

Trabajo fin de máster

Máster en Ingeniería de Sistemas e Informática

Co-diseño Hardware/Software

para Criptografía de Curva Elíptica

sobre plataformas en chip

heterogéneas

Director: Jesús Javier Resano Ezcaray

Autor: David Ken Vallejo Miguel

Departamento de Informática e

Ingeniería de Sistemas

Grupo de Arquitectura

de Computadores de Zaragoza

Escuela de Ingeniería y

Arquitectura

Curso 2015-2016

Diciembre 2015
Programa oficial de posgrado

en Ingeniería Informática

Grupo de Arquitectura de

Computadores de Zaragoza

2

Co-diseño Hardware/Software para Criptografía de Curva
Elíptica sobre plataformas en chip heterogéneas

Resumen

Recientemente ha aparecido en el mercado un nuevo tipo de sistemas en chip

heterogéneos que incluyen un multiprocesador basado en procesadores ARM y una FPGA

(hardware programable al que se pueden asignar aceleradores en tiempo de ejecución). El

objetivo de este trabajo ha sido el analizar cómo sacar partido a estas plataformas en el campo

de la criptografía asimétrica de curva elíptica analizando las distintas posibilidades de codiseño

hardware/software y sus compromisos entre coste y eficiencia.

Se han utilizado dos de los algoritmos criptográficos más representativos y eficientes

en entornos embebidos: la multiplicación de Montgomery sobre coordenadas proyectivas y la

multiplicación de Frobenius sobre curvas Koblitz. Posteriormente se ha analizado el software

para determinar las partes más adecuadas para ser sustituidas por un acelerador hardware

implementado en la FPGA. Resultando las operaciones más costosas las de aritmética sobre

cuerpos finitos (Multiplicación, división e inversión).

Se ha demostrado posteriormente la escalabilidad de nuestro desarrollo

implementando los algoritmos tanto sobre cuerpos GF(2163) como GF(2233). Cuerpos

recomendados por el NIST (National Institute of Standards an Technology) [11,12] y el SECG [6]

para aplicaciones en criptosistemas de curva elíptica.

Se han desarrollado los aceleradores hardware en la parte de la lógica programable

proporcionada por la plataforma en forma de dispositivos con registros accesibles y

direccionables desde el software. La aritmética modular en hardware es de sobra conocida y

en este trabajo se han desarrollado e integrado componentes ampliamente utilizados.

Se han conseguido aceleraciones muy importantes, mientas que el consumo medio se

ha mantenido, incluso disminuyéndose ligeramente, con lo que el ahorro energético se

multiplica. Siendo un aspecto crítico en los dispositivos embebidos y con restricciones tales

como tarjetas inteligentes y dispositivos móviles.

3

4

Índice

1. Introducción .. 6

1.1 El chip, arquitectura heterogénea ... 6

1.2 Caso de uso. La criptografía asimétrica implementada con Curvas Elípticas ... 8

1.3 Trabajo previo y relacionado ... 8

1.4 Objetivos de este trabajo .. 10

2. Aplicación software ... 10

2.1 Multiplicación escalar de puntos en curvas elípticas 10

2.2 Montgomery en coordenadas proyectivas ... 11

2.3 Curvas Koblitz y mapa de Frobenius ... 13

2.4 Profiling. Análisis del software .. 15

3. Desarrollo Hardware ... 17

3.1 Interfaz AXI .. 17

3.2 Multiplicador de polinomios ... 18

3.2.1 Interfaz AXI del Multiplicador .. 19

3.2.2 Unidad de control del Multiplicador .. 20

3.3 Cuadrado de polinomios ... 21

3.4 Divisor de polinomios .. 22

4. Resultados ... 23

5. Conclusiones .. 26

5.1 Resumen del trabajo realizado .. 26

5.2 Conclusiones sobre el trabajo desarrollado .. 26

5.3 Grado de consecución de objetivos .. 27

6. Trabajo futuro ... 27

7. Referencias .. 28

8. Anexos. Conceptos y base matemática ... 30

8.1 Introducción a cuerpos finitos... 30

8.1.1 El Cuerpo finito Fp o GF(p) .. 30

8.1.2 El Cuerpo finito GF(2m) ... 30

8.2 Introducción a las curvas elípticas sobre cuerpos finitos 31

9. Anexos. Referencias .. 33

5

Índice de algoritmos
Algoritmo 1. Método Binario Izquierda-Derecha para la multiplicación escalar [13]…11

Algoritmo 2. Multiplicación de puntos de Montgomery de López-Dahab sobre GF(2m)

[13].…….……. 13

Algoritmo 3: Multiplicación de puntos Koblitz sobre GF(2m
) [13]……………………………….14

Índice de figuras
Fig. 1. Vista superior de la ZedBoard…………………………………………………………………………… 7

Fig. 2. Relación entre el procesador, hardware y arquitectura Zynq……………………………. 7

Fig. 3. Distribución del tiempo de ejecución por funciones……………………………………….. 16

Fig. 4. Interfaz AXI del multiplicador…………………………………………………………………………..19

Fig. 5. Sección del esquema RTL del multiplicador………………………………………………………20

Fig. 6. Máquina de estados del multiplicador……………………………………………………….…… 21

Índice de tablas
Tabla1. Tiempos de multiplicación escalar en ECC en distintas plataformas…………………9

Tabla 2. Profiling del software…………………………………………………………………………………… 16

Tabla 3. Implementación sobre FPGA de multiplicación en GF(2M)…………………………….18

Tabla 4. Implementaciones sobre FPGA de squarer en GF(2m)………………………………….. 21

Tabla 5. Implementaciones sobre FPGA de la división en GF(2m)……………………………… 23

Tabla 6. Comparación del consumo de potencia en los 3 desarrollos…………………………24

Tabla 7. Recursos de implementación de las operaciones hardware………………………… 24

Tabla 8. Comparación de resultados de las distintas versiones desarrolladas…………….25

Tabla 9. Comparación de resultados con otras arquitecturas…………………………………….25

6

1. Introducción

El objetivo de este trabajo es analizar cómo sacar partido a las nuevas plataformas

heterogéneas, que combinan en un solo chip un sistema basado en procesadores ARM (como

el que se puede encontrar en la mayor parte de dispositivos móviles o empotrados de altas

prestaciones) con hardware reprogramable (FPGA), en el campo de la criptografía asimétrica

de curva elíptica analizando las distintas posibilidades de codiseño hardware/software y sus

compromisos entre coste y eficiencia.

La criptografía asimétrica de curvas elípticas constituye un nuevo caso de uso de estas

plataformas en el contexto de nuestro grupo de investigación, ya que hasta la fecha se había

trabajado más en la línea de la inteligencia artificial y los juegos como el Reversi [9]. Es un caso

de uso de gran interés y aplicación debido a la ubiquidad de los dispositivos móviles y al

incremento de la demanda de las comunicaciones y de la seguridad.

En líneas generales, partiremos de la implementación software de algoritmos

representativos que usan distintos enfoques para aumentar la eficiencia, a continuación se

analizará el software para determinar las partes más adecuadas para ser sustituidas por un

acelerador hardware y procederemos a implementarlas en la FPGA. Por último se tomarán

medidas y se compararán los distintos desarrollos entre sí y desarrollos publicados por otros

autores.

El resto de la memoria sigue la estructura de contenidos que se indica a continuación:

La sección 2 describe los algoritmos software implementados en el procesador y su

análisis.

La sección 3 detalla la implementación hardware de las diferentes operaciones que se

ha llevado a cabo.

La sección 4 muestra los resultados en términos de rendimiento y consumo.

La sección 5 expone las conclusiones obtenidas a raíz del trabajo realizado.

La sección 6 contempla las posibles líneas de trabajo futuro.

La sección 7 contiene las referencias más relevantes utilizadas en este trabajo.

Finalmente, el anexo I contiene el un resumen de los conceptos matemáticos

necesarios para el desarrollo.

1.1 El chip, arquitectura heterogénea

La plataforma sobre la que se realiza el trabajo es la ZedBoard (figura 1), una placa

heterogénea basada en el sistema en chip Zynq completamente programable (All-

7

programmable SoC [10]) de la empresa Xilinx compuesta principalmente por un procesador

estándar ARM Cortex-A9 dual-core [1] - procesador a nivel de aplicaciones capaz de ejecutar

un sistema operativo completo como Linux- y lógica programable basada en las FPGAs Artix®-

7 y Kintex®-7 [5] y [7].

Para la interconexión de ambas partes se cuenta con un interfaz AXI que permite

aumentar el ancho de banda con conexiones de baja latencia [8] (figura 2). Esta organización

da lugar a un sistema que permite aprovechar al máximo la especialización de las dos partes

sin pagar un precio muy alto por la comunicación (overhead).

Una FPGA (Field ProgrammableGateArray) es un circuito integrado que contiene

bloques de lógica, elementos de memoria e interconexiones, todos ellos programables, así

como bloques específicos de E/S. La configuración de la FPGA mediante la interconexión de los

Fig. 1. Vista superior de la ZedBoard

Fig. 2. Relación entre el procesador, hardware y arquitectura Zynq

8

bloques lógicos y la funcionalidad de los mismos, permite generar el sistema lógico deseado.

