i» Universidad
100 Zaragoza

Trabajo fin de master
Master en Ingenieria de Sistemas e Informatica

Co-diseno Hardware/Software
para Criptografia de Curva Eliptica
sobre plataformas en chip
heterogéneas

Director: Jesus Javier Resano Ezcaray

Autor: David Ken Vallejo Miguel

Departamento de

age Informatica e Ingenieria nae Escuela de)

!_._! de Sistemas a (11 Igenieria y Arquitectura
==+ Universidad Zaragoza 1542 Universidad Zaragoza
Departamento de Informatica e Grupo de Arquitectura de Escuela de Ingenieria y

Ingenieria de Sistemas Computadores de Zaragoza Arquitectura

Programa oficial de posgrado Curso 2015-2016
en Ingenieria Informéatica Diciembre 2015

Co-disefio Hardware/Software para Criptografia de Curva
Eliptica sobre plataformas en chip heterogéneas

Resumen

Recientemente ha aparecido en el mercado un nuevo tipo de sistemas en chip
heterogéneos que incluyen un multiprocesador basado en procesadores ARM y una FPGA
(hardware programable al que se pueden asignar aceleradores en tiempo de ejecucidn). El
objetivo de este trabajo ha sido el analizar cdmo sacar partido a estas plataformas en el campo
de la criptografia asimétrica de curva eliptica analizando las distintas posibilidades de codisefio
hardware/software y sus compromisos entre coste y eficiencia.

Se han utilizado dos de los algoritmos criptograficos mas representativos y eficientes
en entornos embebidos: la multiplicacion de Montgomery sobre coordenadas proyectivas y la
multiplicacidn de Frobenius sobre curvas Koblitz. Posteriormente se ha analizado el software
para determinar las partes mas adecuadas para ser sustituidas por un acelerador hardware
implementado en la FPGA. Resultando las operaciones mas costosas las de aritmética sobre
cuerpos finitos (Multiplicacidn, divisidn e inversion).

Se ha demostrado posteriormente la escalabilidad de nuestro desarrollo
implementando los algoritmos tanto sobre cuerpos GF(2'®*) como GF(2**). Cuerpos
recomendados por el NIST (National Institute of Standards an Technology) [11,12] y el SECG [6]
para aplicaciones en criptosistemas de curva eliptica.

Se han desarrollado los aceleradores hardware en la parte de la légica programable
proporcionada por la plataforma en forma de dispositivos con registros accesibles y
direccionables desde el software. La aritmética modular en hardware es de sobra conocida y
en este trabajo se han desarrollado e integrado componentes ampliamente utilizados.

Se han conseguido aceleraciones muy importantes, mientas que el consumo medio se
ha mantenido, incluso disminuyéndose ligeramente, con lo que el ahorro energético se
multiplica. Siendo un aspecto critico en los dispositivos embebidos y con restricciones tales
como tarjetas inteligentes y dispositivos moviles.

%

&
e
<
S

Ingenleris y Arqultecturs

.-':11 P DECLARACION DE
Universidad Zaragoza AUTORIA Y ORIGINALIDAD

izl doglimee=ti debe sooymifiar @ Transgo Finde Grada [TEGR] T lejn o
hebiater [TFAY) conndo sen (Mroaiimddo deiw s ey iluicdn}

D./oa, DAVID-KEMN VALLERD MIGUEL

conn®de DNl 720718516 en aplicacidn de lo dispuesto en el art.

14 |Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consefo
de Goblermno, por el que se aprueba el Reglamento de [os TFG y TFM de |a

Universidad de Zaragoza,

Doclaro. gue el presente Trabajp de Fn de (Grado/Master)
EN INGENIERIA INFORMATICA (Titulo del Trabajo)

i’

CO-DISEND HARDWARE/SOFTWARE PARA CRIPTOGRAFIA DE CURVA ELIPTICA
SCBRE PLATAFORMAS EN CHIP HETEROGENEAS

TRABAJOS DE FIN DE GRADO / FIN DE

es de mi autoria y es ariginal, no habiendose utilizado fuente sin ser citada

debidamente.

Zarapoza, 20 DE NOVIEMBRE DE 2015

indice

4.

N oo

INEFOAUCCION .ttt s st s b b e b e nnes 6
1.1 El chip, arquitectura heterogénea........cccceecuvveeieciiee e e 6
1.2 Caso de uso. La criptografia asimétrica implementada con Curvas Elipticas ... 8
1.3 Trabajo previo y relacionado........ccccceeeeeiiiieee e 8
1.4 Objetivos de este trabajo.......ccccuriiiiieii i 10

APlICACION SOFEWAIEoiiiieee ettt et et e e e aneeas 10
2.1 Multiplicacion escalar de puntos en curvas elipticas........cccooeeevevieeeiiiineeennns 10
2.2 Montgomery en coordenadas Proyectivasc.ccccveeeeeireeeiiireeesciieeeecieee e 11
2.3 Curvas Koblitz y mapa de Frobeniuscccovieeeeiiiiecciiiieeee e 13
2.4 Profiling. Andlisis del SOftWarecoccuveeiiciiiee e 15

Desarrollo HardWarec..eoiueeeiiieiee ettt s s 17
3.1 INEEITAZ AXI e e s 17
3.2 Multiplicador de polinOmMIosSccueeiiiiiiieiiieee e 18

3.2.1 Interfaz AXI del MUltiplicadorcoeeieriiiiiiciee e 19

3.2.2 Unidad de control del Multiplicador.........ccovecciiiieeeiiiicciieeee e, 20
3.3 Cuadrado de POliNOMIOSeeeeeeiiiiciiieee et e e e e rrare e e e e e 21
3.4 Divisor de PoliNnOMIOS.......ccuuiiieiiii it e e 22

RESUITAAOS ...ttt sttt et sb e sbeesaeesane e 23

CONCIUSIONES. ...ttt ettt ettt sie e st e st s bt e b e b e smeesmeeenseennees 26
5.1 Resumen del trabajo realizado.......cccceeeiiiiiiiiiiiie e 26
5.2 Conclusiones sobre el trabajo desarrollado.........ccccceeeeiciiiieiieiicccciieeee e, 26
5.3 Grado de consecucion de 0bjJetiVoscueeieiciiieeciiiiie e 27

R] o) (o3 101 U1 o TS 27

REFEIENCIAS ettt sttt ettt sttt et e b e sbeesaeesane e 28

Anexos. Conceptos y base Matematica.......ccceeecveeeeeciiei e, 30
8.1 Introduccidn a cuerpos fiNitoS.......ccoveiiiiiiiie i 30

8.1.1 ElCuerpo finito Fy 0 GF(P) ...ccviiiiiiiiiiiciiiiiicie, 30

8.1.2 EI CUErPO fiNito GF(2™) iivieeiieiiceeceetieeeete ettt sttt st 30
8.2 Introduccién a las curvas elipticas sobre cuerpos finitos.........cccceecvveeeennennnn. 31

ANEXO0S. REFEIENCIASeouviitieiieiie e s 33

Indice de algoritmos
Algoritmo 1. Método Binario lzquierda-Derecha para la multiplicacidn escalar [13]...11

Algoritmo 2. Multiplicacidn de puntos de Montgomery de Lépez-Dahab sobre GF(2™)

... 13
Algoritmo 3: Multiplicacion de puntos Koblitz sobre GF(2™) [13].ceecvvveververerererrrereeenns 14
Indice de figuras
Fig. 1. Vista superior de 1a ZedBoard..........ccccecveeereveeceieiciiciintcre e ettt ee e esn e e e 7
Fig. 2. Relacién entre el procesador, hardware y arquitectura Zyng.......c.cceoeevevvevreeeen e, 7
Fig. 3. Distribucion del tiempo de ejecucidn por fUNCIONES........cccvvveveeveececiece e 16
Fig. 4. Interfaz AXI del MURIPHCAOr........ccoieece et st e 19
Fig. 5. Seccidn del esquema RTL del multiplicador........cccveveeveevecceiece e 20
Fig. 6. Maquina de estados del multiplicador.........ccvveeeeveiiiereeceeee e 21
Indice de tablas
Tablal. Tiempos de multiplicacidn escalar en ECC en distintas plataformas..................... 9
Tabla 2. Profiling del SOftWare.......cce ettt s s 16

Tabla 3. Implementacién sobre FPGA de multiplicacion en GF(2Y).....cocovcvvvccvvevevnnc... 18

Tabla 4. Implementaciones sobre FPGA de squarer en GF(2™)....o.ccueviveenreeeeeereeerinnan 21
Tabla 5. Implementaciones sobre FPGA de la division en GF(2m)......ccccceveeecreinrieeeneene. 23
Tabla 6. Comparacién del consumo de potencia en los 3 desarrollos..........ccccveveeeeeee. 24
Tabla 7. Recursos de implementacién de las operaciones hardware...........cccceveveuee.. 24

Tabla 8. Comparacién de resultados de las distintas versiones desarrolladas................25

Tabla 9. Comparacién de resultados con otras arquitecturas..........ccceeveveeveeneieeeceeeerennn. 25

1. Introduccion

El objetivo de este trabajo es analizar cdmo sacar partido a las nuevas plataformas
heterogéneas, que combinan en un solo chip un sistema basado en procesadores ARM (como
el que se puede encontrar en la mayor parte de dispositivos méviles o empotrados de altas
prestaciones) con hardware reprogramable (FPGA), en el campo de la criptografia asimétrica
de curva eliptica analizando las distintas posibilidades de codisefio hardware/software y sus
compromisos entre coste y eficiencia.

La criptografia asimétrica de curvas elipticas constituye un nuevo caso de uso de estas
plataformas en el contexto de nuestro grupo de investigacién, ya que hasta la fecha se habia
trabajado mas en la linea de la inteligencia artificial y los juegos como el Reversi [9]. Es un caso
de uso de gran interés y aplicacion debido a la ubiquidad de los dispositivos méviles y al
incremento de la demanda de las comunicaciones y de la seguridad.

En lineas generales, partiremos de la implementacion software de algoritmos
representativos que usan distintos enfoques para aumentar la eficiencia, a continuacion se
analizard el software para determinar las partes mds adecuadas para ser sustituidas por un
acelerador hardware y procederemos a implementarlas en la FPGA. Por ultimo se tomaran
medidas y se compararan los distintos desarrollos entre si y desarrollos publicados por otros
autores.

