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Diseño de modelos basados en aprendizaje para la estimación de
pares articulares para la rehabilitación motora mediante

exoesqueletos

Resumen

El presente Trabajo Fin de Máster se enmarca en el proyecto HYPER-Consolider, en el
que el Grupo de Robótica de la Universidad de Zaragoza pretende desarrollar exoesqueletos
robóticos que ayuden a la rehabilitación funcional de pacientes con trastornos motores. En este
sentido, uno de los elementos necesarios para su consecución es la estimación del par de fuerzas
producido durante el movimiento de las articulaciones a partir de las señales de electromiografía
superficial (sEMG) generadas por la activación de los músculos. La razón de ello es que, una vez
conseguido predecir el movimiento voluntario que pretende realizar el paciente, se posibilita el
que pueda ser ajustado por el exoesqueleto de forma que contribuya más eficientemente a su
rehabilitación.

En este trabajo se han desarrollado modelos de caja negra basados en redes neuronales y
otras técnicas de aprendizaje automático, diseñando su estructura y definiendo sus variables
de entrada, de forma que se permita comparar el rendimiento de las distintas opciones con el
obtenido anteriormente a partir de un modelo paramétrico basado en las técnicas de Hill. Como
conclusión final se propondrá el modelo que mejor se ajuste a las necesidades del proyecto,
valorándose sus posibilidades de generalización e indicándose sus limitaciones.
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CAPÍTULO 1
Introducción

El ámbito de HYPER-Consolider [21], proyecto en el que se enmarca el presente Trabajo
de Fin de Máster (TFM), es la investigación y desarrollo de dispositivos neurorrobóticos
y neuroprotésicos que ayuden a pacientes afectados por dolencias funcionales motoras en su
rehabilitación o, al menos, promuevan la compensación funcional de sus trastornosmotores en las
diversas actividades de la vida diaria. El objetivo de HYPER es validar, funcional y clínicamente,
el empleo de novedosos sistemas robóticos híbridos con interacción hombre-máquina en el
ámbito fisioterapéutico bajo un nuevo paradigma, el de la asistencia personalizada bajo demanda.
En dicho paradigma las terapias de rehabilitación explotarían los diferentes niveles de actividad
neural y muscular del paciente para poder adecuarse completamente a sus necesidades. En lugar
de obviarse, se incorpora al propio modelo de rehabilitación la inherente variabilidad del cuerpo
humano, mejorando su eficacia y posibilitando nuevas funcionalidades como es su adaptación
automática con la evolución del paciente.

En la práctica HYPER supone la creación de un exoesqueleto que, respondiendo a distintos
tipos de estímulos neuronales y musculares, potencie y ayude a restablecer las capacidades
de personas con trastornos motores, tanto en los miembros inferiores como superiores, pro-
porcionando capacidades que pueden ir desde el simple apoyo estructural hasta su uso como
prótesis funcional. El único requisito para conseguirlo es la existencia de actividad neuronal
latente asociada a actividades motoras que pueda ser adecuadamente detectada como con la
electromiografía superficial (sEMG). Debido a ello HYPER tiene clara aplicación con las causas
más comunes de trastornos motores, los accidentes cerebrovasculares y las lesiones de médula
espinal, sin descartar que también sea factible con otras causas como la parálisis cerebral o la
miastenia.

La importancia de esta labor se pone en perspectiva al considerar la prevalencia e incidencia
de dichas causas. Por ejemplo, se estima que en EE.UU. las lesiones medulares tienen una
prevalencia de 270 000 casos y una incidencia de entre 12 000 y 20 000 casos anuales, lo que
supone unos costos totales estimados en 14,5 millardos de dólares. Por su parte, la prevalencia
de los accidentes cerebrovasculares alcanza los 6,8 millones (un 2,8% de la población) y su
incidencia es de 795 000 nuevos casos, de los que la mitad sufrirán trastornos motores y una
cuarta parte terminarán siendo dependientes para las actividades de su vida diaria. Los costes
totales asociados se estiman, en este caso, de 34,3 a 65,5 millardos de dólares [29]. Aunque
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2 Capítulo 1 Introducción

en España las incidencias estimadas sean menores, con 8 casos por millón para las lesiones
de medula espinal [37] y 187 por cada 100 000 para los accidentes cerebrovasculares [15], los
efectos económicos y personales de la discapacidad asociada no dejan de ser cuantiosas.