Esta configuración se puede realizar tantas veces como se desee, incluso con el sistema

funcionando, por lo que los mismos recursos hardware pueden utilizarse para tareas distintas

según sean las necesidades del sistema. Debido a su flexibilidad las FPGAs no son tan eficientes

como los circuito integrado para aplicaciones específicas (o ASICs, por sus siglas en inglés),

pero a cambio presentan menores tiempos de desarrollo y menores costes de fabricación para

tiradas bajas o medias.

1.2 Caso de uso. La criptografía asimétrica implementada con Curvas
Elípticas

En 1985, Miller [23] y Koblitz [22], propusieron independientemente un criptosistema

de clave pública análogo a los esquemas de ElGamal [24] en el que, el grupo multiplicativo de

enteros módulo p, denotado por Zp
*, se sustituye por el grupo de puntos de una curva elíptica

definida sobre un cuerpo finito. El mejor algoritmo conocido para resolver el problema

matemático subyacente es computacionalmente muy difícil, el problema del logaritmo

discreto de curva elíptica (ECDLP de sus siglas en inglés), requiere tiempo totalmente

exponencial. Mientras que los mejores algoritmos matemáticos conocidos para resolver los

problemas subyacentes en RSA (factorización de enteros) y DSA (el logaritmo discreto) toman

tiempo sub-exponencial. Por tanto los parámetros son significativamente más pequeños en

criptografía de curva elíptica (ECC) que en otros sistemas, como RSA y DSA. Por ejemplo, una

clave ECC de 163 bits tiene un nivel de seguridad comparable al RSA y DSA con módulos de

1024 bits. Esto quiere decir que mediante el uso de ECC se puede alcanzar el mismo nivel de

seguridad con menor potencia de procesamiento, espacio de almacenamiento, ancho de

banda y energía eléctrica, lo cual hace especialmente interesantes estos criptosistemas para

aplicaciones en dispositivos con restricciones tales como tarjetas inteligentes, teléfonos y

dispositivos móviles.

El rendimiento de ECC depende principalmente de la eficiencia de las operaciones

sobre cuerpos finitos y de la definición de algoritmos rápidos para multiplicaciones escalares

elípticas (apartado 2). La selección de los cuerpos finitos o las curvas subyacentes también

puede incrementar el rendimiento (anexos).

1.3 Trabajo previo y relacionado

Existen numerosos trabajos en el campo de la criptografía de curva elíptica (ECC de sus

siglas en inglés) tanto desarrollos en plataformas ASIC, como en plataformas reprogramables o

FPGAs. Los desarrollos comparten la filosofía de la transferencia de toda la responsabilidad de

las operaciones al hardware. En la tabla comparamos algunas de estas implementaciones de

ECC. En [15] se presenta una arquitectura para ECC sobre cuerpos binarios, escalable en área y

velocidad y adaptable para distintas curvas y cuerpos. Una arquitectura que consta de 3

componentes: Controlador principal, Unidad Aritmética (UA) y el Controlador de la UA.

Implementan el algoritmo de Montgomery en coordenadas proyectivas (uno de los más

9

eficientes y más utilizados, que nosotros empleamos también en este trabajo). Consiguen

realizar la multiplicación escalar en GF(2167) en 0,21 ms.

En [11] también presentan un acelerador hardware para ECC en cuerpos binarios, escalable

hasta polinomios de grado m=255, con los principales tipos de curvas cableadas y especial

atención al multiplicador (con ejecución paralela y separación de las rutas de control y datos)

consiguen una multiplicación en GF(2163) de solo 0,14 ms.

plataforma nombre Cuerpo y método de multiplicación tm [ms]

FPGA

Xilinx XCV400E
@76.7MHz [15]

GF(2167) Montgomery (Digit Size
D=16)

0.21

Xilinx XCV2000E-FG680-7
@66.4MHz [18]

GF(2163) Montgomery 0.14

ASIC

Coprocessor VLSI
@40MHz [19]

GF(2155) 3.90

CE71 0,25¹m 165k gates
@66MHz [20]

GF(2163)
Random: modified SSM multiplier
Koblitz: modified SSM multiplier

1.10
0.65

En artículos más recientes, se usa la técnica del codiseño hardware-software (HSC de

sus siglas en inglés) como en [16 y 17]. Con esta aproximación se reduce la complejidad del

hardware eliminando mucha lógica de control, disminuyendo el tiempo de desarrollo y

reduciendo también el área y coste. En [16] presentan una plataforma parecida a la nuestra

compuesta por un procesador software PicoBlaze y una FPGA de Xilinx. Su arquitectura trabaja

con distintas tamaños de palabra (8-bit, 16-bit y 32-bit) en la ruta de datos y es escalable tanto

en software como en hardware, siendo capaz de trabajar con distintos cuerpos de polinomios.

Pero, aunque su control reside en el procesador software PicoBlaze, su aproximación

implementa un segundo procesador ECC implementado en la FPGA que contiene memoria,

una ALU y multiplexores). La única diferencia entre las aproximaciones de [16] y [17] son el

tipo de curvas y la implementación elegida. En el primero usan Montgomery con coordenadas

proyectivas y en el segundo curvas Koblitz con la multiplicación o mapa de Frobenius. Ambos

algoritmos se han usado en este desarrollo y pueden consultarse en la sección 2 y en los

Anexos. En la tabla 9 se pueden ver los resultados de estos artículos junto con otros

arquitecturas, todos con anchura de 32 bits, tamaño de palabra utilizado en este trabajo. Otro

trabajo más reciente todavía es el [21] en el cual desarrollan un procesador ECC completo que

implementa el algoritmo de multiplicación Montgomery López-Dahab. Esta arquitectura es

completamente escalable y presenta unos resultados solo por debajo de [18] que no tiene la

característica de escalabilidad.

Estos trabajos previos demuestran el interés por optimizar las computaciones con

curvas elípticas utilizando FPGAs. Consideramos que nuestro trabajo complementa a estos

trabajos previos al estudiar las posibilidades de codiseño con curvas elípticas en una

arquitectura nueva que ha tenido una enorme acogida tanto en industria como en

investigación.

Tabla1. Tiempos de multiplicación escalar en ECC en distintas plataformas

10

1.4 Objetivos de este trabajo

El objetivo principal es estudiar las posibilidades que ofrece el codiseño hardware

software en el campo de la criptografía elíptica al utilizar las nuevas plataformas en chip

heterogéneas ARM/FPGA. Para ello:

• Se han identificado los algoritmos más representativos

• Se ha implementado en C y se ha realizado un análisis (profiling) de la demanda

computacional de cada uno de sus componentes

• Se han seleccionado las funcionalidades más críticas y se han implementado tres

aceleradores hardware de forma que el procesador puede solicitar a los aceleradores

que realicen un cálculo dado haciendo una llamada a una función.

• Se han analizado los resultados obtenidos evaluando las ganancias derivadas de la

inclusión de estos aceleradores

2. Aplicación software

En esta sección se van a describir los algoritmos utilizados y su implementación. En el

primer apartado se va a describir la operación de multiplicación de puntos de la curva en la

cual radica la seguridad criptográfica. En el segundo y tercer apartado se describen los

algoritmos utilizados en este trabajo y en el último apartado se presenta el análisis del

comportamiento del software usado para determinar las funciones candidatas a ser aceleradas

en el hardware de la FPGA.

2.1 Multiplicación escalar de puntos en curvas elípticas

La multiplicación de puntos de la curva constituye la operación básica de la criptografía

de curva elíptica (ECC en inglés) y en la cual radica la seguridad criptográfica, ya que la

operación inversa, dados el punto resultado y el punto usado como generador, obtener el

número usado como operando de la multiplicación es computacionalmente inviable. Es decir

dados M = k · P, con M y P puntos pertenecientes a la curva y k un número natural, a partir de

M y P es muy difícil la obtención de k.

Las operaciones definidas sobre el cuerpo que forman los puntos de la curva son la

suma de puntos (S = Q + P) y el duplicado de un punto (D = Q + Q = 2·Q) estas operaciones se

definen de manera sencilla geométricamente (ver Anexo).

Básicamente la operación de multiplicación se define como k sumas de puntos:

kP= P + P + . . . + P (k veces) ∀k > 0 and 0·P = ∞

11

Asumiendo que el número de puntos de la curva (#E(L)) elegida pueda ser factorizado

como #E(L) = nh. Siendo n primo y h (el cofactor) pequeño, para que n sea aproximadamente

igual al orden del cuerpo (número de elementos).

Algoritmo básico. Sumar y duplicar

Dada la representación binaria de k (kt − 1, kt − 2, . . . , k0), es decir

k= kt-1 · 2
t -1

+ kt-2 · 2
t-2

+ . . . + k0 · 2
0cont ≅ log2n ≅ log2q

De esta manera, la multiplicación k·P puede ser obtenida según el esquema:

K·P = (. . . 2(2(2∞ + kt- 1P) + kt-2P) + . . .) + k0P

Algoritmo 1 Método Binario Izquierda-Derecha para la multiplicación escalar [13].