El resto de la memoria sigue la estructura de contenidos que se indica a continuacién:

La seccion 2 describe los algoritmos software implementados en el procesador y su
analisis.

La seccion 3 detalla la implementacion hardware de las diferentes operaciones que se
ha llevado a cabo.

La seccidn 4 muestra los resultados en términos de rendimiento y consumo.
La seccidn 5 expone las conclusiones obtenidas a raiz del trabajo realizado.

La seccidn 6 contempla las posibles lineas de trabajo futuro.

La seccidn 7 contiene las referencias mas relevantes utilizadas en este trabajo.

Finalmente, el anexo | contiene el un resumen de los conceptos matematicos
necesarios para el desarrollo.

1.1 El chip, arquitectura heterogénea

La plataforma sobre la que se realiza el trabajo es la ZedBoard (figura 1), una placa
heterogénea basada en el sistema en chip Zynq completamente programable (All-

6

programmable SoC [10]) de la empresa Xilinx compuesta principalmente por un procesador
estdndar ARM Cortex-A9 dual-core [1] - procesador a nivel de aplicaciones capaz de ejecutar
un sistema operativo completo como Linux- y légica programable basada en las FPGAs Artix®-
7y Kintex®-7 [5] y [7].

Fig. 1. Vista superior de la ZedBoard

Para la interconexion de ambas partes se cuenta con un interfaz AXlI que permite
aumentar el ancho de banda con conexiones de baja latencia [8] (figura 2). Esta organizacidn
da lugar a un sistema que permite aprovechar al maximo la especializacidon de las dos partes
sin pagar un precio muy alto por la comunicacion (overhead).

ol
e
Opemting System

Zynq (section)

Hardware Inerfacing

Software Stack

mmip

Fig. 2. Relacién entre el procesador, hardware y arquitectura Zynq

Una FPGA (Field ProgrammableGateArray) es un circuito integrado que contiene
bloques de légica, elementos de memoria e interconexiones, todos ellos programables, asi
como bloques especificos de E/S. La configuracion de la FPGA mediante la interconexién de los

7

bloques logicos y la funcionalidad de los mismos, permite generar el sistema logico deseado.
Esta configuracidon se puede realizar tantas veces como se desee, incluso con el sistema
funcionando, por lo que los mismos recursos hardware pueden utilizarse para tareas distintas
segln sean las necesidades del sistema. Debido a su flexibilidad las FPGAs no son tan eficientes
como los circuito integrado para aplicaciones especificas (o ASICs, por sus siglas en inglés),
pero a cambio presentan menores tiempos de desarrollo y menores costes de fabricacidn para
tiradas bajas o medias.

1.2 Caso de uso. La criptografia asimétrica implementada con Curvas
Elipticas

En 1985, Miller [23] y Koblitz [22], propusieron independientemente un criptosistema
de clave publica andlogo a los esquemas de ElIGamal [24] en el que, el grupo multiplicativo de
enteros maédulo p, denotado por Zp*, se sustituye por el grupo de puntos de una curva eliptica
definida sobre un cuerpo finito. EI mejor algoritmo conocido para resolver el problema
matemadtico subyacente es computacionalmente muy dificil, el problema del logaritmo
discreto de curva eliptica (ECDLP de sus siglas en inglés), requiere tiempo totalmente
exponencial. Mientras que los mejores algoritmos matemadticos conocidos para resolver los
problemas subyacentes en RSA (factorizacidn de enteros) y DSA (el logaritmo discreto) toman
tiempo sub-exponencial. Por tanto los pardmetros son significativamente mas pequefnos en
criptografia de curva eliptica (ECC) que en otros sistemas, como RSA y DSA. Por ejemplo, una
clave ECC de 163 bits tiene un nivel de seguridad comparable al RSA y DSA con médulos de
1024 bits. Esto quiere decir que mediante el uso de ECC se puede alcanzar el mismo nivel de
seguridad con menor potencia de procesamiento, espacio de almacenamiento, ancho de
banda y energia eléctrica, lo cual hace especialmente interesantes estos criptosistemas para
aplicaciones en dispositivos con restricciones tales como tarjetas inteligentes, teléfonos y
dispositivos moviles.

El rendimiento de ECC depende principalmente de la eficiencia de las operaciones
sobre cuerpos finitos y de la definicién de algoritmos rapidos para multiplicaciones escalares
elipticas (apartado 2). La seleccidon de los cuerpos finitos o las curvas subyacentes también
puede incrementar el rendimiento (anexos).

1.3 Trabajo previo y relacionado

Existen numerosos trabajos en el campo de la criptografia de curva eliptica (ECC de sus
siglas en inglés) tanto desarrollos en plataformas ASIC, como en plataformas reprogramables o
FPGAs. Los desarrollos comparten la filosofia de la transferencia de toda la responsabilidad de
las operaciones al hardware. En la tabla comparamos algunas de estas implementaciones de
ECC. En [15] se presenta una arquitectura para ECC sobre cuerpos binarios, escalable en dreay
velocidad y adaptable para distintas curvas y cuerpos. Una arquitectura que consta de 3
componentes: Controlador principal, Unidad Aritmética (UA) y el Controlador de la UA.
Implementan el algoritmo de Montgomery en coordenadas proyectivas (uno de los mas

8

eficientes y mas utilizados, que nosotros empleamos también en este trabajo). Consiguen
realizar la multiplicacién escalar en GF(2'*’) en 0,21 m:s.

En [11] también presentan un acelerador hardware para ECC en cuerpos binarios, escalable
hasta polinomios de grado m=255, con los principales tipos de curvas cableadas y especial
atencién al multiplicador (con ejecucion paralela y separacion de las rutas de control y datos)
consiguen una multiplicacién en GF(2*%®) de solo 0,14 ms.

plataforma nombre Cuerpo y método de multiplicacién | tm [ms]
Xilinx XCV400E GF(2"’) Montgomery (Digit Size 021
EPGA @76.7MHz [15] D=16) '
Xilinx XCV2000E-FG680-7 163
@66.4MHz [18] GF(2™°) Montgomery 0.14
Coprocessor VLSI GF(2155) 3.90

@40MHz [19]
163

ASIC CE710,25'm 165k gates G'F.(Z) .
@66MHz [20] Random: modified SSM multiplier 1.10
Koblitz: modified SSM multiplier 0.65

Tablal. Tiempos de multiplicacidn escalar en ECC en distintas plataformas

En articulos mas recientes, se usa la técnica del codisefio hardware-software (HSC de
sus siglas en inglés) como en [16 y 17]. Con esta aproximaciéon se reduce la complejidad del
hardware eliminando mucha légica de control, disminuyendo el tiempo de desarrollo y
reduciendo también el drea y coste. En [16] presentan una plataforma parecida a la nuestra
compuesta por un procesador software PicoBlaze y una FPGA de Xilinx. Su arquitectura trabaja
con distintas tamafios de palabra (8-bit, 16-bit y 32-bit) en la ruta de datos y es escalable tanto
en software como en hardware, siendo capaz de trabajar con distintos cuerpos de polinomios.
Pero, aunque su control reside en el procesador software PicoBlaze, su aproximacion
implementa un segundo procesador ECC implementado en la FPGA que contiene memoria,
una ALU y multiplexores). La Unica diferencia entre las aproximaciones de [16] y [17] son el
tipo de curvas y la implementacidn elegida. En el primero usan Montgomery con coordenadas
proyectivas y en el segundo curvas Koblitz con la multiplicacién o mapa de Frobenius. Ambos
algoritmos se han usado en este desarrollo y pueden consultarse en la seccién 2 y en los
Anexos. En la tabla 9 se pueden ver los resultados de estos articulos junto con otros
arquitecturas, todos con anchura de 32 bits, tamafio de palabra utilizado en este trabajo. Otro
trabajo mas reciente todavia es el [21] en el cual desarrollan un procesador ECC completo que
implementa el algoritmo de multiplicacién Montgomery Lépez-Dahab. Esta arquitectura es
completamente escalable y presenta unos resultados solo por debajo de [18] que no tiene la
caracteristica de escalabilidad.

Estos trabajos previos demuestran el interés por optimizar las computaciones con
curvas elipticas utilizando FPGAs. Consideramos que nuestro trabajo complementa a estos
trabajos previos al estudiar las posibilidades de codisefio con curvas elipticas en una
arquitectura nueva que ha tenido una enorme acogida tanto en industria como en
investigacion.

1.4 Objetivos de este trabajo

El objetivo principal es estudiar las posibilidades que ofrece el codisefio hardware
software en el campo de la criptografia eliptica al utilizar las nuevas plataformas en chip
heterogéneas ARM/FPGA. Para ello:

¢ Se han identificado los algoritmos mas representativos

e Se ha implementado en C y se ha realizado un andlisis (profiling) de la demanda
computacional de cada uno de sus componentes

e Se han seleccionado las funcionalidades mds criticas y se han implementado tres
aceleradores hardware de forma que el procesador puede solicitar a los aceleradores
que realicen un célculo dado haciendo una llamada a una funcién.

e Se han analizado los resultados obtenidos evaluando las ganancias derivadas de la
inclusidon de estos aceleradores

2. Aplicacion software

En esta seccion se van a describir los algoritmos utilizados y su implementacién. En el
primer apartado se va a describir la operacidon de multiplicacidn de puntos de la curva en la
cual radica la seguridad criptografica. En el segundo y tercer apartado se describen los
algoritmos utilizados en este trabajo y en el Ultimo apartado se presenta el analisis del
comportamiento del software usado para determinar las funciones candidatas a ser aceleradas
en el hardware de la FPGA.

2.1 Multiplicacion escalar de puntos en curvas elipticas

La multiplicacion de puntos de la curva constituye la operacidn basica de la criptografia
de curva eliptica (ECC en inglés) y en la cual radica la seguridad criptografica, ya que la
operacion inversa, dados el punto resultado y el punto usado como generador, obtener el
numero usado como operando de la multiplicacion es computacionalmente inviable. Es decir
dados M =k - P, con My P puntos pertenecientes a la curva y k un niumero natural, a partir de
My P es muy dificil la obtencion de k.

