Implicaciones de nanomateriales naturales en procesos de contaminacion

1. INTRODUCCION

Los contaminantes emergentes se definen como “contaminantes sintéticos o de origen
natural previamente desconocidos 0 no reconocidos como tales cuya presencia en el medio
ambiente no es necesariamente nueva ni llevan asociado un control, pero si la
preocupacion por las posibles consecuencias de la misma”. El concepto de “emergente” es
algo difuso dependiente tanto de la perspectiva como del tiempo en el que se hace (Field et
al., 2006). La caracteristica de estos grupos de contaminantes es que no necesitan persistir
en el ambiente para causar efectos negativos, puesto que sus altas tasas de
transformacion/remocion se pueden compensar con su introduccién continua en el medio
ambiente debido a su alta produccion mundial. Para la mayoria de estos contaminantes
emergentes, la incidencia, la contribucion de riesgo y los datos ecotoxicol6gicos no estan
disponibles por lo que es dificil predecir qué efectos sobre la salud pueden tener en seres
humanos y organismos acuaticos (Barceld, 2003a, b). Estos contaminantes son un grupo
variado de compuestos quimicos gque se encuentran entre otros en productos de consumo e
industriales los cuales no estan regulados ni monitorizados y cuya presencia en el medio
ambiente viene siendo constatada desde hace afios a niveles traza sobre todo en aguas
residuales, medio ambiente acuético y aguas de consumo. Conforme pasa el tiempo surgen
nuevos contaminantes emergentes, actualmente este grupo incluye compuestos
biolégicamente activos como farmacos, productos de higiene personal, productos de
consumo domeéstico o de origen agricola e industrial, nanomateriales (NMs) (Chow, 2005;
Colvin, 2003; Klaine et al., 2008; Navarro et al., 2008; Nel et al., 2006, 2013), plasticos
(Cozar et al., 2014; Wright et al., 2013) y recientemente se estan incluyendo con vista al
futuro cercano los liquidos i6nicos y priones (Richardson y Ternes, 2014) junto con los
metabolitos y productos de transformacion que de todos ellos se deriven.

Los recientes avances en nanotecnologia y el correspondiente aumento del uso de
nanomateriales y nanoparticulas (NPs) en casi todos los sectores de la sociedad han
suscitado grandes incertidumbres y preocupacion sobre el impacto de estos sobre el medio
ambiente. El impacto de la contaminacion puede ser especialmente relevante en sistemas
costeros, donde se concentra una parte significativa de la actividad humana y donde van a
parar la mayoria de contaminantes conocidos. Como consecuencia de las actividades
antropogénicas acceden al medio ambiente y finalmente al medio marino: metales traza
(mineria y aplicaciones diversas), plaguicidas (agricultura, industria, aplicaciones

forestales, urbanas o domésticas), aceites e hidrocarburos (vertidos directos y/o resultado



de la combustion de combustibles fosiles o materia organica), detergentes de uso
domestico e industrial, productos farmacéuticos (salud humana y aplicaciones
veterinarias), productos de cuidado e higiene personal (cosmética, higiene, etc.), polimeros
y materiales ignifugos, etc. Las NPs de origen natural (polvo atmosférico, aerosoles
marinos, compuestos carbonaceos...) también se consideran contaminantes emergentes

efectos toxicoldgicos desde un punto de vista clinico, quimico, bioldgico, etc.

Hacia el afio 2008 se estimaba que en el afio 2015 el peso econémico de la nanotecnologia
supondria unos 2,2 billones de euros (Lux Research, 2008 y en libro de Kent), y en el 2017
las ventas de productos nanotecnoldgicos alcance los 48.900 millones de dolares
(www.bccresearch.com/report). A dia de hoy algunos se cuestionan estas cifras y van mas
alla exponiendo que no hay ni habra una industria nanotecnoldgica (www.azonano.com;
www.cientifica.com/the-first-and-last-nanotech-conference/). Mientras que hace unos afios
los compuestos derivados del carbén eran los nanomateriales mas usados a dia de hoy
(Figura 1) segun el inventario de productos de consumo nanotecnoldgicos (CPI) existen

1.814 productos de consumo de 622 compafiias en 32  paises.
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Figura 1. Nanomateriales incluidos en el CPI.

Los productos de salud y bienestar abarcan la mayoria de productos (42% de total) siendo
la plata el material mas empelado (24%). Sin embargo el 49% de los productos no
concretan informacion acerca de la composicion del nanomaterial empleado (Vance et al.,
2015) (Figura 2). Ademas un alto porcentaje de los productos anteriores (71%) y de
productos analizados en Singapur (Zhang et al., 2015) recientemente, no muestran la

suficiente informacion que se estan empleando nanomateriales en esos productos con el
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consiguiente peligro que puede suponer un mal uso de estos, como puede suceder con
cremas solares y su ingesta (Moos et al., 2010).

1 Goods for Children N
b}

Appliances 39
23 "

5, [Food and beverage — ]

Electronics .
49 FiLL]

Cross—cutting .
43

3

152

Home and Garden

Supplements

505

Sporting Goads

Cosmetics

Clathing

Personal Care

2007 2008 2009 2010 2011 2012 2013 2014
Figura 2. Productos disponibles que contienen nanomateriales desde 2007 (Vance et al,
2015).

Actualmente existen cientos de NPs/NMs en uso o en desarrollo que pueden ser
clasificados de diferentes maneras; segin su quimica, origen, morfologia y estado y

situacion en un producto (Lead y Valsami Jones, 2014) (Figura 3).
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Figura 3. Clasificacion de nanomateriales segun su dimension (1), morfologia (2),

composicion (3), uniformidad y estado de agregacion/aglomeracion (4) (Buzea et al.,

2007).

Las NPs de origen natural son méas abundantes (p.ej. millones de toneladas en polvo

atmosférico en un afio) y son bastante mas heterogéneas en tamafio que las NPs artificiales.

A grandes rasgos existen dos vias de acceso de las NPs artificiales al medio ambiente. Una

es intencionada como las medicinas, agentes de diagndstico médico, cosméticos, aditivos y

envases alimentarios (Serpone et al., 2007; Chaudhry et al., 2008; Thomas et al., 2009) y la

otra via es accidental como incendios forestales, erupciones volcéanicas, creadas por

organismos, cristales naturales, exposicion laboral, uso erréneo de un producto,

remediaciones, aguas residuales, incineraciones o transporte (Farré et al., 2011; Rana y

Kalaichelvan, 2013). Segun Matranga y Corsi (2012) para el caso de las principales fuentes

de NPs artificiales hacia el medio acuatico proponen tres vias:

a. Productos de cuidado personal, cosméticos y cremas solares (p. ej. NPs de ZnO y TiO; a

modo de filtros UV en cremas solares)
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b. Aguas residuales, aunque hay poca informacion acerca de como interaccionan las NPs
en los procesos de depuracién de aguas o si las NPs son eliminadas en tales procesos.

c. Aplicaciones antifouling en pinturas para prevenir la adhesion y el crecimiento de

organismos acuaticos sobre los cascos de los barcos.