El elemento clave para el éxito de HYPER es el Neuroestimador, una interfaz cerebro-
máquina que, en el marco de la rehabilitación fisioterapéutica, predice el movimiento que
pretende realizar el paciente a partir del nivel de actividad neuromuscular capturada, lo caracte-
riza y, según las demandas específicas para su rehabilitación, modifica el nivel de participación
del paciente en dicho movimiento mediante el apoyo o la oposición a este por el exoesqueleto.
Para alcanzar un fino control sobre la ayuda proporcionada es necesario una estimación precisa
y adaptativa del movimiento que quiere realizar el paciente, con la dificultad de que dicho
movimiento no está realmente constreñido si no que es libre y ha de procesarse en tiempo real.
El presente TFM se centra en la caracterización del movimiento, lo que supone en la práctica,
por la arquitectura y construcción del exoesqueleto, la predicción del momento que debería
producirse en las articulaciones del paciente durante su ejecución.

Los métodos para la realización de dicha predicción están clasificados según el modelo del
sistema neuromusculoesqueletal en que se basan. Los modelos fisiológicos, como el modelo
de Hill [17], parametrizan las estructuras internas del sistema (huesos, tendones y músculos)
realizando la predicción mediante un proceso de Dinámica Directa (Forward Dynamics, FD) [7].
De esta forma proporcionan un grado de conocimiento muy elevado sobre el comportamiento
real del sistema motor, sin duda una de las razones por las que un TFM previo implementó el
bloque predictor del Neuroestimador con un modelo de Hill optimizado [8].

Por otro lado, los métodos basados en aprendizaje automático, o de caja negra, recurren a
redes neuronales artificiales (Artificial Neural Networks, ANNs) o a técnicas de aprendizaje
estadístico como las máquinas de vectores soporte (Support Vector Machines, SVMs) para
realizar la predicción. Entre la literatura relacionada podemos citar el estudio de ROSEN et
ál. [32] que compara el rendimiento en la predicción del momento ejercido en el codo entre un
modelo de Hill y un modelo basado en el perceptrón multicapa (Multilayer Perceptron, MLP),
un tipo de ANN, a partir de las señales de activación muscular y la cinemática de las secciones
del brazo. SONG et ál. [38] utilizaron para su estudio, también referido al codo, una Recurrent
ANN (RANN) comparando, además, su rendimiento cuando se elimina la señal de cinemática.
Por su parte, LOCONSOLE et ál. [28] predijeron el momento en hombro y codo mediante
dos Time Delayed ANN (TDANN) independientes. Si nos referimos a la muñeca, tenemos
estudios independientes realizados por CASTELLINI et ál. [9] o YANG et ál. [46] que, aparte de
comparar diversos métodos como MLP o Support Vector Regression (SVR), muestran como
el rendimiento del estimador disminuye conforme pasa el tiempo entre que se produjo el
entrenamiento y la captura de las muestras empleadas en la nueva predicción.

Menos frecuentes son los estudios que, en lugar de emplear sujetos sanos como los anteriores,
se han realizado con pacientes afectados por parálisis. AU et ál. [3] utilizaron otra TDANN para
predecir la cinemática a partir de la sEMG en pacientes con parálisis C5. Dicho trabajo fue
continuado por HINCAPIE et ál. [18] que, a partir de la sEMG, determinaron la estimulación
muscular a ejercer para que el paciente pueda volver a mover voluntariamente los músculos del
brazo que dejó de controlar por efecto de la lesión.

Nuestro cometido es diseñar e implementar un predictor basado en un modelo de caja
negra alternativo al modelo previo basado en Hill. De este modo, al permitir su sustitución
directa, se facilitará su integración con el sistema existente. La figura 1.1 muestra el diagrama de
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Figura 1.1:Diagrama de bloques del proceso de predicción. Se predecirá el par articular τ̂ partiendo
de la cinemática de la extremidad y la activación muscular y utilizando el momento calculado por
Dinámica Inversa τID como referencia durante el proceso de aprendizaje

bloques que seguirá el proceso de predicción propuesto. En concreto se propondrán diferentes
implementaciones para un predictor capaz de estimar conjuntamente el momento en hombro,
codo y muñeca, valorándose sus ventajas e inconvenientes y comparándose sus resultados con
los del modelo existente basado en Hill. Por los resultados obtenidos por SONG et ál. [38] se
usará tanto la activación muscular como la cinemática como entradas al predictor propuesto,
aunque también se estudiarán los efectos en el rendimiento del modelo de las variaciones en la
selección de datos de entrada.