INPUT: k = (kt-1, …, k1, k0)2, P = (x, y) ∈ E(F2
m

).

OUTPUT: kP.

1: Q ←O. - - Point At Infinite

2: fori= m -1 downto 0 do

3: Q ←2Q.

4: ifki= 1 then

5: Q ←Q + P.

6: end if

7: end for

8: returnQ.

El algoritmo consiste en t operaciones de duplicar punto y como mucho t operaciones

de suma de puntos. El orden de magnitud de t es log2q = mlog2psiL = GF(pm). Ambas

operaciones son complejas e incluyen divisiones. Por eso se desarrollan y se han elegido para

este trabajo, los métodos descritos a continuación. Cada coordenada pertenece a la extensión

del cuerpo finito, es decir a polinomios cuyos coeficientes pertenecen al cuerpo (Ver anexos).

2.2 Montgomery en coordenadas proyectivas

La representación estándar de los puntos de la curva se realiza en dos dimensiones L2,

siendo estas las denominadas coordenadas afines. Se pueden transformar estas coordenadas a

tres dimensiones, llamadas coordenadas proyectivas. Dados dos naturales c y d, un

subconjunto de L3 puede ser asociado para todo elemento (x, y) de L2 [14]:

(x, y) → {(X, Y, Z) | Z ≠ 0, X = xZc, Y = yZd}

En el sentido opuesto, un elemento (X, Y, Z) de L3, con Z ≠ 0, corresponde con el

elemento (x, y) de L2 y es definido por

12

x = X/Zc y = Y/Zd

Esta transformación establece una relación de equivalencia en L3. En la que dos puntos

pertenecen a la misma clase si se corresponden con el mismo punto en L2. Esta clase de

equivalencia es el denominado punto proyectivo.

Se escoge la tercera coordenada de manera que nos permite evitar las operaciones de

división. Incrementando por contra las operaciones por iteración al obligarnos a trabajar con

una coordenada adicional [14].

Este método de coordenadas proyectivas se puede aplicar a cualquier técnica. Se debe

transformar la ecuación de Weierstrass que define la curva en coordenadas afines, a

coordenadas proyectivas, y definir las operaciones de suma de puntos y doblado de puntos en

función de esta nueva ecuación (eligiendo la tercera coordenada Z, para poder simplificar las

operaciones) [13, 14].

Esta técnica es especialmente útil combinada con la multiplicación de Mongomery,

que permite reducir las operaciones en cada iteración, al trabajar o iterar con una coordenada

menos. Considerando de nuevo la representación binaria de k, k =kt-12
t -1 +kt-22

t -2 +. . .

+k12
1+k02

0, se definen las sumas parciales

s0= 0

s1= kt– 12
0

s2 = kt– 12
1+kt– 22

0

. . .

st= kt– 12
t - 1 +kt– 22

t - 2 +. . . +k12
1+k02

0= k

Así sj = 2sj - 1 +kt - j ∀j = 1, 2, . . . , t

El algoritmo consiste en calcular en cada paso A = sjP y B = (sj+1)P en función de sj–1P

and (sj- 1 +1)P (A y B en la iteración anterior) [13]:

Si kt- j =0 entonces

sjP=2(sj–1P), (sj+1)P =(2sj - 1 +1)P =sj–1P +(sj- 1 +1)P // A = 2·A y B = A + B

sino // kt- j =1

sjP=(2sj - 1 +1)P =sj–1P +(sj- 1 +1)P // A = A + B

(sj+1)P =(2sj - 1 +2)P =2(sj- 1 +1)P // B = 2·B

fin

Este algoritmo, aplicado sobre curvas elípticas no-supersingulares (sobre cuerpos

binarios) es debido a López y Dahab [13]. Con A = (xA, yA) ≠ ∞ y B = (xB, yB) ≠ ∞ dos puntos

diferentes de la curva y si A ≠ − B, las x-coordenadas xA + B y xA − B de A + B y A − B están

relacionadas por la siguiente ecuación xA + B = xA − B +xB(xA + xB) − 1 + (xB(xA + xB) − 1)2. Como

además (ver Montgomery más arriba) A = sjP and B = (sj + 1)P para todo j, entonces A - B = - P,

luego en curvas no-supersingulares, las coordenadas x coinciden xA-B = xP (ver anexos), siendo

P el punto original o generador y por tanto

xA + B = xP + xB(xA + xB)
− 1

+ (xB(xA + xB)
− 1

)
2

13

De la misma manera, para el doblado de puntos (ecuaciones de curvas no-

supersingulares, ver anexos), se tiene

xA+A = xA
2
+b/xA

2
 Si xA≠ 0 y (0, yA) +(0, yA) = (0, yA) - (0, yA) = ∞

Como puede verse se puede operar sin la coordenada y. Al final del proceso iterativo,

ésta debe calcularse. De las propiedades de Montgomery, se tiene que P = (xP, yP), donde xP /=

0, kP= (xA, yA) y (k +1)P= (xB, yB), por tanto

yA=xP
-1

(xA+xP)[(xA+xP)(xB+xP) +xP
2
+yP] +yP

Pasando a coordenadas proyectivas con c = 1 y d = 2 (coordenadas López-Dahab)

pasamos a iterar con las coordenadas X y Z en cada iteración y finalmente calculamos Y

deshacemos el cambio de coordenadas pasando de nuevo a afines (evitando las operaciones

de división en la iteración), quedando el algoritmo implementado de la siguiente manera:

Algoritmo 2: Multiplicación de puntos de Montgomery de López-Dahab sobre GF(2m
) [13].

INPUT: k = (kt-1, …, k1, k0)2,con kt-1= 1P = (x, y) ∈ E(F2
m

).
OUTPUT: kP.
1. X1←x, Z1←1, X2←x

4+b, Z2←x
2. {Calcula (P,2P)}

2. For I from t −2 downto 0 do
2.1 If ki= 1 then

T←Z1, Z1←(X1Z2+ X2Z1)
2, X1←xZ1+ X1X2T Z2.

T←X2, X2←X2
4+bZ2

4, Z2←T
2
Z2

2.
2.2 Else

T←Z2, Z2←(X1Z2+ X2Z1)
2, X2←xZ2+ X1X2Z1T .

T←X1, X1←X1
4+bZ1

4, Z1←T 2Z1
2.

3. x3←X1/Z1.
4. y3←(x+X1/Z1)[(X1+xZ1)(X2+xZ2)+(x

2+y)(Z1Z2)](xZ1Z2)
−1+ y.

5. Return(x3, y3).

Este algoritmo realiza las mismas operaciones en cada iteración, por lo tanto

incrementa su resistencia a ataques de tiempo y de análisis de consumo. Siendo un claro

candidato a ser implementado tanto en software como hardware.

2.3 Curvas Koblitz y mapa de Frobenius

Las curvas Koblitz son un tipo especial de curvas elípticas no-supersingulares sobre

GF(2m
) [13, 14]:

E0: y
2
 + xy = x

3
 + 1

E1: y
2
 + xy = x

3
 + x

2
 + 1

Es decir curvas no-supersingulares Ec con coeficientes b = 1 y a = 0 (E0) o a =1 (E1).

14

Estas curvas permiten simplificar las operaciones de Duplicado de puntos en su

totalidad, sustituyéndolas por operaciones de squarer de polinomios, muy rápidas y eficientes

en cuerpos binarios [13, 14]. Para sustituir las operaciones de doblado se utiliza el mapa o

aplicación de Frobenius τ de Ec(GF(2
m

)) a Ec(GF(2
m

)) con

τ(∞) = (∞) y τ(x, y) = (x
2
, y

2
)

Se puede demostrar que

2P = − τ
2
(P) + μτ(P) con μ = 1 si a = 1 y μ = − 1 if a = 0

Como τ es una aplicación, cualquier combinación lineal será otra aplicación en

Ec(GF(2
m

)). Por tanto el resultado anterior puede generalizarse para cualquier aplicación α de

Ec(GF(2
m

)) a Ec(GF(2
m

)) en la que, dados dos enteros a y b, α(P) = aP + bτ(P).

Se puede realizar una especie de división entre las aplicaciones α y τ de tal manera que

α = α’τ + r con r ∈ {−1, 0, 1}. Las sucesivas divisiones, de manera parecida a las divisiones

euclídeas en el cuerpo finito de los enteros Zp, proporcionarán una serie de restos que

permiten descomponer la función inicial α de manera que

α = r0 + r1τ + . . . + rt – 1 τ
t − 1

+ αtτ
t

Se puede demostrar que αt = 0 después de un número finito de pasos. Así,

considerando el caso particular de la función α con coeficientes a = k y b = 0, es decir, α(P) =kP,

tendremos

kP = rt – 1 τ
t − 1

(P) + rt – 2 τ
t − 2

(P) + . . . + r1τ(P) + r0P con ri ∈ { −1, 0, 1}

El objetivo de las sucesivas divisiones es que Ki sea cero el mayor número de veces

posible. Así si k no es divisible por τ en alguna iteración, escogemos ri ∈ { −1, 1}, de manera que

en (κ −r)/τ sea divisible por τ. Así en la siguiente iteración, el siguiente ri sea 0. De esta manera

se puede definir la multiplicación de puntos en la curva como sigue

Algoritmo 3: Multiplicación de puntos Koblitz sobre GF(2m
) [13].

