
Identificación de patrones
y algoritmos de consolidación

en bases de datos de posicionamiento

Trabajo Fin de Máster
Máster en Modelización e Investigación Matemática,

Estadística y Computación

Pilar Barbero Iriarte

Dirigido por

Tomás Alcalá Nalvaiz
Universidad de Zaragoza

Índice
1. Introducción 5

2. Datos y estructura de los datos suministrados 7
2.1. Análisis de los datos . 8
2.2. Espacio en disco . 10
2.3. Implementación de los datos en clases de Python 11

3. Nociones de vecindario 12
3.1. Vecindario simple . 12
3.2. Vecindario involucrando la velocidad 12
3.3. Vecindad t0-alcanzable . 13
3.4. Vecindario involucrando el tiempo 13

4. Preprocesado de datos 14
4.1. Canopy . 14

5. Algoritmos de consolidación simples 16
5.1. Consolidación por distancia 17
5.2. Consolidación por adelgazamiento 18
5.3. Consolidación por tiempo . 19

6. Algoritmos de consolidación asociados a métodos de cluste-
ring 20
6.1. K-means . 21
6.2. DBSCAN . 22

6.2.1. Implementación en Python 25
6.3. DJ-Cluster . 26

7. Aplicación de los algoritmos 29
7.1. Resultados de algoritmos por consolidación simple 31

7.1.1. Consolidación por adelgazamiento 33
7.1.2. Consolidación por tiempo 34
7.1.3. Consolidación por distancia simple 35
7.1.4. Consolidación por distancia t0-alcanzable 35

7.2. Resultados con K-means . 37
7.2.1. Sujeto 1 . 37
7.2.2. Sujeto 2 . 39

7.3. Resultados con DBSCAN . 41
7.3.1. Sujeto 1 . 41
7.3.2. Sujeto 2 . 42

3

7.4. Resultados con DJ-Cluster . 44
7.4.1. Sujeto 1 . 44
7.4.2. Sujeto 2 . 48

8. Comparativa de resultados 51

9. Conclusiones y cuestiones abiertas 53

10.Herramientas utilizadas 55

A. Implementación de algoritmos de consolidación simple 56

B. Implementación de algoritmos de consolidación asociados a
métodos de clustering 59

Índice de figuras 64

Índice de algoritmos 64

Referencias 65

4

1. Introducción
Hoy en día muchos dispositivos cuentan con un sistema de geolocaliza-

ción GPS que nos permite conocer la localización de un sujeto en tiempo real.
Con el fin de obtener la mayor información posible en todo momento, estas
posiciones recogidas se guardan en una base de datos que puede ser temporal
o permanente. En el caso de ser permanente, nos encontraremos con el pro-
blema de que la base de datos puede crecer hasta un límite desmesurado en
el que dispositivo que recoge y almacena esta información llene su memoria,
impidiendo almacenar posiciones nuevas.

En este momento, es necesario tomar la decisión de borrar parte de las
posiciones almacenadas, según algún criterio. La dificultad en este momento
es elegir el criterio con el cual eliminaremos este exceso de datos, por ejem-
plo, borrando posiciones repetidas o posiciones que no aporten la suficiente
eficiencia en relación al espacio que ocupan en memoria. Esto introduce el
concepto de función de consolidación o compactación, es decir una función
que elimine un exceso de datos permitiéndonos conservar el máximo de in-
formación posible.

Contamos con datos proporcionados por una empresa de telecomunica-
ciones de sede en Zaragoza obtenidas de una base central. Se observa que esta
empresa provee un servicio a sus clientes que permite que periódicamente se
reciban posiciones de unos sujetos portadores de una terminal que transmita
su posición GPS. Esta posición se inserta en una base de datos centralizada.
Dichas posiciones son tomadas por la terminal de cada operativo, almacena-
das localmente en esta terminal de manera temporal y enviadas a la central
en el momento de conectividad con ésta.

Se encuentra entonces un problema de almacenamiento de datos. Estos
datos, cada vez más numerosos, empiezan a poblar la base de datos de una
manera errática, es decir, un sujeto puede permanecer mucho tiempo en un
sitio y seguir transmitiendo una posición constante a base. Nos lleva a plan-
tearnos la siguiente pregunta, ¿es ésto necesario? ¿No sería más eficiente
almacenar sólo una muestra de ésta? Al fin y al cabo, el objetivo del alma-
cenamiento de estas posiciones es el ser posicionadas en un mapa, por lo que
no necesitamos de varias instancias de una misma.

Surge el concepto de consolidación. Este concepto nos lleva a que si un
sujeto se ha movido muy poco o nada en una zona del espacio, sea posible
eliminar de nuestra base de datos estas posiciones, quedándonos con una cen-

5

tral.

Nos planteamos que tanto la terminal personal que lleva cada sujeto como
la base centralizada pueden llegar a límite no deseado, provocando que este
se sature e no permita la inserción de nuevos datos. Con el fin de impedir
esto, se va a realizar un estudio de distintas técnicas de consolidación con el
fin de almacenar el mínimo de datos pero con la máxima información posible.

Este trabajo realiza una comparación entre diferentes técnicas de clusteri-
ng y algoritmos diseñados propios con el fin de encontrar un método eficiente
que evite el problema anteriormente explicado.

El código está disponible para bajarse y utilizarse bajo una licencia GNU
GPL en:

http://pbarbero.github.io/TFM/

6

http://pbarbero.github.io/TFM/
http://pbarbero.github.io/TFM/

2. Datos y estructura de los datos suministra-
dos

Se nos suministran dos bases de datos correspondientes a dos ciudades
brasileñas distintas, Salvador de Bahía y Río de Janeiro. En cada de
una de ellas encontramos posiciones de distintos sujetos estudiados identifi-
cados a través de un código. Cada base de datos contiene una tabla llamada
posicionesgps en la que encontramos un registro por cada posición tomada
por cada sujeto entre los días 2015-02-17 08:00:05 y 2015-03-04 08:18:05.

Parámetros
Id Identificador numérico de la posición (clave primaria)
IdServidor Identificador numérico del servidor que realiza la inserción (PK)
Recurso Nombre del recurso (tetra:1234567)
Latitud Real que representa la latitud GPS
Longitud Real que representa la longitud GPS
Velocidad Entero que representa la velocidad instantánea
Orientación Entero que representa la orientación respecto al norte en grados
Cobertura Booleano que indica si hay cobertura
Error Booleano que nos indica si ha habido algún error en la toma de la posición

Figura 1: Descripción de los datos suministrados

Field Type Null Key Default
id bigint(10) NO PRI 0
idServidor int(10) unsigned NO PRI 0
recurso varchar(100) YES MUL NULL
latitud double YES NULL
longitud double YES NULL
velocidad tinyint(10) unsigned YES NULL
orientacion smallint(10) unsigned YES NULL
cobertura tinyint(10) unsigned YES NULL
error tinyint(10) unsigned YES NULL
antigua tinyint(10) unsigned YES 0
fecha timestamp NO MUL CURRENT_TIMESTAMP
automático tiniyint(10) unsigned NO MUL 0

Figura 2: EXPLAIN posicionesgps

7

2.1. Análisis de los datos

Vamos a utilizar R con el IDE Rstudio para realizar un análisis previo de
los datos recibidos. Para ellos necesitamos de algunas librerías a la hora de
conectarnos a la base de datos importada:

devtools::install_github("rstats−db/RMySQL")
devtools::install_github("rstats−db/DBI")
library(RMySQL)
library(DBI)

Importamos los datos haciendo una consulta sobre cada base de datos.
Cada base de datos que se nos ha proporcionado cuenta con una tabla lla-
mada posicionesgps :

conBahia <− dbConnect(RMySQL::MySQL()
, group = "posiciones"
, user="root"
, password="∗∗∗∗"
, dbname="bahia")

dataquery=dbSendQuery(conBahia
, "SELECT latitud, longitud, velocidad, orientacion, fecha

FROM posicionesgps")

dataBahia = fetch(dataquery, n=−1)

Analicemos las columnas que más nos interesan, es decir, la latitud, lon-
gitud, la velocidad, la orientación y la fecha:

summary(dataBahia)

latitud
1 Min. :-1.0103
2 1st Qu.:-0.2266
3 Median :-0.2259
4 Mean :-0.1995
5 3rd Qu.:-0.2248
6 Max. : 0.4956

longitud
1 Min. :-1.4575
2 1st Qu.:-0.6720
3 Median :-0.6713
4 Mean :-0.6137
5 3rd Qu.:-0.6702
6 Max. : 2.4729

velocidad
1 Min. : 0.000
2 1st Qu.: 0.000
3 Median : 0.000
4 Mean : 3.751
5 3rd Qu.: 0.000
6 Max. :255.000

8

orientacion
1 Min. : 0.0
2 1st Qu.: 22.0
3 Median : 90.0
4 Mean :118.7
5 3rd Qu.:202.0
6 Max. :315.0

fecha
1 Min. :2015-02-17 08:00:05
2 1st Qu.:2015-02-19 21:41:13
3 Median :2015-02-26 01:40:02
4 Mean :2015-02-24 19:55:44
5 3rd Qu.:2015-03-01 03:49:20
6 Max. :2015-03-04 08:18:05

Figura 3: summary de los datos de Salvador

Las unidades en las que está tomada la velocidad son km/h, por lo que un
máximo de 255 es algo curioso. Realizando un conteo de datos, obtenemos
que unas 723277 posiciones son distintas a 0 de un total de 4599974, por lo
que aproximadamente un 85% de las posiciones son 0. Esto es un dato a
nombrar, ya que posteriormente usaremos la velocidad a la hora de definir
distancias.