Debido a la elevada concentracion de electrolitos en el medio marino y estuarios, las NPs
disefiadas basadas en metales (quantum dots, NPs de Ag, de Au...) u 6xidos metalicos
(Ag20, TiO2, Ce0s...) es poco probable que permanezcan con sus tamafios nanométricos
debido a la complejacién con iones del medio (Ag" con CI), agregacion tanto por
mecanismos de hetero y homo agregacién o mediante interaccion con materia organica
natural con iones divalentes dando lugar a agregados de gran tamafio (micras), las cuales se
depositaran en el fondo marino (Nabiul Afrooz et al., 2013; Baker et al., 2013). Algunos

estudios han mostrado toxicidad en plancton marino de NPs de TiO2 y ZnO», aunque
asociada a la formacion de radicales OH  y a la liberacion de iones Zn?* y su

internalizacion por parte de las segundas (Miller et al., 2010; Miller et al., 2012).

Para el caso de contaminantes clasicos (hidrocarburos aromaticos policiclicos, pesticidas,
bifenilos policlorados, metales traza...) la incorporacion de los contaminantes al medio
marino puede producirse a través de fuentes puntuales y difusas. Una fuente puntual es
aquella en la que existe un punto especifico de descarga de contaminantes, como los
vertidos urbanos, los vertidos industriales, navegacion, los vertederos de residuos toxicos y
peligrosos, malas practicas agricolas, rebosados de alcantarillas y los vertederos
industriales (Walsh, 1978, Mason, 2003). Este tipo de fuente ha sido la principal via de
entrada de plaguicidas en rios de Alemania (Reichenberger, 2005). Las fuentes difusas son
aquellas a las que no se les puede derivar de una fuente en concreto, en éstas se encuentran
las escorrentias superficiales, erosion, aplicaciones en cultivos, las aguas subterraneas, la

deposicion atmosférica, etc. (Walsh, 1978; Reichenberger, 2005).

Este trabajo pretende poner la atencion sobre el papel que pueden tener las NPs naturales, y
en concreto las bioldgicas, sobre la contaminacién en el medio marino o como primer

eslabén de la contaminacion marina.



2. NANOPARTICULAS DE ORIGEN NATURAL

Las nanoparticulas naturales estdn presentes desde hace millones de afios (Lippert y
Zachos, 2007) se encuentran tanto en suelos, aire, agua (superficiales y subterrdneas) y
proceden de una actividad quimica natural o biologica. Ejemplos de NPs naturales son los
filosilicatos, Oxidos de metales, sustancias hdmicas, aldéfanos e imogolita en suelos
volcénicos, emisiones volcanicas, NPs derivadas de incendios forestales, o aerosoles
marinos. La posible toxicidad de estas NPs viene dada tanto por los efectos que ellas
mismas puedan ejercer sobre los organismos (problemas respiratorios y oculares) asi como
los posibles entes que puedan transportar como bacterias, hongos, virus y contaminantes
quimicos (Buzea et al., 2007). Las herramientas de anélisis a dia de hoy no sean capaces de
distinguir nanoparticulas naturales de nanoparticulas artificiales por el hombre a bajas
concentraciones en matrices medioambientales complejas (Nowack et al., 2015; Laborda et
al., 2015). Para solventar este problema se emplean diferentes aproximaciones, empleo de
ratios de elementos (Von der kammer et al., 2012), acoplando técnicas o por separado, en
los casos que sea posible, para dilucidar el origen de las nanoparticulas (Laborda et al.,
2015) o bien empleando tecnicas de modelado junto con técnicas analiticas; en donde las
primeras proporcionan una estimacion sobre la presencia de determinadas Nps artificiales
y las segundas proporcionan la caracterizacion fisica de estas dando lugar a la
concentracion total del nanomaterial (Nowack et al., 2015). Debido a que las NPs son
especies solidas la informacion cuantitativa que puede requerirse de ellas puede ser en
concentracion en masa, molar o en nimero. Por otro lado la informacion cualitativa no solo
consiste en la deteccion de la NP sino que también se demanda informacion quimica
(composicion del nacleo y del recubrimiento; si lo hay) y caracterizacion fisica (tamafio,
forma, estado de agregacion/aglomeracion...). Ademas las NPs pueden estar disueltas o
embebidas en una matriz sélida y pueden liberar iones o NPs libres por lo que también
estas especies han de considerarse. La necesidad de toda esta informacién resulta ligada a

la presencia, destino y toxicidad de las NPs.

En muestras ambientales suelen estar presentes tanto NPs naturales como artificiales, lo
que supone todo un reto discernir unas de otras (Figura 4). Los métodos de marcaje
(marcaje de fluorescencia, radiomarcaje, marcaje con is6topos estables) se suelen emplear
para diferenciar NPs artificiales deliberadamente afiadidas a una muestra ambiental. Pero al
tratar con muestras reales los problemas surgen tanto con técnicas que no diferencian la

naturaleza de las NPs como el DLS, pero también con técnicas que detectan NPs
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compuestas de elementos especificos como la ICP-MS trabajando en modo single particle
como acoplada a una técnica de separacion en continuo o mediante el empleo de técnicas
electroquimicas o0 sensores quimicos. Por ejemplo, Von der Kammer et al, (2012)
basandose en el principio por el cual las NPs naturales contienen cantidades significativas
de elementos no presentes en la artificiales, propusieron el empleo de las ratios entre
elementos. Por ejemplo los ratios Ti/Al y Ce/La para la identificacion de TiO2 y CeO: en
materiales bulk, aunque supeditados a su combinacion con AF4-ICP-MS y SP-ICP-MS. En
cualquier, caso estas técnicas solo proporcionan evidencia de la presencia de uno 0 mas

elementos asociados a las NPs y no la naturaleza exacta de tales NPs.

Current Natural sample Current % . L | 9@
: e - Al A
. 2 modeling | ‘analytical | | i | | Yo ! | &
> e -0 o ®
i ok
o - \
Material flow ® A ¥ (M
analysis-models []
A
Further & :
development Size separated sample; splCP-MS FFF-ICP-MS
needed then total [M] analysis analysis analysis

L

T
Further development needed

ENM

=] [}

Nanosized fraction
+ Legend F
@ ' N-NM
Mechanistic B-NM - C-NM '.' + + & ; +

environmental
fate models ANM A . SPM

Figura 4. Esquema representando la complejidad existente a la hora de diferenciar NPs
naturales de Nps artificiales y puesta en juego de técnicas analiticas junto a modelaje

medioambiental (Nowack et al., 2015).

