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1. INTRODUCCIÓN 

Un nanomaterial es aquel que debe estar compuesto de un 50 % o más de partículas de 

un tamaño comprendido entre 1 nm y 100 nm. 

Las propiedades de los materiales tales como las mecánicas, electrónicas, magnéticas, 

ópticas, químicas y biológicas, pueden diferir significativamente de las propiedades que 

presentan estos materiales a escala nano [1]. Estas diferencias  de comportamiento y 

propiedades a nanoescala se pueden explicar cómo una elevada área superficial, por lo 

tanto, un alto número de átomos superficiales, elevada concentración de defectos y 

cambios estructurales en la superficie de las nanopartículas y por el confinamiento 

electrónico [2]. Todas estas propiedades son las que hacen especiales a los 

nanomateriales.  

Por ejemplo, actualmente se utilizan nanopartículas en biomedicina ya que tienen 

grandes ventajas como materiales terapéuticos para distintas enfermedades humanas 

incluyendo enfermedades cerebrales y de retina. Estas nanopartículas pueden traspasar 

barreras biológicas, para ello es fundamental desarrollar su biodisponibilidad en órganos 

diana [3]. Numerosas investigaciones han demostrado que la liberación de 

medicamentos anticancerígenos puede ser controlada mediante su atrapamiento en 

sistemas coloidales submicrónicos (nanopartículas). Las nanopartículas son beneficiosas 

también para la entrega de oligonucleótidos a las células tumorales [4]. Para ello estás 

nanopartículas deben ser biocompatibles y biodegradables, unas de las que más han sido 

investigadas son las PLGA (poly (D,L-lactide-co-glycolide) [5]. 

Las nanopartículas magnéticas ofrecen atractivas posibilidades en biomedicina. Tienen 

tamaños controlables con dimensiones  comparables a las de una célula, un virus, una 

proteína o un gen. Lo que significa que pueden estar cerca del sistema biológico de 

interés. También pueden ser recubiertas con moléculas biológicas con el fin de crear 

interacciones con el sistema biológico de interés. Al ser nanopartículas magnéticas 

pueden controlarse mediante un campo magnético externo, lo que permite gran variedad 

de aplicaciones. Por último, se puede hacer que las nanopartículas magnéticas  

respondan a un campo magnético resonante variable en el tiempo obteniendo resultados 

ventajosos mediante la transferencia de energía que se produce desde el campo a la 

nanopartícula [6]. 
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Los recientes avances en nanotecnología juegan un papel importante en la creación de 

posibles sensores como herramienta de detección para el análisis de alimentos. Estos 

sensores están hechos a base de nanomateriales que son los transductores de señal y/o 

los potenciadores de señal [7].  

Por último, otro ejemplo de aplicaciones de los nanomateriales es la remediación 

medioambiental. Los nanomateriales han mostrado su eficiencia en la absorción de 

metales pesados, y sustancias volátiles, la fotodegradación  de contaminantes orgánicos 

persistentes y otros compuestos y la inactivación de bacterias. Estas propiedades hacen 

que sean idóneos para la remediación medioambiental, como tratamientos de aguas, 

remediación de suelos, monitorización de sustancias, etc. Los nanomateriales con 

estructura hueca presentan mayor actividad fotocatalítica que el resto debido a su 

elevada área superficial activa, su reducida resistencia a la difusión y su fácil 

accesibilidad [8].  

La gran cantidad de aplicaciones de las nanopartículas conduce a la entrada de éstas en 

el medioambiente, lo que puede suponer un riesgo para la salud humana y el 

medioambiente, por lo que son una nueva clase de contaminantes. Por ejemplo, en el 

medio acuático las nanopartículas pueden entrar a través de procesos de producción, de 

tratamiento de aguas residuales, lodos, vertidos accidentales y por emisiones a la 

atmósfera. Debido al gran volumen de uso comercial e industrial de estas partículas, se 

ve incrementada su exposición en diversos sistemas ecológicos y es probable que 

representen un posible peligro para los organismos acuáticos. Hasta la fecha, el 

conocimiento del impacto de las nanopartículas metálicas en la salud humana y en el 

medioambiente y sus interacciones con los organismos vivos es muy limitado [9]. 

Por ejemplo, las nanopartículas de CuO se están utilizando para productos como las 

tintas conductoras, recubrimientos antimicrobianos, textiles, plásticos, cosméticos… Se 

ha investigado su toxicidad ya que el Cu puede interferir en la homeostasis de otros 

metales, causa daño en el ADN y produce ROS (reactive oxygen species) que pueden 

modificar las proteínas, los lípidos y el ADN. Se ha demostrado que las nanopartículas 

de CuO pueden causar grandes efectos en las células epiteliales humanas [10]. 

Por todo ello, es necesario poder detectar y caracterizar correctamente las 

nanopartículas, para ello existen distintas técnicas analíticas que permiten obtener 

información sobre dichas nanopartículas. 
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La morfología de las nanopartículas juega un papel muy importante a la hora del tipo de 

reacciones que pueden desencadenar. Para conocer esta morfología se puede hacer uso 

de técnicas como la difracción de rayos X y las técnicas de microscopia electrónica 

como TEM (Transmission Electron Microscopy) o SEM (Scanning Electron 

Microscopy) que permiten obtener imágenes de las nanopartículas para así poder 

conocer su tamaño y forma [11]. 

Otra de las técnicas utilizadas para conocer el tamaño y/o la distribución de tamaños de 

las nanopartículas es el DLS (Dinamic light scattering), que mediante el movimiento 

browniano de las partículas o moléculas en suspensión hace que la luz láser se disperse 

en diferentes intensidades. Del análisis de estas fluctuaciones de intensidad se obtiene la 

velocidad del movimiento browniano y por lo tanto el tamaño de partícula utilizando la 

relación de Stokes-Einstein. 

Para el análisis elemental de las nanopartículas se utiliza ICP-OES (inductively coupled 

plasma optical emission spectrometry), así se puede obtener la cantidad del elemento 

que se quiere estudiar en cada nanopartícula, por ejemplo en la detección y 

caracterización de nanopartículas en plantas, realizando una digestión ácida de los 

tejidos de las plantas antes de ser analizados [12]. 

Otro tipo de técnicas utilizadas para la caracterización de nanopartículas son las técnicas 

de separación como las SEC (size exclusión cromatography) y el FFF (Field-flow 

fractionation). 

El HPSEC (high performance size exclusión cromatography) es una técnica de 

separación entrópicamente controlada que separa las moléculas basándose en el tamaño 

relativo o más específicamente en el volumen hidrodinámico. Cuando se introduce la 

muestra en la columna, las moléculas más grandes eluyen más rápido (antes) que las 

más pequeñas [13]. 

FlFFF también fracciona las NPs por su tamaño. El método da la distribución de la 

masa/tamaño de las NPs fraccionadas sin necesidad de los estándares de calibración ni 

de un modelo óptico que da cuenta de las propiedades de extinción de las NPs 

fraccionadas. El método se basa en una propiedad fundamental de la eficiencia de 

extinción óptica [14]. 
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Otro de los métodos de separación es la HDC (cromatografía hidrodinámica) es uno de 

los métodos más prometedores, ya que proporciona una separación por tamaños fiable 

que es en gran medida independiente de la matriz. El mecanismo de separación se basa 

en diferentes muestreos del perfil de velocidad de flujo debido a diferencias en el 

diámetro efectivo. El relleno no poroso (microesferas de poliestireno) limita las posibles 

interacciones con los analitos siendo así la HDC más ventajosa en comparación con la 

SEC [15]. 

Todas estas técnicas de separación suelen ir acopladas a un ICP-MS para la 

cuantificación de las nanopartículas separadas. 

En el presente trabajo se han estudiado en concreto las nanopartículas de óxido de cerio 

(CeO2). El cerio es un metal de la serie de los lantánidos que aparece de forma natural 

en el medio ambiente, siendo el más abundante de los presentes en la corteza terrestre y 

después del europio el material más reactivo. El Cerio se puede encontrar en estado 

tetravalente (Ce(IV)) y trivalente (Ce(III)) siendo la primera su forma más común. La 

gran estabilidad de su estado tetravalente hace de él un fuerte oxidante, con interés en el 

campo de la catálisis entre otros, de él se destaca su gran capacidad para absorber, 

almacenar y liberar O2, su bajo potencial Ce
4+

/Ce
3+

 y su capacidad para absorber 

radiación UV [16]. 

Las nanopartículas de óxido de cerio son un novedoso material con aplicaciones muy 

prometedoras en campos actualmente tan críticos como la remediación medioambiental, 

purificación de aguas, energías renovables y medicina. La multitud de aplicaciones se 

debe a su peculiaridad capacidad de almacenar o liberar oxígeno en función de los 

requerimientos de oxígeno del lugar donde se encuentran. A su vez, esta capacidad 

depende del tamaño de las partículas de óxido de cerio, llegando a ser máxima cuando 

su tamaño se reduce a unos pocos nanómetros de diámetro. Las nanopartículas de óxido 

de cerio sobre todo han sido utilizadas para diversas aplicaciones como catalizadores en 

la industria del automóvil, en la remediación ambiental y purificación del agua y en 

biomedicina [17]. 