Las operaciones definidas sobre el cuerpo que forman los puntos de la curva son la
suma de puntos (S = Q + P) y el duplicado de un punto (D = Q + Q = 2:Q) estas operaciones se
definen de manera sencilla geométricamente (ver Anexo).

Basicamente la operacién de multiplicacion se define como k sumas de puntos:

kP=P+P+...+P(kveces) Vk>0and O-P = oo

10

Asumiendo que el nimero de puntos de la curva (#E(L)) elegida pueda ser factorizado
como #E(L) = nh. Siendo n primo y h (el cofactor) pequeno, para que n sea aproximadamente
igual al orden del cuerpo (nimero de elementos).

Algoritmo bdsico. Sumary duplicar

Dada la representacién binaria de k (ki_1, ki_», . . ., ko), es decir
k=keg- 2" 4 kep 2724 ... + ko - 2°cont =log2n =log2q
De esta manera, la multiplicacién k-P puede ser obtenida segln el esquema:

KP={(...2(2(200 + ki 1p) + kisP) + ...) + koP

Algoritmo 1 Método Binario Izquierda-Derecha para la multiplicacién escalar [13].

INPUT: k = (ki.y, ..., ki, ko)2, P = (x, y) EE(F2").
OUTPUT: kP.

1: Q €0. - - Point At Infinite

2: fori=m -1 downto 0 do

3: Q €2Q.

4: ifk=1 then

5: Q<Q+P.
6: end if

7: end for

8: returnQ.

El algoritmo consiste en t operaciones de duplicar punto y como mucho t operaciones
de suma de puntos. El orden de magnitud de t es log2q = mlog2psiL = GF(pm). Ambas
operaciones son complejas e incluyen divisiones. Por eso se desarrollan y se han elegido para
este trabajo, los métodos descritos a continuacion. Cada coordenada pertenece a la extension
del cuerpo finito, es decir a polinomios cuyos coeficientes pertenecen al cuerpo (Ver anexos).

2.2 Montgomery en coordenadas proyectivas

La representacion estandar de los puntos de la curva se realiza en dos dimensiones L?,
siendo estas las denominadas coordenadas afines. Se pueden transformar estas coordenadas a
tres dimensiones, llamadas coordenadas proyectivas. Dados dos naturales ¢ y d, un
subconjunto de L* puede ser asociado para todo elemento (x, y) de L* [14]:

(x,y)>{XY,2)| 220, X=xZ,Y=yZ}

En el sentido opuesto, un elemento (X, Y, Z) de L3, con Z # 0, corresponde con el
elemento (x, y) de Ly es definido por

11

x=X/Z.y=Y/Z

Esta transformacion establece una relacién de equivalencia en L. En la que dos puntos
pertenecen a la misma clase si se corresponden con el mismo punto en L’ Esta clase de
equivalencia es el denominado punto proyectivo.

Se escoge la tercera coordenada de manera que nos permite evitar las operaciones de
divisién. Incrementando por contra las operaciones por iteracion al obligarnos a trabajar con
una coordenada adicional [14].

Este método de coordenadas proyectivas se puede aplicar a cualquier técnica. Se debe
transformar la ecuacion de Weierstrass que define la curva en coordenadas afines, a
coordenadas proyectivas, y definir las operaciones de suma de puntos y doblado de puntos en
funcién de esta nueva ecuacion (eligiendo la tercera coordenada Z, para poder simplificar las
operaciones) [13, 14].

Esta técnica es especialmente Util combinada con la multiplicacién de Mongomery,
que permite reducir las operaciones en cada iteracion, al trabajar o iterar con una coordenada
menos. Considerando de nuevo la representacién binaria de k, k =k.;2" Tkt L
+k,2M+ko2°, se definen las sumas parciales

So= 0
S1= kt_ 120
sy = ke 121+kt— 220

se= ke 128 Tk 52" 2 L kg2 4ko2%= k
Asi s;=2s 1tk ¥=1,2,...,t
El algoritmo consiste en calcular en cada paso A = s;P y B = (s;+1)P en funcién de s; ;P
and (s;.;+1)P (Ay B en la iteracion anterior) [13]:

Si k. ;=0 entonces
S;P=2(si1P), (s+1)P =(2s; 1 +1)P =5 4P +(s.1+1)P //A=2-A 'y B=A+B
sino // kt-j =1
siP=(2s; 1+1)P =s; 1P +(s;1+1)P //A=A+B
(s+1)P =(2s;.1+2)P =2(s.,+1)P //B=2B
fin
Este algoritmo, aplicado sobre curvas elipticas no-supersingulares (sobre cuerpos
binarios) es debido a Lépez y Dahab [13]. Con A = (Xa, Ya) # @ ¥ B = (Xg, Ys) # = dos puntos
diferentes de la curva y si A # - B, las x-coordenadas X, . gy Xa - s de A + By A - B estan
relacionadas por la siguiente ecuacion Xa . g = Xa - g +Xg(Xa + Xg) ~ b4 (xa(xa + xg) ~)% Como
ademas (ver Montgomery mas arriba) A = s;P and B = (s; + 1)P para todo j, entonces A-B=-P,
luego en curvas no-supersingulares, las coordenadas x coinciden x,g= Xp (ver anexos), siendo
P el punto original o generador y por tanto

Xp+8= Xp + Xg(Xa + Xg) _1"' (Xs(Xa + Xg) _1)2

12

De la misma manera, para el doblado de puntos (ecuaciones de curvas no-
supersingulares, ver anexos), se tiene

Xaa = Xa“+b/Xa” Si 42 0y (0, y4) +(0, ya) = (0, ya) - (0, ya) = °°

Como puede verse se puede operar sin la coordenada y. Al final del proceso iterativo,
ésta debe calcularse. De las propiedades de Montgomery, se tiene que P = (x,, y»), donde x, /=
0, kP= (xa, ya) y (k +1)P= (xs, ys), por tanto

yA:XP_l(XA+XP)[(XA+XP)(XB+XP) +XP2+yP] +Yp

Pasando a coordenadas proyectivas con c = 1 y d = 2 (coordenadas Lépez-Dahab)
pasamos a iterar con las coordenadas X y Z en cada iteracidn y finalmente calculamos Y
deshacemos el cambio de coordenadas pasando de nuevo a afines (evitando las operaciones
de division en la iteraciéon), quedando el algoritmo implementado de la siguiente manera:

Algoritmo 2: Multiplicacién de puntos de Montgomery de Lopez-Dahab sobre GF(2™) [13].

INPUT: k = (ki.y, ..., ki, ko)a,con keq= 1P = (x, y) EE(F2™).
OUTPUT: kP.
1. Xiéx, Z1€-1, X,&x"+b, Z,4é-x". {Calcula (P,2P)}
2. For I from t -2 downto O do
2.1If k=1then
T2y, 214 (XaZo+ XoZ1)%, Xi&oXZi4 X XoT 2.
TEX, Xo o Xy b2y, 2,6 T 22,2,
2.2 Else
T2y, 2,4 (XoZo+ XoZ1)%, XokoXZot X XoZiT .
TEX Xo X +b2,0, 26T 222
3. X3 X/Z,.
8. ys& (X X/ Zo) [((XeHXZ) (Xt X Zo)+ (X +yN(212)| (X2 Zo) + .
5. Return(xs, ys).

Este algoritmo realiza las mismas operaciones en cada iteracién, por lo tanto
incrementa su resistencia a ataques de tiempo y de anadlisis de consumo. Siendo un claro
candidato a ser implementado tanto en software como hardware.

2.3 Curvas Koblitz y mapa de Frobenius
Las curvas Koblitz son un tipo especial de curvas elipticas no-supersingulares sobre
GF(2™) [13, 14]:
Exyi+xy=x+1
Exy +xy=x+x'+1

Es decir curvas no-supersingulares E. con coeficientesb=1ya =0 (Ey) o a =1 (E,).

13

Estas curvas permiten simplificar las operaciones de Duplicado de puntos en su
totalidad, sustituyéndolas por operaciones de squarer de polinomios, muy rapidas y eficientes
en cuerpos binarios [13, 14]. Para sustituir las operaciones de doblado se utiliza el mapa o
aplicacién de Frobenius t de Ec(GF(2™)) a Ec(GF(2™)) con

(o) = (o) y (%, y)=(x’y’)
Se puede demostrar que
2P=-T(P)+ut(P) conu=1sia=1y u=-1ifa=0

Como t es una aplicacién, cualquier combinacién lineal serda otra aplicacion en
Ec(GF(2™)). Por tanto el resultado anterior puede generalizarse para cualquier aplicaciéon a de
Ec(GF(2™)) a Ec(GF(2™)) en la que, dados dos enteros ay b, a(P) = aP + bt(P).

Se puede realizar una especie de divisidn entre las aplicaciones a y T de tal manera que
a=at+rconr € {-1, 0, 1}. Las sucesivas divisiones, de manera parecida a las divisiones
euclideas en el cuerpo finito de los enteros Z,, proporcionaran una serie de restos que
permiten descomponer la funcién inicial a de manera que

-1
A=ry+rT+...+r_,7 '+t

Se puede demostrar que o, = 0 después de un numero finito de pasos. Asi,
considerando el caso particular de la funcién a con coeficientes a = k y b = 0, es decir, a(P) =kP,
tendremos

kP=r,_ 1T Y P) +r_, T %(P)+...+r;T(P) +roPconr, €{ -1, 0, 1}

El objetivo de las sucesivas divisiones es que Ki sea cero el mayor nimero de veces
posible. Asi si k no es divisible por T en alguna iteracidn, escogemos r; €{ -1, 1}, de manera que
en (k -r)/t sea divisible por t. Asi en la siguiente iteracidn, el siguiente r;sea 0. De esta manera
se puede definir la multiplicacién de puntos en la curva como sigue

Algoritmo 3: Multiplicacién de puntos Koblitz sobre GF(2™) [13].