Una nanoparticula bioldgica natural consiste en un conjunto de moléculas o atomos
sintetizados en un sistema biol6gico con al menos una dimension en el rango 1-100 nm.
Estas particulas incluyen estructuras intracelulares como los magnetosomas y ensamblajes
extracelulares como lipoproteinas y virus (Stanley, 2014). Sus funciones son diversas entre
la que se encuentran el almacenamiento de minerales, comunicacion intercelular,
propagacion de material genético, regular el ciclo biogeoquimico, regular el ciclo de
nutrientes, actuar como agentes de organomineralizacion, influir en la muerte del plancton,
interactuar con el cambio climatico o influir en la contaminacion marina (Wilhelm y Suttle,
2000; Bratbak y Heldal, 2000; Rohwer y Thurber, 2009; Brussaard et al., 2008; Danovaro
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et al., 2002, 2008, 2011; Suttle, 1994, 2000, 2005, 2007; Sandaa, 2008; Breitbart, 2012;
Jover et al.,, 2014; Pacton et al., 2014; Stanley, 2014; Weitz et al., 2014). Pese a la
ubicuidad y la importancia en los procesos naturales que desempefian los virus acuaticos y
en concreto el virioplancton, nuestro entendimiento sobre su papel en el océano es limitado
y aun maés en sistemas de agua dulce debido en parte a la inconsistencia metodologica
(Liang et al., 2014; Danovaro et al., 2005; Middelboe et al., 2008b). Debido a las
particularidades de estas NPs las técnicas para su caracterizacion suelen tener el fin de su
identificacion como virus o como subpoblaciones de ellos, en donde se emplean técnicas
de ensayos en placa, anticuerpos, la técnica de dilucidn extincidn en presencia del huésped
adecuado o marcadores moleculares (Brusaard et al., 2010). Para eludir las dificultades que
los métodos de cultivo presentan se emplean técnicas moleculares (p. ej. electroforesis en
gel de campo pulsado, electroforesis en gel desnaturalizante en gradiente...) las cuales
dieron lugar al nacimiento de la ecologia microbiana molecular proporcionando una huella
de la riqueza y la dindmica de las comunidades acuaticas de los virus (Sandaa et al., 2010).
En cuanto a su conteo tres técnicas son las que predominan: microscopia electrénica de
transmision (TEM) microscopia de epifluorescencia (EFM) y citometria de flujo (FCM).
Pese a que los datos obtenidos por estos métodos pueden estar positivamente
correlacionados, los resultados no pueden compararse entre unas técnicas y otras (p. €j.
EFM suele dar valores mas altos que TEM). Incluso dentro de la misma técnica el empleo
de diferentes protocolos lleva a discrepancias en la precision de los resultados (Liang et al.,
2014).

3. NANOPARTICULAS DE ORIGEN BIOLOGICO
Exosomas

Bajo este nombre se han agrupado otros como vesiculas de membrana, vesiculas de
membrana externas, vesiculas bacterianas...las cuales son liberadas desde bacterias,
microbios eucariotas como hongos y parasitos, arquea, y plancton (Figura 5). Fueron
descritos por primera vez en 1980 como nanovesiculas expulsadas mediante exocitosis
(Johnstone et al., 1987). Se caracterizan por tener una doble membrana lipidica externa
compuesta por un alto porcentaje de colesterol y esfingolipidos en cuyo interior alojan una

gran cantidad de proteinas y acidos nucleicos y presentan un tamafio entre 50-169 nm.
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Figura 5. Exosomas liberados desde bacterias (A), arquea (B), hongos (C) y fitoplancton

(Prochlorococcus) (D (Scanlan, 2014; Deatherage y Cookson, 2012).

Se han descrito multitud de funciones entre las que se encuentran la eliminacion de
proteinas de membrana, actuando en la respuesta inmune o transportando de ARN virico
(Petgel et al., 2010; Burger et al., 2013) (Figura 6). Hoy en dia se estan estudiando como
posibles biomarcadores de enfermedades, en vacunas contra tumores o transportadores de
farmacos (Viaud et al., 2010; Jang et al., 2013).
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Figura 6. Impacto de la liberacion de exosomas. A) liberacion de polisacéaridos a la

superficie celular, los cuales a su vez sirven como comunicacion entre bacterias y

arqueas (B). C) en microbios patdgenos liberacion de toxinas entre otras a células
huésped. D) estimulacion del sistema inmune. E) y F) interaccién y presentacion con

antigenos (Deatherage y Cookson, 2012).
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Lipoproteinas

Las lipoproteinas son estructuras autoensambladas complejas rodeadas de una monocapa

ompuestas por lipidos, proteinas especializadas y apolipoproteinas que transportan agua y
lipidos en el medio interno acuoso de vertebrados e insectos (Figura 7).
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Figura 7. Estructura de una lipoproteina

(http://www.slideshare.net/sharimycin/lipoprotein-metabolism-shariq)

Existen cuatro tipos segun su contenido proteico, tamafio y densidad: quilomicrones
lipoproteinas de muy baja densidad, lipoproteinas (de su metabolismo aparece un tipo

Ilamado lipoproteina de densidad intermedia), de baja densidad y lipoproteinas de alta
densidad (Tabla 1).

Tabla 1. Composicion y tipos de lipoproteinas (Stanley, 2014).

Size (nm) Density (g/ml) Total lipid Cholesterol Triacylglycerol Apolipoproteins
content (wt%) ester content (wi%) content (wt%)
Chylomicrons 200-600 «0.94 o0 3 85 A4, B48 C1, C2, C3
Very low density &0 0.94-1.006 o9 18 55 B100, C1, G2, G3
lipoproteins (WLDL)
Low density 25 1.006-1.063 B0 50 10 B100, a
lipoproteins (LDL)
High density 712 1.063-1.210 44 40 ]
lipoproteins (HDL)

Al A2 A5 D, EM

La funcién de estas proteinas es el transporte de triacilglicéridos, ésteres de colesterol y
vitaminas grasas solubles desde el higado hacia tejidos periféricos y viceversa (HDL). Su
capacidad de autoensamblaje, su capacidad para llegar a tejidos especificos y su capacidad

de transporte han despertado gran interés para su uso como agentes de diagnostico y fines
terapeuticos (Lou et al., 2005; Ryan, 2010).
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Ferritina

Es una nanoparticula inorganica producida por bacterias, arqueas y eucariotas. Actlan
como nanocajas proteicas sintetizando y almacenando Oxidos de hierro y secuestrando
iones hierro potencialmente peligrosos (Theil, 2013), ademas presentan propiedades
magnéticas complejas. En eucariotas consta de dos partes, una exterior formando una
coraza hueca (apoferritina) compuesta por 24 subunidades helicoidales; y una parte interior
en donde se alojan hasta unos 4.500 &tomos de hierro (Figura 8). Ambas partes tienen
utilidades por separado ya que la apoferritina puede emplearse para la sintesis de
nanoparticulas (Yamasita et al., 2010) y el nucleo de hierro como agente de contraste (Doll
etal., 2013).

~12 nm Core¢7 nm

A
v

N

Monomer Apoferritin Ferritin
subunit without core with core

Figura 8. Representacion esquematica de aprferritina y ferritina (Yamashita et al.,
2010).

