000003379 001__ 3379
000003379 005__ 20190219081243.0
000003379 037__ $$aINPRO--2009-088
000003379 041__ $$aeng
000003379 100__ $$aPascau Benito, Antonio
000003379 245__ $$aCell face velocity alternatives in structured colocated grid for the unsteady Navier-Stokes equations
000003379 260__ $$c2008-10-20
000003379 300__ $$amult. p
000003379 520__ $$aThe use of a colocated variable arrangement for the numerical solution of fluid flow is becoming more and more popular due to its coding simplicity. The inherent decoupling of the pressure and velocity fields in this arrangement can be handled via a special interpolation procedure for the calculation of the cell face velocity named PWIM (Pressure Weighted Interpolation Method). In this paper a discussion on the alternatives to extend PWIM to unsteady °ows is presented along with a very simple criterium to ascertain if a given interpolation practice will produce steady results that are relaxation dependent or time step dependent. Following this criterium it will be shown that some prior schemes presented as time step independent are actually not, although by using special interpolations can be readily adapted to be. A systematic way of deriving di®erent cell face velocity expressions will be presented and new formulae free of ¢t dependence will be derived. Several computational exercices will accompany the theoretical discussion to support our claims.
000003379 540__ $$9info:eu-repo/semantics/openAccess$$aEsta obra está sujeta a una licencia de uso Creative Commons. Se permite la reproducción total o parcial, la distribución, la comunicación pública de la obra y la creación de obras derivadas, siempre que no sea con finalidades comerciales, y sempre que se reconzca la autoria de la obra original.$$uhttps://creativecommons.org/licenses/by-nc/4.0/
000003379 6531_ $$aColocated grid
000003379 6531_ $$aUnsteady Navier Stokes
000003379 8560_ $$fpascau@unizar.es
000003379 8564_ $$s432107$$uhttps://zaguan.unizar.es/record/3379/files/INPRO--2009-088.pdf$$zArchivo asociado
000003379 9102_ $$aMecánica de fluidos$$bCiencia y Tecnología de Materiales y Fluidos: Mecánica de Fluidos
000003379 980__ $$aPREPRINT