as the temperature increases between 200 

and 400 º C, some hydrogen bonds start to break.  At the same time, in the 300 to 400 º C range, 

new bridges are created as a result of the cross-linking of some aromatic ring clusters.  This 

phenomena is known as recombination and is especially marked in low rank coals with a high 

oxygen content (> 10 %) (Glarborg, 1991).  

 

Once this initial low temperature stage is completed, a primary devolatilization starts.  This 

primary devolatilization takes place at temperatures over 600 º C and is characterized by the 

bridge breaking of the weaker covalent bonds in the coal molecule, producing isolated 

molecular fragments called metaplast.  These fragments, which account for free radicals in their 

structure, capture hydrogen atoms in order to be stable.  If the molecule formed is light enough 

to vaporize out of the particle, it is released in the form of tar.  On the contrary, if it is too heavy 

to vaporize, it stays in the particle and participates in other recombination processes.  Aside 

from the tar yield, there also exist other releases of volatile matter due to the decomposition of 

functional groups at elevated temperatures in form of carbon dioxide, methane, ethane, propane 

and water vapour.  The characteristics of the volatile matter yielded in the form of tar or gases, 

depends on the coal type.  For example, low rank coals (lignite and sub-bituminous) release a 

greater amount of gas than tar, mainly in form of carbon dioxide and carbon monoxide. Whilst 

high rank coals (bituminous) release a greater amount of tar than light gases, mainly in form of  

methane (Genetti, 1999).  Primary devolatilization finishes once the donatable hydrogen atoms 

are depleted (Solomon et al., 1988). 
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Finally, a secondary devolatilization takes place in which the metaplast that have not vaporized 

can either participate in recombination processes, repolymerize into char, or give raise to 

secondary reactions yielding less abundant compounds such as CH4 from methyl groups, HCN 

from ring nitrogen compounds, CO from ether links, and H2 from ring condensation (Solomon 

et al., 1988). 

 

The volatile matter content of a coal is determined from its proximate analysis.  However, from 

the very first experimental studies in combustion facilities, it was found that the amount of 

volatile yield obtained in the tests was considerably larger than the one obtained from the 

proximate analysis (Badzioch and Hawskley, 1970).  This increase in the volatile yield under 

high heating rates and elevated temperatures put in order of relevance, the important 

dependence of coal pyrolysis on combustion conditions.   

 

 
Fig. 2.2  Hypothetical coal molecule during the stages of pyrolysis (Solomon et al., 1988) 
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Hereinafter, the influence of the main parameters affecting the amount of volatile yield is 

summarized: 

 

- Temperature: It is the most influential factor in terms of final volatile yield.  Under typical 

pulverized coal combustion temperatures (1750 – 2250 K), the weight loss increases from 5 

to above 60 % with respect to the loss estimated with the proximate analysis (Smoot and 

Smith, 1985).   

 

- Heating rate: It does not significantly affect the final weight loss in practical combustion 

processes.  However, the heating rate strongly influences the rate of the volatile yield, 

especially at high heating rates (Glarborg, 2001).   

 

- Pressure: In general, the weight loss increases when pressure is decreased and vice versa 

(Anthony et al., 1976).  As it was previously described, the metaplast may either vaporize 

and leave the particle as tar that crack into simpler gases and char by secondary reactions, or 

repolymerize into char.  Higher pressures confer a longer residence time for metaplast 

species in the particle and a better chance to crack into char rather than being released as tar 

(Glarborg, 2001).    

 

- Particle size: The influence of particle size is similar to the influence of pressure.  An 

increased particle size gives an increased residence time of reactive species in the particle 

with an increased chance for secondary reactions and repolymerization (Glarborg, 2001;     

Smoot and Smith, 1985). 

 

- Coal type: In general, lower rank coals give higher volatile yield and rate than higher rank 

coals.  This behaviour is explained in terms of the cross-linking and bridge-breaking 

balance competition on the depolymerization of the macromolecular network.  

Consequently, for lower rank coals, cross-linking rates occur in advance of the bridge 

breaking, increasing the coordination number of the macromolecular network, and thus, 

reducing the yield (Solomon et al., 1993).   

 

Moreover, the influence of coal devolatilization in the global combustion process is not only 

limited to the amount of volatile yield, but also determines the reactive and structural properties 

of char.  There exists a consensus among the specialized researchers (i.e. Ubhayakar et al., 

1976; Kobayashi et al., 1976) denoting the heating rate as the most relevant factor.  Increasing 

the heating rate barely affects the final weight loss.  However, it produces abrupt changes in the 

coal structure, leading to swelling, softening, cracking and sometimes fragmentation due to 
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thermal and mechanical stresses. These abrupt changes are a result of the high temperature 

gradients and the pressure forces of the impeding gases in and out of the particle through the 

pores (Stubington et al., 1989).  Furthermore, a rapid devolatilization minimizes the chance for 

secondary reactions and repolymerization, expediting the yield of mineral matter and other 

impurities (S, N, H) from the char matrix.  This way, the char H/C ratio is reduced decreasing 

its intrinsic reactivity (Gale et al., 1996).  In the same way, an increase in temperature also 

produces a decrease in char reactivity (Gale et al., 1996). 

 

Finally, another outstanding aspect of the devolatilization process is its influence on the ignition 

of char and flame stability.  The combustion of the volatile products in the vicinity of the 

particle’s surface, reverts part of the heat released in the reactions to the particle, enhancing the 

heating for ignition.  In spite of this fact, the main source of heat does not come from the 

volatiles’ combustion, but from the hot combustion gases re-circulated towards the ignition 

region.  Another ignition source comes from the environment radiation, in which the volatiles’ 

combustion also indirectly participates (Bartok and Sarofim, 1991).  

 

2.1.2 Devolatilization models 

The first kinetic study of the devolatilization process was published in 1950.  According to 

Bazdzioch and Hawskley (1970), the soviet authors, Shapatania, Kalyuzhnyi and Chukhanov, 

studied the possibility of controlling the composition of the volatile released by varying the 

heating conditions.  In spite of the fact that temperatures, reaction rates and particle sizes did not 

correspond to the typical conditions in combustion reactors, they found one of the most relevant 

and wide spread results in devolatilization studies.  They showed that the weight loss obtained 

by means of the proximate analysis, undervalued the real volatiles released obtained in their 

experiments.   From this result, according to Badzioch and Hawskley (1970), other research 

groups (Chukhanov et al., 1962; Loison and Chauvin, 1964; Yellow, 1965), obtained similar 

conclusions.  At the same time, the influence of combustion conditions (temperature, pressure, 

heating rate, particle diameter, coal rank and properties) on the rate and yield of volatiles was 

investigated.   

 

However, in spite of all these experimental studies, there still existed little information about the 

mechanisms and kinetics of the process, especially under typical pulverized coal combustion 

conditions (heating rates of 105 K/s and peak temperatures around 1750 ºC).  In 1970, Badzioch 

and Hawskley were the first ones in publishing a kinetic study that correlated the change in the 

volatile matter yield as a function of time and temperature, giving birth to the first 

devolatilization model.  This model was the precursor of other classical weight loss models, i.e. 

two competing reaction models or distributed activation energy models, based also on empirical 



Chapter 2   Combustion models’ revision    
_____________________________________________________________________________________  

_____________________________________________________________________________________  
24 

 

approaches.  Even nowadays, these models are still in use in most of the CFD codes and other 

combustion applications that do not require an exigent detailed level.  However, in the 80’s, the 

development of novel techniques for coal characterization led to a higher understanding of the 

coal molecular structure and the reactions that take place within it.  This fact resulted in the 

development of mechanistic approaches based on the chemical structure of the parent coal.  

Theses models, known as network pyrolysis models, describe the decomposition and 

recombination of the macromolecular network from coal properties and combustion conditions.  

Examples of this kind of models are the FG-DVC model (Solomon et al., 1988, 1990, 1993), the 

CPD model (Fletcher et al., 1989, 1990, 1992), and the FLASHCHAIN model (Niksa et al., 

1991, 1994). 

 

Single first order reaction models (SFOR) 

The first kinetic model of the coal devolatilization process, commonly known as single first 

order reaction model (SFOR), was proposed by Badzioch and Hawskley in 1970.  From 

experimental tests with different coals in a laminar flow reactor at temperatures ranging from 

400 to 1000 º C and residence times ranging from 30 to 110 ms, they obtained a set of 

isothermal curves of coal pyrolysis that suggested an exponential behaviour described by Eq. 

2.1. 
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Expressing Eq. 2.1 in a linear form, Eq. 2.2, the isothermal decomposition curves from different 

temperatures turn into straight lines starting from approximately 20 ms (Figure 2.3), 

corresponding to the transit time required for heating the particle before the primary 

devolatilization starts.   
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Then, they investigated how the slope varied with temperature.  From different tests with 

heating rates ranging from 25000 to 50000 K/s, they proposed an Arrhenius form expression for 

this variation (Eq. 2.3). 

 

)/exp( TEAk vTvv −⋅=        (Eq. 2.3) 
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Finally, adjusting the values for the pre-exponential factor Av and the activation energy EvT, for 

the conditions and coals used in the tests, the model was completely defined.  

 

The main advantage of a model with these characteristics is its simplicity, since it is defined 

with only three parameters (Vf, Av and EvT) it permits us to give a quick estimate of the degree of 

devolatilization.  A major problem of using this model is that the kinetic parameters determined 

from experiments depend on the heating rate.  This means that in order to use it, the rate 

constants should be determined from data obtained at conditions which closely resemble the 

conditions at which the model is to be used.  Moreover, the final volatile yield Vf depends on the 

peak temperature, and again the practice conditions in the test should resemble the conditions at 

which the model is to be used.  In spite of these drawbacks, which make the model rigid in its 

general application, it is one of the most wide spread models in combustion codes.     

 

 
Fig. 2.3  Isothermal decomposition curves for different temperatures (Badz. and Hawsk., 1970) 
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Fig. 2.4  Devolatilization curve fitting for a tested coal (Badz. and Hawsk., 1970) 

 

Distributed activation energy models (DAEM) 

SFOR models assume that all the chemical bonds are identical.  However, coal decomposition is 

the result of a large number of chemical reactions that produce the rupture of various bonds 

within the coal molecule (Glarborg, 2001).  A better approach would be to consider the 

evolution of volatiles from the breaking of each type of chemical bond.  In this way, we would 

have a single first order reaction for each type of chemical bond i, where the values of the 

kinetic parameters Avi, EvTi and Vfi should be determined for every i reaction that participate in 

the decomposition.   In order to simplify the problem, Anthony et al. (1976) assumed that the 

rate constants only differ in activation energy, and that the number of reactions is so large that 

this activation energy can be described by a continuous distribution function f(EvT).  By analogy 

with the SFOR model, the evolution of volatiles is obtained by integrating over the time the 

distributed activation energy EvT (Eq. 2.4). 
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      (Eq. 2.4) 

 

In most literature, the distribution function is approximated by a Gaussian distribution with a 

mean activation energy EvTo and a standard deviation σ (Eq. 2.5). 
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In practice, the integration over activation energy in Eq. 2.4 is performed between limits which 

cover most of the volatiles (EvTo ± 4σ).  The main advantage of this model is that the heating 

rate dependency of the kinetic parameters (Vf, Av, EvTo, σ)  has been eliminated.  Moreover, the 

temperature dependency of the final weight loss is partly eliminated, since volatiles related to 

high activation energies evolve slowly at low temperatures.   

 

Two competing step models (2CSM) 

Two competing step models assume that two reactions with different rate parameters and 

volatile yields compete to pyrolyse the raw coal.  One reaction dominates at lower temperatures, 

whilst the other dominates at higher temperatures (Eq. 2.6).  Therefore, coal is decomposed by 

two parallel reactions that depend on the temperature-time history of the particle (Ubhayakar et 

al., 1976; Kobayashi et al., 1976). 
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Where, 
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The kinetic rate constant are of the Arrhenius form with the feature that EvT1 < EvT2 and Vf1 < Vf2 

(Eqs. 2.7).  This means that if the decomposition occurs at low temperature, reaction 1 is 

dominating and the asymptotic volatile yield is Vf1; and if the decomposition occurs at high 

temperature, reaction 2 is dominating and the volatile yield is Vf2.  The global evolution of 

volatiles as a function of time is obtained in the same way as in the previous models expressions 

(Eq. 2.8). 

 

⎟
⎠
⎞

⎜
⎝
⎛

∫ ⋅+−−=
+ t

vv
f

dtkk
V

VV
0

21
21 )(exp1       (Eq. 2.8) 

 

 



Chapter 2   Combustion models’ revision    
_____________________________________________________________________________________  

_____________________________________________________________________________________  
28 

 

The main advantage of this model is that it can predict variations in the volatile yield with 

temperature.  However, again the rate constants should be determined from data obtained at 

conditions which very closely resemble the conditions at which the model is to be used, and this 

time, six parameters are required (Vf1, Vf2, Av1, Av2, EvT1, EvT2). 

 

Network pyrolysis models 

Weight loss models use rate constants fitted from experiments to predict the evolution of 

volatiles for a given coal type and reactor conditions.  However, these empirical values cannot 

be generalized for all conditions.  Moreover, the devolatilization of the coal particle is mainly 

associated with two processes: tar and light gases release.  Gases yield is related to the thermal 

decomposition of specific functional groups, and may be predicted using first order reaction 

kinetics, together with the coal proximate analysis.  However, tar and char evolutions are 

difficult to model and weight loss models fail in their prediction.  Network pyrolysis models are 

free of this problem.  Predicting tar formation is important for several reasons.  Firstly, tar is the 

major volatile product.  Moreover, it is often the volatile product of highest initial yield, and 

thus, controls ignition and flame stability.  And finally, tar formation is linked to the physical 

and chemical structure of the char, and so it is important to char swelling and reactivity 

(Solomon et al., 1988).  Network pyrolysis models are based on a detailed treatment of coal 

structure that permits us to precisely predict the thermal coal decomposition.  To achieve this, 

coal structure is modelled as a network of aromatic rings linked by bridges of different 

reactivity.  The devolatilization process is modelled using first order expressions with statistical 

distributions for the activation energy and statistical distributions that describe the bridge 

breaking rate, bridge formation by recombination processes and bridges cracking into char 

(Solomon et al., 1988; Genetti, 1999).   

 

Examples of these models are the FG-DVC model (Solomon et al., 1988, 1990, 1993), the CPD 

model (Fletcher et al., 1989, 1990, 1992), and the FLASHCHAIN model (Niksa, 1991, 1994). 

 

FG-DVC (Solomon et al., 1988, 1990, 1993) 

The structure of the FG-DVC model (Functional-Group Depolymerisation Vaporisation Cross-

Linking) is divided in two sub-models.  The Functional Groups sub-model describes the 

evolution of light gases as a result of the decomposition of certain functional groups.  

Depolymerisation Vaporisation and Cross-Linking sub-model describes the bridge-breaking and 

recombination competition to produce metaplast, the condensation to produce char and the tar 

vaporization out of the particle.  Figure 2.5 shows a representation of the evolution of the char 

structure in a DVC simulation.  
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Fig. 2.5  Formation process of tar and char in the DVC sub-model (Solomon et al., 1988) 

 

The mathematical description of the model transforms the coal structure on a bi-dimensional 

Bethe lattice of aromatic rings linked by aliphatic bridges.  Metaplast formation and the 

subsequent tar evolution are described using statistical techniques of the percolation theory.  

The kinetics of the functional groups’ decomposition process is modelled assuming first order 

reactions with distributed activation energy.   

 

Coal characterization and the parameters of the model are determined using thermo-analytic 

techniques such as TG-FTIR, NMR and FIMS.  The model provides the gas yield, the elemental 

and functional group composition of tar and char, and the weight distribution for tar, gas and 

char.   

 

CPD (Fletcher et al., 1989, 1990, 1992) 

The CPD model applies the percolation theory on a Bethe lattice to describe the formation of 

metaplasts, and a vapour-liquid equilibrium model to predict tar evolution.  Finally, it uses the 

same reaction scheme proposed by Solomon et al. (1988) to predict light gases evolution.  The 

main contribution of the model was the introduction of a new methodology based on the 

percolation theory that reduces notably the computing time with respect to the FG-DVC model, 

based on the Monte Carlo method (Solomon et al., 1988).  The model provides the evolution 

and weight distributions for gas, tar and char.   
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FLASHCHAIN (Niksa, 1991, 1994) 

The FLASHCHAIN model, unlike the previous models, describes the coal structure as a 

mixture of chain fragments ranging in size from a monomer to very long chains with 

peripherical groups in some of the fragment ends and linked to each other by stable and non 

stable bonds.  The model is formed by four reaction mechanisms: statistical functions to 

determine the bridge-breaking and cross-linking probability; statistical functions to determine 

the chemical composition of fragments; and finally, a vapour-liquid equilibrium model to 

predict tar evolution from the lower molecular weight fragments.   

 

 
Fig. 2.6  Reaction mechanism in FLASHCHAIN (Niksa, 1991) 

 

Chain fragments are divided into three groups: reactant fragments which correspond to the 

intact chains in the beginning of the devolatization process; intermediate fragments which 

correspond to the chains once some bridges have excised; and finally, metaplast fragments when 

there are no bridges to link the chain to the macromolecular structure.  Figure 2.6 shows a 

representation of the reaction mechanisms in FLASHCHAIN: bridge breaking, condensation of 

bridges into char links, recombination processes and reactions of the pheripheric groups that 

lead to light gas yield.  Tar evolution is described by means of the metaplast vapour-liquid 

equilibrium.  This model provides the evolution and weight distributions for gas, tar and char.   
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2.2 Homogeneous combustion of volatile products 

 

During devolatilization a great variety of volatile products in the form of tar and other 

hydrocarbon gases, CO2, CO, H2, H2O and HCN are produced.  At the same time, tar is formed 

by hundreds of compounds, mostly aromatic hydrocarbons.  These products are expelled from 

the porous coal particle, forming a cloud of volatiles that reacts with oxygen in the vicinity of 

the char particles, increasing temperature and depleting the oxidizer.  Four different phases may 

be distinguished in the process (Bartok and Sarofim, 1991): 

 

- Macro-mixing of the devolatilizing coal particles with the oxidizer 

- Micro-mixing of the volatiles cloud and the oxygen 

- Oxidation of the gaseous species to combustion products 

- Heat transfer from the reacting fluids to the char particles 

 

At the same time, oxidation reactions of the gaseous species to combustion products undergo 

three steps.  In the beginning, tar is cracked into smaller hydrocarbon fragments, with local 

production of soot, H2 and CO.  Then, hydrocarbon gases are oxidized to CO, H2 and H2O.  

Finally, H2 and CO are completely burned to produce CO2 and H2O, and NOx and SOx are 

formed.  

 

However, in practical combustion simulation, it is not possible to model all these phenomena.  

The reason for this is that hydrocarbon chains represent only a few of the thousands of complex 

compounds released during devolatization.  Moreover, there is no simple reaction mechanism 

that allows us to describe a turbulent flow involving such a huge number of species and 

reactions. In general, two main approaches are usually considered to describe the combustion of 

the volatile products: local equilibrium and global reactions.  The local equilibrium approach 

considers that volatile products and the oxidizer are in local thermodynamic equilibrium.  This 

hypothesis allows us to determine the gas temperature and its composition from the elemental 

composition of volatiles and the heat released during devolatilization.  The global reactions 

approach allows us to determine the global reaction rate from correlations of a priori known 

reaction rates for several reactants (CH4, C2H6, CxHyOz).  In general, this approach overpredicts 

the reaction rate, resulting in errors in the calculated time required to complete the reaction.  In 

spite of this fact, since homogeneous volatile combustion is completed in a few milliseconds, 

the election of one or another reaction scheme does not affect the global burnout of the particle, 

which is determined by the oxidation of char.  However, the choice of the reaction scheme may 

become important if stoichiometry, ignition, flame temperature, or NOx and SOx predictions are 

desirable (Sami et al., 2001; Backreedy, 2002).   
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2.3 Char oxidation 

 

Char oxidation is the last step in the combustion process.  An understanding of this stage is 

important for most combustion problems, since it is slower than devolatilization and gas phase 

reactions, and maintains a close relation with combustion efficiency.   Many factors have an 

influence on the char oxidation process.  The most important factors are set out below  

(Unsworth et al., 1991): 

 

• Coal structure variation 

• Reactant diffusion 

• Particle size effects 

• Pore diffusion  

• Thermal annealing of char 

• Mineral matter catalytic effects 

• Particle surface area changes  

• Char fragmentation 

• Pressure and temperature variations 

• Oxygen partial pressure variation 

 

Nevertheless, it is difficult to include all these effects in the combustion model, and thus, there 

does not exist any model that includes all these factors in a general form, for a great variety of 

coal types and combustion conditions.  

 

2.3.1 Description of the process and more significant results 

The char is the carbon rich particle formed during the devolatilization process.  Therefore, it is 

mainly made of carbon although it also contains some nitrogen, sulphur and most of the mineral 

matter of the parent coal (Essenhigh and Howard, 1967).  Its surface is full of cracks and holes, 

forming a highly porous structure from which the oxidant can penetrate.  Char intrinsic 

properties are determined by the parent coal properties and also by the conditions in which 

devolatilization has taken place (Smith, 1982).  Char oxidation starts at elevated temperatures in 

an oxidizing atmosphere.  The most relevant reactions of the process are (Field, 1967): 

 

C + CO2   2CO        (R 2.4) 

C + H2O   CO + H2        (R 2.5) 

C + 2 H2   CH4        (R 2.6) 

C + ½ O2  CO        (R 2.7) 
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C + O2      CO2        (R 2.8) 

 

The reactions with carbon dioxide (R 2.4) and water vapour (R 2.5) are only relevant for 

gasification processes, and are much slower (100 s-1 at 1100 K) than reactions with oxygen (105 

s-1 at 1100 K) (R 2.7 and R 2.8) which are thermodynamically favoured at combustion 

temperatures.  The reaction with hydrogen (R 2.6) is too slow (10-3 s-1 at 1100 K) to be 

important for most practical applications.  Therefore, generally, only the reactions with oxygen 

are considered for the study of combustion systems that do not involve gasification processes 

(Field, 1967; Glarborg, 2001). 

 

Reactions C-O2 

Reaction rates depend on the structural and reactive characteristics of char. They also depend on 

the pressure, temperature and oxidant partial pressure combustion conditions.  The rate-limiting 

step in the char oxidation can be chemical (adsorption of the oxidant, reaction, and desorption of 

products) or gaseous diffusion (bulk phase or pore diffusion of oxidant and products).  As a 

function of the rate-limiting factor, three zones or regimes are commonly defined (Unsworth et 

al., 1991; Hong, 2000; Backreedy, 2002): 

 

• Zone I (< 900 K): Oxygen diffuses to the surface of the particle at a rate faster than it is 

consumed.  The oxygen concentration inside the pores is the same as the one in the bulk 

gas.  Oxygen penetrates the particle and combustion takes place in the interior of the pores.  

Particle diameter remains constant, but decreases in density.  Combustion is controlled by 

reaction rate.   

 

• Zone II (1200 – 1700 K): Oxygen diffuses to the surface of the particle, and partly 

penetrates inside the pores.  Oxygen concentration decreases in the interior of the pores, 

since it is consumed before reaching the end of the pores.  Combustion, is then controlled 

by oxygen diffusion and reaction rate.  Therefore, oxidation also depends on char porous 

structure through a diffusion resistance.  Particle decreases both in diameter and density.   

 

• Zone III (> 1700 K): Oxygen diffuses to the surface of the particle, and immediately reacts 

with carbon due to the high reactivity of the char.  Oxygen concentration at the surface of 

the particle is close to zero.  Combustion is controlled by oxygen diffusion.  Particle 

decreases in diameter.   
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Fig. 2.7  Three-zone theory  combustion regimes 

 

During the combustion process, the burning particle usually undergoes all the processes 

involved in these three regimes.  In the beginning, reaction rate is still slow and diffusion rate is 

fast enough to make the oxygen concentration equal inside the pores and at the surface of the 

particle.  Thus, the global combustion rate is controlled by the chemical reaction rate (Zone I).  

As particle temperature increases, reaction rates increases too and the oxidant is consumed 

before it can completely penetrate the particle.  Therefore, the global combustion rate is 

controlled by oxygen diffusion and reaction rate (Zone II).  As long as temperature keeps 

increasing, a point may be reached in which reaction rate is so high that all the oxygen is 

consumed at the surface of the particle.  Then, the global combustion rate is controlled by 

oxygen diffusion (Zone III).  During combustion, typically the temperature evolution of the 

particle is characterized by a sharp increase during the first instants until a peak temperature is 

reached followed by a decrease until a relative constant value is reached.  Consequently, if the 

particle has reached the Zone III regime, a decrease in temperature results in a transition from 

Zone III to Zone II.  Finally, in the later stages of combustion, due to extinction phenomena, a 

transition from Zone II to Zone I is produced (Abd El-Samed et al., 1990; Hurt et al., 1993, 

1999; Shim et al., 2000).  These extinction phenomena are discussed throughout the chapter and 

have a great importance in the burnout determination in utility boilers. 
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To determine the combustion time of a particle, it is necessary to describe the kinetics of the 

gas-solid reactions within the particle.  There exist several mechanisms that model these 

reactions.  The most popular ones in the heterogeneous char oxidation are: 

 

1. Global power-law kinetics  

2. Langmuir-Hinshelwood semi-global kinetics  

 

However, in spite of their great acceptance, they is still debate around the theoretical base that 

support these mechanisms and it is generally accepted that there is room for further research. 

For example, the global power law mechanisms when using the appropriate activation energies 

can correctly describe the real process with some success. With the use of the Langmuir-

Hinshelwood expressions sometimes the values of the activation energies, for the adsorption 

and desorption process, is inverted in order to correctly reproduce the global reaction order 

obtained from experiments.  To overcome this, other authors (Haynes, 2001; Hurt and Calo, 

2001) have developed more complex mechanisms that explain theoretically the results obtained 

from experiments.  An example of this kind of mechanisms is:  

 

3. Three-step semi-global kinetics (Hurt and Calo, 2001) 

 

1. Global power-law kinetics (Bews, 2001; Hurt et al., 2001, 2004) 

Global power-law kinetics is the mechanism most often used in combustion codes.  It assumes 

one step for the carbon oxidation, producing CO and CO2 (R 2.9). 

 

C + O2  CO / CO2        (R 2.9) 

 

The reaction rate by surface area unit qc, is expressed as the product of a kinetic rate constant kc 

and a power of the oxidant concentration at the surface of the particle (Eq. 2.9). 

 
n

scc Pkq ⋅=            (Eq. 2.9) 

 

Where, n represents the apparent reaction order and the kinetic rate constant kc varies 

exponentially with temperature according to an Arrhenius form expression (Eq. 2.10). 

 

)/exp(0 TREkkc ⋅−⋅=        (Eq. 2.10) 
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To obtain the kinetic parameters (ko, E, n) it is assumed that reactions take place at the particle’s 

surface.  However, the char is a porous structure in which oxygen penetrates and reacts in the 

interior. Kinetic parameters based on the external surface of the particle are only valid in a 

narrow range of conditions.  These parameters are called extrinsic parameters.  On the contrary, 

when the kinetic parameters are defined considering the internal surface area of the particle, 

they are called intrinsic parameters.  In this way, in Zone III, where the combustion reactions 

take place at the particle surface, the activation energy and reaction order experimentally 

observed agree with the extrinsic values.  In Zone I, since the reactions take place in the whole 

particle, including the interior area of the pores, the observable parameters correspond to that of 

the intrinsic values.  In Zone II, where most of the combustion process is produced, and the 

reactions take place at the particle surface and partly in the interior of the pores, the relationship 

between the observed parameters and the intrinsic values can be approached by the expressions 

given in Eqs. 2.11 and 2.12 (Smith, 1978, 1982). 

 

2
)1( +

=
mn          (Eq. 2.11) 

2/EEa =          (Eq. 2.12) 

  

The suitability of the model is obtained by adequately reproducing the temperature dependence 

of the reaction through the activation energy Ea, and the oxygen concentration dependence 

through the reaction order n, throughout the whole combustion process.  However, in the 

literature there is not a consensus on the values of these parameters (Bews et al., 2001).  These 

discrepancies may be due to errors associated with the experimental tests, since often the kinetic 

parameters have been obtained from samples statistically non representative of the parent coal 

heterogeneity (Hurt et al., 2004). 

 

Figure 2.8 shows some of the reaction order values obtained from experiments by several 

authors.  In Zone I, at low temperatures, high order values are obtained (0.6 – 1).  However, in 

Zone II, the first discrepancies appear.  Some authors obtained reaction orders close to zero 

(Tyler et al., 1976), whilst others obtained reactions orders close to unity (Field, 1967; Smith et 

al., 1971, 1972; Charpenay et al., 1992; Backreedy et al., 2006).  In addition to this, some 

authors opt for using in the combustion calculations reaction orders of 0.5 (Hurt et al., 1982, 

1998; Mitchell and McLean, 1982; Young and Smith, 1989; Sun et al., 2000).  With regard to 

the activation energy there exists a greater agreement and typically values between 105 to 200 

kJ/mol are used (Backreedy, 2002).  From these studies, it has been deduced that in spite of the 
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extended use of power-law kinetics,  a general form expression can not be formulated and must 

be particularized for each application.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.8  Reaction order for various regimes obtained by several authors (Hurt and Calo, 2001) 

 

2. Langmuir-Hinshelwood semi-global kinetics (Hong, 2000; Hurt and Calo, 2001) 

The simplest form of the Langmuir-Hinshelwood kinetics is also widely used in combustion 

studies.  These kinetics considers a two reaction mechanism corresponding to the oxygen 

adsorption (R 2.10) and the carbon monoxide desorption (R 2.11) (Langmuir, 1921).   

  

C + O2  C(O)         (R 2.10) 

C(O)  CO         (R 2.11) 

 

The reaction rate per surface area unit qc, is expressed as a function of the kinetic rate constants 

kc1, kc2, and the oxygen concentration at the surface of the particle Ps (Eq. 2.13). 

 

21
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Where, kc1 and kc2 are the adsorption (R 2.10) and desorption (R 2.11) kinetic rate constants 

respectively (Eqs. 2.14 and 2.15). 

 

)/exp(011 TREkk adsc ⋅−⋅=        (Eq. 2.14) 

)/exp(022 TREkk desc ⋅−⋅=        (Eq. 2.15) 

 

The activation energy of the adsorption process, Eads, is in the range of 10 – 125 kJ/mol, while 

that corresponding to the desorption process, Edes, is in the range of 160 – 400 kJ/mol.  The 

effective reaction order varies with temperature and oxygen concentration according to Eq. 

2.13, suggesting two limiting cases.  At low temperature, the oxygen partial pressure is very 

high, and the adsorption process dominates (Edes >> Eads).  Therefore, from Eq. 2.13, a zero 

order reaction rate expression is obtained (Eq. 2.16). 
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= >>      (Eq. 2.16) 

 

At high temperature the contrary behaviour occurs, the oxidant partial pressure is very low, and 

the desorption process dominates, obtaining a first order reaction rate expression (Eq. 2.17).  
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     (Eq. 2.17) 

 

In between these two limiting cases, intermediate values are found that suggest a regime 

transition.  However, returning to Figure 2.8, the opposite behaviour is represented.  This result 

indicates the presence of other intermediates competing with the adsorption and desorption 

processes.  As a result, many authors have decided to adjust the values of the activation energies 

for the adsorption, Eads, and desorption processes, Edes, in order to describe a decrease in the 

reaction order with temperature that fits the experimental results.  Therefore, the mechanistic 

significance of the model is lost.            

 

3. Three-step semi-global kinetics (Hurt and Calo, 2001) 

The experimental results from the previous model suggested the existence of complex O2-C 

reactions.  These secondary reactions produce carbon dioxide complex compounds that finally 

react with oxygen to produce most of the CO2 formation.  Therefore, an intermediate step (R 

2.13) that competes with the CO desorption process (R 2.14) is introduced into the reaction 

mechanism.  
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C + O2  2C(O)                      (R 2.12) 

C(O) + O2  CO2 + C(O)       (R 2.13) 

C(O)  CO         (R 2.14) 

 

The strength of the desorption process explains why the Langmuir-Hinshelwood kinetics 

correctly fits the experimental data when inverting the activation energies, significantly 

decreasing one of the desorption process (Edes ≈ 170 kJ/mol) and increasing one of the 

adsorption process (Eads ≈ 200 kJ/mol).  

 

The reaction rate per surface area unit qc, is expressed as a function of the kinetic rate constants 

kc1, kc2, kc3 and the oxygen concentration at the surface of the particle Ps (Eq. 2.18). 
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Where, kc1, kc2 and kc3 are the adsorption (R 2.12), oxygen complex secondary reactions (R 

2.13), and desorption (R 2.14) kinetic rate constants respectively (Eqs. 2.19 to 2.21). 

  

)/exp(011 TREkk adsc ⋅−⋅=        (Eq. 2.19) 

    )/exp( 2022 TREkk Oc ⋅−⋅=           (Eq. 2.20) 

)/exp(033 TREkk desc ⋅−⋅=        (Eq. 2.21) 

 

The activation energies of the reaction mechanisms were adjusted to Eads=35 kJ/mol, EO2=130 

kJ/kmol and Edes=180 kJ/kmol.  The effective reaction rate varies with temperature and oxygen 

concentration according to Eq. 2.18 suggesting two limiting cases and the transition between 

them.  At low temperatures, the adsorption process dominates, with the desorption process 

being the rate-limiting step (kc3 << kc2, kc1).  Therefore, from Eq. 1.18 a first order reaction rate 

is obtained (Eq. 2.22). 
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  (Eq. 2.22) 

 

At high temperatures, the desorption process dominates (kc3 >> kc2, kc1), with the adsorption 

process being the rate-limiting step.  Therefore, from Eq. 2.18, again a first order reaction rate is 

obtained (Eq. 2.23). 
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  (Eq. 2.23) 

 

Finally, a transition regime takes place at moderate temperatures, where there is competition 

between the complex secondary reactions (R 2.13) and the desorption process (R 2.14) (kc1 Ps 

>> kc3 >> kc2 Ps).  From Eq. 2.18, a zero order reaction rate is obtained (Eq. 2.24). 
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Returning to Figure 2.8, with the introduction of an intermediate step, the reaction mechanism 

correctly reproduces the experimental data and so conserving the mechanistic significance of the 

model.  

 

In general, C-O2 reactions are very complex and are highly influenced by the heterogeneous 

reactivity of the particle.  Every particle has local variations in its composition, reactivity and 

microstructure.  This intrinsic heterogeneity is put into context with the variation in the 

activation energies of the steps in the reaction mechanism (Hurt et al., 2004).  Another relevant 

factor that affects the reaction kinetics is the mineral matter content of the char (Essenhigh, 

1981).  Mineral matter, besides consuming thermal energy, has a double effect on combustion 

kinetics.  On one hand, it produces a catalytic effect that enhances char reactivity at low 

temperature.  On the other hand, the ash film layer that covers the particle as combustion 

proceed and impedes the diffusion of the oxidant agent to the reactive surface of the particle 

(Hampartsoumian et al., 1989; Charpeney et al., 1992).  Definitively, the global effect on the 

combustion of mineral matter is uncertain and difficult to predict and it depends on the ash 

content and properties, char properties, and combustion conditions (Backreedy, 2002). 

  

2.3.2  Char oxidation models 

Before describing some of the most popular char oxidation sub-models in the literature, a 

general classification of the existing models is presented: 

 

1. Global models: These models assume that the char particle is impervious to pore diffusion 

effects, and thus, reactions take place in the outer surface of the particle.  All the intrinsic 

phenomena (porosity of the char, diffusion and reaction in the interior of the particle), are 

included through the kinetic rate parameters of the model.  For this reason, global models 
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are very empirical, and thus, the practice conditions and coal properties in the test should 

resemble the conditions and coal type at which the model is to be used.     

 

2. Intrinsic models: Intrinsic models provide general kinetic correlations that directly relate the 

char structural characteristics with coal properties and combustion conditions, assuming an 

oxygen concentration profile in the interior of the particle.  Therefore, they can be used  

with less restriction for different coals and combustion conditions.  

 

1. Global models 

The most wide spread combustion model used in combustion codes is the classical film model 

(Field et al., 1967).  Field’s model assumes a spherical char particle surrounded by a gas 

boundary layer, through which oxygen diffuses from the bulk gas stream.  Then, oxygen reacts 

at the surface of the particle, releasing combustion products that diffuse again through the 

boundary layer to the bulk gas.  Combustion products are formed by a mixture of CO and CO2 

(Longwell et al., 1993), but it is usually assumed that the carbon monoxide oxidation takes 

place near the surface of the particle, and thus, only carbon dioxide is obtained at the boundary 

layer.   

 

 
Fig. 2.9  Representation of the film model (Field, 1967). 

 

The combustion rate of the particle is determined in terms of the chemical reaction rate kc  

(according to a C-O2 global power-law kinetics) and the diffusion rate kd in the boundary layer.   

 
n

scc Pkq ⋅=          (Eq. 2.25) 

)( sgdc PPkq −⋅=         (Eq. 2.26) 
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Combining the expressions obtained for the species diffusion (Eq. 2.26), and assuming a first 

order reaction (n = 1) at the particle surface (Eq. 2.25), an alternative expression for the global 

combustion rate as a function of the oxygen partial pressure in the bulk gas phase Pg, is obtained 

(Eq. 2.27). 
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        (Eq. 2.27) 

 

Since the internal structure of the char particle is unknown, it is assumed that reactions take 

place at the surface of the particle, and thus, only the oxygen diffusion through the boundary 

layer is considered (Eq. 2.28). 
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Where, ϕ is the stoichiometric coefficient of the oxidation reaction (ϕ = 1 for CO2 combustion 

products, or ϕ = 2 for CO combustion products).  The molecular diffusion coefficient for O2 into 

N2, DO2, may be estimated by means of binary-diffusion coefficients (Turns, 1993) (Eqs. 2.29 – 

2.33).    
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Where, σO2 (≈3.467 Å) and σN2 (≈3.798 Å) are the hard-sphere collision diameters of the 

respective species, and ΩD is a dimensionless collision coefficient calculated as a function of a 

dimensionless temperature T*.  This dimensionless temperature is expressed as a function of the 

bulk gas temperature and the characteristic Lennard-Jones energy coefficients εO2/kN2 ≈106.7 K 

and εN2/kN2 ≈71.4 K.  Alternatively, the molecular diffusion coefficient DO2 may be also 

calculated through Eq. 2.34 (Jensen, 2001), where D0 is the molecular diffusion coefficient 

calculated at reference conditions (P0 and T0), and Tm is the averaged of bulk gas and particle 

surface temperatures.   
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75.1

02 ⋅=         (Eq. 2.34) 

 

On the other hand, the chemical reaction rate kc is described by an Arrhenius form expression 

(Eq. 2.35).  Intrinsic characteristics are included in the model through the activation energy Ea 

and the pre-exponential factor Aa, calculated for a given set of coal and combustion conditions 

(Eq. 2.35).   

 

)/exp( paac TREAk ⋅−⋅=        (Eq. 2.35) 

 

Another popular single film model is the one of Baum and Street (1971), which slightly differs 

from Field’s model in the expressions used for describing the kinetic and diffusion rate 

parameters.   

 

For the moment, both Field’s and Baum and Street’s models assume a first order C-O2 reaction 

mechanism.  However, as explained previously, the reaction order varies ranging from zero to 

one, depending on char properties and combustion conditions (Bews et al., 2001; Hurt and Calo, 

2001).  Therefore, in such cases, it is necessary to solve iteratively the general expression of the 

combustion rate with an arbitrary n-order reaction (Eq. 2.36). 
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       (Eq. 2.36) 

 

With the intention of improving and generalizing the use of combustion models, several authors 

have developed different correlations that allow us to link the kinetic rate constants with coal 

properties, leading to an extent of the model to different coal types.  One of the most widespread 
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correlations was proposed by Hurt and Mitchell (1992).  This correlation relates Ea and Aa with 

the coal elemental analysis for a wide range of coals from different ranks (Eqs. 2.37 – 2.39). 

 

)%5,3594,5( CEa ⋅+−=        (Eq. 2.37) 
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Where,  

( ))...%0758,080,2()ln( 1750, fadCwtk Kc ⋅−=      (Eq. 2.39) 

 

All the models described above assume that the char reactive characteristics remain invariable 

during the whole combustion process.  However, experimental studies suggested that different 

phenomena during char combustion such as: variation in the internal porous structure of char, 

fracturing of the char, mineral matter effects, thermal annealing, etc., produce an increase in the 

time required to complete char conversion (Hurt et al., 1998).  One of the most important 

contributions to this effect is the extinction phenomena.  The extinction phenomena is mainly 

due to two contributions: the reactivity loss in the late stages of combustion (thermal annealing 

of char) (Suuberg, 1991), and the existence of an ash film layer covering the surface of the 

particle that impedes the oxygen diffusion to the actives sites.  Moreover, the extinction 

phenomena involve a regime transition from Zone II to Zone I (Abd El-Samed et al., 1990; Hurt 

et al., 1993, 1999; Shim and Hurt, 2000).  Therefore, not including this effect in the combustion 

calculations explains why many models adequately predict the combustion degree attained in a 

laboratory reactor, where typically below 70 % of the coal conversion is studied, but fail with 

the prediction in practical utility boilers, where the coal conversion attained is over 90 %.  The 

first model that accounts for these extinction phenomena (thermal annealing of char, and ash 

inhibition effects), was developed by Hurt et al. (1998), and it is known as the carbon burnout 

kinetic model (CBK).  Consequently, this model notably improves burnout prediction in utility 

boilers (Figure 2.10).    

 

The first version of the CBK model consists of a single film model and different sub-models 

that account for morphological changes in the char structure and extinction phenomena.  The 

CBK model comprises the following four main components: 

 

• Single film model (Field, 1967) with rank-dependent kinetic correlations (Hurt and 

Mitchell, 1992) 
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• Thermal annealing sub-model  

• Ash inhibition sub-model 

• A physical property sub-model describing swelling, and diameter/density/porosity changes 

during oxidation 

 

 
Fig. 2.10  Comparison of measured conversion profiles from laboratory reactors (triangles) with 

predictions of the simple global model  (solid line) and the CBK model (dashed line) (Hurt et 

al., 1998) 

 

Originally, the CBK model also accounted for a sub-model describing statistical variations in 

single-particle reactivity and density.  However, this sub-model was discarded in later versions 

of the code.   

 

These sub-models are included in the single film model through the diffusion and reaction rate 

constants.  The reaction rate constant kc is determined according to Eq. 2.35; where, the 

activation energy Ea, is calculated from the Hurt and Mitchell (1992) rank-dependent 

correlations (Eq. 2.37).  The thermal annealing process is taken into account through the pre-

exponential factor Aa.  This pre-exponential factor depends on the history of the particle, and 

accounts for the char reactivity loss.  The reactivity change between two consecutive instants, 
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Ai/Ai-1, for the Zone II, if the effects of annealing are limited to changes in surface area and 

changes in intrinsic surface reactivity, is described by Eq. 2.40.   

 

o
ii N

NAA ⋅= −1
        i = 1,2,3,...       (Eq. 2.40) 

 

Where, N/No represents the decreasing of active sites (local emplacements in which oxidation 

reactions may take place) in the char matrix.  Therefore, the model assumes that the global 

reactivity is the result of independent parallel oxidation reactions on different actives sites 

within the particle.  These sites are destroyed by a first order thermal process (Eq. 2.41). 

  

( )pd TRE
dj

j eAN
dt

dN ⋅−⋅⋅−=        (Eq. 2.41) 

 

Where, Ad and Ed are the kinetic rate parameters of the deactivation process.  The model 

assumes that all the active sites share the same pre-exponential factor Ad, but they are to be 

distributed with respect to the activation energy Ed, which governs the thermal deactivation 

process (Eq. 2.42).  
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Where, fE is assumed to be a log-normal distribution with parameters Ed =16.44 kcal/mol, 

σd=0.46, Ad  =8.863E+7 s-1 (Eq. 2.43). 
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      (Eq. 2.43) 

 

Returning to Eq. 2.40, the initial reactivity of the char, Ao, is calculated for vitrinite-rich coals 

with carbon contents from 60 % to 90 % according to Eq. 2.44.  

 

( ))...%15,782,10()ln( 0 fadCwtA ⋅−=          (Eq. 2.44) 

 

This initial value does not correspond to the reactivity of any real test sample but that of a 

hypothetical initial state calculated by regression techniques from measured experiments 

knowing the temperature history of the particle.   
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The diffusion rate constant adds, to the single film model, an additional resistance to account for 

the effect of the ash film layer covering the surface of the particle and impeding the diffusion of 

oxygen (Eq. 2.45). 
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Where, Sh is the dimensionless Sherwood number (for typical pulverized fuel particle sizes, Sh 

= 2), DO2  is the molecular diffusion coefficient, dp is the particle diameter, θaf is the ash film 

porosity (according to Hurt et al., (1998), θaf = 0,16 ÷ 0,25), R is the ideal gas constant, δ is the 

ash film layer and dc is the char particle core diameter (dc = dp – (2δ)).  