INPUT: k€ [1..n-1]yP=(x, y) EE(F2")y de orden n.
OUTPUT: kP.
1.Q & o0, A& K B &0
2. While ((A /=0) or (B /=0)) do
2.1ifAmod2=0thenR_| < 0;
2.2 elsif 2 - ((A-2*B) mod 4) = 1 then

R 1< 1;

if Q =-oothen Q < P; else Q < Q + P; endif;
2.2 else

R I1&-1;

if Q =oothen Q < - P; else Q < Q - P; endif;
2.3 endif;
2.4. P & 1t (P); --Elevar al cuadrado cada coordenada
25T A AEB+uUu(T-R1)/2;B& (RI-T)/2;

14

3. Return(Q).

2.4 Profiling. Analisis del software

Entre las principales herramientas se ha contado con el Vivado IDE de Xilinx para la
programacion hardware sobre la placa y el IDE Xilinx SDK para el desarrollo software y la
integracion con el hardware.

Con la segunda herramienta se ha llevado a cabo la implementacidn de los algoritmos
descritos en los apartados anteriores completamente en lenguaje C y se ha compilado con el
compilador de Xilinx para ARM con el comando arm-xilinx-eabi-gcc. El entorno integrado
contiene una utilidad para el analisis del cédigo o profiling de modo intrusivo que esta basada
en la herramienta GNU gprof [26]. La herramienta nos proporciona dos tipos de informacion
para poder optimizar el software: un histograma con los tiempos de ejecuciéon para cada
funcién y un grafo de llamadas a funcidn que indica quien llama a quien y cuantas veces.

Al compilar con la opcidn “-pg’ para el andlisis cada vez que se llama a una funcion se
invoca a la funcién mcount para registrar las funciones invocante e invocada (profiling
intrusivo). Asi aparece en los resultados consumiendo el 50% del tiempo de ejecucién total,
como puede verse en la tabla 2.

Quitando la funcion mencionada, y que sélo debe ejecutarse al realizar el proceso de
analisis, las siguientes funciones que mas tiempo consumen son las de acceso a los vectores de
bits que representan los polinomios, elementos del cuerpo extendido y puntos de la curva. Las
funciones bitv_assign y bitv_get representan el 14,22% y el 11,8%. Ambas funciones son
invocadas principalmente, como puede verse en los parents de cada una por las funciones de
Product y Multiply By X. Siendo la que llama a ambas Product_Mod_F. Esta es la funcidn
candidata a ser acelerada por el hardware. Funcién que realiza la multiplicacidon de polinomios
(coordenadas de los puntos de la curva).

Las operaciones de division de polinomios sélo se invocan al deshacer el cambio de
coordenadas al finalizar el proceso iterativo, asi que tienen menor relevancia que la
multiplicacidn (tabla 2). Sin embargo puede verse que las dos operaciones de divisién invocan
a bitv_get y a Product, e indirectamente a bitv_assign. Funciones que tienen mucha relevancia
en el rendimiento (figura 3). Por tanto finalmente se considera que la funcién Divider_Mod_F
también es una buena candidata para ser acelerada por el hardware. Se decide implementarla
en una segunda versidn de nuestro desarrollo.

15

Mame (location) Samples Calls Time/Call % Time

mecount 326607 50.29%
a bibtv_assign 92397 119320507 Tins 1422%
4 parents 377 119320507 Glns 11,26%
Product (Galois.c:-1] 491393 78456120 B2ns T.07%
Multiply_By_X (Galois.c-1] 23340 39401175 39ns 3,59%
Shift One (Galois.c:-1) B4 1062720 Blins 0,1%
Hex_To_Bin {Galois.c:-1) 0 492 Ons 0,0%
i children 0 118320007 Ons 0.0%
4 bitv_get 76673 119324080 Bdns 11,8%
4 parents 73480 119324080 B1ns 113%
Product (Galais.c:-1) 45193 78856120 BZns T.57%
Multiphy_By_X (Galois.c-1) 23340 39162380 59ns 3, 59%
Shift_One (Galoiz.c-1) 644 1056240 Glns 01%
Product_Mod_F (Galois.c:-1) 284 238795 118ns 0,04%
Divide By X (Galois.c:188) 13 6480 200ns 0,0%
Divider Mod_Binary_F (Galois.c:530) i} 3250 184ns 0.0%
Maontgomery_Point_Multiplicationy_Pro 0 815 Ons 0,0%
i+ children 0 119324080 Ons 0,0%
4 Product 49143 480830 10.230us FET%
i children 1659241 157952500 107ns 26,04%
4 parents 23637 430830 4.915us 3.64%
Multiply_By_X (Galois.c:254) 23340 2387495 9. 774us 3, 59%
Product_Meod_F (Galois.c:-1) 284 238795 118ns 0,04%
Divide_By_X (Galais.c:189) 13 3240 A01ns 0,0%
4 Multiply By X 23340 238795 9.774us 3 59%
i children 223463 79520200 281ns 3438%
4 parents 284 238795 118ns 0,04%
Product_Mod_F (Galois.c:-1) 284 238795 118ns 0,04%

Tabla 2. Profiling del software

Las cuatro funciones que mas tiempo consumen (sin contar la funcién intrusiva usada
para el analisis mcount) seran cubiertas en su totalidad por los tres aceleradores hardware que
se decide implementar (Multiplicador, Elevador al cuadrado y Divisor de polinomios mdédulo
f(x)) (figura 3).

% EXECUTION TIME

mcount
bitv_assign
bitv_get
Product

B Mulbply_By X

Fig. 3. Distribucion del tiempo de ejecucion por funciones

16

3. Desarrollo Hardware

En este apartado se va a detallar el desarrollo hardware llevado a cabo en el trabajo. La
idea ha sido la de implementar nuevas funciones mediante aceleradores accesibles desde el
software a través de escrituras y lecturas en registros direccionables por el procesador. Los
objetivos han sido minimizar el tamafo y el consumo del hardware e intentar acelerar al
maximo la ejecucidon de las operaciones mas costosas detectadas durante el andlisis del
software. Las operaciones de suma y doblado de puntos (ver anexos) se componen de
numerosas multiplicaciones. Aproximadamente la mitad son operaciones de elevar al
cuadrado un polinomio, asi que se ha tomado la decisidn de desarrollar dos componentes: el
multiplier y el squarer en la primera versién y el divider en la segunda.

Los componentes que implementan aritmética modular son altamente conocidos y hay
muchos desarrollos disponibles en el mercado. En este trabajo se han seleccionado para
cumplir los objetivos de minima d4rea y coste. Posteriormente se les ha dotado de un interfaz
AXI, que explicamos a continuacidn y ademds se ha dotado de una Unidad de Control muy
sencilla tanto al multiplicador como al divisor.

3.1 Interfaz AXI

AXI significa Advanced eXtensible Interface, su actual version es la 4 y es parte del
estandar abierto ARM AMBA 3.0. Estandar de facto para la comunicacidn en chip. La
plataforma nos proporciona tres posibles protocolos para la comunicacidn, en funcién de las
necesidades de la conexidn:

e AXl4: transferencia con memoria mapeada en la que se proporciona una direccion y un
tamafio de rafaga de hasta 256 palabras.

e AXl4-Lite: transferencia de una sola palabra a una sola direccion, también mapeada en
memoria

e AXlI4-Stream: rafagas de transferencia sin limite de tamafio. No tiene mecanismo de
direccionamiento, es un flujo directo entre el origen y el destino. Se indica el
dispositivo Unicamente (memoria no mapeada).

Debido a que los polinomios ocupan pocas palabras de transferencia se ha escogido la
opcion AXl4-Lite que ademas era la mas sencilla. Y de los nueve interfaces AXI que proporciona
la plataforma, se ha escogido el M_AXI_GPO, de propdsito general y muy apropiado para
transferencias de baja a media intensidad. Interfaz directo que no incluye almacenamiento en
memoria intermedia (buffering) en el que el procesador es master y los aceleradores
integrados slave.

Para las operaciones sobre las curvas definidas sobre cuerpos binarios de extension
GF(2'®) hacen falta 163 bits, seis palabras de 32 bits. Normalmente uno o dos polinomios de
entrada y uno de salida. Para los cuerpos binarios de extensiéon GF(2%*?) seran necesarios 8
palabras de 32 bits por polinomio.

17

3.2 Multiplicador de polinomios

Los elementos del cuerpo GF(2™) se han representado en base polinomial. Se podrian
haber representado en otras bases como la normal o las bases dual o triangular, pero la
polinomial es la mas comun. Asi los elementos se representan como polinomios de hasta
grado m-1. Las operaciones de suma de polinomios y resta se implementan mediante
operaciones XOR muy rdpidas, mientras que la multiplicacién es considerada la operacidn mas
compleja e importante. Las operaciones se realizan mddulo f(x), siendo f un polinomio
irreducible de grado m de la siguiente forma:

fX)=X"+fn=IX""14 .+ fix+fo

con f,€ GF(2) = {0, 1}. Siendo el conjunto {1, %, . . . X"~ '} la baso polinomial en GF(2™)
con la que podemos representar cualquier elemento. La multiplicacién de dos elementos a(x) y
b(x) en GF(2™) se define como c(x) = a(x)b(x) mod f(x). Esta operacién implica dos pasos, la
multiplicaciéon y la reduccion médulo f(x). Los polinomios irreducibles utilizados son los
recomendados por el NIST para curvas no-supersingulares[11, 12]:

fix) =x"C + X" +x°+ x> +1 en GF(2'®) y f(x) =x* +x"* + 1 en GF(2**).

Entre los multiplicadores se contemplaron distintas opciones. El multiplicador
combinacional clasico, el Kartsuba-Ofman que utiliza un método recursivo muy eficiente, asi
como el multiplicador de Mastrotivio basado en operaciones matriz-vector [14]. O el
multiplicador de Montgomery que permite versiones tanto combinacionales como
secuenciales. El que se ha escogido finalmente es el Multiplicador entrelazado de tipo
secuencial y muy sencillo. Mas lento que las opciones combinacionales (Classic y Mastrovito)
pero con un coste y un area mucho menor. En la tabla pueden verse las comparaciones entre
las diferentes implementaciones, tanto en tamafio como en eficiencia [14].