La estructura de la memoria es la siguiente: el capítulo 2 presenta los métodos empleados
en la captura de los datos disponibles junto con el proceso de Dinámica Inversa (Inverse
Dynamics, ID) [6] empleado para obtener el momento que utilizaremos como referencia
(bloques azules de la figura 1.1). Los métodos para reducir la dimensionalidad de la entrada se
ven en el capítulo 3 (bloques amarillos). El capítulo 4 expone los fundamentos de los modelos
de aprendizaje automático propuestos para la estimación del par articular detallándose, en
el capítulo 5, los pasos necesarios para configurar los modelos propuestos optimizando la
capacidad de generalización de su aprendizaje y mostrándose algunos de los resultados obtenidos
experimentalmente (bloque rojo de la figura 1.1). Finalmente, en el capítulo 6 se comparan
los distintos modelos propuestos mientras que en el capítulo 7 se presentan las conclusiones
alcanzadas junto con posibles líneas futuras para continuar el trabajo presentado.

Adicionalmente, en el apéndice A se comentan las prácticas realizadas en el entorno clínico.
Por su parte, el apéndice B incluye información detallada de las señales disponibles, mostrándose
los resultados de utilizar mapas auto-organizados (Self-organizing Maps, SOMs) para la reduc-
ción de la dimensionalidad en los datos de entrada en el apéndice C y revisándose brevemente
el proceso de Dinámica Directa y el modelo de Hill en que se basa el Neuroestimador existente
en el apéndice D. Finalmente, en los apéndices E, F y G, se muestran de forma detallada los
resultados obtenidos durante la validación de los diversos modelos propuestos y variaciones.





CAPÍTULO 2
Descripción de los datos experimentales disponibles

El Neuroestimador, para poder realizar su función de predicción del movimiento voluntario
que desea ejercer un sujeto, necesita tener acceso a señales fisiológicas que contengan dicha
información. El electroencefalograma (EEG) ha demostrado su potencial para la predicción del
movimiento de un sujeto [1] pero es el sEMG la señal más utilizada actualmente para el control
de prótesis o dispositivos robóticos [9, 23, 26, 46]. La evaluación del rendimiento del predictor
en estas fases preliminares se ha realizado usando datos proporcionados por el Hospital Nacional
de Parapléjicos de Toledo (HNPT) siguiendo un protocolo de adquisición que, aunque no
emplee del sistema sensorial del propio exoesqueleto, simula el entorno de trabajo real.

Naturalmente, dicho protocolo está avalado por el Comité Ético de Investigación Clínica del
Hospital. En su realización han colaborado, tras firmar el preceptivo consentimiento informado,
19 sujetos de ambos sexos (12 pacientes y 7 controles) y edades entre 22 y 60 años (véase la
tabla B.1). Los pacientes seleccionados padecen una lesión medular cervical de nivel metamérico
C6-C7, pero están capacitados para realizar las actividades requeridas sin asistencia.

El protocolo establece un patrón de movimiento del miembro superior realizando la tarea de
beber de un vaso y en cuya elección influyó la experiencia previa del HNPT con un estudio
sobre la cinemática de dicho patrón [31]. A grandes rasgos el ejercicio, mostrado en la figura 2.1,
parte de un estado de reposo con el sujeto sentado en una silla y el brazo en el respaldo, continua
con la fase de alcance y agarre del vaso situado en una mesa para, a continuación, acercarlo
a la boca y simular el acto de beber. Finalmente el sujeto deja el vaso de vuelta en su sitio y
regresa a la posición de reposo. Un ejercicio de estas características, además de permitir a un
fisioterapeuta la evaluación funcional de las capacidades del sujeto, supone un paso más en la
complejidad del movimiento evaluado en estudios similares [9, 32, 38, 46] y posibilitando una
estimación general del rendimiento del sistema en un entorno complejo.

Las variables disponibles para la realización del experimento son (véase el apéndice B para
una información más detallada):

sEMG Electromiograma de 9 músculos del hombro, brazo y antebrazo (correspondientes
al trapecio superior, deltoides posterior medio y anterior, pectorial mayor, bíceps y
tríceps braquiales y los flexores y extensores del antebrazo)

Activación (Normalizada) Nivel de activación del músculo correspondiente. Variable con
9 componentes que se usarán como entrada del predictor

5
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scanner

scanner
x

zy

Posición 
del vaso

Figura 2.1: Vista esquemática cenital de la actividad de beber de un vaso por un sujeto diestro.
Dicho sujeto se encuentra sentado en una silla de ruedas situada a entre 18 cm o 20 cm de distancia
de la mesa. Las alturas de ambas se pueden regular para que, en la posición inicial de reposo, todos
los sujetos tengan el brazo pegado al tronco formando un ángulo de 90° respecto al antebrazo con
la muñeca reposando sobre la mesa y la palma perpendicular a esta y hacia adentro. El vaso de
plástico duro con 1 dl de agua se ha situado enfrente del sujeto a 18 cm de distancia del borde de la
mesa. También se muestra el sistema de coordenadas XYZ convenido para el experimento