INPUT: k ∈ [1 .. n-1] y P = (x, y) ∈ E(F2
m

) y de orden n.
OUTPUT: kP.
1. Q ← ∞; A ← K; B ←0;
2. While ((A /= 0) or (B /= 0)) do
2.1 if A mod 2 = 0 then R_I ← 0;

2.2 elsif 2 - ((A - 2*B) mod 4) = 1 then
R_I ← 1;

if Q = ∞ then Q ← P; else Q ← Q + P; endif;
2.2 else

R_I ← - 1;

if Q = ∞ then Q ← - P; else Q ← Q – P; endif;
2.3 endif;
2.4. P ← τ (P); --Elevar al cuadrado cada coordenada
2.5 T ← A; A ← B + μ (T - R_I)/2; B ← (R_I - T)/2;

15

3. Return(Q).

2.4 Profiling. Análisis del software

Entre las principales herramientas se ha contado con el Vivado IDE de Xilinx para la

programación hardware sobre la placa y el IDE Xilinx SDK para el desarrollo software y la

integración con el hardware.

Con la segunda herramienta se ha llevado a cabo la implementación de los algoritmos

descritos en los apartados anteriores completamente en lenguaje C y se ha compilado con el

compilador de Xilinx para ARM con el comando arm-xilinx-eabi-gcc. El entorno integrado

contiene una utilidad para el análisis del código o profiling de modo intrusivo que está basada

en la herramienta GNU gprof [26]. La herramienta nos proporciona dos tipos de información

para poder optimizar el software: un histograma con los tiempos de ejecución para cada

función y un grafo de llamadas a función que indica quien llama a quien y cuántas veces.

Al compilar con la opción ‘-pg’ para el análisis cada vez que se llama a una función se

invoca a la función mcount para registrar las funciones invocante e invocada (profiling

intrusivo). Así aparece en los resultados consumiendo el 50% del tiempo de ejecución total,

como puede verse en la tabla 2.

Quitando la función mencionada, y que sólo debe ejecutarse al realizar el proceso de

análisis, las siguientes funciones que más tiempo consumen son las de acceso a los vectores de

bits que representan los polinomios, elementos del cuerpo extendido y puntos de la curva. Las

funciones bitv_assign y bitv_get representan el 14,22% y el 11,8%. Ambas funciones son

invocadas principalmente, como puede verse en los parents de cada una por las funciones de

Product y Multiply_By_X. Siendo la que llama a ambas Product_Mod_F. Ésta es la función

candidata a ser acelerada por el hardware. Función que realiza la multiplicación de polinomios

(coordenadas de los puntos de la curva).

Las operaciones de división de polinomios sólo se invocan al deshacer el cambio de

coordenadas al finalizar el proceso iterativo, así que tienen menor relevancia que la

multiplicación (tabla 2). Sin embargo puede verse que las dos operaciones de división invocan

a bitv_get y a Product, e indirectamente a bitv_assign. Funciones que tienen mucha relevancia

en el rendimiento (figura 3). Por tanto finalmente se considera que la función Divider_Mod_F

también es una buena candidata para ser acelerada por el hardware. Se decide implementarla

en una segunda versión de nuestro desarrollo.

16

Las cuatro funciones que más tiempo consumen (sin contar la función intrusiva usada

para el análisis mcount) serán cubiertas en su totalidad por los tres aceleradores hardware que

se decide implementar (Multiplicador, Elevador al cuadrado y Divisor de polinomios módulo

f(x)) (figura 3).

Tabla 2. Profiling del software

Fig. 3. Distribución del tiempo de ejecución por funciones

17

3. Desarrollo Hardware

En este apartado se va a detallar el desarrollo hardware llevado a cabo en el trabajo. La

idea ha sido la de implementar nuevas funciones mediante aceleradores accesibles desde el

software a través de escrituras y lecturas en registros direccionables por el procesador. Los

objetivos han sido minimizar el tamaño y el consumo del hardware e intentar acelerar al

máximo la ejecución de las operaciones más costosas detectadas durante el análisis del

software. Las operaciones de suma y doblado de puntos (ver anexos) se componen de

numerosas multiplicaciones. Aproximadamente la mitad son operaciones de elevar al

cuadrado un polinomio, así que se ha tomado la decisión de desarrollar dos componentes: el

multiplier y el squarer en la primera versión y el divider en la segunda.

Los componentes que implementan aritmética modular son altamente conocidos y hay

muchos desarrollos disponibles en el mercado. En este trabajo se han seleccionado para

cumplir los objetivos de mínima área y coste. Posteriormente se les ha dotado de un interfaz

AXI, que explicamos a continuación y además se ha dotado de una Unidad de Control muy

sencilla tanto al multiplicador como al divisor.

3.1 Interfaz AXI

AXI significa Advanced eXtensible Interface, su actual versión es la 4 y es parte del

estándar abierto ARM AMBA 3.0. Estándar de facto para la comunicación en chip. La

plataforma nos proporciona tres posibles protocolos para la comunicación, en función de las

necesidades de la conexión:

• AXI4: transferencia con memoria mapeada en la que se proporciona una dirección y un

tamaño de ráfaga de hasta 256 palabras.

• AXI4-Lite: transferencia de una sola palabra a una sola dirección, también mapeada en

memoria

• AXI4-Stream: ráfagas de transferencia sin límite de tamaño. No tiene mecanismo de

direccionamiento, es un flujo directo entre el origen y el destino. Se indica el

dispositivo únicamente (memoria no mapeada).

Debido a que los polinomios ocupan pocas palabras de transferencia se ha escogido la

opción AXI4-Lite que además era la más sencilla. Y de los nueve interfaces AXI que proporciona

la plataforma, se ha escogido el M_AXI_GP0, de propósito general y muy apropiado para

transferencias de baja a media intensidad. Interfaz directo que no incluye almacenamiento en

memoria intermedia (buffering) en el que el procesador es master y los aceleradores

integrados slave.

Para las operaciones sobre las curvas definidas sobre cuerpos binarios de extensión

GF(2163) hacen falta 163 bits, seis palabras de 32 bits. Normalmente uno o dos polinomios de

entrada y uno de salida. Para los cuerpos binarios de extensión GF(2233) serán necesarios 8

palabras de 32 bits por polinomio.

18

3.2 Multiplicador de polinomios

Los elementos del cuerpo GF(2m) se han representado en base polinomial. Se podrían

haber representado en otras bases como la normal o las bases dual o triangular, pero la

polinomial es la más común. Así los elementos se representan como polinomios de hasta

grado m-1. Las operaciones de suma de polinomios y resta se implementan mediante

operaciones XOR muy rápidas, mientras que la multiplicación es considerada la operación más

compleja e importante. Las operaciones se realizan módulo f(x), siendo f un polinomio

irreducible de grado m de la siguiente forma:

f(x) = x
m

 + fm − 1x
m − 1

+ . . . + f1x + f0

con fi∈ GF(2) = {0, 1}. Siendo el conjunto {1, x, . . . xm − 1} la baso polinomial en GF(2m)

con la que podemos representar cualquier elemento. La multiplicación de dos elementos a(x) y

b(x) en GF(2m) se define como c(x) = a(x)b(x) mod f(x). Esta operación implica dos pasos, la

multiplicación y la reducción módulo f(x). Los polinomios irreducibles utilizados son los

recomendados por el NIST para curvas no-supersingulares[11, 12]:

f(x) = x
163

 + x
7
 + x

6
+ x

3
 + 1 en GF(2

163
) y f(x) = x

233
 + x

74
 + 1 en GF(2

233
).

Entre los multiplicadores se contemplaron distintas opciones. El multiplicador

combinacional clásico, el Kartsuba-Ofman que utiliza un método recursivo muy eficiente, así

como el multiplicador de Mastrotivio basado en operaciones matriz-vector [14]. O el

multiplicador de Montgomery que permite versiones tanto combinacionales como

secuenciales. El que se ha escogido finalmente es el Multiplicador entrelazado de tipo

secuencial y muy sencillo. Más lento que las opciones combinacionales (Classic y Mastrovito)

pero con un coste y un área mucho menor. En la tabla pueden verse las comparaciones entre

las diferentes implementaciones, tanto en tamaño como en eficiencia [14].

