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1. Introduccién

Hoy en dia muchos dispositivos cuentan con un sistema de geolocaliza-
cion GPS que nos permite conocer la localizacion de un sujeto en tiempo real.
Con el fin de obtener la mayor informacién posible en todo momento, estas
posiciones recogidas se guardan en una base de datos que puede ser temporal
o permanente. En el caso de ser permanente, nos encontraremos con el pro-
blema de que la base de datos puede crecer hasta un limite desmesurado en
el que dispositivo que recoge y almacena esta informacion llene su memoria,
impidiendo almacenar posiciones nuevas.

En este momento, es necesario tomar la decision de borrar parte de las
posiciones almacenadas, segiin algiin criterio. La dificultad en este momento
es elegir el criterio con el cual eliminaremos este exceso de datos, por ejem-
plo, borrando posiciones repetidas o posiciones que no aporten la suficiente
eficiencia en relaciéon al espacio que ocupan en memoria. Esto introduce el
concepto de funcién de consolidaciéon o compactacion, es decir una funcion
que elimine un exceso de datos permitiéndonos conservar el méximo de in-
formacion posible.

Contamos con datos proporcionados por una empresa de telecomunica-
ciones de sede en Zaragoza obtenidas de una base central. Se observa que esta
empresa provee un servicio a sus clientes que permite que periédicamente se
reciban posiciones de unos sujetos portadores de una terminal que transmita
su posicion GPS. Esta posicion se inserta en una base de datos centralizada.
Dichas posiciones son tomadas por la terminal de cada operativo, almacena-
das localmente en esta terminal de manera temporal y enviadas a la central
en el momento de conectividad con ésta.

Se encuentra entonces un problema de almacenamiento de datos. Estos
datos, cada vez més numerosos, empiezan a poblar la base de datos de una
manera erratica, es decir, un sujeto puede permanecer mucho tiempo en un
sitio y seguir transmitiendo una posiciéon constante a base. Nos lleva a plan-
tearnos la siguiente pregunta, jes ésto necesario? ;No seria mas eficiente
almacenar so6lo una muestra de ésta? Al fin y al cabo, el objetivo del alma-
cenamiento de estas posiciones es el ser posicionadas en un mapa, por lo que
no necesitamos de varias instancias de una misma.

Surge el concepto de consolidacion. Este concepto nos lleva a que si un
sujeto se ha movido muy poco o nada en una zona del espacio, sea posible
eliminar de nuestra base de datos estas posiciones, quedandonos con una cen-



tral.

Nos planteamos que tanto la terminal personal que lleva cada sujeto como
la base centralizada pueden llegar a limite no deseado, provocando que este
se sature e no permita la inserciéon de nuevos datos. Con el fin de impedir
esto, se va a realizar un estudio de distintas técnicas de consolidacion con el
fin de almacenar el minimo de datos pero con la maxima informacién posible.

Este trabajo realiza una comparacion entre diferentes técnicas de clusteri-
ng y algoritmos disenados propios con el fin de encontrar un método eficiente

que evite el problema anteriormente explicado.

El codigo estéa disponible para bajarse y utilizarse bajo una licencia GNU
GPL en:

http://pbarbero.github.io/TFM/

Identificacion de patrones
y algoritmos de
consolidacion bases de
datos de posicionamiento

b Download .zip ,'g Download .tar.gz Q View on GitHub

Hoy en dia, muchos dispositivos cuentan con un sistema de geolocalizacion GPS que
nos permite conocer la localizacién de un sujeto en tiempo real. Con el fin de obtener la
mayor informacion posible en todo momento, estas posiciones recogidas se guardan
en una base de datos que puede ser temporal o permanente. En el caso de ser
permanente, nos encontraremos con el problema de que la base de datos puede crecer
hasta un limite desmesurado en el que dispositivo que recoge y almacena esta
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2.

dos

Datos y estructura de los datos suministra-

Se nos suministran dos bases de datos correspondientes a dos ciudades
brasilenas distintas, Salvador de Bahia y Rio de Janeiro. En cada de
una de ellas encontramos posiciones de distintos sujetos estudiados identifi-
cados a través de un codigo. Cada base de datos contiene una tabla llamada
posicionesgps en la que encontramos un registro por cada posicién tomada
por cada sujeto entre los dias 2015-02-17 08:00:05 y 2015-03-04 08:18:05.

] Parametros
Id Identificador numérico de la posicion (clave primaria)
IdServidor | Identificador numérico del servidor que realiza la insercion (PK)
Recurso Nombre del recurso (tetra:1234567)
Latitud Real que representa la latitud GPS
Longitud Real que representa la longitud GPS
Velocidad Entero que representa la velocidad instanténea
Orientacion | Entero que representa la orientacion respecto al norte en grados
Cobertura | Booleano que indica si hay cobertura
Error Booleano que nos indica si ha habido algin error en la toma de la posicion
Figura 1: Descripcion de los datos suministrados
] Field \ Type ‘ Null ‘ Key \ Default
id bigint(10) NO | PRI |0
idServidor | int(10) unsigned NO | PRI |0
recurso varchar(100) YES | MUL | NULL
latitud double YES NULL
longitud double YES NULL
velocidad | tinyint(10) unsigned | YES NULL
orientacion | smallint(10) unsigned | YES NULL
cobertura | tinyint(10) unsigned | YES NULL
error tinyint(10) unsigned | YES NULL
antigua tinyint(10) unsigned | YES 0
fecha timestamp NO | MUL | CURRENT TIMESTAMP
automatico | tiniyint(10) unsigned | NO | MUL | 0

Figura 2: EXPLAIN posicionesgps




2.1. Analisis de los datos

Vamos a utilizar R con el IDE Rstudio para realizar un anélisis previo de
los datos recibidos. Para ellos necesitamos de algunas librerias a la hora de
conectarnos a la base de datos importada:

devtools::install _github("rstats—db/RMySQL")
devtools::install _github("rstats—db/DBI")
library(RMySQL)

library(DBI)

Importamos los datos haciendo una consulta sobre cada base de datos.
Cada base de datos que se nos ha proporcionado cuenta con una tabla lla-
mada posicionesgps:

conBahia <— dbConnect(RMySQL::MySQL()
, group = "posiciones"
, user="root"
, password="sx%xx"

, dbname="bahia")

dataquery=dbSendQuery(conBahia
, "SELECT latitud, longitud, velocidad, orientacion, fecha
FROM posicionesgps")

dataBahia = fetch(dataquery, n—=—1)

Analicemos las columnas que mas nos interesan, es decir, la latitud, lon-
gitud, la velocidad, la orientacion y la fecha:

summary (dataBahia)

latitud longitud velocidad
1 Min. :-1.0103 1 Min. :-1.4575 1 Min. : 0.000
2 1st Qu.:-0.2266 2 1st Qu.:-0.6720 2 1st Qu.: 0.000
3 Median :-0.2259 3 Median :-0.6713 3 Median : 0.000
4 Mean :-0.1995 4 Mean :-0.6137 4 Mean : 3.751
5 3rd Qu.:-0.2248 5 3rd Qu.:-0.6702 5 3rd Qu.: 0.000
6 Max. : 0.4956 6 Max. :2.4729 6 Max. :255.000




orientacion

fecha

Min. : 0.0

1st Qu.: 22.0
Median : 90.0
Mean :118.7
3rd Qu.:202.0
Max. :315.0

S Tk W N~

DO W N =

Min. :2015-02-17 08:00:05
1st Qu.:2015-02-19 21:41:13
Median :2015-02-26 01:40:02
Mean :2015-02-24 19:55:44
3rd Qu.:2015-03-01 03:49:20
Max. :2015-03-04 08:18:05

Figura 3: summary de los datos de Salvador

Las unidades en las que estd tomada la velocidad son km/h, por lo que un
mdximo de 255 es algo curioso. Realizando un conteo de datos, obtenemos
que unas 723277 posiciones son distintas a 0 de un total de 4599974, por lo
que aproximadamente un 85% de las posiciones son 0. Esto es un dato a
nombrar, ya que posteriormente usaremos la velocidad a la hora de definir

distancias.



2.2. Espacio en disco

Con la cantidad de posiciones suministradas, vamos a calcular cuanto
ocupa una posicion en disco, para hacernos una idea de cuéntas posiciones
serfa posible acumular en funcién de la frecuencia de éstas sobre un espacio
en disco finito.

En nuestra base de datos llamada Rio de Janeiro contamos con 6928467
posiciones y en Salvador de Bahia contamos con 4599974 posiciones.

El tamano en disco de nuestras bases de datos es:

mysql> SELECT table schema as ‘Database’,
table name AS ‘Table’,
round(((data_length + index_length) / 1024 / 1024), 2)
FROM information schema.TABLES
ORDER BY (data_length + index length) DESC,;

‘ Size in KB ‘
rio 120564000
bahia | 96142000

Figura 4: Tamano de la base de datos

Lo cual nos da una idea de cudnto puede ocupar una toma de posicion
en disco.