La síntesis de nanopartículas de Ce se basa principalmente en la co-precipitación, 

método hidrotermal o solvotermal, procesos de microemulsión, sol-gel y síntesis de 

disolución de combustión [18]. 
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En cuanto a la toxicidad, las nanopartículas de óxido de cerio (CeO2) presentan 

excelentes propiedades antioxidantes de los radicales. También pueden tener uso 

médico dada su capacidad de actuar como un eliminador de radicales libres. Algunos 

estudios in vitro han sugerido que las nanopartículas de CeO2 también pueden tener 

efectos tóxicos en mayor concentración. Se ha demostrado que dosis a partir de 

100ng/ml de nanopartículas pueden ser perjudiciales para el organismo [19]. 

En el presente trabajo se ha hecho uso de técnicas electroquímicas como la voltametría 

cíclica, con el fin de detectar y cuantificar las nanopartículas de CeO2 en suspensión y 

en distintos medios y establecer así los fundamentos para el desarrollo de un sensor 

electroquímico. Esta técnica puede proporcionar datos relevantes sobre el estado de 

oxidación del metal en la nanopartícula que afecta a su reactividad y toxicidad [20]. 

Además, se fabricó un sensor basado en un  microelectrodo con el fin de poder obtener 

más información acerca de las nanopartículas mediante la técnica de colisión de 

partículas. La detección electroquímica de nanomateriales a través del método de "nano-

impacto" ofrece significativas ventajas sobre las técnicas ópticas convencionales, que 

incluyen la capacidad de analizar las nanopartículas in situ sin necesidad de secado o la 

modificación de la solución investigada. En este método, las nanopartículas se difunden 

libremente en una celda electroquímica, y se detectan a través de sus impactos 

estocásticos sobre un electrodo. Normalmente, los electrodos de tamaño micrómetros se 

utilizan para evitar un ruido grande o los impactos simultáneos. Durante el impacto, la 

partícula impactante puede estar implicada en una reacción electroquímica en la 

superficie del electrodo, lo que puede resultar en una oxidación directa de la propia 

nanopartícula, mientras se mide su correspondiente corriente. Las características del 

pico proporcionan información directa sobre el tamaño de la nanopartícula, y el número 

promedio de impactos puede describirse como una función del tiempo mediante la 

ecuación de difusión de Fick, proporcionando una forma práctica de medir la 

concentración de nanopartículas en una muestra [21]. 
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2. OBJETIVOS 

2.1 OBJETIVOS GENERALES 

 Desarrollar las habilidades necesarias para desenvolverse en un trabajo 

experimental que requiera la necesidad de utilizar varios equipamientos 

poniendo en práctica los conocimientos adquiridos a lo largo del máster y 

colaborar con los miembros de un equipo. 

 

 Llegar a ser consciente de las repercusiones medioambientales derivadas del uso 

de las tecnologías actuales en la vida cotidiana. 

2.2 OBJETIVOS ESPECÍFICOS 

 Estudio bibliográfico para completar y ampliar en la medida de lo necesario los 

conocimientos adquiridos durante el máster, necesarios para comprender los 

resultados que se obtengan. 

 

  Estudio de las propiedades de un nanomaterial para elegir la manera más 

adecuada sobre la cual fundamentar un método de detección. 

 

 Desarrollar un procedimiento sencillo para la detección en muestras 

medioambientales. 

 

  Saber deducir conclusiones con toda la información recogida, con el estudio de 

los datos experimentales y de la bibliografía recogida. 

3. EXPERIMENTAL. 

3.1 INSTRUMENTACIÓN Y REACTIVOS 

3.1.1 INSTRUMENTACIÓN 

 Potenciostato modelo Autolab PGSTAT12. 

 Potenciostato modelo µAutolab TYPE III. 

 Potenciostato modelo Autolab PGSTAT 10. 

 Balanza analítica AND GH-200. 

 pHmetro CRISON micropH 2001. 
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 Micropipetas Biohit 1-10µL, 10-100µL y  100-1000µL. 

3.1.2 APARATOS 

 Baño de Ultrasonidos Ultrasons-P Selecta. 

 Vortex Stuart. 

 Agitador magnético HANNA instruments HI 190M. 

3.1.3 MATERIAL 

 Electrodo de referencia Ag/AgCl. 

 Electrodo de trabajo Glassy Carbon (GC). 

 Electrodo auxiliar hilo de Pt. 

 Hilo de Ag de 0,25mm de diámetro. 

 Microfibra de carbono de 0,007mm de diámetro. 

 Celda electroquímica. 

 Disco de terciopelo y disco de nylon 

 Vasos de precipitados de vidrio de distintos volúmenes. 

 Vidrios de reloj. 

 Probetas de vidrio. 

 Tubos Eppendorf. 

3.1.4 REACTIVOS Y ESTÁNDARES 

 Agua ultrapura (Milli-Q Advantage, Molsheim, Francia). 

 Disolución comercial (PLASMACHEM) de nanopartículas de CeO2 de 10nm de 

diámetro. Punto isoeléctrico 6.8, a ese pH las nanopartículas se aglomeran, por 

lo que la disolución se hace inestable.  

 Disolución comercial (PLASMACHEM) de nanopartículas de CeO2 de 2 a 

60nm de diámetro. Punto isoeléctrico 2.7, a ese pH las nanopartículas se 

aglomeran, por lo que la disolución se hace inestable. 

 HNO3 Scharlau, 68%; D=1,41g/mL. 

3.1.5 DISOLUCIONES. 

 Disolución NaCl 3M para los electrodos de referencia. 

 Suspensión de alúmina para limpieza del electrodo de trabajo. 
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3.2 DETECCIÓN DE NANOPARTÍCULAS DE ÓXIDO DE CERIO EN 

DISTINTAS AGUAS 

La detección directa de las nanopartículas de óxido de cerio (IV) podría estar basada en 

la reducción del Ce (IV) a Ce (III).  

El semisistema de oxidación del óxido de cerio es: Ce2O3 + H2O  2CeO2 + 2H
+
 + 2e

-
  

con un potencial respecto al electrodo normal de hidrógeno de E0= 1,559 – 0,059pH. 

Se ha demostrado que la cinética de oxidación del Ce (III) a Ce (IV) es rápida en las 

disoluciones de ácido nítrico concentrado, esto es debido a que la alta concentración de 

protones promueve la transferencia de electrones del par Ce(III)/Ce (IV) en ácido nítrico 

y que el potencial del par Ce(III)/Ce(IV) es independiente de la concentración de 

nitratos[22]. 

Este potencial es demasiado oxidante para las condiciones de medio acuoso en que se 

trabaja, por lo que el pico correspondiente sale sobre la rama ascendente de oxidación 

del electrodo. Pero las nanopartículas se pueden detectar también observando el efecto 

que producen sobre el material del electrodo, ya que éstas lo oxidan aumentando el 

número de grupos carboxílicos de su superficie. Estos grupos se reducen a un potencial 

cercano a cero, que depende del pH de la disolución [23]. La altura de pico estará 

relacionada con la cantidad de dichos grupos y por tanto con la cantidad de 

nanopartículas que hayan causado esa oxidación. 

Además del H
+
, en el agua existen otros iones que también inflluyen en el proceso 

redox. Esto tiene mucha relevancia en la química de las nanopartículas de óxido de 

cerio (IV) porque en su composición también hay Ce (III) y estos iones pueden 

interaccionar con él lo que en algunos casos produce el bloqueo del proceso reversible 

de oxidoreducción. 

En este trabajo se ha estudiado: 

- La influencia que tienen los iones que contiene el agua en la detección de 

nanopartículas de óxido de cerio. 

- Detección de nanopartículas de óxido de cerio de distintos tamaños y en distintaos 

tipos de aguas (milliQ, agua mineral y agua de boca sintética). 
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Para todos los estudios se ha utilizado un electrodo de carbono vitrificado como 

electrodo de trabajo, un electrodo de Ag/AgCl como electrodo de referencia y un hilo de 

platino como electrodo auxiliar. 

La técnica utilizada ha sido la voltametría cíclica con un potencial inicial 1V; potencial 

del primer vértice -1V; potencial del segundo vértice 1,9V. La velocidad de barrido 

utilizada ha sido de 50mV/s.  

 

3.2.1 INFLUENCIA DE LOS IONES DEL AGUA EN LA DETECCIÓN DE 

NANOPARTÍCULAS DE CeO2 

La presencia de especies aniónicas como Cl
-
 o SO4

2-
 en las disoluciones a estudiar 

puede afectar en la capacidad de oxidación del Ce(IV). Se ha demostrado que la 

presencia de SO4
2-

 disminuye el potencial formal pero aumenta la ∆Ep en la oxidación 

del Ce(III) y disminuye la intensidad máxima de reducción del Ce(IV). Por el contrario, 

tanto el potencial formal como ∆Ep para la oxidación de Ce(III) son independientes de 

la concentración de Cl
-
, pero la intensidad máxima de oxidación del Ce(III) se encuentra 

parcialmente solapada por la oxidación de Cl
- 
[24]. La presencia de nitratos en los tipos 

de agua estudiados es despreciable, además el potencial del par Ce(III)/Ce(IV) es 

independiente de la concentración de nitratos[22],  por lo que no se consideraron en este 

trabajo. 