M Type FFs LUTs Slices Period Cycles Total time

163

Classic – 22,356 15,171 – – 39

Interleaved 509 511 271 4.5 163 815

Mastrovito – 22,347 15,201 – – 36

Montgomery 344 347 184 7.4 163 1,206

233
Interleaved 763 723 417 6.4 223 1427

Montgomery 484 489 255 7.5 233 1,748

De las dos opciones de implementación que permite el multiplicador entrelazado: Bit

Más Significativo Primero (MSB-First) o el Menos significativo primero (LSB-first), se ha

escogido la segunda porque presenta menos dependencias en las operaciones a iterar y por

tanto un camino crítico más corto en la ruta de datos [14]. La implementación del componente

se ha tomado de [14] y presenta la siguiente interfaz:

Tabla 3. Implementación sobre FPGA de multiplicación en GF(2M)

19

entity interleaved_mult is
port (
A, B: in std_logic_vector (M-1 downto 0);
clk, reset, start: in std_logic;
Z: out std_logic_vector (M-1 downto 0);
done: outstd_logic
);
end interleaved_mult;

3.2.1 Interfaz AXI del Multiplicador

Al componente selecicionado se le han añadido los registros, y señales necesarios para

implementar su interfaz AXI. El componente va a tener un bus de escritura de 32 bits y otro de

lectura de 32 bits. El bus de direccionamiento de 7 bits servirá para poder direccionar cada uno

de los registros del componente (figura 3)

El funcionamiento de la comunicación es la siguiente. En primer lugar se pondrá en el

bus la dirección del registro a escribir (AWADDR). En segundo lugar se pondrá el dato en el bus

de datos de escritura (WDATA) y a continuación se usará la señal de WSTRB para realizar el

WRITESTROBE (la escritura consecutiva de un 0 y un 1) para iniciar la escritura del dato. De

forma parecida se utilizan los buses de datos (RDATA) y dirección (ARADDR) para la lectura.

Internamente se controla que las escrituras sólo se habiliten (WRITE_ENABLE) cuando

los datos, la dirección se hayan establecido y sean válidas y se termine de hacer el WSTRB.

En la figura 4 puede verse una sección de la conexión entre el componente

seleccionado (multiplicador entrelazado de polinomios de 163 bits) y los registros del

dispositivo o controlador:

Fig. 4. Interfaz AXI del multiplicador

20

Se han desarrollado por último las funciones software para que el procesador pueda

leer y escribir de los registros del dispositivo como en los de cualquier otro periférico

void INTERLEAVED_MULT_IP_mWriteReg(u32 BaseAddress, unsigned RegOffset, u32 Data)

u32 INTERLEAVED_MULT_IP_mReadReg(u32 BaseAddress, unsigned RegOffset)

Con BaseAddrress la dirección base (mapeada en memoria) donde se encuentra

nuestro multiplicador. RegOffset es el desplazamiento del registro que queremos leer o

escribir y los datos que se pasan como parámetro en caso de escritur o se devuelven al leerse

del registro especificado.

De la misma manera se ha implementado la función software que sustituye a la

función software Product_Mod_F (identificada en la sección 2.4 de profiling) en la que los

cálculos se sustituyen por la escritura de los operadnos y la lectura del resultado en los

registros correspondientes del acelerador hardware una vez que se detecte (leyendo un

resgitro de ocntrol) que los cálculos han terminado.

Polynomial Interleaved_Mul_Mod_F(Polynomial A, Polynomial B, Polynomial C)

3.2.2 Unidad de control del Multiplicador

Al componente se le ha añadido unidad de control que implementa una máquina

estados de tipo Moore muy sencilla que puede verse en la figura 6.

Fig. 5. Sección del esquema RTL del multiplicador

21

Las señales de start y done se transmiten igualmente por el interfaz AXI entre el

procesador principal y el componente. Para empezar a trabajar el componente cliente debe

mandar consecutivamente las ordenes de start = 0 y start= 1 (clásica técnica de strobe o

palanca) pasando por dos estados en los cuales se resetea el componente y se le da la orden

de comienzo. Finalmente entramos en un estado de espera mientras se calcula la

multiplicación antes de pasar al estado acabado en el que el componente cliente obtiene la

salida done = 1 indicando que ya puede leer el resultado.

3.3 Cuadrado de polinomios

Una manera directa de implementar la operación de elevar al cuadrado modular sería

utilizar un multiplicador como los del apartado anterior con un solo operando de entrada para

poder realizar c(x) = a(x)a(x) mod f(x) = a(x)
2
mod f(x). Pero la operación de elevar al cuadrado

puede optimizarse ya que en GF(2m) se trata de una operación lineal, es decir,

c(x) = a(x)
2
 mod f(x) = (am – 1 x

2(m − 1)
+ am – 2 x

2(m − 2)
+ . . . + a1 x

2
 + a0) mod f(x)

Por tanto, la primera parte de la operación, la de multiplicación (que va seguida de la

posterior reducción modular) puede calcularse como d(x) = a(x)a(x), siendo d(x) un polinomio

de grado 2m – 2 de la forma

d(x) = am – 1 x
2(m − 1)

+ am – 2 x
2(m − 2)

+ . . . + a1 x
2
 + a0 = (am − 1, 0, am − 2, 0, . . . , 0, a1, 0, a0)

Se han comparado distintas opciones de implementación. En la tabla 4 puede verse

que las opciones combinacionales son más rápidas y ocupan menos espacio que sus

contrapartidas secuenciales, así que se ha optado por las primeras.

Type m Ffs LUTs Slices Period Cycles Totaltime

LSB-First
163 464 510 306 5.3 82 435

233 659 723 436 6.0 117 702

Acabado

Preparado Trabajando

Comenzar

start = 0

start = 1

mult_done = 1

mult_done = 0

start_mult = 0

done = 1

start_mult = 0

done = 1

start_mult = 1

done = 0

start_mult = 0

done = 0

Fig.6. Máquina de estados del multiplicador

22

Seq.
Montgomery

163 361 341 199 4.3 163 701

233 542 484 309 4.4 233 1,025

Classic
163 - 165 86 - - 3

233 - 153 99 - - 3

Montgomery
163 - 267 147 - - 20

233 - 117 74 - - 7

En concreto hemos optado por el método clásico [14] que es además muy sencillo de

implementar y presenta la siguiente interfaz:

entity classic_squarer is
port (
a: in std_logic_vector(M-1 downto 0);
c: out std_logic_vector(M-1 downto 0)
);
end classic_squarer;

En este caso no ha sido necesaria la adicción de una unidad de control al tratarse de un

circuito combinacional y solamente se ha añadido el interfaz AXI correspondiente. De la misma

manera al definido en la sección 3.2.1 del multiplicador.

3.4 Divisor de polinomios

La división sobre un conjunto de polinomios, más concretamente sobre la estructura

de anillo de polinomios Zp[x]/f(x) con p primo y con f(x) polinomio de grado m > 0 solo es

posible sif(x) es irreducible (es decir que no tiene factores de grado mayor o igual a uno). De

esta manera todo h(x) perteneciente a Zp[x]/f(x) tiene un inverso h(x)
-1tal que h(x)h

−1
(x) mod

f(x) = 1. En este caso la estructura de anillo se pasa a denominarse cuerpo finito. Zp[x]/f(x) pasa

a ser un cuerpo extendido del cuerpo finito Zp, también denominada Galois Field o GF(p
m

). En

cuerpos binarios p = 2. La operación bajo estudio es la siguiente: dados g(x) y h(x) enZp[x]/f(x),

donde h(x) es un polinomio no nulo, calcular z(x) tal que g(x) = h(x)z(x) mod f(x), es decir,

z(x) = g(x)h
−1

(x) mod f(x)

Hay dos tipos de algoritmos como en el caso de Zp. El primer tipo de algoritmos son los

que permiten representar el mcd (máximo común divisor) de dos polinomios a(x) y b(x) sobre

Zp en la forma α(x)a(x) + β(x)b(x) (gracias a la Identidad de Bezout) con α (x) y β (x) polinomios

sobre Zp. En este caso para hallar h-1
(x), con f(x) irreducible y grado de h(x) menor a m (grado

del irreducible) tenemos que su mcd = 1 y, aplicando Bezout, existen dos polinomios α (x) y β

(x) tales que α(x)f(x) + β(x)h(x) = 1 y β(x)h(x) mod f(x) = 1, es decir

h
−1

(x) = β(x) mod f(x)

A este primer grupo pertenecen el Algoritmo de Euclides Extendido y el Algoritmo

Binario (elegido por nosotros). Un segundo método consistiría en sustituir la inversión por la

exponenciación basándonos en la idea del carácter cíclico del cuerpo, que no hemos

contemplado en este trabajo.

Tabla 4. Implementaciones sobre FPGA de squarer en GF(2m)

23

Nuestro trabajo ha sido el elegir el algoritmo de división. Para ello se han comparado

los principales algoritmos comentados, tanto en área y recursos como en rendimiento (Ver

[14])

Algoritmo Ffs LUTs Slices Mult RAM Periodo Ciclos Tiempo

PseudoEuclidean 871 3,923 2,272 39 1 36 147 5,292

Binary 623 3,235 2,001 37 – 56 37 2,072

Reduction to
multiplications (MSE)

562 2,607 1,594 34 1 25 7,602 190,05

Reduction to
multiplications (LSE)

672 2,794 1,754 35 1 19 4,202 79,838

Optimalextensionfield
(MSE)

603 2,873 1,609 34 1 25 235 5,875

Optimalextensionfield
(LSE)

715 3,268 1,894 35 1 19 133 2,527

Esta tabla se ha extraído de [14] donde se comparan distintas implementaciones de

Divisores sobre GF(23917) implementados en una FPGA Spartan3 (speed-5) de Xilinx. Los

tiempos están expresados en ns, los FFs, LUTs, Mults y RAM, representan el número de flip-

flops, el número de tablas Look-Up , el número de multiplicadores de 18 bit-by-18-bit y el

número de bloques RAM usados en la implementación. Hemos escogido el método binario ya

que es el único que no usa RAM y que proporciona el mejor rendimiento con un coste o

tamaño muy aceptable.

