Design optimization for the measurement accuracy improvement of a large range nanopositioning stage
Resumen: Both an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm ˆ 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of ¿0.1 ¿C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively.
Idioma: Inglés
DOI: 10.3390/s16010084
Año: 2016
Publicado en: Sensors (Switzerland) 16, 1 (2016), 84
ISSN: 1424-8220

Factor impacto JCR: 2.677 (2016)
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 10 / 58 = 0.172 (2016) - Q1 - T1
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 25 / 76 = 0.329 (2016) - Q2 - T1
Categ. JCR: ELECTROCHEMISTRY rank: 12 / 29 = 0.414 (2016) - Q2 - T2

Factor impacto SCIMAGO: 0.623 - Electrical and Electronic Engineering (Q1) - Analytical Chemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Medicine (miscellaneous) (Q2) - Instrumentation (Q2) - Biochemistry (Q3)

Financiación: info:eu-repo/grantAgreement/ES/MINECO/DPI2010-21629-C02-01
Financiación: info:eu-repo/grantAgreement/ES/UZ/PIFUZ-2014-TEC-05
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Ing. Procesos Fabricación (Dpto. Ingeniería Diseño Fabri.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2020-02-21-13:24:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2016-01-13, última modificación el 2020-02-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)