M Type FFs LUTs Slices Period Cycles Total time
Classic - 22,356 15,171 - - 39
163 Interleaved 509 511 271 4.5 163 815
Mastrovito - 22,347 15,201 - - 36
Montgomery 344 347 184 7.4 163 1,206
233 Interleaved 763 723 417 6.4 223 1427
Montgomery 484 489 255 7.5 233 1,748

Tabla 3. Implementacién sobre FPGA de multiplicaciéon en GF(2)

De las dos opciones de implementacién que permite el multiplicador entrelazado: Bit
Mas Significativo Primero (MSB-First) o el Menos significativo primero (LSB-first), se ha
escogido la segunda porque presenta menos dependencias en las operaciones a iterar y por
tanto un camino critico mas corto en la ruta de datos [14]. La implementacién del componente
se ha tomado de [14] y presenta la siguiente interfaz:

18

entity interleaved_mult is

port
A, B: in std_logic_vector (M1 downto 0);
clk, reset, start: in std_|ogic;

Z: out std_logic_vector (M1 dowmnto 0);
done: outstd_logic

ehd interl eaved_nult;

3.2.1 Interfaz AXI del Multiplicador

Al componente selecicionado se le han afadido los registros, y sefiales necesarios para
implementar su interfaz AXI. El componente va a tener un bus de escritura de 32 bits y otro de
lectura de 32 bits. El bus de direccionamiento de 7 bits servird para poder direccionar cada uno
de los registros del componente (figura 3)

interleaved_mult_ip_v1_0_S00_AXI_inst

S_AXI_ACLK

s00_axi_aclk[>
s00_axi_araddr[6:0] >

S AXI ARADDR[6:0]

s00_axi_aresetn [_»

s00_axi_arprot[2:0] >
s00_axi_arvalid [_>

[»s00_axi_arready

[> s00_axi_awready

5_AXI_ARESETN S_AXI_ARREADY
5_AXI ARPROT(2:0] S_AXI_AWREADY

S_AXI_ARVALID 5 AXI BRESP[1:0]
5 AXT _AWADDR[6:0] S_AXI_BVALID

s00_axi_awaddr[6:0]1[>
s00_axi_awprot[2:0][>

5 AXT AWPROT[2:0]

{»s00_axi_bresp[1:0]

5 AXI RDATA[31:0]

[»s00_axi_bvalid

[>s00_axi_rdata[31:0]

s00_axi_awvalid [_» S_AXL AWVALID S AXLRRESF1:0] {>s00_axi_rresp[1:0]
s00_axi_bready [> 5 AI_BREADY 5 AXI_RVALTD [»sD0_axi_rvalid
S_AXI_RREADY S_AXI_WREADY

s00_axi_rready [>
s00_axi_wdata[31:0] >
s00_axi_wstrb[3:0]1 >
s00_axi_wvalid [

s00_axi_wread
S AXI WDATA[31:0] D - v

S AXI WSTRB[3:0]
S_AXI WVALID

wee_mult_ip_v1_0_S00_AXI__parameterized0
Fig. 4. Interfaz AXI del multiolicador

El funcionamiento de la comunicacidn es la siguiente. En primer lugar se pondra en el
bus la direccién del registro a escribir (AWADDR). En segundo lugar se pondra el dato en el bus
de datos de escritura (WDATA) y a continuacién se usard la seiial de WSTRB para realizar el
WRITESTROBE (la escritura consecutiva de un 0 y un 1) para iniciar la escritura del dato. De
forma parecida se utilizan los buses de datos (RDATA) y direccién (ARADDR) para la lectura.

Internamente se controla que las escrituras sdlo se habiliten (WRITE_ENABLE) cuando
los datos, la direccidn se hayan establecido y sean validas y se termine de hacer el WSTRB.

En la figura 4 puede verse una seccién de la conexién entre el componente
seleccionado (multiplicador entrelazado de polinomios de 163 bits) y los registros del
dispositivo o controlador:

19

reg_data_out_i

= shiporo [18{31: 0]
< stupon 1 [19[31:0])

5= stacooo 10[31:0])
5= stoocos 11[31:0])
RTL REG SVNC 5= stocor 12[31:0])
netli == stacon1 13[310]
] o 5= stoorno 14[31:0])
RTL NV s- stoo11 15[3110])
- s= sboono 16[31:0])
siv_req8_req[31:0) 5= stoon 1 [7[310])
2 B L job_mult_component S-sboicoo 18[31:0]
FEEERER o m = smoico1 19[31:0]
(HkE E A a A[L62:0]) Sesboro1o [10[31:0] oE10]
R A B[162:0] I 162:0] sasboion1 [11[31:0])
Bl 9 ok jone 310 5= sbor00 [12[31:0])
: = — 5332 5= 501102 [1331:0]
F start g5fed ses
interleaved_mult 124196 ERATiR
15h:128 5= stuccon [16[31: 0]
Se stupens [17[31:0)
s
s

Secotndt DO[L 0

RTL_REG_SYNC
5 ﬁlfn_m Ux
slv_reg10_reg[31:0]
ST u] T
C
1 Q

Fig. 5. Seccion del esquema RTL del multiplicador

Se han desarrollado por ultimo las funciones software para que el procesador pueda
leer y escribir de los registros del dispositivo como en los de cualquier otro periférico

void INTERLEAVED_MULT_IP_mWriteReg(u32 BaseAddress, unsigned RegOffset, u32 Data)
u32 INTERLEAVED _MULT_IP_mReadReg(u32 BaseAddress, unsigned RegOffset)

Con BaseAddrress la direccion base (mapeada en memoria) donde se encuentra
nuestro multiplicador. RegOffset es el desplazamiento del registro que queremos leer o
escribir y los datos que se pasan como pardmetro en caso de escritur o se devuelven al leerse
del registro especificado.

De la misma manera se ha implementado la funcion software que sustituye a la
funcién software Product_Mod_F (identificada en la seccion 2.4 de profiling) en la que los
calculos se sustituyen por la escritura de los operadnos y la lectura del resultado en los
registros correspondientes del acelerador hardware una vez que se detecte (leyendo un
resgitro de ocntrol) que los célculos han terminado.

Polynomial Interleaved_Mul_Mod_F(Polynomial A, Polynomial B, Polynomial C)

3.2.2 Unidad de control del Multiplicador

Al componente se le ha afiadido unidad de control que implementa una maquina
estados de tipo Moore muy sencilla que puede verse en la figura 6.

20

start_mult = 0 mult_done =1
done = 1 Acabado

start_mult =0
done =0

start =0

Start_mult =0 Preparado
done =1

Trabajando

start =1
done =0

start_mult =1
done =0

Fig.6. Maquina de estados del multiplicador

Las sefiales de start y done se transmiten igualmente por el interfaz AXI entre el
procesador principal y el componente. Para empezar a trabajar el componente cliente debe
mandar consecutivamente las ordenes de start = 0 y start= 1 (clasica técnica de strobe o
palanca) pasando por dos estados en los cuales se resetea el componente y se le da la orden
de comienzo. Finalmente entramos en un estado de espera mientras se calcula la
multiplicacidn antes de pasar al estado acabado en el que el componente cliente obtiene la
salida done = 1 indicando que ya puede leer el resultado.

3.3 Cuadrado de polinomios

Una manera directa de implementar la operacién de elevar al cuadrado modular seria
utilizar un multiplicador como los del apartado anterior con un solo operando de entrada para
poder realizar ¢(x) = a(x)a(x) mod f(x) = a(x)’mod f(x). Pero la operacién de elevar al cuadrado
puede optimizarse ya que en GF(2™) se trata de una operacion lineal, es decir,

c(x) = a(x)? mod f(x) = (am-1X*™ Y+ ap_ 5™ P+ +a, X+ ag) mod flx)

Por tanto, la primera parte de la operacién, la de multiplicacién (que va seguida de la
posterior reduccion modular) puede calcularse como d(x) = a(x)a(x), siendo d(x) un polinomio
de grado 2m — 2 de la forma

d(x) = am-1 X"Vt am)P+ 40X +0p=(0m-1,0,0m-20,...,0, a5 0, ay)

Se han comparado distintas opciones de implementacion. En la tabla 4 puede verse
que las opciones combinacionales son mas rapidas y ocupan menos espacio que sus
contrapartidas secuenciales, asi que se ha optado por las primeras.

Type m Ffs LUTs Slices | Period | Cycles Totaltime
. 163 464 510 306 53 82 435
LSB-First
233 659 723 436 6.0 117 702

21

Seq. 163 361 341 199 4.3 163 701
Montgomery 233 542 484 309 4.4 233 1,025
. 163 - 165 86 - - 3
Classic
233 - 153 99 - - 3
163 - 267 147 - - 20
Montgomery
233 - 117 74 - - 7

Tabla 4. Implementaciones sobre FPGA de squarer en GF(2™)

En concreto hemos optado por el método cldsico [14] que es ademas muy sencillo de
implementar y presenta la siguiente interfaz:
entity classic_squarer is
port (
a: in std_logic_vector(M1 dowto 0);
c: out std_logic_vector(M1 downto 0)

end cl assi c_squarer;

En este caso no ha sido necesaria la adicciéon de una unidad de control al tratarse de un
circuito combinacional y solamente se ha afiadido el interfaz AXI correspondiente. De la misma
manera al definido en la secciéon 3.2.1 del multiplicador.