 

In the beginning, when char conversion is still very low, the ash film is dispersed in grains over 

the surface of the particle, forming a minimum ash film of thickness δm (with unknown coals δm 

= 1 µm) (Figure 2.11). 

 
Fig. 2.11 Ash inhibition sub-model (Hurt et al., 1998) 

 

As combustion process proceeds, more grains are added to the film, decreasing its porosity.  

After a certain time, the grains start to agglomerate, increasing the ash film thickness, while 

maintaining a constant porosity called critical ash film porosity (θaf).   
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Eq. 2.46 allows us to calculate, at any time considered, the ash film porosity from the current 

particle properties before the critical ash film porosity, θaf, is reached.  After this moment, the 

ash film porosity remains constant.  In the same way, since char oxidation is a dynamic process, 

it is necessary to determine the density and particle size histories along the combustion process.  

The variation of the particle core density, excluding the ash film layer, is calculated according to 

Eq. 2.47, as a function of carbon conversion raised to the power of an empirical combustion 

factor α (with unknown coals α = 0.2). 
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Then, it is possible to determine the overall density of the particle (Eq. 2.48). 
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Finally, from geometric considerations the particle diameter is obtained (Eq. 2.49). 
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        (Eq. 2.49) 

 

To conclude with the description of the CBK model, it should be remarked upon that the CBK 

model is widely accepted in the scientific community and has been a precursor of many other 

advanced combustion models (Domino and Smith, 1999; Cloke et al., 2003; Pallarés et al., 

2005).  

 

2. Intrinsic models 

The origin of the intrinsic models arose from the results of experimental investigations on coal 

combustion that suggested that the internal surface area of the char and the diffusion effects 

within the interior of the pores had a great influence on the overall burnout of the particle.  

Therefore, it was important to determine, not only the intrinsic kinetics of the oxidation 

reactions, but also the intrinsic porous structure of the particle and its evolution along the 

combustion process.   

 

In general, within intrinsic models, the reaction rate is expressed as the product of a reaction rate 

coefficient (Rc) and the oxygen partial pressure at the surface of the particle PO2 (Eq. 2.50). 
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n
Occ PRq

2
⋅=          (Eq. 2.50) 

 

The reaction rate coefficient Rc, depends on both the intrinsic char structure properties and 

combustion conditions (Eq. 2.51).  This rate parameter is usually modelled as a function of: an 

effectiveness factor (η) that represents the ratio of the instantaneous reaction rate and the 

maximum reaction rate attainable when no diffusion resistance in the pores exists; a 

characteristic particle size (γ); the apparent density (ρ); the active surface area (Ag); an intrinsic 

reaction rate coefficient (Ri); the temperature of the particle (Tp); the coal ultimate analysis (C) 

and sometimes the maceral composition of coal (Mac).     

 

( ),...,,,,,,, acpigc MCTRAfR ργη=       (Eq. 2.51) 

 

For the development of this kind of model it is essential to know how combustion affects the 

char porous structure.  Firstly, the size of the pores controls oxygen diffusion when Knudsen 

diffusion dominates over molecular diffusion with pores sizes below 1 µm (Jensen, 2001).  

Moreover, the pore size evolution determines the instantaneous active surface area in which 

oxidation reactions may take place.  As long as combustion proceeds, the size of the pores 

increase, resulting in a larger surface area.  However, this increase of the surface area reaches a 

limit when the pores become so large that their walls collapse into each other, and thus, the 

surface area decreases (Figure 2.12).     

 

 
Fig. 2.12  Evolution of the surface area during char combustion (Jensen, 2001) 
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For this reason, one of the more relevant characteristics of intrinsic models consists of 

describing the char porous morphology and the oxidant diffusion through the pores along the 

whole combustion process.  To achieve this, several approaches, known as pore models, have 

been proposed by many authors.  Depending on the macroscopic or microscopic treatment of 

the problem, respectively two different groups of models are found.   

 

Macroscopic approaches, used in most combustion codes, introduce the porous nature of char 

and its influence on the combustion process, through an effective diffusion coefficient.  This 

effective diffusion coefficient combines the effects of both the effective molecular diffusion and 

the effective diffusion due to pore walls’ collisions (Eq. 2.52).   
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The effective molecular diffusivity DeO2, is defined analogously with the description of DO2 

(Eqs. 2.29 - 2.34), but this time it also includes the effect of the porous structure of the char (Eq. 

2.53).  The presence of the pores slows down the diffusion process since only a fraction of the 

char, its porosity θ, provides the paths for diffusion.  Furthermore, the pores are not straight and 

may be irregular and intricate, slowing down the diffusion process too.  This effect is introduced 

in the model with a factor known as tortuosityτ. 

 

τ
θ
⋅= 22 OeO DD         (Eq. 2.53) 

 

In the same way as the char porosity θ changes during combustion (Eq. 2.54), there also exist 

expressions to estimate the tortuosity variation as a function of burnout (Backreedy, 2002) (Eq. 

2.55).  The initial char totuosity τ0 may be approximated as √2 for unknown coals. 
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The diffusion mechanism due to the collisions of the oxygen molecules with the pore walls is 

known as Knudsen diffusion.  Knudsen diffusion dominates in very small pores, where 

collisions with pore walls are more frequent than collisions with other molecules.   Knudsen 

diffusivity depends on the molecules’ velocity and the pore radius (Eq. 2.56). 
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rD ⋅⋅=        (Eq. 2.56) 

 

The mean pore radius rp may be obtained by means of geometric considerations (Eq. 2.57), from 

the active surface area of the char Ag, which may be obtained experimentally with CO2 or N2 

adsorption techniques.  

 

ρτθ ⋅⋅⋅= gpor Ar /2 5.0        (Eq. 2.57) 

 

By analogy with the effective molecular diffusivity, the effective Knudsen diffusivity is 

obtained by introducing the porosity and tortuosity of the char (Eq. 2.58) 

 

τ
θ
⋅= knekn DD          (Eq. 2.58) 

 

With regard to microscopic pore models, a brief discussion and some relevant references are 

presented.  While macroscopic models use a global expression for the diffusion process through 

the porous structure of the particle, microscopic approaches try to explain the diffusion process 

through a single pore.  Subsequently, by means of statistical models that describe the pore size 

distribution in the particle, they extend the behaviour of a single pore to the whole particle, 

obtaining a global description of the diffusion process.  In this way, instead of assuming an 

isotropic diffusivity within the particle, this is assumed to vary with position, pore size 

distribution and burnout (Smoot and Smith, 1985).  Some microscopic models even consider 

blocked hole effects, pore coalescence and fracturing of the char.  Definitively, microscopic 

models provide a more detailed and realistic treatment of the diffusion process in the particle at 

the expense of a higher complexity and computational cost.  Some examples of popular 

references of microscopic pore models are: Gavalas et al. (1981), Bhatia and Perlmutter (1981), 

and Simons et al. (1982).   
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Returning to the general description of intrinsic models, one of the more widespread and 

accepted models is the Smith model (1982).  In this model, the reaction rate coefficient, Rc, is 

given by Eq. 2.59.   

 

igc RAR ⋅⋅⋅⋅= ργη         (Eq. 2.59) 

 

The effectiveness factor, η, represents the ratio between the real reaction rate and the maximum 

reaction rate attainable when the whole particle is exposed to the oxygen concentration at the 

surface (Levenspiel, 2001; Santamaría et al., 1999).  Assuming a first order reaction, the 

effectiveness factor can be determined by solving the mass balance across the particle.  The 

equation is solved for the reactant oxygen diffusion for a porous spherical particle under 

catalytic reaction (Eq. 2.60).  The integration of Eq. 2.60, describes the oxygen partial pressure 

variation within the particle as a function of the particle radius rp (Eq. 2.61).  
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Where, φ is the Thiele modulus that combines the reaction and diffusion phenomena as shown 

in Eq. 2.62.  A high value of the Thiele modulus indicates that the reaction rate is higher than 

the diffusion rate.  On the contrary, a low value of the Thiele modulus indicates that the reaction 

rate is low as compared with the oxygen diffusion rate (Levenspiel, 2001; Santamaria et al., 

1999).   
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Combining the definition of the effectiveness factor with Eqs. 2.61 and 2.62, an expression that 

relates the effectiveness factor and the Thiele modulus is obtained (Eq. 2.63).  
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Fig. 2.13  Relationship between the Thiele modulus and the effectiveness factor for spherical particles 

 

Figure 2.13 shows that values of the Thiele modulus below 0.2 correspond to effectiveness 

factors close to unity which indicates that combustion is controlled by the reaction rate (Zone I); 

while values of the Thiele modulus over 30, corresponds to effectiveness factors close to zero 

which indicates that combustion is controlled by oxygen diffusion (Zone III).   

 

The mass balance across the particle in Eq. 2.60 corresponds to the simplest case, assuming a 

first order reaction.  For reaction mechanism involving an arbitrary n-order reaction, it is 

necessary to fall back on numerical methods for its resolution.  For the particular case of the 

Smith intrinsic model (1978, 1982), assuming a n-order reaction (Eqs. 2.50 and 2.59), the 

relation between the effectiveness factor and the Thiele modulus is given by Eq. 2.64.  

 

( ) )8/()1(2/12
seffc PDnqn ⋅⋅+⋅⋅=+⋅⋅ γφη     (Eq. 2.64) 

 

In order to solve Eq. 2.64, it is necessary to determine all the terms on the right hand side of the 

equation from experiments, and subsequently, use the Mehta and Aris (1971) graphs that relate 

η and ηφ2  (Figure 2.14).    
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Fig. 2.14  Thiele modulus and effectiveness factor relationship for spherical particles and various 

reaction orders (Mehta and Aris, 1971) 

 

The effective diffusivity Deff is defined as the effective molecular diffusivity DeO2 in pores larger 

than 1 µm (Eq. 2.53) and as the effective Knudsen diffusivity Dkn in pores smaller than 1 µm 

(Eq. 2.58).   

 

Finally, the intrinsic reaction coefficient is modelled in an Arrhenius form expression (Eq. 

2.65). 

 

)exp( TREAR aiaii ⋅−⋅=        (Eq. 2.65) 

 

Parallel to the evolution of global models, Sun et al. (2000) developed an intrinsic version of the 

CBK model, called CBK8.  This model accounts for the same sub-models as in the global 

version, but adapted to an intrinsic description:   

 

• Intrinsic model, with a macroscopic pore model to describe the diffusion process within the 

particle 

• Thermal annealing sub-model  

• Ash inhibition sub-model 

• A physical property sub-model describing swelling and diameter/density/porosity changes 

during oxidation 

 

This way, the CBK8 model accounts for the extinction phenomena in the late stage of 

combustion (> 95 % burnout), as a result of the decrease in the char reactivity (Thermal 

annealing sub-model) and the appearance of an ash film layer covering the surface of the 
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particle (Ash inhibition sub-model).  Since most of the sub-models were defined in the CBK 

model description, the next pages are exclusively focused on the intrinsic characteristics of the 

model.   

 

In CBK8, the combustion rate is determined by the general expression given in Eq. 2.50, in 

which the reaction rate coefficient Rc  is calculated according to Eq. 2.66.  

 
( )

c
TRE

oc meSkR p ⋅⋅⋅⋅= ⋅−η        (Eq. 2.66) 

 

The effectiveness factor dependency on reaction conditions is established through the Thiele 

modulus according to Eqs. 2.62 and 2.63.  A value of η close to unity indicates that the reaction 

is in the Zone I regime, in which the combustion rate is approximately equal to the intrinsic 

reaction rate.  A value of η lower than unity indicates that the reaction is in the Zone II or III 

regime, where the combustion rate is much lower than the reaction rate.   

 

The effective diffusion coefficient Deff is calculated assuming a negligible contribution from the 

smaller pores (micropores and mesopores) to the transport of the oxidant (Gale et al., 1996).  

Consequently, only the contribution of the effective molecular diffusivity is considered (Eq. 

2.53).  

 

The product koS, known as specific intrinsic reactivity, introduces the thermal deactivation of 

char (Eq. 2.67).   
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The initial specific intrinsic reactivity koSo is calculated from rank-dependent correlations (Eq. 

2.68) and the log-normal distribution fE, is obtained, as it was explained in the global model 

description, according to Eq. 2.43.  

 

CSkLog %0764.097,14)( 0010 ⋅−=⋅       (Eq. 2.68) 

   

Another model of great interest was developed by Hampartsoumian et al. (1989), studying the 

influence of coal maceral types on the global combustion process.  The reaction rate coefficient 

expression, was obtained by multiple regression techniques including an additional term which 

accounts for the influence of coal macerals on char reactivity, fmac (Eq. 2.69).   
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macpgc fTCAR +⋅⋅⋅⋅= −−− )5.9()5.3()5.0()5.7()89( %exp ρ     (Eq. 2.69) 

 

Where, the maceral correction factor fmac is described as a function of the vitrinite and inertinite 

content of the parent coal according to Eq. 2.70.   

 

( )[ ] ( )[ ]LRRPSMmac InInVitVitf ⋅+⋅−⋅+⋅= 6.16.083.04.1    (Eq. 2.70) 

 

To conclude this revision, another relevant model, developed by Backreedy et al. (2006), 

proposed an alternative intrinsic description to CBK8, introducing coal maceral expressions to 

the model.  The reaction rate coefficient Rc is expressed according to Eq. 2.71.   

 

maccianngDc fmRfAR ⋅⋅⋅⋅⋅⋅= ηα )(       (Eq. 2.71) 

 

In this expression, the product (αD Ag) determines the variation of the specific surface area with 

burnout, through a parameter αD (Eq. 2.72), which is previously determined from experimental 

studies. 
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         (Eq. 2.72) 

 

Thermal annealing is introduced in a simplified form through the factor fann, in order to reduce 

the computational time.  It is set to 0.9 only in certain cases: (70 % < %wt C (daf) < 90 %), (20 

µm < dp < 100 µm) and (Tp > 1400 K). 

 

The effectiveness factor, assuming a first order reaction, is calculated according to Eqs. 2.62 and 

2.63. 

 

And finally, for rich-inertinite coals, the maceral correction factor given in Eq. 2.70 or an 

abbreviated form of it given in Eq. 2.73, is introduced.   

 

InVitfmac ⋅−⋅= 6.068.1        (Eq. 2.73) 
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As it was mentioned in the introduction of this chapter, there exist several global and intrinsic 

models in the literature which have not been included in this brief revision (Charpenay et al., 

1992; Cloke et al., 2003; Pallarés et al., 2007; etc.).  However, the interested reader is referred to 

the bibliography.   

 

 

2.4 Summary 

 

Coal combustion research requires dealing with the study of the physical and chemical 

phenomena taking place during the combustion process and with the development of 

mathematical models to describe them.  Coal combustion is divided into three distinct stages, 

although generally they overlap during the process.  These stages are: devolatilization, 

homogeneous combustion of volatile products and char oxidation.  Although particle heating 

and ignition are initial phase of combustion stages, they have a great importance in the overall 

burnout process.  Throughout the chapter, a revision of each stage in the combustion process, 

describing the mechanisms and the more characteristic models available in the specialized 

literature was undertaken.  

 

Although the devolatilization process takes place in the very first milliseconds, it has a great 

relevance on the overall particle burnout.  The conditions in which devolatilization takes place 

notably influence the volatile yield and rate, and thus, the resultant structural and reactive 

properties of the char.  To describe the thermal decomposition process, weight loss models 

based on empirical approaches (SFOR, DAEM, 2CSM) are generally used.  However, weight 

loss models use rate constants fitted from experiments to predict the evolution of volatiles for a 

given coal type and set of reactor conditions.  Therefore, these empirical values cannot be used 

in a general form.  Moreover, the devolatilization of the coal particle is mainly associated with 

two processes, tar and light gases release, and weight loss models fail in their prediction.   
Therefore, in combustion applications that require an exigent detailed level of the devolatization 

process, we should fall back on network pyrolysis models that are based on mechanistic 

approaches of the coal structure (FG-DVC, CPD, FLASH-CHAIN) and which are free of the 

aforementioned problems. 

 

The homogeneous combustion of volatile products has a great influence on stoichiometry, 

ignition, flame temperature and pollutant formation, and thus, in the overall combustion 

process.  To model this stage, two main approaches are usually considered: local equilibrium 

and global reactions.     
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Finally, char oxidation is the slowest step in the coal combustion process, and thus, it 

determines the burnout degree achieved.  Whether we consider an implicit or explicit view of 

the structural and reactive properties of the particle, char oxidation models may be also divided 

into global or intrinsic models, respectively.  Global models are based on the classical single 

film model, in which the combustion rate is determined in terms of the chemical reaction rate at 

the surface of the particle and the diffusion rate of the oxidizer through the boundary layer.  The 

intrinsic phenomena are included through the kinetic rate parameters of the model.  On the 

contrary, intrinsic models provide general kinetic correlations that directly relate the char 

structural and reactive characteristics with coal properties and combustion conditions.  Both 

approaches are extensively used in combustion codes and their precursor models (Field’s global 

model, and Smith’s intrinsic model) have given raise to more advanced models, that include for 

example: complex reaction mechanisms (Hurt et al., 2001), detailed pore models (Gavalas et al., 

1981), thermal annealing of char effects (Hurt et al., 1998, 2000), ash inhibition effects 

(Hampartsoumian et al., 1989; Hurt et al., 1998), coal macerals effects (Cloke et al., 2003; 

Backreedy et al., 2003, 2006), etc.  Summarizing, in the literature there exist a great variety of 

models to choose from, depending on the needs of the study.    
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Nomenclature  

 

Aa pre-exponential factor (g C/cm2 s) 

Aai intrinsic pre-exponential factor (g C/cm2 s atmn) 

Ad pre-exponential factor of the thermal annealing process 

Ai  pre-exponential factor (g C/cm2 s atmn) 

Ag intrinsic surface area (cm2) 

Av  pre-exponential factor of the devolatilization process (s-1) 

A0  initial pre-exponential factor (g C/cm2 s atmn) 

dc char particle core diameter (cm) 

dp char particle diameter (cm) 

Deff effective diffusion coefficient (cm2 /s) 

Dekn effective Knudsen diffusion coefficient (cm2 /s) 

Dkn Knudsen diffusion coefficient (cm2 /s) 

DeO2 effective molecular diffusion coefficient for O2 into N2 (cm2 /s) 

DO2 molecular diffusion coefficient for O2 into N2 (cm2 /s) 

D0 reference molecular diffusion coefficient for O2 into N2 (cm2 /s) 

E activation energy (J/mol) 

Ea  activation energy (J/mol) 

Eai  intrinsic activation energy (J/mol) 

Eads activation energy of the adsorption process (J/mol) 

Eap apparent activation energy (J/mol) 

Ed activation energy of the thermal annealing process (kJ/mol) 

Edes activation energy of the desorption process (J/mol) 

EO2 activation energy of the oxygen complex reactions (J/mol) 

EvT activation temperature of the devolatilization process (K) 

fann thermal annealing factor 

fE(Ed) statistical distribution function in Ed of the thermal annealing process  

fE(Ev) statistical distribution function in Ev of the devolatilization process  

fmac maceral correction factor 

In inertinite 

InLR fusinite 

InR semi-fusinite 

kc reaction rate constant (g C/cm2 s atmn) 

kd diffusion rate constant (g C/cm2 s atm) 

ko pre-exponential factor (g C/cm2 s atmn) 

kv reaction rate constant (s-1) 
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k0S specific intrinsic reactivity (1/s atmn) 

m true reaction order 

mc carbon mass of the char (g C) 

mc0 initial carbon mass of the char (g C) 

mp mass of the char particle (g) 

mp0 initial mass of the char particle (g) 

n apparent reaction order 

N active sites  

N0 initial active sites 

Pboiler furnace pressure (Pa) 

Pg bulk gas oxygen partial pressure (atm) 

PO2 oxygen partial pressure (atm) 

Ps oxidant partial pressure at the particle surface (atm) 

PMO2 molecular weight of O2 (32 g/mol) 

PMN2 molecular weight of N2 (28 g/mol) 

qc combustion rate (g C/cm2 s) 

rp radius of the char particle (cm) 

rpor mean pore radius (cm) 

R universal ideal gas constant (8.3145 J/mol K) 

Rc reaction rate coefficient (g C/cm2 s atmn) 

Ri intrinsic reaction rate coefficient (g C/cm2 s atmn) 

Sh Sherwood dimensionless number ( )DLkSh cm /=  

t time (s) 

T temperature (K) 

Tg bulk gas temperature (K) 

Tm averaged temperature (K) 

Tp particle temperature (K) 

T* dimensionless temperature 

V instantaneous volatile yield 

Vf final volatile yield 

Vit vitrinite and pseudo-vitrinite 

VitM vitrinite 

VitPS pseudo-vitrinite 

Xa ash mass fraction 

Xa0 initial ash mass fraction 

%C % wt. carbon content (d.a.f.) 



Chapter 2   Combustion models’ revision    
_____________________________________________________________________________________  

_____________________________________________________________________________________  
61 

 

α combustion factor (0.2) 

αD deactivation factor 

γ characteristic size of the char particle (cm) 

δ ash film thickness (cm) 

δm minimum ash film thickness (cm) 

Ωd dimensionless coefficient of the collision between molecules 

ϕ stoichiometric coefficient  

φ Thiele modulus 

η effectiveness factor  

θaf ash film porosity  

θ porosity of the char particle 

ρ density of the char particle (g/cm3) 

ρat ash true density (g/cm3) 

ρc carbon density (g/cm3) 

ρc0 initial carbon density (g/cm3) 

ρ0 initial density of the char particle (g/cm3) 

τ tortuosity 

τ0 initial tortuosity (√2) 

σ standard deviation 

σd standard deviation of the thermal annealing process (kJ/mol) 

σO2 mean diameter of the O2 molecule (Å) 

σN2 mean diameter of the N2 molecule (Å) 

ω distribution coefficient 

 

 

Acronyms 

 

CFD  computational fluid dynamics 

DAEM  distributed activation energy models 

FIMS  field-ionization mass spectroscopy 

NMR  nuclear magnetic resonance 

2CSM  two-competing step model 

SFOR  single first order reaction 

TG-FTIR thermo-gravimetric Fourier transform infrared spectroscopy 
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 CFD CODES 
 

Traditionally, experiments have constituted the more widespread and efficient methodology to 

determine the global parameters that allow us to describe a flow field.  However, the continuous 

technological demand for more specialized designs has increased the need for more precise 

descriptions of the fluid dynamic behaviour of the problem.  Carrying out this work by means of 

experimental techniques is highly expensive and both time and work consuming.  To this effect, 

computational fluid dynamics (CFD) offers an attractive alternative to experimental methods, 

procuring an important saving of time and money without compromising the accuracy of the 

solution.   

 

The basics of differential equations’ numerical resolution methods was established more than 

one century ago.  Nevertheless, their applications were insignificant until the appearance of the 

first computers in the 50’s decade.  From that moment onwards, the calculation capabilities 

provided by these machines led the resurgence of numerical methods for the resolution of all 

kinds of problems.  In this way, so long as the storage and computation capability of computers 

was increased, the number of problems manageable from a numerical point of view also rose.  

By the time this innovating tendency reached the study of fluid dynamics, it had such a great 

acceptance and development that it did not take long to give rise to a new independent study 

field called computational fluid dynamics (CFD).   

 

In spite of the fact that in the beginning, computational fluid dynamics was limited to research 

investigations, again thanks to the rapid evolution of computers, it did not take long to jump into 

the world of industry, where today it constitutes a common tool in prediction or design 
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problems.  To absorb this technological demand, different commercial code vendors compete in 

the CFD market.  Among these commercial codes, FLUENT, CFX and StarCD, stand out since 

they are the most widely used within industries and research centres.   

 

In this chapter, the general characteristics of CFD codes are described.  Since in this work we 

have made use of the commercial code CFX-4 (AEA Technology), the numerical resolution 

method and the physical and chemical models involved in the problem are particularized for this 

code.  Finally, the validation process followed in this work is presented.  To achieve this, the 

chapter is divided in the following sections: 

 

• Finite volume method: discretization of the domain and the transport equations governing 

the problem.  

• Description of the mathematical models involved in the problem.  

• Description of the boundary conditions for the problem. 

• Validation of the numerical resolution method. 

 

 

3.1 Numerical resolution method 

 

The description of fluid flow is performed by means of differential equations that, in general, 

cannot be analytically solved.  Consequently, to obtain a numerical solution, we should use a 

discretization method to approximate the differential equations by a system of linear algebraic 

equations (Ferziger and Peric, 2002).   

 

The fluid field is discretized in a number of non overlapped cells that fill the whole domain 

(Dick, 2002).  Conservation equations are applied to determine the fluid variables at discrete 

points of the cells, called nodes.  Nodes may be defined either at the cell vertex or at the cell 

centre.  CFX-4 defines the nodes at the cell centres (Figure 3.1, node P).  Therefore, the nodes 

in which the flow variables are calculated are defined by a mesh of cells that is essentially a 

representation of the geometric domain in which the problem is solved.   
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Fig. 3.1  Fluid cell typically used in the FVM (Ferziger and Peric, 2002) 

 

Mesh generation is a long and difficult task.  The resolution of the mesh usually consumes most 

of the time during the problem setup, since the solution accuracy depends on the mesh quality 

and on the approaches used for the discretization of the equations.  There exist different types of 

meshes classified as a function of the disposition of the cells in it: structured, non structured and 

hybrid.  A structured mesh consists of a family of curves with the property that the curves from 

the same family do not cross each other and only cross with the curves from other families once.  

This is the simplest mesh type, equivalent to a cartesian mesh, in which each node (Figure 3.1, 

node P) has six neighbouring nodes corresponding to the adjacent cells (Figure 3.1, nodes 

B,T,E,W,S,N).  This type of connectivity simplifies the programming work, and the matrix of 

the algebraic equations system is regular, so that there exist plenty of efficient resolution 

techniques.  One disadvantage of structured meshes is that they may be exclusively used when 

the geometric domain is relatively simple.  Another disadvantage is that it is difficult to control 

the distribution of the nodes in the domain. Thus in order to obtain a better solution in one 

region of the domain a local refinement is required which will often force refinements in other 

regions of the domain, wasting computational resources and affecting the convergence of the 

problem (Ferziger and Peric, 2002).  Non structured meshes are more flexible than structured 

meshes, since they have no restriction in the number of adjacent nodes.  The advantage of the 

flexibility of this type of mesh is counteracted by the disadvantage of using an irregular mesh.  

The matrix of the algebraic equations system is not diagonal, and therefore, the resolution is 

much slower (Ferziger and Peric, 2002). 
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As it will be seen in the next chapter, the mesh type used in this work is structured.  However, 

CFX-4 implements a special type of structured mesh called body-fitted mesh, which permits the 

introduction of complex geometries.  To this effect, the mesh is deformed following the domain 

contours.  At the same time, for the resolution of the transport equations, the cartesian physical 

coordinate system is transformed into a non orthogonal curvilinear coordinate system.  With this 

transformation, the complexity in the resolution of the transport equations is increased, but the 

setting of boundary conditions is simplified.  

 

The finite volume method (FVM) uses the integral form of the conservation equations.  These 

conservation equations are then applied to each domain cell to determine the flow variables in 

the numerical mesh nodes.  The general form of the conservation equations, with the exception 

of the continuity equation, has the structure of Eq. 3.1.  This equation expresses that the 

variation with time of a generic property φ in the control volume is due to the contribution of the 

diffusive and convective fluxes through the volume surfaces, plus the generation or destruction 

of this property in the interior of the cell represented by the source term Sφ.  

 

∫∫∫∫ ⋅+⋅∇Γ=⋅+⋅
∂
∂

VAAV
dVSdAndAnvdV

t φφρφρφ rrrr
   (Eq. 3.1) 

 

Surface and volume integrals are approximated by using adequate quadrature functions.  This 

way, an algebraic equation for each control volume as a function of the values of the 

neighbouring nodes is obtained.  Hereinafter, the numerical approach for each term in Eq. 3.1 is 

presented: 

 

- Discretization of surface integrals: The net flux through the border of the control volume is the 

addition of the integrals through the six faces of the cell.  
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rr
       (Eq. 3.2) 

 

Where, f is the convective (fc = ρφv⋅n) or diffusive (fd = Γ∇φ⋅n) component of the flux vector in 

the normal direction to the control volume face.   

 

To determine the integral in Eq. 3.2 it is necessary to know the integrand f at every point of each 

surface Ae (face e of the cell).  This information is not available, since variables are only 



Chapter 3   CFD codes   
_____________________________________________________________________________________ 

_____________________________________________________________________________________  
67 

 

calculated in the cell centres.  As a result, the integrand is approximated as an averaged value in 

centre of the face according to Eq. 3.3.  

 

eeA eeeee AfAfdAnfF
e

⋅≈⋅=⋅= ∫
r

      (Eq. 3.3) 

 

Since the value of f in the centre of the face e is not known, it is obtained by interpolating 

between the values from the neighbouring cells.  To carry out this approach, there exist many 

algorithms with different precision orders.  In general, first order approximations are more 

robust, but introduce relevant numerical errors.  Therefore, they are used to obtain a first 

approximation to the solution of the problem.  Afterwards, higher order approximations are used 

to obtain the definitive solution.  CFX-4 allows us to use different algorithms: upwind (UDS), 

central difference scheme (CDS), second order upwind (HUW), third order upwind (QUICK). 

 

- Discretization of volume integrals: Some of the terms in Eq. 3.1 require an integration over the 

cell volume.  The simplest second order approximation consists of replacing the integral volume 

by the product of the averaged value of the integrand and the cell volume, and approximating 

the averaged value of the integrand by the value of the variable in the cell centre (Eq. 3.4).  

 

∫ ⋅=⋅=
V ppp VdVQ φφ        (Eq. 3.4) 

 

Where, the average of φp is the variable value at the cell centre, which is easily calculable since 

all the variables are defined at the node P and no interpolation is needed.  

 

Therefore, to obtain the discretization of Eq. 3.1, surface integrals are approximated as the sum 

of the integrals for each face of the volume, and the volume integrals as the product of the 

averaged variable value in the cell and the cell volume (Eq. 3.5).   
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Eqs. 3.1 and 3.5 express the general form of a conservation equation.  Nevertheless, in the 

momentum conservation equations there exists a contribution due to the pressure that requires 

special treatment as will be explained later.   
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The convection term is not linear and can be resolved as explained before (Eq. 3.6).  The 

diffusion term introduces the stress tensor τij (Eq. 3.7) which is decomposed into the pressure 

related forces and viscous stresses (Eq. 3.8). 

 

∫∫ ⋅=⋅
AA

dAnvvdAnv rrrrr ρρφ        (Eq. 3.6) 
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rrrr ⋅=⋅∇Γ ∫∫ τφ        (Eq. 3.7) 
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rrrr

+⋅−=         (Eq. 3.8) 

 

The Navier-Poisson’s law establishes that viscous stresses are proportional to the components of 

the deformation tensor (Eq. 3.9).   

 

ijiij vv δλµτ ⋅∇⋅+∇⋅=
rrr '        (Eq. 3.9) 

 

In this way, the diffusion term can be expressed according to Eq. 3.10. 
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          (Eq. 3.10) 

 

And then, it can be discretized as was previously explained, according to Eq. 3.11. 
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          (Eq. 3.11) 

 

The resolution of the Navier-Stokes equations is complicated since there does not exist an 

independent equation for the pressure, and furthermore, its gradient contributes in each 

momentum equation component.  Consequently, the pressure-velocity coupling must be 

resolved.  To achieve this, we start from the continuity equation (Eq. 3.12) and the momentum 

equations corresponding to the three velocity components (Eq. 3.13).  
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∫∫∫∫ ⋅⋅+⋅+⋅−=⋅+⋅
∂
∂

V vA ijijAV
dVfdAnpdAnvvdVv

t
rrrrrrrr ρτδρρ )'(   (Eq. 3.13) 

 

Expressing in differential form Eqs. 3.12 and 3.13, they turn into Eqs 3.14 and 3.15. 

 

( ) 0=⋅+
∂
∂ vdiv

t
rρρ         (Eq. 3.14) 
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    (Eq. 3.15) 

 

Applying the divergence to each momentum equation, and simplifying from the continuity 

equation, a Poisson expression for the pressure, that relates the velocity and pressure fields, is 

obtained (Eq. 3.16). 
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To solve this equation numerically we should fall back on implicit or explicit numerical 

methods.  These methods use a pressure correction equation to force the mass balance at each 

iteration.  Implicit methods are often used in stationary flow problems (SIMPLE, SIMPLEC, 

and PISO).  

 

To solve the velocity-pressure coupling, CFX-4 solves sequentially the momentum equations, 

where only the velocity components ui
m* are unknowns, by using the pressure calculated in the 

previous iteration pm-1 and the velocities in the adjacent nodes as a first estimate.  However, the 

velocities obtained do not satisfy the continuity equation so to balance this continuity equation, 

the velocities must be corrected (Eq. 3.17). Finally as a result, the pressure field now also has to 

be modified (Eq. 3.18).  Then, these calculated values are introduced into the continuity 

equation giving rise to a Poisson discrete equation for the pressure.  Following this, the pressure 

correction term p’ is calculated; and consequently, it is possible to determine the velocities ui
m 

and pressure pm that satisfy the continuity equation, but not the momentum equations.  In this 

way, an iterative process is carried out until the calculated velocities satisfy both equations.   

 

'* uuu m
i

m
i +=          (Eq. 3.17) 
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'1 ppp mm += −         (Eq. 3.18) 

 

Where, ui
m is the i velocity component at the m iteration, ui

m* the i velocity component at the m 

iteration, obtained from solving the momentum equations, and u’ is the velocity correction term.  

And pm is the pressure at the iteration m, pm-1 is the pressure is the previous iteration, and p’ the 

pressure correction term.   

 

Depending on the treatment given to the pressure correction equation, different resolution 

methods are obtained: SIMPLE, SIMPLEC, PISO. 

 

Once the discretization of the transport equations and the pressure-velocity correction were 

established, Figure 3.2 describes the general resolution method performed by the CFX code.   

 

 
Fig. 3.2  Finite volume resolution method in CFX 
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3.2  Mathematical models 

 

The numerical solution of the governing equations implies the modelling of all processes that 

take place in the furnace: 

 

1. Turbulence 

2. Particle transport 

3. Coal combustion 

4. Homogeneous combustion of volatile products 

5. Radiation 

 

Hereinafter, these models are described, particularizing for the case-study of this work. 

 

1. Turbulence model (Launder and Spalding, 1974) 

The gas flow is modelled, under the Eulerian assumption, solving the steady-state Reynolds 

average Naviers Stokes equations (RANS) along the computational domain. 

 

These can be summarized as follows: 

 

• Continuity equation 
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• Momentum conservation equation 
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• Energy conservation equation 
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• Species conservation equation 
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A detailed explanation of the RANS equations is omitted since it is widely described in general 

fluid mechanics publications (i.e. Pope, 2000).   

 

The widely used standard k - ε model (Launder and Spalding, 1974) is coupled to close the 

turbulence.  It solves two additional transport equations, for the turbulent kinetic energy k (Eq. 

3.23) and for the viscous dissipation ε (Eq. 3.24): 

  

• Transport equation for the turbulent kinetic energy 
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• Transport equation for the viscous dissipation 
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  (Eq. 3.24) 

  

The definition of the turbulent viscosity and the closure coefficients to complete the problem 

are: 

  

 µT = Cµ k2 / ε   Cµ = 0,09       C1 = 1,44 

  

 C2 = 1,92   σk = 1        σε = 1,3 

  

In the previous equations, density has been extracted from the partial derivatives assuming a 

constant value.  The flow is assumed to behave similarly to incompressible flow, making the 

density only dependent on temperature through a reference pressure, a reasonable assumption 

for problems with Mach number under 0.3.  CFX-4’s compressibility model assumptions are: 

 

• Pressure fluctuations are ignored 
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• The kinetic terms of the total enthalpy are neglected 

 

hkuhh iT ≅++= 2

2
1

        (Eq. 3.26) 

Therefore ρ = ρ(T), which is calculated from the equation of state 
TR

PMP
⋅
⋅

= 0ρ . 

 

To complete the turbulence model, it is necessary to define the fluid behaviour in the near wall 

regions, where most of the variables change abruptly.  Therefore, an extraordinarily refined 

mesh is required to solve these variations.  Instead of this, it is possible to use wall functions, 

which are semi-empirical expressions that entail the solution of the variables in the near wall 

region.  These wall functions are used for the mean velocity, temperature and other scalars 

(Wilcox, 1998). 

 

- Law of the wall for mean velocity: 

Different experiments have shown that the viscous stress variation is very small near the walls, 

and therefore it may be approximated by the wall shear stress τw.  Establishing a velocity scale, 

known as friction velocity
ρ
τ

τ
wu =  (Wilcox, 1998); two dimensionless variables are defined: 

 

    
τu

uu =+  and yy w

µ
τρ 2

1
)( ⋅

=+     (Eqs. 3.27 and 3.28) 

 

From these dimensionless variables, the profiles obtained near the walls are given according to 

Eqs. 3.29 and 3.30 (Figure 3.3). 

 
++ = yu    for  y+ < y0

+     (Eq. 3.29) 

  

)ln(1 +++ ⋅= yEu
κ

  for y+ > y0
+     (Eq. 3.30) 
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Fig. 3.3  Typical velocity profile for a turbulent boundary layer  (Wilcox, 1998) 

 

- Law of the wall for temperature and other scalars: 

In the same way it is possible to define boundary wall conditions for temperature and other 

scalars (f , G): 

  
++ ⋅= yφφ Pr     for  y+ < yφ

+    (Eq. 3.31) 
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φ

κ
σ

φ    for  y+ > yφ
+    (Eq. 3.32) 

 

Where, φ+ is a dimensionless property 
( )

)(
2

1

φφ
τρ

φ
φ

−
⋅

=+
w

w

J
; where Jφ is the wall flux of φ, 

Prφ is the Prandtl number, σφ is the turbulent Prandtl number and E+
φ is calculated from the 

Jayatilleke expression (1969) (Eq. 3.33). 
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For the species concentration, the same wall relations are used, but substituting the Prandtl 

number by the Schmidt number.  

 



Chapter 3   CFD codes   
_____________________________________________________________________________________ 

_____________________________________________________________________________________  
75 

 

++ ⋅= yScY φ     for  y+ < yφ
+    (Eq. 3.34) 
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   for  y+ > yφ

+    (Eq. 3.35) 

 

Therefore, using the k-ε model, the transport equation for the turbulent kinetic energy k (Eq. 

3.23) is solved at the wall adjacent cells.  Solving this equation, the production term τij is 

approached for the wall shear stress τw, and it is kept constant in the cell.  The transport equation 

for the viscous dissipation ε is not solved, and ε is computed from the 

expression
y
kC
⋅

⋅
=

κ
ε µ

2
3

4
3

, which is also kept constant in the cell. 

 

2. Particle transport model (Sommerfeld, 2000) 

A Lagrangian approach was chosen, considering the influence of a diluted particle phase on the 

fluid flow (dispersed flow), two-way coupling (Sommerfeld, 2000), since the volumetric 

particles’ fraction was approximately Φv ≈ 10-4 at the boiler inlets (Figure 3.4).  On the contrary, 

the contribution due to particle - particle interactions (four-way coupling) was neglected.  The 

total flow is modelled describing the spatial and time evolution of the trajectories of a 

representative number of spherical particles through the continuous phase.   

  

 
Fig. 3.4   Two-phase flow regimes as a function of particles’ volumetric fraction (Sommerfeld, 2000) 
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The movement of the particles in the flow is described by solving the differential equations 

along the particle trajectories, calculating variations in the particle position and velocity (Eqs. 

3.36 and 3.37). 

 

∑=⋅ i
i

p F
dt
ud

m         (Eq. 3.36) 

 

p
p u

dt
xd

=          (Eq. 3.37) 

 

Within the forces acting over the particle, the most relevant contribution is due to the drag force 

(Eq. 3.38). 

 

RRDpD vvCdF ⋅⋅⋅⋅⋅⋅= ρπ 2

8
1

      (Eq. 3.38) 

 

Where, vR is the relative velocity of the particle with respect to the flow, and CD is a drag 

coefficient, defined for different flow regimes as follows: 

 

Re
24

=DC     for   Re < 0.5    (Eq. 3.39) 

 

Re/)Re15.01(24 687.0⋅+=DC  for   0.5 < Re < 1000   (Eq. 3.40) 

 

44.0=DC     for   Re > 1000    (Eq. 3.41) 

 

Although their contribution is negligible, other forces considered in the resolution of the 

problem are: 

 

• Pressure gradient force:      )(
4
1 3 PdF pP ∇⋅⋅⋅−= π    (Eq. 3.42) 

• Mass added force:             
dt
dudF pA ⋅⋅⋅⋅−= ρπ 3

12
1

     (Eq. 3.43) 

 

At the same time, another relevant consideration in problems involving turbulent flows is that 

the motion of the particles is affected by turbulent fluctuations in eddies (Cortés and Gil, 2007).  
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These fluctuations are modelled by adding a diffusion velocity to the particle convective 

velocity.  This phenomenon is known as turbulent diffusion.  While some authors (Coimbra et 

al., 1994; Fan et al., 2001; Belosevic et al., 2006) account for this phenomenon in pulverized 

coal boiler simulations, most of them prefer to neglect it since the number of particles to be 

modelled is at least one order of magnitude higher, increasing considerably the computing time.  

Furthermore, some authors suggest that including this effect, it is more difficult to achieve the 

convergence of the problem (Chen and Shuen, 1993).  In this work, following the typical 

methodology in utility boiler simulations, turbulent diffusion effects have been omitted.  The 

reason for this lies in the previous discussion, and in the final use of the CFD results within the 

unburned carbon predictive system.  As will be explained in the following chapters, for us it is 

more interesting to approach the temperature and oxygen partial pressure found by the particles 

in their way through the boiler than the motion of the particles itself.  Consequently, it is 

reasonable to assume that turbulent diffusion will slightly modify the particles’ velocities and 

tracks, but not enough to alter markedly the local temperature and oxygen partial pressure in 

cells.  Finally, since the Lagrangian approach is modelled by tracking a number of trajectories, 

preferably not very large, assuming that each simulated particle represents a sample of the real 

number of particles, and considering that these trajectories are especially chaotic in such a big 

fluid domain, the omission of turbulent diffusion effects do not affect the general results of our 

model.   

 

Moreover, since this problem involves combustion, the particle temperature change should be 

considered.  This process is governed by three mechanisms: convection, reaction and radiation. 

 

- Convection heat transfer  

 

)(4 pgpC TTNudQ −⋅⋅⋅⋅⋅= λπ       (Eq. 3.44) 

Where, 

3
15.0 )(Re6.02

λ
µ pC

Nu ⋅⋅+=       (Eq. 3.45) 

 

- Heat of reaction  

As it will be explained later, reaction heat transfer at the particle surface is due to two 

mechanisms, devolatilization and char oxidation.  Heat transfer during the devolatilization stage 

is described according to Eq. 3.46.   
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dev
p

M H
dt

dm
Q ∆⋅=         (Eq. 3.46) 

 

Where, the particle mass variation corresponds to the high temperature volatile yield, and ∆Hdev 

is the heat consumed during coal pyrolysis.   

 

Heat transfer during the char oxidation stage is described according to Eq. 3.47. 

 

react
p

hM H
dt

dm
fQ ∆⋅⋅=        (Eq. 3.47) 

 

Where, ∆Hreact is the reaction heat during char oxidation, and fh represent the fraction of heat 

absorbed by the particle.   

 

- Radiation heat transfer 

Finally, the radiative heat transfer between the particles and the environment is considered 

according to Eq. 3.48. 

 

( )42
pBppR TIdQ ⋅−⋅⋅⋅= σπε        (Eq. 3.48) 

 

Particle emissivity εp is assumed to vary linearly between two defined values, corresponding to 

char emissivity (εchar = 0.6) and coal emissivity (εcoal  = 1), according to Eq. 3.49. 

 

charfcoalfp VV εεε ⋅+⋅−= )1(       (Eq. 3.49) 

 

Adding up the three heat transfer contributions (Eqs. 3.44, 3.46, 3.47 and 3.48), a differential 

equation that solves the temperature change in the particle is obtained (Eq. 3.50). 

 

( ) RMCpp QQQ
dt
dTCm ++=⋅∑       (Eq. 3.50) 

 

All momentum, mass and heat transfer from the particles, produces a source of momentum, 

mass and heat in the continuous phase (two-way coupling), through the source terms in the 

conservation equations according to a PSI-cell model (Crowe et al., 1977).   
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3. Coal combustion model 

Coal combustion calculations are combined with the particle transport, which has been analyzed 

in the previous subsection.  Homogeneous combustion of volatile products will be described in 

point 4, while at this point we will focus on the mechanisms and models for devolatilization and 

char oxidation.   