La implementación se ha tomado de [14]. Al componente se le ha añadido un interfaz

AXI parecido al detallado en la sección 3.2.1 junto con una máquina de estados, igualmente

muy parecida a la del Multiplicador de la sección 3.2.2.

4. Resultados

Durante el desarrollo se verificó la corrección de cada una de las versiones,

comparando los resultados obtenidos fueran exactos a los resultados publicados por el

NIST[11 y 12] así como implementaciones de otros autores [14].

Para la evaluación del consumo utilizamos como instrumento de medida un vatímetro

Yokogawa WT210 [27]. El vatímetro viene acompañado de un software que procesa el

muestreo de las medidas y ofrece gráficas de una gran variedad de magnitudes de medida. En

la tabla 6 se puede observar que el consumo medio de las 2 versiones es muy parecido, la

Tabla 5. Implementaciones sobre FPGA de la división en GF(2m)

24

versión software y la versión completa con los tres aceleradores hardware (Multiplicador y

Elevador al cuadrado y el divisor).

m Algoritmo Mutiplicación puntos ECC
Potencia

(W)

163 Montgomery Lopez-Dahab
(Versión Software)

4,475

233 4,357

163
Montgomery Lopez-Dahab (3ops)

4,340

233 4,395

Los consumos llegan a ser algo inferiores en la versión hardware, suponemos que por

el menor uso del procesador software, que puede quedar suspendido en espera de la

finalización de las operaciones hardware. El principal ahorro energético vendrá por la

reducción de los tiempos de ejecución que podemos ver más abajo. En la tabla 7 aparecen los

recursos utilizados por las distintas versiones de código desarrolladlas, con 2 y 3 operaciones,

siendo el divisor la tercera operación, añadida en la segunda versión. En estos desarrollos hay

que tener en cuenta que se deben incluir también los componentes del interfaz AXI. Los FFs,

LUTs, representan el número de flip-flops y el número de tablas Look-Up empleadas.

Desarrollo (Versión) Recurso Utilizados

M = 163 (2ops)
FF 1902

LUT 2008

M = 163 (3ops)
FF 3041

LUT 3020

M = 233(2ops)
FF 2318

LUT 2393

M = 233 (3ops)
FF 3877

LUT 3724

[17]
FF 913

LUT 2028

En [21] se proporcionan el número de Slices utilizados, para su implementación en la

plataforma XC3S400 utilizan 2418 Slices y en la XC4VFX12 utilizan 2648 Slices. Nuestra

frecuencia de trabajo para realizar las mediciones ha sido de 100MHz. Las utilizadas en [17 y

16] son de 68.3 MHz y las de [17] estaban en 79.6 y 142.5 MHz. Los trabajos [2, 3 y 4] son

anteriores y trabajan con rutas de datos con una anchura de 8 bits presentando rendimientos

inferiores.

Las primeras mediciones se han realizado para comprobar si efectivamente las nuevas

operaciones hardware aceleraban la ejecución del algoritmo implementado en software. En

efecto, como puede verse en la tabla 8, las aceleraciones con las dos versiones desarrolladas

son altísimas. Esto es debido a que la aceleración se produce sobre las funciones que

consumen casi la totalidad del tiempo de ejecución.

Tabla 7. Recursos de implementación de las operaciones hardware

Tabla 6. Comparación del consumo de potencia en los 3 desarrollos

25

m Algoritmo Mutiplicación puntos ECC Rendimiento [S] Aceleración

163 Montgomery Lopez-Dahab
(Versión Software)

28,398 1

233 70,147 1

163
Montgomery Lopez-Dahab (2ops)

0,0733 387,4

233 0,1455 482,1

163
Montgomery Lopez-Dahab (3ops)

0,0091 3120,6

233 0,0141 4974,9

Trabajo m Algoritmo Mutiplicación puntos ECC Plataforma Rendimiento [S] Escalable

[3] 163 Double-Add
Dalton 8051

ISS-8bit
3.97

No [4] 163

Montgomery Lopez-Dahab

AVR-AT94K - 8 bit 0.113

[2]
163 AVR – 8 bit 0.290

233 ATmega128 - 8bit 0.810

[16]
163

MixedCoordinates PicoBlaze 32bit
0.0155

Sí
283 0.0451

[17]
163

Montgomery Lopez-Dahab
PicoBlaze 32bit

68.3MHz

0.038
Sí

233 0.0734

[21]

163

Montgomery Lopez-Dahab

XC3S400
32bit79.637MHz

0.864 ms
Sí

283 1.957 ms

163 XC4VFX12
32bit142.53MHz

0.483 ms
Sí

233 1.093 ms

Es
te

 T
ra

b
aj

o

163
Montgomery Lopez-Dahab (2ops)

ZedBoard 32bit
100MHz

0.073

Sí

233 0.145

163
Montgomery Lopez-Dahab (3ops)

0.009

233 0.014

163
Koblitz (2ops)

3.7241

233 7.7863

163
Koblitz (3ops)

0.0707

233 0.1202

Como se puede ver en la tabla 9 los tiempos conseguidos en este trabajo son algo

mejores que los obtenidos en las aproximaciones de codiseño [17 y 16], sobre todo si

comparamos con nuestra versión de 3 operaciones aritméticas (multiplicación, cuadrado y

división). La arquitectura desarrollada en [21] claramente supera a nuestro desarrollo, siendo

una de las implementaciones (sobre FPGA) de multiplicación de puntos más rápida, aunque

todavía por debajo de [18].Pero hay que recordar que [21] presenta una solución totalmente

implementadas en HW, lo que implica más recursos, y más tiempo de desarrollo. Nuestro

trabajo no pretende competir con soluciones de este tipo sino evaluar la utilidad del codiseño

en la que la mayor parte de la funcionalidad puede ir en SW acelerando el tiempo de

desarrollo. Una ventaja adicional del trabajo desarrollado es que presentamos una

Tabla 9. Comparación de resultados con otras arquitecturas

Tabla 8. Comparación de resultados de las distintas versiones desarrolladas

26

arquitectura escalable (al igual que en [21]). Con los recursos necesarios podría trabajarse en

cualquier tamaño y no sólo en los dos tamaños presentados. Comparando nuestros

desarrollos, vemos que nuestra versión Koblitz, que hace un mayor uso de la división tiene

peor rendimiento, desventaja muy acusada en las versiones con sólo dos operaciones.

5. Conclusiones

5.1 Resumen del trabajo realizado

El objetivo de este trabajo es estudiar las posibilidades de codiseño que ofrecen los

nuevos chips con procesadores ARM y FPGA. El estudio se ha centrado en criptografía con

curvas elípticas, un campo especialmente interesante para sistemas móviles y empotrados en

el que existe interés por la utilización de FPGAs desde hace tiempo. En este trabajo se ha

implementado un algoritmo puramente en software para la multiplicación de puntos en curvas

elípticas. Se ha analizado el software y se han sustituido las operaciones más costosas

(multiplicación, elevar al cuadrado y división) por aceleradores hardware.

Se han conseguido aceleraciones muy importantes con aceleradores genéricos y

fácilmente reutilizables, manteniendo los niveles de consumo, con lo que el ahorro energético

se multiplica. Siendo un aspecto crítico en los dispositivos embebidos y con grandes

restricciones.

5.2 Conclusiones sobre el trabajo desarrollado

Con los resultados obtenidos parece evidente que las nuevas arquitecturas

heterogéneas ARM/FPGA son una oportunidad para conseguir lo mejor de dos mundos que

hasta ahora eran independientes. Por un lado el diseñador tiene a su disposición los entornos

de desarrollo para ARM con herramientas de compilación, depuración, profiling… así como la

posibilidad de usar todo tipo de librerías desarrolladas para estos sistemas. Por otro lado las

FPGAs permiten desarrollar aceleradores a medida, que además se pueden cambiar en tiempo

de ejecución [25] de forma que los mismos recursos que se utilizan para acelerar la

computación con curvas elípticas se pueden usar para otras aplicaciones en otro momento.

Además las FPGAs de Xilinx y en concreto la plataforma ZedBoard son muy eficientes para la

implementación de operaciones aritméticas, gracias a recursos especiales que incorporan

como los DSP48E1[10].