3.4 Divisor de polinomios

La divisién sobre un conjunto de polinomios, mas concretamente sobre la estructura
de anillo de polinomios Z,[x]/f(x) con p primo y con f(x) polinomio de grado m > 0 solo es
posible sif(x) es irreducible (es decir que no tiene factores de grado mayor o igual a uno). De
esta manera todo h(x) perteneciente a Z,[x]/f(x) tiene un inverso h(x)*tal que h(x)h™*(x) mod
f(x) = 1. En este caso la estructura de anillo se pasa a denominarse cuerpo finito. Z,[x]/f(x) pasa
a ser un cuerpo extendido del cuerpo finito Z,, también denominada Galois Field o GF(p™). En
cuerpos binarios p = 2. La operacién bajo estudio es la siguiente: dados g(x) y h(x) enZ,[x]/f(x),
donde h(x) es un polinomio no nulo, calcular z(x) tal que g(x) = h(x)z(x) mod f(x), es decir,

2(x) = g(x)h™(x) mod f(x)

Hay dos tipos de algoritmos como en el caso de Z,. El primer tipo de algoritmos son los
gue permiten representar el mcd (maximo comun divisor) de dos polinomios a(x) y b(x) sobre
Z, en la forma a(x)a(x) + B(x)b(x) (gracias a la Identidad de Bezout) con a (x) y B (x) polinomios
sobre Z,. En este caso para hallar h™(x), con f(x) irreducible y grado de h(x) menor a m (grado
del irreducible) tenemos que su mcd = 1y, aplicando Bezout, existen dos polinomios a (x) y 8
(x) tales que a(x)f(x) + 6(x)h(x) = 1y B(x)h(x) mod f(x) = 1, es decir

h™(x) = 8(x) mod f(x)

A este primer grupo pertenecen el Algoritmo de Euclides Extendido y el Algoritmo
Binario (elegido por nosotros). Un segundo método consistiria en sustituir la inversidn por la
exponenciacion basandonos en la idea del caracter ciclico del cuerpo, que no hemos
contemplado en este trabajo.

22

Nuestro trabajo ha sido el elegir el algoritmo de divisidn. Para ello se han comparado
los principales algoritmos comentados, tanto en drea y recursos como en rendimiento (Ver
[14])

Algoritmo Ffs LUTs Slices Mult | RAM |Periodo | Ciclos Tiempo
PseudoEuclidean 871 3,923 2,272 39 1 36 147 5,292
Binary 623 3,235 | 2,001 37 - 56 37 2,072

Reduction to

multiplications (Visg) | 562 | 2607 | 1594 | 34 1 25 | 7602 | 190,05
Reduction to 672 | 2,794 | 1,754 | 35 1 19 | 4,202 | 79,838
multiplications (LSE)
Optimalextensionfield |)3 | 5 973 | 1609 | 34 1 25 235 5,875
(MSE)
Optimalextensionfield |)¢ | 3,00 | 1894 | 35 1 19 133 2,527

(LSE)

Tabla 5. Implementaciones sobre FPGA de la division en GF(2™)

Esta tabla se ha extraido de [14] donde se comparan distintas implementaciones de
Divisores sobre GF(239'/) implementados en una FPGA Spartan3 (speed-5) de Xilinx. Los
tiempos estdn expresados en ns, los FFs, LUTs, Mults y RAM, representan el nimero de flip-
flops, el numero de tablas Look-Up , el nimero de multiplicadores de 18 bit-by-18-bit y el
numero de bloques RAM usados en la implementacién. Hemos escogido el método binario ya
que es el Unico que no usa RAM y que proporciona el mejor rendimiento con un coste o
tamafio muy aceptable.

La implementacion se ha tomado de [14]. Al componente se le ha afiadido un interfaz
AX| parecido al detallado en la seccién 3.2.1 junto con una maquina de estados, igualmente
muy parecida a la del Multiplicador de la seccion 3.2.2.

4. Resultados

Durante el desarrollo se verificdé la correccion de cada una de las versiones,
comparando los resultados obtenidos fueran exactos a los resultados publicados por el
NIST[11 y 12] asi como implementaciones de otros autores [14].

Para la evaluacién del consumo utilizamos como instrumento de medida un vatimetro
Yokogawa WT210 [27]. El vatimetro viene acompafado de un software que procesa el
muestreo de las medidas y ofrece graficas de una gran variedad de magnitudes de medida. En
la tabla 6 se puede observar que el consumo medio de las 2 versiones es muy parecido, la

23

versién software y la versidén completa con los tres aceleradores hardware (Multiplicador y
Elevador al cuadrado y el divisor).

m Algoritmo Mutiplicacion puntos ECC Po;c‘ehl;)cna

163 Montgomery Lopez-Dahab 4,475

233 (Version Software) 4,357

163 Mont L Dahab (30ps) 4,340
ontgomery Lopez-Dahab (3ops

233 gomery top P 4,395

Tabla 6. Comparaciéon del consumo de potencia en los 3 desarrollos

Los consumos llegan a ser algo inferiores en la version hardware, suponemos que por
el menor uso del procesador software, que puede quedar suspendido en espera de la
finalizacion de las operaciones hardware. El principal ahorro energético vendrd por la
reduccion de los tiempos de ejecucidon que podemos ver mas abajo. En la tabla 7 aparecen los
recursos utilizados por las distintas versiones de cédigo desarrolladlas, con 2 y 3 operaciones,
siendo el divisor la tercera operacion, afiadida en la segunda versién. En estos desarrollos hay
que tener en cuenta que se deben incluir también los componentes del interfaz AXI. Los FFs,
LUTs, representan el nimero de flip-flops y el nimero de tablas Look-Up empleadas.

Desarrollo (Version) Recurso Utilizados
FF 1902
M =163 (20ps)
LUT 2008
FF 3041
M =163 (30ps)
LUT 3020
FF 2318
M = 233(20ps)
LUT 2393
FF 3877
M =233 (30ps)
LUT 3724
FF 913
[17]
LUT 2028

Tabla 7. Recursos de implementacién de las operaciones hardware

En [21] se proporcionan el nimero de Slices utilizados, para su implementacion en la
plataforma XC3S400 utilizan 2418 Slices y en la XC4VFX12 utilizan 2648 Slices. Nuestra
frecuencia de trabajo para realizar las mediciones ha sido de 100MHz. Las utilizadas en [17 y
16] son de 68.3 MHz y las de [17] estaban en 79.6 y 142.5 MHz. Los trabajos [2, 3 y 4] son
anteriores y trabajan con rutas de datos con una anchura de 8 bits presentando rendimientos
inferiores.

Las primeras mediciones se han realizado para comprobar si efectivamente las nuevas
operaciones hardware aceleraban la ejecucion del algoritmo implementado en software. En
efecto, como puede verse en la tabla 8, las aceleraciones con las dos versiones desarrolladas
son altisimas. Esto es debido a que la aceleracién se produce sobre las funciones que
consumen casi la totalidad del tiempo de ejecucidn.

24

m Algoritmo Mutiplicacion puntos ECC Rendimiento [S] Aceleracion
163 Montgomery Lopez-Dahab 28,398 1
233 (Version Software) 70,147 1
163 0,0733 387,4
Montgomery Lopez-Dahab (20ps)
233 0,1455 482,1
163 0,0091 3120,6
Montgomery Lopez-Dahab (3ops)
233 0,0141 49749
Tabla 8. Comparacién de resultados de las distintas versiones desarrolladas
Trabajo| m Algoritmo Mutiplicacion puntos ECC Plataforma Rendimiento [S] | Escalable
Dalton 8051
[3] 163 Double-Add 1SS-8bit 3.97
[4] 163 AVR-AT94K - 8 bit 0.113 No
2] 163 Montgomery Lopez-Dahab AVR - 8 bit 0.290
233 ATmegal28 - 8bit 0.810
163 0.0155)
[16] MixedCoordinates PicoBlaze 32bit Si
283 0.0451
163 i i 0.038
[17] Montgomery Lopez-Dahab PicoBlaze 32bit Si
233 68.3MHz 0.0734
163 XC35400 0.864 ms S
283 32bit79.637MHz 1.957 ms I
[21] Montgomery Lopez-Dahab
163 XC4VFX12 0.483 ms S
233 32bit142.53MHz 1.093 ms I
163 P) Dahab (20ps) 0.073
ontgomery Lopez-Dahab (2ops
233 b P 0.145
2 163 0.009
= Montgomery Lopez-Dahab (3ops)
© 233 ZedBoard 32bit 0.014 S
S 163 _ 100MHz 3.7241
= Koblitz (2ops)
G 233 7.7863
163 . 0.0707
Koblitz (3ops)
233 0.1202

Tabla 9. Comparacién de resultados con otras arguitecturas

Como se puede ver en la tabla 9 los tiempos conseguidos en este trabajo son algo

mejores que los obtenidos en las aproximaciones de codisefio [17 y 16], sobre todo si

comparamos con nuestra version de 3 operaciones aritméticas (multiplicacién, cuadrado vy

division). La arquitectura desarrollada en [21] claramente supera a nuestro desarrollo, siendo

una de las implementaciones (sobre FPGA) de multiplicacién de puntos mas rapida, aunque

todavia por debajo de [18].Pero hay que recordar que [21] presenta una solucion totalmente

implementadas en HW, lo que implica mas recursos, y mas tiempo de desarrollo. Nuestro

trabajo no pretende competir con soluciones de este tipo sino evaluar la utilidad del codisefio

en la que la mayor parte de la funcionalidad puede ir en SW acelerando el tiempo de

desarrollo. Una ventaja adicional del trabajo desarrollado es que presentamos una

25

arquitectura escalable (al igual que en [21]). Con los recursos necesarios podria trabajarse en
cualquier tamafio y no sélo en los dos tamafios presentados. Comparando nuestros
desarrollos, vemos que nuestra version Koblitz, que hace un mayor uso de la division tiene
peor rendimiento, desventaja muy acusada en las versiones con sélo dos operaciones.

5. Conclusiones

5.1 Resumen del trabajo realizado

El objetivo de este trabajo es estudiar las posibilidades de codisefio que ofrecen los
nuevos chips con procesadores ARM y FPGA. El estudio se ha centrado en criptografia con
curvas elipticas, un campo especialmente interesante para sistemas moviles y empotrados en
el que existe interés por la utilizacion de FPGAs desde hace tiempo. En este trabajo se ha
implementado un algoritmo puramente en software para la multiplicacién de puntos en curvas
elipticas. Se ha analizado el software y se han sustituido las operaciones mas costosas
(multiplicacion, elevar al cuadrado y divisidn) por aceleradores hardware.

Se han conseguido aceleraciones muy importantes con aceleradores genéricos y
facilmente reutilizables, manteniendo los niveles de consumo, con lo que el ahorro energético
se multiplica. Siendo un aspecto critico en los dispositivos embebidos y con grandes
restricciones.

