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Co-diseño Hardware/Software para Criptografía de Curva 
Elíptica sobre plataformas en chip heterogéneas 

 

Resumen 

 

Recientemente ha aparecido en el mercado un nuevo tipo de sistemas en chip 

heterogéneos que incluyen un multiprocesador basado en procesadores ARM y una FPGA 

(hardware programable al que se pueden asignar aceleradores en tiempo de ejecución). El 

objetivo de este trabajo ha sido el analizar cómo sacar partido a estas plataformas en el campo 

de la criptografía asimétrica de curva elíptica analizando las distintas posibilidades de codiseño 

hardware/software y sus compromisos entre coste y eficiencia. 

Se han utilizado dos de los algoritmos criptográficos más representativos y eficientes 

en entornos embebidos: la multiplicación de Montgomery sobre coordenadas proyectivas y la 

multiplicación de Frobenius sobre curvas Koblitz. Posteriormente se ha analizado el software 

para determinar las partes más adecuadas para ser sustituidas por un acelerador hardware 

implementado en la FPGA. Resultando las operaciones más costosas las de aritmética sobre 

cuerpos finitos (Multiplicación, división e inversión). 

Se ha demostrado posteriormente la escalabilidad de nuestro desarrollo 

implementando los algoritmos tanto sobre cuerpos GF(2163) como GF(2233).  Cuerpos 

recomendados por el NIST (National Institute of Standards an Technology) [11,12] y el SECG [6] 

para aplicaciones en criptosistemas de curva elíptica. 

Se han desarrollado los aceleradores hardware en la parte de la lógica programable 

proporcionada por la plataforma en forma de dispositivos con registros accesibles y 

direccionables desde el software. La aritmética modular en hardware es de sobra conocida y 

en este trabajo se han desarrollado e integrado componentes ampliamente utilizados. 

Se han conseguido aceleraciones muy importantes, mientas que el consumo medio se 

ha mantenido, incluso disminuyéndose ligeramente, con lo que el ahorro energético se 

multiplica. Siendo un aspecto crítico en los dispositivos embebidos y con restricciones tales 

como tarjetas inteligentes y dispositivos móviles. 
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1. Introducción 
 

El objetivo de este trabajo es analizar cómo sacar partido a las nuevas plataformas 

heterogéneas, que combinan en un solo chip un sistema basado en procesadores ARM (como 

el que se puede encontrar en la mayor parte de dispositivos móviles o empotrados de altas 

prestaciones) con hardware reprogramable (FPGA), en el campo de la criptografía asimétrica 

de curva elíptica analizando las distintas posibilidades de codiseño hardware/software y sus 

compromisos entre coste y eficiencia. 

La criptografía asimétrica de curvas elípticas constituye un nuevo caso de uso de estas 

plataformas en el contexto de nuestro grupo de investigación, ya que hasta la fecha se había 

trabajado más en la línea de la inteligencia artificial y los juegos como el Reversi [9]. Es un caso 

de uso de gran interés y aplicación debido a la ubiquidad de los dispositivos móviles y al 

incremento de la demanda de las comunicaciones y de la seguridad. 

En líneas generales, partiremos de la implementación software de algoritmos 

representativos que usan distintos enfoques para aumentar la eficiencia, a continuación se 

analizará el software para determinar las partes más adecuadas para ser sustituidas por un 

acelerador hardware y procederemos a implementarlas en la FPGA. Por último se tomarán 

medidas y se compararán los distintos desarrollos entre sí y desarrollos publicados por otros 

autores. 

El resto de la memoria sigue la estructura de contenidos que se indica a continuación: 

La sección 2 describe los algoritmos software implementados en el procesador y su 

análisis. 

La sección 3 detalla la implementación hardware de las diferentes operaciones que se 

ha llevado a cabo. 

La sección 4 muestra los resultados en términos de rendimiento y consumo. 

La sección 5 expone las conclusiones obtenidas a raíz del trabajo realizado. 

La sección 6 contempla las posibles líneas de trabajo futuro. 

La sección 7 contiene las referencias más relevantes utilizadas en este trabajo. 

Finalmente, el anexo I contiene el un resumen de los conceptos matemáticos 

necesarios para el desarrollo. 

1.1 El chip, arquitectura heterogénea 
 

La plataforma sobre la que se realiza el trabajo es la ZedBoard (figura 1), una placa 

heterogénea basada en el sistema en chip Zynq completamente programable (All-
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programmable SoC [10]) de la empresa Xilinx compuesta principalmente por un procesador 

estándar ARM Cortex-A9 dual-core [1] - procesador a nivel de aplicaciones capaz de ejecutar 

un sistema operativo completo como Linux-  y lógica programable basada en las FPGAs Artix®-

7 y  Kintex®-7 [5] y [7].  

 

 

 

 

 

 

 

 

Para la interconexión de ambas partes se cuenta con un interfaz AXI que permite 

aumentar el ancho de banda con conexiones de baja latencia [8] (figura 2). Esta organización 

da lugar a un sistema que permite aprovechar al máximo la especialización de las dos partes 

sin pagar un precio muy alto por la comunicación (overhead). 

 

 

Una FPGA (Field ProgrammableGateArray) es un circuito integrado que contiene 

bloques de lógica, elementos de memoria e interconexiones, todos ellos programables, así 

como bloques específicos de E/S. La configuración de la FPGA mediante la interconexión de los 

Fig. 1. Vista superior de la ZedBoard 

Fig. 2. Relación entre el procesador, hardware y arquitectura Zynq 
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bloques lógicos y la funcionalidad de los mismos, permite generar el sistema lógico deseado. 

Esta configuración se puede realizar tantas veces como se desee, incluso con el sistema 

funcionando, por lo que los mismos recursos hardware pueden utilizarse para tareas distintas 

según sean las necesidades del sistema. Debido a su flexibilidad las FPGAs no son tan eficientes 

como los circuito integrado para aplicaciones específicas (o ASICs, por sus siglas en inglés), 

pero a cambio  presentan menores tiempos de desarrollo y menores costes de fabricación para 

tiradas bajas o medias.  

1.2 Caso de uso. La criptografía asimétrica implementada con Curvas 
Elípticas 
 

En 1985, Miller [23] y Koblitz [22], propusieron independientemente un criptosistema 

de clave pública análogo a los esquemas de ElGamal [24] en el que, el grupo multiplicativo de 

enteros módulo p, denotado por Zp
*, se sustituye por el grupo de puntos de una curva elíptica 

definida sobre un cuerpo finito. El mejor algoritmo conocido para resolver el problema 

matemático subyacente es computacionalmente muy difícil, el problema del logaritmo 

discreto de curva elíptica (ECDLP de sus siglas en inglés), requiere tiempo totalmente 

exponencial. Mientras que los mejores algoritmos matemáticos conocidos para resolver los 

problemas subyacentes en RSA (factorización de enteros) y DSA (el logaritmo discreto) toman 

tiempo sub-exponencial. Por tanto los parámetros son significativamente más pequeños en 

criptografía de curva elíptica (ECC) que en otros sistemas, como RSA y DSA. Por ejemplo, una 

clave ECC de 163 bits tiene un nivel de seguridad comparable al RSA y DSA con módulos de 

1024 bits. Esto quiere decir que mediante el uso de ECC se puede alcanzar el mismo nivel de 

seguridad con menor potencia de procesamiento, espacio de almacenamiento, ancho de 

banda y energía eléctrica, lo cual hace especialmente interesantes estos criptosistemas para 

aplicaciones en dispositivos con restricciones tales como tarjetas inteligentes, teléfonos y 

dispositivos móviles. 

El rendimiento de ECC depende principalmente de la eficiencia de las operaciones 

sobre cuerpos finitos y de la definición de algoritmos rápidos para multiplicaciones escalares 

elípticas (apartado 2). La selección de los cuerpos finitos o las curvas subyacentes también 

puede incrementar el rendimiento (anexos). 