Para este estudio se prepararon suspensiones con diferentes tipos de iones y varias 

concentraciones de nanopartículas de CeO2. Se realizaron voltametrías cíclicas y se 

recogieron datos de alturas y áreas de pico con el fin de obtener diferencias entre los 

distintos iones estudiados. Las concentraciones de los iones que se utilizaron fueron las 

de la ciudad de Zaragoza, siguiendo la información suministrada por su ayuntamiento. 

Para todos los iones estudiados se realizó el mismo procedimiento, en primer lugar se 

hizo el estudio depositando las nanopartículas en la superficie del electrodo, de forma 

que, se depositaron 3µL de disolución de nanopartículas sobre la superficie del 

electrodo de trabajo y se secaron con una corriente de nitrógeno gas. Una vez seco se 

traslada a la celda electroquímica cuyo electrolito soporte ha sido desoxigenado con 

nitrógeno (5 minutos) y se obtienen los voltagramas.  
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En segundo lugar, se hizo el estudio dejando las nanopartículas en suspensión en el 

electrolito soporte. Se prepararon  suspensiones de nanopartículas en suspensión de 0.1 

a 0.7mg·L
-1

. Para preparar dichas suspensiones se partió de  una con una concentración 

de nanopartículas de 1000 mg·L
-1 

en agua MilliQ con un 10% de HNO3 0.1M y se les 

añadió la concentración del ion correspondiente. Las suspensiones se sonicaron durante 

3 minutos antes de ser utilizadas.  

En todos los casos los límites de detección han sido calculados como tres veces la 

desviación estándar del blanco. 

 

Figura 1: Voltagramas cíclicos obtenidos en distintos medios con una concentración de nanopartículas de 

CeO2 de 0.5 mg/L depositadas sobre la superficie del electrodo. 

 

Figura 2: Voltagramas cíclicos obtenidos en distintos medios con una concentración de nanopartículas de 

CeO2 de 0.5 mg/L en suspensión. 
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Como se puede apreciar en las figuras 1 y 2, el pico de reducción de los grupos 

carboxílicos aparece a un potencial en torno a -0.2 V y su altura y posición se ven 

afectadas por los iones presentes en la disolución.  

3.2.1.1 Influencia de los cloruros. 

Se prepararon diferentes suspensiones de nanopartículas de CeO2 de distintas 

concentraciones que fueron de 0.1 a 0.7 mg·L
-1

. Estas nanopartículas se suspendieron en 

agua MilliQ con un 10% de HNO3 0.1M y se les añadió NaCl con una concentración de 

cloruros de 152mg·L
-1

. Las suspensiones se sonicaron durante 3 minutos antes de ser 

utilizadas. Se realizaron 3 barridos seguido para cada una de las concentraciones. 

Se realizaron dos réplicas de cada una de las modalidades. 

 Resultados: 

- Nanopartículas depositadas sobre la superficie del electrodo: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -1,48·10
-5

 7,34·10
-6

 -2,33·10
-5

 7,79·10
-6

 4,79·10
-6

 2,66·10
-6

 9,25·10
-6

 2,30·10
-6

 

0.1 -1,73·10
-5

 2,89·10
-6

 -2,53·10
-5

 7,04·10
-7

 5,58·10
-6

 1,49·10
-6

 9,07·10
-6

 5,77·10
-7

 

0.2 -1,75·10
-5

 1,40·10
-6

 -2,71·10
-5

 3,69·10
-7

 5,59·10
-6

 7,06·10
-7

 1,06·10
-5

 1,01·10
-6

 

0.3 -1,84·10
-5

 1,28·10
-6

 -2,89·10
-5

 4,52·10
-6

 6,11·10
-6

 6,80·10
-7

 1,14·10
-5

 3,04·10
-6

 

0.4 -1,84·10
-5

 7,28·10
-7

 -3,11·10
-5

 1,38·10
-6

 6,00·10
-6

 2,62·10
-7

 1,42·10
-5

 1,05·10
-6

 

0.5 -1,86·10
-5

 1,32·10
-6

 -2,77·10
-5

 5,52·10
-7

 6,27·10
-6

 2,75·10
-7

 1,12·10
-5

 1,12·10
-6

 

0.6 -2,02·10
-5

 1,76·10
-6

 -2,91·10
-5

 7,90·10
-7

 7,30·10
-6

 7,60·10
-7

 1,27·10
-5

 1,07·10
-6

 

0.7 -1,94·10
-5

 9,09·10
-7

 -3,14·10
-5

 2,87·10
-6

 6,30·10
-6

 4,46·10
-7

 1,43·10
-5

 2,95·10
-6

 
Tabla 1: Variación de la altura de pico (A) y del área de pico (C) con los cloruros a distintas concentraciones 

de nanopartículas. 
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En las figuras 3 y 4 se observó que existe una relación lineal entre la concentración de 

nanopartículas en una disolución que contiene cloruros y la señal obtenida, siendo 

mayor dicha relación en alturas. 

El rango lineal observado en alturas de pico va de 0 a 0,7 mg·L
-1 

y en áreas de pico de 0 

a 0,5 mg·L
-1

. 

y = 2,87E-06x + 4,88E-06 
R² = 9,77E-01 

y = 1,61E-05x + 7,30E-06 
R² = 9,44E-01 

0 

0,000002 

0,000004 

0,000006 

0,000008 

0,00001 

0,000012 

0,000014 

0,000016 
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Á
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C
) 
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Figura 4: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 

y = -1,93E-05x - 2,33E-05 
R² = 9,99E-01 

y = -5,93E-06x - 1,60E-05 
R² = 8,03E-01 

-0,000035 

-0,00003 

-0,000025 

-0,00002 

-0,000015 

-0,00001 

-0,000005 

0 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 
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) 
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Figura 3: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 
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Los límites de detección encontrados fueron de 3.56·10
-6

 A en el caso de las alturas y 

3.82·10
-6

 C en el caso de las áreas. 

- Nanopartículas en suspensión: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 (A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área repl. 

1 (C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -1,87·10
-5 

7,32·10
-6

 -2,72·10
-5

 1,95·10
-6

 1,25E·10
-4

 5,75·10
-5

 2,16·10
-4

 4,39·10
-5

 

0,1 -2,73·10
-5

 6,12·10
-7

 -3,52·10
-5

 2,35·10
-6

 2,54·10
-4

 3,02·10
-5

 3,38·10
-4

 6,28·10
-6

 

0,2 -1,69·10
-5

 5,54·10
-6

 -2,24·10
-5

 2,62·10
-6

 1,45·10
-4

 3,77·10
-5

 1,63·10
-4

 5,41·10
-5

 

0,3 -2,09·10
-5

 1,57·10
-6

 -2,60·10
-5

 2,27·10
-6

 1,67·10
-4

 3,58·10
-5

 2,15·10
-4

 2,92·10
-5

 

0,4 -2,21·10
-5

 8,58·10
-7

 -2,61·10
-5

 3,20·10
-6

 1,84·10
-4

 3,03·10
-5

 2,35·10
-4

 7,79·10
-5

 

0,5 -2,10·10
-5

 2,11·10
-6

 -2,66·10
-5

 6,76·10
-7

 1,69·10
-4

 5,94·10
-5

 2,27·10
-4

 4,56·10
-5

 

0,6 -2,13·10
-5

 1,15·10
-6

 -2,81·10
-5

 6,68·10
-7

 1,60·10
-4

 3,66·10
-5

 2,41·10
-4

 4,02·10
-5

 

0,7 -2,23·10
-5

 1,30·10
-6

 -2,56·10
-5

 1,32·10
-6

 1,76·10
-4

 1,25·10
-5

 1,83·10
-4

 1,71·10
-6

 
Tabla 2: Variación de la altura de pico (A) y del área de pico (C) con los cloruros a distintas concentraciones 

de nanopartículas en suspensión. 

 

 

Figura 5: Relación entre la altura de pico (A) y la concentración de nanopartículas en suspensión. Cada 

medida es el resultado de tres valores. 

y = -2,60E-05x - 1,22E-05 
R² = 9,03E-01 

y = -1,45E-05x - 1,97E-05 
R² = 9,46E-01 
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Figura 6: Relación entre el área de pico (C) y la concentración de nanopartículas en suspensión. Cada medida 

es el resultado de tres valores. 

Se observó que en las figuras 5 y 6 existe una relación lineal entre la concentración de 

nanopartículas en una disolución que contiene cloruros y la señal obtenida.  

El rango lineal observado en alturas de pico va de 0,2 a 0,5 mg·L
-1

 y en áreas de pico de 

0,2 a 0,4 mg·L
-1

. Por lo que es menor que el que se obtuvo en las figuras 1 y 2. 

Los límites de detección encontrados fueron de 6.66·10
-6

 A en el caso de las alturas y 

1.12·10
-4

 C en el caso de las áreas. 

3.2.1.2  Influencia de los sulfatos. 

Se prepararon diferentes suspensiones de nanopartículas de CeO2 de distintas 

concentraciones que fueron de 0.1 a 0.7 mg·L
-1

. Estas nanopartículas se suspendieron en 

agua MilliQ con un 10% de HNO3 0.1M y se les añadió Na2SO4 con una concentración 

de sulfatos de 209,2 mg·L
-1

. Las suspensiones se sonicaron durante 3 minutos antes de 

ser utilizadas. Se realizaron 3 barridos seguidos para cada una de las concentraciones. 