Magnetita

Un grupo de bacterias procariotas llamadas magnetotacticas poseen un organulo
especializado llamado magnetosoma, compuesto por una bicapa lipidica y un ndcleo
magnético formado por magnetita (FesO4) o greigita (FesSs) con un diametro entre 50-70
nm (Figura 9). Una caracteristica que refleja que en la escala nano el “tamafio si importa”
viene dada por el hecho que los cristales de magnetita cuando son inferiores a 35 nm son
superparamagneticos y por encima de este tamafio forman un Unico dominio estable
(Araraki et al., 2008). EI magnetosoma ayuda a las bacterias a alinearse con el campo

magnético de la Tierra y alcanzar regiones de mayor concentracion de oxigeno (Lefevre y

12



Implicaciones de nanomateriales naturales en procesos de contaminacion

Bazylinski, 2013). Aunque la magnetita también ha sido encontrada en otros organismos

como tordos, abejas, moluscos y humanos.

@

%
: 100 nm

Figura 9. Micrografia TEM de una cadena magnetosoma de una célula de

Magnetococcus marinus MC-1 mostrando los cristales de magnetita y la membrana del

magnetosoma (flecha).

Virus

La historia sobre los virus marinos se remonta a la primera mitad del siglo XX cuando se
observaron y aislaron los primeros bacteriofagos (fagos) marinos por primera vez (ZoBell,
1946; Spencer, 1955) (Figura 10).
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Figura 10. Esquema del desarrollo de la ecologia viral (Rowher y thurber, 2009).
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Aunque su presencia no fue explicada hasta la hipotesis del “ciclo marino microbiano”
(Figura 11) (Pomeroy, 1974) y no fue hasta finales de los afios 80 cuando se reconocio la

abundancia de los virus y su impacto en los oceéanos (Bergh et al. 1989).

Figura 11. Virus y el ciclo microbiano, mostrando el papel de los virus como motores de
la produccion de materia organica disuelta en el medio acuatico (Wommack y Colwell,
2000).

En los 90 se aprendié bastante sobre la diversidad genética de fagos y virus eucarioticos y
la importancia del plancton marino. Numerosos estudios han demostrado la contribucion
de virus y protistas al ciclo biogeoquimico debido a la lisis del plancton (Braback et al.,
1993; Fuhrman y Noble, Suttle, 1994; 1995; Glober et al., 1997; Wommack et al., 1999)
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(Figura 11). A principios del siglo XXI se secuenciaron los primeros genomas de virus
marinos y la genémica y metagendmica se emplearon para caracterizar la diversidad de los
virus (ARN y ADN) en agua marina asi como sus efectos sobre la ecologia y fisiologia de

sus huéspedes (Rohwer y Thurber, 2009).

Se estima que existen alrededor de 10%° virus (virioplancton) en el océano (102° fM; 10’
virus mL?) siendo un orden de magnitud mayor que el nimero de procariotas que son el
segundo grupo méas abundante (Wommack y Colwell, 2000) aunque en biomasa ocupan el
segundo lugar detras de los procariotas (Suttle, 2005) (Figura 12). Aungue la mayoria del
virioplancton esta formado por fagos (Wommack et al., 2000), en un estudio reciente se ha
estimado la diversidad viral en agua de mar entorno a mas de 100.000 tipos diferente de
virus (Angly et al., 2014). Los fagos pueden clasificarse segin su morfologia en
icosaédricos, filamentosos, con cola, sin cola o segin sea el tipo de bacteria a la que
infectan (.http://depa.fquim.unam.mx/amyd/archivero/Clase10 23132.pdf). Ademas de los
fagos existen lo llamados virus parecidos a particulas (VLP), los cuales no tienen
capacidad de infeccion. La abundancia del virioplancton generalmente es mayor en la zona
eufética (desde la superficie hasta unos 80 m) y en zonas costeras, y a partir de ahi decrece
exponencialmente con la profundidad, ademéas también se han observado variaciones
estacionales en su abundancia (Cochran y Paul, 1998; Breitbart, 2012) en donde las
condiciones especificas de cada region ejercen una presion selectiva para la existencia de

unos virus u otros (Angly et al., 2014).

Biomass Abundance

/ \ |:| Prokaryotes
Ill |

n Protists
n Viruses

Figura 12. Biomasa y abundancia relativa de virus, procariotas y protistas (Cuttle,
2007).
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Los virus no solo se encuentran en la columna de agua sino que también en los sedimentos
y ademas en esta matriz su abundancia es mayor (Danovaro et al., 2005; Middelboe et al.,
2008a,b). Se ha estimado que la produccién viral en sedimentos costeros es una o dos
veces mayor que la del virioplancton indicando que su volumen puede ser mayor en
sedimentos que en la columna de agua (Hewson y Fuhrman, 2003; Mei y Danovaro, 2004,
2005).

El conocimiento actual de la ecologia viral plantea bastantes cuestiones basicas sobre la
distribucion y actividad sobre los virus bentonicos. Los estudios sobre virus en sistemas de
agua dulce han sido posteriores al del medio marino produciéndose un rapido aumento
desde el afio 2005 (Middelboe et al., 2008b). Esto queda reflejado por ejemplo en la
paradoja aun sin resolver sobre la elevada abundancia viral (Middelboe et al., 2008a,b) y el
poco impacto en sistemas benténicos de agua dulce (Bettarel et al., 2006; Filippini et al.,
2006; Weitz et al., 2014), mientras los virus en sedimentos marinos tienden a multiplicarse
a elevadas velocidades (Danovaro et al., 2008; Middelboe, 2008a). Una de las posibles
explicaciones sea la derivada de emplear diferentes aproximaciones y métodos para su
medida como antes se comentd (Middelboe et al., 2008b; Liang et al., 2014). Pese a las
abundancias de los virus en los sedimentos, estudios realizados en sedimentos marinos
profundos muestran valores bajos de abundancia entre virus y bacterias (Danovaro y
Serresi, 2000; Danovaro et al.,, 2002). Esta discrepancia entre abundancias entre
sedimentos de sistemas costeros y sedimentos de zonas profundas puede deberse a las
diferentes condiciones ambientales y bidticas (Danovaro et al., 2005). Sin embargo el
analisis de sedimentos en perfiles de profundidad de abundancias virales muestran que
existen grandes cantidades de virus en capas de sedimento profundas y donde unos
estudios muestran una disminucion de la abundancia en sedimentos anoxicos otros
muestran un aumento con la profundidad o una mayor abundancia en sedimentos an6xicos
gue en sistemas oxigenados e incluso no presentan variacion significativa con la
profundidad (Danovaro et al., 2005; Paul et al., 1993; Drake et al., 1998; Hewson y
Fuhrman, 2003; Bird et al., 2001; Middelboe et al ., 2003; Mei y Danovaro, 2004; Taylor
etal ., 2001, 2003; Weinbauer, 2004).
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Plancton

El término plancton (del griego (mloyktog [plagktds], ‘errantes’) incluye a aquellos
organismos acudticos que viven sin estar ligados a otros y que no tienen la capacidad de
moverse en contra de las corrientes que los rodean. Es un término inusual ya que hace
referencia a un medio de locomocién en lugar de su pertenencia a una u otra familia
genética. Otros términos relacionados son el necton (organismos nadadores activos) y
neuston (organismos que viven en la interfase agua-aire). Existen varias formas de
clasificacion del plancton. En una de ellas el plancton se clasifica en holoplancton
(organismos que pasan todo su ciclo vital perteneciendo al plancton) y meroplancton
(organismos que solo durante una parte de su vida integran la comunidad plancténica)
(Figura 13), en donde ademas se han afadido los virus ya que la clasificacion no los

incluia.