1.3 Trabajo previo y relacionado 

 
Existen numerosos trabajos en el campo de la criptografía de curva elíptica (ECC de sus 

siglas en inglés) tanto desarrollos en plataformas ASIC, como en plataformas reprogramables o 

FPGAs. Los desarrollos comparten la filosofía de la transferencia de toda la responsabilidad de 

las operaciones al hardware. En la tabla comparamos algunas de estas implementaciones de 

ECC. En [15] se presenta una arquitectura para ECC sobre cuerpos binarios, escalable en área y 

velocidad y adaptable para distintas curvas y cuerpos. Una arquitectura que consta de 3 

componentes: Controlador principal, Unidad Aritmética (UA) y el Controlador de la UA. 

Implementan el algoritmo de Montgomery  en coordenadas proyectivas (uno de los más 
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eficientes y más utilizados, que nosotros empleamos también en este trabajo). Consiguen 

realizar la multiplicación escalar en GF(2167) en 0,21 ms. 

En [11] también presentan un acelerador hardware para ECC en cuerpos binarios, escalable 

hasta polinomios de grado m=255, con los principales tipos de curvas cableadas y especial 

atención al multiplicador (con ejecución paralela y separación de las rutas de control y datos) 

consiguen una multiplicación en GF(2163) de solo 0,14 ms. 

plataforma nombre Cuerpo y método de multiplicación tm [ms] 

FPGA 

Xilinx XCV400E 
@76.7MHz [15] 

GF(2167) Montgomery (Digit Size 
D=16) 

0.21 

Xilinx XCV2000E-FG680-7  
@66.4MHz [18] 

GF(2163) Montgomery 0.14 

ASIC 

Coprocessor VLSI 
@40MHz [19] 

GF(2155) 3.90 

CE71 0,25¹m 165k gates  
@66MHz [20] 

GF(2163) 
Random: modified SSM multiplier 
Koblitz: modified SSM multiplier 

 
1.10 
0.65 

 

En artículos más recientes, se usa la técnica del codiseño hardware-software (HSC de 

sus siglas en inglés) como en [16 y 17]. Con esta aproximación se reduce la complejidad del 

hardware eliminando mucha lógica de control, disminuyendo el tiempo de desarrollo y 

reduciendo también el área y coste. En [16] presentan una plataforma parecida a la nuestra 

compuesta por un procesador software PicoBlaze y una FPGA de Xilinx. Su arquitectura trabaja 

con distintas tamaños de palabra (8-bit, 16-bit y 32-bit) en la ruta de datos y es escalable tanto 

en software como en hardware, siendo capaz de trabajar con distintos cuerpos de polinomios. 

Pero, aunque su control reside en el procesador software PicoBlaze, su aproximación 

implementa un segundo procesador ECC implementado en la FPGA que contiene memoria, 

una ALU y multiplexores). La única diferencia entre las aproximaciones de [16] y [17] son el 

tipo de curvas y la implementación elegida. En el primero usan Montgomery con coordenadas 

proyectivas y en el segundo curvas Koblitz con la multiplicación o mapa de Frobenius. Ambos 

algoritmos se han usado en este desarrollo y pueden consultarse en la sección 2 y en los 

Anexos. En la tabla 9 se pueden ver los resultados de estos artículos junto con otros 

arquitecturas, todos con anchura de 32 bits, tamaño de palabra utilizado en este trabajo. Otro 

trabajo más reciente todavía es el [21] en el cual desarrollan un procesador ECC completo que 

implementa el algoritmo de multiplicación Montgomery López-Dahab. Esta arquitectura es 

completamente escalable y presenta unos resultados solo por debajo de [18] que no tiene la 

característica de escalabilidad.  

Estos trabajos previos demuestran el interés por optimizar las computaciones con 

curvas elípticas utilizando FPGAs. Consideramos que nuestro trabajo complementa a estos 

trabajos previos al estudiar las posibilidades de codiseño con curvas elípticas en una 

arquitectura nueva que ha tenido una enorme acogida tanto en industria como en 

investigación.  

Tabla1. Tiempos de multiplicación escalar en ECC en distintas plataformas 
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1.4 Objetivos de este trabajo 
 

El objetivo principal es estudiar las posibilidades que ofrece el codiseño hardware 

software en el campo de la criptografía elíptica al utilizar las nuevas plataformas en chip 

heterogéneas ARM/FPGA.  Para ello: 

• Se han identificado los algoritmos más representativos 

• Se ha implementado en C y se ha realizado un análisis (profiling) de la demanda 

computacional de cada uno de sus componentes 

• Se han seleccionado las funcionalidades más críticas y se han implementado tres 

aceleradores hardware de forma  que el procesador puede solicitar a los aceleradores 

que realicen un cálculo dado haciendo una llamada a una función. 

• Se han analizado los resultados obtenidos evaluando las ganancias derivadas de la 

inclusión de estos aceleradores 

2. Aplicación software 
 

En esta sección se van a describir los algoritmos utilizados y su implementación. En el 

primer apartado  se va a describir la operación de multiplicación de puntos de la curva en la 

cual radica la seguridad criptográfica. En el segundo y tercer apartado se describen los 

algoritmos utilizados en este trabajo y en el último apartado se presenta el análisis del 

comportamiento del software usado para determinar las funciones candidatas a ser aceleradas 

en el hardware de la FPGA. 

2.1 Multiplicación escalar de puntos en curvas elípticas 
 

La multiplicación de puntos de la curva constituye la operación básica de la criptografía 

de curva elíptica (ECC en inglés) y en la cual radica la seguridad criptográfica, ya que la 

operación inversa, dados el punto resultado y el punto usado como generador, obtener el 

número usado como operando de la multiplicación es computacionalmente inviable. Es decir 

dados M = k · P, con M y P puntos pertenecientes a la curva y k un número natural, a partir de 

M y P es muy difícil la obtención de k. 

Las operaciones definidas sobre el cuerpo que forman los puntos de la curva son la 

suma de puntos (S = Q + P) y el duplicado de un punto (D = Q + Q = 2·Q) estas operaciones se 

definen de manera sencilla geométricamente (ver Anexo). 

Básicamente la operación de multiplicación se define como k sumas de puntos: 

kP= P + P + . . . + P (k veces) ∀k > 0 and 0·P = ∞ 



11 

 

Asumiendo que el número de puntos de la curva (#E(L)) elegida pueda ser factorizado 

como  #E(L) = nh. Siendo n primo y h (el cofactor) pequeño, para que n sea aproximadamente 

igual al orden del cuerpo (número de elementos). 

Algoritmo básico. Sumar y duplicar 

 

Dada la representación binaria de k (kt − 1, kt − 2, . . . , k0), es decir 

k= kt-1 · 2
t -1 

+ kt-2 · 2
t-2 

+ . . . + k0 · 2
0cont ≅ log2n ≅ log2q 

De esta manera, la multiplicación k·P puede ser obtenida según el esquema: 

K·P = ( . . . 2(2(2∞ + kt- 1P) + kt-2P) + . . . ) + k0P 

Algoritmo 1 Método Binario Izquierda-Derecha para la multiplicación escalar [13]. 

INPUT: k = (kt-1, …, k1, k0)2, P = (x, y) ∈ E(F2
m

 ). 

OUTPUT: kP. 

1: Q ←O. - - Point At Infinite  

2: fori= m -1 downto 0 do 

3:  Q ←2Q. 

4: ifki= 1 then 

5:   Q ←Q + P. 

6: end if 

7: end for 

8: returnQ. 

 

El algoritmo consiste en t operaciones de duplicar punto y como mucho t operaciones 

de suma de puntos. El orden de magnitud de t es log2q = mlog2psiL = GF(pm). Ambas 

operaciones son complejas e incluyen divisiones. Por eso se desarrollan y se han elegido para 

este trabajo, los métodos descritos a continuación. Cada coordenada pertenece a la extensión 

del cuerpo finito, es decir a polinomios cuyos coeficientes pertenecen al cuerpo (Ver anexos). 

2.2 Montgomery en coordenadas proyectivas 
 

La representación estándar de los puntos de la curva se realiza en dos dimensiones L2, 

siendo estas las denominadas coordenadas afines. Se pueden transformar estas coordenadas a 

tres dimensiones, llamadas coordenadas proyectivas. Dados dos naturales c y d, un 

subconjunto de L3 puede ser asociado para todo elemento (x, y) de L2 [14]: 

(x, y) → {(X, Y, Z) | Z ≠ 0, X = xZc, Y = yZd} 

En el sentido opuesto, un elemento (X, Y, Z) de L3, con Z ≠ 0, corresponde con el 

elemento (x, y) de L2 y es definido por 
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x = X/Zc y = Y/Zd 

Esta transformación establece una relación de equivalencia en L3. En la que dos puntos 

pertenecen a la misma clase si se corresponden con el mismo punto en L2. Esta clase de 

equivalencia es el denominado punto proyectivo. 