El total de posiciones almacenadas en rio es de 6928467 luego podemos
estimar el tamano de una posiciéon en:

120564000
———— =17,4012519653 KB
6928467 ’
El total de posiciones almacenadas en bahia es de 4599974, luego:
96142000

—_—— =2 29162 KB
1500074 0,900552916

Podemos aproximar el tamano de una posicién por unos 19 KB.

Los datos han sido recogidos entre las fechas 2015-02-17 08:00:05 y 2015-
03-04 08:18:05, lo que hace una diferencia de 360 horas.
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Tenemos 5014 distintos tipos de sujetos a estudiar en la base de datos de
rio, lo que nos da una frecuencia de toma de:

6928467
5014 - 360
Si aumentaramos esta frecuencia a una posicion cada 30 segundos, conse-
guirfamos una frecuencia de 120 posiciones a la hora, luego un tnico sujeto,
en una jornada laboral de 8 horas, ocuparia en espacio de 19.2 MB. Si mul-
tiplicamos por los 5014 sujetos que contiene la base de datos proporcionada,
son casi 100GB por jornada laboral almacenados en la base de datos centra-
lizada, por lo que una consolidacién cada dia de un tanto por ciento definido
con el cliente, seria necesario (esto quedaria a criterio de las caracteristicas
del sistema donde se aloja la base de datos).

= 3,83 posiciones a la hora.

2.3. Implementacion de los datos en clases de Python

La estructura de los datos es implementable en diversos lenguajes, pero se
elige Python por su simplicidad y ya que es el lenguaje cientifico méas usado
hoy en dia.

Se define la clase Position de la siguiente manera:

class Position:
def __init__(self, id, resource, lat
, lon, speed, track, date):
self.id = id
self.resource = resource
self.lat = lat
self.lon = lon
self.speed = speed
self.track = track
self.date = date

A partir de esta clase definiremos una serie de métodos propios a ésta que
nos permitiran saber si un punto esta en un vecindario asociado a la posicién.
Vamos a utilizar la nociéon de distancia euclidea como concepto sobre el que
apoyarnos.

def distance eu(self, q):
return math.sqrt((self.lat — q.lat)**2
+ (self.lon — q.lon)*x*2)
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3. Nociones de vecindario

Con el fin de realizar los algoritmos de consolidacién, hemos realizado un
estudio acerca de distintos tipos de vecindarios a utilizar para los algoritmos
de consolidacion propios que usaremos mas adelante.

3.1. Vecindario simple

Utilizando la distancia euclidea, definimos un vecindario como aquel con-
junto de puntos que se encuentran a una distancia euclidea menor que € con
respecto su centro pg, es decir:

di(po,p) = \/(latp — laty,)? + (long, — longy,)? < €

donde p es un punto con latitud lat, y longitud long,.

Su implementaciéon en Python es la siguiente:

def IsInNeighEUSimple(self, q, eps):
return self.distance eu(q) < eps

3.2. Vecindario involucrando la velocidad

En el momento que se toma la posicion pg, aparte de la latidud y su longi-
tud, se toma la velocidad instantédnea del sujeto. Podemos considerar en este
caso que, dado que nuestro sujeto se encuentra a mayor velocidad, puntos
més alejados de lo que considerariamos en el primer caso (fuera de nuestro
vecindario simple), podrian estar dentro de nuestro nuevo radio, que depen-
deria de la velocidad instantanea. Asi, definimos nuestro nuevo vecindario:

dg(po,p) = \/(latp — laty,)? + (long, — longy,)? < € - vel,,

donde wvel,, es la velocidad instantédnea de nuestro punto centro.

Su implementacion en Python es la siguiente:
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def IsInNeighSpeedRelative(self, q, eps):
if self.speed != 0:
return self.distance eu(q) < eps * self.speed
else:
return False

3.3. Vecindad t0-alcanzable

Si fijamos un intervalo de tiempo %y, podemos definir una vecindad t¢-
alcanzable como aquellos puntos que nuestro sujeto puede alcanzar en un
tiempo t5. Un sujeto que se desplace a velocidad reducida, tendra una ve-
cindad tp-alcanzable mas reducida que otro que se desplace a una velocidad
superior. Redefiniremos el radio de nuestro vecindario a través de la veloci-
dad instantanea que lleve nuesto sujeto, es decir, vel,, - to.

dg(po,p) = \/(latp — laty,)? + (long, — long,,)? < vel,, - to

Este es un caso concreto del vecindario involucrando la velocidad.

Su implementacion en Python es la siguiente:

def IsInNeighTOReachable(self, q, t0):
return self.distance eu(q) < t0 * self.speed

3.4. Vecindario involucrando el tiempo

Las posiciones de nuestros sujetos vienen muestreadas ademés con el ins-
tante en el que fueron tomadas. Podemos considerar que el tiempo entre
tomas también es una distancia y definir un vecindario. Definimos esta dis-
tancia temporal como la resta de ambos instantes, y el vecindario como:

dr(po,p) = time, — time,, < §

Su implementacion en Python es la siguiente:

def is _neighboorhoudByTime(self, q, lapse):
timel = time.mktime(self.date.timetuple())
time2 = time.mktime(q.date.timetuple())
return abs(timel — time2) < lapse

13



4. Preprocesado de datos

Antes de empezar a realizar un algoritmo que nos realice una consolida-
cion de los datos, es conveniente realizar un preprocesado de éstos.

Un primer procesado consistiria en la eliminacion de todos aquellos re-
gistros que tienen como latitud y longitud 0 ya que son datos tomados
por error que lo Unico que harian seria conseguir un claster centrado en
(latitud = 0, longitud = 0)

Vamos a fijar una cantidad minima de distancia, un gy, y compararemos
una posicion con la ultima leida para decidir si la insertamos en base de da-
tos o no. Si la distancia del nuevo muestreo con la tultima es menor que este
o fijado, desecharemos esta nueva posicion. Esto permite que mas adelante
nuestro algoritmo de consolidacién sea mucho mas rapido.

4.1. Canopy

El algoritmo de clustering de Canopy” se usa generalmente como un
preprocesado de los datos para posteriormente aplicar un clustering de tipo
K-means o alguna técnica de agrupamiento jerarquizado.

La idea se basa en el uso de una medida de distancia aproximada para
dividir el conjunto de los datos en subconjuntos que se superponen. A es-
tos subconjuntos los llamaremos canopies. Un canopy es un subconjunto de
puntos que yacen bajo el vecindario de un punto central. Un punto puede
pertenecer a varias canopies distintas. Los canopies son creados con la in-
tencion de que si dos puntos no pertenecen a un canopy en comin, estan
bastante lejos de pertenecer a un mismo clister.

Debido a que Canopy no es méas que un preprocesado de los datos, se fija
una distancia sencilla con el fin de reducir drésticamente el niimero de puntos
y posteriormente aplicar una técnica mejor. En nuestro caso, utilizaremos la

distancia euclidea como distancia para realizar este proceso.

Dada una distancia euclidea, se crean los canopies como sigue:

1. Sea S nuestro conjunto de puntos.

2. Se fijan dos umbrales para 17, T, tal que T > Ts.

14



3. Se toma un punto p € S, éste sera nuestro primer canopy.

4. Se colocan todos los puntos ¢ € S\ {p} tal que dr(p,q) < Ti en el
mismo canopy.

5. Se eliminan del conjunto inicial S aquellos puntos que estén dentro del
umbral de distancia T5.

6. Se repite hasta que el conjunto inicial esté vacio.

La implementacion® en Python se puede encontrar en el apéndice B.
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5. Algoritmos de consolidacién simples

Utilizando las nociones de vecindario definidas en la seccién anterior, nos
planteamos la idea de definir unos algoritmos de consolidacién simples con
el fin de mantener la base de datos en un tamafio mas o menos estable.

Una primera aproximacion seria una creaciéon de un trigger o un pequeno
programa en el momento de insercién en base de datos que comparara la ul-
tima posicion recibida para ese sujeto con la nueva a insertar. Se compararia
la distancia entre éstas con una distancia euclidea simple, y si ésta estuviera
bajo el limite permitido (es decir, muy proxima), se obviaria.

Una segunda aproximacion seré definir una tarea programada cron (ya
que nuestros dispositivos estan basados en una distribuciéon de Linux) que
cada cierto tiempo ejecutara una consolidaciéon sobre éstos.

Estas consolidaciones menos avanzadas se realizaran sobre posiciones an-
tiguas, es decir, segtn el tamano de la base de datos y el nivel critico al que
puede llegar a estar, mandaremos un cierto nimero de posiciones a realizar
la consolidacion.