Sin embargo para el objeto de este trabajo del trabajo fin del “Master de Nanotecnologia
Medioambiental” nos centraremos en la clasificacion por tamarfio del plancton en la cual
encontramos el nicho de este estudio. La clasificacion por tamarfios propuesta por (Sieburth
y Smetacek, 1978) (Figura 14).

Segun (Strickland, 1983) existen tres clases de interacciones entre el plancton y la
contaminacion. La primera es el efecto nocivo directo de los contaminantes sobre el
plancton, el segundo es el efecto que produce el plancton sobre los contaminantes y el
tercero y de mayor interés es el papel que juega el plancton en la biomagnificacion de los
contaminantes y sus efectos sobre la cadena trofica hasta llegar al ser humano. Un grado
mas de complejidad aparece en modelos matematicos en donde se incluye la interaccion de
tres elementos zooplancton-fitoplanton-contaminante. En un estudio reciente (Rana et al.,
2015) estudian el efecto de NPs sobre plancton, en donde el zooplancton actia como
predador el fitoplancton como presa y NPs son afiadidas al sistema. Este es el primer
modelo matematico que estudia el impacto de NPs sobre la interaccion fitoplancton-
zooplancton. Sus resultados mostraron que debido a la interaccion NPs-fitoplanton
(internalizacion/adsorcion) disminuye la poblacion tanto de de fitoplancton como de
zooplancton (desestabilizacion del sistema a través de una bifurcacién de Hopf), y
conforme las NPs son eliminadas del medio el sistema gana en estabilidad. Las NPs juegan

un papel importante en un sistema simple como este por lo que la introduccion de NPs al

17



medio acudtico puede tener consecuencias no solo a nivel de primario sino sobre la cadena

alimenticia.
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Holoplankton

Kingdom Monera: procaryotic cells, simple and unspecialized; single cells, some in
groups or chains.

A. Bacteria: single cells, in chains or groups; autotrophic and heterotrophic,
aerobic and anaerobic; important as food source and in decomposition.
B. Cyanobacteria: blue-green algae; autotrophic single cells, in chains or

groups, produce some red blooms in sea; phytoplankton.
Kingdom Protista: grouping of microscopic and mostly single-celled organisms;
autotrophs (algae) and heterotrophs (protozoa).
A. Phylum Chrysophyta: golden-brown algae; yellow to golden autotrophic
single cells, in groups or chains; contribute to deep-sea sediments;

phytoplankton.
1. Class Bacillariophyceae: diatoms.[dominate in cool/cold water] [story
about raising them in lab--silica dissolution)]
2. Class Chrysophyceae: coccolithophores, silicoflagellates, and other
flagellates. [prefer warm water]
B. Phylum Pyrrophyta: fire algae; single cells with flagella; produce most red
tides: bioluminescence common; usually considered phytoplankton.
1. Class Dinophyceae: dinoflagellates.
C. Phylum Phaeophyta: Brown algae Sargassum maintains a planktonic habhit

in the Sargasso Sea

D. Phylum Rhodophyta: Red algae

E. Phylum Protozoa: heterotrophic protists like dinoflagellates radiolarians, and
foraminifera

Kingdom Animalia: animals; multicellular heterotrophs with specialized cells,
tissues, and organ systems; zooplankton (holoplankton). For temporary
members of the zooplankton (or meroplankton), see the Meroplankton listed in V.
A. Phylum Coelenterata or Cnidaria: radially symmetrical with tentacles and

stinging cells like Jellyfish including such colonial forms as Portuguese
man-of-war.

B. Phylum Ctenophore: comb jellies; translucent; move with cilia; often

bioluminescent.

C. Phylum Chaetognatha: arrow worms; free swimming, carnivorous worms.

[Some species limited to specific water masses]

D. Phylum Mollusca:

Class Gastropoda Snails Pteropods

E. Phylum Arthropoda: animals with paired, jointed appendages and hard outer

skeletons.

1. Class Crustacea: copepods and euphausiids.

F. Phylum Chordata: animals, including vertebrates, with dorsal nerve cord

G.

and gill slits at some stage in development.
1. Subphylum Urochordata: saclike adults with "tadpole"” larvae; salps.

Virus

Meroplankton: larval forms from the

.

Kingdom Animalia

A.

B
C
D.
E.

Phylum Annelida (segmented worms Trochophore),

Phylum Mollusca (shellfish and snails [Veliger]),

Phylum Arthropoda (crabs [Zoea] and barnacles [Nauplius]),

Phylum Echinodermata (starfish [Brachiolaria), brittle star [Ophiopluteus] and
sea urchins), and

Phylum Chordata (fish).

Figura 13. Clasificacion del plancton 1.
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Figura 14. Distribucion de los diferentes compartimentos trofico-taxonémicos del
plancton (Sieburth y Smetacek, 1978).

4. INTERACCIONES BIOFISICOQUIMICAS EN LA INTERFASE NANO-
BIO

Los estudios dirigidos a las relaciones entre los contaminantes tanto clasicos como

emergentes con la fraccion por debajo de la barrera de los 100 nm que esta presente en el

medio marino (virioplancton, NPs naturales, proteinas...) inexistentes. La mayoria de ellos

se encarga de las distintas fracciones superiores (picoplancton: 0,2-2,7 pum; pico +

nanoplancton: 0,2-20 pum; microplancton: 20-50 um; y mesoplancton: 50-200 um). La

bioacumulacion de contaminantes organicos persistentes (POPs) y metales traza en

plancton ha sido ampliamente estudiada en diferentes zonas del planeta (Taylor et al.,
1991; Broman et al., 1992; Larsson et al., 2000; Berglund et al., 2001; Abarnou et al.,
2002; Okumura et al., 2004; Wang et al., 2005; Jiménez et al., 2011; Berrojalbiz et al.,
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2010; Galban-Malagon et al., 2013; Frouin et al., 2013; Marion et al., 2014; Morales et al.,
2015; Echeveste et al., 2010a,b, 2012, 2014; Knauer y Martin, 1972; Kuiper, 1981a,b)
(Figura 15), en donde el coeficiente de reparto entre lipidos y agua juega un papel

fundamental (Swackhamer et al., 1993; Sobek et al., 2006).
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Figura 15. Distribucion global de POPs. Dibenzo-p-dioxinas policloradas (arriba),
dibenzofuranos policlorados (centro) y bifenilos policlorados tipo dioxina (abajo)
(Morales et al., 2015).