Se escoge la tercera coordenada de manera que nos permite evitar las operaciones de 

división. Incrementando por contra las operaciones por iteración al obligarnos a trabajar con 

una coordenada adicional [14]. 

Este método de coordenadas proyectivas se puede aplicar a cualquier técnica. Se debe 

transformar la ecuación de Weierstrass que define la curva en coordenadas afines, a 

coordenadas proyectivas, y definir las operaciones de suma de puntos y doblado de puntos en 

función de esta nueva ecuación (eligiendo la tercera coordenada Z, para poder simplificar las 

operaciones) [13, 14].  

Esta técnica es especialmente útil combinada con la multiplicación de Mongomery, 

que permite reducir las operaciones en cada iteración, al trabajar o iterar con una coordenada 

menos. Considerando de nuevo la representación binaria de k, k =kt-12
t -1 +kt-22

t -2 +. . . 

+k12
1+k02

0, se definen las sumas parciales 

s0= 0 

s1= kt– 12
0 

s2 = kt– 12
1+kt– 22

0 

. . . 

st= kt– 12
t - 1 +kt– 22

t - 2 +. . . +k12
1+k02

0= k 

Así   sj = 2sj - 1 +kt - j ∀j = 1, 2, . . . , t 

El algoritmo consiste en calcular en cada paso A = sjP y B = (sj+1)P en función de sj–1P 

and (sj- 1 +1)P (A y B en la iteración anterior) [13]: 

Si  kt- j =0 entonces 

sjP=2(sj–1P),  (sj+1)P =(2sj - 1 +1)P =sj–1P +(sj- 1 +1)P   // A = 2·A  y  B = A + B 

sino // kt- j =1 

sjP=(2sj - 1 +1)P =sj–1P +(sj- 1 +1)P   // A = A + B 

(sj+1)P =(2sj - 1 +2)P =2(sj- 1 +1)P     // B = 2·B 

fin 

Este algoritmo, aplicado sobre curvas elípticas no-supersingulares (sobre cuerpos 

binarios) es debido a López y Dahab [13]. Con A = (xA, yA) ≠ ∞ y B = (xB, yB) ≠ ∞ dos puntos 

diferentes de la curva y si A ≠ − B, las x-coordenadas xA + B y xA − B de A + B y A − B están 

relacionadas por la siguiente ecuación xA + B = xA − B +xB(xA + xB) − 1 + (xB(xA + xB) − 1)2. Como 

además (ver Montgomery más arriba) A = sjP and B = (sj + 1)P para todo j, entonces A - B = - P, 

luego en curvas no-supersingulares, las coordenadas x coinciden  xA-B = xP (ver anexos), siendo 

P el punto original o generador y por tanto 

xA + B = xP + xB(xA + xB) 
− 1 

+ (xB(xA + xB) 
− 1

)
2
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De la misma manera, para el doblado de puntos (ecuaciones de curvas no-

supersingulares, ver anexos), se tiene 

xA+A = xA
2
+b/xA

2
 Si xA≠ 0 y (0, yA) +(0, yA) = (0, yA) - (0, yA) = ∞ 

 
Como puede verse se puede operar sin la coordenada y. Al final del proceso iterativo, 

ésta debe calcularse. De las propiedades de Montgomery, se tiene que P = (xP, yP), donde xP  /= 

0, kP= (xA, yA) y (k +1)P= (xB, yB), por tanto 

yA=xP
-1

(xA+xP)[(xA+xP)(xB+xP) +xP
2
+yP] +yP 

Pasando a coordenadas proyectivas con c = 1 y d = 2 (coordenadas López-Dahab) 

pasamos a iterar con las coordenadas X y Z en cada iteración y finalmente calculamos Y 

deshacemos el cambio de coordenadas pasando de nuevo a afines (evitando las operaciones 

de división en la iteración), quedando el algoritmo implementado de la siguiente manera: 

Algoritmo 2: Multiplicación de puntos de Montgomery de López-Dahab sobre GF(2m
 ) [13]. 

INPUT: k = (kt-1, …, k1, k0)2,con kt-1= 1P = (x, y) ∈ E(F2
m

 ). 
OUTPUT: kP. 
1. X1←x, Z1←1, X2←x

4+b, Z2←x
2. {Calcula (P,2P)} 

2. For I from t −2 downto 0 do 
2.1 If ki= 1 then 

T←Z1, Z1←(X1Z2+ X2Z1)
2, X1←xZ1+ X1X2T Z2. 

T←X2, X2←X2
4+bZ2

4, Z2←T 
2
Z2

2. 
2.2 Else 

T←Z2, Z2←(X1Z2+ X2Z1)
2, X2←xZ2+ X1X2Z1T . 

T←X1, X1←X1
4+bZ1

4, Z1←T 2Z1
2. 

3. x3←X1/Z1. 
4. y3←(x+X1/Z1)[(X1+xZ1)(X2+xZ2)+(x

2+y)(Z1Z2)](xZ1Z2)
−1+ y. 

5. Return(x3, y3). 

 
 
Este algoritmo realiza las mismas operaciones en cada iteración, por lo tanto  

incrementa su resistencia a ataques de tiempo y de análisis de consumo. Siendo un claro 

candidato a ser implementado tanto en software como hardware.  

2.3 Curvas Koblitz y mapa de Frobenius 
 

Las curvas Koblitz son un tipo especial de curvas elípticas no-supersingulares sobre 

GF(2m
 ) [13, 14]: 

E0: y
2
 + xy = x

3
 + 1 

E1: y
2
 + xy = x

3
 + x

2
 + 1 

Es decir curvas no-supersingulares Ec  con coeficientes b = 1 y a = 0 (E0) o a =1 (E1).  
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Estas curvas permiten simplificar las operaciones de Duplicado de puntos en su 

totalidad, sustituyéndolas por operaciones de squarer de polinomios, muy rápidas y eficientes 

en cuerpos binarios [13, 14]. Para sustituir las operaciones de doblado se utiliza el mapa o 

aplicación de Frobenius τ de Ec(GF(2
m

)) a Ec(GF(2
m

)) con  

τ(∞) = (∞)    y    τ(x, y) = (x
2
, y

2
) 

Se puede demostrar que  

2P = − τ
2
(P) + μτ(P)  con μ = 1 si a = 1 y  μ = − 1 if a = 0 

Como τ es una aplicación, cualquier combinación lineal será otra aplicación en 

Ec(GF(2
m

)). Por tanto el resultado anterior puede generalizarse para cualquier aplicación α de 

Ec(GF(2
m

)) a Ec(GF(2
m

)) en la que, dados dos enteros a y b, α(P) = aP + bτ(P). 

Se puede realizar una especie de división entre las aplicaciones α y τ de tal manera que 

α = α’τ + r con r ∈ {−1, 0, 1}. Las sucesivas divisiones, de manera parecida a las divisiones 

euclídeas en el cuerpo finito de los enteros Zp, proporcionarán una serie de restos que 

permiten descomponer la función inicial α de manera que 

α = r0 + r1τ + . . . + rt – 1 τ
t − 1 

+ αtτ
t
 

Se puede demostrar que αt = 0 después de un número finito de pasos. Así, 

considerando el caso particular de la función α con coeficientes a = k y b = 0, es decir, α(P) =kP, 

tendremos 

kP = rt – 1 τ
t − 1

(P) + rt – 2 τ
t − 2

(P) + . . . + r1τ(P) + r0P con ri ∈ { −1, 0, 1} 

El objetivo de las sucesivas divisiones es que Ki sea cero el mayor número de veces 

posible. Así si k no es divisible por τ en alguna iteración, escogemos ri ∈ { −1, 1}, de manera que 

en (κ −r )/τ sea divisible por τ. Así en la siguiente iteración, el siguiente ri sea 0. De esta manera 

se puede definir la multiplicación de puntos en la curva como sigue 

Algoritmo 3: Multiplicación de puntos Koblitz sobre GF(2m
 ) [13]. 