Cinemática Posición angular tridimensional de tronco, hombro, codo y muñeca. Son 12
(4 × 3) variables que se usarán como entrada del predictor

Fuerza Fuerza tridimensional ejercida en hombro, codo y muñeca. Son 9 (3× 3) variables
derivadas que se pueden usar como referencia para la salida del predictor

Momento Par de fuerzas ejercido en hombro, codo y muñeca. Son 9 (3 × 3) variables
derivadas que se usarán como referencia para la salida del predictor

Para la captura de los datos cinemáticos de la extremidad de cada sujeto se empleó un equipo
de análisis de movimiento tridimensional CodaMotion® muestreando a 200Hz. El análisis de
cinemática inversa, para el cálculo de los ángulos de las articulaciones a partir de las posiciones
de marcadores, y el de dinámica inversa, para el cálculo de momentos netos en las articulaciones
y las fuerzas externas, se realizó mediante el software OpenSim [13], un sistema de simulación y
análisis del movimiento humano. Para ello se creó un modelo biomecánico con las dimensiones
y características inerciales de la extremidad de cada sujeto, simulándose la interacción con el
vaso mediante una carga adicional de 0,3 kg. La figura 2.2 muestra el uso de las diversas variables
en el diagrama de bloques del proceso.

Precisamente, la señal de momento τID obtenida fruto de dicho proceso de ID será la
utilizada como referencia o función objetivo en los procesos de optimización asociados tanto
al aprendizaje de los modelos de caja negra como a la calibración del modelo basado en Hill,
de forma que gracias a este proceso de optimización se minimize el error cometido entre la
referencia utilizada τID y la predicción realizada por el modelo τ̂ .

Los datos de sEMG se capturaron con electrodos adhesivos bipolares Ag-AgCl mediante un
equipo Noraxon® muestreando a 1500Hz, aunque sincronizados temporalmente con los datos
cinemáticos. Posteriormente se remuestrearon a 200Hz para que el conjunto de variables que
forman cada muestra de entrada de nuestro modelo correspondan a un mismo instante temporal.
Más aún, un estudio de la densidad espectral de potencia de las distintas señales nos confirmó
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Figura 2.2:Diagrama de bloques del proceso de cálculo de Dinámica Inversa realizado por OpenSim

que otra opción es diezmar todas las señales a una frecuencia común de 20Hz, reduciéndose así
los requerimientos computacionales de los algoritmos de aprendizaje empleados.

La señal de activación muscular se extrajo mediante un proceso de acondicionado empleado
habitualmente [7, 26, 27, 32, 38, 39]. Un primer filtrado paso alto (Butterworth de 4.º orden con
frecuencia de corte de 30Hz) elimina el ruido producto del movimiento de los electrodos, y un
rectificado y posterior filtrado paso bajo (Butterworth de 4.º orden con fc = 6Hz) proporciona
la envolvente de la señal. Como el sistema final trabajará en tiempo real, se ha optado por una
implementación causal del filtrado en lugar de una con retardo de fase nulo.

Es habitual normalizar la señal de activación con el nivel de Máxima Contracción Voluntaria
(MVC) del músculo correspondiente, es decir, el valor de activación muscular cuando se realiza
un esfuerzo máximo con dicho músculo. Para ello el protocolo de adquisición establece la
captura previa para cada sujeto de una serie de ejercicios específicos con los que obtener dichos
máximos para los músculos implicados. Sin embargo, su ejecución se ha mostrado especialmente
problemática con los pacientes, para los que ocasionalmente el nivel de activación detectado
durante la tarea de beber es mayor que la MVC detectada durante el ejercicio específico. Además
se ha establecido un umbral mínimo de activación muscular del 1% para evitar situaciones de
mal acondicionamiento numérico en los cálculos realizados con dicha señal.

Se han definido dos escenarios de pruebas distintos con los que verificar el comportamiento
de los sistemas propuestos. El primero, que denominaremos Escenario de Sujeto Único (ESU),
verifica el rendimiento del modelo cuando utiliza exclusivamente para el aprendizaje datos de
varias iteraciones del movimiento realizadas por un mismo sujeto. Este escenario, caracterizado
por facilitar el aprendizaje al restringir la variabilidad de las señales de entrada, requiere a
cambio una fase de aprendizaje específica para cada sujeto. Se dispone de 5 repeticiones del
movimiento realizadas por 8 sujetos (4 controles y 4 pacientes) realizándose, consiguientemente,
8 pruebas diferentes. Como muestra de los datos disponibles se representan las señales de un
sujeto de control (figura 2.3) y un paciente (figura 2.4), incluyéndose el resto en el apéndice B.