En el extenso trabajo realizado por Gonzalez-Davila (1995) se pone de manifiesto la

interaccion de metales traza con el fitoplancton y la importancia de la liberacion de materia
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extracelular para complejarlos y disminuir su toxicidad. Aunque segin con qué tipo de
contaminantes nos encontremos esta materia extracelular (EPS) no es capaz de disminuir la
toxicidad de quantum dots aunque si poder desestabilizarlos (Zhang et al., 2012). Existen
muy pocos trabajos en los que se ha puesto de manifiesto la presencia de metales unidos a
fracciones de plancton del rango de las NPs trabajos en los que se pone de manifiesto la
presencia de metales unidos a materia extracelular de diatomeas (Alvarado-Quiroz et al.,
2006; Zhang et al., 2008), la asociacion de determinados metales (Cd, Cr, Cu, y Zn con
proteinas de rangos de tamafo diferentes procedentes de plancton (Garcia-Otero et al.,
2013a,b,c,d) o con materia disuelta organica de menos de 100 nm (Garcia-Otero et a.,
2015).

La lisogenia es el proceso por el cual un virus mantiene una simbiosis estable con su
huésped al contrario que la replicacion litica. EI ADN inyectado en el huésped se
denomina profago y se replicard durante la division normal de la célula/bacteria (Figura
16). Este estado “lisogénico” continuara hasta que el profago es activado espontaneamente
debido a la induccion de un agente mutagénico como la radiacion ultravioleta (UV-C;
<300 nm) o la mitomicina C (Ackermann y DuBow 1987).

Fagos Atemperados: Alternancia de ciclos
Fagos Virulentos: Solo ciclos liticos

/ 1) Respuesta litica.

/

2) Respuesta lisogeénica.

Figura 16. Ciclo litico y ciclo lisogénico

(http://depa.fquim.unam.mx/amyd/archivero/Clase10 23132.pdf ).

Por otro lado no todas las bacterias son propensas a esta induccion (pseudolisogenia) y

estos dos agentes inductivos no se suelen encontrar en medios marinos. La pseudolisogenia
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no supone una interaccion tan estable entre en virus y el huésped como ocurre en la
lisogenia sino que el ADN del fago no se replica y se segrega por igual en toda la progenie,
y no puede ser estimulada por agentes inductores quimicos o fisicos (Wommack et al.,
2000). Este mecanismo se formuld para poder explicar la alta produccién sostenida de
virioplancton pese a condiciones medioambientales pobres en nutrientes (Wommack et al.,
2000). Sin embargo en el medio acuatico existe una enorme variedad de compuestos
(PAHSs, PCBs, pesticidas, surfactantes, farmacos, nanoparticulas...) que podrian ejercer
esta funcion inductiva. Los trabajos llevados a cabo por (Cochran y Paul, 1998; Jiang y
Paul, 1996) mostraron que PAHs, PCBs y pesticidas tienen la capacidad de inducir
lisogenia con un aumento del namero de virus (profagos) (128,8% - 1336% incluidos
porcentajes de ambos articulos) en diferentes zonas marinas. Contaminantes emergentes
como las cremas y aceites solares han demostrado también inducir un aumento en la
cantidad de virus marinos presentes en el medio ademas de inducir en diferente proporcion

el ciclo litico (Danovaro y Corinalesi, 2003; Danovaro et al., 2003).

Las interacciones entre contaminantes NPs y organismos a grandes rasgos (para una vision
mas detallada ver “understanding biophysicochemical interactions at the nano—bio
interface” Nel et al., 2009) pueden ser: entre contaminante y organismo, entre NPs y
organismo, disminucion de la concentracion del contaminante por sorcion con las NPs,

ingesta de NPs con contaminantes sorbidos (Figura 17).
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Figura 17. Vias de interacion entre NPs, contaminantes y organismos; a) entre

ol piami

contaminantes y organismo, b) entre NPs y organismo, c)disminucion de la
concentracion del contaminante por sorcion con las NPs y d) ingesta de NPs con

contaminantes sorbidos (Nowack y Bucheli, 2007).
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Las NPs disefiadas como los fullerenos, zeolitas, nanotubos de carbono o NPs de hierro ya
llevan siendo tiempo estudiadas como vectores de contaminacion llevando asociadas
diferentes tipos de contaminantes (metales traza, dioxinas, PAHs, DDTs, PBDEs, PCBs,
pesticidas y farmacos) en diferentes compartimentos ambientales (Biswas y Wu, 2005;
Wigginton, 2007; Christian et al., 2008; Nowack y Bucheli, 2007; Burger et al., 2009;
Chen et al., 2014). Pero también las nanoparticulas naturales son objeto de estudio asi
como su rol como transportadores de contaminantes (Trivedi et al., 2003; Hasselov et al.,
2008; Bakshi et al., 2015) o vectores de contaminacion en el suelo; sirva como ejemplo el
proyecto europeo (Natural nanoparticles in soils as possible environmental vectors for
contaminants; BMBF MOE 09/R51). Holden et al, (2014) analizaron mas de 600 articulos
entre 2008-2013, de los cuales 271 trataban sobre las consecuencias de las concentraciones
de exposicién en organismos acuaticos, aunque sin tener en cuenta a los virus por
considerarlos que no tenian repercusion medioambiental, algo que no se corresponde con

la importancia de los virus marinos en el medio ambiente como ya hemos visto.

Como ya se ha perfilado antes los virus juegan papeles de gran importancia en los
ecosistemas marinos y fruto de ello son las numerosas recopilaciones y estudios sobre
ellos. Uno de sus mas importantes roles es el que desempefian en el ciclo biogeoquimico,
debido a la infeccidn y posterior lisis de sus huéspedes liberando y afiadiendo desde la fase
particulada a la fase disuelta tanto nutrientes (fosforo, nitrogeno, hierro...) como
contaminantes y sus metabolitos los cuales son captados por plancton, bacterias,
diatomeas. ....incorporandose de nuevo a la cadena tréfica, el llamado viral shunt (Figura
18).
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Figura 18. Viral shunt (Suttle, 2005, 2007).

Las interacciones tanto de virus eucariotas como procariotas han sido largamente
estudiadas (Figura 19), sin embargo, supone un interrogante su posible contribucion a la
dispersion y o transferencia de contaminantes tanto a los huéspedes infectados como al
provocar la lisis de organismos que ya posean esos contaminantes y pasen a la fase disuelta
desde fase particulada. Ademas actualmente existen estudios dirigidos a nuevas formas de
repercusion de los virus marinos sobre el cambio climético en cuanto al posible rol que los
virus puedan tener con el ciclo del metanol en aguas costeras