INPUT: k ∈ [1 .. n-1] y P = (x, y) ∈ E(F2
m

 ) y de orden n. 
OUTPUT: kP. 
1. Q ← ∞; A ← K; B ←0; 
2. While ((A /= 0) or (B /= 0)) do 
2.1 if A mod 2 = 0 then R_I ← 0; 

2.2 elsif 2 - ((A - 2*B) mod 4) = 1 then 
R_I ← 1; 

if  Q = ∞ then Q ← P; else Q ← Q + P; endif; 
2.2 else 

R_I ← - 1; 

if  Q = ∞ then Q ← - P; else Q ← Q – P; endif; 
2.3 endif; 
2.4. P ← τ (P); --Elevar al cuadrado cada coordenada 
2.5 T ← A; A ← B + μ (T - R_I)/2; B ← (R_I - T)/2; 
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3. Return(Q). 

 

2.4 Profiling. Análisis del software 
 

Entre las principales herramientas se ha contado con el Vivado IDE de Xilinx para la 

programación hardware sobre la placa y el IDE Xilinx SDK para el desarrollo software y la 

integración con el hardware. 

Con la segunda herramienta se ha llevado a cabo la implementación de los algoritmos 

descritos en los apartados anteriores completamente en lenguaje C y se ha compilado con el 

compilador de Xilinx para ARM con el comando arm-xilinx-eabi-gcc. El entorno integrado 

contiene una utilidad para el análisis del código o profiling de modo intrusivo que está basada 

en la herramienta GNU gprof [26]. La herramienta nos proporciona dos tipos de información 

para poder optimizar el software: un histograma con los tiempos de ejecución para cada 

función y un grafo de llamadas a función que indica quien llama a quien y cuántas veces. 

Al compilar con la opción ‘-pg’ para el análisis cada vez que se llama a una función se 

invoca a la función mcount para registrar las funciones invocante e invocada (profiling 

intrusivo). Así aparece en los resultados consumiendo el 50% del tiempo de ejecución total, 

como puede verse en la tabla 2.  

Quitando la función mencionada, y que sólo debe ejecutarse al realizar el proceso de 

análisis, las siguientes funciones que más tiempo consumen son las de acceso a los vectores de 

bits que representan los polinomios, elementos del cuerpo extendido y puntos de la curva. Las 

funciones bitv_assign y bitv_get representan el 14,22% y el 11,8%. Ambas funciones son 

invocadas principalmente, como puede verse en los parents de cada una por las funciones de 

Product y Multiply_By_X. Siendo la que llama a ambas Product_Mod_F. Ésta es la función 

candidata a ser acelerada por el hardware. Función que realiza la multiplicación de polinomios 

(coordenadas de los puntos de la curva). 

Las operaciones de división de polinomios sólo se invocan al deshacer el cambio de 

coordenadas al finalizar el proceso iterativo, así que tienen menor relevancia que la 

multiplicación (tabla 2). Sin embargo puede verse que las dos operaciones de división invocan 

a bitv_get y a Product, e indirectamente a bitv_assign. Funciones que  tienen mucha relevancia 

en el rendimiento (figura 3). Por tanto finalmente se considera que la función Divider_Mod_F  

también es una buena candidata para ser acelerada por el hardware. Se decide implementarla 

en una segunda versión de nuestro desarrollo. 
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Las cuatro funciones que más tiempo consumen (sin contar la función intrusiva usada 

para el análisis mcount) serán cubiertas en su totalidad por los tres aceleradores hardware que 

se decide implementar (Multiplicador, Elevador al cuadrado y Divisor de polinomios módulo 

f(x)) (figura 3). 

 

 

Tabla 2. Profiling del software 

 

Fig. 3. Distribución del tiempo de ejecución por funciones 
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3. Desarrollo Hardware 
 

En este apartado se va a detallar el desarrollo hardware llevado a cabo en el trabajo. La 

idea ha sido la de implementar nuevas funciones mediante aceleradores accesibles desde el 

software a través de escrituras y lecturas en registros direccionables por el procesador. Los 

objetivos han sido minimizar el tamaño y el consumo del hardware e intentar acelerar al 

máximo la ejecución de las operaciones más costosas detectadas durante el análisis del 

software. Las operaciones de suma y doblado de puntos (ver anexos) se componen de 

numerosas multiplicaciones. Aproximadamente la mitad son operaciones de elevar al 

cuadrado un polinomio, así que se ha tomado la decisión de desarrollar dos componentes: el 

multiplier  y el squarer en la primera versión y el divider en la segunda. 

Los componentes que implementan aritmética modular son altamente conocidos y hay 

muchos desarrollos disponibles en el mercado. En este trabajo se han seleccionado para 

cumplir los objetivos de mínima área y coste. Posteriormente se les ha dotado de un interfaz 

AXI, que explicamos a continuación y además se ha dotado de una Unidad de Control muy 

sencilla tanto al multiplicador como al divisor. 

3.1 Interfaz AXI 
 

AXI significa Advanced eXtensible Interface, su actual versión es la 4 y es parte del 

estándar abierto ARM AMBA 3.0. Estándar de facto para la comunicación en chip. La 

plataforma nos proporciona tres posibles protocolos para la comunicación, en función de las 

necesidades de la conexión: 

• AXI4: transferencia con memoria mapeada en la que se proporciona una dirección y un 

tamaño de ráfaga de hasta 256 palabras. 

• AXI4-Lite: transferencia de una sola palabra a una sola dirección, también mapeada en 

memoria 

• AXI4-Stream: ráfagas de transferencia sin límite de tamaño. No tiene mecanismo de 

direccionamiento, es un flujo directo entre el origen y el destino. Se indica el 

dispositivo únicamente (memoria no mapeada). 

Debido a que los polinomios ocupan pocas palabras de transferencia se ha escogido la 

opción AXI4-Lite que además era la más sencilla. Y de los nueve interfaces AXI que proporciona 

la plataforma, se ha escogido el M_AXI_GP0, de propósito general y muy apropiado para 

transferencias de baja a media intensidad. Interfaz directo que no incluye almacenamiento en 

memoria intermedia (buffering) en el que el procesador es master y los aceleradores 

integrados slave. 

Para las operaciones sobre las curvas definidas sobre cuerpos binarios de extensión 

GF(2163) hacen falta 163 bits, seis palabras de 32 bits. Normalmente uno o dos polinomios de 

entrada y uno de salida. Para los cuerpos binarios de extensión GF(2233) serán necesarios 8 

palabras de 32 bits por polinomio. 
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3.2 Multiplicador de polinomios 
 

Los elementos del cuerpo GF(2m) se han representado en base polinomial. Se podrían 

haber representado en otras bases como la normal o las bases dual o triangular, pero la 

polinomial es la más común. Así los elementos se representan como polinomios de hasta 

grado m-1. Las operaciones de suma de polinomios y resta se implementan mediante 

operaciones XOR muy rápidas, mientras que la multiplicación es considerada la operación más 

compleja e importante. Las operaciones se realizan módulo f(x), siendo f un polinomio 

irreducible de grado m de la siguiente forma: 

f(x) = x
m

 + fm − 1x
m − 1 

+ . . . + f1x + f0 

con fi∈ GF(2) = {0, 1}. Siendo el conjunto {1, x, . . . xm − 1} la baso polinomial en GF(2m) 

con la que podemos representar cualquier elemento. La multiplicación de dos elementos a(x) y 

b(x) en GF(2m) se define como c(x) = a(x)b(x) mod f(x). Esta operación implica dos pasos, la 

multiplicación y la reducción módulo f(x). Los polinomios irreducibles utilizados son los 

recomendados por el NIST para curvas no-supersingulares[11, 12]: 

f(x) = x
163

 + x
7
 + x

6
+ x

3
 + 1  en GF(2

163
)   y   f(x) = x

233
 + x

74
 + 1 en GF(2

233
). 

Entre los multiplicadores se contemplaron distintas opciones. El multiplicador 

combinacional clásico, el Kartsuba-Ofman que utiliza un método recursivo muy eficiente, así 

como el multiplicador de Mastrotivio basado en operaciones matriz-vector [14]. O el 

multiplicador de Montgomery que permite versiones tanto combinacionales como 

secuenciales. El que se ha escogido finalmente es el Multiplicador entrelazado de tipo 

secuencial y muy sencillo. Más lento que las opciones combinacionales (Classic  y Mastrovito) 

pero con un coste y un área mucho menor. En la tabla pueden verse las comparaciones entre 

las diferentes implementaciones, tanto en tamaño como en eficiencia [14]. 