9

2.2. Espacio en disco

Con la cantidad de posiciones suministradas, vamos a calcular cuánto
ocupa una posición en disco, para hacernos una idea de cuántas posiciones
sería posible acumular en función de la frecuencia de éstas sobre un espacio
en disco finito.

En nuestra base de datos llamadaRío de Janeiro contamos con 6928467
posiciones y en Salvador de Bahía contamos con 4599974 posiciones.

El tamaño en disco de nuestras bases de datos es:

mysql> SELECT table_schema as ‘Database‘,
table_name AS ‘Table‘,
round(((data_length + index_length) / 1024 / 1024), 2)
FROM information_schema.TABLES
ORDER BY (data_length + index_length) DESC;

Size in KB
rio 120564000
bahia 96142000

Figura 4: Tamaño de la base de datos

Lo cual nos da una idea de cuánto puede ocupar una toma de posición
en disco.

El total de posiciones almacenadas en río es de 6928467 luego podemos
estimar el tamaño de una posición en:

120564000

6928467
= 17,4012519653 KB

El total de posiciones almacenadas en bahía es de 4599974, luego:

96142000

4599974
= 20,9005529162 KB

Podemos aproximar el tamaño de una posición por unos 19 KB.

Los datos han sido recogidos entre las fechas 2015-02-17 08:00:05 y 2015-
03-04 08:18:05, lo que hace una diferencia de 360 horas.

10

Tenemos 5014 distintos tipos de sujetos a estudiar en la base de datos de
río, lo que nos da una frecuencia de toma de:

6928467

5014 · 360
= 3,83 posiciones a la hora.

Si aumentáramos esta frecuencia a una posición cada 30 segundos, conse-
guiríamos una frecuencia de 120 posiciones a la hora, luego un único sujeto,
en una jornada laboral de 8 horas, ocuparía en espacio de 19.2 MB. Si mul-
tiplicamos por los 5014 sujetos que contiene la base de datos proporcionada,
son casi 100GB por jornada laboral almacenados en la base de datos centra-
lizada, por lo que una consolidación cada día de un tanto por ciento definido
con el cliente, sería necesario (esto quedaría a criterio de las características
del sistema donde se aloja la base de datos).

2.3. Implementación de los datos en clases de Python

La estructura de los datos es implementable en diversos lenguajes, pero se
elige Python por su simplicidad y ya que es el lenguaje científico más usado
hoy en día.

Se define la clase Position de la siguiente manera:

class Position:
def __init__(self, id, resource, lat

, lon, speed, track, date):
self.id = id
self.resource = resource
self.lat = lat
self.lon = lon
self.speed = speed
self.track = track
self.date = date

A partir de esta clase definiremos una serie de métodos propios a ésta que
nos permitirán saber si un punto está en un vecindario asociado a la posición.
Vamos a utilizar la noción de distancia euclídea como concepto sobre el que
apoyarnos.

def distance_eu(self, q):
return math.sqrt((self.lat − q.lat)∗∗2

+ (self.lon − q.lon)∗∗2)

11

3. Nociones de vecindario
Con el fin de realizar los algoritmos de consolidación, hemos realizado un

estudio acerca de distintos tipos de vecindarios a utilizar para los algoritmos
de consolidación propios que usaremos más adelante.

3.1. Vecindario simple

Utilizando la distancia euclídea, definimos un vecindario como aquel con-
junto de puntos que se encuentran a una distancia euclídea menor que ε con
respecto su centro p0, es decir:

dE(p0, p) =
√
(latp − latp0)2 + (longp − longp0)2 < ε

donde p es un punto con latitud latp y longitud longp.

Su implementación en Python es la siguiente:

def IsInNeighEUSimple(self, q, eps):
return self.distance_eu(q) < eps

3.2. Vecindario involucrando la velocidad

En el momento que se toma la posición p0, aparte de la latidud y su longi-
tud, se toma la velocidad instantánea del sujeto. Podemos considerar en este
caso que, dado que nuestro sujeto se encuentra a mayor velocidad, puntos
más alejados de lo que consideraríamos en el primer caso (fuera de nuestro
vecindario simple), podrían estar dentro de nuestro nuevo radio, que depen-
dería de la velocidad instantánea. Así, definimos nuestro nuevo vecindario:

dE(p0, p) =
√

(latp − latp0)2 + (longp − longp0)2 < ε · velp0
donde velp0 es la velocidad instantánea de nuestro punto centro.

Su implementación en Python es la siguiente:

12

def IsInNeighSpeedRelative(self, q, eps):
if self.speed != 0:

return self.distance_eu(q) < eps ∗ self.speed
else:

return False

3.3. Vecindad t0-alcanzable

Si fijamos un intervalo de tiempo t0, podemos definir una vecindad t0-
alcanzable como aquellos puntos que nuestro sujeto puede alcanzar en un
tiempo t0. Un sujeto que se desplace a velocidad reducida, tendrá una ve-
cindad t0-alcanzable más reducida que otro que se desplace a una velocidad
superior. Redefiniremos el radio de nuestro vecindario a través de la veloci-
dad instantánea que lleve nuesto sujeto, es decir, velp0 · t0.

dE(p0, p) =
√

(latp − latp0)2 + (longp − longp0)2 < velp0 · t0

Éste es un caso concreto del vecindario involucrando la velocidad.

Su implementación en Python es la siguiente:

def IsInNeighT0Reachable(self, q, t0):
return self.distance_eu(q) < t0 ∗ self.speed

3.4. Vecindario involucrando el tiempo

Las posiciones de nuestros sujetos vienen muestreadas además con el ins-
tante en el que fueron tomadas. Podemos considerar que el tiempo entre
tomas también es una distancia y definir un vecindario. Definimos esta dis-
tancia temporal como la resta de ambos instantes, y el vecindario como:

dT (p0, p) = timep − timep0 < δ

Su implementación en Python es la siguiente:

def is_neighboorhoudByTime(self, q, lapse):
time1 = time.mktime(self.date.timetuple())
time2 = time.mktime(q.date.timetuple())
return abs(time1 − time2) < lapse

13

4. Preprocesado de datos
Antes de empezar a realizar un algoritmo que nos realice una consolida-

ción de los datos, es conveniente realizar un preprocesado de éstos.

Un primer procesado consistiría en la eliminación de todos aquellos re-
gistros que tienen como latitud y longitud 0 ya que son datos tomados
por error que lo único que harían sería conseguir un clúster centrado en
(latitud = 0, longitud = 0)

Vamos a fijar una cantidad mínima de distancia, un ε0, y compararemos
una posición con la última leída para decidir si la insertamos en base de da-
tos o no. Si la distancia del nuevo muestreo con la última es menor que este
ε0 fijado, desecharemos esta nueva posición. Esto permite que más adelante
nuestro algoritmo de consolidación sea mucho más rápido.

4.1. Canopy

El algoritmo de clustering de Canopy5 se usa generalmente como un
preprocesado de los datos para posteriormente aplicar un clustering de tipo
K-means o alguna técnica de agrupamiento jerarquizado.

La idea se basa en el uso de una medida de distancia aproximada para
dividir el conjunto de los datos en subconjuntos que se superponen. A es-
tos subconjuntos los llamaremos canopies. Un canopy es un subconjunto de
puntos que yacen bajo el vecindario de un punto central. Un punto puede
pertenecer a varias canopies distintas. Los canopies son creados con la in-
tención de que si dos puntos no pertenecen a un canopy en común, están
bastante lejos de pertenecer a un mismo clúster.

Debido a que Canopy no es más que un preprocesado de los datos, se fija
una distancia sencilla con el fin de reducir drásticamente el número de puntos
y posteriormente aplicar una técnica mejor. En nuestro caso, utilizaremos la
distancia euclídea como distancia para realizar este proceso.