(http://www.pml.ac.uk/pmisite/media/PMLMedia/Documents/Marine_Viruses_and_Alcoh

ol_in_seawater_final.pdf
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Figura 19. Diferentes interacciones entre virus marinos y sus huéspedes (A; Rohwhery
Vega y B)Breitbart, 2012) .
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La superficie virica posee dominios tanto hidrofilicos como hidrofébicos, en donde en
estas Ultimas se ha observado un importante papel en medios porosos (Bales et al., 1991;
Sobsey y Meschke, 2003). La hidrofobicidad viene dada por el balance de grupos amino en
la superficie, por lo que algunos virus son mas hidrofobicos que otros. Para la
solubilizacion de una sustancia hidrofébica en agua ha de vencerse una barrera
termodindmica en donde los puentes de hidrégeno del agua han de reorganizarse al
maximo para rodear a la sustancia hidrofobica. La presencia de los Ilamados agentes
caotrépicos permiten la solubilizacion de estos compuestos hidrofobicos en agua. Un
agente caotropico es un compuesto de pequefio tamafio que perturba esta barrera por medio
de la disminucion de la estructura ordenada del agua. Por otro lado un agente
anticaotropico actua de forma contraria aumentando la estructura ordenada aumentando la
barrera e impidiendo la solubilizacion de compuestos hidrofébicos en agua (Gerba y
Goyal, 1992). Otro posible mecanismo de adsorcién sobre la superficie de los virus es
mediante el enlace covalente o idnico. Este tipo de unién suele provocar inactivacion en
los virus o bien provocar la liberacion de su contenido mediante cambios conformacionales
en la capsida (Yeager y O Brien, 1979). Existen otros factores que pueden afectar a la
adsorcion tales como el potencial zeta, la fuerza iénica, punto isoeléctrico o el pH aunque
estos dos Ultimos en sistemas marinos tendran menor importancia debido a la poca
variacion que en mar abierto experimentan. La versatilidad para formar enlaces que
ofrecen las capsidas estan siendo empleadas en virus de humanos, animales y plantas para

la obtencion desde nanocomposites, sensores 0 sondas fluorescentes (Capek, 2015).

De esta forma los virus no solo reciclan estos compuestos sino que también liberan otros
de que de otra forma no estarian presentes por procesos naturales. Aunque gqueda bastante
por saber desde su repercusion sobre la diversidad de sus huéspedes (Middelboe et al.,
2008b) al impacto total de los virus sobre los procesos a escala global (como las funciones
fisioldgicas codifican dentro de los ciclos biogeoquimicos la influencia de genomas
viricos), qué es lo que controla su actividad (Weitz et al., 2014) e incluso aun persiste el
debate sobre si considerarlos organismos vivos 0 no (Bratbak y Heldal, 2000; Brusaard et
al., 2008), sin embargo, no cabe duda que la influencia que estos ejercen sobre el resto de

organismos los hace los Ultimos reguladores a nivel nanométrico de la vida.
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5. UNA BREVE APROXIMACION A LAS TECNICAS ANALITICAS DE
CARACTERIZACION Y DETECCION DE NANOPARTICULAS

El desarrollo y los avances en la generacion de nuevas NPs ha llevado también
asociada la necesidad de desarrollar las técnicas necesarias para su deteccion y
caracterizacion. A dia de hoy las NPs puras se pueden caracterizar mediante
técnicas como la ultracentrifugacion, difraccion de rayos-X o dispersion de rayos-X
en angulo pequefio, etc. Los ultimos avances en la deteccion y caracterizacion de
NPs artificiales consideran no solo el nanomaterial puro sino también las especies
quimicas que de €l puedan derivarse en el sistema de estudio. Excepto cuando se
trata de un nanomaterial puro la mayoria de las muestras requieren algun tipo de
preparacion anterior a su analisis. Estos tipos de pretratamientos de la muestra
pueden ser: digestion (&cida, basica o enzimatica), separacion/preconcentracion
(centrifugacion, filtracion, ultrafiltracion, dialisis, extraccion en fase liquida,
extraccion en fase solida con los correspondientes pasos de purificacion o clean
up). Mediante la digestidn se puede llegar a la disolucion del nanomaterial (algunos
requieren condiciones especiales como el agua regia para el oro, peroxido de
hidrégeno para el CeO:z o el &cido fluorhidrico para el TiO2) y la matriz en la que
estd contenido ya sea un alimento o un tejido biol6gico (Tadjiki et al., 2009;
Wagner et al., 2015). Para el caso de las digestiones basicas se suele empelar
hidroxido de tetrametilamonio para degradar a matrices organicas (Loeschner et al.,
2014) mientras que las digestiones enzimaticas hacen uso de proteasas y pectinas
las cuales solubilizan las proteinas y las paredes celulares (Peters 2014, 2015). En
el caso de las etapas de separacion/preconcentracion la centrifugacion es el método
mas simple para aislar NPs tanto de suspensiones acuosas, de especies disueltas y
NPs asociadas a compuestos de alto peso molecular como la materia organica
disuelta cuando la ultracentrifugacion falla (Unrine et al., 2012).

Las técnicas principales hoy en dia para la deteccion y caracterizacion de NPs
artificiales son: microscopia electronica (microscopia electronica de barrido o
SEM, microscopia electrénica de transmision o TEM, espectroscopia de pérdida de
energia electronica o EELS, espectroscopia dispersiva de rayos-X...), técnicas de

dispersion de la radiacion (difracciéon laser de particulas o LD, dispersiéon de
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radiacion estdtica o SLS, dispersion de radiacion en multidngulo o MALS,
dispersion de la radiacién dindmica o DLS y andlisis de rastreo de particulas),
técnicas de espectrometria atomica (espectrofotometria de absorcion atomica
electrotérmica o ET-AAS, espectrometria de emision dptica mediante acoplamiento
inductivo de plasma o ICP-OES, analisis de particulas individuales mediante
espectrometria de masas mediante acoplamiento inductivo o single particle ICP-
MS y espectroscopia de absorcidn de rayos-X), técnicas de separacion en continuo
(fraccionamiento de flujo en campo o FFF con sus diferentes modalidades: SAFFF,
FIFFF o AF4 , electroforesis y sus diferentes modalidades: electroforesis en gel o
GE, electroforesis en gel de poliacrilamida o PAGE, cromatografia hidrodindmica o
HDC....), técnicas electroanaliticas (voltametria de particulas inmovilizadas o VIP
y culombimetria de colision de particulas o PCC) y sensores quimicos (sensores
basados en resonancia de plasmon superficial, sensores fluorescentes,
piezoeléctricos...) (Richardson y Ternes, 2014; Laborda et al., 2015; Bakshi et al.,
2015; Nowack et al., 2015).