M Type FFs LUTs Slices Period Cycles Total time 

163 

Classic – 22,356 15,171 – – 39 

Interleaved 509 511 271 4.5 163 815 

Mastrovito – 22,347 15,201 – – 36 

Montgomery 344 347 184 7.4 163 1,206 

233 
Interleaved 763 723 417 6.4 223 1427 

Montgomery 484 489 255 7.5 233 1,748 

 

 

De las dos opciones de implementación que permite el multiplicador entrelazado: Bit 

Más Significativo Primero (MSB-First) o el Menos significativo primero (LSB-first), se ha 

escogido la segunda porque presenta menos dependencias en las operaciones a iterar y por 

tanto un camino crítico más corto en la ruta de datos [14]. La implementación del componente 

se ha tomado de [14] y presenta la siguiente interfaz: 

Tabla 3. Implementación sobre FPGA de multiplicación en GF(2M) 
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entity interleaved_mult is 
port ( 
A, B: in std_logic_vector (M-1 downto 0); 
clk, reset, start: in std_logic; 
Z: out std_logic_vector (M-1 downto 0); 
done: outstd_logic 
); 
end interleaved_mult; 

3.2.1 Interfaz AXI del Multiplicador 
 

Al componente selecicionado se le han añadido los registros, y señales necesarios para 

implementar su interfaz AXI. El componente va a tener un bus de escritura de 32 bits y otro de 

lectura de 32 bits. El bus de direccionamiento de 7 bits servirá para poder direccionar cada uno 

de los registros del componente (figura 3) 

 

El funcionamiento de la comunicación es la siguiente. En primer lugar se pondrá en el 

bus la dirección del registro a escribir (AWADDR). En segundo lugar se pondrá el dato en el bus 

de datos de escritura (WDATA) y a continuación se usará la señal de WSTRB para realizar el 

WRITESTROBE (la escritura consecutiva de un 0 y un 1) para iniciar la escritura del dato. De 

forma parecida se utilizan los buses de datos (RDATA) y dirección (ARADDR) para la lectura. 

Internamente se controla que las escrituras sólo se habiliten (WRITE_ENABLE) cuando 

los datos, la dirección se hayan establecido y sean válidas y se termine de hacer el WSTRB. 

En la figura 4 puede verse una sección de la conexión entre el componente 

seleccionado (multiplicador entrelazado de polinomios de 163 bits) y los registros del 

dispositivo o controlador: 

 

Fig. 4. Interfaz AXI del multiplicador 
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Se han desarrollado por último las funciones software para que el procesador pueda 

leer y escribir de los registros del dispositivo como en los de cualquier otro periférico 

void INTERLEAVED_MULT_IP_mWriteReg(u32 BaseAddress, unsigned RegOffset, u32 Data) 

u32 INTERLEAVED_MULT_IP_mReadReg(u32 BaseAddress, unsigned RegOffset) 

Con BaseAddrress la dirección base (mapeada en memoria) donde se encuentra 

nuestro multiplicador. RegOffset es el desplazamiento del registro que queremos leer o 

escribir y los datos que se pasan como parámetro en caso de escritur o se devuelven al leerse 

del registro especificado. 

De la misma manera se ha implementado la función software que sustituye a la 

función software Product_Mod_F (identificada en la sección 2.4 de profiling) en la que los 

cálculos se sustituyen por la escritura de los operadnos y la lectura del resultado en los 

registros correspondientes del acelerador hardware una vez que se detecte (leyendo un 

resgitro de ocntrol) que los cálculos han terminado. 

Polynomial Interleaved_Mul_Mod_F(Polynomial A, Polynomial B, Polynomial C) 

3.2.2 Unidad de control del Multiplicador 
 

Al componente se le ha añadido unidad de control que implementa una máquina  

estados de tipo Moore muy sencilla que puede verse en la figura 6.  

Fig. 5. Sección del esquema RTL del multiplicador 
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Las señales de start y done se transmiten igualmente por el interfaz AXI entre el 

procesador principal y el componente. Para empezar a trabajar el componente cliente debe 

mandar consecutivamente las ordenes de start = 0 y start= 1 (clásica técnica de strobe o 

palanca) pasando por dos estados en los cuales se resetea el componente y se le da la orden 

de comienzo. Finalmente entramos en un estado de espera mientras se calcula la 

multiplicación antes de pasar al estado acabado en el que el componente cliente obtiene la 

salida done = 1 indicando que ya puede leer el resultado.  

3.3 Cuadrado de polinomios 
 

Una manera directa de implementar la operación de elevar al cuadrado modular sería 

utilizar un multiplicador como los del apartado anterior con un solo operando de entrada para 

poder realizar c(x) = a(x)a(x) mod f(x) = a(x)
2
mod f(x). Pero la operación de elevar al cuadrado 

puede optimizarse ya que en GF(2m) se trata de una operación lineal, es decir,  

c(x) = a(x)
2
 mod f(x) = (am – 1 x

2(m − 1) 
+ am – 2 x

2(m − 2) 
+ . . . + a1 x

2
 + a0) mod f(x) 

Por tanto, la primera parte de la operación, la de multiplicación (que va seguida de la 

posterior reducción modular) puede calcularse como d(x) = a(x)a(x), siendo d(x) un polinomio 

de grado 2m – 2 de la forma 

d(x) = am – 1 x
2(m − 1) 

+ am – 2 x
2(m − 2) 

+ . . . + a1 x
2
 + a0 = (am − 1, 0, am − 2, 0, . . . , 0, a1, 0, a0) 

Se han comparado distintas opciones de implementación. En la tabla 4 puede verse 

que las opciones combinacionales son más rápidas y ocupan menos espacio que sus 

contrapartidas secuenciales, así que se ha optado por las primeras.  

Type m Ffs LUTs Slices Period Cycles Totaltime 

LSB-First 
163 464 510 306 5.3 82 435 

233 659 723 436 6.0 117 702 

Acabado

Preparado Trabajando

Comenzar

start = 0

start = 1

mult_done = 1

mult_done = 0

start_mult = 0

done = 1

start_mult = 0

done = 1

start_mult = 1

done = 0

start_mult = 0

done = 0

Fig.6. Máquina de estados del multiplicador 
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Seq. 
Montgomery 

163 361 341 199 4.3 163 701 

233 542 484 309 4.4 233 1,025 

Classic 
163 - 165 86 - - 3 

233 - 153 99 - - 3 

Montgomery 
163 - 267 147 - - 20 

233 - 117 74 - - 7 

 

En concreto hemos optado por el método clásico [14] que es además muy sencillo de 

implementar y presenta la siguiente interfaz: 

entity classic_squarer is 
port ( 
a: in std_logic_vector(M-1 downto 0); 
c: out std_logic_vector(M-1 downto 0) 
); 
end classic_squarer; 

En este caso no ha sido necesaria la adicción de una unidad de control al tratarse de un 

circuito combinacional y solamente se ha añadido el interfaz AXI correspondiente. De la misma 

manera al definido en la sección 3.2.1 del multiplicador. 