16



5.1. Consolidacion por distancia

Utilizando los tres tipos de vecindarios que hemos definido, definimos el
siguiente método que realizara la consolidacion del tipo que le indiquemos:

Algoritmo 1 Algoritmo de consolidaciéon simple por distancia

1: function CONSOLIDATIONBYDISTANCE(positions, typeO f Distance, eps, t0)
2 for each pos in positions do
3 if typeO f Distance ==" distance EU Simple’ then
4 if pos.IsInNeighBorhood(next(pos), eps) then
5: Remove position in DB
6 else
7 Maintain position in DB
8 end if
9: end if
10: if typeO f Distance ==' DistanceEUrelativetospeed then
11: if pos.IsInNeighBorhoodRelativeSpeed(next(pos), eps)
then
12: Remove position in DB
13: else
14: Maintain position in DB
15: end if
16: end if
17: if typeO f Distance ==' tOreachable’ then
18: if pos.IsInNeighBorhoodT0Reachablee(next(pos),t0) then
19: Remove position in DB
20: else
21: Maintain position in DB
22: end if
23: end if

24: end for
25: end function

Una implementacion simple se puede encontrar en el apéndice A

17



5.2. Consolidacion por adelgazamiento

Se puede dar el caso que la consolidacion por distancia no sea lo sufi-
cientemente eficaz y no de los resultados necesarios de liberacion de espacio,
ya que las posiciones estén muy lejos entre si. Como tlima opcién, se puede
recurrir a un tipo de consolidacion en la cual dada una lista de posiciones
normalmente antiguas, se elimine un subconjunto de estas, por ejemplo, 3
de cada 5. Asi asegurariamos una pérdida minima de informacién, ya que
no borrariamos un bloque de posiciones, sino que intercalaraimos el borrado,
dejando una frecuencia constante.

Algoritmo 2 Algoritmo de consolidaciéon por adelgazamiento
1: function CONSOLIDATIONBYTHINNING (positions, j, k) > <k
2 for each pos in positions do
3 if position.Index %k == 0 then
4 fori=0;i < k;i++ do
5: Remove position with index == position.Index
6
7
8
9

end for
end if
end for
: end function

Una sencilla implementacion en Python se encuentra en el apéndice A.
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5.3. Consolidacién por tiempo

Una alternativa a una técnia de consolidacion por adelgazamiento seria
una consolidaciéon por tiempo. Es posible que la toma de posiciones se tome
de manera muy préxima temporalmente, o simplemente que sea necesaria
hacer una consolidaciéon més drastica de las posiciones y se tome la decision
de reducir de un modo maés severo la base de datos. Se fija un lapso de tiempo
que se debe cumplir entre posicién y posicion, y se eliminan todas aquellas
que estén cuya distancia temporal con su siguiente esté por debajo de este
lapso fijado.

Algoritmo 3 Algoritmo de consolidaciéon por tiempo

1: function CONSOLIDATIONBYTIME(positions, lapse)

2 for each pos in positions do

3 nextpos = pos + +

4 if IsInNeighboorhod ByTime(nextpos, pos,lapse) then
5: Remove pos

6 end if

7 end for

8: end function

9:
10: function ISINNEIGHBOORHODBYTIME(posl, pos2, lapse)
11: if |posl.time — pos2.time| < lapse then
12: Return true
13: else
14: Return false
15: end if

16: end function

Una implementacion en Python se puede encontrar en el apéndice A.
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6. Algoritmos de consolidacién asociados a mé-
todos de clustering

Un anélisis clister es un conjunto de técnicas multivariantes utilizadas
para clasificar a un conjunto de individuos en grupos homogéneos. Hemos
elegido una serie de técnicas de aprendizaje no supervisado ya que éste parte
de que no hay un conocimiento a priori y es tutil en técnicas de compresion
de datos.

En nuestro problema, ésto nos va a resultar muy tutil a la hora de encon-
trar ciertos patrones, o ciertos clusters que nos agruparéan nuestros en datos
en subconjuntos de éstos, con el fin de identificar ése subconjunto con su
centro y poder eliminar el resto de puntos.

En la seccion 2.3 hemos definido una implementaciéon en Python para el
concepto de posicion. Si queremos utilizar métodos de clistering mas avan-

zados, se ha de definir el concepto de clister.

Definimos un claster de posiciones como un conjunto de posiciones agru-
pado en torno a una posiciéon singular, llamada posicion central del claster.

Realizando una sencilla implementaciéon en Python:

class Cluster:
"Cluster of points"
def __init__(self, center, points):
self.center = center
self points = points

20



6.1. K-means

K-means' es un método eficiente de clustering que tiene como objetivo
la particiéon de un conjunto de n elementos en k£ grupos distintos. Dado un
cojunto de datos (z1,xs,...,2,), K-means construye una particion de las
observaciones en k conjuntos con k < n, S = {51, 5,..., Sk} con el fin de
minimizar el término de error que es la suma de las distancias al cuadrado
de cada punto al centro de su cluster, es decir:

E = Z Z d(x, m;)

i=1 z€S;

donde m; es el centro de cada claster S; y d(z, m;) es la distancia definida
entre el punto x y m;,.

Inicialmente, el algoritmo asigna cada punto a su cluster de manera alea-
toria. Posteriormente, itera sobre cada punto, encuentra el centro de clister
més cercano y asigna el punto al clister cuyo centro estd més cercano. Esa
iteracion se repite hasta que el error es pequeno o se estabiliza.

Este algoritmo, aunque eficiente, tiene algunos inconvenientes con respec-
to a la consolidacion de datos que se busca.

La primera de todas, es que se debe fijar un niimero de clisters a obte-
ner desde el principio, lo que a priori no serfa malo en nuestro caso, no es
interesante en términos de eficiencia y de mantener la maxima informacion
posible. En todo caso, K-means seria interesante para un primer procesado
de datos en el cual la base de datos necesitara urgentemente un descenso de
cantidad de posiciones almacenadas.

En segundo caso, no hay distintos ente puntos considerados ruido", ya
que todos los puntos se consideran en los clisters resultado. Esto introduci-
ria muchos errores a la hora de intentar minimizar el término del error, ya
que facilmente se podrian etiquetar posiciones no significativas como ruido y
no introducirlas en el proceso.

Ademas, K-means es un algoritmo no deterministico, debido a la prime-

ra fase de asignacion de centros de clusters de manera aleatoria, por lo que
no seria muy fiable.
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6.2. DBSCAN

DBSCAN! o Density-based spatial clustering of applications with
noise es un algoritmo de clustering basado en la densidad por lo que encuen-
tra el nimero de clusters comenzando por una estimaciéon de la distribucion
de densidad de los nodos correspondientes. Dado un conjunto de puntos en
un espacio, los agrupa en funcién de la densidad de puntos que tengan a su
alrededor, dejando a un lado aquellos que tienen una densidad baja.

Se considera un conjunto de puntos a aplicar la técnica. El algoritmo
clasificara los puntos en tres grupos:

» Un punto p es considerado nicleo si al menos un ntimero de puntos
minimo (al que denotaremos por minPts estan a una distancia me-
nor que € de p. Este conjunto de puntos se consideraran directamente
alcanzables desde p.

= Un punto q es considerado alcanzable de p si existe un camino py, ..., p,
tal que p; = p y p, = ¢, donde cada p;;; es directamente alcanzable
desde p; (todos los puntos del camino son puntos ntcleo, excepto quizas

q).

= Todos los puntos que no son considerados ni nticleos ni alcanzables son
considerados aislados.

Ahora, si p es un punto nucleo, entonces forma un claster con aquellos
puntos que sean alcanzables desde p. Cada clister contiene al menos un pun-
to nicleo; y puntos no nicleo pueden formar parte de éste, pero formaran lo
que parten del borde, ya que no permiten alcanzar més puntos.

Figura 5: Diagrama DBSCAN
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En el diagrama, se puede observar que si fijamos la variable minPts a
3, el punto A y los demas puntos rojos son puntos nicleo, ya que al menos
estan rodeados de 3 puntos en su vecindario de radio €. Como son densa-
mente alcanzables unos con otros, forman un clister. Los puntos B y C' no
son puntos niicleo, pero si que son alcanzables desde A, por lo que también
pertenecen al claster. El punto N es calificiado como aislado o ruido ya que
no es ni punto nicleo ni densamente alcanzable.

La alcanzabilidad no es una relaciéon simétrica ya que, por definicion,
ninguin punto puede ser alcanzable por un punto no ntcleo (un punto no
nicleo puede ser alcanzable, pero no puedo alcanzar). Es necesario definir
una nocién mas fuerte de conectividad. Decimos que p y g estan densamente
conectados si existe un punto o tal que p y ¢ son densamente alcanzables.
Esta nocion de densamente conectados si que es simétrica.