5.2 Conclusiones sobre el trabajo desarrollado

Con los resultados obtenidos parece evidente que las nuevas arquitecturas
heterogéneas ARM/FPGA son una oportunidad para conseguir lo mejor de dos mundos que
hasta ahora eran independientes. Por un lado el disefiador tiene a su disposicion los entornos
de desarrollo para ARM con herramientas de compilacidn, depuracidn, profiling... asi como la
posibilidad de usar todo tipo de librerias desarrolladas para estos sistemas. Por otro lado las
FPGAs permiten desarrollar aceleradores a medida, que ademds se pueden cambiar en tiempo
de ejecucion [25] de forma que los mismos recursos que se utilizan para acelerar la
computacion con curvas elipticas se pueden usar para otras aplicaciones en otro momento.
Ademas las FPGAs de Xilinx y en concreto la plataforma ZedBoard son muy eficientes para la
implementacion de operaciones aritméticas, gracias a recursos especiales que incorporan
como los DSP48E1[10].

Los entornos de desarrollo utilizados permiten acoplar de forma sencilla la parte
software y los aceleradores hardware. Y los resultados muestran que en el caso de las curvas
elipticas, la aceleracién obtenida al incluir recursos hardware compensa el sobrecoste de las
comunicaciones. Es importante remarcar que una vez disefiado un acelerador e integrado en el
sistema, el software puede utilizarlo de la misma manera con la que interactia con cualquier
otro periférico haciendo llamadas a una serie de funciones definidas en una libreria. Es decir,

26

no hace falta conocimientos de disefio hardware para utilizar un acelerador hardware ya
disefado. Por tanto los aceleradores podrdn incluirse en librerias que permitiesen a cualquier
desarrollador software acelerar sus disefios. Por ello se ha tratado de hacer disefios genéricos
y reutilizables.

Légicamente, incluir nuevos recursos heterogéneos en un chip como una FPGA no sdlo
conlleva ventajas. También aumenta la complejidad del disefio, y las necesidades de test y
verificacion. En ese sentido es interesante comentar que existe una comunidad muy activa y
bastante documentacién. Aun asi al ser plataformas recientes a veces se encuentran
problemas no muy bien documentados. En general la complejidad del proceso de disefio de un
acelerador en estas plataformas y su inclusién como periférico en el sistema no me ha
resultado excesivamente complejo. Las herramientas proporcionadas por el fabricante tanto
para el disefio hardware como software nos han parecido muy potentes, flexibles y sencillas de
utilizar. En cuanto al proceso de test y verificacion se han encontrado dificultades en la
seleccidn de valores escalares suficientemente grandes y representativos, asi que finalmente
se tuvo que pasar a una representacién vectorial del entero con el que multiplicar los puntos
generadores de la curva. Ademas tampoco hay publicados muchos trabajos que incluyan
resultados para poder comparar. Ha sido un proceso complicado, pero finalmente nos permite
estar seguros de nuestras mediciones.

5.3 Grado de consecucion de objetivos

Los objetivos iniciales se han cumplido en su totalidad. Se han aplicado conocimientos
adquiridos tanto en las asignaturas del master de Programacion orientada a prestaciones para
realizar el profiling como de la asignatura de Procesadores de dominios especificos.

El trabajo desarrollado puede representar otra via de investigacién en el drea. Un caso
de uso distinto dentro del codisefio hardware software que se realiza en el grupo, pero en el
que se pueden incorporar los avances genéricos como la mejora de las comunicaciones en chip
y aprovechar toda la experiencia acumulada.

En lo personal, ha supuesto un reto simultanear los estudios del master con la vida
profesional. Y ha quedado demostrado que el no trabajar de manera continuada en el tiempo
en un proyecto es altamente perjudicial para su finalizacién. El autor quiere agradecer la
colaboracién de Javier Olivito en el proceso de toma de mediciones y en especial el apoyo y la
ayuda del director del trabajo, Javier Resano, a lo largo de todo el desarrollo.

6. Trabajo futuro

El siguiente paso seria el desarrollo de operaciones hardware de grano mas grueso o
mas complejas, como pueden ser las de Suma de Puntos o Doblado de Puntos de las curvas.
Esta idea ha quedado a medio desarrollar y no ha podido finalizarse a fecha de hoy. El objetivo
era sondear si la pérdida de generalidad merecia la pena en términos de coste y eficiencia.

27

Al incrementar la complejidad de las operaciones que se indica, se aumenta la cantidad
de polinomios a transmitir y se podrian aplicar las técnicas de transferencia con el interfaz AXI
DMA que ha sido optimizado por otros miembros del grupo de investigacion, para aumentar
las transmisiones.

Finamente, también ha quedado por concluir la escalabilidad de nuestro desarrollo
(solo finalizado para curvas de tamafio m = 163 y m = 233) que deberia extenderse a la
totalidad de las curvas recomendadas por el NIST [11].

7. Referencias

[1]JARM, “The ARM Cortex-A9 Processors”, White paper, v2.0, September 2009. Available:
http://www.arm.com/files/pdf/ARMCortexA-9Processors.pdf

[2]H.Eberle, A.Wander, N. Gura, S.C. Shantz, “Architectural Extensions forElliptic Curve
Cryptography over GF(2m)”, Sun Microsystems Laboratories.2005.

[3] L. Batina, D. Hwang, A. Hodjat, K. Sakiyama, I. Verbauwhede,“Reconfigurable architectures
for curve-based cryptography on embeddedmicro-controllers”, International conference on
Field Programmable Logic andApplications. FPL. 2006.

[4]S. S. Kumar, C. Paar, “Reconfigurable instruction set extension for enablingECC on an 8-bit
processor “, In Field Programmable Logic and Application -FPL 2004, LNCS 3203, pp. 586-595.
Springer Verlag, 2004.

[5]M. Santarini, “Xilinx Redefines State of the Art With New 7 Series FPGAs”, Xcell Journal,
Third Quarter 2010, pp. 6 - 11.Disponible:
http://www.xilinx.com/publications/archives/xcell/Xcell72.pdf

[6] Certicom Research, SEC 2: Recommended Elliptic Curve Domain Parameters, v1.0, 2000

[71Xilinx, Inc., “7 Series FPGAs Overview”, Product Specification, DS180, v.1.15, February
2014.Disponible:
http://www.xilinx.com/support/documentation/data_sheets/ds180 7Series_Overview.pdf

[8]Xilinx, Inc., “AXI Reference Guide”, UG761, v14.3, November 2012.Disponible:
http://www.xilinx.com/support/documentation/ip _documentation/axi ref guide/latest/ug76

1 axi reference guide.pdf

[9] Olivito, J.; Gonzalez, C.; Resano, J. (2010) FPGA Implementation of a Strong Reversi Player.
Proceedings IEEE International Conference on Field-Progammable Technology (FPT 2010), pag:
507-510.

[10]Xilinx, Inc., “7 Series DSP48E1l Slice User Guide”, UG479, v1.7, May 2014. Available:
http://www.xilinx.com/support/documentation/user_guides/ug479 7Series_DSP48E1.pdf

28

[11] Recommended Elliptic Curves for Federal Government Use. http://csrc.nist.gov/.

[12] U.S. Department of Commerce/National Institute of Standards and Technology
(NIST),Digital Signature Standard (DSS), FIPS PUB 182-2changel, 2000.

[13] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic CurveCryptography.
Springer, New York, 2004.

[14] J.P. Deschamps, J.L. Imafia, and G.D. Sutter.Hardwarelmplementationof Finite-
FieldArithmetic.McGraw-Hill, 2009.

[15] G. Orlando and C. Paar. A High-Performance Reconfigurable Elliptic Curve Processorfor
GF(2™). In C. K. Kog¢ and C. Paar, editors, Cryptographic Hardwareand Embedded Systems —
CHES 2000, LNCS 1965, pages 41 —56.Springer-Verlag,2000.

[16] M. Hassan and M. Benaissa, “Low Area - Scalable Hardware/Software Co-design for
Elliptic Curve Cryptography for Low-Resource Applications” in 3rd International Con-ference
on New Technologies, Mobility and Security (NTMS), December2009

[17] M. Hassan and M. Benaissa, “Low Area - Scalable Hardware/Software Co-design for
Elliptic Curve Cryptography on PicoBlaze Microcontroller” in 3rd International Con-ference
on New Technologies, Mobility and Security (NTMS), December2009

[18] N. Gura, S. Chang, H. Eberle, G. Sumit, V. Gupta, D. Finchelstein, E. Goupy, andD. Stebila.
An End-to-End Systems Approach to Elliptic Curve Cryptography. InC. K. Ko¢ and C. Paar,
editors, Cryptographic Hardware and Embedded Systems —CHES 2001, LNCS 1965, pages 351—
366. Springer-Verlag, 2001.

[19] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An implementation of ellipticcurve

155

cryptosystems over F27>° . IEEE Journal on Selected areas in Communications,11(5):804—-813,

June 1993.

[20] S. Okada, N. Torii, K. Itoh, and M. Takenaka. Implementation of Elliptic
CurveCryptographic Coprocessor over GF(2™) on an FPGA. In Cetin K. Ko¢ andChristof Paar,
editors, Proceedings of the Second Workshop on Cryptographic Hardwareand Embedded
Systems — CHES 2000, pages 25-52, Berlin, Germany, 2000.Springer-Verlag

[21] K. C. CinnatiLoi and Seok-Bum Ko. High Performance Scalable Elliptic
CurveCryptosystem Processor in GF(2™). In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium

[22] N. Koblitz. Elliptic Curve Cryptosystems.Mathematics of Computation, 48:203-209, 1987

[23] V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. Williams, editor, Advancesin
Cryptology — CRYPTO ’85, LNCS 218, pages 417—-426, Berlin, Germany,1986. Springer-Verlag.

[24] T. ElGamal. A public-key cryptosystem and a signature scheme based on
discretelogarithms. IEEE Transactions on Information Theory, 1T-31(4):469-472, 1985.