3.4 Divisor de polinomios 
 

La división sobre un conjunto de polinomios, más concretamente sobre la estructura 

de anillo de polinomios Zp[x]/f(x) con p primo y con f(x) polinomio de grado m > 0 solo es 

posible sif(x) es irreducible (es decir que no tiene factores de grado mayor o igual a uno). De 

esta manera todo h(x) perteneciente a Zp[x]/f(x) tiene un inverso h(x)
-1tal que h(x)h

−1
(x) mod 

f(x) = 1. En este caso la estructura de anillo se pasa a denominarse cuerpo finito. Zp[x]/f(x) pasa 

a ser un cuerpo extendido del cuerpo finito Zp, también denominada Galois Field o GF(p
m

). En 

cuerpos binarios p = 2. La operación bajo estudio es la siguiente: dados g(x) y h(x) enZp[x]/f(x), 

donde h(x) es un polinomio no nulo, calcular z(x) tal que g(x) = h(x)z(x) mod f(x), es decir, 

z(x) = g(x)h
−1

(x) mod f(x) 

Hay dos tipos de algoritmos como en el caso de Zp. El primer tipo de algoritmos son los 

que permiten representar el mcd (máximo común divisor) de dos polinomios a(x) y b(x) sobre 

Zp en la forma α(x)a(x) + β(x)b(x) (gracias a la Identidad de Bezout) con α (x) y β (x) polinomios 

sobre Zp. En este caso para hallar h-1
(x), con f(x) irreducible y grado de h(x) menor a m (grado 

del irreducible) tenemos que su mcd = 1 y, aplicando Bezout, existen dos polinomios α (x) y β 

(x) tales que α(x)f(x) + β(x)h(x) = 1 y β(x)h(x) mod f(x) = 1, es decir 

h
−1

(x) = β(x) mod f(x) 

A este primer grupo pertenecen el Algoritmo de Euclides Extendido y el Algoritmo 

Binario (elegido por nosotros). Un segundo método consistiría en sustituir la inversión por la 

exponenciación basándonos en la idea del carácter cíclico del cuerpo, que no hemos 

contemplado en este trabajo. 

Tabla 4. Implementaciones sobre FPGA de squarer en GF(2m) 



23 

 

Nuestro trabajo ha sido el elegir el algoritmo de división. Para ello se han comparado 

los principales algoritmos comentados, tanto en área y recursos como en rendimiento (Ver 

[14]) 

Algoritmo Ffs LUTs Slices Mult RAM Periodo Ciclos Tiempo 

PseudoEuclidean 871 3,923 2,272 39 1 36 147 5,292 

Binary 623 3,235 2,001 37 – 56 37 2,072 

Reduction to 
multiplications (MSE) 

562 2,607 1,594 34 1 25 7,602 190,05 

Reduction to 
multiplications (LSE) 

672 2,794 1,754 35 1 19 4,202 79,838 

Optimalextensionfield 
(MSE) 

603 2,873 1,609 34 1 25 235 5,875 

Optimalextensionfield 
(LSE) 

715 3,268 1,894 35 1 19 133 2,527 

 

 

Esta tabla se ha extraído de [14] donde se comparan distintas implementaciones de 

Divisores sobre GF(23917) implementados en una FPGA Spartan3 (speed-5) de Xilinx. Los 

tiempos están expresados en ns, los FFs, LUTs, Mults y RAM, representan el número de flip-

flops, el número de tablas Look-Up , el número de multiplicadores de 18 bit-by-18-bit y el 

número de bloques RAM usados en la implementación. Hemos escogido el método binario ya 

que es el único que no usa RAM y que proporciona el mejor rendimiento con un coste o 

tamaño muy aceptable. 

La implementación se ha tomado de [14]. Al componente se le ha añadido un interfaz 

AXI  parecido al detallado en la sección 3.2.1  junto con una máquina de estados, igualmente 

muy parecida a la del Multiplicador de la sección 3.2.2. 

4. Resultados 
 

Durante el desarrollo se verificó la corrección de cada una de las versiones, 

comparando los resultados obtenidos fueran exactos a los resultados publicados por el 

NIST[11 y 12] así como implementaciones de otros autores [14]. 

Para la evaluación del consumo utilizamos como instrumento de medida un vatímetro 

Yokogawa WT210 [27]. El vatímetro viene acompañado de un software que procesa el 

muestreo de las medidas y ofrece gráficas de una gran variedad de magnitudes de medida. En 

la tabla 6 se puede observar que el consumo medio de las 2 versiones es muy parecido, la 

Tabla 5. Implementaciones sobre FPGA de la división en GF(2m) 
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versión software y la versión completa con los tres aceleradores hardware (Multiplicador y 

Elevador al cuadrado y el divisor). 

m Algoritmo Mutiplicación puntos ECC 
Potencia 

(W) 

163 Montgomery  Lopez-Dahab        
(Versión Software) 

4,475 

233 4,357 

163 
Montgomery  Lopez-Dahab (3ops) 

4,340 

233 4,395 

 

Los consumos llegan a ser algo inferiores en la versión hardware, suponemos que por 

el menor uso del procesador software, que puede quedar suspendido en espera de la 

finalización de las operaciones hardware. El principal ahorro energético vendrá por la 

reducción de los tiempos de ejecución que podemos ver más abajo. En la tabla 7 aparecen los 

recursos utilizados por las distintas versiones de código desarrolladlas, con 2 y 3 operaciones, 

siendo el divisor la tercera operación, añadida en la segunda versión. En estos desarrollos hay 

que tener en cuenta que se deben incluir también los componentes del interfaz AXI. Los FFs, 

LUTs, representan el número de flip-flops y el número de tablas Look-Up empleadas. 

Desarrollo (Versión) Recurso Utilizados 

M = 163 (2ops) 
FF 1902 

LUT 2008 

M = 163 (3ops) 
FF 3041 

LUT 3020 

M = 233(2ops) 
FF 2318 

LUT 2393 

M = 233 (3ops) 
FF 3877 

LUT 3724 

[17] 
FF 913 

LUT 2028 

 

En [21] se proporcionan el número de Slices utilizados, para su implementación en la 

plataforma XC3S400 utilizan 2418 Slices y en la XC4VFX12 utilizan 2648 Slices. Nuestra 

frecuencia de trabajo para realizar las mediciones ha sido de 100MHz. Las utilizadas en [17 y 

16] son de 68.3 MHz y las de [17] estaban en 79.6 y 142.5 MHz. Los trabajos [2, 3 y 4] son 

anteriores y trabajan con rutas de datos con una anchura de 8 bits presentando rendimientos 

inferiores. 

Las primeras mediciones se han realizado para comprobar si efectivamente las nuevas 

operaciones hardware aceleraban la ejecución del algoritmo implementado en software. En 

efecto, como puede verse en la tabla 8, las aceleraciones con las dos versiones desarrolladas 

son altísimas. Esto es debido a que la aceleración se produce sobre las funciones que 

consumen casi la totalidad del tiempo de ejecución. 

Tabla 7. Recursos de implementación de las operaciones hardware 

Tabla 6. Comparación del consumo de potencia en los 3 desarrollos 
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m Algoritmo Mutiplicación puntos ECC Rendimiento [S] Aceleración  

163 Montgomery  Lopez-Dahab        
(Versión Software) 

28,398 1 

233 70,147 1 

163 
Montgomery  Lopez-Dahab (2ops) 

0,0733 387,4 

233 0,1455 482,1 

163 
Montgomery  Lopez-Dahab (3ops) 

0,0091 3120,6 

233 0,0141 4974,9 

 

 

Trabajo m Algoritmo Mutiplicación puntos ECC Plataforma Rendimiento [S] Escalable 

[3] 163 Double-Add 
Dalton 8051 

ISS-8bit 
3.97 

No [4] 163 

Montgomery Lopez-Dahab 

AVR-AT94K - 8 bit 0.113 

[2] 
163 AVR – 8 bit 0.290 

233 ATmega128 - 8bit 0.810 

[16] 
163 

MixedCoordinates PicoBlaze 32bit 
0.0155 

Sí 
283 0.0451 

[17] 
163 

Montgomery Lopez-Dahab 
PicoBlaze 32bit 

68.3MHz 

0.038 
Sí 

233 0.0734 

[21] 

163 

Montgomery Lopez-Dahab 

XC3S400 
32bit79.637MHz 

0.864 ms 
Sí 

283 1.957 ms 

163 XC4VFX12 
32bit142.53MHz 

0.483 ms 
Sí 

233 1.093 ms 

Es
te

 T
ra

b
aj

o
 

163 
Montgomery  Lopez-Dahab (2ops) 

ZedBoard 32bit 
100MHz 

0.073 

Sí 

233 0.145 

163 
Montgomery  Lopez-Dahab (3ops) 

0.009 

233 0.014 

163 
Koblitz (2ops) 

3.7241 

233 7.7863 

163 
Koblitz (3ops) 

0.0707 

233 0.1202 

 

Como se puede ver en la tabla 9 los tiempos conseguidos en este trabajo son algo 

mejores que los obtenidos en las aproximaciones de codiseño [17 y 16], sobre todo si 

comparamos con nuestra versión de 3 operaciones aritméticas (multiplicación, cuadrado y 

división). La arquitectura desarrollada en [21] claramente supera a nuestro desarrollo, siendo 

una de las implementaciones (sobre FPGA) de multiplicación de puntos más rápida, aunque 

todavía por debajo de [18].Pero hay que recordar que [21] presenta una solución totalmente 

implementadas en HW, lo que implica más recursos, y más tiempo de desarrollo. Nuestro 

trabajo no pretende competir con soluciones de este tipo sino evaluar la utilidad del codiseño 

en la que la mayor parte de la funcionalidad puede ir en SW acelerando el tiempo de 

desarrollo. Una ventaja adicional del trabajo desarrollado es que presentamos una 

Tabla 9. Comparación de resultados con otras arquitecturas 

Tabla 8. Comparación de resultados de las distintas versiones desarrolladas 
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arquitectura escalable (al igual que en [21]). Con los recursos necesarios podría trabajarse en 

cualquier tamaño y no sólo en los dos tamaños presentados. Comparando nuestros 

desarrollos, vemos que nuestra versión Koblitz, que hace un mayor uso de la división tiene 

peor rendimiento, desventaja muy acusada en las versiones con sólo dos operaciones. 