Dada una distancia euclídea, se crean los canopies como sigue:

1. Sea S nuestro conjunto de puntos.

2. Se fijan dos umbrales para T1, T2 tal que T1 > T2.

14

3. Se toma un punto p ∈ S, éste será nuestro primer canopy.

4. Se colocan todos los puntos q ∈ S \ {p} tal que dE(p, q) < T1 en el
mismo canopy.

5. Se eliminan del conjunto inicial S aquellos puntos que estén dentro del
umbral de distancia T2.

6. Se repite hasta que el conjunto inicial esté vacío.

La implementación4 en Python se puede encontrar en el apéndice B.

15

5. Algoritmos de consolidación simples
Utilizando las nociones de vecindario definidas en la sección anterior, nos

planteamos la idea de definir unos algoritmos de consolidación simples con
el fin de mantener la base de datos en un tamaño más o menos estable.

Una primera aproximación sería una creación de un trigger o un pequeño
programa en el momento de inserción en base de datos que comparara la úl-
tima posición recibida para ese sujeto con la nueva a insertar. Se compararía
la distancia entre éstas con una distancia euclídea simple, y si ésta estuviera
bajo el límite permitido (es decir, muy próxima), se obviaría.

Una segunda aproximación será definir una tarea programada cron (ya
que nuestros dispositivos están basados en una distribución de Linux) que
cada cierto tiempo ejecutara una consolidación sobre éstos.

Estas consolidaciones menos avanzadas se realizarán sobre posiciones an-
tiguas, es decir, según el tamaño de la base de datos y el nivel crítico al que
puede llegar a estar, mandaremos un cierto número de posiciones a realizar
la consolidación.

16

5.1. Consolidación por distancia

Utilizando los tres tipos de vecindarios que hemos definido, definimos el
siguiente método que realizará la consolidación del tipo que le indiquemos:

Algoritmo 1 Algoritmo de consolidación simple por distancia
1: functionConsolidationByDistance(positions, typeOfDistance, eps, t0)
2: for each pos in positions do
3: if typeOfDistance ==′ distanceEUSimple′ then
4: if pos.IsInNeighBorhood(next(pos), eps) then
5: Remove position in DB
6: else
7: Maintain position in DB
8: end if
9: end if

10: if typeOfDistance ==′ DistanceEUrelativetospeed′ then
11: if pos.IsInNeighBorhoodRelativeSpeed(next(pos), eps)

then
12: Remove position in DB
13: else
14: Maintain position in DB
15: end if
16: end if
17: if typeOfDistance ==′ t0reachable′ then
18: if pos.IsInNeighBorhoodT0Reachablee(next(pos), t0) then
19: Remove position in DB
20: else
21: Maintain position in DB
22: end if
23: end if
24: end for
25: end function

Una implementación simple se puede encontrar en el apéndice A

17

5.2. Consolidación por adelgazamiento

Se puede dar el caso que la consolidación por distancia no sea lo sufi-
cientemente eficaz y no de los resultados necesarios de liberación de espacio,
ya que las posiciones estén muy lejos entre sí. Como úlima opción, se puede
recurrir a un tipo de consolidación en la cual dada una lista de posiciones
normalmente antiguas, se elimine un subconjunto de estas, por ejemplo, 3
de cada 5. Así aseguraríamos una pérdida mínima de información, ya que
no borraríamos un bloque de posiciones, sino que intercalaráimos el borrado,
dejando una frecuencia constante.

Algoritmo 2 Algoritmo de consolidación por adelgazamiento
1: function ConsolidationByThinning(positions, j, k) . j < k
2: for each pos in positions do
3: if position.Index%k == 0 then
4: for i = 0; i < k; i++ do
5: Remove position with index == position.Index
6: end for
7: end if
8: end for
9: end function

Una sencilla implementación en Python se encuentra en el apéndice A.

18

5.3. Consolidación por tiempo

Una alternativa a una técnia de consolidación por adelgazamiento sería
una consolidación por tiempo. Es posible que la toma de posiciones se tome
de manera muy próxima temporalmente, o simplemente que sea necesaria
hacer una consolidación más drástica de las posiciones y se tome la decisión
de reducir de un modo más severo la base de datos. Se fija un lapso de tiempo
que se debe cumplir entre posición y posición, y se eliminan todas aquellas
que estén cuya distancia temporal con su siguiente esté por debajo de este
lapso fijado.

Algoritmo 3 Algoritmo de consolidación por tiempo
1: function ConsolidationByTime(positions, lapse)
2: for each pos in positions do
3: nextpos = pos++
4: if IsInNeighboorhodByT ime(nextpos, pos, lapse) then
5: Remove pos
6: end if
7: end for
8: end function
9:

10: function IsInNeighboorhodByTime(pos1, pos2, lapse)
11: if |pos1.time− pos2.time| < lapse then
12: Return true
13: else
14: Return false
15: end if
16: end function

Una implementación en Python se puede encontrar en el apéndice A.

19

6. Algoritmos de consolidación asociados a mé-
todos de clustering

Un análisis clúster es un conjunto de técnicas multivariantes utilizadas
para clasificar a un conjunto de individuos en grupos homogéneos. Hemos
elegido una serie de técnicas de aprendizaje no supervisado ya que éste parte
de que no hay un conocimiento a priori y es útil en técnicas de compresión
de datos.

En nuestro problema, ésto nos va a resultar muy útil a la hora de encon-
trar ciertos patrones, o ciertos clústers que nos agruparán nuestros en datos
en subconjuntos de éstos, con el fin de identificar ése subconjunto con su
centro y poder eliminar el resto de puntos.

En la sección 2.3 hemos definido una implementación en Python para el
concepto de posición. Si queremos utilizar métodos de clústering más avan-
zados, se ha de definir el concepto de clúster.

Definimos un clúster de posiciones como un conjunto de posiciones agru-
pado en torno a una posición singular, llamada posición central del clúster.

Realizando una sencilla implementación en Python:

class Cluster:
"Cluster of points"
def __init__(self, center, points):

self.center = center
self.points = points

20

6.1. K-means

K-means1 es un método eficiente de clustering que tiene como objetivo
la partición de un conjunto de n elementos en k grupos distintos. Dado un
cojunto de datos (x1, x2, . . . , xn), K-means construye una partición de las
observaciones en k conjuntos con k ≤ n, S = {S1, S2, . . . , Sk} con el fin de
minimizar el término de error que es la suma de las distancias al cuadrado
de cada punto al centro de su clúster, es decir:

E =
n∑

i=1

∑
x∈Si

d(x,mi)

donde mi es el centro de cada clúster Si y d(x,mi) es la distancia definida
entre el punto x y mi.

Inicialmente, el algoritmo asigna cada punto a su clúster de manera alea-
toria. Posteriormente, itera sobre cada punto, encuentra el centro de clúster
más cercano y asigna el punto al clúster cuyo centro está más cercano. Esa
iteración se repite hasta que el error es pequeño o se estabiliza.

Este algoritmo, aunque eficiente, tiene algunos inconvenientes con respec-
to a la consolidación de datos que se busca.

La primera de todas, es que se debe fijar un número de clústers a obte-
ner desde el principio, lo que a priori no sería malo en nuestro caso, no es
interesante en términos de eficiencia y de mantener la máxima información
posible. En todo caso, K-means sería interesante para un primer procesado
de datos en el cual la base de datos necesitara urgentemente un descenso de
cantidad de posiciones almacenadas.

En segundo caso, no hay distintos ente puntos considerados ruido", ya
que todos los puntos se consideran en los clústers resultado. Esto introduci-
ría muchos errores a la hora de intentar minimizar el término del error, ya
que fácilmente se podrían etiquetar posiciones no significativas como ruido y
no introducirlas en el proceso.

Además, K-means es un algoritmo no determinístico, debido a la prime-
ra fase de asignación de centros de clústers de manera aleatoria, por lo que
no sería muy fiable.

21

6.2. DBSCAN

DBSCAN1 oDensity-based spatial clustering of applications with
noise es un algoritmo de clustering basado en la densidad por lo que encuen-
tra el número de clústers comenzando por una estimación de la distribución
de densidad de los nodos correspondientes. Dado un conjunto de puntos en
un espacio, los agrupa en función de la densidad de puntos que tengan a su
alrededor, dejando a un lado aquellos que tienen una densidad baja.

Se considera un conjunto de puntos a aplicar la técnica. El algoritmo
clasificará los puntos en tres grupos:

Un punto p es considerado núcleo si al menos un número de puntos
mínimo (al que denotaremos por minPts están a una distancia me-
nor que ε de p. Este conjunto de puntos se considerarán directamente
alcanzables desde p.

Un punto q es considerado alcanzable de p si existe un camino p1, . . . , pn
tal que p1 = p y pn = q, donde cada pi+1 es directamente alcanzable
desde pi (todos los puntos del camino son puntos núcleo, excepto quizás
q).

Todos los puntos que no son considerados ni núcleos ni alcanzables son
considerados aislados.