Los entornos de desarrollo utilizados permiten acoplar de forma sencilla la parte

software y los aceleradores hardware. Y los resultados muestran que en el caso de las curvas

elípticas, la aceleración obtenida al incluir recursos hardware compensa el sobrecoste de las

comunicaciones. Es importante remarcar que una vez diseñado un acelerador e integrado en el

sistema, el software puede utilizarlo de la misma manera con la que interactúa con cualquier

otro periférico haciendo llamadas a una serie de funciones definidas en una librería. Es decir,

27

no hace falta conocimientos de diseño hardware para utilizar un acelerador hardware ya

diseñado. Por tanto los aceleradores podrán incluirse en librerías que permitiesen a cualquier

desarrollador software acelerar sus diseños. Por ello se ha tratado de hacer diseños genéricos

y reutilizables.

Lógicamente, incluir nuevos recursos heterogéneos en un chip como una FPGA no sólo

conlleva ventajas. También aumenta la complejidad del diseño, y las necesidades de test y

verificación. En ese sentido es interesante comentar que existe una comunidad muy activa y

bastante documentación. Aun así al ser plataformas recientes a veces se encuentran

problemas no muy bien documentados. En general la complejidad del proceso de diseño de un

acelerador en estas plataformas y su inclusión como periférico en el sistema no me ha

resultado excesivamente complejo. Las herramientas proporcionadas por el fabricante tanto

para el diseño hardware como software nos han parecido muy potentes, flexibles y sencillas de

utilizar. En cuanto al proceso de test y verificación se han encontrado dificultades en la

selección de valores escalares suficientemente grandes y representativos, así que finalmente

se tuvo que pasar a una representación vectorial del entero con el que multiplicar los puntos

generadores de la curva. Además tampoco hay publicados muchos trabajos que incluyan

resultados para poder comparar. Ha sido un proceso complicado, pero finalmente nos permite

estar seguros de nuestras mediciones.

5.3 Grado de consecución de objetivos

Los objetivos iniciales se han cumplido en su totalidad. Se han aplicado conocimientos

adquiridos tanto en las asignaturas del máster de Programación orientada a prestaciones para

realizar el profiling como de la asignatura de Procesadores de dominios específicos.

El trabajo desarrollado puede representar otra vía de investigación en el área. Un caso

de uso distinto dentro del codiseño hardware software que se realiza en el grupo, pero en el

que se pueden incorporar los avances genéricos como la mejora de las comunicaciones en chip

y aprovechar toda la experiencia acumulada.

En lo personal, ha supuesto un reto simultanear los estudios del máster con la vida

profesional. Y ha quedado demostrado que el no trabajar de manera continuada en el tiempo

en un proyecto es altamente perjudicial para su finalización. El autor quiere agradecer la

colaboración de Javier Olivito en el proceso de toma de mediciones y en especial el apoyo y la

ayuda del director del trabajo, Javier Resano, a lo largo de todo el desarrollo.

6. Trabajo futuro

El siguiente paso sería el desarrollo de operaciones hardware de grano más grueso o

más complejas, como pueden ser las de Suma de Puntos o Doblado de Puntos de las curvas.

Esta idea ha quedado a medio desarrollar y no ha podido finalizarse a fecha de hoy. El objetivo

era sondear si la pérdida de generalidad merecía la pena en términos de coste y eficiencia.

28

Al incrementar la complejidad de las operaciones que se indica, se aumenta la cantidad

de polinomios a transmitir y se podrían aplicar las técnicas de transferencia con el interfaz AXI

DMA que ha sido optimizado por otros miembros del grupo de investigación, para aumentar

las transmisiones.

Finamente, también ha quedado por concluir la escalabilidad de nuestro desarrollo

(solo finalizado para curvas de tamaño m = 163 y m = 233) que debería extenderse a la

totalidad de las curvas recomendadas por el NIST [11].

7. Referencias

[1]ARM, “The ARM Cortex-A9 Processors”, White paper, v2.0, September 2009. Available:

http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

[2]H.Eberle, A.Wander, N. Gura, S.C. Shantz, “Architectural Extensions forElliptic Curve

Cryptography over GF(2m)”, Sun Microsystems Laboratories.2005.

[3] L. Batina, D. Hwang, A. Hodjat, K. Sakiyama, I. Verbauwhede,“Reconfigurable architectures

for curve-based cryptography on embeddedmicro-controllers”, International conference on

Field Programmable Logic andApplications. FPL. 2006.

[4]S. S. Kumar, C. Paar, “Reconfigurable instruction set extension for enablingECC on an 8-bit

processor “, In Field Programmable Logic and Application -FPL 2004, LNCS 3203, pp. 586–595.

Springer Verlag, 2004.

[5]M. Santarini, “Xilinx Redefines State of the Art With New 7 Series FPGAs”, Xcell Journal,

Third Quarter 2010, pp. 6 - 11.Disponible:

http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf

[6] Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, v1.0, 2000

[7]Xilinx, Inc., “7 Series FPGAs Overview”, Product Specification, DS180, v.1.15, February

2014.Disponible:

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

[8]Xilinx, Inc., “AXI Reference Guide”, UG761, v14.3, November 2012.Disponible:

http://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug76

1_axi_reference_guide.pdf

[9] Olivito, J.; González, C.; Resano, J. (2010) FPGA Implementation of a Strong Reversi Player.

Proceedings IEEE International Conference on Field-Progammable Technology (FPT 2010), pag:

507-510.

[10]Xilinx, Inc., “7 Series DSP48E1 Slice User Guide”, UG479, v1.7, May 2014. Available:

http://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

29

[11] Recommended Elliptic Curves for Federal Government Use. http://csrc.nist.gov/.

[12] U.S. Department of Commerce/National Institute of Standards and Technology

(NIST),Digital Signature Standard (DSS), FIPS PUB 182-2changel, 2000.

[13] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic CurveCryptography.

Springer, New York, 2004.

[14] J.P. Deschamps, J.L. Imaña, and G.D. Sutter.HardwareImplementationof Finite-

FieldArithmetic.McGraw-Hill, 2009.

[15] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve Processorfor

GF(2m). In Ç. K. Koç and C. Paar, editors, Cryptographic Hardwareand Embedded Systems —

CHES 2000, LNCS 1965, pages 41 –56.Springer-Verlag,2000.

[16] M. Hassan and M. Benaissa, “Low Area - Scalable Hardware/Software Co-design for

Elliptic Curve Cryptography for Low-Resource Applications” in 3rd International Con-ference

on New Technologies, Mobility and Security (NTMS), December2009

[17] M. Hassan and M. Benaissa, “Low Area - Scalable Hardware/Software Co-design for

Elliptic Curve Cryptography on PicoBlaze Microcontroller” in 3rd International Con-ference

on New Technologies, Mobility and Security (NTMS), December2009

[18] N. Gura, S. Chang, H. Eberle, G. Sumit, V. Gupta, D. Finchelstein, E. Goupy, andD. Stebila.

An End-to-End Systems Approach to Elliptic Curve Cryptography. InÇ. K. Koç and C. Paar,

editors, Cryptographic Hardware and Embedded Systems —CHES 2001, LNCS 1965, pages 351–

366. Springer-Verlag, 2001.

[19] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An implementation of ellipticcurve

cryptosystems over F2155 . IEEE Journal on Selected areas in Communications,11(5):804–813,

June 1993.

[20] S. Okada, N. Torii, K. Itoh, and M. Takenaka. Implementation of Elliptic

CurveCryptographic Coprocessor over GF(2m) on an FPGA. In Çetin K. Koç andChristof Paar,

editors, Proceedings of the Second Workshop on Cryptographic Hardwareand Embedded

Systems — CHES 2000, pages 25–52, Berlin, Germany, 2000.Springer-Verlag

[21] K. C. CinnatiLoi and Seok-Bum Ko. High Performance Scalable Elliptic

CurveCryptosystem Processor in GF(2m). In Circuits and Systems (ISCAS), 2013 IEEE

International Symposium

[22] N. Koblitz. Elliptic Curve Cryptosystems.Mathematics of Computation, 48:203–209, 1987

[23] V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. Williams, editor, Advancesin

Cryptology — CRYPTO ’85, LNCS 218, pages 417–426, Berlin, Germany,1986. Springer-Verlag.

[24] T. ElGamal. A public-key cryptosystem and a signature scheme based on

discretelogarithms. IEEE Transactions on Information Theory, IT-31(4):469–472, 1985.

30

[25] Xilinx, Inc., “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000 All

Programmable SoC Devices”, v1.0 2013. Disponible:

http://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-

hw-accelerator-zynq-7000.pdf

[26] GNU gprof. Disponible: http://sourceware.org/binutils/docs-2.18/gprof/index.html

[27] Yokogawa Electric Corporation Website, http://www.yokogawa.com/

8. Anexos. Conceptos y base matemática

En este capítulo se ofrece una breve introducción a la formación matemática en

Criptosistemas Curva Elíptica (ECC del inglés, en adelante). Sólo damos una breve introducción

que cubre todos los aspectos que son relevantes para esta tesis. Las partes 2.1 y 2.2 se han

tomado principalmente de [2]. Para una introducción más detallada a ECC recomendamos la

siguiente bibliografía [1, 3 y 4]

8.1 Introducción a cuerpos finitos

Un cuerpo finito consiste en un conjunto finito de elementos F, dos operaciones

binarias, adición y multiplicación y los inversos multiplicativos y aditivo de cada elemento. Las

operaciones binarias satisfacen ciertas propiedades aritméticas. El número de elementos en el

cuerpo se denomina orden. Existe un cuerpo finito de orden q si y sólo si q es una potencia de

un primo. Esencialmente, sólo hay un cuerpo finito de orden q denotado por Fq. Si q = p
m

donde p es un número primo y m es un entero positivo, entonces p se llama característica de

Fq y m se llama el grado de extensión de Fq. Los cuerpos finitos también se denominan Cuerpos

de Galois en honor a Évariste Galois (1811-1832) o GF de sus siglas en inglés.