5. Conclusiones 
 

5.1 Resumen del trabajo realizado 
 

El objetivo de este trabajo es estudiar las posibilidades de codiseño que ofrecen los 

nuevos chips con procesadores ARM y FPGA. El estudio se ha centrado en criptografía con 

curvas elípticas, un campo especialmente interesante para sistemas móviles y empotrados en 

el que existe interés por la utilización de FPGAs desde hace tiempo. En este trabajo se ha 

implementado un algoritmo puramente en software para la multiplicación de puntos en curvas 

elípticas. Se ha analizado el software y se han sustituido las operaciones más costosas 

(multiplicación, elevar al cuadrado y división) por aceleradores hardware. 

Se han conseguido aceleraciones muy importantes con  aceleradores genéricos y 

fácilmente reutilizables, manteniendo los niveles de consumo, con lo que el ahorro energético 

se multiplica. Siendo un aspecto crítico en los dispositivos embebidos y con grandes 

restricciones. 

5.2 Conclusiones sobre el trabajo desarrollado 
 

Con los resultados obtenidos parece evidente que las nuevas arquitecturas 

heterogéneas ARM/FPGA son una oportunidad para conseguir lo mejor de dos mundos que 

hasta ahora eran independientes. Por un lado el diseñador tiene a su disposición los entornos 

de desarrollo para ARM con herramientas de compilación, depuración, profiling… así como la 

posibilidad de usar todo tipo de librerías desarrolladas para estos sistemas. Por otro lado las 

FPGAs permiten desarrollar aceleradores a medida, que además se pueden cambiar en tiempo 

de ejecución [25] de forma que los mismos recursos que se utilizan para acelerar la 

computación con curvas elípticas se pueden usar para otras aplicaciones en otro momento. 

Además las FPGAs de Xilinx y en concreto la plataforma ZedBoard son muy eficientes para la 

implementación de operaciones aritméticas, gracias a recursos especiales que incorporan 

como los DSP48E1[10]. 

Los entornos de desarrollo utilizados permiten acoplar de forma sencilla la parte 

software y los aceleradores hardware. Y los resultados muestran que en el caso de las curvas 

elípticas, la aceleración obtenida al incluir recursos hardware compensa el sobrecoste de las 

comunicaciones. Es importante remarcar que una vez diseñado un acelerador e integrado en el 

sistema, el software puede utilizarlo de la misma manera con la que interactúa con cualquier 

otro periférico haciendo llamadas a una serie de funciones definidas en una librería. Es decir, 
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no hace falta conocimientos de diseño hardware para utilizar un acelerador hardware ya 

diseñado. Por tanto los aceleradores podrán incluirse en librerías que permitiesen a cualquier 

desarrollador software acelerar sus diseños. Por ello se ha tratado de hacer diseños genéricos 

y reutilizables. 

Lógicamente, incluir nuevos recursos heterogéneos en un chip como una FPGA no sólo 

conlleva ventajas. También aumenta la complejidad del diseño, y las necesidades de test y 

verificación. En ese sentido es interesante comentar que existe una comunidad muy activa y 

bastante documentación. Aun así al ser plataformas recientes a veces se encuentran 

problemas no muy bien documentados. En general la complejidad del proceso de diseño de un 

acelerador en estas plataformas y su inclusión como periférico en el sistema no me ha 

resultado excesivamente complejo. Las herramientas proporcionadas por el fabricante tanto 

para el diseño hardware como software nos han parecido muy potentes, flexibles y sencillas de 

utilizar. En cuanto al proceso de test y verificación se han encontrado dificultades en la 

selección de valores escalares suficientemente grandes y representativos, así que finalmente 

se tuvo que pasar a una representación vectorial del entero con el que multiplicar los puntos 

generadores de la curva. Además tampoco hay publicados muchos trabajos que incluyan 

resultados para poder comparar. Ha sido un proceso complicado, pero finalmente nos permite 

estar seguros de nuestras mediciones. 

5.3 Grado de consecución de objetivos 
 

Los objetivos iniciales se han cumplido en su totalidad. Se han aplicado conocimientos 

adquiridos tanto en las asignaturas del máster de Programación orientada a prestaciones para 

realizar el profiling como de la asignatura de Procesadores de dominios específicos. 

El trabajo desarrollado puede representar otra vía de investigación en el área. Un caso 

de uso distinto dentro del codiseño hardware software que se realiza en el grupo, pero en el 

que se pueden incorporar los avances genéricos como la mejora de las comunicaciones en chip 

y aprovechar toda la experiencia acumulada. 

En lo personal, ha supuesto un reto simultanear los estudios del máster con la vida 

profesional. Y ha quedado demostrado que el no trabajar de manera continuada en el tiempo 

en un proyecto es altamente perjudicial para su finalización. El autor quiere agradecer la 

colaboración de Javier Olivito en el proceso de toma de mediciones y en especial el apoyo y la 

ayuda del director del trabajo, Javier Resano, a lo largo de todo el desarrollo. 

6. Trabajo futuro 
 

El siguiente paso sería el desarrollo de operaciones hardware de grano más grueso o 

más complejas, como pueden ser las de Suma de Puntos o Doblado de Puntos de las curvas. 

Esta idea ha quedado a medio desarrollar y no ha podido finalizarse a fecha de hoy. El objetivo 

era sondear si la pérdida de generalidad merecía la pena en términos de coste y eficiencia. 
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Al incrementar la complejidad de las operaciones que se indica, se aumenta la cantidad 

de polinomios a transmitir y se podrían aplicar las técnicas de transferencia con el interfaz AXI 

DMA que ha sido optimizado por otros miembros del grupo de investigación, para aumentar 

las transmisiones. 

Finamente, también ha quedado por concluir la escalabilidad de nuestro desarrollo 

(solo finalizado para curvas de tamaño m = 163 y m = 233) que debería extenderse a la 

totalidad de las curvas recomendadas por el NIST [11]. 
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8. Anexos. Conceptos y base matemática 
 

En este capítulo se ofrece una breve introducción a la formación matemática en 

Criptosistemas Curva Elíptica (ECC del inglés, en adelante). Sólo damos una breve introducción 

que cubre todos los aspectos que son relevantes para esta tesis. Las partes 2.1 y 2.2 se han 

tomado principalmente de [2]. Para una introducción más detallada a ECC recomendamos la 

siguiente bibliografía [1, 3 y 4] 

8.1 Introducción a cuerpos finitos 
 

Un cuerpo finito consiste en un conjunto finito de elementos F, dos operaciones 

binarias, adición y multiplicación y los inversos multiplicativos y aditivo de cada elemento. Las 

operaciones binarias satisfacen ciertas propiedades aritméticas. El número de elementos en el 

cuerpo se denomina orden. Existe un cuerpo finito de orden q si y sólo si q es una potencia de 

un primo. Esencialmente, sólo hay un cuerpo finito de orden q denotado por Fq. Si q = p
m 

donde p es un número primo y m es un entero positivo, entonces p se llama característica de 

Fq y m se llama el grado de extensión de Fq. Los cuerpos finitos también se denominan Cuerpos 

de Galois en honor a Évariste Galois (1811-1832) o GF de sus siglas en inglés. 