Se realizaron dos réplicas de cada una de las modalidades. 

 

 

 

 

y = 1,93E-04x + 1,08E-04 
R² = 9,93E-01 

y = 3,59E-04x + 9,63E-05 
R² = 9,39E-01 
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Á
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 Resultados: 

- Nanopartículas depositadas sobre la superficie del electrodo: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 (A) 

DSR 

altura 1 

Altura 

repl. 2 (A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -3,45·10
-5

 7,13·10
-6

 -1,89·10
-5

 3,79·10
-6

 1,56·10
-5

 5,24·10
-7

 6,24·10
-6

 2,26·10
-7

 

0,1 -2,40·10
-5

 5,62·10
-6

 -2,05·10
-5

 2,18·10
-6

 9,21·10
-6

 1,20·10
-6

 6,43·10
-6

 1,32·10
-6

 

0,2 -2,69·10
-5

 2,00·10
-6

 -2,25·10
-5

 3,49·10
-6

 9,57·10
-6

 1,28·10
-6

 7,09·10
-6

 2,07·10
-6

 

0,3 -2,91·10
-5

 2,49·10
-6

 -2,44·10
-5

 1,49·10
-6

 1,06·10
-5

 7,14·10
-7

 7,82·10
-6

 5,14·10
-7

 

0,4 -2,75·10
-5

 3,04·10
-6

 -2,54·10
-5

 1,27·10
-6

 1,08·10
-5

 6,45·10
-7

 9,60·10
-6

 1,30·10
-6

 

0,5 -2,67·10
-5

 3,15·10
-6

 -2,75·10
-5

 2,80·10
-6

 1,00·10
-5

 4,06·10
-7

 1,11·10
-5

 8,89·10
-7

 

0,6 -2,67·10
-5

 2,64·10
-6

 -2,55·10
-5

 2,93·10
-6

 1,00·10
-5

 1,50·10
-6

 9,78·10
-6

 8,19·10
-7

 

0,7 -2,66·10
-5

 4,66·10
-6

 -2,45·10
-5

 1,97·10
-6

 9,24·10
-6

 1,77·10
-6

 8,20·10
-6

 5,71·10
-7

 
 

Tabla 3: Variación de la altura de pico (A) y del área de pico (C) con los sulfatos a distintas concentraciones de 

nanopartículas. 

 

Figura 7: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

y = -1,70E-05x - 1,89E-05 
R² = 9,95E-01 

y = -2,58E-05x - 2,15E-05 
R² = 9,94E-01 
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0 
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Figura 8: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

Se observó que en las figuras 7 y 8 existe una relación lineal entre la concentración de 

nanopartículas con sulfatos y la señal obtenida. 

El rango lineal observado tanto en alturas de pico como en áreas de pico va de 0 a 0,5 

mg·L
-1

. 

Los límites de detección encontrados fueron de 9.49·10
-6

 A en el caso de las alturas y 

2.95·10
-6

 C en el caso de las áreas. 

 

- Nanopartículas en suspensión: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -2,38·10
-5 

1,42·10
-6

 -1,39·10
-5

 1,43·10
-6

 1,74·10
-4

 1,40·10
-5

 7,09·10
-5

 8,48·10
-6

 

0,10 -1,72·10
-5

 8,72·10
-7

 -2,12·10
-5

 9,22·10
-7

 1,11·10
-4

 3,80·10
-5

 1,67·10
-4

 2,28·10
-5

 

0,20 -2,79·10
-5

 2,11·10
-6

 -2,47·10
-5

 3,83·10
-7

 2,20·10
-4

 3,78·10
-5

 1,86·10
-4

 4,72·10
-5

 

0,30 -2,93·10
-5

 1,49·10
-6

 -2,69·10
-5

 1,01·10
-6

 2,15·10
-4

 1,86·10
-5

 2,17·10
-4

 5,69·10
-5

 

0,40 -1,46·10
-5

 1,07·10
-6

 -2,10·10
-5

 3,16·10
-6

 9,20·10
-5

 4,46·10
-5

 1,92·10
-4

 8,28·10
-5

 

0,50 -2,08·10
-5

 3,31·10
-6

 -2,22·10
-5

 1,92·10
-6

 1,72·10
-4

 6, ·10
-5

 1,96·10
-4

 5,20·10
-5

 

0,60 -2,19·10
-5

 2,55·10
-6

 -5,07·10
-5

 3,32·10
-5

 1,01·10
-4

 4,89·10
-5

 2,37·10
-4

 8,84·10
-5

 

0,70 -1,91·10
-5

 3,82·10
-6

 -2,19·10
-5

 3,79·10
-6

 1,22·10
-4

 6,09·10
-5

 1,95·10
-4

 8,22·10
-5

 
Tabla 4: Variación de la altura de pico (A) y del área de pico (C) con los sulfatos a distintas concentraciones de 

nanopartículas. 

y = 1,02E-05x + 5,66E-06 
R² = 9,43E-01 

y = 6,79E-06x + 8,42E-06 
R² = 9,34E-01 

0 
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0,000004 

0,000006 

0,000008 
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0,000012 

0 0,1 0,2 0,3 0,4 0,5 0,6 

á
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C
) 
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Figura 9: Relación entre la altura de pico (A) y la concentración de nanopartículas en suspensión. Cada 

medida es el resultado de tres valores. 

 

Figura 10: Relación entre el área de pico (C) y la concentración de nanopartículas en suspensión. Cada medida 

es el resultado de tres valores. 

En la figura 9 se observó una relación lineal entre la concentración de nanopartículas y 

la altura de pico para ambas réplicas, en cambio, en la figura 10 solamente se observó 

relación lineal en la segunda réplica realizada. 

El rango lineal obtenido en altura de pico fue de 0 a 0,3 mg·L
-1

 igual que el observado 

para las áreas de pico. 

Los límites de detección encontrados fueron de 1.17·10
-5

 A en el caso de las alturas y 

1.45·10
-4

 C en el caso de las áreas. 
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3.2.1.3  Influencia de los carbonatos. 

Se prepararon diferentes suspensiones de nanopartículas de CeO2 de distintas 

concentraciones que fueron de 0.1 a 0.7 mg·L
-1

. Estas nanopartículas se suspendieron en 

agua MilliQ con un 10% de HNO3 0.1M y se les añadió Na2CO3 con una concentración 

de carbonatos de 352 mg·L
-1

. Las suspensiones se sonicaron durante 3 minutos antes de 

ser utilizadas. Se realizaron 3 barridos seguido para cada una de las concentraciones. 

Se realizaron dos réplicas de cada una de las modalidades. 

 Resultados: 

- Nanopartículas depositadas sobre la superficie del electrodo: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -5,42·10
-5 

3,80·10
-6

 -5,95·10
-5

 1,80·10
-5

 1,96·10
-5

 3,78·10
-7

 2,35·10
-5

 5,22·10
-6

 

0,1 -6,30·10
-5

 3,99·10
-6

 -7,16·10
-5

 5,64·10
-6

 2,14·10
-5

 1,99·10
-6

 2,80·10
-5

 1,19·10
-6

 

0,2 -6,52·10
-5

 4,33·10
-6

 -7,82·10
-5

 5,64·10
-6

 2,26·10
-5

 2,42·10
-6

 3,07·10
-5

 1,16·10
-6

 

0,3 -6,12·10
-5

 6,28·10
-6

 -7,77·10
-5

 4,03·10
-6

 2,05·10
-5

 3,74·10
-6

 3,20·10
-5

 1,39·10
-6

 

0,4 -6,95·10
-5

 1,43·10
-6

 -7,53·10
-5

 2,54·10
-6

 2,48·10
-5

 1,91·10
-7

 3,19·10
-5

 1,05·10
-6

 

0,5 -2,48·10
-5

 7,87·10
-5

 -7,01·10
-5

 1,10·10
-5

 2,58·10
-5

 3,22·10
-6

 2,97·10
-5

 4,68·10
-6

 

0,6 -7,53·10
-5

 3,02·10
-6

 -7,53·10
-5

 5,06·10
-6

 3,18·10
-5

 5,51·10
-7

 3,11·10
-5

 1,74·10
-6

 

0,7 -8,17·10
-5

 7,75·10
-6

 -7,32·10
-5

 4,37·10
-6

 3,50·10
-5

 2,78·10
-6

 3,19·10
-5

 7,20·10
-7

 
Tabla 5: Variación de la altura de pico (A) y del área de pico (C) con los carbonatos a distintas 

concentraciones de nanopartículas. 

 

Figura 11: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 
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Figura 12: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

En las figuras 11 y 12 se observó que existe una relación lineal entre la concentración de 

nanopartículas con carbonatos  y la señal obtenida. 

El rango lineal obtenido en altura de pico fue de 0 a 0,7 mg·L
-1

 igual que el observado 

para las áreas de pico. 

Los límites de detección encontrados fueron de 6.08·10
-6

 A en el caso de las alturas y 

3.10·10
-5

 C en el caso de las áreas. 