Redefinimos la nociéon de cluster que previamente habiamos definido. Un
cliuster debe satisfacer dos propiedades:

1. Todos los puntos deben estar mutuamente densamente conectados.

2. Si un punto g es densamente alcanzable desde un punto p del cluaster,
q es parte del clister también.

DBSCAN requiere de dos parametros para empezar: € para la nocion de
vecindario y min Pts para el ntimero minimo de puntos necesario para formar
un claster. Se empieza tomando arbirariamente un punto del conjunto que
no haya sido visitado. Se obtiene su vecindario, en el caso de que no exista,
este punto se marca como ruido y se pasa al siguiente. Si no es nulo y tiene
un nimero de puntos mayor que minPts, se crea un clister.

Si uno de los puntos del proceso resulta que es parte de un cliaster, su
vecindario también se anade a éste. Se reitera este proceso, ya que todos los
puntos nuevos anadidos del vecindario anterior, son parte del claster, luego
el vecindario de cada uno es anadido. Este proceso se continda hasta que se
obtiene el cluster densamente conectado.
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Algoritmo 4 Algoritmo DBSCAN

1: function DBSCAN ((positions, eps, minPts)
2 C=0

3 for each pos in positions do

4 if pos has been visited then

5: Continue next position

6 else

7 Mark pos as visited

8 N(pos) = NeighborPts(pos, eps)

9: if length(N(pos)) < MinPts then
10: Mark pos as noise
11: else
12: C = next Cluster
13: expandCluster(pos, N(pos), C, eps, MinPts)
14: end if
15: end if

16: end for

17: end function

18:

19: function EXPANDCLUSTER(P, Neighbor Pts, C, eps, MinPts)
20: add P to cluster C

21: for each P’ in NeighborPts do

22: if P’ is not visited then

23: Mark P’ as visited

24: NeighborPts” = regionQuery(P’, eps)

25: if length(Neighbor Pts') >= MinPts then

26: NeighborPts = NeighborPts joined with NeighborPts’
27: end if

28: end if

29: if P’ is not yet member of any cluster then

30: add P’ to Cluster C

31: end if

32: end for

33: end function

34:

35: function NEIGHBORPTS(P, eps)

36: return all points within P’s eps-neighborhood (also P)
37: end function
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6.2.1. Implementacién en Python

Se encuentra una implementacion bastante eficaz y sencilla en el reposi-
torio de Sushant Kafle.”

from dbscanner import dbscanner
from algorithms.db import connect db

cur= connect db("bahia'")
recurso = "tetra:12082781"
limit = 1000
cmd = "SELECT latitud, longitud
FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0
AND recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)
cur.execute(cmd)

a~]

for pos in cur.fetchall():
a.append([pos|0], pos[1]])

Data = a
eps = 0.0001
MinPts= 5

dbc = dbscanner()
dbc.dbscan(Data, eps, MinPts)

Figura 6: Ejemplo de uso de la implementacion de DBSCAN

Notar que hemos tomado como valor de € = 0,0001 ya que es una aproxi-
macion de la distancia media de toma entre posiciones y 5 es un buen valor
a la hora de hacer una consolidacion. El resultado consiste en algunas posi-
ciones marcadas como ruido y 5 cliasters. Debido a que es un proceso muy
costoso, nos hemos limitado en este caso a hacer la consolidacién en unas
1000 posiciones.
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https://github.com/SushantKafle/DBSCAN
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Figura 7: Resultado DBSCAN

6.3. DJ-Cluster

Density-Joinable Cluster! es un tipo de algoritmo de clustering basa-
do en densidades de puntos que intenta solventar algunas de las limitaciones
de K-means. Este algoritmo localiza puntos significativos sobre el conjunto
de todos los puntos, es decir, el centro del cliaster. No debemos olvidar que
nuestro objetivo es encontrar posiciones significativas en todo nuestro con-
junto de posiciones GPS, y éstos centros de cluster que nos generara este
algoritmo nos serviran para tal proposito.

La idea del algoritmo es la siguiente, para cada punto calculamos su ve-
cindario. Este vecindario dependera de la distancia elegida entre todas las
anteriores definidas, y segiin cudl sea la elegida, dependera de una variable
o un instante t; escogido. Se impone la condicién de que el nimero de pun-
tos conseguido al computar su vecindario sea al menos un MinPts definido
previamente. Si esta condicién no se cumple, se marca la posiciéon actual co-
mo ruido y se prosigue con la siguiente. En el caso de cumplirse, este nuevo
punto es el centro del cluster, junto a su vecindario.

Con este nuevo cluster creado, el siguiente paso es comprobar que este
clister no sea densamente acoplable con los que ya llevamos computados. Un
clister es densamente acoplable a otro clister si existe un punto comiin entre
ambos.
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Figura 8: Diagrama DJ-Clustering
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Algoritmo 5 Algoritmo DJ-Cluster

1: for each p in set S do

2:

3:

4:

5:

6:

7: else

8:

9: end if
10: end for

Compute neighborhood N(p) for € and MinPts

if N(p) is null (|N(p)| < MinPts for €) then
Label p as noise

else if N(p) is density-joinable to an existing cluster then
Merge N (p) with the cluster which is density-joinable

Create a new cluster C' based on N (p)

Durante el proceso, se recorren todos los puntos del conjunto a analizar,
calculando cada vecindario de cada punto con un centro p y un radio €. Si
el namero de puntos del vecindario excede esta cantidad minima MinPts,
entonces es un vecindario a considerar. Este claster es posteriormente mer-
geado con otros posibles clisters densamente acoplables.

Al final de cada iteracion puede ser que el nimero de clusters no cambie,
porque no existe un nuevo clister o porque el nuevo claster sea mergeado

con alguno de los ya existentes.

El valor de los parametros € y MinPts es el que determina el tamano de
nuestros clusters. En nuestro caso, no buscamos grandes ntimeros de clasters,
sino perder el minimo de informacién posible, por lo que nos convendria to-

mar unos valores de € y MinPts pequeios.®
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El valor de la variable € debe tomarse® en funcioén de la precision de los
aparatos que toman las posiciones. Podemos estimar este paramero por unos
20 metros, que es la precision de un GPS convencional.

Con respecto al valor de MinPts, un valor alto de esta parametro implica
que los clusters deben ser més densos a la hora de formarse, pero un valor
razonable® estarfa entre 3 y 10.

La complejidad de este algoritmo es O(nlogn).!
En los préximos resultados utilizaremos una implementacion en Weka pa-
ra lanzar un estudio, sin embargo, se ha desarrollado en Python el algoritmo

de DJ-Cluaster de manera parecida al de DBSCAN. Se puede consultar
una implementaciéon en el anexo B.
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7. Aplicacién de los algoritmos

Se va a realizar una comparativo de todos los métodos estudiados para dos
sujetos en concreto de nuestra base de datos. Se han tomado los dos sujetos
como mas posiciones, y de cada uno de éstos, un muestreo de 2000 posiciones.

Antes de aplicar los métodos, es necesario aplicar un filtro de Normali-
zacion, dado que de no aplicarlo, la fecha pesaria sobre todos los demas y
dejaria el resto de las variables sin valor (no hay que olvidar que la fecha es
un timestamp, por lo que a efectos précticos es un entero muy grande).

Sujeto 1 | tetra:12082781
Sujeto 2 | tetra:12082364

Antes de importar las variables de nuestra base de datos, necesitamos
hacer el célculo de su media y su desviaciéon tipica con el fin de tipificar cada
una de las variables y dar la misma importancia a cada una de ellas.

Para el primer sujeto, contamos con lo siguiente:

latitud | longitud | fecha
Media -0.223 | -0.665 1424174494.89
Desv. Tipica | 0.022 | 0.065 104277.37

Hacemos una importacion de datos a Weka de la siguiente forma:

mysql > SELECT (latitud + 0.223)/0.022 as ’latitudT”,
(longitud + 0.665)/0.065 as ’longitudT’,
(UNIX TIMESTAMP (fecha) — 1424174494.89)/104277.37 as ’time’
FROM posicionesgps
WHERE latitud <> 0 AND longitud <> 0
AND recurso="tetra:12082781’
LIMIT 2000;
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Figura 9: Distribucion de las 2.000 posiciones del Sujeto 1

Se hace una distinciéon de colores azules y naranjas en funciéon del tiem-
po. Se puede observar la traza de movimiento del sujeto, que empieza en la
esquina superior izquierda y acaba en la parte inferior de la grafica.