 

- Devolatilization (Badzioch and Hawskey, 1970) 

Devolatilization rate is modelled using the single step model of Badzioch and Hawskey (1970), 

which states that the rate of production of volatile gases is given by a first-order reaction (Eq. 

3.51). 

 

)( fifv VVk
dt
dV

−=         (Eq. 3.51) 

 

Where, Vfi is the parent coal volatile content obtained from the standard proximate analysis, and 

kv is the reaction rate expressed in an Arrhenius form (Eq. 3.52). 
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- Char oxidation  

Char oxidation is modelled using the popular single film char oxidation model (Field et al., 

1967;  Baum and Street, 1971).  However, as explained in Chapter 2, to improve the prediction 

capability of the model, both rank-dependent empirical correlations and a specific submodel 

describing ash inhibition in the late stages of combustion were coupled (Pallarés et al., 2005).  

Since the elements of the combustion model were explained in detail in Chapter 2, below only 

the more characteristic equations are summarized.  

 

Global reaction rate is calculated according to Eq. 3.53.  

 

cd

g
c

kk

P
q

11
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Diffusion rate is calculated according to Eq. 3.54 (Hurt et al., 1998). 
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Chemical reaction rate is calculated according to Eq. 3.55. 
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The activation energy Ea, and pre-exponential factor Aa, are obtained from the proximate and 

ultimate coal analysis according to Eqs. 3.56 and 3.57 (Hurt and Mitchell, 1992). 
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4. Volatile products combustion model  

The homogeneous combustion of volatiles released from the particle is modelled using the 

mixed-is-burnt model (Warnatz et al., 1996), which assumes infinitely fast chemistry.  This 

assumption is adequate for reacting flows with high Damköhler numbers (Da >> 1).  The mean 

and mass fraction of fuel, oxidant and products are obtained by solving the mean f (Eq. 3.58) 

and variance G of the mixture fraction (Eq. 3.59) transport equations.  
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Mixture fraction f  is defined from Eqs. 3.60 and 3.61.  
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Furthermore, a stoichiometric mixture fraction Fst is defined according to Eq. 3.62. 

 

ϕ+
=

1
1

stF           (Eq. 3.62) 

 

The fuel and oxidant cannot co-exist, since the reaction is instantaneous and the respective mass 

fractions are determined as a function of the mean f and variance G of the mixture fraction.  A 

beta probability density function (β-PDF) p(f) is assumed to model the mixture fraction 

fluctuations (Eqs. 3.63 and 3.64). 
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              (Eq. 3.64) 

 

Finally, the products’ mass fraction mPR is calculated by the difference of the fuel, oxidant and 

char products mass fractions (Eq. 3.65). 

 

PCOFPR mmmm −−−= 1        (Eq. 3.65) 

 

5. Radiation model   

The thermal radiation in the furnace is the dominant heat transfer mechanism due to the 

presence of a mixture of participative gases and particles at high temperature.  Gases absorb and 

emit thermal radiation as a function of temperature and wave length.   Particles also participate 

in the radiative interchange.  The radiative heat transfer has been modelled using the Discrete 

Transfer method (Lockwood and Shah, 1981), which solves a transport equation for the 

radiation intensity along paths between two boundary walls.  Every ray (path) considered is 

discretized at each volume cell, assuming constant properties within the cell.  Defining the 

radiative heat balance along one direction s, the variation with s of the radiation intensity is 

determined by adding up the contributions due to emission, absorption, incoming dispersion in 
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the s direction and outgoing dispersion from the s direction.  Consequently, a transport equation 

for the radiation intensity is obtained (Eq. 3.66) (Hottel and Sarofim, 1967; Modest, 1993). 
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   (Eq. 3.66) 

 

According to Planck’s law, the black body intensity Ib, is obtained integrating the intensity 

corresponding to each wave length λ for the whole wavelength spectrum (Eqs. 3.67 and 3.68). 
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From Kirchhoff’s radiation law, the spectral emissivity ε(λ) and the spectral absorption 

coefficient ka(λ) will adopt the same value.  This value, may be estimated by applying a multi-

grey gas model, decomposing the real gas into one non participating gas and several grey gases.  

In this way, the emissivity and absorptivity of a real gas can be characterized as the sum of the 

emissivities for the real gas decomposition considered, and the product of the participating 

gases partial pressure p and a characteristic length Lc (Eq. 3.69) (Taylor and Foster, 1974). 
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There exist many emissivity graphs in the literature for different H2O-CO2 mixture proportions 

(Hadvig, 1970; Leckner, 1972; Beer, Foster and Siddall, 1971).  The last ones (Beer et al., 1971) 

also account for the CO and other unburned hydrocarbons contribution to calculate the real gas 

emisivity (Eq. 3.71). 
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Table 3.1 shows the empirical constant values b1i, b2i (K-1), ki (m-1atm-1) and kHCi (m-1atm-1) 

(Beer et al., 1971). 

 

  pw/pc=2    pw/pc=1   

Nº Gas b1i b2i ki kHCi b1i b2i ki kHCi 

1 0.437 7.13 0 3.85 0.486 8.97 0 3.41 

2 0.39 -0.52 1.88 0 0.381 -3.96 2.5 0 

3 1.173 -6.61 68.83 0 0.133 -5.01 109 0 

 

Table 3.1  Experimental constants for a multi-grey gas model  (Modest, 1993) 

 

For simplicity, a grey gas model is considered to evaluate the properties of the gas phase, 

considering a constant value for the absorption coefficient over the whole wavelength spectrum. 

 

With regard to the dispersion of particles; this is assumed to be isotropic, simplifying the last 

term in the radiative intensity transport equation (Eq. 3.66), )ˆ,ˆ( ssiλΦ = 1.   

 

Defining qR as the radiative power per area unit, obtained from the integration of the radiation 

intensity Iλ over the solid angle in the whole wavelength spectrum (Eq. 3.73), and integrating 

the radiative intensity transport equation (Eq. 3.66) over the solid angle, the general 

conservation equation for the radiative energy is obtained (Eq. 3.74). 
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Where, 

       ∫ Ω⋅= sdIJ
π4
1

  and   ∫ ⋅⋅⋅+⋅⋅=Ω⋅ JkIkdQ sbas π44              (Eqs. 3.75 and 3.76) 

 

This transport equation allows us to determine at each cell the radiation source term qR (or sink 

term), which is then introduced in the mean flow energy transport equation (Eq. 3.21, SR term). 

 

 



Chapter 3   CFD codes   
_____________________________________________________________________________________ 

_____________________________________________________________________________________  
84 

 

Table 3.2 summarizes the models used in the CFD simulation of the case-study boiler in this 

work.  

 

Problem Model Reference 

Main Flow (Eulerian) RANS  

Turbulence  k-ε standard Launder and Spalding, 1971 

Devolatilization Single first order reaction (SFOR) Badzioch and Hawskley, 1970 

Volatile combustion Mixed is burnt Wartnatz et al., 1996 

Char oxidation Conventional single film  +  

Rank dependant correlations + 

Ash inhibition (CBK) 

Field et al., 1967 

Hurt and Mitchell, 1992 

Hurt et al., 1998 

Radiation Discrete Transfer  Lockwood and Shah, 1981 

Particles transport Lagrangian approach  

(two-way coupling) 

 

 
Table 3.2 Summary of the models used in the CFD simulation of the case-study boiler 

 

 

3.3 Boundary conditions 

Once the models have been introduced, the required boundary conditions to solve the problem 

are set below (Versteeg and Malasekera, 1995): 

 

1.  Fluid boundaries: 

 

• Inlets:  

Generally, all the variables are specified at the inlets.  Moreover, it is useful to locate the inlets 

as far as possible from the region of interest.  In this work, the continuous phase (gas stream) 

was defined by the normal and angular components of velocity.  The normal component was 

calculated from the mass flow, inlet section and primary air temperature, under an ideal gas 

assumption.  The angular component was calculated from the burner geometry (Basu et al., 

2000).  Furthermore, inlet flow temperature, turbulence intensity and dissipation length scale 

were also defined.  Radiation related properties were defined in terms of emissivity, specular 

roughness and radiation temperature.   

 

The particles’ phase was defined by the coal mass flow, a Rosin Rammler size distribution (Eq. 

3.77) and the inlet velocity, which coincides with the one defined for the flow, since the 

particles’ phase is diluted in the gas stream. 
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• Outlets:  

Generally, there is little information about the flow at the outlets.  For this reason, again it is 

advisable to locate the outlets as far as possible of the interest study region.  In this work, open 

boundary conditions were assumed in the outlet: 0=
∂
∂

n
un  and 0=

∂
∂

n
T .  Radiation related 

properties were defined again in terms of emissivity, specular roughness and radiation 

temperature.   

 

2. Walls:  

At the walls, no slip conditions and logarithmic profiles (wall functions) for velocity to 

adequately represent turbulence in the near wall region were defined.  Radiation boundary 

conditions were defined again in terms of emissivity, specular roughness and radiation 

temperature.   

  

 

3.4 Verification and validation 

 

The last step in the resolution process is to determine the accuracy of the solution and if the 

results obtained with the numerical simulation adequately reproduce and describe the real 

processes.  These aspects are known as verification and validation of the numerical simulation.   

 

In the same way that there exist uncertainties in the solution when experimental techniques are 

used, there also exist uncertainties associated with numerical resolution methods.  As a result of 

the rapid spreading of the use of computational tools, many standard error quantification and 

simulations validation procedures have arisen (Velilla, 2004).  However, as stated by Velilla 

(2004), there is still not a unique methodology accepted globally.   

 

Generally, in CFD related publications, the most widespread validation method used is to 

compare results from the simulations with experimental data.  However, being rigorous, the fact 

that the results from a simulation correctly reproduce the experimental results does not ensure 

that the numerical model adequately reproduces the real process.  The numerical errors of the 

method should be also determined.  To achieve this, it is necessary to distinguish two stages in 

the approval of the simulation: verification, that accounts for the numerical errors, and 
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validation, that accounts for uncertainties in the mathematical models used in the 

characterization of the real processes.   

 

• Verification 

The verification stage consists of determining the numerical errors of the computational method.  

That is, errors related to the correct numerical resolution of the differential equations.  The 

errors obtained may be considered the numerical uncertainty of the simulation.  The numerical 

errors that may be taken into account are: 

 

− Error due to the iterative method in the resolution of the equations: This error is associated 

with the global convergence of the method.  The better the convergence of the solution in 

obtaining the lowest values for the variables’ residules (< 1E-4) and in minimising the mass 

balance error over the whole domain, the lower is the contribution of this error.  In general, 

when using the robust commercial CFD codes, this error is usually negligible and may be 

estimated from graphical methods or theoretical approaches. 

 

− Error due to the spatial discretization: This error is associated with the size of the 

computational grid.  Of all the numerical errors it is the most relevant.  The method used to 

determine this error consists of performing a progressive refinement of the mesh, studying 

the convergence until a mesh-independent solution under a specified tolerance is achieved.  

 

− Error due to the time discretization: This error is associated with the time step in transitory 

problems.  In the same way as with the previous error, the method to determine this error 

consists of performing a progressive decreasing of the time step, studying the convergence 

until a mesh-independent solution under a specified tolerance is achieved.   

 

• Validation 

The validation stage consists of determining the modelling errors of the computational method.  

These are errors derived from the assumptions, hypothesis and simplifications used for the 

mathematical description of the real process.  The modelling errors that may be taken into 

account are: 

 

− Error due to numerical errors: This error was previously determined in the verification 

stage.  
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− Error due to experimental data uncertainties: This error is determined from the precision of 

the plant instrumentation and the accuracy of the data gathering process.  

 

− Error due to the hypothesis and assumptions of the mathematical models: This error is 

estimated by comparing experimental data against simulated results taking into account the 

previous calculated errors.    

 

 

3.5 Summary 

 

Computational fluid dynamics together with the continued evolution of computers has 

succeeded in establishing an essential calculation tool.  Its growth has gone beyond the research 

field being introduced in the industry through many commercial codes.  The main advantage of 

these computational techniques is that they represent an economic and accurate alternative to 

experimental methods.  Moreover, CFD codes allow us to resolve a great variety of problems 

involving turbulence, multi-phase flows, reactive flows, etc. 

 

CFD codes are based on the numerical resolution of the differential equations that describe the 

flow dynamics.  To achieve this, it is necessary to discretize the study domain and choose an 

approach to discretize the equations that govern the process.  The domain is divided into a 

number of control volumes called cells.  Subsequently, to determine the flow variables, the 

conservation equations are calculated at discrete points in the cells called nodes.  Three 

discretization methods are commonly used: finite elements, finite volumes and finite 

differences.  In this work, the commercial code CFX-4 based on the finite volume method was 

used.  This method numerically solves the integral form of the conservation equations, using 

different order algorithms as described in the chapter.  Another important feature of these codes 

is the mathematical models that describe the physical and chemical processes that the fluid 

undergoes.   A complete section in the chapter has been dedicated to describe how these models 

are implemented in the code, with emphasis on the pulverized coal combustion problem 

(turbulence, multi-phase flow, homogeneous combustion, coal pyrolysis, char oxidation, 

radiation).  Finally, the last section presents a methodology to validate the CFD simulation.  To 

this end, all the uncertainties associated with the numerical discretization of the equations and 

the uncertainties associated with the modelling of the real processes are described and it is 

suggested how to estimate their contribution.   
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Nomenclature  

 

ani participation coefficient for the gas i 

A area (m2) 

Aa pre-exponential factor (g C/cm2 s) 

Av  pre-exponential factor of the devolatilization process (s-1) 

b1i experimental constant of a multi-grey gas model  

b2i experimental constant of a multi-grey gas model  

CD drag coefficient 

Cg1 mixture fraction transport coefficient 

Cg2 mixture fraction transport coefficient 

Cp specific heat (kJ / kg K) 

C1 turbulence closure coefficient (k-ε model) 

C2 turbulence closure coefficient (k-ε model) 

CI1 radiation constant (3.7415 W/m2) 

CI2 radiation constant (1.4388 m2K) 

Cµ turbulence closure coefficient (k-ε model) 

d mesh sieve diameter (m) 

dc char particle core diameter (cm) 

dp particle diameter (m) 

dpm mean diameter Rosin Rammler distribution (m) 

D diffusion coefficient (m2 /s) 

Da Damköhler dimensionless number ( )ctaD ττ /=  

DO2 molecular diffusion coefficient for O2 into N2 (cm2 /s) 

E+ law of the wall dimensionless constant (11.225) 

Ea  activation energy (J/mol) 

EvT activation temperature of the devolatilization process (K) 

f mixture fraction 

fc integrand of the convective term in a generic conservation equation 

fd integrand of the diffusive term in a generic conservation equation 

fh heat fraction absorbed by the particle 

fv integrand of the volume forces term in a generic conservation equation 

FA mass added force (N) 

Fi i component of the force F (N) 

FD drag force (N) 

FP pressure gradient force (N) 
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Fst stoichiometric mixture fraction 

FV volume fraction of particles passing through a mesh sieve d in a Rosin Rammler 

distribution 

G variance of the mixture fraction 

h enthalpy (kJ/kg) 

hc convective coefficient (W/m K) 

hT total enthalpy (kJ/kg) 

I radiation intensity per solid angle unit (W/m2 sr) 

Ib blackbody radiation intensity per solid angle unit (W/m2 sr) 

Iλ radiation intensity in the λ wave length per solid angle unit (W/m2 µm sr) 

Ibλ blackbody radiation intensity in the λ wave length per solid angle unit (W/m2 µm sr) 

J radiosity (W/m2) 

Jφ flow of the generic variable φ (W/m2) 

k turbulent kinetic energy (m2 s2) 

ka absorption coefficient 

kc chemical reaction rate (g C/cm2 s atmn) 

kd diffusion rate (g C/cm2 s atm) 

ki experimental constant of a multi-grey gas model 

kHCi experimental constant of a multi-grey gas model 

ks dispersion coefficient 

km mass transfer coefficient (m/s) 

kv kinetic rate constant of the devolatilization process (s-1) 

Lc characteristic length (m) 

Ma Mach dimensionless number ( )svvMa =  

mF fuel mass fraction 

mO oxidant mass fraction 

mPC char products mass fraction 

mPR products mass fraction  

mp particle mass (g) 

n unitary normal vector  

nc number of faces in a cell 

nrr dispersion factor Rosin Rammler distribution 

Ng number of participating gases 

NR number of reactions 

Nu Nusselt dimensionless number ( )λ/cc LhNu =  

p pressure (N / m2) 
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pc carbon dioxide partial pressure (atm) 

pHC carbon monoxide and other hydrocarbon partial pressure (atm) 

pw water vapour partial pressure (atm) 

pm pressure iteration m (N / m2) 

p’ pressure correction term (N / m2) 

Pg bulk oxidant partial pressure ( (atm) 

PM molecular weight (kg/kmol) 

Pr Prandtl dimensionless number ( )λµ /Pr pC=  

P0 pressure (N/m2) 

qc combustion rate (g C/cm2 s) 

qR radiative heat transfer (W/m2) 

qRλ radiative heat transfer in the wave length λ (W/m2 µm) 

Qc particle-environment convective heat transfer (W) 

QM heat transfer associated with the particle mass transfer (W) 

QR particle-enviroment radiative heat transfer (W) 

R universal ideal gas constant (8.3145 J/mol K) 

Re Reynolds dimensionless number ( )µρ /Re cLv=  

s radiation direction  

Sh Sherwood dimensionless number ( )DLkSh cm /=  

Sc Schimdt dimensionless number ( )DSc ρµ /=  

Si source term species conservation equation 

SM source term momentum conservation equation 

SR source term energy conservation equation 

Sφ source term generic variable φ conservation equation 

t time (s) 

T temperature (K) 

Tg bulk gas temperature (K) 

Tm average temperature (K) 

Tp particle temperature (K) 

u friction velocity (m/s) 

ui component i of velocity (m/s) 

ui
m component i of velocity at iteration m (m/s) 

up component u of particle velocity (m/s) 

u+ law of the wall dimensionless velocity 

u’ velocity correction term (m/s) 
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v velocity (m/s) 

vR fluid-particle relative velocity (m/s) 

vs speed of sound (m/s) 

V cell volume (m3) 

Vfi instantaneous volatiles fraction 

Vf yield volatiles fraction  

xi spatial coordinate i (m) 

xp spatial coordinate x of the particle (m) 

y+ law of the wall dimensionless distance 

Yi specie I mass fraction 

%C % weight of carbon in the parent coal (d.a.f.) 

 

∆Hdev combustion enthalpy of the devolatilization process (kJ)  

∆Hreact combustion enthalpy of the char oxidation process (kJ) 

δij Dirac delta 

δ ash film thickness (cm) 

ε eddy dissipation (m2 s-3) 

εp particle emissivity  

εcoal coal emissivity  

εchar char emissivity  

κ Von Karman constant (0.419) 

ϕ stoichiometric coefficient  

λ Reynolds stress tensor coefficient 

thermal conductivity (W/m K) 

 wave length (m) 

φ generic variable 

Φ dispersion of radiation  

Φv volumetric fraction of particles in the gas phase 

θaf ash film porosity  

ρ density (g/cm3) 

τw wall shear stress 

τij stress tensor 

τij’ viscous stress tensor 

Ω solid angle (rad) 

Γ effective diffusivity (m2/s) 
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σB Stephan Boltzman constant (5.67 E-12 W/cm2 K4) 

σH Prandtl turbulent dimensionless number ( )λµσ /pTH C=  

σi Prandtl turbulent dimensionless number ( )λµσ /pTi C=  

σk turbulence closure coefficient (k-ε model) 

σL Prandtl dimensionless number ( )λµσ /pL C=  

σT Prandtl turbulent dimensionless number ( )λµσ /pTT C=  

σε turbulence closure coefficient (k-ε model) 

σφ Prandtl turbulent dimensionless number ( )λµσφ /pT C=  

τc characteristic time for chemical reaction 

τt characteristic time for fluid dynamics 

µ viscosity (kg/m s) 

µeff effective viscosity (kg/m s) 

µv kinematic viscosity (kg/m s) 

µT turbulent viscosity (kg/m s) 

χ molar fraction 

χF fuel molar fraction 

χO oxidant molar fraction 

 

 

Acronyms 

 

CDS  central differences scheme 

CFD  computational fluid dynamics 

FVM  finite volume method 

PDF  probability density function 

PSI-cell particle-source-in cell 

RANS  Reynold’s averaged Navier Stokes equations 

SFOR  Single first order reaction 

UDS  upwind differential scheme 
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 SENSITIVITY STUDY OF MAIN FACTORS 

AFFECTING UNBURNED CARBON LOSS 
 

 

In Chapter 1, the main factors affecting unburned carbon losses were described and classified 

into three categories: coal and char related properties, coal preparation and grinding pre-

treatments and burner and boiler design and operation conditions.   

 

Nevertheless, not all these factors are relevant during the daily operation of the plant.  For 

example, coal type, composition and intrinsic characteristics, have a great influence on the 

combustion process.  However, the selection of the coal type has been previously done based on 

coal rank, composition, HHV, stock availability, price, etc.  In other words, coal properties are 

not a decision parameter that may be modified during the daily operation of the plant.  On the 

other hand, other factors such as the milling process or the combustion conditions are liable to 

be modified, thus impacting the unburned carbon loss.   

 

In this chapter, a sensitivity analysis of the main factors affecting unburned carbon losses is 

performed  which can be actuated by the technical personnel in the plant either directly or 

indirectly. To achieve this, we have carried out a double study of theses parameters.  Firstly, in 

the regular range of variation we have evaluated the contribution of each factor to the final 

unburned carbon level, keeping constant the rest of the parameters.  Subsequently, we have 

evaluated cross-related effects and interactions amongst these various factors.  This study, in 

which we have made used of multi-parameter factorial analysis techniques, gives a more 



Chapter 4                                                   Sensitivity study of main factors affecting unburned carbon loss 
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
94 

 

realistic view of the problem since the contribution of one factor may vary depending on the 

conditions of the other factors. 

 

For this purpose, a set of CFD simulations of the study plant (Lamarmora ASM Brescia) under 

different scenarios were carried out using a commercial CFD code, CFX 4.4.  This chapter is 

divided into three main sections.  Firstly, information about the ASM power plant, including 

geometrical and operational characteristics to carry out the CFD simulations, is presented.  

Secondly, the CFD furnace model of the study plant is described: domain description, 

mathematical models, boundary conditions and validation process.  Finally, a description of 

case-study factors and scenarios and the sensitivity study itself, are presented.     

 

 

4.1 ASM Brescia power plant description 

 

Lamarmora ASM Brescia power plant generates a total output of 139 MWe and consists of 

three front-fired units with natural circulation and single reheat.  The case-study unit is 63 MWe 

gross load, equipped with four burners arranged in two rows of two burners each.  A vertical rod 

mill feeds the two burners of the same row.  In the study, two coals from Central America 

commonly used in the plant over the last five years (Guasare from Venezuela and Carboandes 

from Colombia) and a coal from Russia, recently used to evaluate its influence on combustion 

efficiency, were burned separately.  Proximate and ultimate analysis and gross calorific values 

for the coals involved are shown in Table 4.1, as provided by the plant laboratory.  The three 

coals fall within the category of high volatile bituminous coals according to the ASTM 

classification standards. 

 

 
  Table 4.1  Proximate and ultimate analysis for the three study coals 

               (fixed carbon calculated by difference) 



Chapter 4                                                   Sensitivity study of main factors affecting unburned carbon loss 
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
95 

 

Figures 4.1 and 4.2, show the boiler geometry and the primary and secondary air flow 

arrangement respectively. 

 

 
Fig. 4.1  Case-study unit geometry  (ASM Brescia ) 

 

 
 

Fig. 4.2  Primary and secondary air flow arrangement (ASM Brescia) 



Chapter 4                                                   Sensitivity study of main factors affecting unburned carbon loss 
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
96 

 

4.2 CFD model of the ASM Brescia case-study unit 

 

A commercial CFD application, CFX 4.4 (AEA Technology plc.) running on a Windows 

machine, Pentium IV X-dual processor 2.8 GHz, 2 GB RAM each, has been chosen to perform 

the simulations.  Further information about CFX-4 code and the resolution methods used within 

it were presented in Chapter 3.    

 

4.2.1 Geometry description 

The Full boiler geometry has been modelled up to the plenum to facilitate the definition of an 

appropriate boundary condition at the outlet section and allowing the inclusion of the radiant 

superheater geometry in a further development (bold contour in Figure 4.1).  The selected mesh 

is structured and made up of 130 000 square elements (Figure 4.3). Its size is refined in the 

vicinity of the burners’ belt to better characterize the major gradients and is progressively made 

more coarse up to the top of the furnace. A detailed description of the burners’ grid structure is 

displayed in Figure 4.4, where the square elements in the middle are considered as solid walls, 

simulating the zone where the ignitors and flame detectors are located. The three internal 

circular rings simulate the inlet section for coal and primary air and the other three external 

circular rings simulate the inlet section for secondary and tertiary air. 

 

 
Fig.  4.3 Meshed boiler geometry 
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Fig. 4.4  Detail of mesh structure at the burner belt region 

 

4.2.2 Mathematical models 

The numerical resolution of the governing equations implies the modelling of all processes that 

take place in the furnace:  

 
• Turbulent flow  

• Coal combustion and mass transfer 

• Particle transport 

• Radiative heat transfer. 

 
The gas flow is modelled  by solving the steady-state Reynolds average Navier Stokes equations 

(RANS) along the computational domain using the Eulerian assumption.  Since the flow is 

turbulent, the widely used standard k-ε model (Launder and Spalding, 1974) is coupled to close 

the turbulence problem. The flow is assumed to behave similar to incompressible flow, making 

the density only dependent on temperature through a reference pressure ρ = ρ(T, Pref), a 

reasonable assumption for problems with a Mach number under 0.3.  In the near wall region 

logarithmic variations for velocity and other scalar fields (temperature, species concentration) 

are assumed (Versteeg and Malasekera, 1995). 

 

Coal combustion modelling comprises volatiles’ yield and homogeneous combustion, and char 

heterogeneous oxidation. The devolatilization rate is modelled using the single step model of 

Badzioch and Hawskley (1970), which states that the rate of production of volatile gases is 

given by a first order reaction and the rate constant is expressed in an Arrhenius form. The 

homogeneous combustion of volatiles released from the particle are modelled using the mixed-

is-burnt model, see for instance Warnatz et al. (1996), which assumes infinitely fast chemistry.  

The instantaneous mass fractions are given in terms of the instantaneous mixture fraction.  The 

mean mass fraction of fuel, oxidant and products are obtained from the mean and variance of 

the mixture fraction assuming the beta probability density function, β-PDF. 

Ignitor (2) 

Secondary air (3)

Primary air + coal (3)

 



Chapter 4                                                   Sensitivity study of main factors affecting unburned carbon loss 
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
98 

 

Char oxidation is modelled using the popular single film char oxidation model (Baum and 

Street, 1971), but coupling both rank dependent empirical correlations and a specific sub-model 

describing ash inhibition at the late stages of combustion.  As a matter of fact, the inclusion of 

rank dependant correlations within this enlarged combustion model for the global pre-

exponential factor, Aa, and for the global activation energy, Ea, establishes a direct dependence 

between char reactivity and coal properties (Hurt and Mitchell, 1992).  These empirical 

correlations are suitable for the prediction of coal burning under pulverized coal conditions in 

utility boilers: gas temperatures over 1500 K, particle diameters in the range from 75 to 200 µm 

and oxygen partial pressures over 0.03 bar.  Furthermore, the ash inhibition sub-model 

introduces an additional diffusion resistance to account for the inhibitory effect of ash on char 

oxidation, introducing two new parameters: the critical ash porosity and the minimum ash film 

thickness (Hurt and Sun, 1998).  All the expressions used in the combustion model are 

summarized in Chapters 2 and 3. 

 

It is necessary that the coal combustion model be combined with a particle transport calculation. 

A Lagrangian approach has been chosen, considering the influence of a diluted particle phase on 

the fluid flow, two-way coupling (Sommerfeld, 2000).  Interactions between particles have been 

neglected.  The total mass flow of particles has been modelled by tracking 1920 trajectories, 

assuming that each simulated particle represents a sample of the real number of particles.   

 

The thermal radiation in the furnace is the dominant heat transfer mechanism due to the 

presence of a mixture of participative gases and particles at high temperature. The radiative heat 

transfer has been modelled using the Discrete Transfer method (Lockwood and Shah, 1981) 

which solves a transport equation for the radiation intensity along paths between two boundary 

walls. For simplicity, a grey gas model is considered to evaluate the properties of the gas phase, 

considering a constant value for the absorption coefficient over the whole wavelength spectrum. 

The influence of the particles, also participating in the radiative heat transfer, is accounted for 

by including a specific heat source in the energy conservation equation.   

 

A summary of the combination of models used for performing the CFD simulation of the case-

study boiler was shown in Table 3.2 (Chapter 3). 

 

4.2.3 Boundary conditions 

Once the models have been presented, the required boundary conditions to solve the problem 

are set below (Versteeg and Malasekera, 1995): 
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1.  Fluid boundaries: 

 

• Inlets:  

The continuous phase (gas stream) was defined by the normal and angular components of 

velocity.  The normal component was calculated from the mass flow, inlet section and primary 

air temperature, under an ideal gas assumption.  The angular component was calculated from the 

burner geometry (Basu et al., 2000).  Furthermore, inlet flow temperature, turbulence intensity 

and the dissipation length scale were also defined.  Radiation related properties were defined in 

terms of emissivity, specular roughness and radiation temperature.  The particles’ phase was 

defined by the coal mass flow, a Rosin Rammler size distribution and the inlet velocity which 

coincides with the one defined for the flow, since the particles phase is diluted in the gas stream. 

 
 
• Outlets:  

Open boundary conditions were assumed at the outlet: 0=
∂
∂

n
un  and 0=

∂
∂

n
T .  Radiation related 

properties were defined again in terms of emissivity, specular roughness and radiation 

temperature.   

 

2. Walls:  

At the walls, a no slip condition and logarithmic profiles (wall functions) for velocity were 

defined in order to adequately represent turbulence in the near wall region.  Radiation boundary 

conditions were set considering a wall temperature 50 K higher than the saturation temperature 

of the steam flowing inside the boiler tubes and assuming diffuse reflection with an emissivity 

value of 0.8.   

 

4.2.4  Verification and validation 

Verifying and validating the numerical simulation was carried out according to the methodology 

described in Chapter 3.  Firstly, the verifying process was performed by determining the 

numerical error of the CFD simulation.  The numerical error, δSN may be separated into three 

contributions (Eq. 4.1): an error due to the iterative method δI, an error due to the spatial domain 

discretization δM, and an error due to the time discretization δT. 

 

TMISN δδδδ ++=         (Eq. 4.1) 

 

- Error due to the iterative method δI: The minimum convergence criteria were established 

through the numerical resolution method itself as follows: 
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- Transport equations residues < 1 E-4 

- Continuity equation error < 1 E-2 

- Variation of a control variable < 1 E-2 

 

This way, the error is bounded and may be considered negligible (δI ≈ 0). 

 

- Spatial discretization error δM: To define a proper mesh size in the domain we carried out a 

progressive refinement of the mesh studying the convergence in the solution.  To achieve this, 

three grid sizes (fine, medium and coarse) were considered, with a size relation, 2=kr  

defined by Eq. 4.2.  

 

kjkik xxr ∆∆= /         (Eq. 4.2) 

 

 
Table 4.2   Number of elements in the burner’s belt region in every direction for the three mesh 

structures considered 

 

Generally, a key variable (velocity, temperature, etc.) determined at a point or within a domain 

region is used as a control variable for convergence.  In this work, since the goal of the study is 

to develop an unburned carbon predictive system, we have selected burnout (% coal basis) as 

control variable, establishing the convergence criteria for its variation of 0.1 %.  In this way, a 

medium mesh size structure proves to be adequate for our problem, and consequently, this was 

used in the simulations. 

 

- Time discretization error, δT: Since this problem was assumed stationary, this error term was 

neglected. 

 

Once the numerical error of the simulation was bounded the validation process was carried out 

to determine the modelling error.  The modelling error, δS may also be separated into three 

contributions (Eq. 4.3): an error due to the numerical resolution method δSN, an error due to 

experimental data uncertainties δSDP, and an error due to the hypothesis and assumptions of the 

mathematical models δSMA.   
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SNSDPSMAS δδδδ ++=        (Ec. 4.3) 

 

The numerical error δSN has been already defined at the verifying stage.  With regard to the 

other contributions, the error corresponding to the experimental data may be determined from 

the precision of the plant instrumentation and the accuracy of the data gathering process. Whilst 

the models assumptions’ error may be determined by comparing experimental data against 

simulated results, taking into account the previous calculated errors.    

 

Since, the sensitivity study in this work analyzes unburned carbon formation trends with the 

variation of boiler conditions, a comparison of experimental data against simulated results is 

enough to validate the simulations.  Aside from the main validation of the target prediction of 

this work (unburned carbon in ash level), additional verifications of the furnace simulation 

accuracy are highly desirable.  Unfortunately, the available instrumentation in the case-study 

boiler does not allow a detailed validation, just limiting it to the prediction of the oxygen 

content in flue gases.  In fact, this is a common situation in large-scale utility boilers which are 

conventionally instrumented for control and safe operation purposes but not for undertaking 

accurate thermal calculations.  Moreover, the aggressive environment of high temperatures and 

ash particles in the furnace makes the insertion of long-term durable measurement probes 

unfeasible in most cases, thus, restricting the available on-line information to very few gas 

temperature and oxygen samples at the cold exit of the boiler convective section.   

 

 

4.3 Sensitivity study  

 

The aim of the sensitivity study is to determine the real influence of different parameters on 

unburned carbon formation.  This way, it will be possible to lay down the guidelines to correct 

and minimize this loss.  Additionally, in order to develop an unburned carbon predictive system, 

this study allows us to identify which parameters should be included in the final model from 

their relevance.   

 

The main parameters analyzed in this work are set out below: 

 
1. Primary air to coal mass flow ratio (keeping constant the total air mass flow): This 

relationship is set by adjusting the milling system operation.  Firstly, the primary air is 

responsible in starting combustion, creating a recirculation area in the near burner region 

which provides the heat release needed to ensure a constant ignition source.  
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2. Excess air (stoichiometry): Excess oxygen at the exit of the boiler is a common control 

signal in power plants which is modified by varying the air mass flow driven by the forced-

draft fans. Since coal combustion depends directly on oxidant partial pressure, its influence 

on carbon burnout usually represents the most important contribution.   

 

3. Particle size: Particle size distribution is also determined by the milling system operation, 

through the milling pressure, the classifier position and the ageing of the grinding pieces.  In 

general, larger particles result in longer combustion times, increasing unburned carbon 

levels. 

 

4. Secondary air swirl intensity (rotation index): Swirl intensity is modified by varying the 

position of the burner vanes that guide the entrance of the secondary air from the wind box. 

High swirl numbers intensify the secondary air rotation which results in an enhancement to 

the primary and secondary air mixing and consequently combustion.  Furthermore, it 

stabilizes the flame. Swirl intensity, nsw, usually called swirl number, is defined as the 

quotient of the fluid angular moment M, and the fluid axial moment K multiplied by a 

characteristic length Lc (i.e. hydraulic diameter) (Basu et al., 2000) (Eq. 4.4). 

 

ck

t

c
sw LU

rU
LK

Mn
⋅
⋅

=
⋅

=       (Eq. 4.4) 

 
 
5. Fuel/air mass flow imbalances through the burners: This situation may respond either to an 

operational order, or to a deficient design of the ducts that connect the mills with the 

burners.  As a result of this, there may exist different flow patterns in the boiler that may 

lead to interactions amongst the burner flames or to an alteration of the particles’ 

trajectories each of which has a large effect on the combustion process (Lockwood and 

Parodi, 1998). 

 

To study the influence of these parameters we have carried out 64 CFD simulations with 

operating data provided by ASM Brescia power plant.  Some of the simulations do not 

correspond with the regular operational conditions of the plant.  The reason being is that this 

way we will be able to analyze these parameters under conditions outside the optimal design 

conditions.  The first 32 simulations studied the contribution of each factor to the final unburned 

carbon level while keeping the rest of the parameters constant.  Next, with the most relevant 

factors, the other 32 CFD simulations are carried out to evaluate cross-related effects and the 

interactions amongst them.   
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Once the simulations have been performed, unburned carbon in ash is calculated by computing 

the trajectories of the particles obtained from the CFD code.  The code generates an output file 

which contains the local position, velocity, time, temperature, diameter, mass, etc., for every 

particle at any cell it passes through.  At the same time, after a complete iteration (flow and 

particles), the code gives the total amount of volatiles and char product yield to the gas phase. 

Since volatiles are completely transferred to the gas phase, the total amount of carbon losses can 

be calculated from the final mass of the particles that leave the flow domain, assuming that they 

are exclusively formed by carbon and ash. 
 

4.3.1 Individual parameters sensitivity study 

To carry out the sensitivity study of individual parameters, we have established a master case 

simulation (Case 1), which corresponds to nominal-load conditions from the study boiler.  The 

reference coal used in the whole study has been Guasare (Table 4.1).  Table 4.3 summarizes 

boiler conditions used in the base case simulation (Case 1).   

 

Operating conditions 
Natural gas  0 m3/s 
Coal load                                                                  Total 

Per mill / per burner  
7.08 

3.61/1.805 
kg/s 

“ 
Total air mass flow in the boiler 93.119 kg/s 
Primary air mass flow  14.319 kg/s 
Secondary air 78.8 kg/s 
Mass flow percentage of coal through each burner 25 % 
Primary air/coal mass flow ratio 1.98 kg air/kg coal 
Excess air at the exit of the boiler  37 % 
Excess oxygen at the exit of the boiler  5.5 % (w.b.) 
Primary air temperature 80 ºC 
Secondary air temperature 260 ºC 

 
Table 4.3  Nominal-load operating scenario from the case-study power plant (Base Case) 

 

To characterize the particle size sieve fractions provided by the plant, we have made use of a 

Rosin Rammler distribution with parameters dpm= 50 µm and nrr = 1.02.  This distribution has 

been split up into ten intervals which contain the same coal mass flow.  Table 4.4 shows the 

mean diameters that represent each size interval considered.  

 

Cases 2 to 32 simulate variations in the conditions of a single parameter with respect to the base 

case (Case 1) (Table 4.5).  
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Interval Accumulative % Mean diameter (µm) 
0 – 10 % 5 % 2.5 

10 – 20 % 15 % 7.7 

20 – 30 % 25 % 13.6 

30 – 40 % 35 % 20.1 

40 – 50 % 45 % 27.9 

50 – 60 % 55 % 36.9 

60 – 70 % 65 % 48.3 

70 – 80 % 75 % 63.4 

80 – 90 % 85 % 86.2 

90 – 100 % 95 % 134.9 

 
Table 4.4 Particle size distribution (Case 1) 

 
 

Case nº Description Incidence Base Case (Case 1) 
2 Qpa/Qcoal = 3 
3 Qpa/Qcoal = 2.5 
4 Qpa/Qcoal = 2.25 
5 Qpa/Qcoal = 1.75 
6 

Primary air/coal mass flow ratio 

Qpa/Qcoal = 1.5 

Qpa/Qcoal = 2 

7 %O2 = 7 
8 %O2 = 5 
9 %O2 = 4.5 

10 %O2 = 4 
11 

Excess oxygen 
 
 
 

 
%O2 = 3 

%O2 = 5.5 

12 Mean diameter2 = 60µm 
13 Mean diameter2 = 80µm 
14 

Mean particle diameter  
(Rosin Rammler distribution) 

Mean diameter2 = 100µm 

Mean diameter = 50µm 

15 Swirl = 2 
16 

Swirl Intensity (swirl number) 
Swirl = 3 

Swirl = 1 

17 Burner 1, 4 = 47.5%, Burner  2,3 = 52.5% 
18 Burner 1, 4 = 45%, Burner 2,3 = 55% 
19 Burner 1, 4 = 42.5%, Burner 2,3 = 57.5% 
20 Burner 1, 4 = 40%, Burner 2,3 = 60% 
21 Burner 1, 3 = 47.5%, Burner 2,4 = 52.5% 
22 Burner 1, 3 = 45%, Burner 2,4 = 55% 
23 Burner 1, 3 = 42.5%, Burner 2,4 = 57.5% 
24 

Primary air mass flow imbalances through 
burners of the same row; that is, through 

burners feed from the same mill 

Burner 1, 3 = 40%, Burner 2,4 = 60% 

Burner  1, 2, 3, 4 = 25% 

25 Mill 1 = 60%, Mill 2 = 40% 
26 Mill 1 = 40%, Mill 2 = 60% 
27 Mill 1 = 57.5%, Mill 2 = 42.5% 
28 Mill 1 = 42.5%, Mill 2 = 57.5% 
29 Mill 1 = 55%, Mill 2 = 45% 
30 Mill 1 = 45%, Mill 2 = 55% 
31 Mill 1 = 52.5%, Mill 2 = 47.5% 
32 

Primary air mass flow imbalances through 
mills; but identical, through burners feed 

from the same mill 

Mill 1 = 47.5%, Mill 2 = 52.5% 

Mill 1, 2 = 50% 

Table 4.5  Sensitivity analysis simulations plan 

 

                                                 
2  Rosin Rammler distribution 
dpm nrr < 75 µm  (%) 75 – 150  µm  (%) 150 – 300  µm  (%) > 300  µm  (%) 
60 1.02 71.51 20.65 7.27 0.57 
80 1.02 60.79 24.23 12.86 2.13 
100 1.02 52.56 25.40 17.38 4.66 
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Figure 4.5 shows a scheme of mills and burners’ disposition with the numbering followed in 

this work.  Mill 1 feeds the upper row of burners, with burner 1 on the left hand side and burner 

2 on the right hand side (looking head on to the boiler from the outside).  In the same way, Mill 

2 feeds the lower row burners, with burner 3 on the left and burner 4 on the right.   

 

 
Fig. 4.5  Mills and burners disposition scheme (ASM, Brescia) 

 

Validation of the simulations has been performed according to the methodology explained in 

Section 4.2.4.  Thus, once the accuracy of the numerical resolution has been verified, we have 

proceeded with the validation. For that purpose, the oxygen values at the exit of the boiler 

obtained in the simulations are compared against the predetermined values for each case.  

Figure 4.6 shows the results obtained that allow us to accept the accuracy of the simulation. 

   

 
Fig. 4.6  Simulated % O2 vs. Plant % O2 

 

After solving Case 1, an unburned carbon in ash value of 7.08 % was obtained.  This result 

itself, does not give any relevant information.  Moreover, it cannot be compared with a punctual 
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estimation of the carbon-in-ash value at the plant since averaged values have been used in the 

simulated scenarios.  It should be remembered that at this point the aim of the study is to 

determine the sensitivity of different factors to unburned carbon formation and not the precise 

calculation for the existing conditions.  This task will be carried out in Chapters 6 and 7, during 

the combustion model and the unburned carbon predictive system validations respectively.  

However, analyzing the results for all the simulations as a whole, their influence on unburned 

carbon losses can be investigated.  Next, the results of the individual analysis for these factors 

are presented (Base case is represented with a circle in figures): 

 
1. Primary air/coal mass flow ratio (keeping constant the total air mass flow):   

Cases 2 to 6 analyze the variation in the primary air to coal mass flow relation, when the total 

air supply (primary and secondary air) remains constant.  Figure 4.6 shows that Case 1, in which 

the primary air to coal mass flow ratio was set to 2, is the most advantageous scenario with 

respect to unburned carbon losses.  This result was expected since under nominal-load 

conditions it corresponds to the design ratio.  Lower ratios result in an increase of the unburned 

carbon losses since decreasing the primary air mass flow results in a poor stoichiometry in the 

near burner area where combustion starts.    

 

 
Fig. 4.7  % Unburned carbon in ash vs. Primary air to coal mass flow ratio 

 

Higher ratios also result in an increase of the unburned carbon losses since reducing the 

secondary air mass flow, the outer recirculation loop intensity is reduced which causes a 

decrease in the primary and secondary air mixing effectiveness and as a consequence a lower 

peak combustion temperature.  This parameter, as it will be seen later from the multi-parameter 
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analysis, is highly correlated with the excess oxygen level and its relevance under some 

particular operating conditions may be greater than other apparently more influential factors.   

 

2. Excess air level (stoichiometry): 

Cases 7 to 11 analyze the variations in the excess air level.  In general, in power plants the 

oxygen excess level is used as a control signal to adjust the air flow for a given coal load, 

operating over the primary and/or secondary air forced-draft fans.  In the simulation, in order to 

keep constant the primary air to coal mass flow ratio, the variation in the air supply to the boiler 

is obtained through the variation in the secondary air.  Figure 4.8 suggests a great influence of 

this factor, mainly for excess oxygen levels below 4 %.   