- Nanopartículas en suspensión: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 (A) 

DSR 

altura 1 

Altura 

repl. 2 (A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -3,56·10
-5

 1,78·10
-6

 -3,79·10
-5

 5,31·10
-6

 2,77·10
-4

 2,52·10
-6

 2,94·10
-4

 8,12·10
-6

 

0,1 -4,00·10
-5

 2,60·10
-6

 -4,39·10
-5

 1,60·10
-6

 3,43·10
-4

 1,77·10
-5

 3,49·10
-4

 1,90·10
-5

 

0,2 -3,42·10
-5

 6,24·10
-7

 -4,24·10
-5

 3,52·10
-6

 2,40·10
-4

 4,72·10
-5

 3,05·10
-4

 1,00·10
-5

 

0,3 -3,49·10
-5

 2,40·10
-6

 -3,56·10
-5

 6,15·10
-6

 2,63·10
-4

 2,98·10
-5

 1,89·10
-4

 6,92·10
-5

 

0,4 -3,68·10
-5

 1,73·10
-6

 -2,97·10
-5

 3,37·10
-6

 2,74·10
-4

 2,02·10
-5

 2,61·10
-4

 4,60·10
-5

 

0,5 -3,35·10
-5

 1,39·10
-6

 -2,94·10
-5

 1,43·10
-6

 2,44·10
-4

 2,44·10
-5

 2,36·10
-4

 1,78·10
-5

 

0,6 -3,55·10
-5

 6,62·10
-6

 -2,91·10
-5

 1,28·10
-6

 2,79·10
-4

 9,37·10
-5

 2,56·10
-4

 6,83·10
-5

 

0,7 -4,03·10
-5

 2,62·10
-6

 -3,04·10
-5

 2,45·10
-6

 3,04·10
-4

 2,48·10
-5

 2,18·10
-4

 2,77·10
-5

 
Tabla 6: Variación de la altura de pico (A) y del área de pico (C) con los carbonatos a distintas concentraciones 

de nanopartículas. 

y = 1,93E-05x + 1,88E-05 
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Figura 13: Relación entre la altura de pico (A) y la concentración de nanopartículas en suspensión. Cada 

medida es el resultado de tres valores. 

 

Figura 14: Relación entre el área de pico (C) y la concentración de nanopartículas en suspensión. Cada medida 

es el resultado de tres valores. 

Las figuras 13 y 14 muestran una relación lineal entre la concentración de 

nanopartículas y la señal obtenida, aunque se observó que existen diferencias 

significativas entre las señales obtenidas en las distintas réplicas. 

En este caso los límites de detección no fueron calculados debido a las diferencias que 

se encontraron entre las distintas réplicas. 
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3.2.1.4  Influencia de la materia orgánica (ácido húmico). 

Se prepararon diferentes suspensiones de nanopartículas de CeO2 de distintas 

concentraciones que fueron de 0.1 a 0.7 mg·L
-1

. Estas nanopartículas se suspendieron en 

agua MilliQ con un 10% de HNO3 0.1M y se les añadió ác. Húmico con una 

concentración de 1,8 mg·L
-1

. Las suspensiones se sonicaron durante 3 minutos antes de 

ser utilizadas. Se realizaron 3 barridos seguido para cada una de las concentraciones. 

Se realizaron dos réplicas de cada una de las modalidades. 

 

 Resultados: 

- Nanopartículas depositadas sobre la superficie del electrodo: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 (A) 

DSR 

altura 1 

Altura 

repl. 2 (A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -4,02·10
-5

 9,66·10
-6

 -5,56·10
-5

 1,31·10
-5

 1,56·10
-5

 2,22·10
-6

 2,06·10
-5

 2,53·10
-6

 

0,1 -4,72·10
-5

 5,41·10
-7

 -6,13·10
-5

 1,85·10
-6

 1,72·10
-5

 1,56·10
-6

 7,43·10
-6

 2,53·10
-5

 

0,2 -4,79E·10
-5

 2,10·10
-6

 -6,32·10
-5

 1,73·10
-6

 1,69·10
-5

 1,63·10
-6

 2,18·10
-5

 3,96·10
-6

 

0,3 -5,28·10
-5

 6,98·10
-6

 -6,22·10
-5

 4,68·10
-6

 1,87·10
-5

 3,23·10
-6

 2,11·10
-5

 4,41·10
-6

 

0,4 -5,05·10
-5

 4,76·10
-6

 -6,47·10
-5

 3,61·10
-6

 1,83·10
-5

 3,85·10
-6

 2,18·10
-5

 3,29·10
-6

 

0,5 -5,36·10
-5

 3,44·10
-6

 -6,70·10
-5

 4,03·10
-6

 1,95·10
-5

 2,24·10
-6

 2,41·10
-5

 4,27·10
-6

 

0,6 -5,09E·10
-5

 2,24·10
-6

 -5,50·10
-5

 1,78·10
-5

 1,74·10
-5

 2,53·10
-6

 2,02·10
-5

 2,80·10
-6

 

0,7 -5,28E·10
-5

 7,29·10
-7

 -6,78·10
-5

 2,65·10
-6

 1,87·10
-5

 2,54·10
-6

 2,32·10
-5

 8,40·10
-7

 
Tabla 7: Variación de la altura de pico (A) y del área de pico (C) con ácido húmico a distintas concentraciones 

de nanopartículas. 
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Figura 15: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 

 

Figura 16: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

En las figuras 15 y 16 se observó que existe una relación lineal entre la concentración de 

nanopartículas depositadas en la superficie del electrodo y la señal obtenida, además en 

la figura 15 se puede observar que la pendiente de las rectas para ambas réplicas es 

similar. 

El rango lineal en el caso de las alturas de pico va de 0 a 0,5 mg·L
-1

 y en el caso de las 

áreas también. 

Los límites de detección encontrados fueron de 1.50·10
-5

 A en el caso de las alturas y 

1.26·10
-5

 C en el caso de las áreas. 
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- Nanopartículas en suspensión: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -2,86·10
-5

 9,50·10
-7

 -3,10·10
-5

 1,00·10
-5

 2,31·10
-4

 1,40·10
-5

 2,39·10
-4

 7,17·10
-5

 

0,1 -3,19·10
-5

 6,46·10
-7

 -3,88·10-
5
 3,76·10

-6
 8,61·10

-5
 3,78·10

-4
 3,41·10

-4
 3,76·10

-5
 

0,2 -2,89·10-
5
 4,76·10

-7
 -3,74·10

-5
 5,47·10

-7
 2,72·10

-4
 1,20·10

-5
 2,98·10

-4
 5,27·10

-5
 

0,3 -3,16·10
-5

 3,89·10
-6

 -3,84·10
-5

 2,26·10
-6

 2,60·10
-4

 2,15·10
-5

 3,03·10
-4

 1,68·10
-5

 

0,4 -3,10·10
-5

 1,92·10
-6

 -3,99·10
-5

 2,37·10
-6

 2,58·10
-4

 3,41·10
-5

 3,37·10
-4

 8,64·10
-6

 

0,5 -3,05·10
-5

 2,67·10
-6

 -4,04·10
-5

 5,12·10
-6

 2,88·10
-4

 3,99·10
-5

 3,21·10
-4

 5,54·10
-5

 

0,6 -3,32·10
-5

 7,77·10
-7

 -4,11·10
-5

 5,39·10
-6

 2,97·10
-4

 3,82·10
-5

 3,21·10
-4

 1,45·10
-5

 

0,7 -3,33·10
-5

 1,66·10
-6

 -4,30·10
-5

 1,62·10
-6

 2,93·10
-4

 3,37·10
-5

 3,54·10
-4

 2,50·10
-5

 
Tabla 8: Variación de la altura de pico (A) y del área de pico (C) con ácido húmico a distintas concentraciones 

de nanopartículas. 

 

Figura 17: Relación entre la altura de pico (A) y la concentración de nanopartículas en suspensión. Cada 

medida es el resultado de tres valores. 
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Figura 18: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

 

En las figuras 17 y 18 se observó que existe una relación lineal entre la concentración de 

nanopartículas en suspensión y la señal obtenida. 

Los límites de detección en el caso de las alturas de pico van de 0 a 0,7 mg·L
-1

 y en el 

caso de las áreas van de 0,4 a 0,7 mg·L
-1

. 

Los límites de detección encontrados fueron de 8.27·10
-6

 A en el caso de las alturas y 

1.60·10
-4

 C en el caso de las áreas. 

3.2.1.5. Comparativa de iones de la disolución, nanopartículas fijadas en la superficie o 

en suspensión 

Comparando las pendientes de las rectas de calibración obtenidas con los distintos iones 

se puede obtener información sobre la interacción de los iones en concentraciones 

similares a las de una muestra natural, con las nanopartículas. 