El segundo escenario, denominado Escenario de Sujetos Múltiples (ESM), utilizará una única
iteración por sujeto, simulando la creación de una base de datos que, si es suficientemente general,
eliminaría la necesidad de entrenar previamente con cada sujeto. Este escenario determinará
lo factible de la propuesta y el número de sujetos necesario para un correcto aprendizaje. Se
podrán realizar 3 pruebas diferentes (empleando solo controles, solo pacientes o mezclando
ambos), ya que se espera que una prueba con únicamente controles presente menor dificultad
al aprendizaje.
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Figura 2.3: Representación temporal de las señales disponibles de una iteración del movimiento
realizado por el sujeto C009 (Fm = 20Hz)
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Figura 2.4: Representación temporal de las señales disponibles de una iteración del movimiento
realizado por el sujeto P002 (Fm = 20Hz)





CAPÍTULO 3
Reducción de dimensionalidad en los datos de entrada

Un aspecto destacable mostrado en el capítulo 2 es la elevada cantidad de información con la
que se puede terminar trabajando. El principal parámetro del que depende la dimensionalidad
en la entrada es el número de muestras que formaran la base de datos de aprendizaje, por ser
el de mayor influencia en las requisitos computacionales de los algoritmos de entrenamiento
de los modelos estudiados. En nuestro caso se corresponde con la frecuencia de muestreo de
las señales y, naturalmente, es el motivo para usar el valor más bajo posible, ende los 20Hz
propuestos.

En el otro lado tenemos el número y tipo de las variables de entrada, algo que, en realidad,
acabará siendo dependiente de las capacidades reales del propio exoesqueleto. Por ejemplo, en
una fase inicial del desarrollo podría no implementarse el antebrazo del exoesqueleto, por lo
que no se dispondrían de sus correspondientes datos de cinemática y sEMG. En el otro extremo,
puede llegar a interesar mejorar la captura de la señal sEMG y proponerse cambiar los electrodos
bipolares individuales por una solución en malla que cubra el miembro de forma más uniforme.
Consecuentemente el número de variables de entrada aumentaría exponencialmente así como
los requisitos computacionales. De cualquier manera, la elección de su número y, en definitiva,
la dimensionalidad global de la entrada ha de hacerse teniendo en cuenta los requisitos del
problema a resolver.

Por regla general, cuanta más información relevante se introduzca a un sistema de aprendizaje
automáticomayor será su rendimiento, aunque esto también provoca un aumento de la capacidad
computacional requerida. Si bien es cierto que su efecto es mucho menor que el aumentar el
número de muestras de aprendizaje, cuando se trata de sistemas en tiempo real podría llegar
a ser apreciable. Más aún, el aumentar el número de variables de entrada no ha de hacerse
con información irrelevante, y menos aún contradictoria, ya que esto conlleva el disminuir la
capacidad de aprendizaje efectiva del modelo. Dicho de otro modo, el rendimiento del predictor
dependerá de la calidad de la información con la que se alimenta.

Como el adaptarse a los requisitos computacionales puede suponer la necesidad de reducir
el número de variables a la entrada, es muy interesante el comprobar la degradación del
rendimiento final al eliminar información de forma controlada. Entre los métodos estudiados
tenemos el genérico análisis de componentes principales (Principal Component Analysis, PCA)
o las sinergias musculares, cuya aplicación es exclusiva a la señal de activación muscular.
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3.1 Principal Component Analysis (PCA)

El concepto fundamental tras PCA es el de una simple transformación de bases [22]. Partiendo
de la base original definida por las propias variables que forman la señal original, se define
una nueva seleccionando cada nueva componente en la dirección que explique la máxima
variabilidad de la parte de señal que todavía no ha sido explicada por las componentes anteriores.
Dicho de otro modo, se define una nueva base cuyas componentes han sido ordenadas en
función de la parte que explican de la variabilidad presente en la señal original. De esta forma,
llegado el caso de necesitar reducir el número de componentes de una señal con el que se deba
trabajar, se pueden eliminar aquellas que menos contribuyen en su variabilidad.