 

 
Fig. 4.8  % Unburned carbon in ash vs. Excess O2 

 

3. Particle size:   

Cases 12 to 14 analyze the variations in particle size.  In general, for a given coal mass flow, by 

increasing the mean size of the particle distribution the total surface area exposed to the oxidant 

is reduced resulting in an increase of the combustion time and of the unburned carbon level.  In 

power plants, particle size is adjusted modifying the mechanical action of the grinding pieces 

and adjusting the mills’ classifiers.  Figure 4.9 shows a linear increase of unburned carbon in 

ash with particle size.  It is also noticeable that the influence of this factor is greater than the 

primary air to coal mass flow ratio, while much less relevant than the excess oxygen level.  In 

spite of this fact, as it will be seen in the multi-parameter study, particle size is generally not as 

significant as other study factors in unburned carbon formation under regular pulverized fuel 

conditions (dpm < 100 µm).  
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Fig. 4.9   % Unburned carbon in ash vs. Mean particle size Rosin Rammler distribution (µm) 

 

4. Secondary air swirl intensity (rotation index): 

Cases 15 to 16 analyze the variation in the secondary air swirl intensity.  Increasing the swirl 

intensity enhances turbulence and mixing in the outer recirculation that surrounds the primary 

air flow stream thereby improving combustion and flame stability.  However, there exists a 

limit. If rotation intensity is very strong, the secondary air may distort the internal recirculation 

in front of the burner, affecting flame stability and primary and secondary air mixing.   

 
Fig. 4.10  % Unburned carbon in ash vs. Swirl intensity (swirl number) 

 

Figure 4.10 suggests a slight decrease in the unburned carbon in ash level with decreasing swirl 

intensity.  Finally, it is noteworthy that, since earlier burners were designed to obtain high 
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mixing rates while maintaining flame stability, nowadays new burner solutions look for a 

gradual mixing which may reduce NOx formation even at the expense of increasing unburned 

carbon.   

 

5. Fuel/air mass flow imbalances through burners:   

Cases 17 to 32 analyze the influence of the fuel/air mass flow imbalances through the burners 

on unburned carbon losses: 

 
• Mass flow imbalances through burners fed from different mills (configurations 1 and 2, 

Cases 25-32).  This situation may take place as a result of: 

 

- A full load operating strategy (configuration 1), to reduce NOx emissions, creating a 

reduced atmosphere in the lower level of burners and an oxidizing atmosphere in the 

upper level.  

 

- A partial load operating strategy (configuration 2), to reach high enough temperatures in 

the upper section of the boiler that permits an adequate steam production.  

 

This situation may be also caused by an operation problem within the mills.  

 
• Mass flow imbalances through burners fed from the same mill (configurations 3 and 4, 

Cases 17-24).  This situation may take place as a result of: 

 

- A fault design (initially or as a consequence of a modification or damage in the plant, 

etc.) of the ducts that transport the primary air and coal from the mills to the burners. 

 

Two different configurations for each imbalance situation have been considered simulating 

uneven mass flow distribution variations in the range 0 to 10 %.  Figure 4.11 shows the four 

simulated configurations, where the symbol “+” indicates that the higher mass flow is fed from 

this burner and the lower mass flow is fed from the burners marked with the symbol “-“.  For 

example, assuming a coal load of 10 kg/s and a mass flow imbalance of 10 % for a 

configuration type 1, the coal mass flow distribution through the burners would be as follows: 

since in a configuration type 1 the mass flow imbalance takes places through the mills (the 

burners fed from the same mill have identical mass flow distribution), instead of giving 50 % of 

the total mass flow to each mill, the mill that feeds the upper row of burners (see burners with 

symbol “-“) gives only 40 % of the total, while the mill that feeds the lower row of burners (see 

burners with symbol “+“) gives 60 % of the total.  Therefore, the upper row of burners (burners 
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1 and 2 in Figure 4.5) feed 2 kg/s each, and the lower row burners (burners 3 and 4 in Figure 

4.5) feed 3 kg/s each.  In the same way, the coal mass flow distribution for the other 

configurations are obtained (Table 4.5). 

 

 
Fig. 4.11  Diagram depicting the four different simulation configurations  

 
 

 
Fig. 4.12  % Unburned carbon in ash vs. % Mass flow imbalances (Config. 1 and 2) 

 

Figure 4.12 shows the results for configurations 1 and 2.  The first noticeable result is that 

increasing the imbalance level, the unburned carbon losses increment is comparable to that 

obtained when increasing the mean particle size over 100 µm. This result suggests the 

importance of these flow asymmetries in the operation of the boiler.  Another remarkable and   

surprising result is that the unburned carbon level is higher with configuration type 1 than with 

configuration type 2.  Since in configuration 2 most of the coal is fed through the upper row of 

burners in which the particles’ residence times are lower, we would expect the opposite result.  

To explain this, we should fall back on the special behaviour of the lower row of burners, from 

which the particles’ trajectories are largely affected by a recirculation loop in the bottom hopper 

region (Figure 4.13).  In addition to this reversed-flow region, the interactions between the inlet 

flows from neighbouring burners and interactions with the confining walls are significant 
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enough to noticeably distort the coal particles’ trajectories, modifying the oxygen-temperature 

history of the particles and thus coal burnout behaviour.  To conclude, as it will be confirmed 

from the factorial analysis in the next section, this surprising result only takes place when the 

boiler is operated under high excess oxygen conditions.  In the case of operating under low 

excess oxygen conditions, in spite of the fact that there is a distortion in the particles trajectories 

since the oxygen level is lower and the particles fed from the upper row of burners have shorter 

residences times, the higher unburned carbon losses are encountered in configuration 2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13  Predicted particles’ trajectories tracked from different inlets: upper row (a) and lower row (b) 

(b) 

(a) 
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Figure 4.14 shows the results for configurations 3 and 4.  These results suggest a remarkable 

increment of the unburned carbon loss as the mass flow imbalances increase.  This situation is 

specially marked for configuration 3, where the flow asymmetry is complete in the full boiler.   

 

 
Fig. 4.14  % Unburned carbon in ash vs. % Mass flow imbalances (Config. 3 and 4) 

 

For the moment, we have analyzed individual contributions of the study-factors.  Now it is 

possible to establish a preliminary comparison of the relative influence of the study factors as 

shown in Figure 4.15.  The dashed line in the figure represents the reference unburned carbon 

level of the base case (Case 1).  

 

 
Fig. 4.15. Unburned carbon level for all the study-factors and scenarios 
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Figure 4.15 suggests that the oxygen level is the most relevant factor in unburned carbon 

formation, especially for excess oxygen values under 4 %.  However, the rest of the factors, 

such as: mass flow imbalances, particles’ size and primary air to coal mass flow ratio, may 

turnout to be relevant for excess oxygen values over 4 %.  In spite of these general results, in a 

real power plant all these factors take place simultaneously.  The next part of the study is 

focused on the analysis of cross-related effects and interactions amongst these factors.  

  

4.3.2 Multi-parameter sensitivity study   

The individual parameter sensitivity study has shown that many factors affect carbon burnout. 

In real utility boilers these factors do not take place individually and their interaction may have 

an important influence on the total unburned carbon.  Since it is not easy to differentiate 

individual contributions and interactions of these factors, an efficient experimental design may 

reduce the number of scenarios required to complete the study.  A factorial experiment is an 

experiment which extracts information on several design factors more efficiently than can be 

done by a traditional test.  The main objective is to determine the effect of various factors of 

interest.   Analysis of variance is a powerful technique for analysing experimental data 

involving quantitative measurements.  It is particularly useful in factorial experiments where 

several independent sources of variations may be present.   When several sources of variation 

are acting simultaneously on a set of observations, the variance of the observations is the sum of 

the variances of the sources.  This property makes the application of the analysis of variance 

particularly useful in factorial experiments.  By this method, the total variation within an 

experiment can be broken down into variations due to each main factor, interacting factors and 

residual error.  The significance of each variation is then tested and variables other than those 

investigated should be properly controlled.  The choice of a factorial analysis has several 

important features.  First, it minimizes the number of experiments needed to be carried out and 

it has a great flexibility.  Second, factorial designs are efficient so instead of conducting a series 

of independent studies we are effectively able to combine these studies into one.  Finally, 

factorial designs are the only effective way to examine interaction effects (Lipson and Sheth, 

1977; Montgomery, 1991).   

 

Two levels of the most influential factors have been selected for the factorial analysis (see 

Figure 4.16).  From the individual parameter sensitivity study in Section 4.3.1, swirl intensity 

has been excluded from the analysis.  The remaining factors are classified in five groups as 

follows: 

 

• A – Primary air mass flow to coal mass flow ratio 
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• B – Excess O2 (%) 

• C – Particle size distribution 

• D – Mass flow imbalances (%) 

• E,F – Four different imbalance mass flow configurations 

 

 
Fig. 4.16  Multi-parameter factorial analysis design 

 

The total number of tests required for a full experiment is 64 simulations (2 x 2 x 2 x 2 x 4  

64).  However, in order to reduce the number of simulations, and thus, the computational cost 

for this task, a fractional factional analysis has been applied.  This requires testing only a 

fraction of the total number of possible test combinations.  This fraction is the representative 

test combination carefully selected from the total test combinations.  Fractional factorial 

experiments cannot produce as much information as the full factorial experiment.  However, 

economy is achieved at the expense of assuming that some of the interactions between factors 

are negligible.  Later, if any of the rejected interactions turns out to be relevant, it is possible to 

include additional scenarios until reaching, if it is necessary, the full factorial experiment.  The 

fractional analysis design in this work is formed by simulating 32 scenarios (24-1 x 4  32) and 

selecting two levels of the most influential factors.  To achieve a maximum resolution design 

we have chosen a generation function I = ABCD (Montgomery, 1991).  Then, we have built the 

basic design corresponding to a configuration 23 for the factors A, B and C, where the labels “-

1” and “+1” indicate the lower and the higher level of the factor considered, respectively.  The 

fourth factor D, is found from the generation function I = ABCD, resulting in D = ABC.  

Therefore, the level of the D factor is the product of the positive and negative signs in the 
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columns A, B and C.  Finally, two additional E and F factors are included whose combinations 

“-1 -1”, “+1 -1”, “-1 +1” and “+1 +1” correspond to the imbalances in configurations 1, 2, 3 and 

4, respectively (X factor).  Table 4.6 summarizes the fractional design of experiments.  

 

 

 
Table 4.6  Fractional factorial analysis design 24-1 x 4  

 

From the interpretation of the identifiers and the level assigned to each factor in Table 4.6, 

Table 4.7 summarizes the conditions for the simulations and carbon in ash value results for each 

scenario (shaded cells). 
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Table 4.7  Conditions for the simulations of the factorial analysis design (MC  Master Case) 

 

 
Fig. 4.17  Simulated % O2 vs. Plant % O2 

 

Validation of the simulations has been performed according to the methodology explained in 

Section 4.2.4.  Once the accuracy of the numerical resolution has been verified we have 

proceeded with its validation. For that purpose, the oxygen values at the exit of the boiler 
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obtained in the simulations are compared against the predetermined values for each case.  

Figure 4.17 shows the results obtained and allow us to accept the suitability of the simulation. 

 

To analyze the influence of the study-factors, we have carried out a variance analysis of the 

results.  An unbiased estimator for the total variance in the data set is the sum of squares (SSi).  

Since we have performed a fractional analysis, the resulting effects obtained from the study are 

the main effect plus a linear combination of the observed interactions related to this effect, 

which is assumed negligible (Table 4.8). 

 

 
Table 4.8  Estimated effects (Real) in a fractional analysis 24-1 

 

One of the main conclusions of the individual parameter sensitivity study was that an excess 

oxygen level was the most influential factor, independent of the other factors.  Carrying out the 

variance analysis for the whole simulated scenarios, this result is confirmed in Table 4.9. 

 

 
Table 4.9  Variance analysis for the whole simulated scenarios 

 
The individual parameter sensitivity study showed that the primary air to coal mass flow ratio 

had less influence on unburned carbon losses than other factors such as particle size or mass 

flow imbalances.  However, Table 4.9 shows a noticeable influence of this factor, nine times 

greater than other factors, which were hidden in the individual analysis.  Moreover, the analysis 

of the interaction effects of this factor, mainly with the oxygen excess level (AB), also suggests 

a greater contribution to unburned carbon formation than other interaction effects.    

 

To analyze the influence of the four mass flow imbalance configurations proposed in the study, 

we have divided the problem into four groups (one for each configuration) performing a 

variance analysis for each one.  Configurations 1 and 2 study a range of conditions that usually 

take place in the regular operation of the plant.  The former is a typical configuration under 



Chapter 4                                                   Sensitivity study of main factors affecting unburned carbon loss 
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
118 

 

nominal load conditions whilst the latter is more typical under partial-load conditions.  

Configurations 3 and 4 study a range of conditions that may take place as a result of fault 

designs or malfunctions of plant equipment.  Below, the four configurations are analyzed: 

 

• Configuration 1: In this configuration, most of the primary mass flow is fed into the boiler 

through the burners in the lower row of the boiler.  Table 4.10 shows the variance analysis 

for this configuration.  The first important conclusion is that the interaction effect of the 

primary air to coal mass flow ratio is almost as relevant as the excess oxygen contribution.   

 

 
Table 4.10  Variance analysis, Configuration 1 

 

Another remarkable result, is that this variance analysis, as compared with the ones from 

other configurations (Tables 4.10 to 4.13), shows a smaller dependence of the unburned 

carbon losses on the oxygen excess level.  The reason for this is that since most of the 

primary mass flow is introduced in the boiler through the lower row burners, the global 

residence time for particles is increased and even at low oxygen excess conditions, particles 

have a longer time to complete combustion.   

 

 
Fig. 4.18  Factorial analysis results, Configuration 1 
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Figure 4.18 summarizes the results obtained in the simulations where it can be seen two 

noticeable points stand out.  Firstly, in this type of configuration, in spite of the fact that the 

excess oxygen level is the most influential factor, varying the other factors it is possible to 

obtain relatively low unburned carbon levels even at low excess oxygen conditions.  This 

behaviour only takes place under this configuration type.  Finally, looking at each oxygen 

level individually, the unburned carbon loss variations respond to variations in the primary 

air to coal mass flow ratio, confirming what was obtained in the variance analysis.  The 

remaining factors hardly have an effect on burnout in the selected study range. 

 

• Configuration 2: In this configuration, most of the primary mass flow is fed into the boiler 

through the burners in the upper row of the boiler.  Table 4.11 shows the variance analysis 

for this configuration.  This time, the oxygen excess level has an outstanding influence on 

burnout over the rest of the study factors.  Interaction effects hardly had an impact and only 

primary air to coal mass flow ratio is slightly higher than the others.   

 

 
Table 4.11  Variance analysis, Configuration 2 

 

 
Fig. 4.19  Factorial analysis results, Configuration 2 
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This configuration type is the most disadvantageous under low excess oxygen conditions.  

Figure 4.19 shows an abrupt change in the carbon in ash values when switching from one 

oxygen level to another.  It is also noticeable that under low excess oxygen conditions, 

unburned carbon losses vary as a function of the primary air to coal mass flow ratio, 

confirming what was shown in the variance analysis.  However, under high excess oxygen 

conditions this relationship disappears and there is not a significant variation in burnout 

with the other factors.   
 

Finally, returning to the discussion about the results of the individual parameter study, in 

which surprisingly we found lower unburned carbon in ash values within configuration 2 

compared to configuration 1.  The factorial study results confirm this under high excess 

oxygen conditions, since particles’ trajectories from the upper row of burners are not 

distorted by the presence of the reversed-flow in the bottom hopper region, they mostly 

move along the flame where the most suitable combustion conditions are to be found.  

Consequently, even though the residence time is shorter in the upper row, most of the 

particles are under favourable combustion conditions and have enough time to complete 

combustion.  Comparing Figures 4.18 and 4.19 this behaviour under high excess oxygen 

levels is shown.  However, under low excess oxygen conditions, we obtain as expected, 

higher carbon in ash values for configuration 2 since lower residence times in the upper row 

of burners together with low oxygen conditions leads to a lower carbon conversion as 

shown in Figures 4.18 and 4.19.   

 

• Configuration 3: This configuration type produces an uneven mass flow distribution 

between the burners of the same row, and at the same time, a global asymmetry in the flow 

within the boiler.  Results from the variance analysis (Table 4.12), shows an outstanding 

influence of excess oxygen over the other factors, comparable to the results obtained for 

configuration 2.  

 

 
Table 4.12  Variance analysis, Configuration 3 

 

The main difference between this configuration as compared with configuration 2, is that 

instead of the primary air to coal mass flow ratio, mass flow imbalances turn into the second 

relevant factor since it noticeably influences the particles’ trajectories.  Figure 4.20 shows this 

behaviour since the carbon in ash variation, in the same excess oxygen level, corresponds to 

variations in the mass flow imbalances.   
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Fig. 4.20  Factorial analysis results, Configuration 3 

 

• Configuration 4: This configuration type produces an uneven mass flow distribution 

between the burners of the same row, but provides for a global symmetry of the flow in the 

boiler.  Results from the variance study show, as compared with configuration 3, lower 

carbon in ash values are obtained from the most symmetric flow in the furnace (Table 4.13).  

Moreover, this configuration type suggests a lower dependence of burnout on excess 

oxygen level.   

 

 
Table 4.13  Variance analysis, Configuration 4 

 

Finally, Figure 4.21 shows that, for the same excess oxygen level, carbon in ash values 

depend on the primary air to coal mass flow ratio, confirming what we obtained in the 

variance analysis.  
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Fig. 4.21  Factorial analysis results Configuration 4 

 

 

4.4 Conclusions 

 
The starting point for the construction of an unburned carbon prediction system is to determine 

which factors are relevant in carbon burnout and to quantify their influence.  We first performed 

a review of combustion related publications, in which reaction stoichiometry and coal grain-size 

distributions were reported as the most influential factors on combustion efficiency.  In spite of 

this, most of these studies were carried out in scale burner-test facilities, in which some 

determining factors such as primary and secondary air mixing, swirling intensity, burner to 

burner flow interactions, reversed-flow regions or mass flow imbalances, were not possible to 

study.  For this reason, in this work, since CFD tools are not limited with respect to these 

aspects, we included all the factors that may have an effect on combustion and studied their 

influence on unburned carbon losses.  To achieve this, we performed a sensitivity study of the 

main factors affecting carbon burnout: excess oxygen, primary air to coal mass flow ratio, 

particle size distribution, secondary air swirl intensity and mass flow imbalances through the 

burners.  The study was divided in two phases.  First, we performed a preliminary sensitivity 

study to analyze individual contributions of each factor keeping the rest constant.  Results 

suggested that the oxygen level is the most relevant factor in unburned carbon formation, 

especially for excess oxygen values under 4 %.  However, the rest of the factors, such as mass 

flow imbalances, particles’ size and primary air to coal mass flow ratio, may become relevant 

for excess oxygen values over 4 %.  Next, a second sensitivity study was performed analyzing 
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the effects of interactions, since in real utility boilers these factors do not take place individually 

and their interaction may have an important influence on the total unburned carbon.  When 

several sources of variation are acting simultaneously on a set of observations, it is particularly 

useful to fall back on variance analysis techniques.  In order to reduce the number of 

simulations needed to complete the full experiment, a fractional factional analysis was applied, 

performing a variance analysis of the simulated values.   Results from this multi-parameter 

sensitivity study confirmed the results from the preliminary study, showing that other factors 

such as primary air to coal mass flow ratio or mass flow imbalances through the burners, or 

their interactions may have a remarkable relevance in coal burnout depending on the boiler 

conditions.  

 

From the results obtained in the sensitivity study, it is possible to establish action lines that 

allow the plant personnel to identify the source of an increase in the carbon in ash level or to 

look for the most suitable conditions to minimize this loss.  Some possible actions and their 

associated costs are summarized in Table 4.14. 

 

Factor Practicability Cost 
Qa/Qc Immediate Primary air forced-draft fans power consumption. 

Erosion of the ducts due to a higher air-coal flow 
velocity. 

%O2 Immediate Forced-draft fans and induced-draft fans power 
consumption. 
Electrostatic precipitator efficiency reduction due to 
shorter ash residence times.  
Higher sensible heat loss, since the mass flow 
increases more than the increase on the product gases 
exit temperature  

dpm Using an adjustable classifier: 
Immediate 
Not using an adjustable classifier: 
Complicated (through  Qa/Qc (AD)) 

Milling power consumption (It is lower than fans 
power consumption) 

%Imbal. 
1 and 2 

Immediate (coal feeders) if there are 
not milling system maintenance 
problems. 

Variations in the heat absorbed and NOx production 

%Imbal. 
3 and 4 

Complicated (ducts redesign) Engineering remodelling and uncertainties on results 

 
Table 4.14  Actions and associated costs for CIA reduction strategies 
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Nomenclature  

 

dpm mean diameter Rosin Rammler distribution (m) 

K  flow axial moment (kg m/s2) 

Lc characteristic length (m) 

M flow angular moment (kg m2/s2) 

n normal unitary vector 

nrr dispersion factor Rosin Rammler distribution 

nsw swirl intensity number 

r radius (m) 

rk grid mean size relation  

SSi sum of squares 

T temperature (K) 

ui velocity i component (m/s) 

Uk axial velocity (m/s) 

Ut tangential velocity (m/s) 

 

∆xki length in the direction xk of the mesh i (cm) 

δI error due to the iterative method 

δM error due to the spatial discretization  

δT error due to the time discretization 

δS modelling error 

δSDP error associated with the experimental data 

δSN numerical resolution error 

δSMA error due to the assumptions and hypothesis in the mathematical models 

 

 

Acronyms 

 

CIA  carbon in ash 

CFD  computational fluid dynamics 

HHV  high heating value 

PDF  probability density function 

RANS  Reynolds averaged Navier Stokes equations 
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 LOCAL COMBUSTION CONDITIONS 

MODEL 
 

 

There exist many approaches, experimental and computational, to develop an unburned carbon 

predictive system.  Experimental approaches are very useful in design studies.  However, for the 

daily monitoring of a real plant, the computational methods offer a flexibility as well as a saving 

of time and money, over current experimental facilities.  Within the computational methods 

regularly used, CFD codes can precisely characterize the processes that take place inside the 

furnace.  Despite this, for the study of unburned coal in utility boilers, these codes have two 

important drawbacks.  Firstly, as it is referred in Chapter 3, for the heterogeneous char particle 

combustion modelling, these codes rely on simple models, that prove to be inadequate for 

obtaining quantitative values of the combustion process.  To solve this difficulty we present a 

methodology in Chapter 6 based on obtaining temperature and oxygen partial pressure profiles 

for a representative number of particles, that are entered in an advanced combustion model 

using a CFD code.  The second disadvantage of CFD codes is their typically high computational 

cost as creating and solving new simulations may take several days, which makes the use of this 

kind of tool in taking in situ real plant decisions impossible.  Thus, in the development of 

predictive systems for combustion, many authors prefer to sacrifice part of the problem 

information using zonal approaches to solve the fluid-dynamics (Fiveland et al., 1992; Severin 

et al., 2005).  However, these zonal models also present serious limitations such as the 

impossibility to correctly characterize many relevant factors that affect the combustion process, 

as it was presented in Chapter 4.  For that reason, in this research work, we decided to keep the 
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use of the CFD code as a thermal and fluid-dynamic characterization tool.  To solve the problem 

of the high computational cost, we propose the utilization of a neural network system that 

generates the oxygen partial pressure, and temperature profiles, and the residence time of 

particles for any operating condition. In this way, a number of CFD simulations, that are 

representative of the factors influencing unburned carbon losses within the plant operating 

condition ranges, are carried out.  These simulations are then used to train the neural network 

system, so that this system is able to reproduce the solutions given by the CFD code.  As in the 

case of the CFD code, the solutions from the neural network system are given in the form of 

oxygen partial pressure and temperature profiles, and particles residence times, to run 

immediately after the advanced combustion model.  The advantage of introducing the neural 

network system in this way, is that it is possible to perform the calculations in a short period of 

time (less than a minute), and therefore, it can be used in the construction of an on-line 

predictive system.  Another advantage is that, if the neural network system is appropriately 

trained, considering the variations and interactions of all parameters affecting unburned carbon 

formation, this system permits to interpolate in the range of variation used during the training 

stage. Thus, a predictive system covering the whole operational range of the plant can be 

obtained.  From now on, the neural network system will be referred to as the local combustion 

conditions model.   

 

For the development of the model, the commercial code Matlab Neural Network Toolbox 4.0 

has been used.  Throughout the chapter, the general characteristics of neural networks and their 

applications are introduced and the development of the local combustion conditions model is 

described: design of the neural network system structure, training of the system from a number 

of CFD simulations of the plant, and finally, its validation.   

 

 

5.1 Neural networks 

 

Neural networks form a set of programming and controlling techniques within the subject of 

Artificial Intelligence, which allows a system to learn; that is, recognize patterns and predict the 

behaviour from a number of training data (Bishop, 1995).  The development of neural networks 

started in the early 40’s, when McCullogh and Pitts devised the “artificial neuron” concept, 

from an electric device with multiple inputs which, after being weighted and processed by a 

non-linear function, returned a true or false response.  In 1958, Rosenblatt was the pioneer in 

defining the concept of neural network by combining the use of several artificial neurons.  This 

primitive network was able to generalize results.  At the same time, other researchers such as 

Widrow and Hoff developed the first training algorithms.  However, the use of neurons with a 
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binary response led to limitations in developing complex neural systems and in the 70’s the 

progress of this technique stalled. Only a decade later, thanks to the contribution of Hopfield 

and the development of computers, was the interest for these algorithms recovered.  The 

incorporation of more structures and the use of algorithms that were permitted to control 

systems with increasing complexity involving multiple inputs and outputs led the resurgence in 

Neural Network techniques.  Nowadays, neural networks are used in many scientific and 

technological fields.  Within the energy and combustion field, these kinds of models are 

becoming more and more popular.  For example, Zhu et al. (1999) make predictions on char 

combustion, Carsky and Kuwornoo (2000) study the pyrolisys of coal, Hao et al. (2001) 

combine neural networks and genetic algorithms to optimize coal combustion reducing NOX 

emissions, or Romeo and Gareta (2006) and Teruel et al. (2006) evaluate the influence of boiler 

conditions in slaging.    

 

The use of neural networks present many advantages over more traditional techniques.  Firstly, 

they use simple mathematical calculations, reducing the computational cost, which allows them 

to be used in an on-line application.  Moreover, these systems are very robust and fault-tolerant; 

that is, if a punctual error occurs in an input, the system does not produce an error in the output.   

 

Neural networks work like “black box” models. They are not governed by physical principles, 

and the relationship between inputs and outputs is established from the variations observed 

during the training stage.  Thus, it is necessary to have a wide input data set available which 

provides, through the training of the network, the knowledge map relating the inputs to the 

corresponding outputs.  In this way, the training of the network lies in continually modifying 

“weight” parameters until the simulated and the real outputs resemble each other.   

 

The structure of the neural network is made up of several layers of neurons: an input layer 

where the inputs are introduced into the system, a set of intermediate or hidden layers where the 

weights and bias (constant parameters) are adjusted, and finally, an output layer where the 

solutions from the network are obtained (Figure 5.1).  Each neuron receives information from a 

number of inputs (pi).  These inputs are then combined using a transfer function (f(wp+b)), 

which returns an input value (n) to the core of the neuron.  This transfer function, which 

depends on the type of neuron, combines the inputs (pi) and the weights (wi) adding an error 

span (b).  Finally, an activation function is applied to the input value of the core (n), returning 

an output from the neuron (a), which is transferred to the next layer or to the output of the 

system depending on the location of the neuron in the network.  There exist several types of 

activation functions (Demuth and Beale, 2002): 
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- Hard-limit transfer function: Limits the output to either 0, if the net input argument n is less 

than 0; or 1, if n is greater than or equal to 0.  Neurons of this type are used in decision 

making systems.   

 

- Linear transfer function: Returns a corrected value for the input.   

 

- Sigmoid transfer function: Transforms values from negative to positive infinity into values 

in the range -1 to 1 (tangential sigmoid), or in the range 0 to 1 (logarithmical sigmoid).  This 

transfer function is commonly used in Feedforward networks.  

 

 
Fig. 5.1 General sketch of a neural network with one hidden layer 

 

The network architecture depends on the type of neurons selected and the connections among 

them.  The choice of the type of neuron to be used will depend on the purpose of the network 

design. 

 

In spite of the countless advantages that this kind of system presents, it also has some 

limitations which must be taken into account to correctly interpret the results (Russell and 

Dobbiens, 1990; Gareta, 2004): 
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- Neural networks do not obey physical principles.  They constitute an alternative to other 

mathematical techniques, such as correlations or statistical methods.  

 

- Neural networks work as “black box” models.  The whole information of the network is 

stored within the network parameters.  Therefore, it is not possible to infer logical 

conclusions based on physical principals just from its structure. 

 

- Achieving a good generalization takes too much time in appropriately selecting the input 

data set, and developing the final design of the network structure. 

 

- Results cannot be extrapolated outside the range of the input variables that were used during 

the training stage. 

 

- Neural networks cannot identify errors when the input information is wrong. 

 

Before starting the set up of the model, it is important to know about the physic fundamentals 

behind the problem, and recover all the information available about it (operation data, design 

data, precedent experiences).  Knowing the physics of the problem helps in identifying what 

parameters take part in it, how they are related each other, and in which proportion they 

contribute to the final result.  These kinds of models, where a background knowledge of the 

problem is understood, are called “grey box” models.  Sometimes, it is also useful to filter the 

input data set and so avoid erroneous or unnecessary data which may disturb and slow down the 

training stage.   

 

Once these considerations are taken into account, the constitution of the neural network model 

is divided into three stages: 

 

- Design of the structure: The suitable type of neural network and the resolution algorithm for 

the problem are selected. 

 

- Training of the neural network: At this stage, a portion of the available data is used to force 

the network to learn how the inputs and outputs are related. 

 

- Validation: At this stage, it is verified that the neural network properly carried out the goal 

intended for it. 
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Among these three stages, an iterative revision process that concludes once the neural network 

obeys the design criteria is established.   

 

 

5.2 Neural networks system structure 

 

The choice of the neural network architecture is one of the most important stages in designing 

the system.  The first step consists of selecting the most suitable type of neural network for the 

problem.  At this point, we chose a Feedforward network type, since, as opposed to other 

designs, it has a great generalization capability and generates reasonable outputs even when the 

inputs have not been explicitly defined during the training stage.  In this type of design, the 

basic structure is made up of an input layer, a hidden layer, which may include several layers 

formed by sigmoid type neurons, and an output layer with linear type neurons.  Furthermore, in 

this type of network the connections among layers are always established in the forward 

direction; that is, there exist no connections among neurons of the same layer or in the backward 

direction.   

 

Figure 5.2 shows a sketch of a Feedforward neuron.  The hidden layer is made up of sigmoid 

type neurons since they allow the simulation of both linear and non linear systems (Eqs. 5.1 and 

5.2).  The output layer is formed by linear type neurons to allow the network to simulate any 

function without discontinuities (Eqs. 5.1 and 5.3). 

 

 

 

 

 

 
Fig. 5.2 Feedforward neuron sketch 
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Once the network type has been defined, the next step in the design process lies in defining the 

outputs and inputs of the network with the number of hidden layers and neurons for each layer 

depending on the linearity between inputs and outputs.   

 

The outputs of our system are the oxygen partial pressure, the temperature and the residence 

time of each particle.  The system can be constituted with different architectures using multi 

input-multi output networks (MIMO) or multi input-single output networks (MISO).  The 

former architecture may save efforts in the design process, since a single network that produces 

several outputs is used.  However, since the weights of the network are the same, the 

convergence of one output will determine the convergence of the others therefore complicating 

the process.  In this way, it is advisable to use MIMO networks when the simulated outputs bear 

a similar relation to the inputs and depend on similar parameters.  In this work, we chose two 

independent neural network systems: a MISO network to generate the particles’ residence time, 

and two-outputs MIMO networks to obtain the oxygen partial pressure and temperature profiles. 

 

The choice of the inputs must contribute to achieve the simplest model possible. For this reason, 

all the irrelevant inputs that do not influence the outputs must be excluded from the analysis 

therefore improving the convergence of the problem.  From the factorial analysis developed in 

Chapter 4, which established the most relevant parameters affecting carbon losses, the inputs for 

both neural networks were selected: 

 

1. Residence time neural network (1 MISO network) 

 

- Load (full or partial load): 1 input 

- Excess O2: 1 input 

- Air to coal mass flow ratio: 1 input 

- Particle diameter: 1 input 

- Uneven mass flow distributions among burners: 4 inputs 

- Burner position (upper or lower row): 1 input 

 

2. Oxygen partial pressure and temperature neural network (4 MIMO networks: Full load/Upper 

row of burners, Full load/Lower row of burners, Partial load/Upper row of burners, Partial load/ 

Lower row of burners): 

 

- Excess O2: 1 input 

- Air to coal mass flow ratio: 1 input 

- Particle diameter: 1 input 
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- Uneven mass flow distributions among burners: 4 inputs 

- Starting feeding position of the particle in the burner: 1 inputs 

- Time: 1 input 

 

As it was previously mentioned, the construction of the network system is carried out through 

an iterative process through the design, training and validation stages.  In this way, the initial 

design of the oxygen partial pressure and temperature neural network could be built using a 

single MIMO network for the whole operational range of the plant.  However, we found large 

differences in the behaviour of the simulated profiles between full and partial load conditions.  

Therefore, we decided to use separate networks for both load conditions. Similarly, in order to 

improve the convergence and accuracy of the results, separate networks for the upper and lower 

row of burners were considered.  As a consequence of these modifications, the final design of 

the oxygen and temperature profiles network was formed by four MIMO networks.  As far as 

the residence time network was concerned, a high fitness allowed only one MISO network to be 

adopted for the whole operational range. 

 

In the same way, following an iterative designing process, we included an additional parameter 

for the starting feeding position of the particle in the burner, in order to improve the quality of 

the results.  The trajectories and the temperature and oxygen profiles of the particles can vary 

considerably depending on their injection location in the boiler.  For example, the particles fed 

close to the axis of the burner are influenced by an internal recirculation, while the particles fed 

at the periphery are strongly influenced by the secondary air flow and an external recirculation 

of the products of combustion (Chapter 1, Figure 1.1).  Since there are 48 particle inlet nodes 

for each burner, it is difficult to achieve a correct generalization of the network for all the 

parameters and conditions used in the study.  To delimit the problem, it was decided to divide 

each burner into six regions, as a function of the radius and the relative position with respect to 

the axis of the burner (Figure 5.3).  In this way, every particle is assigned to one region 

depending on its starting feeding position.  Once this region factor was introduced in the neural 

network system, the improvement in the accuracy of the results was remarkable.  The final 

structure of the neural network system (local combustion conditions model) is summarized in 

Figure 5.4. 
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Fig. 5.3  Details of the six region division of the coal inlet in a burner 

 

 
Fig. 5.4  Local combustion conditions model diagram 

 

Once the output and input layers have been defined, only the hidden layer structure remains.  It 

is this hidden layer which gives the network the capability of reproducing non linear effects.  

Since, in Feedforward neurons the hidden layer is made up of sigmoid functions which by 

themselves have the capability of simulating these non linear effects, it is enough to include one 

single hidden layer and thus reduce the complexity of the network (Gareta, 2004). 
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Next, the number of neurons that will constitute the hidden layer is determined.  Increasing the 

number of neurons is equivalent to increasing the degrees of freedom of the system, which 

means that the network will be able to reproduce more accurately the training data.  However, 

an excessive number of neurons should be avoided, since it will result in an overtraining 

situation. Overtraining takes place when the network memorizes the examples used for the 

training, and generates false predictions when other inputs are used.  On the contrary, reducing 

the number of neurons, increases the network capability to generalize, at the expense of a 

decrease in the accuracy.  It is necessary to balance both situations.  Usually, the number of 

neurons is determined according to previous experiences, and then, from the results, an iterative 

process for the proper selection of the number of neurons is carried out.  In general, it is 

preferable to start with a reduced number of neurons, and then increase this number by one unit 

at a time until the addition of a new neuron does not improve anymore the convergence of the 

problem.   

 

The hidden layer of the local combustion conditions model was constructed as follows: 

 

1. Residence time neural network (NN 1): 20 neurons. 

 

2. Oxygen partial pressure and temperature neural network (NN 2a, NN 2b, NN 2c, NN 2d): 

15 neurons. 

 

 

5.3 Training of the neural networks system 

 

Before starting the training of the neural network, it is interesting to carry out a pre-treatment of 

the input data in order to expedite the learning process.  Usually, any error in the inputs is 

removed from the training set.  Besides, it is necessary to normalize the input and output data, 

for example, in the range -1 to 1.  In this way, the range of values for all the inputs is the same, 

and as a consequence, the training is faster, and accuracy problems in the variables with lower 

values are avoided.   

 

In order to obtain the data used to train the neural network, a new design of experiments based 

on factorial analysis was carried out, in such a way that three levels of the most relevant factors 

affecting carbon losses were included, differentiating between full and partial load conditions 

(Figure 5.5).  With regard to the factorial analysis executed in Chapter 4, the number of levels of 

each parameter has been increased up to three, with the exception of the particle size 

distribution.  In this case, it is enough to use only one particle size distribution, because it 
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already includes different particle sizes, so that the neural network can learn variations with 

regard to this factor.  Specifically, ten particle sizes, as in the CFD simulations, were 

considered. 

 

 
Fig. 5.5  Design of experiments 

 

In order to completely characterize this design, 256 CFD simulations are needed (3 x 3 x 1 x 3 x 

4 x 2  256).  However, as it was done in Chapter 4, to reduce the total number of simulations, 

a fractional factorial analysis has been implemented.  In this way, only a fraction of the total 

number of possible combinations of simulations is performed.  This fraction is chosen in order 

to obtain a representative sample of the results, covering the whole range of the operating 

conditions at the plant.  From that, a three levels fractional factorial analysis 33-1 x 4 has been 

performed, so that 36 simulations for each, partial and full, load conditions must be solved, 

giving a total number of 72 CFD simulations.  In order to construct this design, one component 

of the interaction ABC (I=ABC, AB2C o AB2C2) with two degrees of freedom is selected.  

Then, the complete design 33 is divided into three groups, each one corresponding to a fractional 

design 33-1.  There exist twelve different fractions one third of the design 33 defined by the Eq. 

5.4 (Montgomery, 1991).  

 

)3(mod33221 uxxx =⋅+⋅+ αα        with  u = 0, 1, 2.   (Eq. 5.4) 

 

Where, αi = 1 ó 2 are the exponents of the factors in the definition relation I.  
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Selecting a definition relation of highest resolution I = AB2C2, that is α2 = 2 and α3 = 2, the 

resulting fraction of the design 33-1 is exactly formed by 32 treatment combinations that satisfy 

Eq. 5.5 (Table 5.1, when u = 0). 

 

)3(mod22 321 uxxx =⋅+⋅+   with  u = 0, 1, 2.   (Eq. 5.5) 

 

 

A B C 

0 0 0 

0 1 2 

1 0 1 

2 0 2 

0 2 1 

1 1 0 

1 2 2 

2 1 1 

2 2 0 

 
Table 5.1  One third fraction u = 0 of the design 33 with a definition relation I = AB2C2 

 

Assigning the values 0, 1 and 2 to the low, medium and high levels respectively, the design of 

experiments is generated.  From the interpretation of the identifiers and the levels assigned to 

each factor, Table 5.2 summarizes the conditions for the simulations (shaded cells).  The rest of 

conditions, models and hypothesis, required to complete the simulations, are the same 

conditions as the ones described in Chapter 4. 
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Table 5.2  Design of experiments simulations’ conditions 

 

Just like in previous chapters, once the simulations have been run and the correctness of the 

numerical resolution has been verified, we have proceeded with their validation. For that 

purpose, the oxygen values at the exit of the boiler obtained in the simulations are compared 

against the predetermined values for each case.  Figures 5.6 and 5.7 show the results obtained, 

and allows us to accept the correctness of the simulation. 
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Fig. 5.6  Simulated % O2 vs. Plant % O2. Full load conditions 

 

 
Fig. 5.7  Simulated % O2 vs. Plant % O2. Partial load conditions 

 

For training the networks, the Levenberg-Marquardt algorithm with Bayesian regularization 

implemented in MatLab (trinbr), has been used.  This algorithm uses an approximation 

technique based in Newton’s method (Eq. 5.6).  In this way, the network learns by modifying 

the weights vector of the neurons.   
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Where, wk+1 is the weights and bias vector in the next iteration, wk is the weights and bias vector 

in the current iteration, J is the Jacobian matrix that contains the first derivative of the network 

errors related to the weights and bias terms, Id is the identity matrix, e is the errors vector, and µ 

is a convergence coefficient.  

 

The Levenberg-Marquardt algorithm as compared with other training methods, gives the fastest 

response with a minimum convergence error.   In addition, the Bayesian regularization provides 

the training algorithm with a superior generalization capability.  This technique modifies the 

optimization function, including the quadratic sum of the network parameters (weights and bias) 

into the sum of the quadratic errors.  This way, at the same time as the error is reduced, the 

network parameters are reduced too, so that the network generates softer responses that 

contribute to avoid overtraining situations (Demuth and Beale, 2002).  The stop criterion for the 

training is reached when the quadratic errors and the weights remain relatively constant.  

 

In general, not all the available data are used during the training stage.  The fraction of data used 

for training the network may vary depending on the size of the data set.  Commonly, when there 

exists a huge set of data, as in the case of the temperature and oxygen profiles networks; this set 

is divided in two groups: training and test data.  In addition to this, depending on the validation 

procedure, there can be a third group of data, used in the validation stage.  The training data are 

used to train the network.  At the same time, test data are used to check the fitness of the 

simulated outputs to the real values.  This way, the evolution of the error calculated for the test 

data should be similar to the error obtained for the training data.  In the case where a decrease in 

the training errors does not involve a decrease in the test errors, this is an indication that 

overtraining is taking place.  

 

 

5.4 Validation of the neural networks system 

 

Once the training stage is completed and the weights of the network have been calculated, the 

accuracy of the model should be determined.  The validation process lies in verifying the 

correlation and generalization capabilities of the network.  There exist many validation tests, 

most of them based on graphical comparisons of real and simulated data.  It is also interesting to 

confirm that the outputs generated by the network for a particular input condition make physical 

sense.  Therefore, during the validation process, not only is the correct performance of the 
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network evaluated, but also the quality of the proposed structure and the data are assessed.  In 

this way, depending on the results obtained in the validation, it may be necessary to revise 

previous stages of the model development, modifying the structure of the network or selecting 

more carefully the training data.  This iterative process among the different stages finishes once 

the modelled network carries out properly and accurately the performance expected of it.   

 

Comparing the simulated and real outputs, the error obtained can be classified into three 

categories: 

 

- Overtraining error: This error takes place when the error obtained using the training data is 

much smaller than the one obtained with the validating or test data. This error is due to an 

excessive number of neurons in the hidden layer, which enhances the memorizing capability 

of the network.   

 

- Generalization error: This error takes place when the function reproduced by the network is 

smoothed, thus resulting in a high error with the training and validating data.  This error is 

due to a reduced number of neurons in the hidden layer.    

 

- Data errors: There is also an error or noise associated with the raw data used in the model.  

 

The validating methods widely used in the research community are based on graphical 

techniques.  These kinds of methods vary also depending on the type of output that needs to be 

validated.  As a result, in this work, we have applied two different graphical techniques to 

validate the residence time network and the oxygen and temperature profiles network.  For the 

former, we have used a correlation graph that shows the comparison of the simulated and real 

data (Figure 5.8).  In this way, it is possible to verify the fitness and the range of values where 

the best fit is attained.   

 

Figure 5.8 shows a good fitness for the residence times generated by the neural network over a 

wide range of values (4 s – 25 s), which covers the most probable variation of this parameter.  

Since most of the particles have residence times under 15 seconds, the fitness of the diagram in 

this range is better.  Nevertheless, the generalization over the whole range is adequately correct, 

above all, considering the dispersion on the data due to the particles coming from the lower row 

of burners which may be trapped in a recirculation loop. 
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Fig. 5.8  Correlation graph of simulated and real residence time 

 

With regard to the oxygen and temperature profiles networks validation, the most suitable 

graphical method to validate these is to represent together the real and simulated values as a 

function of time.  Since the neural networks produce individual data for any time considered 

and the final use of the network lie in generating oxygen partial pressure and temperature 

profiles as a function of time for a particular operating condition; it is appropriate to verify if the 

simulated data adequately reproduces the oxygen and temperature profiles obtained by the CFD 

code for a wide range of conditions.  Since there is a large number of profiles for each output 

(72 simulations x 1920 particles = 138240 profiles), the validation is a tedious and difficult task.  

So in order to interpret and compare the results, average temperature and oxygen profiles in five 

sieve fractions (< 30 µm, 30 – 60 µm, 60 – 90 µm, 90 -120 µm, > 120µm) were represented for 

each burner and simulation case considered. In addition to the seventy two CFD simulations 

used for the model development, twenty additional simulations were also considered in the 

validation.  