Ión  

Pendiente 

(altura) 

Pendiente 

(área) 

LD 

(altura) LD (Área) 

Cloruro -1,93·10
-5

 2,87·10
-6

 3,56·10
-6

 3,82·10
-6

 

Sulfatos -1,70·10
-5

 1,02·10
-5

 9,49·10
-6

 2,95·10
-6

 

Carbonatos -9,32·10
-5

 2,81·10
-5

 6,08·10
-6

 3,10·10
-5

 

Mat. Orgánica -2,28·10
-5

 7,69·10
-6

 1,50·10
-5

 1,26·10
-5

 
Tabla 9: pendientes y límites de detección calculados para las nanopartículas fijadas en la superficie 

del electrodo. 

y = 1,95E-04x + 1,83E-04 
R² = 9,13E-01 

y = 1,66E-04x + 2,32E-04 
R² = 7,65E-01 

0,000E+00 

5,000E-05 

1,000E-04 

1,500E-04 

2,000E-04 

2,500E-04 

3,000E-04 

3,500E-04 

4,000E-04 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 

Á
re

a
 (

C
) 

Concentración (mg/L) 



25 
 

En la tabla 9 se puede observar como la pendiente para las alturas de pico es similar 

para cloruros, sulfatos y materia orgánica. Los carbonatos dan lugar a una pendiente 

mayor que en los otros iones. Para el caso de la pendiente en área de pico sí se 

encuentran mayores diferencias entre los valores obtenidos para los distintos iones 

estudiados. Los límites de detección en altura muestran que existen diferencias en la 

materia orgánica con respecto al resto de iones y en área hay diferencias significativas 

entre cloruros/sulfatos y carbonatos/Mat. Orgánica. 

Ión 

Pendiente 

(altura) 

Pendiente 

(área) 

LD 

(altura) LD (Área) 

Cloruro -1,93·10
-5

 2,87·10
-6

 3,56·10
-
6 3,82·10

-6
 

Sulfatos -4,24·10
-5

 5,00·10
-4

 1,17·10
-5

 1,45·10
-4

 

Carbonatos -1,27·10
-5

 1,68·10
-4

 - - 

Mat. Orgánica -6,63·10
-6

 1,95·10
-4

 8,27·10
-6

 1,60·10
-4

 
Tabla 10: pendientes y límites de detección calculados para las nanopartículas en suspensión. 

La tabla 10 muestra una diferencia entre la pendiente calculada para las alturas de la 

señal cuando hay en el medio materia orgánica con respecto al resto de los iones, para el 

caso de las pendientes en áreas la diferencia se encuentra cuando existen cloruros en el 

medio. 

En ambos casos se observa que el área de pico se ve más afectada por el tipo de ión que 

la altura, ya que la forma del pico, anchura y altura, se ve afectada por el ion, como 

puede observarse en las figuras 1 y 2. También es notorio que cuando las nanopartículas 

están fijadas a la superficie del electrodo (figura 1) la influencia está más diferenciada 

que cuando se encuentran en suspensión (figura 2). En este caso los voltagramas de las 

suspensiones con sulfatos, carbonatos y materia orgánica son coincidentes, 

diferenciándose claramente del voltagrama correspondiente a una suspensión con 

cloruros, de pico más estrecho y menor intensidad. 

Para el estudio  de detección de nanopartículas de óxido de cerio (IV) en agua, se utilizó 

la modalidad de nanopartículas fijadas en la superficie del electrodo ya que la relación 

lineal concentración –altura era más amplia y de mejor linealidad. 
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3.2.2 DETECCIÓN DE NANOPARTÍCULAS DE CeO2 EN AGUA MILLIQ. 

Se realizaron voltametrías cíclicas con el fin de detectar nanopartículas de CeO2 en agua 

MilliQ. Se utilizaron dos tipos de nanopartículas: de 10nm de diámetro y de 30nm de 

diámetro. 

Se prepararon suspensiones de nanopartículas de 0.1 a 0.7 mg·L
-1

 en agua MilliQ con 

un  10% de HNO3 0.1M y fueron sonicadas durante 3 minutos antes de ser utilizadas. 

Se pusieron 3 µL de nanopartículas suspendidas en el tipo de agua que se esté 

estudiando, sobre el electrodo de trabajo y se secaron con una corriente de nitrógeno 

gas. Una vez seco se trasladó el electrodo a la celda electroquímica cuyo electrolito 

soporte (HNO3 1M)  había sido desoxigenado con nitrógeno (5 minutos) y se obtuvieron 

los voltagramas. Se realizaron 3 barridos seguido para cada una de las concentraciones. 

Los potenciales utilizados fueron: potencial inicial 1V; potencial del primer vértice -1V; 

potencial del segundo vértice 1,9V. La velocidad de barrido utilizada fue de 50mV/s. 

Electrodo de trabajo GC y electrodo de referencia de Ag/AgCl. 

Se realizaron dos réplicas. 

 Resultados: 

- Nanopartículas de 10nm: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 (A) 
DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área repl. 

1 (C) 
DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 

no se 

observó 

pico 

 

-1,13·10
-5

 8,26·10
-6

 

no se 

observó 

pico 

 

3,34·10
-6

 2,65·10
-6

 

0,1 -2,49·10
-5

 2,57·10
-6

 -8,28·10
-6

 3,37·10
-6

 9,10·10
-6

 1,61·10
-6

 2,81·10
-6

 1,07·10
-6

 

0,2 -1,13·10
-5

 2,63·10
-6

 -1,21·10
-5

 2,28·10
-6

 4,27·10
-6

 6,24·10
-7

 4,12·10
-6

 7,56·10
-7

 

0,3 -1,15·10
-5

 3,39·10
-6

 -9,96·10
-6

 2,41·10
-6

 4,59·10
-6

 9,57·10
-7

 3,20·10
-6

 8,65·10
-7

 

0,4 -9,96·10
-6

 3,66·10
-6

 -8,80·10
-6

 3,85·10
-6

 3,47·10
-6

 1,05·10
-6

 2,87·10
-6

 1,45·10
-6

 

0,5 -3,11·10
-6

 1,38·10
-5

 -1,33·10
-5

 2,41·10
-6

 3,90·10
-6

 1,20·10
-6

 5,00·10
-6

 9,63·10
-7

 

0,6 -9,85·10
-6

 5,10·10
-6

 -2,09·10
-6

 8,31·10
-6

 3,74·10
-6

 2,11·10
-6

 2,24·10
-6

 7,42·10
-7

 

0,7 -1,18·10
-5

 2,62·10
-6

 -1,02·10
-5

 4,18·10
-7

 4,12·10
-6

 7,40·10
-7

 3,61·10
-6

 3,02·10
-7

 
Tabla 11: Variación de la altura de pico (A) y del área de pico (C) de las nanopartículas de CeO2 de 10nm de 

diámetro en agua MilliQ. 
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Figura 19: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 

 

Figura 20: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

En las figuras 19 y 20 se observa una relación lineal entre las concentraciones y las 

señales obtenidas para las nanopartículas de 10nm de diámetro en ambas réplicas. 

El rango lineal va de 0,1 a 0,6 mg·L
-1

tanto para alturas de pico como para áreas. 

Los límites de detección encontrados fueron de 1.31·10
-5

 A en el caso de las alturas y 

3.43·10
-6

 C en el caso de las áreas. 
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- Nanopartículas de 30nm: 

En este caso no se encontró ningún tipo de señal de las nanopartículas, es decir 

no producen oxidación del material del electrodo, por lo que no se pueden 

detectar. La inercia química ya ha sido descrita para nanopartículas de tamaño 

mayor de 20 nm que no reaccionan con agua oxigenada [25]. 

 

3.2.3 DETECCIÓN DE NANOPARTÍCULAS DE CeO2 EN AGUA MINERAL 

NATURAL. 

A continuación se realizaron voltametrías cíclicas con el fin de detectar nanopartículas 

de CeO2 en agua mineral natural. Se utilizaron dos tipos de nanopartículas: de 10nm de 

diámetro y de 30nm de diámetro. 

Se prepararon suspensiones de nanopartículas de 0.1 a 0.7 mg·L
-1 

en agua mineral 

natural (1,1 mg·L
-1

de cloruros, 12 mg·L
-1

de sulfatos, 200,1 mg·L
-1

de carbonatos y 193 

mg·L
-1

de mat. Orgánica) con un  10% de HNO3 0.1M y fueron sonicadas durante 3 

minutos antes de ser utilizadas. 

El procedimiento de trabajo fue el mismo que en el caso anterior. 

Se realizaron dos réplicas de cada uno de los tamaños de nanopartículas. 

 Resultados: 

- Nanopartículas de 10nm: 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 no pico 

 

-1,06·10
-5

 5,31·10
-6

 no pico 

 

4,43·10
-6

 2,28·10
-6

 

0,1 -3,99·10
-6

 2,14·10
-6

 -8,86·10
-6

 3,71·10
-6

 9,60·10
-7

 6,26·10
-7

 3,36·10
-6

 1,60·10
-6

 

0,2 -5,84·10
-6

 2,08·10
-6

 -9,41·10
-6

 3,18·10
-6

 1,62·10
-6

 6,15·10
-7

 3,82·10
-6

 1,92·10
-6

 

0,3 -7,35·10
-6

 6,53·10
-6

 -9,89·10
-6

 2,85·10
-6

 2,17·10
-6

 2,44·10
-6

 4,05·10
-6

 1,89·10
-6

 

0,4 -7,60·10
-6

 2,98·10
-6

 -9,95·10
-6

 2,89·10
-6

 1,94·10
-6

 8,78·10
-7

 4,51·10
-6

 2,06·10
-6

 

0,5 -8,71·10
-6

 2,87·10
-6

 -1,04·10
-5

 2,50·10
-6

 2,48·10
-6

 8,81·10
-7

 4,71·10
-6

 1,98·10
-6

 

0,6 -8,51·10
-6

 3,69·10
-6

 -4,08·10
-6

 9,83·10
-6

 2,28·10
-6

 1,14·10
-6

 3,77·10
-6

 1,23·10
-6

 

0,7 -8,69·10
-6

 2,45·10
-6

 -9,26·10
-6

 1,60·10
-6

 2,36·10
-6

 7,77·10
-7

 4,29·10
-6

 1,35·10
-6

 
Tabla 12: Variación de la altura de pico (A) y del área de pico (C) de las nanopartículas de CeO2 de 10nm de 

diámetro en agua mineral natural. 
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Figura  21: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 

 

 

Figura 22: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

 

En las figuras 21 y 22 se observa una relación lineal entre las concentraciones y las 

señales obtenidas para las nanopartículas de 10nm de diámetro en ambas réplicas. 