En lo que sigue, se describen brevemente los dos tipos más importantes de cuerpos 

finitos aplicados en la práctica, el cuerpo primo GF(p) y el cuerpo binario GF(2m). 

8.1.1 El Cuerpo finito Fp o GF(p) 
 

Llamamos cuerpo primo al cuerpo finito Fp donde p es un número primo. Se representa 

por la conjunto de números enteros {0, 1, 2,…, p – 1}. Las operaciones de adición y de 

multiplicación son módulo p. Si a es un elemento distinto de cero en Fp, decimos que el inverso 

de a módulo p, denotado por a-1, es el único entero c perteneciente a Fq para el que a·c = 1. En 

esta tesis no utilizamos el cuerpo finito Fp. Sólo usamos el cuerpo finito GF(2
m

), que se 

presenta a continuación. 

8.1.2 El Cuerpo finito GF(2m) 
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El cuerpo finito GF(2m) puede ser visto como un espacio vectorial de dimensión m 

sobre el cuerpo F2 que consta de dos elementos 0 y 1. A GF(2m) se le conoce a menudo como 

cuerpo finito de característica dos o cuerpo finito binario. La característica es el menor número 

de veces que debes sumar 1 para obtener 0 (suma en el cuerpo finito). Se denomina orden (q) 

del cuerpo finito al número de elementos que contiene. Con q = 2
men GF(2m). Como se trata de 

un espacio vectorial, todos los elementos a de GF(2m) pueden ser representados como una 

cadena de bits (a0a1… am-1): a =a0β0+a1β1 +…+am-1βm-1; donde ai∈ GF(2) = {0, 1}. El conjunto {β0 

β1… βm-1} se llama una base de GF(2m) sobre GF(2). Hay muchas bases diferentes y algunas de 

ellos conducen a implementaciones más eficientes que otras. En esta tesis, sólo tenemos en 

cuenta las representaciones sobre base polinómicas, porque son muy adecuadas para 

microprocesadores y arquitecturas hardware. Otras bases se describen, por ejemplo, en [5], 

que es también nuestra principal referencia para esta sección. Un polinomio f(x) irreducible de 

grado m sobre F2 o GF(2) se puede escribir como: 

f(x) = x
m

 + fm − 1x
m − 1 

+ . . . + f1x + f0 

con fi∈ GF(2) = {0, 1}. Siendo el conjunto {1, x, . . . xm − 1} la base polinomial en GF(2m). 

Irreducible significa que no puede ser factorizado en polinomios de grado menor que m (y 

mayor o igual a 1). La identidad multiplicativa se representa por el polinomio constante (grado 

0) igual a 1. Y la identidad aditiva por el polinomio nulo (todos los coeficientes iguales a 0). La 

suma (y la resta) se implementan con operaciones XOR bit a bit. La multiplicación se obtiene 

tras multiplicar los coeficientes de los dos polinomios de entrada aplicando la propiedad 

distributiva, obteniendo un polinomio de grado hasta 2(m-1) y luego reduciendo 

posteriormente por el polinomio irreducible (dividiendo y obteniendo su resto). 

 

8.2 Introducción a las curvas elípticas sobre cuerpos finitos 
 

Dado un cuerpo finito K, una curva elíptica E se define sobre K por la ecuación de 

Weierstrass 

y
2+ a1xy + a3y = x3+ a2x

2+ a4x + a6 

con a1, a2, a3, a4, y a6 pertenecientes a K y satisfaciendo algunas condiciones 

adicionales establecidas sobre el discriminante de la ecuación [2, Cap. 3]. El objetivo de estas 

condiciones es definir una ecuación y una curva regular, es decir sin vértices ni intersecciones 

para que las tangentes sean únicas para todo punto de la curva. Dado un cuerpo de extensión 

L de K, la curva elíptica correspondiente E(L) se define por la siguiente relación: 

E(L) = {(x,y) ∈ L x L: y2+ a1xy + a3y = x3+ a2x
2+ a4x + a6} ∪ {∞} 

Siendo ∞ un punto adicional denominado punto en el infinito (identidad de la suma de 

puntos). 
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En esta tesis solo trabajamos con cuerpos finitos de característica 2 (p = 2). La 

expresión de la curva puede simplificarse enormemente mediante un cambio de variables. En 

nuestro caso la ecuación puede definirse o simplificarse de dos maneras: 

a) y2 + cy = x3 + ax + b (curva supersingular) a, b, y c ∈K, y c ≠ 0.  

b) y2 = x3 + ax2 + b (curva no-supersingular) a y b ∈ K, a ≠ 0 y b ≠ 0. 

Puede ser demostrado (Teorema de Hasse, [2]) que el número de puntos de E(L) 

pertenece al siguiente intervalo: 

q + 1 − 2q1/2 ≤ #E(L) ≤ q + 1 + 2q1/2  

donde q es el número de elementos de L. Así, para grandes valores de q, el número de 

elementos de E(L) es aproximadamente igual al número de elementos del cuerpo finito: #E(L) 

≅ q. En esta tesis, K = Zp con p = 2 y L = GF(2m), las más usadas en aplicaciones prácticas. 

Definición del Grupo o Ley de Grupo 

 

Sea E una curva elíptica definida sobre L. Hay una regla de arco-y-tangente para sumar 

dos puntos en E(L) para dar un tercer punto en E(L). Junto con esta operación de suma, el 

conjunto de puntos de E(K) forma un grupo abeliano  con ∞ como elemento idenodad. Es este 

grupo el que se utiliza en la construcción de sistemas criptográficos de curva elíptica. 

La regla de adición se explica mejor geométricamente. Sean P= (x1, y1) y Q =(x2,y2) 

dos puntos distintos sobre una curva elíptica E. La suma R, de P y Q, se define como sigue. 

Primero se dibuja una línea que pasa por P y Q. Esta línea intersecta la curva elíptica en un 

tercer punto. Entonces R será el reflejo o el opuesto de este punto respecto del eje x. La 

operación puede verse gráficamente en la figura 1 (a). 

El doble de P, el punto R, se define como sigue. Primero se dibuja la recta tangente a la 

curva elíptica en P. Esta línea intersecta la curva elíptica en un segundo punto. R será el reflejo 

o el opuesto de este punto respecto del eje x. Esto se representa en la figura 1 (b). 
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Las fórmulas algebraicas para la ley de grupo se pueden derivar de la descripción 

geométrica. Estas fórmulas se presentan a continuación para curvas elípticas E de la ecuación 

de Weierstrass simplificada (en coordenadas afines) cuando la característica del cuerpo K 

subyacente es 2 con curvas elípticas no-supersingulares, es decir L = GF(2
m

) = F2
m

. 

Ley de grupo para E/F2m no-supersingulares: y2+x y = x3+ax2+b 

 

1. Identidad. P + ∞ = ∞ + P = P  ∀ P ∈E(F2m). 

2. Negativos. Si P = (x, y) ∈ E(F2m), entonces (x, y) + (x, x + y) = ∞. El punto (x, x + y) se 

denota como −P y es llamado opuesto de P; notar que −P de hecho es un punto en E(F2m). 

Además −∞ = ∞. 

3. Suma de Puntos. Sea P = (x1, y1) ∈ E(F2m) y Q = (x2, y2) ∈ E(F2m), donde P =±Q. 

Entonces P + Q = (x3, y3), donde x3 = λ2+λ+x1+x2 +a y y3 = λ(x1 +x3)+x3 + y1 con λ = (y1 + y2)/(x1 

+x2). 

4. Duplicado de punto. Sea P =(x1, y1) ∈E(F2m), donde P =−P (es decir x1≠ 0). Entonces 

2P =(x3, y3), donde x3 = λ2+λ+a = x1
2+ b / x1

2,  e   y3 = x1
2+λx3 +x3  con λ = x1+ y1/x1. 

Estas son las operaciones implementadas en la tesis. Donde cada coordenada x e y 

pertenece al cuerpo de extensión de K, es decir son polinomios cuyos coeficientes pertenecen 

a Z2. 

9. Anexos. Referencias 
 

Fig.1: Suma y Duplicado geométricos de puntos de la curva elíptica 
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