Ahora, si p es un punto núcleo, entonces forma un clúster con aquellos
puntos que sean alcanzables desde p. Cada clúster contiene al menos un pun-
to núcleo; y puntos no núcleo pueden formar parte de éste, pero formaran lo
que parten del borde, ya que no permiten alcanzar más puntos.

Figura 5: Diagrama DBSCAN

22

En el diagrama, se puede observar que si fijamos la variable minPts a
3, el punto A y los demás puntos rojos son puntos núcleo, ya que al menos
están rodeados de 3 puntos en su vecindario de radio ε. Como son densa-
mente alcanzables unos con otros, forman un clúster. Los puntos B y C no
son puntos núcleo, pero sí que son alcanzables desde A, por lo que también
pertenecen al clúster. El punto N es calificiado como aislado o ruido ya que
no es ni punto núcleo ni densamente alcanzable.

La alcanzabilidad no es una relación simétrica ya que, por definición,
ninguún punto puede ser alcanzable por un punto no núcleo (un punto no
núcleo puede ser alcanzable, pero no puedo alcanzar). Es necesario definir
una noción más fuerte de conectividad. Decimos que p y q están densamente
conectados si existe un punto o tal que p y q son densamente alcanzables.
Esta noción de densamente conectados sí que es simétrica.

Redefinimos la noción de clúster que previamente habíamos definido. Un
clúster debe satisfacer dos propiedades:

1. Todos los puntos deben estar mutuamente densamente conectados.

2. Si un punto q es densamente alcanzable desde un punto p del clúster,
q es parte del clúster también.

DBSCAN requiere de dos parámetros para empezar: ε para la noción de
vecindario yminPts para el número mínimo de puntos necesario para formar
un clúster. Se empieza tomando arbirariamente un punto del conjunto que
no haya sido visitado. Se obtiene su vecindario, en el caso de que no exista,
este punto se marca como ruido y se pasa al siguiente. Si no es nulo y tiene
un número de puntos mayor que minPts, se crea un clúster.

Si uno de los puntos del proceso resulta que es parte de un clúster, su
vecindario también se añade a éste. Se reitera este proceso, ya que todos los
puntos nuevos añadidos del vecindario anterior, son parte del clúster, luego
el vecindario de cada uno es añadido. Este proceso se continúa hasta que se
obtiene el clúster densamente conectado.

23

Algoritmo 4 Algoritmo DBSCAN
1: function DBSCAN(positions, eps,minPts)
2: C = 0
3: for each pos in positions do
4: if pos has been visited then
5: Continue next position
6: else
7: Mark pos as visited
8: N(pos) = NeighborPts(pos, eps)
9: if length(N(pos)) < MinPts then

10: Mark pos as noise
11: else
12: C = next Cluster
13: expandCluster(pos, N(pos), C, eps, MinPts)
14: end if
15: end if
16: end for
17: end function
18:
19: function expandCluster(P,NeighborP ts, C, eps,MinPts)
20: add P to cluster C
21: for each P’ in NeighborPts do
22: if P’ is not visited then
23: Mark P’ as visited
24: NeighborPts’ = regionQuery(P’, eps)
25: if length(NeighborP ts′) >=MinPts then
26: NeighborPts = NeighborPts joined with NeighborPts’
27: end if
28: end if
29: if P’ is not yet member of any cluster then
30: add P’ to Cluster C
31: end if
32: end for
33: end function
34:
35: function NeighborPts(P, eps)
36: return all points within P’s eps-neighborhood (also P)
37: end function

24

6.2.1. Implementación en Python

Se encuentra una implementación bastante eficaz y sencilla en el reposi-
torio de Sushant Kafle.7

from dbscanner import dbscanner
from algorithms.db import connect_db

cur= connect_db("bahia")
recurso = "tetra:12082781"
limit = 1000
cmd = "SELECT latitud, longitud

FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0
AND recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)

cur.execute(cmd)

a=[]
for pos in cur.fetchall():

a.append([pos[0], pos[1]])

Data = a
eps = 0.0001
MinPts= 5

dbc = dbscanner()
dbc.dbscan(Data, eps, MinPts)

Figura 6: Ejemplo de uso de la implementación de DBSCAN

Notar que hemos tomado como valor de ε = 0,0001 ya que es una aproxi-
mación de la distancia media de toma entre posiciones y 5 es un buen valor
a la hora de hacer una consolidación. El resultado consiste en algunas posi-
ciones marcadas como ruido y 5 clústers. Debido a que es un proceso muy
costoso, nos hemos limitado en este caso a hacer la consolidación en unas
1000 posiciones.

25

https://github.com/SushantKafle/DBSCAN

Figura 7: Resultado DBSCAN

6.3. DJ-Cluster

Density-Joinable Clúster1 es un tipo de algoritmo de clustering basa-
do en densidades de puntos que intenta solventar algunas de las limitaciones
de K-means. Este algoritmo localiza puntos significativos sobre el conjunto
de todos los puntos, es decir, el centro del clúster. No debemos olvidar que
nuestro objetivo es encontrar posiciones significativas en todo nuestro con-
junto de posiciones GPS, y éstos centros de clúster que nos generará este
algoritmo nos servirán para tal propósito.

La idea del algoritmo es la siguiente, para cada punto calculamos su ve-
cindario. Este vecindario dependerá de la distancia elegida entre todas las
anteriores definidas, y según cuál sea la elegida, dependerá de una variable ε
o un instante t0 escogido. Se impone la condición de que el número de pun-
tos conseguido al computar su vecindario sea al menos un MinPts definido
previamente. Si esta condición no se cumple, se marca la posición actual co-
mo ruido y se prosigue con la siguiente. En el caso de cumplirse, este nuevo
punto es el centro del clúster, junto a su vecindario.

Con este nuevo clúster creado, el siguiente paso es comprobar que este
clúster no sea densamente acoplable con los que ya llevamos computados. Un
clúster es densamente acoplable a otro clúster si existe un punto común entre
ambos.

26

Figura 8: Diagrama DJ-Clustering

Algoritmo 5 Algoritmo DJ-Cluster
1: for each p in set S do
2: Compute neighborhood N(p) for ε and MinPts
3: if N(p) is null (|N(p)| < MinPts for ε) then
4: Label p as noise
5: else if N(p) is density-joinable to an existing cluster then
6: Merge N(p) with the cluster which is density-joinable
7: else
8: Create a new cluster C based on N(p)
9: end if

10: end for

Durante el proceso, se recorren todos los puntos del conjunto a analizar,
calculando cada vecindario de cada punto con un centro p y un radio ε. Si
el número de puntos del vecindario excede esta cantidad mínima MinPts,
entonces es un vecindario a considerar. Este clúster es posteriormente mer-
geado con otros posibles clústers densamente acoplables.

Al final de cada iteración puede ser que el número de clústers no cambie,
porque no existe un nuevo clúster o porque el nuevo clúster sea mergeado
con alguno de los ya existentes.

El valor de los parámetros ε y MinPts es el que determina el tamaño de
nuestros clusters. En nuestro caso, no buscamos grandes números de clústers,
sino perder el mínimo de información posible, por lo que nos convendría to-
mar unos valores de ε y MinPts pequeños.3

27

El valor de la variable ε debe tomarse3 en función de la precisión de los
aparatos que toman las posiciones. Podemos estimar este parámero por unos
20 metros, que es la precisión de un GPS convencional.

Con respecto al valor deMinPts, un valor alto de esta parámetro implica
que los clusters deben ser más densos a la hora de formarse, pero un valor
razonable3 estaría entre 3 y 10.

La complejidad de este algoritmo es O(n log n).1

En los próximos resultados utilizaremos una implementación en Weka pa-
ra lanzar un estudio, sin embargo, se ha desarrollado en Python el algoritmo
de DJ-Clúster de manera parecida al de DBSCAN. Se puede consultar
una implementación en el anexo B.

28

7. Aplicación de los algoritmos
Se va a realizar una comparativo de todos los métodos estudiados para dos

sujetos en concreto de nuestra base de datos. Se han tomado los dos sujetos
como más posiciones, y de cada uno de éstos, un muestreo de 2000 posiciones.

Antes de aplicar los métodos, es necesario aplicar un filtro de Normali-
zación, dado que de no aplicarlo, la fecha pesaría sobre todos los demás y
dejaría el resto de las variables sin valor (no hay que olvidar que la fecha es
un timestamp, por lo que a efectos prácticos es un entero muy grande).

Sujeto 1 tetra:12082781
Sujeto 2 tetra:12082364

Antes de importar las variables de nuestra base de datos, necesitamos
hacer el cálculo de su media y su desviación típica con el fin de tipificar cada
una de las variables y dar la misma importancia a cada una de ellas.