El rango lineal va de 0,1 a 0,5 mg·L
-1

tanto para alturas de pico como para áreas. 

Los límites de detección encontrados fueron de 1.08·10
-5

 A en el caso de las alturas y 

4.26·10
-6

 C en el caso de las áreas. 
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- Nanopartículas de 30nm: 

En este caso la inercia química a reaccionar oxidando la superficie del electrodo fue 

menor debido a la presencia de iones que como se  vio en el apartado 3.2.1, afectan a 

su capacidad de interaccionar con el soporte carbonáceo del electrodo. 

Concentración 

(mg·L
-1

) 

Altura 

repl. 1 

(A) 

DSR 

altura 1 

Altura 

repl. 2 

(A) 

DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -1,02·10
-5

 5,40·10
-7

 -1,78·10
-6

 1,28·10
-6

 1,95·10
-6

 2,30·10
-7

 4,58·10
-7

 4,03·10
-7

 

0,1 -6,81·10
-6

 1,05·10
-6

 -2,89·10
-6

 1,84·10
-6

 1,76·10
-6

 2,13·10
-7

 1,00·10
-6

 8,65·10
-7

 

0,2 -5,06·10
-6

 6,23·10
-7

 -2,82·10
-6

 1,07·10
-6

 2,13·10
-6

 3,95·10
-7

 9,06·10
-7

 3,55·10
-7

 

0,3 -4,55·10
-6

 6,30·10
-7

 -2,71·10
-6

 5,96·10
-7

 2,15·10
-6

 6,39·10
-7

 8,64·10
-7

 1,46·10
-7

 

0,4 -3,41·10
-6

 1,48·10
-6

 -3,12·10
-6

 7,73·10
-7

 1,46·10
-6

 1,09·10
-6

 9,79·10
-7

 2,99·10
-7

 

0,5 -3,79·10
-6

 2,03·10
-7

 -2,84·10
-6

 1,15·10
-6

 1,64·10
-6

 2,04·10
-7

 7,14·10
-7

 4,17·10
-7

 

0,6 -3,15·10
-6

 6,15·10
-7

 -3,06·10
-6

 6,27·10
-7

 1,32·10
-6

 5,22·10
-7

 8,49·10
-7

 1,99·10
-7

 

0,7 -4,05·10
-6

 8,94·10
-7

 -3,51·10
-6

 7,61·10
-7

 1,67·10
-6

 4,37·10
-7

 1,15·10
-6

 4,59·10
-7

 
Tabla 93: Variación de la altura de pico (A) y del área de pico (C) de las nanopartículas de CeO2 de 30nm de 

diámetro en agua mineral natural. 

 

 

Figura 23: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 
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Figura 24: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

En las figuras 23 y 24 se observa una relación lineal entre las concentraciones y las 

señales obtenidas para las nanopartículas de 30nm de diámetro en ambas réplicas. 

El rango lineal va de 0 a 0,4 mg·L
-1

para alturas de pico y de 0,1 a 0,7 para áreas de pico. 

Los límites de detección encontrados fueron de 2.65·10
-6

 A en el caso de las alturas y 

1.29·10
-6

 C en el caso de las áreas. 

 

3.2.4 DETECCIÓN DE NANOPARTÍCULAS DE CeO2 EN AGUA DE BOCA 

SINTÉTICA. 

A continuación se realizaron voltametrías cíclicas con el fin de detectar nanopartículas 

de CeO2 en agua sintética. Se utilizaron dos tipos de nanopartículas: de 10nm de 

diámetro y de 30nm de diámetro. 

Se prepararon suspensiones de nanopartículas de 0.1 a 0.7 mg·L
-1

en agua sintética que 

contenía NaCl (152 mg·L
-1

), Na2SO4 (209 mg·L
-1

), Na2CO3 (352 mg·L
-1

) y ácido 

húmico (1,8 mg·L
-1

), se le añadió  un  10% de HNO3 0.1M y fueron sonicadas durante 3 

minutos antes de ser utilizadas. 

El procedimiento de trabajo fue el mismo que en los anteriores casos. 
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 Resultados: 

- Nanopartículas de 10nm: 

 

Tabla 14: Variación de la altura de pico (A) y del área de pico (C) de las nanopartículas de CeO2 de 10nm de 

diámetro en agua sintética. 

 

Figura 25: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 
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DSR 

altura 2 

Área 

repl. 1 

(C) 

DSR 

Área 1 

Área 

repl. 2 

(C) 

DSR 

Área 2 

0 -5,41·10
-6

 1,46·10
-6

 -4,31·10
-6

 2,75·10
-6

 1,68·10
-6

 6,60·10
-7

 1,31·10
-6

 9,91·10
-7

 

0,1 -6,12·10
-6

 1,04·10
-6

 -6,09·10
-6

 9,02·10
-7

 1,90·10
-6

 5,14·10
-7

 1,83·10
-6

 6,01·10
-7

 

0,2 -3,20·10
-6

 8,56·10
-6

 -6,51·10
-6

 1,06·10
-6

 2,70·10
-6

 7,31·10
-7

 1,85·10
-6

 3,99·10
-7

 

0,3 -7,04·10
-6

 4,36·10
-7

 -6,38·10
-6

 1,37·10
-6

 2,32·10
-6

 1,87·10
-7

 1,84·10
-6

 7,14·10
-7

 

0,4 -8,10·10
-6

 1,35·10
-6

 -8,48·10
-6

 1,37·10
-6

 2,93·10
-6

 1,04·10
-6

 1,88·10
-6

 6,00·10
-7

 

0,5 -8,24·10
-6

 1,62·10
-6

 -7,24·10
-6

 7,97·10
-7

 2,67·10
-6

 7,94·10
-7

 2,17·10
-6

 5,74·10
-7

 

0,6 -8,71·10
-6

 6,17·10
-7

 -6,66·10
-6

 6,47·10
-7

 2,98·10
-6

 1,12·10
-7

 1,75·10
-6

 3,03·10
-7

 

0,7 -9,34·10
-6

 1,68·10
-7

 -7,22·10
-6

 7,93·10
-7

 3,09·10
-6

 4,00·10
-7

 1,83·10
-6

 2,46·10
-7
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Figura 26: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

Como se observó en las figuras 25 y 26, la relación lineal que existe entre la 

concentración de nanopartículas y la señal obtenida es muy buena tanto para el caso de 

las alturas como para las áreas de pico. 

El rango lineal encontrado fue de 0 a 0,7 mg·L
-1

en ambos casos. 

Los límites de detección encontrados fueron de 1.56·10
-6

 A en el caso de las alturas y 

5.54·10
-7

 C en el caso de las áreas. 

- Nanopartículas de 30nm: 

En este caso solamente se hizo una réplica de resultados. 

Concentración 

(mg·L
-1

) 

Altura 

(A) 

DSR 

altura Área (C) DSR Área 

0 -7,55·10
-6

 3,75·10
-6

 2,88·10
-6

 1,73·10
-6

 

0,1 -8,82·10
-6

 2,35·10
-6

 2,95·10
-6

 1,19·10
-6

 

0,2 -7,26·10
-6

 9,42·10
-7

 2,03·10
-6

 4,57·10
-7

 

0,3 -7,37·10
-6

 1,25·10
-6

 2,03·10
-6

 5,13·10
-7

 

0,4 -6,47·10
-6

 9,52·10
-7

 1,52·10
-6

 3,73·10
-7

 

0,5 -5,25·10
-6

 6,29·10
-7

 1,16·10
-6

 1,94·10
-7

 

0,6 -5,43·10
-6

 1,64·10
-6

 1,16·10
-6

 6,53·10
-7

 

0,7 -5,04·10
-6

 2,76·10
-6

 1,03·10
-6

 8,64·10
-7

 
Tabla 15: Variación de la altura de pico (A) y del área de pico (C) de las nanopartículas de CeO2 de 10nm de 

diámetro en agua sintética. 
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Figura 27: Relación entre la altura de pico (A) y la concentración de nanopartículas depositadas en la 

superficie del electrodo. Cada medida es el resultado de tres valores. 

 

 

Figura 28: Relación entre el área de pico (C) y la concentración de nanopartículas depositadas en la superficie 

del electrodo. Cada medida es el resultado de tres valores. 

Como se pudo observar en las figuras 27 y 28 también se encontró una buena relación 

lineal entre la concentración de nanopartículas y las señales obtenidas, siendo los rangos 

lineales de 0,1 a 0,5 mg·L
-1

. 