Calculamos la desviacion tipica y la media del segundo sujeto, del mismo
modo que con el sujeto 1.

latitud | longitud | fecha
Media -0.21 -0.625 1424350386.203
Desv. Tipica | 0.057 | 0.169 41234.453

Para el segundo sujeto, hacemos una importaciéon de datos a partir de
nuestra base de datos de la siguiente forma:

mysql > SELECT (latitud + 0.21)/0.057 as ’latitudT”,

(longitud + 0.625)/0.169 as ’longitudT”,

(UNIX TIMESTAMP (fecha) — 1424350386.203)/41234.453 as ’time’
FROM posicionesgps

WHERE recurso="tetra:12082364’ AND latitud<>0 AND longitud<>0
ORDER BY 3 ASC

LIMIT 2000;
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Figura 10: Distribucion de las 2.000 posiciones del Sujeto 2

7.1. Resultados de algoritmos por consolidacién simple

La importacién de datos para poder utilizar los algoritmos que se han
desarrollado en la seccién 5 es parecida a la utilizada en el algoritmo DBS-
CAN.

Utilizaremos la clase db que hemos creado para conectarnos a la base de
datos donde almacenamos las posiciones:

cur_sal = connect_db("bahia")

limit = 2000

cmd = "SELECT %« FROM posicionesgps WHERE latitud< >0
AND longitud<> 0 AND recurso="tetra:12082781’
LIMIT {0};".format(limit)

cur_sal.execute(cmd)

Y crearemos una lista de posiciones con la implementacion previa que
hemos desarrollado:

list pos = ||
for row in cur_sal.fetchall():
q = Position(row|0]| # id
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row|2| # resource
row|3] # lat
row|4| # lon
row|5| # speed
row|6] # track
row|10| # date

)

list pos.append(q)

Tipificaremos las variables como anteriormente hemos hecho, calculando
su media y su desviacion tipica:

listPosTyp = ]
lats = ||
longs = ||

for pos in list pos:
lats.append(pos.lat)
meanLat = np.mean(lats)
for pos in list _pos:
longs.append(pos.lon)
meanLon = np.mean(longs)
devLat = np.std(lats)
devLon = np.std(longs)

latsTyp = |]

longsTyp = ||

for pos in list pos:
q = Position(pos.id, pos.resource
, (pos.lat — meanLat)/devLat
, (pos.lon — meanLon)/devLon
, pos.speed, pos.track, pos.date)
listPosTyp.append(q)
latsTyp.append(q.lat)
longsTyp.append(q.lon)

Utilizaremos el co6digo definido en el anexo B para realizar las consolida-
ciones por adelgazamiento, tiempo y distancia.

import consolidation as cs
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7.1.1.

Y vamos a realizar una primera consolidaciéon por

Consolidaciéon por adelgazamiento

mantienen 2 posiciones de cada 5:

adelgazamiento, se

result = cs.ConsolidationByThinning(list _pos, 2, 5)

Utilizando matplotlib, dibujamos los resultados.
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Los puntos rojos son los eliminados porque se han consolidado y los azules
son los que se han mantenido. En este caso, se mantienen 800 posiciones.
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Figura 11: Resultado consolidacién por adelgazamiento
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7.1.2.

Realizaremos una consolidaciéon por tiempo, eliminaremos las posiciones

Consolidacién por tiempo

que tengan entre ellas un lapso menor que 20:

result = cs.ConsolidationByTime(list_pos, 20)
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Figura 12: Resultado consolidacién por tiempo

En este caso se mantienen 507 posiciones.
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7.1.3.

Se realiza una consolidacién por distancia simple, es decir, por distancia

Consolidacién por distancia simple

euclidea dando un radio de € = 0,0001:

result = cs.ConsolidationByDistance(list _pos, 0, 0.0001, 1)
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Figura 13: Resultado consolidacién por distancia Simple
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Se han reducido el numero de puntos a 21.

7.1.4.

Consolidacién por distancia t0-alcanzable
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cs.ConsolidationByDistance(list _pos, 2, 0.001, 1)
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Figura 14: Resultado consolidaciéon por distancia ty—alcanzable

Esta consolidacion, que tiene en cuenta la velocidad instantanea del su-
jeto, realiza una consolidacién mas severa en aquellos puntos en los cuales el
sujeto posee velocidad, es decir, el vecindario de éstos puntos es superior al
vecindario de los puntos donde no posee velocidad. Esta es la razén por la
cual la traza superior (en la que el sujeto tiene una mayor velocidad) ha sido
consolidada s6lo al punto inicial.

Esta consolidacion ha mantenido 1786 puntos.
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7.2. Resultados con K-means

Se va a realizar un estudio K-means para ambos sujetos con los mismos
parametros que previamente habiamos aplicado, vamos a reducir el nimero
de posiciones a 500, es decir, una consolidacion al 25 %. En ambos experi-
mentos se ha tomado una distancia euclidea por simplicidad. Se aplicara un
preprocesado de Canopy y fijaremos el nimero de clusters a 500:

7.2.1. Sujeto 1

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 2 -max-candidates 100
-periodic-pruning 10000 -min-density 2.0

-t1 -1.25 -t2 -1.0 -N 500 -A "weka.core.EuclideanDistance

-R first-last" -I 500 -num-slots 1 -S 10

Relation: QueryResult
Instances: 2000
Attributes: 3
latitudT
longitudT
time
Test mode: evaluate on training data

=== Clustering model (full training set) ===

Number of iterations: 9
Within cluster sum of squared errors: 0.11736312393686821

Initial starting points (canopy):

T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.077067,-0.09795,0.073287
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Cluster 1: -0.076555,-0.097964,-0.092632
Cluster 2: -0.044869,-0.075594, -0.166324

Time taken to build model (full training data) : 0.69 seconds

PR

#E
Xxé?‘

Figura 15: Resultado de K-means para el Sujeto 1

Se han realizado 10 iteraciones y se ha llegado a un error cuadratico de
0,117363. Observando el niimero de posiciones que ha agrupado por clister,
podemos observar que varian entre 1 y 9, lo cual es una buena media, ya
que no ha agrupado demasiadas posiciones en un mismo claster. Debemos
recordar que nuestro objetivo no es conseguir una cantidad de clasters muy
pequena, sino conseguir que cada claster cuente con un nimero més o menos
equilibrado de posiciones, para poder asignar cada posicion a su centro del
claster.

Se puede observar mejor en la gréafica. Cada cluster esta representado por
un color distinto. En la parte superior de esta grafica, podemos observar que
ha seguido un camino con respecto al tiempo en una direccién, mientras que
en la parte inferior ha pasado varias veces por un mismo sitio, y aparece una
aglomeracion de colores en un punto. Esto se debe a que para nuestro estudio
hemos introducido también la variable temporal, por lo que no puede agrupar
todas esas posiciones en un mismo clister, ya que no lo estan, debido a que
vienen de varios instantes distintos.
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El total de clusters es de 500, ya que con K-means es necesario prefijarlos.

7.2.2. Sujeto 2

Realizamos el mismo estudio con el Sujeto 2:

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 2 -max-candidates 500
-periodic-pruning 10000 -min-density 2.0

-t1 -1.25 -t2 -1.0 -N 500

-A "weka.core.EuclideanDistance -R first-last"

-I 500 -num-slots 1 -S 10

Relation: QueryResult
Instances: 2000
Attributes: 3
latitudT
longitudT
time
Test mode: evaluate on training data

=== (Clustering model (full training set) ===

Number of iterations: 24
Within cluster sum of squared errors: 0.2079975699953984

Initial starting points (canopy):

T2 radius: 0,439
T1 radius: 0,548

Cluster 0: -0.278213,-0.272406,0.032468,
Cluster 1: -0.236123,-0.267776,-0.148367
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Time taken to build model (full training data) : 1.38 seconds

%,

Figura 16: Resultado de K-means para el Sujeto 1

En la siguiente figura, se observa una asignaciéon un poco rara de los clus-
ters. En la secciéon de abajo se pueden observar distintos colores, como si
varios puntos muy cercanos se hubieran asingados a clisteres distintos, pero
esto es debido a que no son seguidos en el tiempo, es decir, el sujeto esté
volviendo a pasar por el mismo sitio. Si nos volvemos a fijar en la represen-
tacion sin clusterizar, se puede observar que existe un trozo donde el naranja
y el azul se superponen, es decir, son instantes distantes temporalmente.

El error cuadratico es de 0,207997, un poco peor que con el sujeto 1, y el
tiempo de ejecucion es de 1,38 segundos.
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7.3. Resultados con DBSCAN

Utilizaremos los mismos parametros utilizados para el método DBSCAN
previamente estudiado, un valor de ¢ = 0,0001 y un valor de minPts = 5.
Tomaremos 1000 datos de cada sujeto y los compararemos:

7.3.1. Sujeto 1

cur= connect db("bahia')

recurso = "tetra:12086044"

limit = 2000

cmd = "SELECT latitud, longitud, UNIX TIMESTAMP (fecha)
FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0 and recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)

cur.execute(cmd)

a=]

for pos in cur.fetchall():
a.append([pos|0], pos|1], pos[2]])

Data = a
eps = 0.0001
MinPts=5

dbc = dbscanner()
dbe.dbscan(Data, eps, MinPts)

Una de las cosas positivas que se puede decir del algoritmo DBSCAN
es que identifica puntos como ruido, cosa que los algoritmos de K-means y
DJ-Cluster no hacen, ya que asignan simplemente esos puntos a un claster
de un tnico punto.