La figura 3.1 muestra la media, y desviación estándar correspondiente, del porcentaje de
varianza explicada del conjunto de señales de Activación Normalizada disponibles para ambos
escenarios de trabajo, ESU y ESM. Al estar implicadas para su realización un elevado número
de iteraciones del movimiento es razonable que ambas gráficas presenten resultados similares.
De ellas se deduce que, de las 9 componentes de activación muscular disponibles, suelen bastar
4 componentes de media para explicar un 80% de la varianza de la señal original aunque, al
considerar la desviación, se necesiten 5 para asegurarlo de forma práctica. De forma similar
bastan 5 o 6 componentes para explicar el 90% de la varianza de la Activación Normalizada.

Pero la verdadera potencia de PCA está en la generalidad del propio método al poderse
aplicar mezclando tipos de señales. La figura 3.2 muestra los resultados para las señales conjuntas
de Activación Normalizada y Cinemática donde se aprecia que, a pesar de haber añadido las 12
componentes correspondientes a la señal de cinemática, sólo se necesitan 1 o 2 componentes
adicionales con respecto al caso anterior para alcanzar el porcentaje de varianza explicada
requerido.
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Figura 3.1: Promedio y desviación por componente del porcentaje de varianza explicada de la
señal de Activación Normalizada (Fm = 20Hz)
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Figura 3.2: Promedio y desviación por componente del porcentaje de varianza explicada de las
señales de Activación Normalizada y Cinemática (Fm = 20Hz)

3.2 Sinergias musculares

El modelo de sinergias musculares ha sido propuesto en la literatura de control del sistema
motor para explicar la coordinación existente entre diversos músculos durante la realización de
movimientos voluntarios. En este modelo la activación de los músculos individuales se transfor-
ma, mediante algoritmos de análisis de componentes, en un número menor de agrupaciones
musculares o sinergias. Estas representan subtareas motoras que el sistema nervioso combina de
forma flexible para producir movimientos naturales complejos [34]. La ventaja de esta apro-
ximación es la mayor facilidad en la interpretación funcional de la actividad muscular frente
a la que se puede conseguir simplemente con las señales de activación normalizada aunque,
lamentablemente, estos patrones son específicos de cada sujeto y cambian ostensiblemente con
la existencia de trastornos motores. Sin embargo, y a pesar de lo plausible de su interpretación
fisiológica, la dificultad de acceder al interior del sistema nervioso complica, no solo la verifica-
bilidad de la propia teoría, sino también la determinación del número de sinergias con las que
operar.

Para extraer las sinergias se han propuesto diversos métodos, como PCA o Independent
Component Analysis (ICA), pero es la factorización no-negativa de matrices (Nonnegative
Matrix Factorization, NMF) el que proporciona mejores resultados experimentales [41]. Más
aún, la restricción que impone de no-negatividad facilita la reinterpretación de sus resultados
como activaciones musculares. En esencia, NMF factorizará una matriz no-negativaA ∈ RN×M

en otras dos,W ∈ RN×P yH ∈ RP×M también no-negativas, tal queW ×H es una aproximación
de A con rango P < min(M ,N ) calculada mediante la minimización iterativa de:

f (W ,H) =
1

2
‖A −WH‖2F (3.1)

donde A representa las N muestras de las señales de activación muscular de los M músculos, H
es la definición de las P sinergias como combinación lineal de los músculos yW representa las
señales de activación sinergiales.
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Algoritmo 3.1 Algoritmo de actualización multiplicativa para NMF
W = rand(N ,P) . InicializarW como una matriz densa aleatoria
H = rand(P ,M) . Inicializar H como una matriz densa aleatoria
for i = 1 :max_iter do

H = H .∗ (WTA) ./ (WTWH + epsilon) . Paso de actualización (MU)
W =W .∗ (AHT) ./ (WHHT + epsilon) . Paso de actualización (MU)

end for

Algoritmo 3.2 Algoritmo Alternating Least-Squares (ALS) para NMF
W = rand(N ,P) . InicializarW como una matriz densa aleatoria
for i = 1 :max_iter do

Resolver H enWTWH =WTA . Aplicar mínimos cuadrados (LS)
Poner a 0 los elementos negativos de H . Aplicar restricción (NONNEG)
ResolverW en HHTWT = HAT . Aplicar mínimos cuadrados (LS)
Poner a 0 los elementos negativos deW . Aplicar restricción (NONNEG)