Para el primer sujeto, contamos con lo siguiente:

latitud longitud fecha
Media -0.223 -0.665 1424174494.89
Desv. Típica 0.022 0.065 104277.37

Hacemos una importación de datos a Weka de la siguiente forma:

mysql > SELECT (latitud + 0.223)/0.022 as ’latitudT’,
(longitud + 0.665)/0.065 as ’longitudT’,
(UNIX_TIMESTAMP(fecha) − 1424174494.89)/104277.37 as ’time’
FROM posicionesgps
WHERE latitud <> 0 AND longitud <> 0

AND recurso=’tetra:12082781’
LIMIT 2000;

29

Figura 9: Distribución de las 2.000 posiciones del Sujeto 1

Se hace una distinción de colores azules y naranjas en función del tiem-
po. Se puede observar la traza de movimiento del sujeto, que empieza en la
esquina superior izquierda y acaba en la parte inferior de la gráfica.

Calculamos la desviación típica y la media del segundo sujeto, del mismo
modo que con el sujeto 1.

latitud longitud fecha
Media -0.21 -0.625 1424350386.203
Desv. Típica 0.057 0.169 41234.453

Para el segundo sujeto, hacemos una importación de datos a partir de
nuestra base de datos de la siguiente forma:

mysql > SELECT (latitud + 0.21)/0.057 as ’latitudT’,
(longitud + 0.625)/0.169 as ’longitudT’,
(UNIX_TIMESTAMP(fecha) − 1424350386.203)/41234.453 as ’time’
FROM posicionesgps
WHERE recurso=’tetra:12082364’ AND latitud<>0 AND longitud<>0
ORDER BY 3 ASC
LIMIT 2000;

30

Figura 10: Distribución de las 2.000 posiciones del Sujeto 2

7.1. Resultados de algoritmos por consolidación simple

La importación de datos para poder utilizar los algoritmos que se han
desarrollado en la sección 5 es parecida a la utilizada en el algoritmo DBS-
CAN.

Utilizaremos la clase db que hemos creado para conectarnos a la base de
datos donde almacenamos las posiciones:

cur_sal = connect_db("bahia")
limit = 2000
cmd = "SELECT ∗ FROM posicionesgps WHERE latitud<>0

AND longitud<> 0 AND recurso=’tetra:12082781’
LIMIT {0};".format(limit)

cur_sal.execute(cmd)

Y crearemos una lista de posiciones con la implementación previa que
hemos desarrollado:

list_pos = []
for row in cur_sal.fetchall():

q = Position(row[0] # id

31

, row[2] # resource
, row[3] # lat
, row[4] # lon
, row[5] # speed
, row[6] # track
, row[10] # date
)

list_pos.append(q)

Tipificaremos las variables como anteriormente hemos hecho, calculando
su media y su desviación típica:

listPosTyp = []
lats = []
longs = []

for pos in list_pos:
lats.append(pos.lat)

meanLat = np.mean(lats)
for pos in list_pos:

longs.append(pos.lon)
meanLon = np.mean(longs)
devLat = np.std(lats)
devLon = np.std(longs)

latsTyp = []
longsTyp = []
for pos in list_pos:

q = Position(pos.id, pos.resource
, (pos.lat − meanLat)/devLat
, (pos.lon − meanLon)/devLon
, pos.speed, pos.track, pos.date)
listPosTyp.append(q)
latsTyp.append(q.lat)
longsTyp.append(q.lon)

Utilizaremos el código definido en el anexo B para realizar las consolida-
ciones por adelgazamiento, tiempo y distancia.

import consolidation as cs

32

7.1.1. Consolidación por adelgazamiento

Y vamos a realizar una primera consolidación por adelgazamiento, se
mantienen 2 posiciones de cada 5:

result = cs.ConsolidationByThinning(list_pos, 2, 5)

Utilizando matplotlib, dibujamos los resultados.

Figura 11: Resultado consolidación por adelgazamiento

Los puntos rojos son los eliminados porque se han consolidado y los azules
son los que se han mantenido. En este caso, se mantienen 800 posiciones.

33

7.1.2. Consolidación por tiempo

Realizaremos una consolidación por tiempo, eliminaremos las posiciones
que tengan entre ellas un lapso menor que 20:

result = cs.ConsolidationByTime(list_pos, 20)

Figura 12: Resultado consolidación por tiempo

En este caso se mantienen 507 posiciones.

34

7.1.3. Consolidación por distancia simple

Se realiza una consolidación por distancia simple, es decir, por distancia
euclídea dando un radio de ε = 0,0001:

result = cs.ConsolidationByDistance(list_pos, 0, 0.0001, 1)

Figura 13: Resultado consolidación por distancia Simple

Se han reducido el número de puntos a 21.

7.1.4. Consolidación por distancia t0-alcanzable

cs.ConsolidationByDistance(list_pos, 2, 0.001, 1)

35

Figura 14: Resultado consolidación por distancia t0−alcanzable

Esta consolidación, que tiene en cuenta la velocidad instantánea del su-
jeto, realiza una consolidación más severa en aquellos puntos en los cuales el
sujeto posee velocidad, es decir, el vecindario de éstos puntos es superior al
vecindario de los puntos donde no posee velocidad. Esta es la razón por la
cual la traza superior (en la que el sujeto tiene una mayor velocidad) ha sido
consolidada sólo al punto inicial.

Esta consolidación ha mantenido 1786 puntos.

36

7.2. Resultados con K-means

Se va a realizar un estudio K-means para ambos sujetos con los mismos
parámetros que previamente habíamos aplicado, vamos a reducir el número
de posiciones a 500, es decir, una consolidación al 25%. En ambos experi-
mentos se ha tomado una distancia euclídea por simplicidad. Se aplicará un
preprocesado de Canopy y fijaremos el número de clústers a 500:

7.2.1. Sujeto 1

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 2 -max-candidates 100
-periodic-pruning 10000 -min-density 2.0
-t1 -1.25 -t2 -1.0 -N 500 -A "weka.core.EuclideanDistance
-R first-last" -I 500 -num-slots 1 -S 10
Relation: QueryResult
Instances: 2000
Attributes: 3

latitudT
longitudT
time

Test mode: evaluate on training data

=== Clustering model (full training set) ===

kMeans
======

Number of iterations: 9
Within cluster sum of squared errors: 0.11736312393686821

Initial starting points (canopy):

T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.077067,-0.09795,0.073287

37

Cluster 1: -0.076555,-0.097964,-0.092632
Cluster 2: -0.044869,-0.075594, -0.166324
...

Time taken to build model (full training data) : 0.69 seconds

Figura 15: Resultado de K-means para el Sujeto 1

Se han realizado 10 iteraciones y se ha llegado a un error cuadrático de
0,117363. Observando el número de posiciones que ha agrupado por clúster,
podemos observar que varían entre 1 y 9, lo cual es una buena media, ya
que no ha agrupado demasiadas posiciones en un mismo clúster. Debemos
recordar que nuestro objetivo no es conseguir una cantidad de clústers muy
pequeña, sino conseguir que cada clúster cuente con un número más o menos
equilibrado de posiciones, para poder asignar cada posición a su centro del
clúster.

Se puede observar mejor en la gráfica. Cada clúster está representado por
un color distinto. En la parte superior de esta gráfica, podemos observar que
ha seguido un camino con respecto al tiempo en una dirección, mientras que
en la parte inferior ha pasado varias veces por un mismo sitio, y aparece una
aglomeración de colores en un punto. Esto se debe a que para nuestro estudio
hemos introducido también la variable temporal, por lo que no puede agrupar
todas esas posiciones en un mismo clúster, ya que no lo están, debido a que
vienen de varios instantes distintos.

38

El total de clústers es de 500, ya que conK-means es necesario prefijarlos.

7.2.2. Sujeto 2

Realizamos el mismo estudio con el Sujeto 2:

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -init 2 -max-candidates 500
-periodic-pruning 10000 -min-density 2.0
-t1 -1.25 -t2 -1.0 -N 500
-A "weka.core.EuclideanDistance -R first-last"
-I 500 -num-slots 1 -S 10
Relation: QueryResult
Instances: 2000
Attributes: 3

latitudT
longitudT
time

Test mode: evaluate on training data

=== Clustering model (full training set) ===

kMeans
======

Number of iterations: 24
Within cluster sum of squared errors: 0.2079975699953984

Initial starting points (canopy):

T2 radius: 0,439
T1 radius: 0,548

Cluster 0: -0.278213,-0.272406,0.032468,
Cluster 1: -0.236123,-0.267776,-0.148367
......

39

Time taken to build model (full training data) : 1.38 seconds

Figura 16: Resultado de K-means para el Sujeto 1

En la siguiente figura, se observa una asignación un poco rara de los clús-
ters. En la sección de abajo se pueden observar distintos colores, como si
varios puntos muy cercanos se hubieran asingados a clústeres distintos, pero
esto es debido a que no son seguidos en el tiempo, es decir, el sujeto está
volviendo a pasar por el mismo sitio. Si nos volvemos a fijar en la represen-
tación sin clusterizar, se puede observar que existe un trozo donde el naranja
y el azul se superponen, es decir, son instantes distantes temporalmente.