El resultado de DBSCAN ha sido una divisién de nuestro conjunto inicial
de 1000 posiciones en 6 clusters y algunas posiciones etiquetadas como ruido.
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Figura 17: Resultado de DBSCAN para el Sujeto 1

7.3.2. Sujeto 2

Utilizaremos los mismos parametros utilizados para el sujeto 1:

cur= connect db("bahia'")

recurso = "tetra:12082781"

limit = 2000

cmd = "SELECT latitud, longitud, UNIX TIMESTAMP (fecha)
FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0 and recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)

cur.execute(cmd)

a=]

for pos in cur.fetchall():
a.append(|pos|0], pos[1], pos[2]])

Data = a
eps = 0.0001
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MinPts=5

dbc = dbscanner()
dbc.dbscan(Data, eps, MinPts)
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Figura 18: Resultado de DBSCAN para el Sujeto 2

Obtenemos 5 cluasters en un tiempo de ejecucion de 2 minutos, 20 se-
gundos. En esta ejecuccion, ha etiquetado muchas posiciones como ruido,
probablemente son las posiciones en las cuales el sujeto se encuentra en mo-
vimiento. De haber utilizado aqui una consolidacién en la cual se hubiera
introducido una distancia que involucrara la velocidad, habriamos consolida-
do en esa zona superior derecha de ruido un nuevo clister.

Haciendo un pequeno cambio en el c6digo que podemos encontrar de la
implementacion de DBSCAN en el apéndice B.
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def regionQuery(self P eps):
P = Position(None, None, P.X, P.Y, P.Speed, None, None)
for d in self.dataSet:
d = Position(None, none, d.X, d.Y, d.Speed, None, None)
if d.is_in neighborhoodByEURelativeSpeed(P, 0.001):
result.append(d)
return result

Asi estariamos utilizando la distancia que hemos implementado que in-
volucra la velocidad.

7.4. Resultados con DJ-Cluster

Realizaremos un estudio DJ-Cluster utilizando un preprocesado de da-
tos Canopy fijando una desviaciéon minima estdndar de 0,001.

Se fija una distancia euclidea para ambos experimentos.

7.4.1. Sujeto 1

Notar que si utilizamos un preprocesado de Canopy sin fijar el ntimero
de clusters previo, éste nos consolida demasiado la informacion (tal y como
pasa en el DBSCAN), lo cual no es muy interesante.

=== Run information ===

Scheme: weka.clusterers.MakeDensityBasedClusterer -M 0.001
-W weka.clusterers.Canopy --

-N -1 -max-candidates 100

-periodic-pruning 10000

-min-density 2.0 -t2 -1.0 -t1 -1.256 -8 1

Relation: QueryResult
Instances: 2000
Attributes: 3
latitudT
longitudT
time
Test mode: evaluate on training data
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=== Clustering model (full training set) ===
MakeDensityBasedClusterer:

Wrapped clusterer:
Canopy clustering

Number of canopies (cluster centers) found: 4
T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.094874,-0.065178,-0.166183,{55} <0>
Cluster 1: -0.076573,-0.097976,-0.028496,{1474} <1,2>
Cluster 2: -0.077869,-0.097886,0.137391,{438} <1,2>
Cluster 3: -0.044869,-0.075594,-0.166324,{33} <3>

Time taken to build model (full training data) : 0.03 seconds
=== Model and evaluation on training set ===
Clustered Instances

51 ( 3%
1170 ( 59%)
742 ( 37%)
37 ¢ 2%

w N = O

Log likelihood: 9.34996
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Figura 19: Resultado de DBSCAN para el Sujeto 2

Realizaremos un preprocesado Canopy de 500 clusters, con el fin de con-
seguir tanta consolidacion.

=== Run information ===

Scheme: weka.clusterers.MakeDensityBasedClusterer -M 0.001
-W weka.clusterers.Canopy --

-N 500 -max-candidates 100

-periodic-pruning 10000

-min-density 2.0 -t2 -1.0 -t1 -1.256 -S 1

Relation: QueryResult
Instances: 2000
Attributes: 3
latitudT
longitudT
time
Test mode: evaluate on training data

=== Clustering model (full training set) ===
MakeDensityBasedClusterer:

Wrapped clusterer:
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Canopy clustering

Number of canopies (cluster centers) found: 500
T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.094874,-0.065178,-0.166183,
Cluster 1: -0.076573,-0.097976,-0.028496

El cual nos consigue un preprocesado de 500 clisters con Canopy, sin
embargo, al aplicar DJ-Cluser, se nos reduce a 22 clisters:

Time taken to build model (full training data) : 0.37 seconds
=== Model and evaluation on training set ===

Clustered Instances

0 3 C 0%
12 605 ( 30%)
58 7 C 0%

142 449 ( 22%)
165 3 C oW
209 57 ( 3%
230 188 ( 9%)
287 8 ( 0%
295 32 (2%
345 17 ¢ 1%
353 9 ( 0%
369 68 ( 3%)
373 3 C 0ok
380 6 ( 0%
385 2 ( 0%
386 10 ¢ 1%
458 7 C 0%
459 3 C 0ok
464 3 C 0%
473 9 ( 0%
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474 1 C 0%
493 510 ( 26%)

Log likelihood: 9.05128

I T

Figura 20: Resultado de DJ-Cluster para el Sujeto 1

Este resultado se puede interpretar como algo bastante positivo, ya que
hemos reducido considerablemente el tamano de nuestra base de datos, e
incluso podemos etiquetar algunos clusters como ruido, es decir, aquellos que
sblo se nos han producido a partir de una o dos posiciones como es el caso.
Seria necessario hacer un post-procesado de datos para eliminar todas estas
posiciones aisladas.

7.4.2. Sujeto 2

Con el sujeto 2 ocurre lo mismo que con el sujeto 1, con el preprocesa-
do de Canopy obtenemos una consolidacion en 500 clisters, sin embargo, al
aplicar DJ-Cluster, obtenemos una consolidacién a 27 clasters.

Time taken to build model (full training data) : 1.56 seconds
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=== Model and evaluation on training set ===

Clustered Instances

0 6 ( 0%

2 5 C 0%

3 1 C 0%

4 2 ( 0%
76 5 C 0%
91 6 ( 0%
96 36 ( 2%)
107 1 C 0%
133 6 ( 0%
142 91 ( 5%)
146 68 ( 3%)
159 4 ( 0%)
166 19 ¢ 1%
173 1 .C oh)
211 17 ¢ 1%
214 2 C 0
288 8 ( 0%
329 1669 ( 83%)
354 5 (C 0%
370 1 C 0%
381 1 C oh
386 5 C 0%
387 10 ¢ 1%
391 1 C 0%
459 4 (0%
474 16 1%
475 10 ¢ 1%

Log likelihood: 10.83917
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-0, 27

Figura 21: Resultado de DJ-Cluster para el Sujeto 2
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8. Comparativa de resultados

‘ Algoritmo ‘ SUJETO 1 ‘ SUJETO 2
Canopy Si Canopy Si
N. Clusters 500 N. Clusters 500
K-means Iteraciones 9 [teraciones 24
Error cuadratico 0.117363 Error cuadratico 0.208997
T. de ejecucion  0.69 secs T. de ejecucion  1.38 secs
Canopy: No Canopy: No
Iteraciones: 111 [teraciones: 111
DBSCAN T. de ejecuciéon: 2 min 30 secs T. de ejecuciéon: 2 min 20 secs
N. Clusters: 9 N. Clusters: 9
Canopy: Si Canopy: Si
[teraciones: 11 [teraciones: 12
. Clusters: 22 N. Clusters: 27
DJ-Claster | g or cuadrtico:  0.140929 Error cuadrdtico: 0.209090
Verosimilitud: 9.34996 Verosimilitud: 10.83638
T. de ejecucion 0.37 secs T. de ejecucion 1.56 secs
Canopy: No
Iteraciones: N. de posiciones
f;;ijiilga_ Clusters: 800
T. de ejecucion: <0.01 sec
Canopy: No
Por tiempo [teraciones: N. de posiciones
Clusters: 507
T. de ejecucion: <0.01 sec
Canopy: No
Por distan- Ite/raciones: N. de posiciones
cia simple Clusterg . 21
T. de ejecucion: <0.01 sec
Canopy: No
. [teraciones: N. de posiciones
fa(ilrcia d;s: Clusters: 1786
0 T. de ejecucion: <0.01 sec
alcanzable

Figura 22: Comparativa entre los disintos métodos
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Se puede observar que claramente el algoritmo DBSCAN es el mas lento
de todos, ademas del que mas iteraciones realiza. Sin embargo, éste es el que
menos clasters obtiene, es decir, el que realiza una consolidaciéon mayor. Esto
es debido a que no lleva un preprocesado Canopy previo, no como K-means
y DJ-Cluster. Ambos llevan un preprocesado previo de Canopy, el cual les
marca un nimero minimo de clasters que dejar a la hora de realizarlo, sin
embargo, podemos observar que K-means se queda en los 500 clusters que le
hemos fijado desde el principio, mientras que DJ-Cluster consigue rebajar
este numero incluso mas. Con respecto al tiempo de ejecucion, DJ-Cluster
es muchisimo mas efectivo, aunque su error cuadratico es peor, comparado
con K-means.