 

First, it was verified that the outputs generated by the network for a particular set of input 

conditions made physical sense.  Then, a comparison of the averaged profiles simulated by the 

neural network and the ones obtained by the CFD code was performed.  Figures 5.9 and 5.10 

show two examples of the validation process for the averaged profiles.  Typical temperature 

profiles are characterized by a sharp increase in temperature during the first instants until a peak 
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temperature is reached, since most of the combustion takes place near the burners. 

Subsequently, as the particles move away from the flame, the temperature decreases until a 

relative constant value is reached.  In the same way, typical oxygen partial pressure profiles 

show the opposite behaviour.  During the first instants, oxygen is highly consumed in the 

combustion process, and so the profiles decreases until near zero oxygen values.  Then, the 

oxygen concentration increases until a relative constant value is reached.  From these figures, 

the fitness of the averaged profiles given by the neural network system compared to the same 

averaged profiles given by the CFD code demonstrate a remarkable correlation. In the same 

way, similar results were obtained for the rest of cases considered in the validation, thus leading 

us to the conclusion that the neural networks system adequately reproduces the profiles obtained 

by any CFD simulation in the operational conditions range of the study plant. 

The goal of generating these profiles is to use them as inputs in an advanced combustion model 

to determine the combustion efficiency within the furnace. Therefore, before closing this 

chapter, it is worthwhile to look at the time scales of Figures 5.8 and 5.9 to appreciate in detail 

the quality standard of the profiles and their influence on the later combustion calculations.  It is 

only during the first 500 ms, when most of the combustion process takes place, when the neural 

network system is used to generate data every 5 ms; that is, 100 discrete points are obtained.  

From 0.5 seconds residence time onwards the time step has been progressively increased to save 

on computing time, as long as the coal conversion has been completed and the temperature and 

oxygen gradients are reduced. Note if computing processing power is not an issue it is possible 

to keep the time step increment of 5 ms due to the large amount of data used in the training 

stage from the CFD simulations i.e. around 100 million data points.  Together, the high 

resolution detail standard used in the profiles (5 ms in the near burner region) and the high 

accuracy of the fitness of the profiles make the combined CFD codes and neural network 

algorithms a powerful tool for describing and solving the thermal and fluid dynamics behaviour 

much more accurately than a zonal approach.  
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Fig. 5.9  Real (CFD) and Neural Networks (NN) Tª and PiO2 averaged profiles: Case 1, Burner 1, Particle 

size D1 (< 30 µm) 

 

 
Fig. 5.10 Real (CFD) and Neural Networks (NN) Tª and PiO2 averaged profiles: Case 41, Burner 3, 

Particle size D3 (60 – 90 µm) 
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5.5 Conclusions 

 

One of the marked disadvantages in the use of a CFD code in a predictive system is its high 

computational cost.  Consequently, with this kind of tool it is not possible to develop a system 

that works on-line. Furthermore, it is not convenient to ignore the accuracy of CFD codes, 

especially in combustion prediction problems, where a detailed characterization of main 

temperature and oxygen gradients during the first instants of the process is required for an 

accurate description and prediction of the full system.  In the last two decades neural networks 

have been used in many research and technological areas, resolving very different problems 

based on pattern recognition from a previous experimental knowledge of the problem.  

Moreover, neural networks offer multiple advantages as compared to other techniques, since 

they are robust, fault-tolerant, fast, simple and cheap.   

 

Taking advantage of these qualities in this work by developing a neural network system to 

learn, reproduce and interpolate the results (by means of temperature and oxygen partial 

pressure profiles, and particles’ residence times) obtained from a CFD code for any particular 

boiler operating conditions.  To achieve this, we have performed a number of CFD simulations, 

covering the operational range of the study plant, to develop, train and validate a neural network 

system.  As a result of the study, it is concluded that that the neural network system, called the 

local combustion conditions model, accurately reproduces the profiles obtained by the CFD 

simulations.  Moreover, due to the generalization capability of the neural networks, it is possible 

to obtain solutions for any operating conditions as long as they belong to the range used during 

the training stage. In addition the accuracy of the thermal and fluid description obtained is much 

better than the ones obtained by any zonal approach, and all with negligible computing cost. We 

can therefore conclude that the combination of CFD codes and neural networks algorithms is 

the more suitable tool for the development of the combustion predictive system of this thesis 

work. 
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Nomenclature  

 

a activation function 

b bias 

dp particle diameter (m) 

dpm Rosin Rammler distribution mean particle diameter (m) 

e error vector of the neural network 

n transfer function 

nrr Rosin Rammler dispersion factor distribution  

p input of the neural network 

PiO2 oxygen partial pressure (N/m2) 

Qa primary air mass flow (kg/s) 

Qc coal mass flow (kg/s) 

t time (s) 

tres residence time (s) 

Tg bulk gas temperature (K) 

w parameters vector (weights and bias) of the neural network 

x levels of the factorial analysis 

 

αi exponents of the factorial design 

µ convergence coefficient 

 

 

Acronyms 
 

CFD  computational fluid dynamics 

MIMO  multi input multi output 

MISO  multi input single output 

NN  neural network 
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 COMBUSTION MODEL 
 

 

Solving combustion problems for the determination of unburned carbon losses requires dealing 

in detail with the fluid dynamic and thermal behaviour of the problem, as well as with the 

combustion process itself.  It is worthless to precisely calculate the fluid and thermal behaviour 

of the problem by means of CFD codes, if finally, simple combustion models are used.  This is 

in fact the biggest problem within commercial CFD codes where coal combustion models are 

very simple.  In order to obtain a first approach to the solution, to determine general trends, or in 

problems where results are not strongly affected by combustion kinetics, simple models are 

adequate and regularly used (Stopford, 2002).  However, in more specific problems which 

demand a detailed treatment of the combustion process, i.e. an unburned carbon predictive 

system, these models are insufficient.  Thus, it is necessary to have recourse to advanced 

combustion models, as the ones described in Chapter 2 (FLASCHAIN, FG-DVC or CPD for 

devolatilization; CBK or CBK8 for char oxidation).   

 

As was described in Chapter 1, within the computational methods, two main approaches are 

used to solve pulverized coal combustion problems: 

 

- CFD codes: They give a detailed description of the transport phenomena, but use simple 

coal combustion models.  
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- Advanced combustion kinetics models: They precisely describe the combustion process. 

However, the fluid dynamics and thermal behaviour of the problem are generally obtained 

from a zonal approach (Pallarés et al., 2007). 

 

In this work, we have developed a new methodology that takes advantage of both of the 

following approximations: the detailed fluid and thermal description of CFD codes and the 

precise combustion calculations of advanced kinetics models.  To achieve this aim, we have 

considered two possibilities: 

 

1. To fully couple the advanced combustion kinetics model into a CFD code.  

 

2. To use the temperature and oxygen partial pressure profiles for a representative number of 

particles from a CFD code and then introduce them as inputs into an advanced combustion 

kinetics model.   

 

The first possibility was discarded since it was impossible to introduce all the combustion 

equations into a commercial code with licence and copyright.  Following this line, we carried 

out few modifications in the combustion model of the commercial code CFX-4, introducing 

rank dependant correlation for char reactivity, through the activation energy and the pre-

exponential factor (Hurt and Mitchell, 1992) and a sub-model describing ash inhibition effects 

(Hurt and Sun, 1998) (see Chapters 2, 3 and 4).  As a result, we considerably improved 

unburned carbon predictions as compared with the results obtained with the one film model 

implemented in CFX (Figure 6.1) (Pallarés et al., 2005). 

 

However, since these modifications do not take into account the variations in char porous 

structure and reactivity as combustion proceeds, they are only able to predict general trends and 

fail in the prediction of quantitative values (Pallarés et al., 2005, 2007).  Another advantage of 

considering the second alternative is that, this way, it is possible to un-couple the fluid and 

thermal calculations from the combustion model.   Consequently, we would be able to separate 

the variables that exclusively govern the combustion process, i.e. the coal properties and 

therefore, small changes in these variables would not require a recalculation from the CFD 

simulation for the new conditions resulting in a subsequent saving in CPU time.   

 

This de-coupling assumption is accomplished in case that the combustion model used by the 

CFD code to obtain the temperature and oxygen partial pressure profiles, is the same as the one 

used in the post-process.  Otherwise, the variations in the reaction kinetics and in the heat 
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released during the post-process, with respect to the ones calculated by the CFD code to obtain 

the profiles, would modify the temperature and oxygen partial pressure map in the boiler, 

introducing an error in the prediction.  In spite of the fact that in this work both models, CFD 

combustion model (Chapter 3) and advanced combustion model (Chapter 6), are different, this 

error can be considered negligible for several reasons.  Firstly, the differences between models 

are relevant in the local description of the intrinsic and morphological phenomena taking place 

on the particle level, but not enough to significantly alter the temperature and oxygen 

distribution in the furnace.  Furthermore, this error is minimized by exporting from the CFD, the 

profiles corresponding to the Eulerian description of the gas phase (cell values), instead of the 

variables values at the surface of the particles.  As it will be seen in this chapter, it is during the 

post-process when an energy balance in the particle is carried out to determine the temperature 

and oxygen partial pressure at the outer surface of the particle from the bulk gas phase values.  

And finally, the validation carried out in Section 6.3 puts in relevance the goodness of the 

approach that clearly improves the results obtained exclusively with the CFD code.   

 

Finally, and also as a consequence of this de-coupling, it is easier and more intuitive to develop 

a neural network system, as the one described in Chapter 5, that substitutes the CFD 

calculations, generating oxygen partial pressure and temperature profiles.   

 

 
Fig. 6.1  Comparison of results for LOI (%) gathered at the ASM Brescia power station, against the 

calculated values from the CFD code (simple model) and from the CFD code (modified model) 

(Pallarés et al., 2005) 

 

This chapter analyzes the definition of the combustion model.  The description and development 

of the model is focused on the reactions that take place on the particle surface, that is, 

devolatilization and char oxidation.  Firstly, we determine the coal pyrolysis and once this stage 
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is finished, char oxidation is considered.  This assumption is commonly used in coal combustion 

modelling, although there exist some exceptions which take into account a possible overlapping 

of both stages when oxygen succeeds in diffusing into the particle surface area under maximum 

reaction rate conditions (Gurgel et al., 1999).  In this work, devolatilization was modelled using 

a macromolecular network pyrolysis model (FG-DVC), whilst for char oxidation an intrinsic 

formulae based on the carbon burnout kinetic model (CBK8) (Sun and Hurt, 2000) was 

developed and programmed in Fortran.  This model allows the transition to Zone I and includes 

the variation in char porous structure and reactivity as combustion proceeds, mineral matter 

effects and the influence of coal macerals on char reactivity.  

 

Finally, we have carried out the validation of the combustion model.  To achieve this, we have 

considered nine operation scenarios of the study plant (Lamarmora ASM Brescia), and we have 

compared predictions from the burnout model against plant values.  

 

 

6.1 Devolatilization model 

 

In Chapter 2 a review of the more widespread devolatilization models in combustion research 

works was presented.  This time, the first goal is to decide which model is more suitable for our 

system.  On one hand, we have the weight loss models (SFOR, DAEM, 2CSM), regularly used 

in combustion problems.  These models, advantageous due to their simplicity, turn out to be 

inadequate when a more rigorous treatment is required, i.e. to determine quantitatively unburned 

carbon losses.  It is well know that the devolatilization rate and yield increases with temperature 

and heating rate and ultimately determines the porous structure and the number of active sites of 

the char residue and thus its reactivity.  Porosity is particularly important because it controls the 

rates of diffusion of chemical species into and out of the char particle during combustion when 

that takes place under internal diffusion controlled conditions.  Furthermore, under pulverized 

fuel conditions the peak temperature to which the coal is heated reaches 1500 – 2200 K and the 

volatiles’ yield is significantly higher than the volatile matter content determined by the 

standard ASTM test.  This causes a decrease in the char produced whose oxidation provides the 

rate controlling step in coal combustion burnout.  As a result, the devolatilization step is crucial 

in the overall burnout determination.  For this reason, we should fall back on more complex 

models, i.e. network pyrolysis models.  There are a number of such commercial computer 

codes, FG-DVC (Solomon et al., 1988), FLASHCHAIN (Niksa, 1991) and CPD (Fletcher et al., 

1992) that predict the rate of the volatile release and the composition of key species linked to 

the resulting macroporous and microporous structure of the char.  To elucidate with an example 
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of the importance on the choice of the devolatilization model in the unburned carbon 

determination, we are going to suppose that we determine the devolatilization process using 

both, a weight loss model and a network pyrolysis model, obtaining a difference in the volatile 

matter release of only 5 % between models.  This difference would not affect the final solution 

in a heat transfer or deposition study calculation.  However, in a carbon-in-ash study, 

considering for example a coal with a mean ash content of 6 %, this difference would result in a 

variation in the prediction of around 2 %.  This margin may be a critical result, especially taking 

into account that power stations work close to the carbon-in-ash limit that allow them to sell the 

ash to cement factories.   

 

Within the network pyrolysis models, we should decide which one is the most suitable for our 

problem.  With regard to the computing capabilities and the accuracy on modelling the 

processes taking place during the devolatilization stage, the three models are very similar. There 

are a few differences as set out below (Backreedy, 2002):   

 

- All the models give the volatile yield and weight distributions of the gas, tar and char.  

However, only the FG-DVC model gives the functional groups’ compositions of tar and 

char.   

 

- Both FG-DVC and FLASHCHAIN predict weight loss rates for tar, gas and other volatile 

species, while CPD does not.   

 

These characteristics do not clarify which model is more suitable for our problem.  

Consequently, we should study which model determines the most realistic devolatilization 

process, for a wide range of coals, under typical reactor conditions.  Two parameters easily 

measured to characterize devolatilization, are the final volatile yield and the kinetic parameters 

of the process (Ev, Av).  Within Backreedy’s (2002) work, different devolatilization tests with 

DTF and HWM facilities, using typical heating rates in pulverized coal boilers (105 K/s), are 

described, comparing experimental results against predicted values from the three 

macromoleclar network pyrolysis models (FG-DVC, FLASHCHAIN and CPD). 

 

The most remarkable results of Backreedy’s work are summarized below:  

 

1. In general, the three models adequately predict the volatiles yield.  Only in the case where 

char nitrogen yield needs to be determined (in calculating NOx predictions), did the CPD 
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model provide better results, since in this model, the nitrogen yield calculation is directly 

linked to the evolution of the coal chemical structure during pyrolysis.   

   

2. With regard to the kinetic parameters (Ev, Av), FG-DVC and CPD models agree better with 

results obtained with a DTF, while FLASHCHAIN agrees better with the ones from a 

HWM.  This result is explained from the construction of the models itself, since the data 

used for the development of the FG-DVC, CPD and FLASHCHAIN models were 

determined from experiments on a TGA, a FFB and a HWM respectively. 

 

The pyrolysis model gives us the final high temperature volatile yield and composition, and as a 

consequence, the resultant char residue in which the char oxidation model is applied.  From the 

discussion in the first point, any of the models may be suitable for our work.  However, from the 

results in the second point, it seems logical to choose the pyrolysis model that better reproduces 

the real process under typical pulverized fuel combustion conditions.  To this purpose, the FG-

DVC model is suitable in combustion studies developed in DTF and utility boilers (Jones et al., 

1999).  Therefore, because of its applicability to a wide range of coals (subbituminous, 

bituminous and lignites) and heating rates (0.05 to 105 K/s), and its ability to predict the 

variations in species yield with reactor conditions, FG-DVC was used in this work.   

 

 

6.2 Char oxidation model 

 

Just like with the devolatilization models, Chapter 2 presented a review of the more wide spread 

char oxidation models in combustion research works.  Char oxidation is the slowest step in the 

combustion process, and therefore, it finally determines burnout.  For this reason, in this stage it 

is especially important to carry out a description of the process in as much detail as possible.  

This is the weak point of CFD codes which only account for simple global or intrinsic models  

i.e. Field’s (1967) model, Baum and Street’s (1970) model or Smith’s model (1978, 1982).  

These models ignore reactivity and porous structure variations as combustion proceeds.  

Consequently, they adequately predict general trends, but fail when it is necessary to obtain 

quantitative results.   

 

A correct description of char porous structure variations during combustion significantly 

influences the results attained.  For this reason it is preferable to use intrinsic models instead of 

global models when attempting rigorous combustion calculations.  In the same way, these 

intrinsic models are divided into macroscopic or microscopic porous models, depending on the 
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level of detail used for the description of the diffusion process through the porous structure.  

The former models use an effective diffusion coefficient for a characteristic particle mean pore 

size while the latter use statistical distributions to characterize the different pore sizes in the 

particle and the diffusion process through them.  Since the contribution of the smallest pores 

(micropores and mesopores) is negligible when compared with the paths provided by the larger 

pores (Sun and Hurt, 2000), a macroscopic characterization of the porous structure provided 

more than adequate accuracy for this work.   

 

Another determining factor governing coal combustion, and especially for the unburned carbon 

determination in utility boilers, is the change in char reactivity during the combustion process.  

This behaviour is more relevant in the late stages of combustion, when char reactivity decreases, 

promoting a transition from Zone II to Zone I (Abd El-Samed, 1990; Hurt et al., 1993, 1999; 

Essenhigh, 1999).  This behaviour is known as thermal annealing or deactivation of the char.  

Not including this effect in coal combustion calculations explains why many combustion 

models correctly determine burnout in DTF or burner facilities where char conversion hardly 

exceeds 70 %, and why they fail to predict burnout in utility boilers where char conversion 

easily exceeds 90 % (Hurt et al., 1998). 

 

Another relevant factor in the char oxidation process, and therefore indicating a need to be 

included in the model, is the influence of the mineral matter content (Hampartsoumian et al., 

1989; Unsworth et al., 1991).  At low oxidation temperatures (< 600 ºC), mineral matter may 

have a catalytic effect on char reactivity.  However, at higher temperatures (> 600 ºC) there is 

no evidence of this catalytic effect, and on the contrary, the presence of an ash film layer 

covering the particle surface area obstructs the diffusion of the oxidant to the actives sites (Chan 

et al., 1999).  Since catalytic effects take place at temperatures less typical of pulverized coal 

combustion in utility boilers (> 900 ºC) and the mechanisms that cause this are not clear 

(Backreedy, 2002), in this work we have only considered the ash inhibition effect which is 

especially relevant by the end of combustion when the ash film layer usually covers the whole 

surface area of the particle. 

 

Finally, another important factor governing char reactivity is the presence of various coal 

maceral types (Unsworth et al., 1991).  Generally, reactivity is expressed as a function of coal 

elemental analysis.  However, different studies (Hampartsoumian et al., 1989; Unsworth et al., 

1991; Cloke et al., 2003) have shown that by developing expressions for reactivity as a function 

of coal petrographic characteristics, considerable improvements to burnout predictions due to 

the influence of macerals on char reactivity are realised. 
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Taking into account all these factors, in this work we have developed and programmed (Fortran) 

an intrinsic combustion model which, based on the CBK8 model (Sun and Hurt, 2000), uses 

several subroutines to include all the effects described in the previous paragraphs: 

 

• Thermal annealing 

• Particle porous structure evolution 

• Ash inhibition effects on oxidant diffusion 

• Coal macerals effects on char reactivity 

 

The model calculates, for every time step considered, the carbon mass that has reacted.  Eq. 6.1 

shows how the carbon content of a particle at a defined time is calculated from the carbon 

content of the particle in the previous instant, minus the carbon mass that has reacted according 

to a reaction rate qc, during the time interval comprising both instants considered.  

 

dtdqtmttm pccc ⋅⋅⋅−=+ )()()( 2πδ       (Eq. 6.1) 

 

As it will be seen through the model description, there exist large gradients of the variables 

involved in the combustion process, so that the time step dt should be chosen small enough to 

capture all these variations in order to correctly predict burnout and also to ensure the 

convergence of the model.    

 

To start with the description of the model, the inputs of the program are set below: 

 

- Coal properties: Proximate analysis, elemental analysis, petrographic analysis, initials 

carbon (ρc) and ash (ρat) densities, specific heats (Cpc, Cpa), ash thermal conductivity (λat), 

etc.   

 

- Model constants: Swelling factor (Swell), critical ash film porosity (θtaf), minimum ash film 

thickness (δm), pores tortuosity (τ), reaction order (n), activation energy (Ee), parameters of 

the activation energies distribution of the char deactivation process (Ed, Ad, σlnEd), 

parameters of the  CO/CO2 formation relation (Ec, Ac), etc. 

 

- Particle profiles data (obtained from the CFD code): Initial particle mass (mp0), residence 

time (tres), and temperatures (Tg) and oxygen partial pressures (Pg) in the cells in which the 

particles go through.   
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- Result from the devolatization stage: High temperature volatiles yield (HTVM) and 

resultant char residue.   

 

- Boiler operation conditions: Boiler pressure (Pboiler), burners arrangement, uneven mass 

flow distributions through the burners, particle size distribution (dpm, nrr), furnace wall 

temperatures (Tw), etc. 

 

The overall reaction rate qc is determined by the oxygen transport to the particle surface and the 

reactivity of the char, which depends on the temperature and composition of the gaseous 

environment and the size, porosity and temperature of the particle.  As it was described in 

Chapter 2, qc is expressed as a function of the carbon mass in the particle mc, an effectiveness 

factor η, an intrinsic char reactivity Ri, the temperature of the particle Tp, the oxygen partial 

pressure at the surface of the particle Ps and the reaction order n (Eq. 6.2).  Additionally, a 

maceral correction factor fmac, has been included to account for the influence of coal macerals on 

char reactivity.  
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To calculate the reaction rate qc along the residence time of a particle we should determine, in 

every time step dt considered, all the terms on the right side of Eq. 6.2. 

 

The char intrinsic reactivity Ri, is expressed as an Arrhenius type expression of kinetic 

parameters Ai and Ee (Eq. 6.3). 

 

)exp( peii TREAR ⋅−⋅=        (Eq. 6.3) 

 

In the literature different values for the activation energy Ee in the range 105 – 200 kJ/mol, are 

reported (Smith, 1982; Mitchell and McLean, 1982; Charpenay et al., 1982; Sun and Hurt, 

2000; Backreedy et al., 1999, 2002, 2006; etc.).  Each author determines a value or a range of 

values (for different coals) of Ee, so that according to the coal combustion model used in the 

calculations, the combustion process is correctly described.  However, as will be explained later, 

the combustion model developed in this work allows us to use different thermal annealing 

subroutines, so that it is not possible to use a single value of Ee for all of them.  For this reason, 

depending on the sub-model used in the calculations and also on coal properties, a range of 
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values for Ee is specifically defined.  We will take up this discussion again, once the thermal 

annealing sub-models have been described.   

 

Returning to Eq. 6.3, it is obvious that if kinetic parameters (Ee, Ai) are defined with constant 

values, the reactivity over the whole process will remain invariable.  This way, the decrease in 

the char reactivity is neglected and as a result burnout may be over-predicted.  For this reason, 

we have introduced in the model, through the pre-exponential factor, a deactivation function to 

account for char reactivity loss.  Moreover, in this work we have programmed three different 

char deactivation sub-models (Hurt et al., 1998; Van der Lans et al., 1998; and Backreedy et al., 

2006), making it possible to choose the appropriate model depending on the type of problem, 

thus providing a more flexible use of the combustion code.  For example, the Hurt et al. (1998) 

thermal deactivation sub-model adequately reproduces char reactivity loss in DTF combustion 

tests, as it is shown in Figure 2.8 (Chapter 2).  However, since there may exist a significant 

difference in the heating rate and furnace environmental conditions in a full scale boiler, this 

sub-model tends to overvalue the reactivity loss.  For this reason, we have also included two 

additional models that mitigate this effect and can accurately reproduce power plant data.  We 

will take up this discussion again during the validation of the model.  Next, the formulation of 

the three thermal annealing sub-models is described.   

 

The thermal annealing sub-model described by Hurt et al. (1998) is developed from Suuberg’s 

(1991) work.  In this model a deactivation function fE(Ed(t)) is used to account for the 

decreasing of active sites (local emplacements where oxidation reactions may take place) in the 

char matrix. 

 

∫
∞

⋅⋅=⋅=
0

00 ))(( ddEi dEtEfSkSkA       (Eq. 6.4) 

 

Where, the product kS represents a specific char intrinsic reactivity, and k0S0 the initial specific 

char intrinsic reactivity, defined as a function of the coal rank according to Eq. 6.5 (Sun et al., 

2000). 

 

CSkLog %0764.097,14)( 0010 ⋅−=⋅       (Eq. 6.5) 

 

The time variation of the distribution function fE(Ed(t)) is assumed to obey a first-order thermal 

process according to Eq. 6.6. 

 



Chapter 6   Combustion model    
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
157 

 

)
)(

exp())((
))((

p

d
ddE

dE

TR
tE

AtEf
t

tEf
⋅

−⋅−=
δ

δ
     (Eq. 6.6) 

 

Introducing Eq. 6.6 into Eq. 6.4, and then, discretizating the integral in Ed, for a number (30) of 

equivalent intervals (Hurt et al., 1998), the general expression of the thermal annealing process 

is expressed according to Eq. 6.7.  Then, this equation is introduced in the main model through 

Eq. 6.3. 

 

∑
=

∆+ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⋅
−

⋅⋅∆−⋅⋅⋅=⋅=
30

1
)(00)( expexp

i p

di
dtEitti TR

E
AtfSkSkA  (Eq. 6.7) 

 

Where, fEi (t) is the value of the distribution function for an activation energy Edi at the initial 

instant t of the time interval considered.  At time zero, the distribution function fEi (t=0) is 

assumed to be a normalized lognormal distribution in Edi (Eq. 6.8) with parameters Edm =16.44 

kcal/mol, σlnEd=0.46 ln kcal/mol and Ad  =8.863E+7 s-1 (Sun and Hurt, 2000) (Figure 6.2). 
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Fig. 6.2  Normalized lognormal distribution function in Ed of the thermal deactivation process at time zero 
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To discretize the distribution function in thirty intervals, the initial values for the activation 

energies Edi have been chosen in order that the probability of finding active sites was greater 

than 0.0001 with activation energies Edi at time zero, (Table 6.1).  

 
 
Ed1=5   
Ed2=6 
Ed3=8   
Ed4=10   
Ed5=12 
Ed6=14   
Ed7=16   
Ed8=18  
Ed9=20   
Ed10=22 
Ed11=24  
Ed12=26  
Ed13=28 
Ed14=30  
Ed15=32  

fE1=0.01 
fE2=0.02144 
fE3=0.0636 
fE4=0.0971 
fE5=0.1128 
fE6=0.1197 
fE7=0.10256 
fE8=0.0938 
fE9=0.0802 
fE10=0.0654 
fE11=0.0513 
fE12=0.0413 
fE13=0.0308 
fE14=0.02551 
fE15=0.01827 

Ed16=34  
Ed17=36  
Ed18=38  
Ed19=40  
Ed20=42  
Ed21=44  
Ed22=46  
Ed23=48  
Ed24=50  
Ed25=52  
Ed26=54  
Ed27=56  
Ed28=58  
Ed29=60  
Ed30=61 

fE16=0.01502 
fE17=0.0113 
fE18=0.00915 
fE19=0.00675 
fE20=0.005 
fE21=0.004 
fE22=0.003 
fE23=0.003 
fE24=0.002 
fE25=0.002 
fE26=0.001 
fE27=0.001 
fE28=0.001 
fE29=0.001 
fE30=0.001

 
Table 6.1  Discretization in thirty intervals, of the activation energies Edi for the thermal annealing 

process and the corresponding values of the distribution function fEi(Ed ) at time zero  

 

At any other instant, the distribution function is calculated from the values obtained in the 

precedent instant according to Eq. 6.9. 
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Other authors have preferred to develop alternative expressions for the char reactivity 

deactivation, i.e. Van der Lans et al. (1998) or Backreedy et al. (2006) who expressed the 

reactivity loss by thermal annealing as a function of char conversion mc/mc0 (Eqs. 6.10 and 6.11-

6.13 respectively). 
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9.0=annf  if 70 % < %C < 90%, 20 µm < dp < 100 µm, Tp > 1400 ºC (Eq. 6.13) 

 

Taking up again the discussion posed in Eq. 6.3 about the choice of the activation energy Ee; 

from the validation of the model, and using the three thermal deactivation sub-models, the 

values for the coals used in this study are presented:  

 

- Ee = 162 ± 10 kJ/mol in case of using Van der Lans et al. (1998) or Backreedy et al. (2006) 

thermal annealing sub-model. 

 

- Ee = 140 ± 10 kJ/mol in case of using Hurt et al. (1998) thermal annealing sub-model. 

 

The efficiency of the diffusion process through the porous structure of the char is expressed by 

means of an effectiveness factor η.  This factor is obtained from the integration of the mass 

balance of the reactive for a porous spherical particle under catalytic reaction, assuming a first 

order reaction (Eq. 6.14). 
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Where, φ is the Thiele modulus that combines the reaction and diffusion phenomena as is shown 

in Eq. 6.15. 
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This way, an effectiveness factor close to unity indicates that the reaction is within Zone I where 

the observed reaction rate is approximately equal to the intrinsic reaction rate.  Effectiveness 

factors much less than unity indicate that the reaction is within Zone II where the observed 

reaction rate is much less than the intrinsic reaction rate, due to a decrease in the diffusion rate 

(Sun and Hurt, 2000). 

 

To account for the porous nature of the char, and the fact that the oxidant penetrates this 

structure and reacts on the internal surface area, the effective diffusivity Deff to the interior of the 

particle is modelled as a function of the particle porosity θ and a geometric pore factor τ/f = 6, 

according to a macroscopic pore model given by Eq. 6.16.  
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τ
θ fDD Oeff
⋅

⋅= 2         (Eq. 6.16) 

 

Where, the effective diffusivity is expressed as a function of the bulk diffusivity (Eq. 6.17) 

assuming that the larger pores mainly provide the paths to the diffusion of the oxidant, while 

micropores and mesopores (< 1 μm), in which a Knudssen diffusion type is expected, hardly 

contribute to the oxygen transport (Gale et al., 1996; Sun and Hurt, 2000). 

 

boiler

m
O P

T
D

67.1

2 543.1 ⋅=         (Eq. 6.17) 

 

The transition from Zone II to Zone I in the late stages of combustion, is the result of the 

extinction phenomena.  To explain this behaviour, a different mechanism has been considered 

that includes reactivity loss by thermal annealing and ash inhibition effects.  The thermal 

annealing process has already been explained in the previous paragraphs, so next, the ash film 

layer effect term within the model is discussed.  To aid the explanation, we will consider an 

alternative expression to Eq. 6.2, in which the reaction rate qc is expressed as a function of a 

diffusion kinetic constant kd according to Eq. 6.18. 

 

)( sgdc PPkq −=         (Eq. 6.18) 

 

If only the diffusion of the oxidant through the boundary layer that surrounds the char particle is 

considered, then the diffusion kinetic constant kd can be expressed, for example, according to 

Field’s (1967) or Baum and Street’s (1970) expressions (Eqs. 6.19 and 6.20 respectively) 
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However, if it is desirable to include the effect of the ash, this diffusion kinetic constant kd 

should account for an additional resistance due to the ash film layer covering the particle surface 

(Hurt et al., 1998) (Eq. 6.21). 
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Where, Sh is the Sherwood dimensionless number (for characteristic pulverized coal sizes, Sh = 

2), θaf is the ash film porosity, δ is the ash film thickness and dc is the char particle diameter 

excluding the ash film layer (Eq. 6.22).  

 

δ⋅+= 2cp dd         (Eq. 6.22) 

 

In the same way as other determining factors considered in the model, the description of the ash 

film layer (dp, dc, δ, θaf, ρc, ρa) does not remain invariable during the combustion process.  In the 

beginning, when carbon conversion is small, the ash film layer is dispersed in the form of grains 

over the particle surface, filling a minimum thickness δm.  As the conversion progresses, more 

grains are added, decreasing the porosity of the film.  After a certain time, the grains start to 

agglomerate, increasing the ash film thickness to within a constant porosity value called the 

critical ash film porosity.  Consequently, we may assume two different states: first, a state in 

which a minimum ash film thickness remains constant, while the ash film porosity decreases so 

long as more grains are added to the ash layer; and second, a state in which a critical porosity is 

reached remaining constant onwards, while the ash film thickness increases.  To define the 

transition through these states, Hurt et al. (1998) propose to calculate, at every time step 

considered, the ash film thickness corresponding to the critical porosity (θaf =θtaf = 0.16 - 0.25) 

from Eqs. 6.22 and 6.23. 

 

3
1

0 ))1((
))1((

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−⋅−⋅

−⋅−⋅
⋅=

tafatca

tafata
pc X

X
dd

θρρ
θρρ

     (Eq. 6.23) 

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅
−⋅−

⋅
−⋅⋅−⋅

−=
3

3
00

)
2

1(

)
2

1(
1

p

m
atat

p

m
aa

af

d

d
XX

δ
ρρ

δ
ρρ

θ      (Eq. 6.24) 

 

If the calculated ash film thickness is lower than the minimum ash film thickness considered (5 

µm), which corresponds with the mean grain size, then it is assumed that δ  = δm, and both the 

ash film porosity θaf and the particle diameter dp, are recalculated according to Eqs. 6.22 and 

6.24.  On the other hand, if the calculated ash film thickness is larger than the minimum ash film 
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thickness, then the initial assumption that considers the critical ash film porosity has been 

reached, θaf =θtaf is maintained and it is not necessary to recalculate dp, dc and δ.  

 

Again, to allow a greater flexibility to the model, the user can choose to include this ash 

inhibition effect through Eq. 6.21, or on the contrary, to obviate it using the default expression 

given in Eq. 6.20.  

 

For the moment, most of the expressions presented depend in some way on char properties (dp, 

dc, δ, θ, ρc, ρa, Xa.).  Since combustion is a dynamic process, it is also necessary to calculate the 

density and particle diameter variations at every time step along the whole combustion process.  

Assuming a decrease in density and particle diameter with burnout, Hurt et al. (1998) postulate 

a decrease in the particle core density according to Eq. 6.25.   
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)1( afata θρρ −⋅=         (Eq. 6.26) 

 

From the carbon core density ρc (corresponding to a core diameter dc) and the ash film density 

(calculated according to Eq. 6.26 as a function of the ash density ρat = 2.65 g/cm3 and the ash 

film porosity θaf), the overall particle density is obtained (Eq. 6.27). 
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Finally, the char particle diameter is calculated from geometric considerations according to Eq. 

6.28. 
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Additionally, swelling of the particle during devolatilization is accounted for by including a 

swelling factor that modifies the initial diameter and then the density of the char particle.  This 

swelling factor is an input of the model and should be determined experimentally for each coal.   
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Returning to Eq. 6.2, there is still the missing definition of the maceral factor fmac, in which the 

influence of coal macerals on char reactivity is introduced.  According to Hampartsoumian et al. 

(1989), the introduction of this term is especially important with coals coming from the southern 

hemisphere, since generally these coals have an inertinite content higher than those in the 

northern hemisphere and inertinite macerals take more time to complete combustion than 

vitrinite macerals (Unsworth et al., 1991).  This factor is computed in the model from the work 

of Hampartsoumian et al. (1989), in which fmac is described as a function of the vitrinite, 

pseudovitrinite, inertinite and fussinite content of the parent coal (Eq. 6.29). 

 

( )[ ] ( )[ ]LRRPSMmac InInVitVitf ⋅+⋅−⋅+⋅= 6.16.083.04.1    (Eq. 6.29) 

 

Since, power stations do not generally perform this petrographic analysis, it may be useful to 

include in the model an abbreviated expression for Eq. 6.29 where the maceral factor fmac is 

expressed exclusively as a function of the vitrinite and inertinite content (Eq. 6.30) (Backreedy 

et al., 2006).  

 

InVitfmac ⋅−⋅= 6.068.1        (Eq. 6.30) 

 

One important consideration that has not yet been discussed, and represents possibly the most 

controversial discussion in the scientific community as was exposed in Chapter 2, is the 

magnitude of reaction order with respect to O2.  In this work, since the model is based on the 

CBK8 model (Sun and Hurt, 2000), we have adopted the same reaction order n = 0.5.   

 

Once the main characteristics of the model have been defined, the resolution method is 

explained.  Eq. 6.2 is defined as a function of the oxygen partial pressure Ps at the particle 

surface and the particle temperature Tp (assuming a constant temperature in the whole particle).  

However, the oxygen partial pressure and temperature profiles obtained from the solutions of 

the CFD code are defined at every cell in which a particle passes through (Tg , Pg), that is in the 

nearby field of the particle but not at its surface (Tp ,Ps).  To solve this situation we have made 

use of the iterative method scheme in Figure 6.3.  From Eqs. 6.2 and 6.18, and by guessing a 

value for the oxygen partial pressure at the particle surface PS0, a Newton-Raphson method to 

determine the oxygen partial pressure at the particle surface PS, is applied in an inner iteration 

loop, comparing the reaction rates qc until the error is driven to zero (Error Ps < 0.001 atm).  In 

the same way, from Eq. 6.2 considering the energy balance in the particle (Eq. 6.31) and 

guessing a value for the particle temperature Tp0, a Newton-Raphson method to determine the 
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particle temperature Tp, is applied in an outer iteration loop, which includes the previous inner 

loop, comparing the reaction rates qc until the error is driven to zero (Error Tp < 0.1 K). 

 

 
Fig. 6.3  Numerical resolution method scheme for Tp and Ps determination   

 

In general, the convergence of the method is quickly achieved using as estimates for Tp0 and Ps0, 

the corresponding gas stream values (Tg and Pg) and evaluating all the properties in the middle 

of the time interval (t + δt/2).  However, during the first milliseconds of the combustion process, 

there exist large temperature and oxygen partial pressure gradients.  Consequently, to ensure the 

convergence of the particle heat balance (Eq. 6.31), a grid refinement in the CFD model was 

carried out in the near burner area to obtain data for key variables approximately every 5 ms.  

Additionally, in cases where the temperature change was greater than 100 K, the char 

combustion routine subdivides the calculations into smaller time intervals by linear interpolation 

of the bulk variables.  Figure 6.4 shows an example of the difference in the evaluation of the 

reaction rate qc within a time interval in which there exists a large temperature gradient (400 to 

2000 K).  Considering just one time interval, since the reaction rate is computed from the values 

of the bulk variables in the middle of the time interval, qc is given by the dashed-line of the 

checked area in Figure 6.4.  In contrast, subdividing the calculation into smaller time intervals, 

the computed qc is given by the dotted-line of the plain area in Figure 6.4 and shows a more 

realistic description of the reaction rate.   
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Fig. 6.4  Comparison of the reaction rate qc within a time interval in which there exists a large 

temperature gradient: Considering one time interval (dashed-line in the checked area) and 

subdividing the calculation into smaller time intervals (dotted-line in the plain area) 

 

In the iterative resolution of the particle temperature and oxygen partial pressure, an energy 

balance in the particle is carried out according to Eq. 6.31. 

 

radconvfc
p

pp qqhq
dt

dT
cm −−∆⋅=⋅⋅ )(      (Eq. 6.31) 

 

The temperature variation in the particle is due to the contribution of three sources: reaction, 

convection and radiation.  Below, all these terms are briefly explained.  

 

Firstly, since we are considering small enough time steps ∆t, we can linearize the variation of 

temperature with time in the interval (Eq. 6.32). 

 

t
TT
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dT pantpp

∆

−
≈         (Eq. 6.32) 

 

The convective term is calculated through a global heat transfer coefficient U defined as a 

function of the dimensions of the particle, the ash film layer and two convective heat transfer 

coefficients (Eqs. 6.33 – 6.37) (Sun and Hurt, 2000). 
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)( gpconv TTUq −⋅=         (Eq. 6.33) 
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atafgafa λθλθλ ⋅−+⋅= )1(        (Eq. 6.37) 

 

The radiative term is calculated according to Eq. 6.38, in which Tw is the furnace wall 

temperature. 

 

)( 44
wpBrad TTq −⋅⋅= εσ        (Eq. 6.38) 

 

Finally, the term ∆hf represents the combustion enthalpy of the oxidation reaction to CO/CO2 

(Eq. 6.39).  The heat released in the reaction to CO2 is three and half times higher than in the 

reaction to CO, so that the particle temperature strongly depends on the formation relation of  

CO/CO2 (Longwell et al., 1993). 

 

)1( 222 COCOCOCOf fhfhh −⋅∆+⋅∆=∆      (Eq. 6.39) 

 

Where, fCO  is the carbon fraction that reacts to give CO2, calculated as a function of the particle 

temperature according to Eqs. 6.40 and 6.41. 
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)/exp(2 pcc TREACO
CO ⋅−⋅=       (Eq. 6.41) 

 

To close this section, Figure 6.5 summarizes the resolution scheme of the char oxidation sub-

model, in order to determine the unburned carbon losses.    

 

 
Fig. 6.5  Resolution method scheme of the char oxidation sub-model 

 

 

6.3 Validation of the advanced combustion model 

 

To investigate the burnout prediction capability of the model a total of nine scenarios, presented 

in Table 2 were tested with standard plant instrumentation measurements gathered at the 

Lamarmora (ASM Brescia) power station in the year 2005.  Study cases were selected covering 
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the regular range of variation in mean oxygen (vol. %) and flue gases (2.5 – 4 %) under full load 

operating conditions.  Differences among scenarios are the result of the normal operation of the 

plant where small variations in operating conditions and mass flow imbalances between mills 

are encountered.  The mills’ classifiers were adjusted to give a particle size distribution of mean 

diameter of 55 µm.  Table 6.3 summarizes the operation conditions during the tests.   

 

In the study, two coals from Central America commonly used in the plant over the last five 

years (‘Guasare’ from Venezuela and ‘Carboandes’ from Colombia) and a coal from Russia, 

recently used to evaluate its influence on the combustion efficiency, were burned separately.  

Table 6.2 shows the proximate, ultimate and petrographic (when available) analysis for these 

three coals.  Since no petrographic analysis was available, inertinite and vitrinite values for 

Guasare coal were taken from Barranco et al. (2003).  

 

 
 Table 6.2   Proximate, ultimate and petrographic analysis for the three study coals 

        (fixed carbon calculated by difference)
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Table 6.3  Nominal-load operating scenarios from the case study power plant 

              * Rosin Rammler distribution (dpm = 55 µm, nrr = 1.02) 
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The CFD model was applied to these nine cases.  Solutions in the form of the gas temperature 

and the oxygen partial pressure profiles that every representative coal particle is subject to was 

obtained, and subsequently used as an input in the coal combustion kinetic model.  Fig. 6.6 

shows an example of the variation in these temperature and oxygen partial pressure profiles 

among particles as a result of the complex fluid dynamics involved in the problem. This 

example gives an idea of the importance of carrying out a detailed description of the thermal 

and fluid dynamic behaviour.  This approach (CFD + advanced combustion model) permits the 

model to be sensitive to the changes that arise from slight changes in operating conditions and 

uneven flow variations which strongly affects the overall burnout prediction.  This fact 

represents an advantage over other zonal-based predictive models which commonly consider a 

reduced number of zones and particle trajectories.   

 
Fig. 6.6   Oxygen partial pressure and temperature CFD profiles for a number of representative 

particles of the same size (103 µm) fed from different locations in the same burner (Burner 1) 

under full load conditions (Case 1) 

 

Once the simulations have been run and the accuracy of the numerical resolution has been 

verified according to the methodology described in Chapters 3 and 4 so as to validate the CFD 

model, predictions on the oxygen content in flue gases were compared with available plant 

measurements for the scenarios tested, which showed good agreement as shown in Table 6.4.  
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This table, along with the predictions of burnout hereinafter discussed, permit to conclude that 

the simulation of coal combustion was reasonable for the variety of coal feedstock tested. 

 

 
Table 6.4   Experimental values compared with numerical predictions for mean oxygen content (vol. %) 

in the flue gases for the nine simulated scenarios 

 

Then, to determine char and volatile yields, FG-DVC calculations were performed under 

conditions relevant to pulverised coal combustion, namely a heating rate of 105 K/s and final 

temperature of 1750 K for 150 ms have been considered to be appropriate conditions.  Tables 

6.5 and 6.6 show the predicted yield and composition for char, tar, gas and paraffins and olefins 

during the pyrolysis.  

 

 
Table 6.5   Predicted char, tar, gas and (paraffins and olefins) yields (%) by  FG-DVC for the study coals 

(105 K/s – 1750 K – 150 ms) 

 

 
Table 6.6   Predicted char, tar, gas and (paraffins and olefins) elemental composition (%) by  FG-DVC 

for the study coals (105 K/s – 1750 K – 150 ms) 
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Fig. 6.7   FG-DVC (105 K/s – 1750 K – 150 ms).  (a) Total rate vs. Time (b) Weight loss vs. Time, for 

                           Guasare,        Carboandes  and       Russian coals 
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Fig. 6.8   FG-DVC (105 K/s – 1750 K – 150 ms).  (a) Total rate vs. Temperature (b) Weight loss vs. 