El error cuadrático es de 0,207997, un poco peor que con el sujeto 1, y el
tiempo de ejecución es de 1,38 segundos.

40

7.3. Resultados con DBSCAN

Utilizaremos los mismos parámetros utilizados para el métodoDBSCAN
previamente estudiado, un valor de ε = 0,0001 y un valor de minPts = 5.
Tomaremos 1000 datos de cada sujeto y los compararemos:

7.3.1. Sujeto 1

cur= connect_db("bahia")
recurso = "tetra:12086044"
limit = 2000
cmd = "SELECT latitud, longitud, UNIX_TIMESTAMP(fecha)

FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0 and recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)

cur.execute(cmd)

a=[]
for pos in cur.fetchall():

a.append([pos[0], pos[1], pos[2]])

Data = a
eps = 0.0001
MinPts=5

dbc = dbscanner()
dbc.dbscan(Data, eps, MinPts)

Una de las cosas positivas que se puede decir del algoritmo DBSCAN
es que identifica puntos como ruido, cosa que los algoritmos de K-means y
DJ-Cluster no hacen, ya que asignan simplemente esos puntos a un clúster
de un único punto.

El resultado de DBSCAN ha sido una división de nuestro conjunto inicial
de 1000 posiciones en 6 clústers y algunas posiciones etiquetadas como ruido.

41

Figura 17: Resultado de DBSCAN para el Sujeto 1

7.3.2. Sujeto 2

Utilizaremos los mismos parámetros utilizados para el sujeto 1:

cur= connect_db("bahia")
recurso = "tetra:12082781"
limit = 2000
cmd = "SELECT latitud, longitud, UNIX_TIMESTAMP(fecha)

FROM posicionesgps
WHERE latitud <> 0 and longitud <> 0 and recurso=\"{0}\"
LIMIT {1};".format(recurso, limit)

cur.execute(cmd)

a=[]
for pos in cur.fetchall():

a.append([pos[0], pos[1], pos[2]])

Data = a
eps = 0.0001

42

MinPts=5

dbc = dbscanner()
dbc.dbscan(Data, eps, MinPts)

Figura 18: Resultado de DBSCAN para el Sujeto 2

Obtenemos 5 clústers en un tiempo de ejecución de 2 minutos, 20 se-
gundos. En esta ejecucción, ha etiquetado muchas posiciones como ruido,
probablemente son las posiciones en las cuales el sujeto se encuentra en mo-
vimiento. De haber utilizado aquí una consolidación en la cual se hubiera
introducido una distancia que involucrara la velocidad, habríamos consolida-
do en esa zona superior derecha de ruido un nuevo clúster.

Haciendo un pequeño cambio en el código que podemos encontrar de la
implementación de DBSCAN en el apéndice B.

43

def regionQuery(self,P,eps):
P = Position(None, None, P.X, P.Y, P.Speed, None, None)
for d in self.dataSet:

d = Position(None, none, d.X, d.Y, d.Speed, None, None)
if d.is_in_neighborhoodByEURelativeSpeed(P, 0.001):

result.append(d)
return result

Así estaríamos utilizando la distancia que hemos implementado que in-
volucra la velocidad.

7.4. Resultados con DJ-Cluster

Realizaremos un estudio DJ-Cluster utilizando un preprocesado de da-
tos Canopy fijando una desviación mínima estándar de 0,001.

Se fija una distancia euclídea para ambos experimentos.

7.4.1. Sujeto 1

Notar que si utilizamos un preprocesado de Canopy sin fijar el número
de clústers previo, éste nos consolida demasiado la información (tal y como
pasa en el DBSCAN), lo cual no es muy interesante.

=== Run information ===

Scheme: weka.clusterers.MakeDensityBasedClusterer -M 0.001
-W weka.clusterers.Canopy --
-N -1 -max-candidates 100
-periodic-pruning 10000
-min-density 2.0 -t2 -1.0 -t1 -1.25 -S 1
Relation: QueryResult
Instances: 2000
Attributes: 3

latitudT
longitudT
time

Test mode: evaluate on training data

44

=== Clustering model (full training set) ===

MakeDensityBasedClusterer:

Wrapped clusterer:
Canopy clustering
=================

Number of canopies (cluster centers) found: 4
T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.094874,-0.065178,-0.166183,{55} <0>
Cluster 1: -0.076573,-0.097976,-0.028496,{1474} <1,2>
Cluster 2: -0.077869,-0.097886,0.137391,{438} <1,2>
Cluster 3: -0.044869,-0.075594,-0.166324,{33} <3>

Time taken to build model (full training data) : 0.03 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 51 (3%)
1 1170 (59%)
2 742 (37%)
3 37 (2%)

Log likelihood: 9.34996

45

Figura 19: Resultado de DBSCAN para el Sujeto 2

Realizaremos un preprocesado Canopy de 500 clústers, con el fin de con-
seguir tanta consolidación.

=== Run information ===

Scheme: weka.clusterers.MakeDensityBasedClusterer -M 0.001
-W weka.clusterers.Canopy --
-N 500 -max-candidates 100
-periodic-pruning 10000
-min-density 2.0 -t2 -1.0 -t1 -1.25 -S 1
Relation: QueryResult
Instances: 2000
Attributes: 3

latitudT
longitudT
time

Test mode: evaluate on training data

=== Clustering model (full training set) ===

MakeDensityBasedClusterer:

Wrapped clusterer:

46

Canopy clustering
=================

Number of canopies (cluster centers) found: 500
T2 radius: 0,504
T1 radius: 0,631

Cluster 0: -0.094874,-0.065178,-0.166183,
Cluster 1: -0.076573,-0.097976,-0.028496
...

El cual nos consigue un preprocesado de 500 clústers con Canopy, sin
embargo, al aplicar DJ-Cluser, se nos reduce a 22 clústers:

Time taken to build model (full training data) : 0.37 seconds

=== Model and evaluation on training set ===

Clustered Instances

0 3 (0%)
12 605 (30%)
58 7 (0%)

142 449 (22%)
165 3 (0%)
209 57 (3%)
230 188 (9%)
287 8 (0%)
295 32 (2%)
345 17 (1%)
353 9 (0%)
369 68 (3%)
373 3 (0%)
380 6 (0%)
385 2 (0%)
386 10 (1%)
458 7 (0%)
459 3 (0%)
464 3 (0%)
473 9 (0%)

47

474 1 (0%)
493 510 (26%)

Log likelihood: 9.05128

Figura 20: Resultado de DJ-Cluster para el Sujeto 1

Este resultado se puede interpretar como algo bastante positivo, ya que
hemos reducido considerablemente el tamaño de nuestra base de datos, e
incluso podemos etiquetar algunos clústers como ruido, es decir, aquellos que
sólo se nos han producido a partir de una o dos posiciones como es el caso.
Sería necessario hacer un post-procesado de datos para eliminar todas estas
posiciones aisladas.

7.4.2. Sujeto 2

Con el sujeto 2 ocurre lo mismo que con el sujeto 1, con el preprocesa-
do de Canopy obtenemos una consolidación en 500 clústers, sin embargo, al
aplicar DJ-Cluster, obtenemos una consolidación a 27 clústers.

Time taken to build model (full training data) : 1.56 seconds

48

=== Model and evaluation on training set ===

Clustered Instances

0 6 (0%)
2 5 (0%)
3 1 (0%)
4 2 (0%)

76 5 (0%)
91 6 (0%)
96 36 (2%)

107 1 (0%)
133 6 (0%)
142 91 (5%)
146 68 (3%)
159 4 (0%)
166 19 (1%)
173 1 (0%)
211 17 (1%)
214 2 (0%)
288 8 (0%)
329 1669 (83%)
354 5 (0%)
370 1 (0%)
381 1 (0%)
386 5 (0%)
387 10 (1%)
391 1 (0%)
459 4 (0%)
474 16 (1%)
475 10 (1%)

Log likelihood: 10.83917

49

Figura 21: Resultado de DJ-Cluster para el Sujeto 2

50

8. Comparativa de resultados

Algoritmo SUJETO 1 SUJETO 2

K-means

Canopy Sí
N. Clústers 500
Iteraciones 9
Error cuadrático 0.117363
T. de ejecución 0.69 secs

Canopy Sí
N. Clústers 500
Iteraciones 24
Error cuadrático 0.208997
T. de ejecución 1.38 secs

DBSCAN

Canopy: No
Iteraciones: 111
T. de ejecución: 2 min 30 secs
N. Clústers: 9

Canopy: No
Iteraciones: 111
T. de ejecución: 2 min 20 secs
N. Clústers: 9

DJ-Clúster

Canopy: Sí
Iteraciones: 11
Clústers: 22
Error cuadrático: 0.140929
Verosimilitud: 9.34996
T. de ejecución 0.37 secs