DBSCAN tiene algunas ventajas con respecto a sus demés companeros:

= No necesita de prefijar el nimero de clusters.

= DBSCAN tiene la nociéon de ruido, asi que no es necesario aplicar un
post-filtro para encontrar aquellos puntos aislados.

Sin embargo, DBSCAN no es un algoritmo determinista, los puntos borde
que son alcanzables desde mas de un sélo cluster pueden asignarse a cualquie-
ra de éstos. Sin embargo, esta situacion no es usual, y en nuestro problema,
solo nos interesan realmente los puntos niicleo y los puntos aislados.

La comparativa de éstos métodos mas avanzados con los propios simples
definidos en 5 es algo dificil de realizar. Un primer punto seria hacer notar
que la complejidad algoritmica de los algoritmos por consolidacién simple
vistos en 5 es mucho mayor que los algoritmos posteriormente estudiados.
Sin embargo, la principal ventaja del uso de éstos sobre los avanzados seria
la posibilidad de una utilizacion de otra definiciéon de distancia, cosa que uti-

lizando alguna implementacion ya realizada en Weka es imposible.
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9. Conclusiones y cuestiones abiertas

Entre los resultados de este texto, se encuentran dos tipos de algoritmos
analizados e implementados. En primer lugar, los algoritmos de consolidacién
que hemos definido como "simples", que no realizan un estudio a partir de
los datos, sino que parten de distintas nociones de distancia tanto espacial
como temporal y realizan una consolidaciéon en funciéon de éstas. La ventaja
de estos algoritmos es que son eficaces, cumplen el papel que prometen y
liberan la memoria necesaria en disco para poder seguir con una inserciéon
en base de datos. La desventaja principal de éstos es que a nivel estadistico
no realizan un estudio de las propias caracteristicas del dato en si, como los
algoritmos de clustering.

Los segundos algoritmos expuestos son de un nivel superior, ya que estan
pensados para cualquier tipo de dato, no necesariamente ordenado en una
magnitud temporal. Con éstos aseguramos una menor pérdida de informa-
cion, aunque si que resultan de mayor coste mayor tanto computacional como
de implementaciéon que los anteriores. En un futuro, esto queda a criterio de
la persona que desarrollara estos algoritmos directamente en la aplicacion a
utilizar.

Entre estos métodos de .2lto nivel"también ha sido valorado el estudiar
métodos de clustering jerarquizados. Sin embargo, la razén principal que
desecho el estudio de éstos fue que la complejidad de un clustering aglomera-
tivo jerarquizado es de O(n?) y la de clustering divisivo también jerarquizado
es de O(2"), bastante grandes en comparacin a la complejidad computacional
computacional de O(n log(n)) de DJ-Cluster.

Entre estos tltimos, K-means, DJ-Cluster y DBSCAN no se encuen-
tran muchas diferencias. Obviamente, K-means es un algoritmo de mayor
simpleza, pero se puede comprobar que es bastante eficaz a la hora de re-
solver nuestro problema. Notar que DBSCAN es un algoritmo que tiene la
propiedad de etiquetar algunas posiciones como rutdo, lo cual las implemen-
taciones de Weka de K-means y DJ-Cluster no realizan, asi que serfa un
punto a favor para utilizar DBSCAN.

A la hora de realizar una reconstrucciéon de la traza de movimiento a par-
tir de los datos centralizados, es resenable el uso del algoritmo DJ-Cluster
ya que el algoritmo K-means no asegura encontrar los mejores centroides
de los clusters. El resultado depende de la eleccion inicial de los centros de
los clisters, la cual es al azar en el caso de K-means. Seria a lo mejor reco-
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mendable lanzar el algoritmo varias veces con el fin de minimizar el error en
cada una y elegir la que mejor se ajustara, pero en este caso es mejor utilizar
un DJ-Cluster.

La definiciéon de un nuevo concepto de distancia ha sido realizada para
los algoritmos de consolidaciéon simple, sin embargo, la realizacion de pruebas
sobre los demés métodos ha sido realizada con el software Weka, el cual no
permite el uso de distancias personalizable. El ntmero de iteraciones en este
caso es lineal, es decir, es el nimero de posiciones iniciales que mandamos
consolidar.

Quedaria como trabajo a futuro la inclusiéon de la orientacion en los al-

goritmos de K-means, DJ-Cluster y DBSCAN como un elemento mas a
la hora de definir las nociones de vecindario.

o4



10.

Herramientas utilizadas

. Weka (Waikato Environment for Knowledge Analysis, en espafiol «en-

torno para andlisis del conocimiento de la Universidad de Waikato» ) es
una plataforma de software para el aprendizaje automatico y la mineria
de datos escrito en Java y desarrollado en la Universidad de Waikato.
Weka es software libre distribuido bajo la licencia GNU-GPL.?

. Python se trata de un lenguaje de programaciéon multiparadigma, ya

que soporta orientaciéon a objetos, programaciéon imperativa y, en me-
nor medida, programaciéon funcional. Es un lenguaje interpretado, usa
tipado dindmico y es multiplataforma.

. R es un lenguaje y entorno de programacion para analisis estadistico

y grafico. R se distribuye bajo la licencia GNU GPL y esta disponible
para los sistemas operativos Windows, Macintosh, Unix y GNU /Linux.’

GitHub es una plataforma de desarrollo colaborativo para alojar pro-
yectos utilizando el sistema de control de versiones Git.

. MySQL es un sistema de gestion de bases de datos relacional, multihilo

y multiusuario bajo una licencia GNU GPL para uso no comercial.
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A. Implementacién de algoritmos de consolida-
cién simple

Codigo 1: Consolidacion por distancia

"Consolidation By distance"
def ConsolidationByDistance(listPositions, typeOfDistance, eps, t0):
i=0
result = ||
while i < len(listPositions) — 1:
# Neighborhood: Distance EU simple
if typeOfDistance == 0:
if not listPositions[i].IsinNeighEUSimple(listPositions|i+1], eps):
result.append(listPositionsli] )
# Neighborhood: Distance EU relative to speed
elif typeOfDistance ==
if not listPositions|i|].IsInNeighSpeedRelative(listPositions|i+1]|, eps):
result.append(listPositionsli] )
# Neighborhood t0 reachable
elif typeOfDistance == 2:
if not listPositions|i].IsiInNeighTOReachable(listPositions|i+1], t0):
result.append(listPositionsli] )
else:
raise ValueError("That distance does not exist’)

i=i+1
result.append(listPositions|len(listPositions) — 1])

return result
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Codigo 2: Consolidacion por adelgazamiento

"Consolidation by thinning."
def ConsolidationByThinning(listPositions, k, j):
ifk >=j:
raise ValueError(’K tiene que ser menor que J)

i=20
result = ||
while i < len(listPositions) — 1:
if i %] == 0:
1=0
while | < k:
result.append(listPositions|i — 1])
l=1+1
i=1i+1

return result
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Codigo 3: Consolidacion por tiempo

"Consolidation by time. Deletes positions too close by time."
def ConsolidationByTime(listPositions, lapse):
i=0
result = ||
while i < len(listPositions) — 1:
if not listPositions[i].is neighboorhoudByTime(listPositions[i+1], lapse):
result.append(listPositionsli])
i=i+1
result.append(listPositions|len(listPositions) — 1])

return result
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B. Implementaciéon de algoritmos de consolida-
ci6én asociados a métodos de clustering