end for

Existen múltiples algoritmos de actualización [4] pero, comúnmente, un primer paso de
inicialización aleatoria tiene efectos en los resultados obtenidos. Por ello, para obtener un mejor
resultado es habitual combinar dos de ellos, primero una serie de repeticiones del tradicional
algoritmo de actualización multiplicativa (algoritmo 3.1) aproxima la localización del mínimo
global, mientras que se aprovecha la rápida convergencia del algoritmo Alternating Least-
Squares (ALS) (algoritmo 3.2) para encontrarlo propiamente. Aún así no está garantizado que
se alcance el mínimo global, obteniéndose una solución que podría no ser óptima en el sentido
de que, al aumentar el número de sinergias empleadas, disminuye el porcentaje de varianza
explicada. En este caso se necesitaría repetir el proceso hasta alcanzar un resultado aceptable.
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Figura 3.3: Promedio y desviación por número de Sinergias, o grupos musculares, del porcentaje
de varianza explicada de la señal de Activación Normalizada (Fm = 20Hz)
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Un ejemplo de los resultados obtenidos se muestra en la figura 3.3. Frente a los resultados de
PCA (figura 3.1) destaca la mayor cantidad de varianza explicada de media con un número
pequeño de grupos musculares. Igualmente se aprecia su mayor variabilidad, lo que complica la
elección de un número común de sinergias aceptable para toda la población. En este sentido
3 sinergias bastarían para explicar, prácticamente en todos los casos, el 80% de la varianza
presente originalmente, mientras que son 5 las necesarias para elevarlo al 90%. Este número es
inferior al necesitado por PCA, aunque su mayor variabilidad implica tomarlo con cautela.





CAPÍTULO 4
Métodos de predicción del momento articular

Los modelos de aprendizaje automático realizan su modelado del sistema neuromusculoes-
queletal en un plano superior al nivel en el que se sitúan los modelos basados en Hill (véase
su descripción en el apéndice D). En lugar de situarse el foco en cada uno de los elementos
que forman el sistema (músculos, tendones, etc.) se considera este en su conjunto, evitándose la
complejidad del modelado individual de cada elemento a costa de perder la perspectiva fisioló-
gica. De esta manera, se intercambia la dificultad del proceso de ajuste los distintos elementos
del modelo por un uso apropiado de los algoritmos que definen el modelo de caja negra y la
obligatoriedad de una fase de entrenamiento supervisado que lo adapte a diferentes movimientos.
Adicionalmente, habrá de asegurarse la calidad de la base de datos de muestras de entrenamiento
y que esta sea realmente representativa del problema.

En base a literatura relacionada [9, 32, 46] se ha decidido emplear modelos basados en MLP
y SVR, incluyéndose adicionalmente un modelo basado en redes de base radial (Radial Basis
Networks, RBNs) por su simplicidad. Todos los modelos han sido configurados para predecir
el par de fuerzas en las articulaciones del hombro, codo y muñeca de forma conjunta a partir,
inicialmente, de las señales de activación muscular normalizada y cinemática correspondientes,
lo que en nuestro caso suponen 21 componentes disponibles para la entrada. En comparación, la
sección 6.3 estudiará los efectos de la variación en la selección de las variables de entrada junto
con la aplicación de los resultados obtenidos en el capítulo 3 para la reducción controlada del
número de componentes de las variables de entrada.

Remarcar, además, que se han empleado datos provenientes tanto de sujetos sanos como
de pacientes afectados de lesiones medulares a nivel C6-C7, lo que permitirá comparar los
resultados obtenidos para ambos grupos. Por último, para estimar el rendimiento en entornos
reales se ha optado por entrenar, no con un simple movimiento de flexión-extensión, sino con
un movimiento complejo que permite caracterizar la capacidad funcional del sujeto como es la
tarea de beber de un vaso.

El funcionamiento de los modelos de caja negra seleccionados está determinado por una serie
de parámetros que influyen de diversas maneras en sus algoritmos de aprendizaje, pudiendo
distinguirse entre parámetros e hiperparámetros. Los primeros serían los parámetros internos
del algoritmo de aprendizaje y estarían calculados automáticamente por este durante la fase de
aprendizaje representando, de esta forma, el conjunto de información aprendida por el modelo.

17
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Sin embargo, los hiperparámetros corresponderían a la configuración del modelo seleccionado
(como el algoritmo de aprendizaje propiamente dicho, el número de neuronas y estructura de la
ANN, las condiciones de parada del entrenamiento, ...) y tanto podrían haber sido seleccionados
previamente por criterios de diseño, como ser calculados durante la fase de aprendizaje.