Canopy: Sí
Iteraciones: 12
N. Clústers: 27
Error cuadrático: 0.209090
Verosimilitud: 10.83638
T. de ejecución 1.56 secs

Por adelga-
zamiento

Canopy: No
Iteraciones: N. de posiciones
Clústers: 800
T. de ejecución: <0.01 sec

Por tiempo

Canopy: No
Iteraciones: N. de posiciones
Clústers: 507
T. de ejecución: <0.01 sec

Por distan-
cia simple

Canopy: No
Iteraciones: N. de posiciones
Clústers: 21
T. de ejecución: <0.01 sec

Por dis-
tancia t0-
alcanzable

Canopy: No
Iteraciones: N. de posiciones
Clústers: 1786
T. de ejecución: <0.01 sec

Figura 22: Comparativa entre los disintos métodos

51

Se puede observar que claramente el algoritmo DBSCAN es el más lento
de todos, además del que más iteraciones realiza. Sin embargo, éste es el que
menos clústers obtiene, es decir, el que realiza una consolidación mayor. Esto
es debido a que no lleva un preprocesado Canopy previo, no como K-means
y DJ-Cluster. Ambos llevan un preprocesado previo de Canopy, el cual les
marca un número mínimo de clústers que dejar a la hora de realizarlo, sin
embargo, podemos observar queK-means se queda en los 500 clústers que le
hemos fijado desde el principio, mientras que DJ-Cluster consigue rebajar
este número incluso más. Con respecto al tiempo de ejecución, DJ-Cluster
es muchísimo más efectivo, aunque su error cuadrático es peor, comparado
con K-means.

DBSCAN tiene algunas ventajas con respecto a sus demás compañeros:

No necesita de prefijar el número de clústers.

DBSCAN tiene la noción de ruido, así que no es necesario aplicar un
post-filtro para encontrar aquellos puntos aislados.

Sin embargo, DBSCAN no es un algoritmo determinista, los puntos borde
que son alcanzables desde más de un sólo clúster pueden asignarse a cualquie-
ra de éstos. Sin embargo, esta situación no es usual, y en nuestro problema,
sólo nos interesan realmente los puntos núcleo y los puntos aislados.

La comparativa de éstos métodos más avanzados con los propios simples
definidos en 5 es algo difícil de realizar. Un primer punto sería hacer notar
que la complejidad algorítmica de los algoritmos por consolidación simple
vistos en 5 es mucho mayor que los algoritmos posteriormente estudiados.
Sin embargo, la principal ventaja del uso de éstos sobre los avanzados sería
la posibilidad de una utilización de otra definición de distancia, cosa que uti-
lizando alguna implementación ya realizada en Weka es imposible.

52

9. Conclusiones y cuestiones abiertas
Entre los resultados de este texto, se encuentran dos tipos de algoritmos

analizados e implementados. En primer lugar, los algoritmos de consolidación
que hemos definido como "simples", que no realizan un estudio a partir de
los datos, sino que parten de distintas nociones de distancia tanto espacial
como temporal y realizan una consolidación en función de éstas. La ventaja
de estos algoritmos es que son eficaces, cumplen el papel que prometen y
liberan la memoria necesaria en disco para poder seguir con una inserción
en base de datos. La desventaja principal de éstos es que a nivel estadístico
no realizan un estudio de las propias características del dato en sí, como los
algoritmos de clustering.

Los segundos algoritmos expuestos son de un nivel superior, ya que están
pensados para cualquier tipo de dato, no necesariamente ordenado en una
magnitud temporal. Con éstos aseguramos una menor pérdida de informa-
ción, aunque sí que resultan de mayor coste mayor tanto computacional como
de implementación que los anteriores. En un futuro, esto queda a criterio de
la persona que desarrollara estos algoritmos directamente en la aplicación a
utilizar.

Entre estos métodos de .alto nivel"también ha sido valorado el estudiar
métodos de clustering jerarquizados. Sin embargo, la razón principal que
desechó el estudio de éstos fue que la complejidad de un clustering aglomera-
tivo jerarquizado es de O(n3) y la de clustering divisivo también jerarquizado
es de O(2n), bastante grandes en comparaciń a la complejidad computacional
computacional de O(n log(n)) de DJ-Cluster.

Entre estos últimos, K-means, DJ-Cluster y DBSCAN no se encuen-
tran muchas diferencias. Obviamente, K-means es un algoritmo de mayor
simpleza, pero se puede comprobar que es bastante eficaz a la hora de re-
solver nuestro problema. Notar que DBSCAN es un algoritmo que tiene la
propiedad de etiquetar algunas posiciones como ruido, lo cual las implemen-
taciones de Weka de K-means y DJ-Cluster no realizan, así que sería un
punto a favor para utilizar DBSCAN.

A la hora de realizar una reconstrucción de la traza de movimiento a par-
tir de los datos centralizados, es reseñable el uso del algoritmo DJ-Cluster
ya que el algoritmo K-means no asegura encontrar los mejores centroides
de los clústers. El resultado depende de la elección inicial de los centros de
los clústers, la cual es al azar en el caso de K-means. Sería a lo mejor reco-

53

mendable lanzar el algoritmo varias veces con el fin de minimizar el error en
cada una y elegir la que mejor se ajustara, pero en este caso es mejor utilizar
un DJ-Cluster.

La definición de un nuevo concepto de distancia ha sido realizada para
los algoritmos de consolidación simple, sin embargo, la realización de pruebas
sobre los demás métodos ha sido realizada con el software Weka, el cual no
permite el uso de distancias personalizable. El número de iteraciones en este
caso es lineal, es decir, es el número de posiciones iniciales que mandamos
consolidar.

Quedaría como trabajo a futuro la inclusión de la orientación en los al-
goritmos de K-means, DJ-Cluster y DBSCAN como un elemento más a
la hora de definir las nociones de vecindario.

54

10. Herramientas utilizadas
1. Weka (Waikato Environment for Knowledge Analysis, en español «en-

torno para análisis del conocimiento de la Universidad de Waikato») es
una plataforma de software para el aprendizaje automático y la minería
de datos escrito en Java y desarrollado en la Universidad de Waikato.
Weka es software libre distribuido bajo la licencia GNU-GPL.2

2. Python se trata de un lenguaje de programación multiparadigma, ya
que soporta orientación a objetos, programación imperativa y, en me-
nor medida, programación funcional. Es un lenguaje interpretado, usa
tipado dinámico y es multiplataforma.

3. R es un lenguaje y entorno de programación para análisis estadístico
y gráfico. R se distribuye bajo la licencia GNU GPL y está disponible
para los sistemas operativos Windows, Macintosh, Unix y GNU/Linux.6

4. GitHub es una plataforma de desarrollo colaborativo para alojar pro-
yectos utilizando el sistema de control de versiones Git.

5. MySQL es un sistema de gestión de bases de datos relacional, multihilo
y multiusuario bajo una licencia GNU GPL para uso no comercial.

55

A. Implementación de algoritmos de consolida-
ción simple

Código 1: Consolidación por distancia
"Consolidation By distance"
def ConsolidationByDistance(listPositions, typeOfDistance, eps, t0):

i = 0
result = []
while i < len(listPositions) − 1:

Neighborhood: Distance EU simple
if typeOfDistance == 0:

if not listPositions[i].IsInNeighEUSimple(listPositions[i+1], eps):
result.append(listPositions[i])

Neighborhood: Distance EU relative to speed
elif typeOfDistance == 1:

if not listPositions[i].IsInNeighSpeedRelative(listPositions[i+1], eps):
result.append(listPositions[i])

Neighborhood t0 reachable
elif typeOfDistance == 2:

if not listPositions[i].IsInNeighT0Reachable(listPositions[i+1], t0):
result.append(listPositions[i])

else:
raise ValueError(’That distance does not exist’)

i=i+1

result.append(listPositions[len(listPositions) − 1])

return result

56

Código 2: Consolidación por adelgazamiento
"Consolidation by thinning."
def ConsolidationByThinning(listPositions, k, j):

if k >= j:
raise ValueError(’K tiene que ser menor que J’)

i = 0
result = []
while i < len(listPositions) − 1:

if i %j == 0:
l = 0
while l < k:

result.append(listPositions[i − l])
l = l+1

i = i+1

return result

57

Código 3: Consolidación por tiempo
"Consolidation by time. Deletes positions too close by time."
def ConsolidationByTime(listPositions, lapse):

i = 0
result = []
while i < len(listPositions) − 1:

if not listPositions[i].is_neighboorhoudByTime(listPositions[i+1], lapse):
result.append(listPositions[i])

i=i+1
result.append(listPositions[len(listPositions) − 1])

return result

58

B. Implementación de algoritmos de consolida-
ción asociados a métodos de clustering

Código 4: Preprocesado de Canopy
from sklearn.metrics.pairwise import pairwise_distances
import numpy as np