La microscopia electrénica se considera como la herramienta méas poderosa para el
andlisis de nanomateriales debido a su capacidad de visualizar NPs, y por
consiguiente obtener informacion acerca de su tamarfio, forma, estado de agregacion
asi como la interpretacion de los resultados obtenidos por otras técnicas (Calzolai y
Rossi, 2012; Sadik et al., 2014). Entre las diferentes técnicas de microscopia
electrénica, la SEM alcanza la mayoria de los requisitos necesarios para la
caracterizacion de NMs en matrices complejas. En algunos casos la TEM se emplea
para el estudio de determinados recubrimientos de las NPs (Lewicka et al., 2011).
De las técnicas de dispersion de la radiacion mencionadas la DLS es la técnica mas
comUnmente empleada para la medicion del tamafio de NPs en suspensiones
acuosas mediante la medida del movimiento Browniano a través de fluctuaciones
dependiente del tiempo en la intensidad de la radiacion dispersada causada por
interferencias destructivas y constructivas. Esta técnica es susceptible a errores en
la medida debido a la polidispersidad de muestras medioambientales por lo que
suele acoplarse a un detector tipo FFF o HDC. El empleo del MALS acoplado a
FFF o HDC proporciona informacion sobre la forma. El rastreo de NPs es una
técnica emergente de dispersion de la radiacion capaz de obtener la distribucion de
tamafos y la concentracion de NPs disefiadas en muestras medioambientales (Brar

y Verma, 2011; Gallego-Urrea et al., 2011). Las técnicas de espectrometria atomica

28



Implicaciones de nanomateriales naturales en procesos de contaminacion

empleadas en solitario no son especificas para NPs a excepcion del single particle
ICP-MS. Esta técnica es capaz de proporcionar informacion sobre la concentracion
en namero de una suspension de NPs asi como el contenido en masa elemental por
NP. La disposicion de informacién adicional acerca de la naturaleza de las NPs
(forma, composicion y densidad) se puede calcular el tamafio del ndcleo de las NPs
asi como su distribucion en nimero (Laborda et al., 2014). Esta técnica ha sido
empleada para detectar la liberacion de NPs desde envoltorios de comidas, la
presencia de NPs en suplementos alimentarios, aguas residuales, tejidos bioldgicos
o sangre (Mitrano et al, 2012; Reed et al 2014; Echegoyen y Nerin, 2013; Peters et
al., 2015; Jenkins et al., 2015). La espectroscopia de absorcidn de rayos-X es una
técnica que no requiere preparacion, o muy poca, de la muestra especifica de
elementos capaz de proporcionar informacion cualitativa especifica de especies
metélicas/metaloides asi como su distribucion en cantidad, siendo su principal
limitacion su sensibilidad (mg kg™) (Laborda et al., 2015). Las diferentes técnicas
de separacién en continuo han demostrado ser una herramienta 0til para la
separacion de NPs basandose en su tamario, superficie, densidad y carga. Su
acoplamiento a técnicas de deteccion selectivas proporcionan una base sélida para
la resolucion de problemas en matrices complejas (Howard, 2010). El
fraccionamiento el flujo por campo comprende una serie de técnicas de separacion,
en donde esta tiene lugar en un canal fino, alargado y sin fase estacionaria, debida a
la accion de un campo externo perpendicular al flujo. Segin sea la naturaleza del
campo externo aparecen las diferentes técnicas (campo centrifugo = SAFFF, flujo =
FIFFF, flujo asimétrico = AF4...). Nanoparticulas de Ag Au, Se, SiO, TiO2 and
ZnO en diferentes matrices como cremas solares, comida, productos de consumo,
medioambiental o biolégicas han sido realizadas con éxito (Contado y Pagnoni,
2008; Heroult et al., 2014; Peters et al., 2014; Koopmans et al., 2015; Somchue et
al., 2014). Las técnicas electroforéticas estan basadas en la migracion de especies
cargadas bajo la influencia de un campo eléctrico, en donde la GE y la PAGE son
las dos técnicas de separacion y caracterizacion (tamafio, forma y funcionalizacion
de la recubierta) de NPs mas empleadas, siendo su uso en muestras reales adn
escaso. La ventaja de emplear electroforesis en gel respecto a otras técnicas de
separacion es la alta resolucién alcanzable y la capacidad de analizar tanto especies
ionicas y NPs (Surugau y Urban, 2009; Fedotov et al., 2011; Lopez-Lorente et al.,

2011). La cromatografia hidrodinamica basa su separacion en el diferente gradiente
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de velocidades, que se establece a través de una columna con relleno no poroso,
entre los diferentes tamafios de las especies a separar. Su aplicacion para la
determinacion de NPs disefiadas en matrices complejas es aln escasa, limitandose
hasta la fecha a la identificacion de NPs disefiadas y naturales de TiO2, SiOg,
Al>O3, Fe203, Ag y Au en aguas procedentes de lodos de plantas depuradoras, rios,
aguas sintéticas y cremas solares (Metreveli et al., 2014; Tiede et al., 2009; 2010;
Proulx y Wilkinson, 2014; Philippe y Schaumann, 2014).

Las técnicas electroanaliticas suponen una alternativa eficiente y barata para la
deteccion, caracterizacion del tamafio del tamafio y cuantificacion de las NPs.
Mientras que la VIP es sensible al estado de oxidacion de los elementos que pueden
componer una muestra, y se puede obtener el tamafio y la concentracion en masa la
PCC es capaz de proveer informacién especifica (distribucion de tamafios y
concentraciones en nimero) sobre NPs en un modo similar al SP-ICP-MS. Hasta la
fecha estas técnicas han sido aplicadas a NPs de Ag, Au, Cu, Ni, Pt, Pd, CeOa,
CuO, Fe20s3, Fe30s, IrO, NiO, TiO2, y CdSe (Laborda et al., 2015). En cuanto a los
sensores quimicos, su bajo coste, sensibilidad de respuesta, portabilidad y simpleza
los hace adecuados para el monitoreo de NPs disefiadas, aunque el nimero de ellos
desarrollados y aplicados para el analisis de muestras reales es bajo y aun esté lejos
de tener éxito en su aplicacién para muestras reales (Sadik et al., 2009). En el caso
de encontrarnos con el analisis de nanoparticulas en el aire los retos suponen su
conteo y la medida de su tamafio en donde para lo primero se emplean el contador
de particulas condensadas (CPC) en donde el tamafio de las particulas detectables
mas pequefias se puede ajustar regulando la temperatura de condensacion, y el
electrometro de copa de Faraday (FCE) y para el segundo propoésito se emplea un
analizador de movilidad diferencial( DMA)
(http://www.invassat.gva.es/documents/161660384/161741789). Después de la
toma de las muestras los analisis pueden llevarse a cabo mediante cromatografia
liquida de alta eficacia (HPLC), cromatografia de gases (GC) o mediante ICP-MS.
Las principales aplicaciones de estos métodos estan destinadas a medir la polucion
originada por fuentes primarias como el trafico (sulfatos, hidrocarburos, metales...)
o los ambientes laborales (carbon, metales...) (Charron y Harrison, 2009). En
ambientes naturales los estudios son muy escasos habiéndose encontrado que la
composicion de la atmésfera marina hasta en un 60% estaba formada por NPs de
sal marina (Clarke et al., 2006).
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6. CONCLUSIONES

A lo largo de este trabajo bibliografico se ha puesto de manifiesto la importancia que las
nanoparticulas naturales y en concreto la de las bioldgicas como es el virioplancton, en un
contexto cientifico actual muy enfocado hacia la sintesis y caracterizacion de
nanoparticulas en todo tipo de sistemas y las posibles aplicaciones que estan puedan tener.
Con este trabajo pretendemos poner un foco de atencién y un posible nuevo campo de
estudio especifico sobre el posible impacto que los nanomateriales pueden tener como

primer eslabdn de la contaminacién marina y por ende global.
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