Temperature, for         Guasare,        Carboandes  and       Russian coals 
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Results presented in Figures 6.7 and 6.8 show a different behaviour of the Russian coal, which 

gives the lowest volatile rate and yield at high temperature.  This behaviour can be explained in 

terms of the cross-linking and bridge breaking balance competition on the depolymerization of 

the macromolecular network. In general for lower rank coals cross-linking rates occurs in 

advance of the bridge breaking, increasing the coordination number of the macromolecular 

network and thus reducing the yield.   

 

Finally, the char burnout sub-model presented in Section 6.2 was run for each scenario, using as 

inputs: 

 

- Particle size distribution (Table 6.3): dpm = 55, nrr = 1.02 (Rosin Ramler) 

- Coal properties (Table 6.2) 

- Volatile and char yield (Table 6.6) 

- Oxygen partial pressure and temperature profiles (CFD simulations) 

- Model parameters (Section 6.2): 

o Ee = 162 ± 10 kJ/mol, n = 0.5 

o Ec = 9 kcal/mol, Ac =  200 

o δm = 5 µm, θtaf = 0.21 

o Swell = 1.14 

- Sub-models (Section 6.2):   

o Thermal annealing: Van der Lans et al. (1998) 

o Ash inhibition: On  

o Maceral correction: Abbreviated (Guasare), Backreedy et al. (2006) 

 

Results on the overall burnout for the model are compared against the initial CFD predictions 

and plant data measurement in Fig. 6.9.  CFD predictions clearly under-predict the overall 

burnout as a result of using a simple combustion model that does not account for reactivity loss.  

On the contrary, the results from the model show that general trends and quantitative values on 

burnout are accurately predicted.  Small discrepancies can be found for Carboandes coal, in 

cases 5 and 6, where the model slightly differs from the overall burnout value obtained in the 

plant.  This result can be partially explained by the fact that no petrographic information was 

available for this coal, and thus no maceral correction was applied in the model, besides the 

intrinsic uncertainty on the choice of the kinetic model parameters, since no DTF studies were 

carried out.  However, deliberate changes in the operating conditions of the plant or mass flow 

imbalance situations between burners (see Table 6.3) that noticeably distort the particles’ 

trajectories and thus their combustion behaviours are sufficiently resolved for all the coals.      
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We can therefore conclude that the combination of CFD codes and advanced combustion 

models notably improve the results exclusively obtained by a CFD code.  Moreover, this 

methodology allows us to detect the changes that arise from slight operational condition 

changes and uneven flow variations which strongly affect the overall burnout prediction.   

 

 
Fig. 6.9  Result for burnout (% char basis) for:      ASM      CFD predictions      Model predictions 

 

 

6.4 Conclusions 

 

A new methodology that combines the advantages of CFD codes (detailed thermal and fluid 

dynamic description) and advanced combustion models (detailed combustion kinetics), to 

improve combustion related predictions in power plants has been presented.  This methodology 

uses the temperature and oxygen partial pressure profiles for a representative number of 

particles from CFD simulations, and then introduces them, together with coal properties, into an 

advanced combustion kinetics model.   

 

This chapter focused on the description, development and validation of the combustion model.  

Devolatilization was modelled using a macromolecular network pyrolysis model (FG-DVC), 

because of its applicability to a wide range of coals (subbituminous, bituminous and lignites) 

and heating rates (0.05 to 105 K/s), and its ability to predict the variations in species yield with 

reactor conditions.  Char oxidation was modelled and programmed in Fortran using a developed 

intrinsic formulae based on the carbon burnout kinetic model (CBK8) (Sun and Hurt, 2000), 
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that allows the transition to Zone I and includes the variation in the porous structure and 

reactivity of the char as combustion proceeds, mineral matter effects, and the influence of coal’s 

maceral content. 

 

To investigate the burnout prediction capability of the model a total of nine scenarios were 

tested with standard plant instrumentation measurements gathered at the Lamarmora (ASM 

Brescia) power station in the year 2005.  Results from the study show a good agreement in 

trends and quantitative values, even where a notable sensibility of the model is expected when 

slight operational variations were applied.  Results also confirm an acceptable approach to the 

methodology, formulation and assumptions have been proposed in this work.  We can therefore 

conclude that the combination of CFD codes and advanced combustion models permits the 

predictive system to be sensitive to the changes that arise from slight variations in operating 

conditions and uneven flow variations which strongly affect the overall burnout prediction.   
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Nomenclature 
 

Ac pre-exponential factor of the formation relation CO/CO2 

Ad pre-exponential factor of the thermal annealing process (s-1) 

Ai  pre-exponential factor of the kinetic reaction rate (g C/cm2 s atmn) 

dc char particle core diameter (cm) 

Cp specific heat of char (J/g K) 

Cpa specific heat of ash (J/g K) 

Cpc specific heat of carbon (J/g K) 

D diffusion coefficient (m2 /s) 

Deff effective diffusion coefficient (cm2 /s) 

DO2 molecular diffusion coefficient for O2 into N2 (cm2 /s) 

dp char particle diameter (cm) 

dp0 char particle initial diameter (cm) 

dpm mean diameter Rosin Rammler distribution (µm) 

Ee activation energy (kJ/mol) 

Ec  activation energy of the formation relation CO/CO2 (kcal/mol) 

Ed activation energy of the thermal annealing process (kJ/mol) 

Edm mean activation energy of the thermal annealing process (kJ/mol) 

fann thermal annealing factor 

fE(Ed) statistical distribution function in Ed of the thermal annealing process 

fmac maceral correction factor 

fCO2 carbon mass fraction that reacts to CO2 

hext  convective coefficient (W/cm2 K) 

hint  convective coefficient (W/cm2 K) 

hc convective coefficient (W/m2 K) 

HTVM % wt. high temperature volatile yield  

In inertinite 

InLR fusinite 

InR semi-fusinite 

kd diffusional kinetic constant (g C/cm2 s atm) 

km mass transfer coefficient (m/s) 

kS specific intrinsic reactivity (1/s atmn) 

k0S0 initial specific intrinsic reactivity (1/s atmn) 

Lc characteristic length (m) 

mc carbon mass of the char (g C) 

mc0 initial carbon mass of the char (g C) 
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mp mass of the char particle (g) 

mp0 initial mass of the char (g) 

n apparent reaction order 

nrr dispersion factor Rosin Rammler distribution 

Nu Nusselt dimensionless number ( )λ/cc LhNu =  

Pboiler furnace pressure (Pa) 

Pg bulk oxidant partial pressure (atm) 

Ps oxidant partial pressure at the particle surface (atm) 

qc combustion rate (g C/cm2 s) 

qconv convective heat transfer (W/cm2) 

qrad radiative heat transfer (W/cm2) 

R universal ideal gas constant (8.3145 J/mol K) 

Ri intrinsic reactivity (g C/cm2 s atmn) 

Sh Sherwood dimensionless number ( )DLkSh cm /=  

Swell swelling factor 

t time (s) 

tres residence time (s) 

Tg bulk gas temperature (K) 

Tm average temperature (K) 

Tp particle temperature (K) 

Tpant particle temperature in the previous instant (K) 

Tw furnace walls temperature (K) 

U overall heat transfer coefficient (W/cm2 K) 

Vit vitrinite and pseudo-vitrinite 

VitM vitrinite 

VitPS pseudo-vitrinite 

Xa ash mass fraction 

Xa0 initial ash mass fraction 

%C % wt. carbon content (d.a.f.)  

 

∆hf combustion enthalpy in the oxidation reaction to  CO/ CO2 (J/g) 

∆hCO2 combustion enthalpy in the oxidation reaction to CO2 (J/g) 

∆hCO combustion enthalpy in the oxidation reaction to CO (J/g) 

αD deactivation factor 

δ ash film thickness (cm) 

δm minimum ash film thickness (cm) 
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ε char emissivity 

ϕ stoichiometric factor  

φ Thiele modulus 

λ thermal conductivity (W/m K) 

λat ash thermal conductivity (W/cm K) 

λg bulk gas thermal conductivity (W/cm K) 

η effectiveness factor  

θaf ash film porosity  

θtaf critical ash film porosity  

θ particle porosity 

ρ char density (g/cm3) 

ρat ash density (g/cm3) 

ρa ash density in the char (g/cm3) 

ρc carbon density (g/cm3) 

ρc0 initial carbon density (g/cm3) 

ρ0 initial char density (g/cm3) 

τ tortuosity 

σln Ed standard deviation of the thermal annealing process (kJ/mol) 

σB Stephan Boltzman constant (5.67 E-12 W/cm2 K4) 

 

 

Acronyms 
 

CBK  carbon burnout kinetics 

CFD  computational fluid dynamics 

DAEM  distributed activation energy models 

DTF  drop tube furnace 

HHV  high heating value 

HTVM  high temperature volatile matter 

HWM  heated wire mesh 

FFB  flat flame burner 

LOI  lost of ignition 

SFOR  single first order reaction 

TGA  thermo-gravimetric analyzer 

2CSM  two-competing step model 
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 UNBURNED CARBON PREDICTION  

 SYSTEM 
 

 

The construction of the unburned carbon prediction system (UPS) from the elements introduced 

in previous chapters, mean the culmination of the main goal of this thesis. In this chapter we 

will present the development of a predictive system that provides an on-line estimation of the 

unburned carbon in ash for a given operating condition in a utility boiler.   

 

The combination of predictive techniques, that are generally used isolated, allows us to unify 

the following advantages within the same system: fluid dynamics and heat transfer from CFD 

codes, detailed chemical kinetics from advanced combustion models and reduced computing 

cost and interpolation capabilities from neural networks. 

 

Throughout this chapter, the coupling of the local combustion conditions model (Chapter 5) and 

the advanced combustion model (Chapter 6) is described.  Finally, the system is validated using 

standard plant instrumentation measurements gathered during three months at Lamarmora plant 

(ASM Brescia) under different operation conditions.  From these results, an evaluation of the 

system is assessed, hinting at the most significant conclusions, and comparing its features and 

accuracy with other unburned carbon predictive systems.  
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7.1 Unburned carbon prediction system description 

 

The unburned carbon prediction system described in this final chapter is the result of the 

contributions of the models developed in previous chapters.  However, before the selection and 

development of the sub-models that constitute the final system, the basic design conditions were 

established, meeting the requirements and suggestions given by technical personnel of several 

power plants.  This reflection tries to discard an interpretation of the system as a simple addition 

of models.  In general, the chronology of the design process can be summarized in four phases: 

  

1. Definition of the unburned carbon loss problem 

2. Definition of the design conditions for the predictive system 

3. Sub-model selection 

4. Construction of the predictive system from the sub-models 

 

It is noticeable that the design process does not follow a successive evolution along these 

phases.  On the contrary, there are permanent interactions between phases 3 and 4 that involve 

many modifications in the sub-models until the final design is achieved.  Significant examples 

of these modifications are the changes in the burner’s geometry and the grid refinement of the 

CFD model, the time step adaptation to ensure the convergence in the coal combustion model, 

or the continuous changes on the neural networks structure and the input parameters to capture 

the thermal and fluid dynamics behaviour of the problem.   

 

Focusing on the selection of the sub-models it is important to remember the two main design 

features of the system: accuracy and reduced computing cost.  With regard to accuracy, in any 

problem that involves turbulent combustion, two aspects namely, fluid dynamics and chemical 

kinetics, determine the precision reached.  As a result, the better the accuracy in the 

characterization of both these aspects, the better the overall predictions achieved with the 

model.  Traditionally, CFD codes give a detailed description of the transport phenomena 

(Chapter 4), but on the other hand, they use simple combustion models.  To balance this 

deficiency, we have developed an advanced combustion model (Chapter 6), which is used as a 

post-process on the temperature and oxygen partial pressure profiles obtained from a CFD 

simulation.  With regard to the computing time, a system that includes a CFD code in its 

structure can be seriously restrictive.  To overcome this limitation, without leaving aside the 

detailed fluid and thermal description of the CFD codes, we have developed a neural network 

system trained with data from the CFD simulations that is able to reproduce the temperature and 
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oxygen profiles found by the particles in their trajectories through the boiler and their residence 

times provided with the CFD code (Chapter 5).  

 

The final system is formed by the union of the neural network system, called the local 

combustion conditions model, with the advanced combustion model.  Figure 7.1 shows the final 

structure of the predictive system. 

 

 
Fig. 7.1 Unburned coal prediction system block diagram 

 

The order sequence for running the system is simple: For a given boiler condition, the system 

starts the local combustion conditions model (neural network system) and generates an output 

file containing the temperature and oxygen partial pressure information for the particles in the 

furnace as well as their residence times.  Immediately after this output file has been generated 

the coal properties are also introduced as an input in the coal combustion model to determine 

the unburned carbon in ash.  

 

The combustion model is divided into two subroutines corresponding to the devolatilization and 

char oxidation stages.  The former determines the amount of volatiles yielded together with the 

resultant char residue in which the intrinsic char oxidation model is applied.   

 

One of the main advantages of this predictive system is the reduced number of inputs (boiler 

conditions and coal properties) required to run the model and their availability at any power 

station: 
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• Load: Coal consumption is a common control/operation signal in power stations.  

• % Excess oxygen at the exit of the boiler: Excess oxygen is a common control/operation 

signal in power stations. 

• Primary air to coal mass flow ratio: It is easily determined from the operation curve and the 

load capacity of each mill.  

• Uneven mass flow distributions in the boiler: This factor is probably the only one that is not 

directly measured at the plant, especially for individual burners.  However, the mass flow 

passing through each mill is usually controlled so that it is possible to calculate the mass 

flow differences through burners fed from different mills.  In this work, it is possible to 

adapt this input to the information available in the plant.  

• Proximate and ultimate coal analysis: Proximate and ultimate analysis are commonly 

performed in power stations.  

• Petrographic analysis: Usually, power stations do not determine this analysis.  As a 

consequence, this input will only be considered in the model when this information is 

available and so this input will be avoided.  

• Pulverized coal size distribution: It is commonly determined in power stations.  

 

In this list of inputs, the kinetic parameters of the combustion model have been omitted.  As it 

was discussed in Chapter 6, in order to describe the combustion process correctly, these 

parameters can be either determined empirically by DTF experiments or be approached through 

correlations or databases.  These parameters form part of a third group of inputs which are 

directly introduced in the combustion model (Chapter 6). 

 

 

7.2 Validation of the unburned carbon prediction system 

 

The validation of the unburned carbon prediction system is carried out using standard plant 

instrumentation measurements gathered at Lamarmora ASM Brescia power station (see 

description of the plant in Chapter 4) during the year 2005 (January – March 2005).  Study 

cases were obtained covering the regular range of variation under full and partial load 

conditions. 

 

In the study, two coals from Central America commonly used in the plant over the last 5 years 

(‘Guasare’ from Venezuela and ‘Carbonandes’ from Colombia) and a coal from Russia, recently 

used to evaluate its influence on the combustion efficiency, were burned separately.  Proximate, 

ultimate and petrographic (when available) analysis for these three coals are presented in Table 
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6.2 (Chapter 6).  Generally, petrographic analysis is not performed in power plants.  In such 

case, we can make use of databases (for example Penn State Coal Data Bank), where coals from 

all over the world are catalogued.  In this work, since no petrographic analysis was available, 

inertinite and vitrinite values for Gausare coal were taken from Barranco et al. (2003). 

 

Tables 7.1 to 7.6 show the plant conditions data gathered in the study unit during the test period 

(January – March 2005): 

 

• Table 7.1: Guasare (full load) 

• Table 7.2: Guasare (partial load) 

• Table 7.3: Carboandes (full load) 

• Table 7.4: Carboandes (partial load) 

• Table 7.5: Russian (full load) 

• Table 7.6: Russian (partial load) 

 

 

 



Chapter 7   Unburned carbon prediction system    
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
186 

 

 
Table 7.1 Test data: Guasare – full load (Lamarmora ASM Brescia 2005) 
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Table 7.2 Test data: Guasare – partial load (Lamarmora ASM Brescia 2005) 

 

 

 

 

 

 

 

 

 



Chapter 7   Unburned carbon prediction system    
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
188 

 

 
Table 7.3 Test data: Carboandes – full load (Lamarmora ASM Brescia 2005) 

 

 

 
Table 7.4 Test data: Carboandes – partial load (Lamarmora ASM Brescia 2005) 

 

 

 
Table 7.5 Test data: Russian – full load (Lamarmora ASM Brescia 2005) 
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Table 7.6 Test data: Russian – partial load (Lamarmora ASM Brescia 2005) 

 

With regard to the milling system, Figure 7.2 shows the performance characteristic curve of 

both mills, that, together with the primary air deviation, allows us to calculate the air to coal 

mass flow ratio for each mill.  Furthermore, during the tests, both mills’ classifiers were 

adjusted to give a particle size distribution of mean diameter of 55 µm (Rosin-Rammler 

distribution: dpm = 55 µm, nrr = 1.02). 

 

Finally, the group of inputs exclusively related to the combustion model has been selected with 

regard to the discussion presented in Chapter 6: 

 

- Model parameters (Section 6.2): 

o Ee = 162 ± 10 kJ/mol, n = 0.5 

o Ec = 9 kcal/mol, Ac =  200 

o δm = 5 µm, θtaf = 0.21 

o Swell = 1.14 

 

- Sub-models (Section 6.2):   

o Thermal annealing: Van der Lans et al. (1998) 

o Ash inhibition: On  

o Maceral correction: Abbreviated (Guasare), Backreedy et al. (2006) 
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Fig. 7.2  Operation curve of the mills (Lamarmora ASM Brescia 2005) 

 

Once the inputs for all the cases (Tables 7.1 to 7.6) were defined, we ran the unburned carbon 

prediction system, obtaining the corresponding carbon-in-ash results.  Note that Case 70 has 

been excluded from the study, since some of the data were incorrectly gathered during the test 

(see Table 7.3).  
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The average computational time for each case calculation, using an Intel Core 2 DUO 6300 

(1.86 GHz, 0.86 GB of RAM) machine, is less than one minute.  Table 7.7 shows the carbon-in-

ash values gathered at the power station and those calculated by the unburned carbon prediction 

system for all the cases. 

 

 
Table 7.7   Carbon-in-ash values gathered at Lamarmora plant and calculated with the UPS (Unburned 

carbon Prediction System) 
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To analyze the results in Table 7.7, Figures 7.3 and 7.4 show the dispersion diagrams for the 

carbon-in-ash values gathered at the plant during the test period against the calculated values 

from the predictive system, under full and partial load conditions.  

 

 
Fig. 7.3  Carbon-in-ash values under full load conditions for the three study coals: ASM vs. UPS 

(Unburned carbon Prediction System) 

 

 
Fig. 7.4  Carbon-in-ash values under partial load conditions for the three study coals: ASM vs. UPS 

(Unburned carbon Prediction System) 
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Figures 7.3 and 7.4 indicate an adequate correspondence with plant data and calculated values 

from the predictive system, since the cloud of points are close to the bisector of the first 

quadrant for both diagrams.  Next, it is necessary to analyze, separately, the results obtained 

under full load conditions where the variation in the operating conditions is slight and the results 

obtained under partial load conditions where this operational range is larger.  As a result, the 

fitness of the model under full load conditions (Figure 7.3) shows a good agreement for the 

three study coals.  Focusing now on the more distant points from the bisector, it is not possible 

to identify the reason for this inaccuracy since the operating conditions in those cases were very 

similar to the ones in other cases where the carbon-in-ash values were apparently “normal”.  

Consequently, these “fault points” may have been due to the data gathering process or due to 

other factors not included in the instrumented controls of the plant and therefore not considered 

in the model development.  Fortunately, these “fault points” represent a negligible percentage 

and do not affect the general conclusions of the model.  With regards to the results under partial 

load conditions (Figure 7.4), there exists a larger dispersion between plant data and the 

calculated values from the predictive system.  The reason for this discrepancy can be explained 

from a fluid dynamics point of view.  Of course, under partial load conditions the stratification 

of the conditions within the boiler is more relevant than in the case of full load conditions where 

there is a greater uniformity in the temperature and oxygen partial pressure profiles.  Starting 

from this assumption and taking into account that neural networks average and interpolate those 

values in the furnace, the results found are not strange.  In fact, this behaviour illustrates one of 

the biggest challenges of the problem and thus, where we have placed an increased emphasis in 

the neural networks system development (Chapter 5).  Designing a neural network with a higher 

number of neurons would improve the fluid and thermal description within the furnace.  

However, an excessive number of neurons should be avoided since it would result in an 

overtraining situation leading to a decrease in the generalization capability of the network.  

Consequently, in order to find a balanced situation, we opted for complicating the neural 

networks system design by considering different networks for the upper and lower row of 

burners and including the starting feeding position of the particles within the burner. Finally, we 

carried out an iterative process to select the most suitable number of neurons for the problem.  

The details of the neural networks structure and its development were presented in Chapter 5.  

Again, regarding the more distant points from the bisector, it was possible to use the same 

analysis as the one presented for the full load conditions cases. 

 

It is also noticeable that Figures 7.3 and 7.4 show a clear distinction between the three coals in 

the results.  Obviously, carbon-in-ash values depend on the mineral matter content of the coal.  

Therefore, in order to obtain a rigorous estimation of the accuracy of the unburned carbon 



Chapter 7   Unburned carbon prediction system    
_____________________________________________________________________________________  
 

_____________________________________________________________________________________  
194 

 

prediction system, it is necessary to view the results in the same base line i.e. the overall 

burnout.  Therefore, Table 7.8 presents the burnout results (%, coal basis) for the data gathered 

at the power station and those calculated by the predictive system together with the prediction 

error for every case considered in the study. 

 

 
Table 7.8   Burnout (%, coal basis) gathered at Lamarmora plant and calculated with the UPS (Unburned 

carbon Prediction System) and prediction error 

 

Before determining the accuracy of the predictive system, we have performed a statistical study 

to analyze in detail the correspondence existing between plant data and the values calculated by 

the predictive system.  For this, we have compared the statistical distributions of both data sets 

(plant data and system predicted values).  Since the distributions’ type is unknown, the 
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Anderson-Darling normality test for both sets has been carried out.  Figures 7.5 (All data), 7.6 

(Full load) and 7.7 (Partial load), show the probability diagrams obtained from the Anderson-

Darling test, overlaid for both data sets and including the limits corresponding to a confidence 

level of 95 %.   

 
Fig. 7.5  Burnout (% - coal basis) probability diagrams: ASM and UPS (Unburned carbon Prediction 

System) 

 
Fig. 7.6  Burnout (% - coal basis) probability diagrams under full load conditions: ASM and UPS 

(Unburned carbon Prediction System) 
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Fig. 7.7  Burnout (% - coal basis) probability diagrams under partial load conditions: ASM and UPS 

(Unburned carbon Prediction System) 

 

The interpretation of Figures 7.5, 7.6 and 7.7 suggests that both data sets are not normal (p-

value < 0.005).  Therefore, in order to compare both distributions, we should make use of the 

mean, standard deviation, and the probability diagram itself.  Figure 7.5, which includes all 

data, shows a good agreement between samples, both in the probability diagram representation 

along the whole range of variation and in the mean and standard deviation.  Next, we have 

considered separately the probability diagrams for full and partial load conditions.  First, under 

full load conditions the comparison of the probability diagrams together with mean and standard 

deviation for both sets shows a good agreement.  On the other hand, under partial load 

conditions the correspondence with the mean is in agreement, but there exists a discrepancy in 

the standard deviation.  These results confirm the discussion presented for Figures 7.3 and 7.4.  

In spite of this fact, from Figure 7.5 we can conclude that the system predicts reasonably well 

over the whole range of operating conditions of the study plant. 

 

The last step in the development of the system lies in determining and expressing the global 

accuracy of the model.  To achieve this, we have analyzed the statistical distribution of the 

“Error” column in Table 7.8.  Again, the Anderson-Darling normality test has been applied, this 

time giving a positive result for the test (p-value = 0.012), as can be seen in Figure 7.8.  
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Fig. 7.8  Statistical distribution of the UPS burnout (%, coal basis) prediction error  

 

It is outstanding that, in spite of the fact that the p-value is small, we have obtained a leptokurtic 

distribution (kurtosis = 0.558172), showing a smaller concentration of points in the extremes 

with a greater concentration around the mean value. This gives an extra confidence in the results 

obtained when analyzing the normal distribution.  Another important result is that the mean is 

moved a little from zero which means that the model slightly over-predicts burnout.  This result 

is not worrying since it is very small (0.071778) but it should be considered in the construction 

of the confidence intervals.   

 

Taking the values of the 95.5 % confidence interval for the mean and standard deviation from 

Figure 7.8, it is possible to define an interval for the prediction error of a punctual estimation, 

with a 95.5 % confidence level, according to Eq. 7.1. 

 

 955.0)22( =⋅+≤≤⋅− σµσµ XP      (Eq. 7.1) 

 

That is, 95.5 % of the probability mass of the prediction error is inside the interval [µ - 2σ , µ + 

2σ].  Consequently, assuming that ( σσµ ˆ, == x ), the error for a punctual estimation can be 

expressed according to Eq. 7.2.  

 

%82.02 ±≈⋅±= σµBntE        (Eq. 7.2) 
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Now, since the mean of the distribution is moved from zero, the lower extreme of the interval of 

Eq. 7.2 is in fact – 0.75 %.  However, to simplify the interpretation, the error has been expressed 

using a symmetric interval from the higher value (0.82 %) according to Eq. 7.2, so that the 

confidence level is in fact higher than 95.5 %.    

 

Therefore, the model accuracy within a confidence level of 95.5 % can be expressed in terms of 

burnout (%, coal basis) according to Eq. 7.3. 

 

%82.0±=±= UPSBntUPSASM BntEBntBnt      (Eq. 7.3) 

 

In addition to the determination of the prediction error for a punctual estimation of the model, it 

is advisable to give the averaged prediction error for a set of random estimations.  This practice 

is especially suitable in the case where using an on-line data acquisition system that collects 

data in short periods of time and, due to the fluctuations, target control variables are usually 

expressed as an average.  Following this analysis, the average error for a number of random 

estimations (no > 30) is within the interval defined in Eq. 7.4. 
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Where, for a 95 % confidence level (α = 0.05), the average prediction error estimation for a set 

of random estimations is expressed according to Eq. 7.5. 

 

%15.0ˆ
21 ±≈⋅±= −α

σ z
n

xE
o

nBnt       (Eq. 7.5) 

 

Again, a symmetric interval has been given, notwithstanding that the mean of the distribution 

has moved from zero, and so, the lower extreme of the interval of Eq. 7.5 is in fact – 0.07 %.   

 

Therefore, for a set of random estimations, the model accuracy within a 95 % confidence level 

can be expressed in terms of burnout (%, coal basis) according to Eq. 7.6. 

 

%15.0±=±= UPSBntUPSASM BntEBntBnt      (Eq. 7.6) 
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In order to obtain an indicator of the model accuracy in terms of the unburned carbon in ash 

(%), we can make use of the Kurose et al.’s (2001) expression (Chapter 1, Section 1.4, Eq. 1.1). 

This leads to the following Eqs. 7.7 to 7.10, that depend on the mineral matter content of the 

coal and the burnout. 

 

CIAUPSASM ECIACIA ±=        (Eq. 7.7) 

 

)( eBntBntCIA CIACIAabsE +−=       (Eq. 7.8) 
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Where, Z is the ash content (%), CIABnt is the carbon-in-ash value corresponding to a burnout 

level BntUPS, and CIABnt+e is the carbon-in-ash value corresponding to a burnout level BntUPS and 

considering a prediction error EBnt in the burnout determination. 

 

Depending on the type of error that is used in Eq. 7.10, punctual or averaged for a number of 

random estimations, we will obtain both expressions for the accuracy of the model, respectively.  

 

Considering the most disadvantageous situation and using Eqs. 7.7 to 7.10, Table 7.9 

summarizes the maximum error achieved for the three study coals, both for a punctual 

estimation and for the average of a set of random estimations.   

 

 
Table 7.9  Maximum errors in the prediction of carbon-in-ash values within a confidence level of 95 % 

for the three study coals. 
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The evaluation of the results and the comparison with other unburned carbon prediction models 

are carried out in the next section.  However, at this point it is interesting to mention two 

comments regarding the results in Table 7.9.  Firstly, it should be noted that the calculated 

values in this table, are maximum errors.  That is, these points would be located at the extremes 

of the distribution function (close to a signification level α/2 or 1-α/2).  Furthermore, it should 

be remembered that the more sharpened the shape of the probability distribution function 

(positive kurtosis), the more points are located around the mean value, and consequently, this 

shows that the values presented in Table 7.9 are very exceptional.  Finally, it should be 

considered that none of the prediction errors obtained in Table 7.8 have been discarded from the 

analysis.  Generally, in statistical studies, the values located furthest away from the mean are 

discarded from the analysis if there is not a logical interpretation for them according to the data 

available in the problem.  In the analysis of Figures 7.3 and 7.4, it was mentioned that the more 

distant points from the bisector did not indicate any apparent reason to infer an error in the 

model.  In spite of this, we have decided to keep these fault points in the error analysis, in order 

to give a more conservative estimation of the prediction error and so taking into consideration 

the errors derived from the acquisition data process.   

 

 

7.3 Unburned carbon prediction system analysis and valuation  

 

To compare the prediction capability of the UPS (Unburned carbon Prediction System) 

performed in this work, we have undertaken an intensive search of the specialized literature.  

However, it is difficult to find references related to the unburned carbon determination, since 

most of the studies done in the last two decades have been focused on NOx reduction problems.  

The reason for this is that power plants needed to reduce SO2, NOx and CO2 particle emissions 

in order to meet the strict limits imposed by Community environmental policies.  Once this kind 

of technology matured, power plant generators then started to worry about the unburned carbon 

problem which influences the global efficiency of the plant and adds an increment onto the 

generation cost.  

 

It is common to find in most of the NOx reduction related publications that the application of 

this kind of technique notably increases unburned carbon levels.  Unfortunately, there is no 

quantification for the amount increased.   In the same way, other papers related to CFD 

simulation of utility boilers conclude that a quantitative unburned carbon determination is 

difficult with the combustion models commonly used (see Chapters 1 and 6), and then, only 

general trends can be assessed (Stopford et al., 2002; Pallarés et al., 2005; Severin et al., 2005).   
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Recall that the unburned carbon prediction systems mentioned in Chapter 1 can be classified 

into three groups (Table 7.10). 

 

 
Table 7.10 Unburned carbon prediction systems  

 

Excluding the experimental methods, since they cannot be used in an on-line predictive system; 

the following discussion is focused on the other two types of systems: combustion kinetics 

models and CFD codes.   

 

We consider the detailed coal combustion kinetics models, generally developed from the study 

of the real combustion process in experimental facilities, which has the advantage to simulate 

the coal combustion process in a very realistic way.  However, these models need the fluid and 

thermal behaviour in the boiler, which is usually obtained from simplified zonal approaches. 

The other group of models, namely CFD codes, present the opposite features.  That is, they give 

a detailed description of the thermal and fluid dynamics behaviour in the boiler but they use 

simple combustion models that cannot be used for a quantitative burnout determination.  

Moreover, the computing cost can be high and cannot be implemented in an on-line predictive 

system.   

 

The predictive system developed in this work has the same structure as the so-called 

combustion kinetics models.  However, it obtains the fluid and thermal description through CFD 

simulations.  To solve the handicap of the high computational cost needed to run a CFD 

simulation, a neural network system is used to reproduce the solutions given by the CFD code. 

 

In principle, it seems reasonable that by using this methodology the unburned carbon 

predictions will be improved compared with other combustion kinetics models based on zonal 

approaches.  Coming back to the literature, again, only a few publications discuss the unburned 
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carbon phenomena.  In fact, we have only found one publication, Severin et al. (2005), which 

presents quantitative results on carbon-in-ash predictions in a utility boiler.  In this paper, 

Severin et al. (2005), uses a combustion kinetics model which includes variations in the char 

reactivity, the char superficial area and includes ash inhibition effects.  The thermal and fluid 

dynamics behaviour is introduced through a zonal approach which divides the flow domain into 

a number of cells, enough to characterize main flow interactions in the boiler.  This predictive 

system is run for the 300 MWe Sines power station (Portugal), under three different operating 

conditions, obtaining a deviation of the unburned carbon in ash prediction of over 3.5 %.  Table 

7.11 shows the proximate and ultimate analysis of the coal blends feed during the tests.  Table 

7.12 shows the carbon-in-ash values measured at the plant against the predictions of the model. 

 

 
Table 7.11 Proximate and ultimate analysis of the coal blends Severin et al. (2005) 

 

 
Table 7.12 Carbon-in-ash results at Sinnes power station and Severin et al. (2005) model prediction 

 

As it was mentioned before, to compare the accuracy of both models, it is not possible to 

contrast directly the error obtained in the carbon-in-ash prediction since this itself depends on 

the ash content of the coal.  From the analysis in Table 7.11 and Eqs. 7.7 to 7.10, we have 

obtained the error in terms of burnout for the three scenarios in Severin et al. (2005) (Table 

7.13) 

 
Table 7.13 Prediction error (% burnout)  Severin et al. (2005) 
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Even with the results in Table 7.13 it is not possible to rigorously compare the prediction 

capabilities of both models since in the referred publication there is no mention as to how they 

have obtained these values. It is not clear if they represent punctual or averaged estimations and 

in addition the number of scenarios is too small.  Therefore, we will only discuss two brief 

considerations.  First, the predictive system described by Severin et al. (2005), over-predicts 

burnout in all three scenarios (Table 7.13).  On the contrary, the UPS (Unburned carbon 

Prediction System) in this work has shown an error distribution whose mean is close to zero 

(Figure 7.8).  Second, if the prediction errors in Table 7.13 are introduced into the error 

distribution in Figure 7.8, those values would be out of the 95 % confidence interval for the 

mean [-0.006683, 0.150239].  That is, although these values would be in the error range of the 

UPS model, they would be located in a very low probability area.  This is one of the advantages 

of giving the prediction error of the system through a statistical study, since this way, it is easy 

to perform a comparative study.  Another reason is that by only giving a single value of the 

accuracy of the system the result could be misleading.  For example, if we had given a single 

result for the accuracy of the model by averaging the results over the total number of cases, we 

would have obtained a burnout prediction error of 0.07 % and in terms of carbon-in-ash values 

of 1.07 %, 0.92 % and 0.82 % for the coals Guasare, Carboandes and Russian, respectively.   

 

Finally, to close this comparative study, Severin et al. (2005) stated in their conclusions that the 

prediction error achieved was due to the simplifications that were made in the description of the 

particles trajectories and in the temperature and oxygen partial pressure description in the boiler, 

in order to reduce the computational cost.  To this effect, the unburned carbon prediction system 

developed in this work has led to a more realistic description of the temperature and oxygen 

partial pressure profiles found by the particles in their trajectories across the boiler, without 

compromising the computational time.  This fact, allowed us to conclude that we have obtained 

an acceptable prediction accuracy of the system, improving the results obtained with any zonal 

approach.   

 

To close this chapter, we will discuss the most controversial aspect of the UPS proposed in this 

work.  Firstly, it should be mentioned that in spite of the advantages previously presented, and 

although the global prediction of the system is adequate, there are still some uncertainties in the 

validation of the model under partial load conditions.  In the previous section we discussed the 

importance of the neural network system development and its influence on the later combustion 

calculations.  However, this design should be balanced to achieve a good generalization and to 

avoid overtraining situations.   
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Nevertheless, as a final conclusion, the results presented in this work allow us to affirm that the 

predictive system complies with the requirements proposed in this thesis.   

 

 

7.4 Conclusions  

 

In this final chapter, we have developed the unburned carbon prediction system that provides an 

on-line estimation of the unburned carbon in ash for a given operating condition in a utility 

boiler.   

 

The final system is formed by the local combustion conditions model (Chapter 5) and an 

advanced combustion model (Chapter 6).  The former provides the system with the evolution of 

the temperature and oxygen partial pressure profiles found by the particles in their trajectories 

across the boiler.  This sub-model, based on a neural network system, for the range of operation 

conditions in the study plant, reproduces the values calculated for these profiles by means of 

CFD simulations.  The advantage of this system is that it allows us to obtained profiles under 

any other condition not specifically used during the training stage of the networks.  Moreover, 

the computational cost is negligible (less than a minute) when compared with CFD simulations.  

The other sub-model is the combustion model itself which is divided into two subroutines. One 

corresponding to the devolatilization of the coal particle (FG-DVC) and the other the char 

oxidation intrinsic model which includes: thermal annealing, variations in the porous structure 

as combustion proceeds, ash inhibition effects and the influence of macerals in the reactivity of 

the char. 

 

The validation of the unburned carbon prediction system has been carried out using standard 

plant instrumentation measurements gathered at Lamarmora ASM Brescia power station during 

the year 2005 (January – March 2005), where three coals of different provenance were burned 

separately covering the regular range of variation in the plant operating conditions.  Results 

from the predictive system have been compared against those gathered at the plant, after 

carrying out a statistical study for validating and determining the prediction capability of the 

system.  The comparison of both sets of data (gathered at the plant and predicted by the system) 

has shown an excellent correspondence in the probability distribution, mean and standard 

deviation along the whole range of situations studied.  The maximum error achieved for the 

burnout prediction is 0.82 % for a punctual estimation and 0.15 % for the average of a number 

of random estimations.  Finally, the predictive system developed in this work has been 

compared with another predictive system based on a zonal approach.  The analysis of both 
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models have shown a considerably improvement in the accuracy of the system with the 

methodology used in this work.   

 

As a final conclusion, it should be noted that the system complies with the design requirements 

established at the beginning of this work (accuracy and reduced time response).   

 

Finally, the main advantages of the unburned carbon prediction system can be presented in a 

schematic way: 

 

- The system includes a detailed description of the transport phenomena involved in the 

problem by implementing the neural network system which was trained with CFD 

simulations covering the operational range of the plant. 

- The neural network system itself allows us to interpolate for other conditions not 

specifically used during the training stage. 

- The combustion model describes in detail both devolatization and char oxidation. 

- The number of inputs of the predictive system is small and they are available at any power 

station. 

- The computational time, less than a minute, allows us to use it in an on-line monitoring 

system of a power station. 

- The accuracy of the system is good enough in the whole range of operation of the plant and 

improves the results obtained with other predictive systems based on zonal approaches.  
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Nomenclature 

 

Ac pre-exponential factor of the formation relation CO/CO2 

BntASM burnout measured at the plant 

BntUPS burnout calculated by the UPS 

CIAASM carbon-in-ash measured at the plant 

CIABnt carbon-in-ash corresponding to a burnout Bnt 

CIABnt+e carbon-in-ash corresponding to a burnout BntUPS and assuming an estimation error 

EBnt 

CIAUPS carbon-in-ash calculated by the UPS 

dpm mean particle diameter Rosin Rammler (m) 

EBnt UPS prediction error (% burnout)  

Ec  activation energy of the formation relation CO/CO2 (kcal/mol) 

ECIA UPS prediction error (% carbon-in-ash) 

Ee activation energy (kJ/mol) 

n apparent order reaction 

no size of the data sample  

nrr dispersion factor Rosin Rammler distribution 

Swell swelling factor 

PiO2 oxygen partial pressure (N/m2) 

Qa primary air mass flow (kg/s) 

Qc coal mass flow (kg/s) 

t time (s) 

tres residence time (s) 

Z % ash content  

 

α signification level of the statistical distribution 

δm minimum ash film thickness (cm) 

σ standard deviation of the statistical distribution 

θtaf critical ash film porosity  

µ mean of the statistical distribution 
 
 
 
Acronyms 

 

CFD  computational fluid dynamics 
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CIA  carbon-in-ash 

DTF  drop tube furnace 

UPS  unburned carbon prediction system 
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       SYNTHESIS, CONTRIBUTIONS AND 

       FUTURE DEVELOPMENTS 
 

 

SYNTHESIS 

 

In the last decades, pulverized coal-fired steam generators have been progressively affected by 

more restrictive requirements for particulate and gas emissions, in order to reduce atmospheric 

pollution, acid rain and the greenhouse effect.  Thus, low NOx techniques and efficient gas 

cleaning systems have been implemented to satisfy the environmental legislations.  However, 

some drawbacks may arise when emission reduction techniques are applied.  Unburned carbon 

levels increase when excess air decreases, limiting the reduction in NOx formation which can be 

achieved by primary techniques through combustion modification.   

 

Unburned char particles that leave the furnace represent a heat loss in the combustion process, 

reducing the thermal efficiency of the unit.  Since the price of coal is the higher variable cost in 

the plant, a little save in its price may imply a significant reduction in the power plant 

expenditure.  Moreover, unburned carbon increases heat exchangers erosion, may reduce the 

efficiency of dust separation/collection equipment and may impede the utilization of fly ash as a 

replacement for Portland cement or additives to concrete.  In consequence power plant 

managers look for the most efficient combustion conditions, in order to maximize coal 

conversion while meeting the environmental legislations.   
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Increasing efficiency, controlling particulate and gas emissions, and minimizing unburned 

carbon losses, are partially attained by improving the combustion process.  For this reason, 

predicting combustion efficiency in utility boilers, and particularly, determining unburned 

carbon levels, are essential to reach both objectives. 

 

To achieve this, the main goal of this thesis work was to develop an unburned carbon prediction 

system, that provided an on-line estimation of carbon in ash losses for a given operating 

condition in a utility boiler.  At the same time, a system with such characteristics may allow the 

plant personnel to identify the source of an increase in the carbon in ash level or to look for the 

most suitable conditions to minimize this loss.  For the development and validation of this work, 

a unit from Lamarmora power plant (ASM Brescia, Italy) was chosen as the case-study boiler.  

This election was taken as a result of the close partnership established between ASM and 

CIRCE Foundation during the European research project 7220-PR-130-130-CARNO.    

 

The starting point for the construction of an unburned carbon prediction system was to 

determine which factors are relevant in carbon burnout and to quantify their influence.  Main 

factors affecting unburned carbon losses may be classified into three categories: coal and char 

related properties, coal preparation and grinding pre-treatments, and burners and boiler designs 

and operation conditions.  Nevertheless, not all these factors may be modified during the daily 

operation of the plant, thus impacting the unburned carbon loss.   

 

In this work, a sensitivity analysis of the main factors affecting unburned carbon losses was 

performed,  which can be actuated by the technical personnel in the plant either directly or 

indirectly.  The main parameters analyzed in this work have been: 

 
• Primary air to coal mass flow ratio 

• Excess air (stoichiometry) 

• Particle size 

• Secondary air swirl intensity  

• Fuel/air mass flow imbalances through burners 

 

To analyze and quantify their influence on unburned carbon formation, we carried out a double 

study of theses parameters, using a CFD commercial code (CFX-4, AEA Technology).  Firstly, 

in the regular range of variation, we evaluated the contribution of each factor to the final 

unburned carbon level, keeping constant the rest of the parameters.  Subsequently, we evaluated 

cross-related effects and interactions amongst these various factors.  This study, in which we 

made used of multi-parameter factorial analysis techniques, gives a more realistic view of the 
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problem since the contribution of one factor may vary depending on the conditions of the other 

factors.  Results suggested that the oxygen level is the most relevant factor in unburned carbon 

formation.  However, other factors, that did not have a remarkable relevance in the individual 

parameter sensitivity study, may turnout to be relevant in coal burnout depending on the boiler 

conditions and on cross-related interactions amongst these factors.   

 

Once the most relevant factors affecting unburned carbon losses were identified, we proceeded 

with the design of the structure of the unburned carbon prediction system.  In general, the 

combustion behaviour of pulverized coal can be investigated by means of pilot-scale 

experiments, combustion kinetics models and CFD codes.  Experimental approaches are very 

useful in design studies.  However, for the daily monitoring of a real plant, the computational 

methods offer a flexibility as well as a saving of time and money, over current experimental 

facilities.  Within the computational methods regularly used, detailed coal combustion kinetics 

models, generally developed from the study of the real combustion process in experimental 

facilities, have the advantage to simulate the coal combustion process in a very realistic way.  

However, these models need the fluid and thermal behaviour in the boiler, which is usually 

obtained from simplified zonal approaches. The other group of models, namely CFD codes, 

present the opposite features.  That is, they give a detailed description of the thermal and fluid 

dynamics behaviour in the boiler, but they use simple combustion models that cannot be used 

for a quantitative burnout determination.  Moreover, the computing cost can be high and cannot 

be implemented in an on-line predictive system.   

 

In this work, we have developed a new methodology that takes advantage of both of the 

following approximations: the detailed fluid and thermal description of CFD codes and the 

precise combustion calculations of advanced kinetics models.  To achieve this aim, we 

considered two possibilities: 

 

1. To fully couple the advanced combustion kinetics model into a CFD code.  

 

2. To use the temperature and oxygen partial pressure profiles for a representative number of 

particles from a CFD code and then introduce them as inputs into an advanced combustion 

kinetics model.   