T1 > T2 for overlapping clusters
T1 = Distance to centroid point to not include in other clusters
T2 = Distance to centroid point to include in cluster
T1 > T2 for overlapping clusters
T1 < T2 will have points which reside in no clusters
T1 == T2 will cause all points to reside in mutually exclusive clusters

def canopy(X, T1, T2, distance_metric=’euclidean’, filemap=None):
canopies = dict()
X1_dist = pairwise_distances(X, metric=distance_metric)
canopy_points = set(range(X.shape[0]))
while canopy_points:

point = canopy_points.pop()
i = len(canopies)
canopies[i] = {"c":point, "points": list(np.where(X1_dist[point] < T2)[0])}
canopy_points = canopy_points.difference(set(np.where(X1_dist[point] < T1)[0]))

if filemap:
for canopy_id in canopies.keys():

canopy = canopies.pop(canopy_id)
canopy2 = {"c":filemap[canopy[’c’]], "points":list()}
for point in canopy[’points’]:

canopy2["points"].append(filemap[point])
canopies[canopy_id] = canopy2

return canopies

59

Código 5: DJ-Cluster
from position import Position, Cluster

"Dj−Clustering Algorithm"
def DjCluster(setPoints, typeDistance, eps, minPoints, t0):

listClusters = []
listNoises = []

for p in setPoints:
np = computeNeighborhood(p, setPoints, typeDistance, minPoints, eps, t0)

if np is None:
listNoises.append(p) # etiquetamos el punto como ruido

else:
result = np.isDensityJoinable(listClusters)

if result is None:
listClusters.append(np) # creamos un nuevo cluster

else:
result.mergeCluster(np)

return [listClusters, listNoises]

"Compute Neighborhood"
def computeNeighborhood(p, setPoints, typeDistance, minPoints, eps, t0):

pointsOfCluster = []
for q in setPoints:

if typeDistance == 0:
if p.is_in_neighborhoodByEUSimple(q, eps):

pointsOfCluster.append(q)
elif typeDistance == 1:

if p.is_in_neighborhoodEURelativeSpeed(q, eps):
pointsOfCluster.append(q)

elif typeDistance == 2:
if p.is_in_neighborhoodT0Reachable(q, t0):

pointsOfCluster.append(q)

if len(pointsOfCluster) < minPoints:
return None

else:
return Cluster(p, pointsOfCluster)

60

class Cluster:
"Cluster of points, basically set of points with a center"
def __init__(self, center, points):

self.center = center
self.points = points

"Cluster is density Joinable with list of clusters?"
def isDensityJoinable(self, listClusters):

for cluster in listClusters:
for p in self.points:

if p.isInCluster(cluster):
return cluster

return None

"Merge current cluster with another"
def mergeCluster(self, cluster) :

for p in cluster.points:
if not p.isInCluster(cluster):

self.points.append(p)

return self

61

Código 6: DBSCAN
’’’
Created on Feb 13, 2014
@author: sushant
’’’
from cluster import ∗
from pylab import ∗

class dbscanner:

dataSet = []
count = 0
visited = []
member = []
Clusters = []

def dbscan(self,D,eps,MinPts):
self.dataSet = D

title(r’DBSCAN Algorithm’, fontsize=18)
xlabel(r’Dim 1’,fontsize=17)
ylabel(r’Dim 2’, fontsize=17)
plt.figure(figsize=(15,10))

C = −1
Noise = cluster(’Noise’)
numit = 0
for point in D:

if point not in self.visited:
self.visited.append(point)
NeighbourPoints = self.regionQuery(point,eps)

if len(NeighbourPoints) < MinPts:
Noise.addPoint(point)

else:
name = ’Cluster’+str(self.count)
C = cluster(name)
self.count+=1
self.expandCluster(point,NeighbourPoints,C,eps,MinPts)

plot(C.getX(),C.getY(),’o’,label=name)
hold(True)

62

if len(Noise.getPoints())!=0:
plot(Noise.getX(),Noise.getY(),’x’,label=’Noise’)

hold(False)
legend(loc=’lower left’)
grid(True)
show()

def expandCluster(self,point,NeighbourPoints,C,eps,MinPts):

C.addPoint(point)

for p in NeighbourPoints:
if p not in self.visited:

self.visited.append(p)
np = self.regionQuery(p,eps)
if len(np) >= MinPts:

for n in np:
if n not in NeighbourPoints:

NeighbourPoints.append(n)

for c in self.Clusters:
if not c.has(p):

if not C.has(p):
C.addPoint(p)

if len(self.Clusters) == 0:
if not C.has(p):

C.addPoint(p)

self.Clusters.append(C)

def regionQuery(self,P,eps):
result = []
for d in self.dataSet:

if (((d[0]−P[0])∗∗2 + (d[1] − P[1])∗∗2)∗∗0.5)<=eps:
result.append(d)

return result

63

Índice de figuras
1. Descripción de los datos suministrados 7
2. EXPLAIN posicionesgps . 7
3. summary de los datos de Salvador 9
4. Tamaño de la base de datos 10
5. Diagrama DBSCAN . 22
6. Ejemplo de uso de la implementación de DBSCAN 25
7. Resultado DBSCAN . 26
8. Diagrama DJ-Clustering . 27
9. Distribución de las 2.000 posiciones del Sujeto 1 30
10. Distribución de las 2.000 posiciones del Sujeto 2 31
11. Resultado consolidación por adelgazamiento 33
12. Resultado consolidación por tiempo 34
13. Resultado consolidación por distancia Simple 35
14. Resultado consolidación por distancia t0−alcanzable 36
15. Resultado de K-means para el Sujeto 1 38
16. Resultado de K-means para el Sujeto 1 40
17. Resultado de DBSCAN para el Sujeto 1 42
18. Resultado de DBSCAN para el Sujeto 2 43
19. Resultado de DBSCAN para el Sujeto 2 46
20. Resultado de DJ-Cluster para el Sujeto 1 48
21. Resultado de DJ-Cluster para el Sujeto 2 50
22. Comparativa entre los disintos métodos 51

Índice de algoritmos
1. Algoritmo de consolidación simple por distancia 17
2. Algoritmo de consolidación por adelgazamiento 18
3. Algoritmo de consolidación por tiempo 19
4. Algoritmo DBSCAN . 24
5. Algoritmo DJ-Cluster . 27

64

Referencias
1 Terveen L. Bhatnagar N, Shekhar S. and Zhou C. Mining personally im-
portant places from gps tracks. In Istanbul, Data Engineering Workshop,
2007 IEEE 23rd International Conference, 2007.

2 Frank E. and Witten I.H. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, 2nd edition, 2005.

3 Terveen L. Frankowski D., Ludford P. Shekhar S. and Zhou C. Discove-
ring personal gazetteers: An interactive clustering approach. In In Proc.
ACMGIS, pages 266–273. ACM Press, 2004.

4 Gabe. Efficient python implementation of canopy clustering.
https://gist.github.com/gdbassett/528d816d035f2deaaca1, 2014.

5 Nigam K. McCallum A. and Ungar L. H. Efficient clustering of high-
dimensional data sets with application to reference matching, 2000.

6 R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

7 Kafle S. Implementation of dbscan algorithm in python.
https://github.com/SushantKafle/DBSCAN, 2014.

65

https://gist.github.com/gdbassett/528d816d035f2deaaca1
https://github.com/SushantKafle/DBSCAN

	Introducción
	Datos y estructura de los datos suministrados
	Análisis de los datos
	Espacio en disco
	Implementación de los datos en clases de Python

	Nociones de vecindario
	Vecindario simple
	Vecindario involucrando la velocidad
	Vecindad t0-alcanzable
	Vecindario involucrando el tiempo

	Preprocesado de datos
	Canopy

	Algoritmos de consolidación simples
	Consolidación por distancia
	Consolidación por adelgazamiento
	Consolidación por tiempo

	Algoritmos de consolidación asociados a métodos de clustering
	K-means
	DBSCAN
	Implementación en Python

	DJ-Cluster

	Aplicación de los algoritmos
	Resultados de algoritmos por consolidación simple
	Consolidación por adelgazamiento
	Consolidación por tiempo
	Consolidación por distancia simple
	Consolidación por distancia t0-alcanzable

	Resultados con K-means
	Sujeto 1
	Sujeto 2

	Resultados con DBSCAN
	Sujeto 1
	Sujeto 2

	Resultados con DJ-Cluster
	Sujeto 1
	Sujeto 2

	Comparativa de resultados
	Conclusiones y cuestiones abiertas
	Herramientas utilizadas
	Implementación de algoritmos de consolidación simple
	Implementación de algoritmos de consolidación asociados a métodos de clustering
	Índice de figuras
	Índice de algoritmos
	Referencias