29

[25] Xilinx, Inc., “Partial Reconfiguration of a Hardware Accelerator on Zyng-7000 All
Programmable SoC Devices”, v1.0 2013. Disponible:
http://www.xilinx.com/support/documentation/application notes/xapp1159-partial-reconfig-

hw-accelerator-zyng-7000.pdf

[26] GNU gprof. Disponible: http://sourceware.org/binutils/docs-2.18/gprof/index.html

[27] Yokogawa Electric Corporation Website, http://www.yokogawa.com/

8. Anexos. Conceptos y base matematica

En este capitulo se ofrece una breve introducciéon a la formacién matemadtica en
Criptosistemas Curva Eliptica (ECC del inglés, en adelante). Sélo damos una breve introduccion
gue cubre todos los aspectos que son relevantes para esta tesis. Las partes 2.1 y 2.2 se han
tomado principalmente de [2]. Para una introduccién mas detallada a ECC recomendamos la
siguiente bibliografia [1, 3y 4]

8.1 Introduccién a cuerpos finitos

Un cuerpo finito consiste en un conjunto finito de elementos F, dos operaciones
binarias, adicidon y multiplicacidn y los inversos multiplicativos y aditivo de cada elemento. Las
operaciones binarias satisfacen ciertas propiedades aritméticas. El nimero de elementos en el
cuerpo se denomina orden. Existe un cuerpo finito de orden g si y sélo si g es una potencia de
un primo. Esencialmente, sélo hay un cuerpo finito de orden q denotado por F,. Si g = p”
donde p es un niumero primo y m es un entero positivo, entonces p se llama caracteristica de
Fqy m se llama el grado de extensién de F,. Los cuerpos finitos también se denominan Cuerpos
de Galois en honor a Evariste Galois (1811-1832) o GF de sus siglas en inglés.

En lo que sigue, se describen brevemente los dos tipos mas importantes de cuerpos
finitos aplicados en la practica, el cuerpo primo GF(p) y el cuerpo binario GF(2™).

8.1.1 El Cuerpo finito F, o GF(p)

Llamamos cuerpo primo al cuerpo finito F, donde p es un nimero primo. Se representa
por la conjunto de numeros enteros {0, 1, 2,.., p — 1}. Las operaciones de adicién y de
multiplicaciéon son médulo p. Si a es un elemento distinto de cero en F,, decimos que el inverso
de a médulo p, denotado por a”, es el Gnico entero ¢ perteneciente a F,parael que a-c=1. En
esta tesis no utilizamos el cuerpo finito F,. Sélo usamos el cuerpo finito GF(2"), que se
presenta a continuacion.

8.1.2 El Cuerpo finito GF(2m)

30

El cuerpo finito GF(2™) puede ser visto como un espacio vectorial de dimensién m
sobre el cuerpo F, que consta de dos elementos 0 y 1. A GF(2™) se le conoce a menudo como
cuerpo finito de caracteristica dos o cuerpo finito binario. La caracteristica es el menor nimero
de veces que debes sumar 1 para obtener 0 (suma en el cuerpo finito). Se denomina orden (q)
del cuerpo finito al nimero de elementos que contiene. Con g = 2"en GF(2™). Como se trata de
un espacio vectorial, todos los elementos a de GF(2™) pueden ser representados como una
cadena de bits (aga;... am-1): @ =agfotaiPi +...+am-1fm-1; donde a,€ GF(2) = {0, 1}. El conjunto {B,
B:... Bm-1} se llama una base de GF(2™) sobre GF(2). Hay muchas bases diferentes y algunas de
ellos conducen a implementaciones mas eficientes que otras. En esta tesis, sélo tenemos en
cuenta las representaciones sobre base polindmicas, porque son muy adecuadas para
microprocesadores y arquitecturas hardware. Otras bases se describen, por ejemplo, en [5],
gue es también nuestra principal referencia para esta seccion. Un polinomio f(x) irreducible de
grado m sobre F, 0 GF(2) se puede escribir como:

fX)=X"+fn=IX" "1+ fix+ Sy

con f,€ GF(2) = {0, 1}. Siendo el conjunto {1, x, . . . x™ "'} la base polinomial en GF(2™).
Irreducible significa que no puede ser factorizado en polinomios de grado menor que m (y
mayor o igual a 1). La identidad multiplicativa se representa por el polinomio constante (grado
0) igual a 1. Y la identidad aditiva por el polinomio nulo (todos los coeficientes iguales a 0). La
suma (y la resta) se implementan con operaciones XOR bit a bit. La multiplicacidn se obtiene
tras multiplicar los coeficientes de los dos polinomios de entrada aplicando la propiedad
distributiva, obteniendo un polinomio de grado hasta 2(m-1) y luego reduciendo
posteriormente por el polinomio irreducible (dividiendo y obteniendo su resto).

8.2 Introduccion a las curvas elipticas sobre cuerpos finitos

Dado un cuerpo finito K, una curva eliptica E se define sobre K por la ecuacién de
Weierstrass

Y4 QXY + G3) = X+ QX+ AaX + T

con a;, a, as as Y as pertenecientes a K y satisfaciendo algunas condiciones
adicionales establecidas sobre el discriminante de la ecuacién [2, Cap. 3]. El objetivo de estas
condiciones es definir una ecuacién y una curva regular, es decir sin vértices ni intersecciones
para que las tangentes sean Unicas para todo punto de la curva. Dado un cuerpo de extension
L de K, la curva eliptica correspondiente E(L) se define por la siguiente relacién:

E(L) = {(x,y) € LX L: y*+ aiXy + a3y = X*+ aoX*+ QX + ag} U {0}

Siendo e un punto adicional denominado punto en el infinito (identidad de la suma de
puntos).

31

En esta tesis solo trabajamos con cuerpos finitos de caracteristica 2 (p = 2). La
expresion de la curva puede simplificarse enormemente mediante un cambio de variables. En
nuestro caso la ecuacidn puede definirse o simplificarse de dos maneras:

a) y’+cy=x>+ax+b (curva supersingular) a, b, y c €K, y ¢ # 0.
b) y”>=x>+ax’+b (curva no-supersingular)ayb €K,az0yb #0.

Puede ser demostrado (Teorema de Hasse, [2]) que el nimero de puntos de E(L)
pertenece al siguiente intervalo:

q+1-2q"°<#E(L)<q+1+2q"

donde g es el nimero de elementos de L. Asi, para grandes valores de g, el nUmero de
elementos de E(L) es aproximadamente igual al nimero de elementos del cuerpo finito: #E(L)
= q. En esta tesis, K=Z,con p =2y L= GF(2"), las mas usadas en aplicaciones practicas.

Definicion del Grupo o Ley de Grupo

Sea E una curva eliptica definida sobre L. Hay una regla de arco-y-tangente para sumar
dos puntos en E(L) para dar un tercer punto en E(L). Junto con esta operacién de suma, el
conjunto de puntos de E(K) forma un grupo abeliano con e como elemento identidad. Es este
grupo el que se utiliza en la construccién de sistemas criptograficos de curva eliptica.

La regla de adicion se explica mejor geométricamente. Sean P= (x3, y1) Y Q =(x,,¥>)
dos puntos distintos sobre una curva eliptica E. La suma R, de P y Q, se define como sigue.
Primero se dibuja una linea que pasa por P y Q. Esta linea intersecta la curva eliptica en un
tercer punto. Entonces R sera el reflejo o el opuesto de este punto respecto del eje x. La
operacion puede verse graficamente en la figura 1 (a).

El doble de P, el punto R, se define como sigue. Primero se dibuja la recta tangente a la
curva eliptica en P. Esta linea intersecta la curva eliptica en un segundo punto. R serad el reflejo
o el opuesto de este punto respecto del eje x. Esto se representa en la figura 1 (b).

32

3 / ¥ ;
I
/!
A A
i af
- F S . 3 rl.-' i
" _,f [. f:’ |
= / ' P=(xp.vp) oF~ |
0 = (x3.v7) P / [b l,f ‘,a’f |
J,:— -.: . s ,."I.l | .»'“:_-“\\ |
™~ [I == \ / l
f - \I | | |) | |
| - / | [X |] |] T
o [y s \ I
ll{x i "-._\ | \\,_ _,-‘/ \l. |
P={x1,m) _ [\ I
L \ '
\\.L | Yol
b LY
[3 B
‘\& R =(x3,v3) WE=0a. 7
Y,
\ \
(a) Addition: P+ Q = R. (b) Doubling: P+ P = R.

Fig.1: Suma y Duplicado geométricos de puntos de la curva eliptica

Las formulas algebraicas para la ley de grupo se pueden derivar de la descripcion
geométrica. Estas formulas se presentan a continuacion para curvas elipticas E de la ecuacion
de Weierstrass simplificada (en coordenadas afines) cuando la caracteristica del cuerpo K
subyacente es 2 con curvas elipticas no-supersingulares, es decir L = GF(2™) = F2™.

Ley de grupo para E/F2m no-supersingulares: y2+xy = x3+ax2+b

1. Identidad. P + e =0+ P=P VP €E(F2").

2. Negativos. Si P = (x, y) € E(F2™), entonces (x, y) + (x, X + y) = e=. El punto (x, X + y) se
denota como -P y es llamado opuesto de P; notar que -P de hecho es un punto en E(F2M).
Ademads —oo = oo,

3. Suma de Puntos. Sea P = (x4, y1) € E(F2™) y Q = (x5, V) € E(F2™), donde P =+Q.
Entonces P + Q = (xs, y3), donde x; = N+A+x+X, +a Y Vs = AXy +X3)+X3 + yr con A = (yq + v,)/(x1
+X2).

4. Duplicado de punto. Sea P =(x,, y;) EE(F2™), donde P =-P (es decir x,# 0). Entonces
2P =(xs, y3), donde x; = A#A+a =x;+ b / X5, e Y3 =X "+AX3 +X3 con A = X+ y1/Xy.

Estas son las operaciones implementadas en la tesis. Donde cada coordenada x e y
pertenece al cuerpo de extensién de K, es decir son polinomios cuyos coeficientes pertenecen
a Zz_

9. Anexos. Referencias

33

[1] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge University
Press, London Mathematical Society Lecture Notes Series 265, 1999

[2] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic CurveCryptography. Springer,
New York, 2004

[3] J. H. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York,USA, 1986.
[4] J. H. Silverman and J. Tate.Rational Points on Elliptic Curves.Springer-Verlag,1992.

[5] D. Johnson, A. Menezes, and S. Vanstone. The Elliptic Curve DigitalSignature
Algorithm(ECDSA). A Certicom Whitepaper,
2001.http://www.certicom.com/resources/w_papers/w_papers.html.

34