En lo que sigue, se describen brevemente los dos tipos más importantes de cuerpos

finitos aplicados en la práctica, el cuerpo primo GF(p) y el cuerpo binario GF(2m).

8.1.1 El Cuerpo finito Fp o GF(p)

Llamamos cuerpo primo al cuerpo finito Fp donde p es un número primo. Se representa

por la conjunto de números enteros {0, 1, 2,…, p – 1}. Las operaciones de adición y de

multiplicación son módulo p. Si a es un elemento distinto de cero en Fp, decimos que el inverso

de a módulo p, denotado por a-1, es el único entero c perteneciente a Fq para el que a·c = 1. En

esta tesis no utilizamos el cuerpo finito Fp. Sólo usamos el cuerpo finito GF(2
m

), que se

presenta a continuación.

8.1.2 El Cuerpo finito GF(2m)

31

El cuerpo finito GF(2m) puede ser visto como un espacio vectorial de dimensión m

sobre el cuerpo F2 que consta de dos elementos 0 y 1. A GF(2m) se le conoce a menudo como

cuerpo finito de característica dos o cuerpo finito binario. La característica es el menor número

de veces que debes sumar 1 para obtener 0 (suma en el cuerpo finito). Se denomina orden (q)

del cuerpo finito al número de elementos que contiene. Con q = 2
men GF(2m). Como se trata de

un espacio vectorial, todos los elementos a de GF(2m) pueden ser representados como una

cadena de bits (a0a1… am-1): a =a0β0+a1β1 +…+am-1βm-1; donde ai∈ GF(2) = {0, 1}. El conjunto {β0

β1… βm-1} se llama una base de GF(2m) sobre GF(2). Hay muchas bases diferentes y algunas de

ellos conducen a implementaciones más eficientes que otras. En esta tesis, sólo tenemos en

cuenta las representaciones sobre base polinómicas, porque son muy adecuadas para

microprocesadores y arquitecturas hardware. Otras bases se describen, por ejemplo, en [5],

que es también nuestra principal referencia para esta sección. Un polinomio f(x) irreducible de

grado m sobre F2 o GF(2) se puede escribir como:

f(x) = x
m

 + fm − 1x
m − 1

+ . . . + f1x + f0

con fi∈ GF(2) = {0, 1}. Siendo el conjunto {1, x, . . . xm − 1} la base polinomial en GF(2m).

Irreducible significa que no puede ser factorizado en polinomios de grado menor que m (y

mayor o igual a 1). La identidad multiplicativa se representa por el polinomio constante (grado

0) igual a 1. Y la identidad aditiva por el polinomio nulo (todos los coeficientes iguales a 0). La

suma (y la resta) se implementan con operaciones XOR bit a bit. La multiplicación se obtiene

tras multiplicar los coeficientes de los dos polinomios de entrada aplicando la propiedad

distributiva, obteniendo un polinomio de grado hasta 2(m-1) y luego reduciendo

posteriormente por el polinomio irreducible (dividiendo y obteniendo su resto).

8.2 Introducción a las curvas elípticas sobre cuerpos finitos

Dado un cuerpo finito K, una curva elíptica E se define sobre K por la ecuación de

Weierstrass

y
2+ a1xy + a3y = x3+ a2x

2+ a4x + a6

con a1, a2, a3, a4, y a6 pertenecientes a K y satisfaciendo algunas condiciones

adicionales establecidas sobre el discriminante de la ecuación [2, Cap. 3]. El objetivo de estas

condiciones es definir una ecuación y una curva regular, es decir sin vértices ni intersecciones

para que las tangentes sean únicas para todo punto de la curva. Dado un cuerpo de extensión

L de K, la curva elíptica correspondiente E(L) se define por la siguiente relación:

E(L) = {(x,y) ∈ L x L: y2+ a1xy + a3y = x3+ a2x
2+ a4x + a6} ∪ {∞}

Siendo ∞ un punto adicional denominado punto en el infinito (identidad de la suma de

puntos).

32

En esta tesis solo trabajamos con cuerpos finitos de característica 2 (p = 2). La

expresión de la curva puede simplificarse enormemente mediante un cambio de variables. En

nuestro caso la ecuación puede definirse o simplificarse de dos maneras:

a) y2 + cy = x3 + ax + b (curva supersingular) a, b, y c ∈K, y c ≠ 0.

b) y2 = x3 + ax2 + b (curva no-supersingular) a y b ∈ K, a ≠ 0 y b ≠ 0.

Puede ser demostrado (Teorema de Hasse, [2]) que el número de puntos de E(L)

pertenece al siguiente intervalo:

q + 1 − 2q1/2 ≤ #E(L) ≤ q + 1 + 2q1/2

donde q es el número de elementos de L. Así, para grandes valores de q, el número de

elementos de E(L) es aproximadamente igual al número de elementos del cuerpo finito: #E(L)

≅ q. En esta tesis, K = Zp con p = 2 y L = GF(2m), las más usadas en aplicaciones prácticas.

Definición del Grupo o Ley de Grupo

Sea E una curva elíptica definida sobre L. Hay una regla de arco-y-tangente para sumar

dos puntos en E(L) para dar un tercer punto en E(L). Junto con esta operación de suma, el

conjunto de puntos de E(K) forma un grupo abeliano con ∞ como elemento idenodad. Es este

grupo el que se utiliza en la construcción de sistemas criptográficos de curva elíptica.

La regla de adición se explica mejor geométricamente. Sean P= (x1, y1) y Q =(x2,y2)

dos puntos distintos sobre una curva elíptica E. La suma R, de P y Q, se define como sigue.

Primero se dibuja una línea que pasa por P y Q. Esta línea intersecta la curva elíptica en un

tercer punto. Entonces R será el reflejo o el opuesto de este punto respecto del eje x. La

operación puede verse gráficamente en la figura 1 (a).

El doble de P, el punto R, se define como sigue. Primero se dibuja la recta tangente a la

curva elíptica en P. Esta línea intersecta la curva elíptica en un segundo punto. R será el reflejo

o el opuesto de este punto respecto del eje x. Esto se representa en la figura 1 (b).

33

Las fórmulas algebraicas para la ley de grupo se pueden derivar de la descripción

geométrica. Estas fórmulas se presentan a continuación para curvas elípticas E de la ecuación

de Weierstrass simplificada (en coordenadas afines) cuando la característica del cuerpo K

subyacente es 2 con curvas elípticas no-supersingulares, es decir L = GF(2
m

) = F2
m

.

Ley de grupo para E/F2m no-supersingulares: y2+x y = x3+ax2+b

1. Identidad. P + ∞ = ∞ + P = P ∀ P ∈E(F2m).

2. Negativos. Si P = (x, y) ∈ E(F2m), entonces (x, y) + (x, x + y) = ∞. El punto (x, x + y) se

denota como −P y es llamado opuesto de P; notar que −P de hecho es un punto en E(F2m).

Además −∞ = ∞.

3. Suma de Puntos. Sea P = (x1, y1) ∈ E(F2m) y Q = (x2, y2) ∈ E(F2m), donde P =±Q.

Entonces P + Q = (x3, y3), donde x3 = λ2+λ+x1+x2 +a y y3 = λ(x1 +x3)+x3 + y1 con λ = (y1 + y2)/(x1

+x2).

4. Duplicado de punto. Sea P =(x1, y1) ∈E(F2m), donde P =−P (es decir x1≠ 0). Entonces

2P =(x3, y3), donde x3 = λ2+λ+a = x1
2+ b / x1

2, e y3 = x1
2+λx3 +x3 con λ = x1+ y1/x1.

Estas son las operaciones implementadas en la tesis. Donde cada coordenada x e y

pertenece al cuerpo de extensión de K, es decir son polinomios cuyos coeficientes pertenecen

a Z2.

9. Anexos. Referencias

Fig.1: Suma y Duplicado geométricos de puntos de la curva elíptica

34

[1] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge University

Press, London Mathematical Society Lecture Notes Series 265, 1999

[2] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic CurveCryptography. Springer,

New York, 2004

[3] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York,USA, 1986.

[4] J. H. Silverman and J. Tate.Rational Points on Elliptic Curves.Springer-Verlag,1992.

[5] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve DigitalSignature

Algorithm(ECDSA). A Certicom Whitepaper,

2001.http://www.certicom.com/resources/w_papers/w_papers.html.