 

The first possibility was discarded since it was impossible to introduce all the combustion 

equations into a commercial code with licence and copyright.  Following this line, we carried 

out few modifications in the combustion model of the commercial code CFX-4, introducing 

rank dependant correlation for char reactivity, through the activation energy and the pre-
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exponential factor (Hurt and Mitchell, 1992), and a sub-model describing ash inhibition effects 

(Hurt and Sun, 1998).  As a result, we considerably improved unburned carbon predictions as 

compared with the results obtained with the one film model implemented in CFX.  However, 

these modifications, since they do not take into account the variations in char porous structure 

and reactivity as combustion proceeds, are only able to predict general trends and fail in the 

prediction of quantitative values.   

 

For this reason, we decided to keep the use of the CFD code as a thermal and fluid-dynamic 

characterization tool, and then introducing this information (temperature and oxygen partial 

pressure histories of the simulated particles) as inputs into an advanced combustion kinetics 

model.  To solve the problem of the high computational cost, we proposed the utilization of a 

neural network system that generates the oxygen partial pressure, and temperature profiles, and 

the residence time of particles for any operating condition. The advantage of introducing the 

neural network system in this way, is that it is possible to perform the calculations in a short 

period of time (less than a minute), and therefore, it can be used in the construction of an on-line 

predictive system.  Another advantage is that, if the neural network system is appropriately 

trained, considering the variations and interactions of all parameters affecting unburned carbon 

formation, this system permits to interpolate in the range of variation used during the training 

stage. Thus, a predictive system covering the whole operational range of the plant can be 

obtained.  Consequently, an unburned carbon prediction system with such characteristics allows 

us to unify the following advantages within the same system: fluid dynamics and heat transfer 

from CFD codes, detailed chemical kinetics from advanced combustion models, and reduced 

computing cost and interpolation capabilities from neural networks. 

 

In order to obtain the data used to develop, train and validate the neural network system, we 

performed a set of 72 CFD simulations covering the operational range of the study plant.  Thus, 

a new design of experiments based on factorial analysis was carried out, in such a way that three 

levels of the most relevant factors affecting carbon losses (excess oxygen, primary air to coal 

mass flow ratio, particle size, fuel/air mass flow imbalances through burners) were included, 

differentiating between full and partial load conditions. 

 

For the development of the model, the commercial code Matlab Neural Network Toolbox 4.0 

was used.  The neural network system learn, reproduce and interpolate the results (by means of 

temperature and oxygen partial pressure profiles, and particles’ residence times) obtained from 

the CFD code for any particular boiler operating conditions.  As a result of the study, it was 

concluded that that the neural network system, called the local combustion conditions model, 

accurately reproduced the profiles obtained by the CFD simulations.  Moreover, due to the 
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generalization capability of the neural networks, it was possible to obtain solutions for any 

operating conditions as long as they belong to the range used during the training stage. 

 

With regard to the combustion model, a revision of each stage in the combustion process 

(devolatilization, homogeneous combustion of volatile products, and char oxidation), describing 

the mechanisms and the more characteristics models available in the specialized literature, was 

performed.  From this revision, an advanced combustion model was developed, focusing on the 

reactions that take place on the particle surface, that is, devolatilization and char oxidation.  

Devolatilization was modelled using a macromolecular network pyrolysis model (FG-DVC).  

Char oxidation was modelled and programmed in Fortran using a developed intrinsic formulae 

based on the carbon burnout kinetic model (CBK8) (Sun and Hurt, 2000), that allows the 

transition to Zone I and includes the variation in the porous structure and reactivity of the char 

as combustion proceeds, mineral matter effects, and the influence of coal’s maceral content.  To 

investigate the burnout prediction capability of the model a total of nine scenarios of the case-

study boiler were studied, showing a good agreement in trends and quantitative values with 

standard plant instrumentation measurements. 

 

Finally, the construction of the unburned carbon prediction system (UPS) from the previous 

elements (CFD + Neural networks and advanced combustion model), meant the culmination of 

the main goal of this thesis, that is, the development of a predictive system that provides an on-

line estimation of the unburned carbon in ash for a given operating condition in a utility boiler.   

  

The validation of the unburned carbon prediction system has been carried out using standard 

plant instrumentation measurements gathered at Lamarmora ASM Brescia power station during 

the year 2005 (January – March 2005), where three coals of different provenance were burned 

separately covering the regular range of variation in the plant operating conditions.  Results 

from the predictive system have been compared against those gathered at the plant, after 

carrying out a statistical study for validating and determining the prediction capability of the 

system.  The comparison of both sets of data (gathered at the plant and predicted by the system) 

has shown an excellent correspondence in the probability distribution, mean and standard 

deviation along the whole range of situations studied.  The maximum error achieved for the 

burnout prediction is 0.82 % for a punctual estimation and 0.15 % for the average of a number 

of random estimations.  Finally, the predictive system developed in this work has been 

compared with another predictive system based on a zonal approach.  The analysis of both 

models have shown a considerably improvement in the accuracy of the system with the 

methodology used in this work.   
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CONTRIBUTIONS 

 

Chapter 2 

A revision of each stage in the combustion process (devolatilization, homogeneous combustion 

of volatile products, and char oxidation), describing the mechanisms and the more 

characteristics models available in the specialized literature, is performed.  Of course, it is not 

possible to perform a complete compilation of all the published models used for modelling coal 

combustion.  However, we have attempted to present the most classical models, together with 

advanced models that go deeply into more particular aspects of pulverized coal combustion.  

The selection criteria for the models described in this work responds to three premises:  

 

• The general applicability under typical pulverized coal combustion conditions. 

• The acceptance level in the scientific community.  

• That serves as reference and starting point for the coal combustion model development 

carried out in this work in Chapter 6.  

 

Chapter 3 

In this chapter, general characteristics of CFD codes are described, specifying the numerical 

resolution method and the physical and chemical models involved in the modelling of coal 

combustion in utility boilers, for the commercial code used in this work (CFX-4, AEA 

Technology).  Finally, the validation process followed in this work is presented.  To achieve 

this, the chapter is divided in the following sections: 

 
• Finite volume method: discretization of the domain and the transport equations governing 

the problem.  

• Description of the mathematical models involved in the problem (turbulence, multi-phase 

flow, homogeneous combustion, heterogeneous combustion, and radiation).  

• Description of the boundary conditions for the problem. 

• Validation of the numerical resolution method, describing all the uncertainties associated 

with the numerical discretization of the equations, and the uncertainties associated with the 

modelling of the real process, suggesting how to estimate their contribution.   

 

Chapter 4 

In this chapter, we performed a review of combustion related publications, in which reaction 

stoichiometry and coal grain-size distributions were reported as the most influence factors on 

combustion efficiency.  In spite of this fact, most of these studies were carried out in scale 

burner-test facilities, in which some determining factors such as primary and secondary air 
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mixing, swirling intensity, burner to burner flow interactions, reversed-flow regions or mass 

flow imbalances, were not possible to study.  For this reason, in this work, since CFD tools are 

not limited with respect to these aspects, we included all the factors that may have an effect on 

combustion and studied their influence on unburned carbon losses.  To achieve this, we 

performed a sensitivity study of main factor affecting carbon burnout: excess oxygen, primary 

air to coal mass flow ratio, particle size distribution, secondary air swirling intensity, and mass 

flow imbalances through the burners.  The study was divided in two phases.  First, we 

performed a preliminary sensitivity study to analyze individual contributions of each factor, 

maintaining constant the rest.  Results suggested that the oxygen level is the most relevant 

factor in unburned carbon formation, specially for excess oxygen values under 4 %.  However, 

the rest of factors, such as mass flow imbalances, particles size and primary air to coal mass 

flow ratio, may be turned relevant for excess oxygen values over 4 %.  Next, a second 

sensitivity study was performed analyzing the effects of interactions, since these factors in real 

utility boilers do not take place individually, and their interaction may have important influence 

on the total unburned carbon.  When several sources of variation are acting simultaneously on a 

set of observations, it is particularly useful to fall back on variance analysis techniques.  In order 

to reduce the number of simulations needed to complete the full experiment, a fractional 

factional analysis was applied, performing a variance analysis of the simulated values.   Result 

for this multi-parameter sensitivity study confirmed the results from the preliminary study, 

showing that, other factors such as primary air to coal mass flow ratio or mass flow imbalances 

through the burners, or their interactions may have a remarkable relevance in coal burnout 

depending on the boiler conditions.  

 

From the results obtained in the sensitivity study, it is possible to establish actions lines that 

allows the plant personnel to identify the source of an increase in the carbon in ash level or to 

look for the most suitable conditions to minimize this loss.   

 

Chapter 5 

In this chapter, a neural network system that learn, reproduce and interpolate the results (by 

means of temperature and oxygen partial pressure profiles, and particles’ residence times) 

obtained from the CFD code for any particular boiler operating conditions, have been 

developed.  The constitution of the neural network model is divided into three stages (design of 

the structure, training of the neural network, and validation), establishing an iterative revision 

process that concludes once the neural network obeys the design criteria.    To achieve this, we 

have performed a number of CFD simulations, covering the operational range of the study plant.  

In order to obtain the data used to develop, train and validate the neural network system, a new 

design of experiments based on factorial analysis was carried out.  As a result of the study, it is 
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concluded that that the neural network system, accurately reproduces the profiles obtained by 

the CFD simulations.  Moreover, due to the generalization capability of the neural networks, it 

is possible to obtain solutions for any operating conditions as long as they belong to the range 

used during the training stage. 

 

Chapter 6 

In this chapter, a new methodology that combines the advantages of CFD codes (detailed 

thermal and fluid dynamic description) and advanced combustion models (detailed combustion 

kinetics), to improve combustion related predictions in power plants has been presented.  This 

methodology uses the temperature and oxygen partial pressure profiles for a representative 

number of particles from CFD simulations, and then introduces them, together with coal 

properties, into an advanced combustion kinetics model.   

 

This chapter focused on the description, development and validation of the combustion model.  

Devolatilization was modelled using a macromolecular network pyrolysis model (FG-DVC), 

because of its applicability to a wide range of coals and heating rates, and its ability to predict 

the variations in species yield with reactor conditions.  Char oxidation was modelled and 

programmed in Fortran using a developed intrinsic formulae based on the carbon burnout 

kinetic model (CBK8) (Sun and Hurt 2000), that allows the transition to Zone I and includes the 

variation in the porous structure and reactivity of the char as combustion proceeds, mineral 

matter effects, and the influence of coal’s maceral content. 

 

To investigate the burnout prediction capability of the model a total of nine scenarios were 

tested with standard plant instrumentation measurements gathered at the Lamarmora (ASM 

Brescia) power station.  Results from the study show a good agreement in trends and 

quantitative values, even where a notable sensibility of the model is expected when slight 

operational variations were applied.  Results also confirm an acceptable approach to the 

methodology, formulation and assumptions have been proposed in this work.  We can therefore 

conclude that the combination of CFD codes and advanced combustion models permits the 

predictive system to be sensitive to the changes that arise from slight variations in operating 

conditions and uneven flow variations which strongly affect the overall burnout prediction.   

 

Chapter 7 

In this final chapter, we have developed the unburned carbon prediction system that provides an 

on-line estimation of the unburned carbon in ash for a given operating condition in a utility 

boiler.   
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The final system is formed by the local combustion conditions model (Chapter 5) and an 

advanced combustion model (Chapter 6).  The former provides the system with the evolution of 

the temperature and oxygen partial pressure profiles found by the particles in their trajectories 

across the boiler.  This sub-model, based on a neural network system, for the range of operation 

conditions in the study plant, reproduces the values calculated for these profiles by means of 

CFD simulations.  The advantage of this system is that it allows us to obtained profiles under 

any other condition not specifically used during the training stage of the networks.  Moreover, 

the computational cost is negligible (less than a minute) when compared with CFD simulations.  

The other sub-model is the combustion model itself which is divided into two subroutines. One 

corresponding to the devolatilization of the coal particle (FG-DVC), and the other the char 

oxidation intrinsic model which includes thermal annealing, variations in the porous structure as 

combustion proceeds, ash inhibition effects, and the influence of macerals in the reactivity of 

the char. 

 

The validation of the unburned carbon prediction system has been carried out using standard 

plant instrumentation measurements gathered at Lamarmora ASM Brescia power station during 

the year 2005 (January – March 2005), where three coals of different provenance were burned 

separately covering the regular range of variation in the plant operating conditions.  Results 

from the predictive system have been compared against those gathered at the plant, after 

carrying out a statistical study for validating and determining the prediction capability of the 

system.  The comparison of both sets of data (gathered at the plant and predicted by the system) 

has shown an excellent correspondence in the probability distribution, mean and standard 

deviation along the whole range of situations studied.  The maximum error achieved for the 

burnout prediction is 0.82 % for a punctual estimation, and 0.15 % for the average of a number 

of random estimations.  Finally, the predictive system developed in this work has been 

compared with another predictive system based on a zonal approach.  The analysis of both 

models have shown a considerably improvement in the accuracy of the system with the 

methodology used in this work.   

 

Finally, the main advantages of the unburned carbon prediction system can be presented in a 

schematic way: 

 

- The system includes a detailed description of the transport phenomena involved in the 

problem by implementing the neural network system which was trained with CFD 

simulations covering the operation range of the plant. 

- The neural network system itself allows us to interpolate for other conditions not 

specifically used during the training stage. 
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- The combustion model describes in detail both devolatization and char oxidation. 

- The number of inputs of the predictive system is small and they are available at any power 

station. 

- The computational time, less than a minute, allows us to use it in an on-line monitoring 

system of a power station. 

- The accuracy of the system is good enough in the whole range of operation of the plant and 

improves the results obtained with other predictive systems based on zonal approaches.  

 

 

FUTURE DEVELOPMENTS 

 

Future work after finishing this thesis are classified into two categories: system developments 

and developments in the user interface of the system  

 

A. System developments 

In this first group, all the developments that may be taken into account in a future system are 

considered in order to improve burnout predictions.  Sometimes, further developments in the 

models will result in a greater complexity of the system, and thus, a penalty in the 

computational time.   For this reason, depending on the specific application of the system and 

the accuracy required in the solutions, the designer will have to weigh up both precision and 

computational time.    

 

By analogy with the outline of this work and with the structure of the system itself, future 

developments are presented grouped into the different blocks of the system.     

 

1. CFD model developments   

In order to improve the accuracy in the simulations, a number of suggestions are pointed out.  

At this point, special attention should be paid to the computational time. 

 

• Geometry: The inclusion of radiant superheaters will improve the thermal and flow 

behaviour description in the boiler.  

 

• Mesh: By refining the mesh grid, more precise values for the flow variables will be 

obtained, especially in the near burner region where major temperature, velocity and species 

concentration gradients take place.  Nevertheless, the mesh size structure used in this work 

established a convergence criteria for the control variable (% burnout, coal basis) variation 

of 0.1 %, and proves to be adequate for our problem (Chapter 4, Section 4.2.4). 
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• Particle transport model: In order to obtain a more detailed description of the particles 

trajectories, turbulent dispersion effects may be included.  To achieve this, it will be 

necessary to model a larger number of particles (at least one order of magnitude higher than 

in the case of not considering turbulent dispersion effects), resulting in a huge increase of 

the computational time.  Furthermore, some authors suggest that including this effect, it is 

more difficult to achieve the convergence of the problem (Chen and Shuen, 1993). 

 

• Radiation model: Since the absorption and emission of participative gases depend on the 

gas temperature and partial pressure, a multi-grey gas model description will better describe 

real gas mixture behaviour.    

 

2. Neural network system developments   

Neural network system developments can be evaluated from two points of view: improved 

precision and improved generalization.  Both aims are in opposition, so  improving the accuracy 

to reproduce the training data for the same dataset decreases the network capability to generalize 

and vice versa.  In fact, as it was described in Chapters 5 and 7, the balance of this competition 

entails one of the biggest challenges of the problem and thus, the area where we have placed an 

increased emphasis in the neural networks system development.  This problem is more 

pronounced under partial load conditions since the stratification of the conditions within the 

boiler is more relevant than in the case of full load conditions where there is a greater 

uniformity in the temperature and oxygen partial pressure profiles.   

 

Consequently, one solution proposed to improve both aspects (precision and generalization) 

would lie in increasing the number of CFD simulations in order to obtain more training data.  In 

this way, it would be possible to enlarge the neural network structure, improving the accuracy 

and avoiding overtraining situations.   

 

An alternative solution would lie in developing a more complex design of the neural network 

system.  This solution was adopted in this work, by considering different networks for the upper 

and lower row of burners and including the starting feeding position of the particles within the 

burner.  In the same way, it would be possible to improve the model by increasing the number 

of inputs or complicating further the structure of the neural network system.     

 

3. Advanced combustion model developments 

In the following discussion, in order to point out future developments in the combustion model 

we will distinguish between improvements in the model application, and improvements in the 

model development.   
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The first group, improvements in the model application, is related with the available kinetic and 

structural information of the coal in the models.  Devolatilization kinetic rate parameters for the 

case-study coals have been extrapolated from a database included in the FG-DVC code.  

Similarly, the char oxidation kinetic parameters, the structural characteristics of the coals (mean 

pore size, porosity, ash properties, etc.), the petrographic information and the combustion 

behaviour of the study coals (swelling, fragmentation, etc.) were obtained from previous 

studies, discussions and suggestions from other authors and databases.      

 

Therefore, an improvement in the accuracy of the burnout predictions would be obtained by 

fitting from experiments the kinetic and coal structural parameters of the model:  

characterization of the devolatilization process (volatile yield and rate), determination of the 

initial char reactivity and porosity, conducting ash composition and properties analysis, 

determination of coal petrographic composition, etc.  

 

With regard to the second group of improvements, the combustion model developed in this 

work is probably one of the most complete models in the literature.  Nevertheless, one of the 

most promising investigations in coal combustion modelling focuses on the development of 

intrinsic models based on complex reaction mechanism.  An example of this kind of 

mechanisms is the three-step semi-global kinetics proposed by Hurt and Calo (2001) (see 

Chapter 2, Section 2.3.1). 

 

B. Developments in the user interface of the system 

In this second group, the improvements in the user interface of the system are considered.  At 

the moment, the core of the unburned carbon prediction system is divided into two blocks 

programmed in Fortran.  The first block contains the neural network system description and is 

responsible for generating a solution file with the temperature and oxygen partial pressure 

profiles, and particles’ residence times.  The second block contains the combustion model in 

which the previous solution file is applied.  In general, the structure and interface of the system 

is very intuitive.  In order to help the user to run the system, the data acquisition process is 

guided by the program displaying specific windows that ask for the input parameters.  However, 

if the system is going to be incorporated into the control system of a power plant, it would be 

advisable to modify the user interface in order to show a more familiar windows environment.    
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Abstract

Advanced combustion kinetics models are of widespread use to predict carbon losses from coal combustion. However, those models

cannot completely capture the complexity of the real phenomena affecting the fluid flow in a full-scale utility boiler, such as burner-to-burner

interactions and bottom hopper vortexes or reversed-flows, and usually underpredict carbon in ash values. The use of CFD codes offers a

more detailed treatment of the fluid dynamics involved in the boiler. However, most of them do not incorporate advanced kinetics submodels

for char oxidation. In this paper, rank-dependent correlations and ash inhibition submodel have been coupled to a commercial CFD code,

significantly improving carbon in ash predictions. Results from the simulation of the ASM Brescia power plant (Italy) for three different

South-American coals are compared against plant laboratory values, using either the popular single film combustion model or the modified

combustion model discussed in this paper.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Unburned coal; Coal combustion; CFD
1. Introduction

In the last decades, pulverized coal-fired steam gen-

erators have been progressively affected by more restrictive

requirements for particulate and gas emissions. Thus, low

NOx techniques and efficient gas cleaning systems have

been implemented to meet the environmental legislations.

However, some drawbacks may arise when emission

reduction techniques are applied. Unburned carbon levels

increase when air excess decreases, limiting the reduction in

NOx formation that can be achieved by primary techniques,

i.e. by combustion modifications. Unburned char particles

that leave the furnace represent a heat loss in the combustion

process, reducing the thermal efficiency of the unit.

Moreover, they increase heat exchangers erosion, may

reduce the efficiency of dust separation/collection equip-

ment and may impede the utilization of fly ash as
0016-2361/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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a replacement for Portland cement or additive to concrete

[1]. Under this perspective, power plant managers are

interested in strictly controlling the levels of unburned

carbon in ash.

The main factors that influence unburned carbon loss

may be classified into three categories: coal inherent

characteristics, coal milling and drying process and, finally,

combustion conditions themselves. The first category

includes pulverized coal and char properties such as heating

value, char yield on pyrolysis, char internal structure, char

reactivity, ash content and composition. The second

category accounts for coal preparation and grinding

manoeuvres, affecting particle size distribution and moist-

ure remaining in the pulverized coal entering the furnace.

Finally, the third category comprises all the operating

strategies affecting the boiler performance, as for the

selection of the rows of burners in service, air excess, air

flow distributions and position of burner vanes. The

selection and combination of these factors determine fuel

and air mixing, combustion temperatures and residence

times, which ultimately condition the combustion process of

the coal particle [1].

The combustion behaviour of pulverized coal can be

investigated by means of pilot-scale experiments,
Fuel 84 (2005) 2364–2371
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Nomenclature

Aa pre-exponential factor for oxidation

(kg C/m2 s Pa1/2)

C ultimate analysis carbon content in coal as

received (%)

dc diameter of carbon-rich core (mm)

dp diameter of the coal particle (mm)

Do molecular diffusivity of O2 in N2 (m/s2)

Ea activation energy for oxidation (J/mol)

kc chemical reaction rate coefficient (kg/m2 Pa s)

kc,1750 chemical reaction rate coefficient at a particle

temperature of 1750 K (kg/m2 Pa s)

kd diffusion rate coefficient (kg/m2 Pa s)

M moisture content in coal as received (%)

Pg oxygen partial pressure at particle surface (Pa)

P furnace pressure (Pa)

q burning rate (kg C/m2 s)

R gas universal constant (J/mol K)

Sh Sherwood number for mass transfer to a

spherical particle

Tm average temperature of particle surface and gas

free stream (K)

Z ash content in coal as received (%)

d thickness of the ash film (mm)

qaf ash film porosity
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mathematical combustion models and CFD codes. Pilot-

scale testing suffers from two basic shortcomings. Firstly,

the physical processes involved in utility boilers are not

completely scalable and, in consequence, small-scale

experiments can be only considered as approximations.

On the other hand, an experimental rig involves very high

investment and maintenance costs.

An alternative method relies on using a detailed

mathematical combustion model. The basis of this approach

is to separate the influence of fuel properties and combustion

conditions on coal burnout behaviour. The fuel-related

empirical parameters in the model have to be fitted from

laboratory experiments. These data are then used to predict

burnout behaviour under full-scale furnace conditions [2].

Coal combustion models are made up of a devolatilization

submodel and a char oxidation submodel. Traditional

devolatilization submodels like single reaction model [3]

or two competing reactions models [4,5] are being

progressively substituted by commercial codes that predict

major species yield and local concentrations [6–8]. Single

film char oxidation models [9,10] have led to other

advanced kinetics models, which account for variations in

reactivity during combustion and internal pore structure

[8,11–14]. In general, the benefit of using detailed

mathematical combustion models is that results can be

obtained in a quick and non-expensive way for boilers of

very different arrangements and operating conditions.

However, those models cannot completely capture the

complexity of the physical and chemical phenomena that

occur in an industrial furnace significantly disturbing the

fluid flow and the turbulent mixing, resulting in a severe

underprediction of the carbon in ash levels. Dealing with

these aspects, the use of computational fluid dynamics (CFD)

models constitutes a powerful tool to study and characterize

some complex processes that take place in the boiler,

providing a great amount of precise numerical values for

velocity, temperature and concentration fields, irradiation

profiles, heat transfer distribution and pollutants formation.
In spite of the fact, most of the commercial CFD codes still

use single film char oxidation submodels, and none of the

advanced combustion kinetics models outlined above have

been still fully coupled to a commercial CFD code.

The aim of this paper is to evaluate the capability of

prediction of carbon in ash levels by coupling elements of

the Hurt’s CBK model [11] to a commercial CFD code.

Comparisons between conventional single film model and a

modified combustion model predictions are discussed in the

paper, for a specific case-study unit (Brescia ASM power

plant, Italy) under different conditions for coal supply and

boiler operation.
2. Experimental data

ASM Brescia power plant generates a total output of

139 MWe and consists of three front-fired units, with

natural circulation and single reheat. The case-study unit is

63 MWe gross load, equipped with four burners arranged in

two rows of two burners each. A vertical rod mill feeds the

two burners of the same row.

Operation data gathering was carried out at the plant

during the year 2003, when three coals from different

provenance were burned separately (Guasare, Unicoal and

Saif coals). For the current work, one representative

operating scenario for each coal type has been inferred

from plant data to perform the CFD simulations. The three

scenarios, summarised in Table 1, correspond to nominal

load conditions, when higher carbon in ash levels are

typically encountered. Albeit slight differences arise con-

cerning fuel flow rates, mean particles size and excess air,

discrepant figures are obtained for unburned carbon in ash

levels, as discussed later. Proximate and ultimate analysis

and gross calorific values for the involved coals are shown in

Table 2, as provided by the plant laboratory. The three coals

fall within the category of high volatile bituminous coals,

according to the ASTM classification standards.



Table 1

Nominal-load operating scenarios from the case-study power plant

Operating conditions Guasare Unicoal Saif

Load (%) 100 100 100

Primary air flow rate (Nm3/h) 20,000 20,000 20,000

Temperature of primary air (8C) 80 80 80

Secondary air flow rate (Nm3/h) 220,000 220,000 220,000

Secondary air temperature (8C) 243 243 243

Milling load (t/h) 25.10 27.06 25.78

Mean particle diameter (mm) 42.63 49.77 47.82

Main steam temperature (8C) 510 510 510

Gas temperature at boiler exit (8C) 310 310 310

Mean O2 at boiler exit (%) 2.82 3.49 3.53

Table 2

Composition and heating value for the case-study coals

Guasare Unicoal Saif

Proximate analysis (as received)

Moisture (%) 8.45 11.03 7.69

Ash (%) 6.96 4.32 6.19

Volatile (%) 34.16 36.85 35.30

Fixed carbon (%) 50.43 47.80 50.82

Ultimate analysis (as received)

Carbon (%) 70.24 66.94 70.53

Hydrogen (%) 4.68 4.77 4.64

Nitrogen (%) 1.32 1.34 1.41

Oxygen (%) 7.68 11.10 8.84

Sulphur (%) 0.66 0.50 0.70

Heating value (as received)

Gross calorific value (kcal/kg) 7166 6638 6881
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3. CFD modelling of the case-study boiler

A commercial CFD application, CFX 4.4 developed by

AEA Technology, has been chosen to perform the

simulations [15].
Fig. 1. Detail of mesh structure
3.1. Geometry description

Full boiler geometry has been modelled up to the plenum

to make easy the definition of an appropriate boundary

condition at the outlet section and allowing the inclusion of

the radiant superheater geometry in a further development.

The selected mesh is structured and made up of 130,000

square elements. Its size is refined in the nearby of the

burners belt to better characterize the major gradients, and it

is progressively increased in size up to the top of the

furnace. A detail of the burners grid structure is displayed in

Fig. 1, where the square elements in the middle are

considered as solid walls, simulating the zone where the

ignitors and flame detectors are located; the three internal

circular rings simulate the inlet section for coal and primary

air, and the other three external circular rings simulate the

inlet section for secondary and tertiary air.
3.2. Mathematical models

The numerical resolution of the governing equations

implies the modelling of all processes that take place in the

furnace: turbulent flow, coal combustion and mass transfer,

solid particle transport and radiative and convective heat

transfer.

The gas flow is modelled, under the Eulerian assumption,

solving the steady-state Reynolds average Navier Stokes

equations (RANS) along the computational domain. Since

the flow is turbulent, the widely used standard k–3 model of

Launder and Spalding [16] is coupled to close the

turbulence problem. The flow is assumed to behave

similarly to incompressible flow, making the density only

dependent on temperature through a reference pressure rZ
r(T,Pref), a reasonable assumption for problems with Mach

number under 0.3.

Coal combustion modelling comprises volatiles yield

and homogeneous combustion, and char heterogeneous

oxidation. Devolatilization rate is modelled using the single
at the burner belt region.



Table 4

Summary of models used for CFD simulation of furnace performance

Phenomenon Model Reference

Turbulence Standard k–3 Launder and Spalding

[16]

Devolatilization Single-step devolatili-

zation

Badzioch and

Hawsksley [3]

Volatiles combustion Mixed is burnt Wartnatz et al. [17]

Char oxidation Conventional single

filmC

Field et al. [9]

Rank-dependant cor-

relationsC

Hurt and Mitchel [18]

Ash inhibition (CBK) Hurt et al. [11]

Radiation Discrete transfer Lockwood and Shah

[20]

Particles tracking Lagrangian approach

(two-way coupling)
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step model of Badzioch and Hawsksley [3], which states

that the rate of production of volatile gases is given by a

first-order reaction and the rate constant is expressed in an

Arrhenius form. The homogeneous combustion of volatiles

released from the particle are modelled using the mixed-is-

burnt model, see for instance [17], which assumes infinitely

fast chemistry. The instantaneous mass fractions are given

in terms of the instantaneous mixture fraction. The mean

mass fraction of fuel, oxidant and products are obtained

from the mean and variance of the mixture fraction

assuming the beta probability density function, b-PDF.

The process of char oxidation is modelled using the

popular single film char oxidation model developed by Field

et al. [9] coupling both rank-dependent empirical corre-

lations [18] and a specific submodel describing ash

inhibition at the late stages of combustion [11]. As a matter

of fact, the inclusion in this enlarged combustion model of

rank dependant correlations for the global pre-exponential

factor, Aa, and for the global activation energy, Ea,

establishes a direct dependence between char reactivity

and coal properties. These empirical correlations are

suitable for the prediction of coal burning under pulverized

coal conditions in utility boilers: gas temperatures over

1500 K, particle diameters in the range from 75 to 200 mm

and oxygen partial pressures over 0.03 bar [18]. Further-

more, the ash inhibition submodel introduces an additional

diffusion resistance to account for the inhibitory effect of

ash on char oxidation, introducing two new parameters: the

critical ash porosity and the minimum ash film thickness

[11]. All the expressions used in the char oxidation model

are summarized in Table 3: coal consumption rate q (first

row of the table), oxygen diffusion rate kd (second and third

row) and chemical reaction rate kc (two last rows).

The coal combustion model has to be necessarily

combined with a particle transport calculation. A Lagran-

gian approach has been chosen, considering the influence of

a diluted particle phase on the fluid flow, two-way coupling

[19]. Interactions between particles have been neglected.

The total mass flow of particles has been modelled by

tracking a number of 2000 trajectories, assuming that each

simulated particle represents a sample of the real number of

particles.
Table 3

Summary of models used for coal modelling

Global reaction [9] qZ
P0:5

g
1

kd
C 1

kc

Diffusion rate constant [11] kd Z
ShDodpq2:5

af

RTmðShddcCq2:5
af

d2
c Þ

Diffusion coefficient, Jensen and

Mitchell (1993) [20]
Do Z1543!10K4 T1:67

m

P

Reaction rate constant kc ZAa eðKEa =RTpÞ

Empirical kinetics [18] Ea Z4186:9 K5:94C35:5 C
1KZKM

� �

Aa Zexp lnðkc;1750 KÞC
Ea

1750R

� �

10
1013251=2

lnðkc;1750ÞZ2:8K7:58 C
1KZKM
The thermal radiation in the furnace is the dominant heat

transfer mechanism due to the presence of a mixture of

participative gases and particles at high temperature. The

radiative heat transfer has been modelled using the Discrete

Transfer method [21], which solves a transport equation for

the radiation intensity along paths between two boundary

walls. For simplicity, a grey gas model is considered to

evaluate the properties of the gas phase, considering a

constant value for the absorption coefficient over the whole

wavelength spectrum. The influence of the particles, also

participating in the radiative heat transfer, is accounted by

including a specific heat source in the energy conservation

equation. Summing up, Table 4 shows the combination of

models used for performing the CFD simulation of the case-

study boiler.
3.3. Validation of furnace modelling

Besides the main validation of the target prediction of

this paper (unburned carbon in ash level), which is discussed

in Section 4, additional verifications of furnace simulation

correctness are highly desirable. Unfortunately, available

instrumentation in the case-study boiler does not allow a

detailed validation, just limiting it to the prediction of the

oxygen content in flue gases. In fact, this is a usual situation

in large-scale utility boilers, which are conventionally

instrumented for control and safe operation purposes, but

not for undertaking accurate thermal calculations. More-

over, the aggressive environment of high temperatures and

ash particles in the furnace make unfeasible the insertion of
Table 5

Experimental value against numerical prediction for mean oxygen content

in flue gases for the three simulated scenarios

Guasare Saif Unicoal

Mean %O2

plant value

2.82 3.53 3.49

Mean %O2

CFD prediction

3.05 3.35 3.25



Fig. 2. Predicted particle trajectories tracked from different inlets.
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long-term durable measurement probes in most cases,

restricting the on-line available information to very few

gas temperature and oxygen samples at the cold exit of the

boiler convective section [22,23].

Numerical predictions for the mean values of oxygen

content in flue gases show good agreement with available

plant measurements, for the three tested full-load scenarios,

as shown in Table 5. These figures, along with the

predictions of unburned carbon hereinafter discussed,

permit to conclude that the simulation of coal combustion

is reasonable for the variety of coal feedstock tested.
Fig. 3. Velocity flow distribution in the near burner region.
4. Results and discussion

Six simulations have been carried out concerning the

unburned carbon prediction, two for each coal type: one using

the conventional single film char oxidation model and the

other one introducing the modifications to the char oxidation

model already explained in Section 3. A complete simulation,

including fluid flow, coal combustion, heat transfer and

particle tracking, has been performed for each case.

Three large recirculation loops can be typically

distinguished in large front-fired furnaces, which largely

affect the particles trajectories and modify the coal burnout

behaviour. This effect is stronger in the lower burner level

(as shown in Fig. 2 for the case-study boiler), where most of

the particles are captured by the reversed-flow zone in the

bottom hopper region. In addition, interactions between

the inlet flows from neighbour burners and interactions with

the confining walls are significant enough to noticeably

distort the coal particles trajectories.

The near burner region, see flame prediction in Fig. 3, is

highly relevant because volatile matter combustion is

completed in this zone and the recirculating combustion

products provide the heat release needed to ensure flame

stability. Downstream of this core zone, char particles

and combustion gases follow an intricate path through
the furnace to reach the exit. In general, such flow

interactions, vortexes and reversed-flows delay oxygen

and fuel mixing, resulting in larger combustion times, and

therefore, affecting carbon in ash levels.

Once each simulation is completed, particle track files

are generated. Therefore, the amount of unburned carbon in

ash for every specific condition is calculated in a post-

processing task. As it is often reported in the literature, see

for instance [24], char burnout is quite difficult to pinpoint

as an absolute value, but at least generic trends are usually

indicated in a correct way by CFD codes when variations in

parameters like excess air and size of entering particles are

imposed. However, it is more difficult to accurately predict

variations in carbon in ash levels when only fuel properties

are varied. This fact is currently becoming of great

relevance, since coal blends of different origin are usually

burnt together to reduce fuel supply costs.



Fig. 5. Carbon in ash distribution depending on the initial particle diameter

(dp) sieve fractions. dp!50 mm, , 50 mm!dp!125 mm and dpO
125 mm. Dashed line (- - -) represents plant laboratory LOI values and

alternating dash and dotted lines (-$-$-) represent LOI values from

numerical modelling within the correction range.

Fig. 4. Results for Loss of Ignition (LOI). Guasare, Saif and ,
Unicoal.

Table 6

Starting particle distribution mass percentages divided into three sieve

fractions and their final contribution to the predicted total unburned carbon

losses

dp!50 mm 50!dp!
125 mm

125 mmOdp

Guasare %Initial

particles

66.34 27.41 6.25

%Unburned

carbon

52.70 28.90 18.40

Saif %Initial

particles

64.90 28.82 6.82

%Unburned

carbon

50.84 30.37 18.79

Unicoal %Initial

particles

63.40 29.90 6.70

%Unburned

carbon

36.34 34.22 29.44
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In Fig. 4, the results obtained for unburned carbon in ash

levels are compared against the information provided by the

plant laboratory. Independent of the combustion model used

for the calculation, results from CFD simulations are higher

than the averaged data from the plant. This result can be

partially explained considering the ash sampling procedure

followed in the plant. Ash samples provided to the Loss of

Ignition (LOI) test, which measures the heat released from

the ash under standardized conditions for the determination

of the unburned material, are compiled from the hopper of the

first electrostatic precipitator field because of its easy

accessibility. However, before entering the electrostatic

precipitators, combustion gases flows through the econo-

mizer section and through the air pre-heaters, where about

10–20% of the fly ash deposits in both their respective

hoppers and stagnation zones. This percentage depends to a

great amount of non-controlled factors, mainly: gas flow

pattern, ash size distribution and geometrical arrangement of

the circuit (ducts, dampers, elbows, etc.). Considering that

larger unburned coal particles, which reasonably correspond

in most cases to the higher initial diameter particles, are

preferentially deposited in the economizer and air pre-

heaters hoppers, its contribution is in fact being ignored to

account for the overall unburned carbon loss in the LOI test.

To illustrate their relevant influence on the results, Table 6

summarizes the initial percentage of particles classified into

three sieves fractions and their final contribution to the total

unburned carbon losses as predicted by the CFD model.

If the contribution of those larger particles that

presumably do not reach the electrostatic precipitator is

discounted from the final predictions, by means of an

additional CFD post-processing task, the predicted values

for unburned carbon in ash remarkably improve, as shown

in Fig. 5. The figure displays a best approach to the plant

laboratory values, since a decrease is observed once larger

particles contribution is removed. Of course, there are no

sound criteria to select a value for the percentage of ashes

retained in the hoppers of the gas circuit and tentative values

have to be compulsorily considered, moreover, when in situ

verification is technically and economically unfeasible.
Looking back to Fig. 4, predictions from the modified

combustion model follow the same trend for the three

different coals and reproduce the same quantitative

increment as the observed for the plant values, while results

from the conventional single film model clearly differ. The

explanation relies on the inclusion of both rank dependant

correlations that establish a direct dependence between char

reactivity and coal composition and an additional diffusion

resistance that accounts for the inhibitory effect of ash on

oxygen diffusion through the particle. Fig. 6 shows the

comparison of predictions for the averaged oxygen mass

fraction and the gas temperature in the nearby of the particle

as the combustion proceeds for the three case-study coals.

Oxygen mass fraction decreases to a very low value during

devolatilization, which usually takes a time between 0.1 and

0.2 s and where peak flame temperature is reached.

Afterwards, oxygen fraction rises during one second. Since

more than 80% of the conversion takes place in the first two

seconds, only the first 2.5 s have been plotted. From the

laboratory data in Fig. 4, Unicoal presents the lowest carbon

in ash content, while the other coals (Guasare and Saif)



Fig. 6. Oxygen mass fraction and temperature against residence time in the

furnace for the three case-study coals using the conventional single film

combustion model ( ) and the modified combustion model (X).

Fig. 7. Detail of oxygen mass fraction against residence time in the furnace

using the conventional single film combustion model (a) and the modified

combustion model (b) for the three involved coals: Guasare (X), Saif (C)

and Unicoal ( ).
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produce approximately the same level. In consequence,

appreciable differences should arise in the oxygen con-

sumption along the path track by the particles. Results from

Fig. 6 agree with this assumption, showing a very similar

behaviour for the Guasare and the Saif coals, and a very

different one for the Unicoal. To better understand how both
combustion models behave (conventional against modified

one), Fig. 7 plots oxygen concentration profiles for the three

coals together. Using the conventional single film combus-

tion model, Fig. 7a, it is not possible to identify which coal

behaves in a different way. Maximum and minimum oxygen

profiles values alternate from one coal to another at different

time positions. However, using the modified combustion

model, Fig. 7b, Unicoal shows lower oxygen mass fraction

values than the other two coals. Therefore, more oxygen

consumption and higher coal conversion have occurred,

what agrees with the available experimental data.
5. Conclusions

Commercial CFD codes, mostly using simplified models

for coal combustion, clearly fail in the accurate prediction of

unburned carbon losses. To better predict the carbon
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burnout in a large utility boiler, relatively simple modifi-

cations of the combustion models can significantly improve

the predictions. To this purpose, both rank-dependent

correlations and ash inhibition submodel have been coupled

to a commercial CFD combustion model.

CFD simulations have been performed for a case-study

utility boiler, for three different nominal load-operating

scenarios and coal supplies, either coupling a conventional

single film oxidation model or the modified model discussed

in the paper. Results from the study show the disagreement

between plant laboratory experimental data and conven-

tional model predictions. On the contrary, when the above-

mentioned modifications are implemented, trends in

unburned carbon values are in good agreement with the

collected data. In order to further progress in the

development of unburned coal predictive systems, future

mid-term works should go in the direction to fully couple

advanced kinetics models within CFD codes, maintaining

reasonable computing times.
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Abstract

CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling
approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved
by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the
coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach.
Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values.

In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were
obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different con-
ditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict
coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char
oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the
simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: CFD; Coal combustion; Modelling
1. Introduction

Power companies and power equipment makers’ projec-
tions suggest a significant switch from gas to coal as the pre-
ferred fuel in the coming decade. This re-emergence of coal
as a primary fuel for power generation is the result of tech-
nological changes that have reduced the amount of pollu-
tants and particulate emissions to the atmosphere, and
recent international worries about security of gas supply.

The introduction of emissions control techniques and
the increasing competition in the electric generation sector
have raised two main issues which require special attention.
0016-2361/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Firstly, the use of low NOx burners and furnaces can
increase unburned carbon levels thus reducing the thermal
efficiency of the plant, increasing heat exchangers erosion,
reducing the performance of electrostatic precipitators
and the wholesale value of the fly ash [1,2]. Secondly, whilst
traditionally utility boilers were designed for a particular
single coal, blending of coals is today a common practice
to reduce fuel cost, or to overcome a problem with a par-
ticular coal. Blending properties for ignition and burnout
are not additive properties that can be derived from the
components, so this complicates coal burnout predictions
[3]. The requirement that power plant managers must meet
both the environmental regulations and specifications for
an economically profitable coal supply, have resulted in a
new interest in predictive techniques.

In the last two decades, the use of computational fluid
dynamics (CFD) codes, both as a predictive and design

mailto:jpallare@unizar.es


Nomenclature

Ai mass-specific intrinsic reactivity, 1/s (mol/m3)n

Ao initial mass-specific intrinsic reactivity, 1/s
(mol/m3)n

Cdaf dry ash free carbon content in coal (%)
Cp specific heat of the char particle (J/g K)
dc diameter of carbon-rich core (cm)
dp diameter of the char particle (cm)
DM molecular diffusivity of O2 in N2 (cm2/s)
Deff effective molecular diffusivity (cm2/s)
E activation energy for oxidation (J/mol)
f fraction of the total porosity in feeder pores
fmac abbreviated maceral correction factor
In inertinite content in coal (%)
mc mass of carbon in the char particle (g C)
mp mass of the char particle (g)
n reaction order
Ps oxygen partial pressure at particle surface (atm)
P furnace pressure (Pa)

qcmb char burning rate (g/cm2s)
R gas universal constant, 8.3145 J/mol K
Ri intrinsic reactivity of the char (1/s atm)n

Tp temperature of particle surface (K)
Tg temperature of the bulk gas (K)
Tw temperature of the environment (K)
Vit vitrinite content in coal (%)
X overall burnout
Dhf combustion enthalpy of carbon (J/g)
a mode of burning parameter
h overall particle porosity
qp density of the char particle (g/cm3)
qc density of the carbon (g C/cm3)
s tortuosity
U Thiele modulus for spheres
w1 convective heat transfer coefficient (W/cm2 K)
w2 radiative heat transfer coefficient (W/cm2 K4)
g effectiveness factor
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technique for the improvement of energy systems efficiency,
has complemented other experimental techniques based on
expensive pilot scale tests. In spite of the relative precision
that a CFD code can give to describe the complex fluid
dynamics that take place in the boiler of a power plant, it
becomes of doubtful accuracy when detailed coal combus-
tion performance is investigated, particularly carbon burn-
out because of the complexity of the process. The reason is
that commercial CFD codes still use simple devolatilization
and char oxidation sub-models. Although previous work
has shown that introducing simple modifications on the
combustion model can significantly improve CFD burnout
predictions [4], they still fail to predict precise quantitative
values of burnout [4,5] because these changes do not accu-
rately account for variations in reactivity and internal pore
structure during the combustion process.