Los límites de detección encontrados fueron de 5.36·10
-6

 A en el caso de las alturas y 

2.24·10
-6

 C en el caso de las áreas. 
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3.2.4.1 Comparación de resultados. 

Tipo de agua 

Pendiente 

(altura) Pendiente (área) LD (altura) LD (área) 

MilliQ 5,25·10
-5

 -1,93·10
-5

 1,31·10
-5

 3,43·10
-6

 

Mineral natural -3,86·10
-6

 3,39·10
-6

 1,08·10
-5

 4,26·10
-6

 

De boca sintética -5,52·10
-6

 2,05·10
-6

 1,56·10
-6

 5,54·10
-7

 
Tabla 16: pendientes y límites de detección calculados para las nanopartículas de 10nm en distintas aguas. 

En la tabla 16 se observa una diferencia significativa en las pendientes calculadas tanto 

para alturas como para áreas de pico en el caso del agua milliQ. Para los límites de 

detección la diferencia observada se produce en el agua de boca sintética. La diferencia 

está ocasionada por los contenidos iónicos de las disoluciones. 

 

Tipo de agua Pendiente (altura) Pendiente (área) LD (altura) LD (área) 

MilliQ - - - - 

Mineral natural 1,59·10
-5

 2,19·10
-6

 2,65·10
-6

 1,29·10
-6

 

De boca sintética 8,74·10
-6

 -4,55·10
-6

 5,36·10
-6

 2,24·10
-6

 
Tabla 17: pendientes y límites de detección calculados para las nanopartículas de 30nm en distintas aguas. 

La tabla 17 muestra gran diferencia entre las pendientes en áreas de pico. 

 

 

Figura 29: Voltagramas cíclicos obtenidos con distintas aguas. Se utilizó una concentración de NP (10nm) de 

0.5 mg/L depositadas en la superficie del electrodo. 
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En la figura 29 se compran los voltagramas cíclicos de los tres tipos de aguas 

seleccionados con una misma concentración de nanopartículas de óxido de cerio fijada 

sobre la superficie del electrodo. Se puede observar que la que presenta una señal más 

diferente al resto es en la que se ha utilizado agua MilliQ, esto se debe a la escasa 

presencia de iones que contiene. También se observa que las pendientes dependen 

también del tamaño de la nanopartícula, ya que la reactividad de la misma está 

relacionada con el tamaño [25]. 

3.3 DETECCIÓN DE NANOPARTÍCULAS MEDIANTE COLISIÓN DE 

PARTÍCULAS 

La técnica de colisión de partículas está basada en la medición de la corriente Faradaica 

asociada a la reacción que tiene lugar en el electrodo cuando una nanopartícula choca 

con la superficie de un microelectrodo. Cada colisión se observa como una señal 

transitoria con una duración aproximada de milisegundos, si la nanopartícula no se 

adhiere al electrodo, se observa un pico cuya altura depende del tamaño de la 

nanopartícula. 

La carga de cada impacto, Q, está relacionada con el número de átomos que forman la 

nanopartícula, N, mediante la carga electrónica según: Q=eN. 

Puede realizarse una aproximación esférica para la nanopartícula (radio R) y se puede 

ver que la carga Q será:  

 

Q=
      

   
 

 

Donde F es la constante de Faraday, ρ es la densidad de la nanopartícula (que se supone 

la del material a granel), y Ar la relación de masa atómica [26]. 

Para llevar a cabo la experiencia, se fabricó un microelectrodo de microfibra de carbono 

que se utilizó como electrodo de trabajo, el electrodo de referencia utilizado fue de 

Ag/AgCl y el auxiliar un hilo de Pt. La técnica electroanalítica utilizada fue 

cronoamperometría, con un tiempo de medida de 2 ms y un tiempo de experiencia de 10 

s. 

Para fabricar el microelectrodo de fibra de carbono se utilizó una fibra de 7m de 

diámetro que se soldó con un pegamento conductor de plata a un hilo de plata de 

0,25mm de diámetro.  
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Los cronoamperogramas obtenidos tenían que ser tratados con un filtro de transformada 

de Fourier para eliminar el ruido de origen eléctrico que aparece a frecuencias múltiplo 

de 50 Hz, en este caso 50 y 150 Hz. Una vez filtrada la señal, se integraron las señales 

observadas y se obtuvo el radio de la nanopartícula que colisionó con el electrodo. 

 

Primero se procedió a evaluar el ruido, para ello se prepararon disoluciones de HCl 1M, 

donde se sumergieron los electrodos y se realizaron cronoamperogramas a distintos 

potenciales (de 0 a -0,5V) obteniendo los resultados de la tabla 18:  

Potencial LD 

Radio NP 

(nm) 

0 3,90·10
-9

 112,67 

-0,1 3,91·10
-9

 102,80 

-0,2 3,37·10
-9

 97,87 

-0,3 4,00·10
-9

 103,33 

-0,4 3,97·10
-9

 103,30 

-0,5 4,01·10
-9

 103,47 
 

Tabla 18: Límites de detección y radios mínimos detectables. 

Como consecuencia de los resultados presentados en la tabla 18, se puede decir que no 

va a ser posible detectar nanopartículas menores de 100 nm de radio, por lo tanto las 

nanoparticulas que se han usado en este estudio no darán lugar a choques que puedan 

ser observados. Sí que podrán observarse agregaciones de las mimas que tengan un 

radio mayor o igual a este valor. 

Las causas de estos elevados valores hay que buscarlas en el diseño del electrodo 

fundamentalmente ya que con microelectrodos de disco, los valores que se encontraron 

fueron menores de 27 nm [27]. 

A continuación se prepararon suspensiones que contenían HCl 1M y nanopartículas de 

óxido de cerio (IV), se realizaron voltagramas a distintos potenciales (de 0 a -0,5V). En 

la tabla 19 se muestran algunos de los resultados obtenidos: 

Potencial 

Radio NP 

(nm) 

-0,3 142,00 

-0,4 411,6 

-0,4 284,8 

-0,5 187,90 

-0,5 206,00 
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-0,5 225,60 

-0,5 119,30 

-0,5 176,3 

-0,5 189,6 

-0,5 164,1 

-0,5 198,7 

-0,5 185,3 

-0,5 150,8 
 Tabla 19: Radio de NP calculado a partir de los choques detectados en los distintos voltagramas. 

En la tabla 19 se observa que el número de impactos aumenta cuando disminuye el 

potencial aplicado, uno para –0,3V, dos para -0,4 V y finalmente nueve para -0,5V. 

Los radios medidos son mucho mayores que los radios nominales de las nanopartículas, 

esto es debido a los elevados límites de detección calculados anteriormente. Este hecho 

indica que los choques observados corresponden a agregaciones de las nanoparatículas, 

por lo que esta técnica sería útil para detectar aglomeraciones/agregaciones en un medio 

en que se quisiesen utilizar para un determinado estudio. 

 

              Figura 30: Cronoamperograma a -0,3V de una suspensión de nanopartículas de 10nm. 

4. CONCLUSIONES 

Las conclusiones del presente trabajo pueden resumirse en los siguientes puntos: 

1. Es posible detectar electroquímicamente NP de óxido de Cerio (IV) basándose 

en la oxidación que producen sobre el grafito del electrodo de trabajo. El 

aumento de la intensidad del pico de reducción de los grupos funcionales de 
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oxidación del grafito es proporcional a la cantidad de nanoparatículas. La 

posición, anchura y altura de este pico depende de los iones presentes en el 

medio 

2. Del estudio de la influencia de los iones del medio en la detección de 

nanopartículas de CeO2, se puede concluir que para las nanopartículas fijadas en 

la superficie del electrodo los iones que afectan más a las señales obtenidas son 

los carbonatos y la materia orgánica, mientras que cuando están en suspensión, 

los iones que influyen mayoritariamente en la medida son los que provienen de 

la materia orgánica debido a su adsorción sobre la superficie de la nanopartícula 

lo que dificulta su interacción con el electrodo. 

3. La detección de nanopartículas en distintas aguas muestra que la señal que se 

obtiene con las nanopartículas en agua MilliQ es diferente al resto de las aguas, 

esto es debido a la escasa presencia de iones en el medio. También se observa 

que el tamaño de la nanopartícula influye en la respuesta obtenida ya que las 

pendientes de las adiciones estándar para la misma muestra con distinto tamaño 

de nanopartícula son diferentes. 

4. De la detección de nanopartículas mediante colisión de partículas se observa 

que: 

-  No es posible detectar nanopartículas con un radio menor a 100nm 

debido al alto ruido de fondo, probablemente debido a la construcción 

del electrodo. El uso de otros adhesivos más conductores y mejorar el 

procedimiento de sellado de la punta de la micropipeta, ayudarían a 

mejorar estos límites. 

- El número de impactos que se producen aumenta cuando disminuye 

el potencial aplicado. 

- Al realizar la detección de nanopartículas de CeO2 se observa que los 

radios medidos son mucho mayores que los radios nominales de las 

nanopartículas, lo que indica que existen 

aglomeraciones/agregaciones de las nanopartículas, por lo que esta 

técnica sería útil para detectar aglomeraciones/agregaciones. 
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