Codigo 4: Preprocesado de Canopy

from sklearn.metrics.pairwise import pairwise distances
import numpy as np

# T1 > T2 for overlapping clusters

# T1 = Distance to centroid point to not include in other clusters

# T2 = Distance to centroid point to include in cluster

# T1 > T2 for overlapping clusters

# T1 < T2 will have points which reside in no clusters

# T1 == T2 will cause all points to reside in mutually exclusive clusters

def canopy(X, T1, T2, distance metric="euclidean’, filemap=None):
canopies = dict()
X1 dist = pairwise distances(X, metric=distance metric)
canopy _points = set(range(X.shape|0]))
while canopy points:
point = canopy points.pop()
i = len(canopies)
canopies|i] = {"c¢":point, "points": list(np.where(X1 dist|point| < T2)[0])}
canopy _points = canopy _points.difference(set(np.where(X1 dist|point| < T1)[0]))
if filemap:
for canopy id in canopies.keys():
canopy = canopies.pop(canopy id)
canopy2 = {"c":filemap|canopy|'c’||, "points":1ist()}
for point in canopy|'points’|:
canopy?2|"points"|.append(filemap|point|)
canopies|canopy id| = canopy?2
return canopies
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Codigo 5: DJ-Cluster
from position import Position, Cluster

"Dj—Clustering Algorithm"

def DjCluster(setPoints, typeDistance, eps, minPoints, t0):
listClusters = ||
listNoises = ||

for p in setPoints:
np = computeNeighborhood(p, setPoints, typeDistance, minPoints, eps, t0)

if np is None:

listNoises.append(p) # etiquetamos el punto como ruido
else:

result = np.isDensityJoinable(listClusters)

if result is None:

listClusters.append(np) # creamos un nuevo cluster
else:

result.mergeCluster(np)

return [listClusters, listNoises]

"Compute Neighborhood"
def computeNeighborhood(p, setPoints, typeDistance, minPoints, eps, t0):
pointsOfCluster = ]|
for g in setPoints:
if typeDistance == 0:
if p.is_in_ neighborhoodByEUSimple(q, eps):
pointsOfCluster.append(q)
elif typeDistance ==
if p.is in neighborhoodEURelativeSpeed(q, eps):
pointsOfCluster.append(q)
elif typeDistance == 2:
if p.is_in neighborhoodTOReachable(q, t0):
pointsOfCluster.append(q)

if len(pointsOfCluster) < minPoints:
return None

else:
return Cluster(p, pointsOfCluster)
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class Cluster:
"Cluster of points, basically set of points with a center"
def __init__(self, center, points):
self.center = center
self points = points

"Cluster is density Joinable with list of clusters?"
def isDensityJoinable(self, listClusters):
for cluster in listClusters:
for p in self. points:
if p.isInCluster(cluster):
return cluster

return None

"Merge current cluster with another"
def mergeCluster(self, cluster) :
for p in cluster.points:
if not p.isInCluster(cluster):
self.points.append(p)

return self
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Codigo 6: DBSCAN

99

Created on Feb 13, 2014
@author: sushant

from cluster import *
from pylab import x

class dbscanner:

dataSet = |]
count = 0
visited = ||
member = ||
Clusters = |]

def dbscan(self,D eps,MinPts):
self.dataSet = D

title(r’ DBSCAN Algorithm’, fontsize=18)
xlabel(r'Dim 1’,fontsize=17)
ylabel(r’Dim 27, fontsize=17)
plt.figure(figsize—(15,10))

C=-1
Noise = cluster('Noise’)
numit = 0

for point in D:
if point not in self.visited:
self.visited.append(point)
NeighbourPoints = self.regionQuery(point,eps)

if len(NeighbourPoints) < MinPts:
Noise.addPoint(point)
else:
name = 'Cluster’+str(self.count)
C = cluster(name)
self.count+=1
self.expandCluster(point,NeighbourPoints,C,eps,MinPts)

plot(C.getX(),C.getY(),’0’,Jabel=name)
hold(True)
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if len(Noise.getPoints())!=0:
plot(Noise.getX(),Noise.getY(), x’,label="Noise’)

hold(False)
legend(loc="lower left’)
grid(True)

show()

def expandCluster(self,point,NeighbourPoints,C,eps,MinPts):
C.addPoint(point)

for p in NeighbourPoints:
if p not in self.visited:

self.visited.append(p)

np = self.regionQuery(p,eps)

if len(np) >= MinPts:

for n in np:
if n not in NeighbourPoints:
NeighbourPoints.append(n)

for c in self.Clusters:
if not c.has(p):
if not C.has(p):
C.addPoint(p)

if len(self.Clusters) ==
if not C.has(p):
C.addPoint(p)

self.Clusters.append(C)

def regionQuery(self P eps):
result = ||
for d in self.dataSet:
if (((d[0]=P[0])**2 + (d[1] — P[1])**2)*x0.5)<=eps:
result.append(d)
return result

63



Indice de figuras

XN D Tt W

Descripcion de los datos suministrados . . . . . .. . ... .. 7
EXPLAIN posicionesgps . . . . . . . . . . . . ... ... ... 7
summary de los datos de Salvador . . . . ... ... ... .. 9
Tamano de la base de datos . . . . . .. ... .. ... .. .. 10
Diagrama DBSCAN . . . . . . . . . ... ... ... ... .. 22
Ejemplo de uso de la implementacion de DBSCAN . . . . . . 25
Resultado DBSCAN . . . ... ... .. ... ........ 26
Diagrama DJ-Clustering . . . . . . .. ... ... ... ... 27
Distribucién de las 2.000 posiciones del Sujeto 1 . . . . . . .. 30
Distribucion de las 2.000 posiciones del Sujeto 2 . . . . . . .. 31
Resultado consolidacion por adelgazamiento . . . . . . . . .. 33
Resultado consolidaciéon por tiempo . . . . . .. ... ... .. 34
Resultado consolidacién por distancia Simple . . . . . . . . .. 35
Resultado consolidacion por distancia ty—alcanzable . . . . . . 36
Resultado de K-means para el Sujeto 1 . . . . . .. ... .. 38
Resultado de K-means para el Sujeto1 . . .. .. ... ... 40
Resultado de DBSCAN parael Sujeto1. . .. ... .. ... 42
Resultado de DBSCAN para el Sujeto2. . . ... ... ... 43
Resultado de DBSCAN para el Sujeto2 . . . ... ... ... 46
Resultado de DJ-Cluster para el Sujeto 1 . . . . .. .. ... 48
Resultado de DJ-Cluster para el Sujeto2 . . . . . . ... .. 50
Comparativa entre los disintos métodos . . . . . . . . . .. .. 51

Indice de algoritmos

A

Algoritmo de consolidacion simple por distancia . . . . . . . . 17
Algoritmo de consolidacion por adelgazamiento . . . . . . . . 18
Algoritmo de consolidacion por tiempo . . . . . ... ... .. 19
Algoritmo DBSCAN . . . . . . ... ... 24
Algoritmo DJ-Cluster . . . . . . . ... ... ... ... .... 27

64



Referencias

! Terveen L. Bhatnagar N, Shekhar S. and Zhou C. Mining personally im-
portant places from gps tracks. In Istanbul, Data Engineering Workshop,
2007 IEEFE 23rd International Conference, 2007.

2Frank E. and Witten I.H. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

3 Terveen L. Frankowski D., Ludford P. Shekhar S. and Zhou C. Discove-
ring personal gazetteers: An interactive clustering approach. In In Proc.
ACMGIS, pages 266-273. ACM Press, 2004.

1 Gabe. Efficient python implementation of canopy clustering.
https://gist.github.com/gdbassett/528d816d035f2deaacal, 2014.

®Nigam K. McCallum A. and Ungar L. H. Efficient clustering of high-
dimensional data sets with application to reference matching, 2000.

%R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

"Kafle S. Implementation of dbscan algorithm in python.
https://github.com/SushantKafle/DBSCAN, 2014.

65


https://gist.github.com/gdbassett/528d816d035f2deaaca1
https://github.com/SushantKafle/DBSCAN

	Introducción
	Datos y estructura de los datos suministrados
	Análisis de los datos
	Espacio en disco
	Implementación de los datos en clases de Python

	Nociones de vecindario
	Vecindario simple
	Vecindario involucrando la velocidad
	Vecindad t0-alcanzable
	Vecindario involucrando el tiempo

	Preprocesado de datos
	Canopy

	Algoritmos de consolidación simples
	Consolidación por distancia
	Consolidación por adelgazamiento
	Consolidación por tiempo

	Algoritmos de consolidación asociados a métodos de clustering
	K-means
	DBSCAN
	Implementación en Python

	DJ-Cluster

	Aplicación de los algoritmos
	Resultados de algoritmos por consolidación simple
	Consolidación por adelgazamiento
	Consolidación por tiempo
	Consolidación por distancia simple
	Consolidación por distancia t0-alcanzable

	Resultados con K-means
	Sujeto 1
	Sujeto 2

	Resultados con DBSCAN
	Sujeto 1
	Sujeto 2

	Resultados con DJ-Cluster
	Sujeto 1
	Sujeto 2


	Comparativa de resultados
	Conclusiones y cuestiones abiertas
	Herramientas utilizadas
	Implementación de algoritmos de consolidación simple
	Implementación de algoritmos de consolidación asociados a métodos de clustering
	Índice de figuras
	Índice de algoritmos
	Referencias