In order to obtain more accurate predictions on coal
burnout a different approach was developed which com-
bines CFD tools to account for detailed fluid dynamics,
and a more detailed combustion kinetic model to account
for carbon burnout. CFD calculations for a 63 MWe front
wall fired unit under different conditions for coal supply
and boiler operation were solved to obtain oxygen partial
pressure and temperature profiles for a number of repre-
sentative particles. Then these profiles were used as input
for the detailed combustion model to obtain carbon burn-
out. Devolatilization was modelled using a macromolecu-
lar network pyrolysis model (FG-DVC) [6], whilst for
char oxidation an intrinsic formulae based on the carbon
burnout kinetic model (CBK8) that allows the transition
to Zone I was used [7]. It also includes a correction factor
to account for the effect of coal maceral content on char
properties and reactivity [8,10,11]. Predictions from the
burnout model were compared against plant data.
2. Computer model methodology

It was important to develop a methodology that com-
bines a detailed treatment of the fluid dynamics, furnace
environment and the kinetics of combustion. Devolatiliza-
tion of the coal and char combustion are both influenced
not only by the properties of the parent coal, but also by
the temperature–time history which the coal particle expe-
riences during combustion. The CFD solution contains
such information for hundreds of particles with different
sizes. Every single particle trajectory across the flow
domain is unique and depends on the coal milling opera-
tion and boiler conditions, such as particle size, inlet posi-
tion, excess air, primary to secondary air mass flow ratio,
burner tilt, swirl number, burner to burner interactions,
uneven mass flow distributions in the boiler, air in-leakages
and particle–wall interactions. Therefore the first step lies
in solving the CFD code to obtain the overall furnace
conditions. At the same time, a first approximation of the
carbon burnout solution was obtained. Then the variations
in gas temperature and oxygen partial pressure for every
particle tracked in the CFD simulation were introduced
in the detailed combustion model together with the size dis-
tribution and the fuel-related properties obtained experi-
mentally in the plant laboratory. This combustion model
includes a network pyrolysis sub-model for devolatilization
and an intrinsic sub-model for char oxidation.

2.1. CFD sub-model

A commercial CFD program, CFX 4.4, was used to
perform the calculations [12]. Furnace simulations were
undertaken on a mesh of approximately 150,000 cells
shown in Fig. 1 and 2000 representative coal particles were



Fig. 1. Boiler computer grid structure.
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simulated. Gas flow was modelled solving the steady-state
Reynolds averaged Navier–Stokes equations (RANS)
along the computational domain, using the standard
k � e model [13] to close the turbulence problem. Coal dev-
olatilization was modelled using the simple single step
model of Badzioch and Hawsksley [14]. A mixed-is-burnt
model assuming infinite fast chemistry and a beta probabil-
ity density function, b-PDF was used for the combustion of
volatiles. Char oxidation was modelled using the Baum and
Street approximation [15] coupled with both rank-depen-
dent empirical correlations [16] and a specific sub-model
describing ash inhibition at the late stages of combustion
[17]. Radiative heat transfer was modelled using the Dis-
crete Transfer method [18] assuming a grey gas model to
evaluate the properties of the gas phase.

In order to validate the CFD model, predictions on the
oxygen content in flue gases were compared with available
plant measurements for the scenarios tested, showing good
agreement as shown in Table 1. This table, along with the
predictions of burnout hereinafter discussed, permit to
conclude that the simulation of coal combustion was
reasonable for the variety of coal feedstock tested.
Table 1
Experimental values compared with numerical predictions for mean oxygen co

Case 1 Case 2 Case 3 C

Mean % O2 plant value 2.63 3.57 3.1 3
Mean % O2 CFD prediction 3.18 3.91 3.52 3
2.2. Devolatilization sub-model

It is well know that the devolatilization rate and yield
increases with temperature and heating rate, and ultimately
determines the porous structure and the number of active
sites of the char residue, thus its reactivity. Porosity is par-
ticularly important because it controls the rates of diffusion
of chemical species into and out of the char particle during
combustion when that takes place under internal diffusion
controlled conditions [19]. Furthermore, under pulverized
fuel conditions the peak temperature to which the coal is
heated reaches 1500–2200 K and the volatiles yield is sig-
nificantly higher than the volatile matter content deter-
mined by the standard ASTM test. This causes a decrease
of the char produced whose oxidation provides the rate
controlling step in coal combustion burn-out [20]. As a
result, the devolatilization step is crucial in the overall
burnout determination.

Mathematical modelling of coal devolatilization is diffi-
cult due to its complexity. Simple models, single rate or two
competing rates are used when the level of detail required is
not very stringent. Nevertheless to predict variations in
yield with reaction conditions (temperature, heating rate,
pressure, particle size and coal type) more detailed models
which predict the evolution of tar, gas and char, major spe-
cies yield and local concentrations must be used. There are
a number of such commercial computer codes, FG-DVC,
FLASHCHAIN and CPD that predict the rate of the vol-
atile release and the composition of key species linked to
the resulting macroporous and microporous structure of
the char [6]. Because of its applicability to a wide range
of coals (subbituminous, bituminous and lignites) and
heating rates (0.05–105 K/s), and its ability to predict the
variations in species yield with reactor conditions [6],
FG-DVC was used in this work.
2.3. Char oxidation sub-model

The overall burning rate of a char particle is determined
by the oxygen transport to the particle surface and the
reactivity of the char, which depend on the temperature
and composition of the gaseous environment and the size,
porosity and temperature of the particle (see Eq. (1)) [21]

qcmb ¼ f ðT p; P s; g;Ri; n; dp; qp; hÞ ð1Þ

The intrinsic reactivity of the char, Ri, was expressed in the
form:

Ri ¼ Ai � expð�E=R � T pÞ ð2Þ
ntent (vol.%) in flue gases for the nine simulated scenarios

ase 4 Case 5 Case 6 Case 7 Case 8 Case 9

.63 3.21 3.37 3.31 3.02 2.89

.81 3.48 3.45 3.31 3.06 2.97
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There is a wide spread of activation energy values E in the
literature [7,9,11,21,22]. A value for E of 167 ± 5 kJ/mol
was used based on the validation of the model for the type
of coals used in this work (172 kJ/mol for Guasare, 167 kJ/
mol for Carboandes, and 162 kJ/mol for Russian). How-
ever, Arrhenius expressions with constant kinetic parame-
ters cannot account for the changing reactivity occurring
during burnout. A deactivation function, proposed by
Lans et al. [23], was introduced in the model in order to ex-
press reactivity loss by thermal annealing as a function of
char conversion (see Eq. (3))

Ai ¼ A0 � ð1� X Þ0:5 ð3Þ
where X represents the overall burnout of the char particle
and A0 the initial mass-specific intrinsic reactivity based on
the dry, ash-free carbon content of the parent coal, corre-
lated for a wide range of coals by Hurt et al. [17] (see
Eq. (4))

logðA0Þ ¼ 14:97� 0:0764 � ð%CdafÞ ð4Þ
The effectiveness factor, g, was obtained from the integra-
tion of the mass balance of the reactive for a porous spher-
ical particle under catalytic reaction, assuming a first order
reaction (see Eq. (5)) [7]

g ¼ 1

U
cothð3 � UÞ � 1

3 � U

� �
ð5Þ

where U is the Thiele modulus that combines the reaction
and diffusion phenomena as is shown in Eq. (6) [7]

U ¼ dc

6

nþ 1ð Þ � qp � Ri � P s=R � T p

� �n�1

2 � Deff

 !0:5

ð6Þ

To account for the porous nature of the char and the fact
that the oxygen penetrates the porous structure and reacts
on the internal surface area, the effective diffusivity to the
interior of the particle was modelled according to Eq. (7)
[7]

Deff ¼ DM �
h � f

s

� �
ð7Þ

where h is the total porosity of the particle, s/f is a carbon
pore structure parameter which was set to 6 [7], and DM is
the bulk diffusion coefficient given by Eq. (8) [24]

DM ¼ 1:543 � T p

� �1:67
=P ð8Þ

The transition from Zone II to Zone I reaction mode is the
result of the extinction phenomena in the late stages of
combustion. To explain this behaviour, different mecha-
nism, including reactivity loss by thermal annealing and
ash inhibition effects, have been considered [7]. The former
was already introduced in the model through Eq. (3). The
latter was accounted for the inclusion of an additional dif-
fusion resistance in the mass transfer coefficient used for
the determination of the oxygen partial pressure at the out-
er core of the char particle. This diffusion resistance was
expressed in terms of the ash film porosity, ash film thick-
ness and particle core diameter. These variables are
computed from the char particle size and density evolution
of the particle during combustion, which were modelled
relating the char particle density decrease to the carbon
conversion and considering a burning mode a of 0.2 (see
Eq. (9)). Swelling of the particle during devolatilization is
accounted by including a swelling factor that modifies the
initial diameter and then the density of the char particle.
This swelling factor was estimated to be 1.10 for the three
coals. Then, the char particle diameter is obtained by
geometric considerations [17].

qc ¼ qc;0 �
mc

mc;0

� �a

ð9Þ

Other important parameter governing char reactivity is the
presence of various coal maceral types. This fact acquires a
greater relevance in coal blends combustion. Typically
northern hemisphere coals are rich in vitrinite, whilst coals
formed in the southern hemisphere have a high inertinite
content [8]. To account for this behaviour, an abbreviated
maceral correction factor, fmac, was introduced when coals
of the southern hemisphere are considered (see Eq. (10)) [11]

fmac ¼ 1:68 � Vit� 0:6 � In ð10Þ

Introducing the above considerations into Eq. (1), the
overall burning rate of a char particle was expressed as
shown in the following equation:

qcmb ¼ mc � g � fmac � Ri � P sð Þn ð11Þ

Although in the scientific community there is no general
agreement on the magnitude of the reaction order with re-
spect to O2, Hurt et al. showed that global power-law
kinetics are capable of correctly describe combustion rates
as a consequence of the heterogeneity of real carbon sur-
faces [25,26]. A value of 0.5 was used in this work.

From an energy balance in the particle, the program
calculates, in every time-step iteration, the particle temper-
ature Tp and the burning rate qcmb by estimating the parti-
cle temperature and comparing the combustion rates in an
iterative process until the error is driven to zero (Error
Tp < 0.1 K). The oxygen partial pressure in the outer sur-
face is determined in an internal iteration with the guessed
particle temperature value (Error Ps < 0.001 atm)

mp �Cp �
dT p

dt
¼ ðqcmb �DhfÞ �w1 � ðT p� T gÞ �w2 � ðT 4

p� T 4
wÞ

ð12Þ

where Dhf is the combustion enthalpy of the oxidation reac-
tion to CO/CO2 [17], and w1 and w2 are the convective and
radiation heat transfer coefficients, respectively.

3. Results and discussion

To investigate the burnout prediction capability of the
model a total of nine scenarios, presented in Table 2 were



Table 2
Nominal-load operating scenarios from the case-study power plant

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Coal Guasare Guasare Guasare Carboandes Carboandes Carboandes Russian Russian Russian
Mill 1 load (t/h) 12.4 12.53 10.43 13.28 13.06 12.93 13.4 13.44 13.41
Mill 2 load (t/h) 12.44 12.6 10.46 13.3 13.01 13.04 13.27 13.42 13.48
Total air flow rate (kNm3/h) 208.03 218.45 181.41 218.29 215.11 209.39 219.11 218.68 216.73
Primary air flow rate Mill 1 (kNm3/h) 25.28 25.39 23.60 26.03 25.85 25.73 26.14 26.17 26.14
Primary air flow rate Mill 2 (kNm3/h) 25.32 25.45 23.63 26.05 25.80 25.83 26.02 26.15 26.21
Primary air Ta (�C) 80 80 80 80 80 80 80 80 80
Secondary air flow rate (kNm3/h) 157.43 167.61 134.19 166.21 163.46 157.83 166.95 166.36 164.38
Secondary air Ta (�C) 249.9 257 254.39 256.48 254.99 257.29 254.21 254.9 254.18
Mean particle diameter (lm)a 55 55 55 55 55 55 55 55 55

a Rossin Rammler distribution (dpm = 55 lm, nrr = 1.02).
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tested with standard plant instrumentation measurements
gathered at the Lamarmora (ASM Brescia) power station
in the year 2005. Study cases were selected covering the
regular range of variation of mean oxygen (vol.%) in flue
gases (2.5–4%) under full load operating conditions.
Differences among scenarios are the result of the normal
operation of the plant where small variations in conditions
and mass flow imbalances between mills are encountered.
The mills classifiers were adjusted to give a particle size dis-
tribution of mean diameter of 55 lm. The unit studied was
a 63 MWe front wall-fired boiler with four burners
arranged in two rows, natural circulation, single reheat
and two vertical rod mills feeding each row of burners.
In the study, two coals from Central America commonly
used in the plant over the last 5 years (Guasare from Ven-
ezuela and Carboandes from Colombia) and a coal from
Russia, recently used to evaluate its influence on the com-
bustion efficiency, were burned separately. Since no petro-
graphic analysis were available, inertinite and vitrinite
values for Guasare coal were taken from Barranco et al.
[27]. Table 3 gives the standard ASTM proximate and ulti-
mate analysis, and maceral analysis when available.
Table 3
Proximate, ultimate and petrographic analysis for the coals used in the
study

Proximate analysis (as received) Guasare Carboandes Russian

Moisture (%) 6.91 9.60 9.56
Ash (%) 5.75 6.44 7.14
Volatile (%) 35.00 34.17 36.09
Fixed Carbon (%)a 52.34 49.79 47.21

Ultimate analysis (as received)

Carbon (%) 72.75 69.21 65.62
Hydrogen (%) 4.93 4.38 4.66
Oxygen (%)a 7.75 8.38 10.74
Nitrogen (%) 1.27 1.36 1.90
Sulphur (%) 0.64 0.64 0.38

Petrographic analysis

Inertinite (%) 0.24 N/A N/A
Vitrinite (%) 0.76 N/A N/A

a Calculated by difference.
The CFD model was applied to the nine cases. Solutions
in the form of the gas temperature and the oxygen partial
pressure profiles that every representative coal particle is
subject to was obtained, and subsequently used as an input
in the coal combustion kinetic model. Fig. 2 shows an
example of the variation in these temperature and oxygen
partial pressure profiles among particles as a result of the
complex fluid dynamics involved in the problem. This
approach permits the model to be sensitive to the changes
that arise from slight operational condition changes and
uneven flow variations which strongly affects the overall
burnout prediction. This fact represents an advantage over
other zonal-based predictive models which commonly con-
sider a reduced number of zones and particle trajectories.

Then, to determine char and volatile yields, FG-DVC
calculations were performed under conditions relevant to
pulverised coal combustion, namely a heating rate of
105 K/s and final temperature of 1750 K for 150 ms which
have been considered to be appropriate conditions [9,11].
Results presented in Table 4 and Fig. 3 shows a different
behaviour of the Russian coal, which gives the lowest vol-
atile rate and yield at high temperature. This behaviour can
be explained in terms of the cross-linking and bridge break-
ing balance competition on the depolymerization of the
macromolecular network. In general for lower rank coals
crosslinking rates occurs in advanced of the bridge break-
ing, increasing the coordination number of the macromo-
lecular network and thus reducing the yield [28].

Finally, the char burnout sub-model was run for each
scenario, using as inputs the particle size distribution
(Table 2) and coal properties (Table 3), the char and vola-
tiles yield from the FG-DVC calculations (Table 4), the
oxygen partial pressure and temperature profiles from the
CFD simulation (Fig. 2) and the model parameters as
described in Section 2.2. To ensure the convergence of
the particle heat balance (Eq. (12)), a grid refinement in
the CFD model was carried out in the near burner area
to obtain data of key variables approximately every 5 ms.
Additionally, in case the temperature change was greater
than 100 K, the char combustion routine subdivides the
calculations into smaller time intervals by linear interpola-
tion of the bulk variables.



Table 4
Predicted char, tar, gas and (paraffins + olefins) yields (% by FG-DVC for
the y coals studied (105 K/s to 1750 K for 150 ms)

Guasare Carboandes Russian

Char (%) 49.0 45.7 51.9
Tar (%) 34.8 38.0 26.4
Gas (%) 13.4 13.4 18.1
Paraffins + Olefins 2.8 2.9 3.7
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Fig. 3. Devolatilization at 105 K/s to 1750 K for 150 ms, (a) total rate
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Russian coals.

Fig. 2. Oxygen partial pressure and temperature profiles computed by CFD for a number of representative particles of the same diameter (103 lm) fed at
different locations in the same upper burner (Case 1 conditions).
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Results on overall burnout for the model are compared
against the initial CFD predictions and plant data
measurement in Fig. 4. CFD predictions clearly under-pre-
dict the overall burnout as a result of using a simple com-
bustion model that does not account for reactivity loss [4].
On the contrary, the results from the model show that
general trends and quantitative values on burnout are accu-
rately predicted. Small discrepancies can be found for
Carboandes coal, in cases 5 and 6, where the model slightly
differs from the overall burnout value obtained in the plant.
This result can be partially explained by the fact that no
petrographic information were available for this coal, and
thus no maceral correction was applied in the model,
besides the intrinsic uncertainty on the election of the
kinetic model parameters, since no DTF studies were car-
ried on. On the contrary, deliberately changes in the oper-
ation conditions of the plant or mass flow imbalance
situations between burners (see Table 1) that noticeably
distort the particles’ trajectories and thus their combustion
behaviours, are sufficiently resolved for all the coals.
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4. Conclusions

A methodology that combines CFD codes and a
detailed kinetics combustion models for the burnout deter-
mination in a large utility boiler has been developed. Nine
scenarios of the ASM Brescia power plant under real oper-
ation conditions were used to test the model capability for
burnout prediction. Results from the study show a good
agreement in trends and quantitative values, showing a
notable sensibility of the model to arise slight operational
variations. Results also confirm to be acceptable the meth-
odology, formulation and assumptions proposed in this
paper. Nevertheless, whenever is possible it would be desir-
able to obtain an accurate description of the coal kinetic
properties by means of analytical techniques such as
TGA and DTF. Future development of this combustion
efficiency predictive tool will be directed to reduce the
response time which is limited by the CFD code calcula-
tions, but maintaining the model accuracy.
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Abstract 

 

Within the computational methods used for the prediction of unburned carbon, coal combustion 

kinetics models, generally developed from the study of the real combustion process in 

experimental facilities, has the advantage to simulate the coal combustion process in a very 

realistic way.  However, these models need the fluid and thermal behaviour in the boiler, which 

is usually obtained from simplified zonal approaches. The other group of models, namely CFD 

codes, present the opposite features.  That is, they give a detailed description of the thermal and 

fluid dynamics behaviour in the boiler, but they use simple combustion models that cannot be 

used for a quantitative burnout determination.  Moreover, the computing cost can be high and 

cannot be implemented in an on-line predictive system.   

 

The predictive system developed in this work has the same structure as the so-called 

combustion kinetics models, however, it obtains the fluid and thermal description through CFD 

simulations.  To solve the handicap of the high computational cost needed to run a CFD 

simulation, a neural network system is used to reproduce the solutions given by the CFD code.  

Moreover, a neural network system permits to interpolate in the range of variation used during 

the training stage, and thus, a predictive system covering the whole operational range of the 

plant can be obtained.    

 



 

Results from the predictive system have been compared against those gathered at Lamarmora 

power plant (ASM Brescia, Italy), after carrying out a statistical study for validating and 

determining the prediction capability of the system.  The comparison of both sets of data 

permits to conclude that the system predicts reasonably well over the whole range of operating 

conditions of the study plant.   

 

Keywords: Unburned carbon; Coal combustion; CFD; Neural Networks  

 

Introduction 

There exist many approaches, experimental and computational, to develop an unburned carbon 

predictive system.  Experimental approaches are very useful in design studies.  However, for the 

daily monitoring of a real plant, the computational methods offer a flexibility as well as a saving 

of time and money, over current experimental facilities.  Within the computational methods 

regularly used, CFD codes can precisely characterize the processes that take place inside the 

furnace.  Despite this, for the study of unburned coal in utility boilers, these codes have two 

important drawbacks.  Firstly, for the heterogeneous char particle combustion modelling, these 

codes rely on simple models, that prove to be inadequate for obtaining quantitative values of the 

combustion process.  To solve this difficulty a methodology based on obtaining temperature and 

oxygen partial pressure profiles for a representative number of particles, that are entered in an 

advanced combustion model using a CFD code is used [1].  The second disadvantage of CFD 

codes is their typically high computational cost as creating and solving new simulations may 

take several days, which makes the use of this kind of tool in taking in situ real plant decisions 

impossible.  Thus, in the development of predictive systems for combustion, some authors 

prefer to sacrifice part of the problem information using zonal approaches to solve the fluid-

dynamics [2, 3].  However, these zonal models also present serious limitations such as the 

impossibility to correctly characterize many relevant factors that affect the combustion process 

i.e. primary and secondary air mixing, swirling intensity, burner to burner flow interactions, 

reversed-flow regions or mass flow imbalances.  For that reason, in this work, the use of the 

CFD code as a thermal and fluid-dynamic characterization tool was kept.  To solve the problem 

of the high computational cost, the utilization of a neural network system that generates the 

oxygen partial pressure, and temperature profiles, and the residence time of particles for any 

operating condition is proposed.  In this way, a number of CFD simulations, that are 

representative of the factors influencing unburned carbon losses within the plant operating 

condition ranges, are carried out.  These simulations are then used to train a neural network 

system, so that this system is able to reproduce the solutions given by the CFD code.  As in the 

case of the CFD code, the solutions from the neural network system are given in the form of 

oxygen partial pressure and temperature profiles, and particles residence times, to run 



 

immediately after an advanced combustion model.  The advantage of introducing the neural 

network system in this way, is that it is possible to perform the calculations in a short period of 

time (less than a minute), and therefore, it can be used in the construction of an on-line 

predictive system.  Another advantage is that, if the neural network system is appropriately 

trained, considering the variations and interactions of all parameters affecting unburned carbon 

formation, this system permits to interpolate in the range of variation used during the training 

stage. Thus, a predictive system covering the whole operational range of the plant can be 

obtained.   

 

Throughout the paper, the development of the neural networks model is described: design of the 

neural network system structure, training of the system from a number of CFD simulations of 

the plant, and finally, its validation.  Then, the construction of the unburned carbon prediction 

system (UPS) from the coupling of the neural network model and the advanced combustion 

model is described.  Finally, the system is validated using standard plant instrumentation 

measurements gathered during three months at Lamarmora plant (ASM Brescia) under different 

operation conditions.  From these results, an evaluation of the system is assessed, hinting at the 

most significant conclusions.  

 

2. Neural network model  

Neural networks form a set of programming and controlling techniques within the subject of 

Artificial Intelligence, which allows a system to learn; that is, recognize patterns and predict the 

behaviour from a number of training data [4].  The use of neural networks present many 

advantages over more traditional techniques.  Firstly, they use simple mathematical 

calculations, reducing the computational cost, which allows them to be used in an on-line 

application.  Moreover, these systems are very robust and fault-tolerant.   

 

The construction of the network system is carried out through an iterative process through the 

design, training and validation stages.  The choice of the neural network architecture is one of 

the most important stages in designing the system.  The first step consists of selecting the most 

suitable type of neural network for the problem.  At this point, a Feedforward network type was 

chosen, since, as opposed to other designs, it has a great generalization capability and generates 

reasonable outputs even when the inputs have not been explicitly defined during the training 

stage.  The hidden layer is made up of sigmoid type neurons since they allow the simulation of 

both linear and non linear systems.  The output layer is formed by linear type neurons to allow 

the network to simulate any function without discontinuities.   

 



 

The outputs of the system are the oxygen partial pressure, the temperature and the residence 

time of each particle.  The system can be constituted with different architectures using multi 

input-multi output networks (MIMO) or multi input-single output networks (MISO).  The 

former architecture may save efforts in the design process, since a single network that produces 

several outputs is used.  However, since the weights of the network are the same, the 

convergence of one output will determine the convergence of the others therefore complicating 

the process.  In this way, it is advisable to use MIMO networks when the simulated outputs bear 

a similar relation to the inputs and depend on similar parameters.  In this work, two independent 

neural network systems were chosen: a MISO network to generate the particles’ residence time, 

and two-outputs MIMO networks to obtain the oxygen partial pressure and temperature profiles.  

The initial design of the oxygen partial pressure and temperature neural network was built using 

a single MIMO network for the whole operational range of the plant.  However, large 

differences in the behaviour of the simulated profiles between full and partial load conditions 

were found.  Therefore, separate networks for both load conditions were used.  Similarly, since 

the case-study unit is equipped with four burners arranged in two rows of two burners each, in 

order to improve the convergence and accuracy of the results, separate networks for the upper 

and lower row of burners were considered.  As a consequence of these modifications, the final 

design of the oxygen and temperature profiles network was formed by four MIMO networks.  

As far as the residence time network was concerned, a high fitness allowed only one MISO 

network to be adopted for the whole operational range. 

 

The choice of the inputs must contribute to achieve the simplest possible model.  For this 

reason, a carefully selection of the inputs must be done, improving the convergence of the 

problem.  From a factorial analysis, which established the most relevant parameters affecting 

carbon losses, the inputs for both neural networks were selected (a – residence time network; b 

– oxygen and temperature profiles network): 

• Load (full or partial load): 1 input a,b 

• Excess O2: 1 input a,b 

• Air to coal mass flow ratio: 1 input a,b 

• Particle diameter: 1 input a,b 

• Uneven mass flow distributions among burners and mills: 4 inputs a,b 

• Burner position (upper or lower row): 1 input a  

• Starting feeding position of the particle in the burner: 1 inputs b 

• Time: 1 input b 

 



 

The hidden layer gives the network the capability of reproducing non linear effects.  Since, in 

Feedforward neurons the hidden layer is made up of sigmoid functions which by themselves 

have the capability of simulating these non linear effects, it is enough to include one single 

hidden layer and thus reduce the complexity of the network.  Next, the number of neurons that 

will constitute the hidden layer is determined.  Increasing the number of neurons is equivalent to 

increasing the degrees of freedom of the system, which means that the network will be able to 

reproduce more accurately the training data.  However, an excessive number of neurons should 

be avoided, since it will result in an overtraining situation.  On the contrary, reducing the 

number of neurons, increases the network capability to generalize, at the expense of a decrease 

in the accuracy.  It is necessary to balance both situations.  Usually, the number of neurons is 

determined according to previous experiences, and then, from the results, an iterative process 

for the proper selection of the number of neurons is carried out.  In general, it is preferable to 

start with a reduced number of neurons, and then  increase this number by one unit at a time 

until the addition of a new neuron does not improve anymore the convergence of the problem.  

The hidden layer of the residence time network is formed by 20 neurons, whilst the oxygen and 

temperature profiles networks are made up of 15 neurons each.   

 

Before starting the training of the neural network, a pre-treatment of the input data in order to 

expedite the learning process was carried out, removing from the training set any error in the 

inputs.  Besides, the input and output data were normalized in the range -1 to 1.  In this way, the 

range of values for all the inputs is the same, and as a consequence, the training is faster, and 

accuracy problems in the variables with lower values are avoided.   

 

In order to obtain the data used to train the neural network, a design of experiments based on 

factorial analysis was carried out, in such a way that three levels of the most relevant factors 

affecting carbon losses (Excess oxygen, primary air to coal mass flow ratio, particle size, 

fuel/air mass flow imbalances through burners) were included, differentiating between full and 

partial load conditions.  In order to completely characterize this design, 72 CFD simulations 

were carried out using a commercial application, CFX 4.4 (AEA Technology plc.) running on a 

Windows machine, Pentium IV X-dual processor 2.8 GHz, 2 GB RAM each.  Once the 

accuracy of the numerical resolution was verified, we proceeded with the validation. For that 

purpose, the oxygen values at the exit of the boiler obtained in the simulations were compared 

against the predetermined values for each case.  Figures 1.a and 1.b show the results obtained, 

and allows us to accept the correctness of the simulation. 

 

For training the networks, the Levenberg-Marquardt algorithm with Bayesian regularization 

implemented in MatLab (trinbr), was used.  This algorithm uses an approximation technique 



 

based in Newton’s method.  In this way, the network learns by modifying the weights vector of 

the neurons.  The Levenberg-Marquardt algorithm as compared with other training methods, 

gives the fastest response with a minimum convergence error.   In addition, the Bayesian 

regularization provides the training algorithm with a superior generalization capability.  This 

technique modifies the optimization function, including the quadratic sum of the network 

parameters (weights and bias) into the sum of the quadratic errors.  This way, at the same time 

as the error is reduced, the network parameters are reduced too, so that the network generates 

softer responses that contribute to avoid overtraining situations [5].  The stop criterion for the 

training was reached when the quadratic errors and the weights remained relatively constant.  

 

The validation process lies in verifying the correlation and generalization capabilities of the 

network.  The validating methods widely used in the research community are based on graphical 

techniques.  These kinds of methods vary also depending on the type of output that needs to be 

validated.  As a result, in this work, two different graphical techniques to validate the residence 

time network and the oxygen and temperature profiles network were applied.  For the former, a 

correlation graph that shows the comparison of the simulated and real data was used.    In this 

way, it is possible to verify the fitness and the range of values where the best fit is attained.  

Figure 2 shows a good fitness for the residence times generated by the neural network over a 

wide range of values (4 s – 25 s), which covers the most probable variation of this parameter.  

With regard to the oxygen and temperature profiles networks validation, the most suitable 

graphical method to validate these is to represent together the real and simulated values as a 

function of time.  Since the final use of the network lie in generating oxygen partial pressure 

and temperature profiles as a function of time for a particular operating condition; it is 

appropriate to verify if the simulated data adequately reproduces the oxygen and temperature 

profiles obtained by the CFD code for a wide range of conditions.  Since there is a large number 

of profiles for each output (72 simulations x 1920 particles = 138240 profiles), the validation is 

a tedious and difficult task.  So in order to interpret and compare the results, average 

temperature and oxygen profiles in five sieve fractions (< 30 μm, 30 – 60 μm, 60 – 90 μm, 90 -

120 μm, > 120μm) were represented for each burner and simulation case considered. In addition 

to the seventy two CFD simulations used for the model development, twenty additional 

simulations were also considered in the validation.  Figures 3.a and 3.b show two examples of 

the validation process for the averaged profiles.  In the same way, similar results were obtained 

for the rest of cases considered in the validation, thus leading us to the conclusion that the 

neural networks system adequately reproduces the profiles obtained by any CFD simulation in 

the operational conditions range of the study plant. 

 



 

The goal of generating these profiles is to use them as inputs in an advanced combustion model 

to determine the combustion efficiency within the furnace. Therefore, it is worthwhile to look at 

the time scales of Figure 3 to appreciate in detail the quality standard of the profiles and their 

influence on the later combustion calculations.  It is only during the first 500 ms, when most of 

the combustion process takes place, when the neural network system is used to generate data 

every 5 ms; that is, 100 discrete points are obtained.  From 0.5 seconds residence time onwards 

the time step has been progressively increased to save on computing time, as long as the coal 

conversion has been completed and the temperature and oxygen gradients are reduced. 

Furthermore, if computing processing power is not an issue it is possible to keep the time step 

increment of 5 ms due to the large amount of data used in the training stage from the CFD 

simulations i.e. around 100 million data points. 

 

2. Combustion model 

The development of the combustion model is focused on the reactions that take place on the 

particle surface, that is, devolatilization and char oxidation. Devolatilization was modelled using 

a commercial macromolecular network pyrolysis model (FG-DVC) [6].  Char oxidation was 

modelled and programmed in Fortran using a developed intrinsic formulae based on the carbon 

burnout kinetic model (CBK8) [7], that allows the transition to Zone I and includes the variation 

in the porous structure and reactivity of the char as combustion proceeds, mineral matter effects, 

and the influence of coal’s maceral content [1].   

 

 

3. Unburned carbon prediction system 

The unburned carbon prediction system is formed by the union of the neural network system 

with the advanced combustion model.  The combination of predictive techniques, that are 

generally used isolated, allows us to unify the following advantages within the same system: 

fluid dynamics and heat transfer from CFD codes, detailed chemical kinetics from advanced 

combustion models, and reduced computing cost and interpolation capabilities from neural 

networks.  Figure 4 shows the final structure of the predictive system. 

 

The order sequence for running the system is simple: For a given boiler condition, the system 

starts the neural network system and generates an output file containing the temperature and 

oxygen partial pressure information for the particles in the furnace, as well as their residence 

times.  Immediately after this output file has been generated, the coal properties are also 

introduced as an input in the coal combustion model to determine the unburned carbon in ash.  

The combustion model is divided into two subroutines corresponding to the devolatilization and 



 

char oxidation stages.  The former determines the amount of volatiles yielded together with the 

resultant char residue in which the intrinsic char oxidation model is applied.   

 

One of the main advantages of this predictive system is the reduced number of inputs (boiler 

conditions and coal properties) required to run the model and their availability at any power 

station: coal load, excess oxygen at the exit of the boiler, primary air to coal mass flow ratio, 

uneven mass flow distributions in the boiler (this input is adapted to the information available in 

the plant), proximate and ultimate coal analysis, petrographic coal analysis (if available), and 

pulverized coal size distribution.  The kinetic parameters of the combustion processes form part 

of a third group of inputs which are directly introduced in the combustion model.  These 

parameters can be either determined empirically by DTF experiments or be approached through 

correlations or databases [1].   

 

3.1 Validation and discussion 

The validation of the unburned carbon prediction system is carried out using standard plant 

instrumentation measurements gathered at Lamarmora ASM Brescia power station during the 

year 2005 (January – March 2005).  Study cases were obtained covering the regular range of 

variation under full and partial load conditions.  In the study, two coals from Central America 

commonly used in the plant over the last 5 years (Guasare from Venezuela and Carbonandes 

from Colombia) and a coal from Russia, recently used to evaluate its influence on the 

combustion efficiency, were burned separately.  Proximate, ultimate and petrographic (when 

available) analysis for these three coals are presented in Table 1.  Generally, petrographic 

analysis is not performed in power plants.  In such case, we can make use of databases, where 

coals from all over the world are catalogued.  In this work, since no petrographic analysis was 

available, inertinite and vitrinite values for Gausare coal were taken from [8]. 

 

The average computational time for each case calculation, using an Intel Core 2 DUO 6300 

(1.86 GHz, 0.86 GB de RAM) machine, was less than one minute.  Figures 5.a and 5.b show the 

dispersion diagrams for the carbon-in-ash values gathered at the plant during the test period 

against the calculated values from the predictive system, under full and partial load conditions.  

 

Figures 5.a and 5.b indicate an adequate correspondence with plant data and calculated values 

from the predictive system, since the cloud of points are close to the bisector of the first 

quadrant for both diagrams.  Next, it was necessary to analyze, separately, the results obtained 

under full load conditions where the variation in the operating conditions is slight and the results 

obtained under partial load conditions where this operational range is larger.  As a result, the 

fitness of the model under full load conditions (Figure 5.a) shows a good agreement for the 



 

three study coals.  Focusing now on the more distant points from the bisector, it is not possible 

to identify the reason for this inaccuracy, since the operating conditions in those cases were very 

similar to the ones in other cases where the carbon-in-ash values were apparently “normal”.  

Consequently, these “fault points” may have been due to the data gathering process or due to 

other factors not included in the instrumented controls of the plant and therefore not considered 

in the model development.  Fortunately, these “fault points” represent a negligible percentage 

and do not affect the general conclusions of the model.  With regards to the results under partial 

load conditions (Figure 5.b), there exists a larger dispersion between plant data and the 

calculated values from the predictive system.  The reason for this discrepancy can be explained 

from a fluid dynamics point of view.  Of course, under partial load conditions the stratification 

of the conditions within the boiler is more relevant than in the case of full load conditions where 

there is a greater uniformity in the temperature and oxygen partial pressure profiles.  Starting 

from this assumption and taking into account that neural networks average and interpolate those 

values in the furnace, the results found are not strange.  In fact, this behaviour illustrates one of 

the biggest challenges of the problem and thus, where an increased emphasis in the neural 

networks system development have been placed.  Designing a neural network with a higher 

number of neurons would improve the fluid and thermal description within the furnace.  

However, an excessive number of neurons should be avoided since it would result in an 

overtraining situation leading to a decrease in the generalization capability of the network.  

Consequently, in order to find a balanced situation, we opted for complicating the neural 

networks system design by considering different networks for the upper and lower row of 

burners and including the starting feeding position of the particles within the burner. Finally, an 

iterative process to select the most suitable number of neurons for the problem was carried out. 

 

Additionally to the correlation diagrams in Figures 5.a and 5.b, a statistical study to analyze in 

detail the correspondence existing between plant data and the values calculated by the predictive 

system was performed.  For this, the statistical distributions of both data sets (plant data and 

system predicted values) were compared.  Since the distributions type was unknown, the 

Anderson-Darling normality test for both sets was carried out.  Figures 6.a (Full load) and 6.b 

(Partial load), show the probability diagrams obtained from the Anderson-Darling test, overlaid 

for both data sets and including the limits corresponding to a confidence level of 95 %.  The 

interpretation of Figures 6.a and 6.b suggests that both sets are not normal (p-value < 0.005).  

Therefore, in order to compare both distributions, we should make use of the mean, standard 

deviation, and the probability diagram itself.  Under full load conditions, the comparison of the 

probability diagrams together with mean and standard deviation for both sets shows a good 

agreement.  On the other hand, under partial load conditions the correspondence with the mean 



 

is in agreement, but there exists a discrepancy in the standard deviation.  These results confirm 

the discussion presented for Figures 5.a and 5.b.   

 

It is also noticeable that Figures 5.a and 5.b show a clear distinction between the three coals in 

the results.  Obviously, carbon-in-ash values depend on the mineral matter content of the coal.  

Therefore, in order to obtain a rigorous estimation of the accuracy of the unburned carbon 

prediction system, it is necessary to view the results in the same base line i.e. the overall 

burnout. 

 

The last step in the development of the system lies in determining and expressing the global 

accuracy of the model.  To achieve this, the statistical distribution of the overall burnout 

prediction error, calculated by difference of the plant data and the values predicted by the 

system, was analyzed.  Again, the Anderson-Darling normality test was applied, this time giving 

a positive result for the test (p-value = 0.012), as can be seen in Figure 7.  It is outstanding that, 

in spite of the fact that the p-value is small, a leptokurtic distribution (kurtosis = 0.558172) was 

obtained, showing a smaller concentration of points in the extremes with a greater concentration 

around the mean value. This gives an extra confidence in the results obtained when analyzing 

the normal distribution.  Another important result is that the mean is moved a little from zero, 

which means that the model slightly overpredicts burnout.  This result is not worrying, since it 

is very small (0.071778), but it should be considered in the construction of the confidence 

intervals.   

 

Taking the values of the 95.5 % confidence interval for the mean and standard deviation from 

Figure 7, it is possible to define an interval for the prediction error of a punctual estimation, 

with a 95.5 % confidence level.  That is, 95.5 % of the probability mass of the prediction error is 

inside the interval [μ - 2σ , μ + 2σ].  Consequently, the error for a punctual estimation (EBnt) can 

be expressed according to Eq. (1).  

%82.02 ±≈⋅±= σμBntE        (1) 

Since the mean of the distribution is moved from zero, the lower extreme of the interval of Eq. 

(1) is in fact – 0.75 %.  However, to simplify the interpretation, the error has been expressed 

using a symmetric interval from the higher value (0.82 %) according to Eq. (1), so that the 

confidence level is in fact higher than 95.5 %.    

 

In addition to the determination of the prediction error for a punctual estimation of the model, it 

is advisable to give the averaged prediction error for a set of random estimations.  This practice 

is especially suitable in the case where using an on-line data acquisition system that collects 



 

data in short periods of time and, due to the fluctuations, target control variables are usually 

expressed as an average.  Following this analysis, the average error for a number of random 

estimations (no > 30) for a 95 % confidence level (α = 0.05) is within the interval defined in Eq. 

(2). 
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Again, a symmetric interval has been given, notwithstanding that the mean of the distribution 

has moved from zero, and so, the lower extreme of the interval of Eq. (2) is in fact – 0.07 %.   

 

In order to obtain an indicator of the model accuracy in terms of the unburned carbon in ash 

(%), we can make use of the Kurose’s et al. [9] expression (Eq. (3)). This leads to expressions, 

that depend on the material matter content of the coal and the burnout. 
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Where Z is the ash content (%), and CIABnt is the carbon-in-ash value corresponding to a 

burnout level (%, coal basis) BntUPS. 

 

Depending on the type of error that is used in Eq. (3), punctual or averaged for a number of 

random estimations, we will obtain respectively both expressions for the accuracy of the model.  

Considering the most disadvantageous situation, Table 2 summarizes the maximum error 

achieved for the three study coals, both for a punctual estimation and for the average of a set of 

random estimations.  It should be noted that the calculated values in this table, are maximum 

errors.  That is, these points would be located at the extremes of the distribution function (close 

to a signification level α/2 or 1-α/2).  Furthermore, it should be remembered that the more 

sharpened the shape of the probability distribution function (positive kurtosis), the more points 

are located around the mean value, and consequently, this shows that the values presented in 

Table 2 are very exceptional.  Finally, it should be considered that none of the prediction errors 

obtained in the study have been discarded from the analysis.  Generally, in statistical studies, the 

values located furthest away from the mean are discarded from the analysis if there is not a 

logical interpretation for them according to the data available in the problem.  In the analysis of 

Figures 5.a and 5.b, it was mentioned that that the more distant points from the bisector did not 

correspond to any apparent reason to infer an error in the model.  In spite of this, we have 

decided to keep these fault points in the error analysis, in order to give a more conservative 

estimation of the prediction error and so taking into consideration the errors derived from the 

acquisition data process.   

 



 

4. Conclusions 

In this work, an unburned carbon prediction system that provides an on-line estimation of the 

unburned carbon in ash for a given operating condition in a utility boiler has been developed.   

 

The final system is formed by a neural network model and an advanced combustion model.  The 

former provides the system with the evolution of the temperature and oxygen partial pressure 

profiles found by the particles in their trajectories across the boiler for the range of operation 

conditions in the study plant.  The other sub-model is the combustion model itself which is 

divided into two subroutines. One corresponding to the devolatilization of the coal particle (FG-

DVC), and the other the char oxidation intrinsic model which includes thermal annealing, 

variations in the porous structure as combustion proceeds, ash inhibition effects, and the 

influence of macerals in the reactivity of the char. 

 

Results from the predictive system have been compared against those gathered at the plant, after 

carrying out a statistical study for validating and determining the prediction capability of the 

system.  The comparison of both sets of data (gathered at the plant and predicted by the system) 

has shown an excellent correspondence in the probability distribution, mean and standard 

deviation along the whole range of situations studied.  The maximum error achieved for the 

burnout prediction is 0.82 % for a punctual estimation, and 0.15 % for the average of a number 

of random estimations.   

 

Finally, the main advantages of the unburned carbon prediction system are presented in a 

schematic way: 

• The system includes a detailed description of the transport phenomena involved in the 

problem by implementing the neural network system which was trained with CFD 

simulations covering the operation range of the plant. 

• The neural network system itself allows us to interpolate for other conditions not 

specifically used during the training stage. 

• The combustion model describes in detail both devolatization and char oxidation. 

• The number of inputs of the predictive system is small and they are available at any power 

station. 

• The computational time, less than a minute, allows us to use it in an on-line monitoring 

system of a power station. 

• The accuracy of the system is good enough in the whole range of operation of the plant, and 

improves the results obtained with other predictive systems based on zonal approaches.  
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Table 1 

Proximate analysis (as received) Guasare Carboandes Russian 
Moisture (%) 6.91 9.60 9.56 
Ash (%) 5.75 6.44 7.14 
Volatile (%) 35.00 34.17 36.09 
Fixed Carbon (%)cd 52.34 49.79 47.21 
Ultimate analysis (as received)    
Carbon (%) 72.75 69.21 65.62 
Hydrogen (%) 4.93 4.38 4.66 
Oxygen (%)cd 7.75 8.38 10.74 
Nitrogen (%) 1.27 1.36 1.90 
Sulphur (%) 0.64 0.64 0.38 
Petrographic analysis    
Inertinite (%) 0.24 N/A N/A 
Vitrinite (%) 0.76 N/A N/A 
 

Table 1. Proximate, ultimate and petrographic analysis for the coals used in the study. 
 
cd Calculated by difference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 2 

 

Table 2. Maximum errors in the prediction of carbon-in-ash values within a confidence 

level of 95 % for the three study coals. 



 

Captions to illustrations 

- Fig. 1. Experimental values compared with numerical predictions for mean 

oxygen content (vol. %) in flue gases for the simulated scenarios: (a) Full load, 

(b) Partial load. 

- Fig. 2. Correlation graph of CFD simulated and neural network prediction 

residence time. 

- Fig. 3. Graphical comparison of temperature and oxygen partial pressure 

averaged profiles simulated by the neural network and the ones obtained by the 

CFD code: (a) Particle size (< 30 μm), (b) Particle size (60 - 90 μm). 

- Fig. 4. Unburned coal prediction system block diagram. 

- Fig. 5. Correlation graph of simulated (UPS) and real (plant) carbon-in-ash 

values (%): (a) Full load, (b) Partial load. 

- Fig. 6. Probability diagrams of simulated (UPS) and real (plant) carbon-in-ash 

values (%): (a) Full load, (b) Partial load. 

- Fig. 7. Statistical distribution of the UPS burnout (%, coal basis) prediction 

error. 
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