4.1 Multilayer Perceptron (MLP)

La estructura de un MLP [33], siendo una ANN, es equiparable a la de una red neuronal
biológica, con una primera capa de sensores, una o varias capas de neuronas de procesamiento y
una capa final de neuronas de salida (figura 4.1b). Más aún, el comportamiento de sus neuronas,
con una salida determinada por entradas altamente interconectadas y un coeficiente de bias, es
equiparable al de las neuronas biológicas con sus dendritas y umbral de activación neuronal
(figura 4.1a). Matemáticamente, para una neurona k genérica, su salida yk es proporcional
a sus L entradas ponderadas wkixi y al bias de la neurona θk (ecuación 4.1). La función de
transferencia de la respuesta funcional más comúnmente empleada es la tangente hiperbólica o
sigmoidea (ecuación 4.2), aunque las neuronas de salida de un MLP configurado para ajuste
funcional han de ser lineales.

yk = f *
,

L∑
i=1

wkixi − θk+
-

(4.1)

tansig(x) =
ex − e−x

ex + e−x
(4.2)

ElMLP en el que nos basaremos dispondrá, inicialmente, de L = 21 entradas, correspondientes
a las 12 componentes disponibles de cinemática y a las 9 de activación normalizada, y S = 9
neuronas lineales de salida correspondientes a las respectivas componentes del momento en las
articulaciones de hombro, codo y muñeca. Además se ha configurado una capa intermedia u
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∑
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…
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^

(b) MLP para ajuste funcional de L entradas, S salidas
y una única capa intermedia con H neuronas ocultas

Figura 4.1: Descripción de un perceptron multicapa (MLP)
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oculta con H neuronas sigmoideas cuyo número definitivo será determinado por el proceso de
optimización que se detallará en el capítulo 5.

A partir de la ecuación 4.1 que regula la salida de un neurona genérica se puede deducir
la ecuación 4.3 que relaciona cada salida de la red con sus entradas. Denotando como xi a la
i-ésima entrada de la red, yh a la salida de la h-ésima neurona oculta cuyos parámetros son whi
y θh y, finalmente, τ̂P j a la salida de la j-ésima neurona de salida con parámetros w ′jh y θ ′j y que
corresponde a la j-ésima componente del momento predicho por el modelo, obtenemos:

τ̂P j =
H∑

h=1

w ′jhyh − θ
′
j =

H∑
h=1

w ′jh tansig *
,

L∑
i=1

whixi − θh+
-
− θ ′j (4.3)

Los parámetros de la red (pesos y bias), son establecidos durante el periodo de entrenamiento
mediante el procedimiento llamado back-propagation. Este es un proceso que, partiendo de una
inicialización aleatoria los actualiza iterativamente buscando minimizar, en cada iteración µ, el
error de entrenamiento entre las salidas τ̂P

µ
j del MLP y sus valores objetivos correspondientes

calculados por Dinámica Inversa τID
µ
j . En lugar del habitual Levenberg-Marquardt se decidió

emplear como método de entrenamiento Scaled Conjugate Gradient (SCG) [30] por ser la
opción más rápida para el ajuste funcional con un elevado número de muestras [40].

El mayor problema de los métodos de aprendizaje automático es el llamado overfitting o
sobreaprendizaje, consistente en que el modelo, en lugar de aprender el comportamiento general
del sistema, memoriza el ruido o información espuria presente entre los datos de entrenamiento
y disminuyendo así su capacidad de generalización ante entradas desconocidas. Por ejemplo,
este aparece cuando el objetivo del entrenamiento se centra exclusivamente en minimizar el
error de entrenamiento. Un método común para evitarlo es recurrir a Early-Stopping, por
el que un subconjunto aleatorio de las muestras disponibles se reservan para validar el error
cometido en el entrenamiento y señalar, cuando este crece, el momento en el que comienza
el sobreaprendizaje (figura 4.2a). Otra situación en la que se puede incurrir en overfitting es
al determinar los hiperparámetros del modelo [11], como el número de neuronas ocultas o el
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algoritmo de entrenamiento. En nuestro caso ya ha sido fijado el algoritmo SCG por su rapidez
pero habrá que tenerlo en cuenta al definir el número de neuronas ocultas.

Por otro lado, la aleatoriedad inherente en Early-Stopping habilita que se puedan obtener
resultados distintos para un mismo entrenamiento. Más aún, la misma presencia de neuronas
ocultas implica la existencia de mínimos locales en el hiperparaboloide solución [33] y, de nuevo,
que no siempre se alcance el mejor rendimiento posible. Para evitarlo es habitual repetir el
entrenamiento r veces y seleccionar el MLP con menor error de entrenamiento. Por ejemplo,
CASTELLINI et ál. [9] escogieron para su estudio la mejor de r = 10 repeticiones, aunque
habitualmente dicho número es menor.

Sin embargo, esta solución es proclive al sobreaprendizaje, por lo que nuestra propuesta, en
lugar de descartar esos r − 1 MLP ya entrenados, es considerar como modelo el conjunto de los
r MLP y tomar como su salida el promediado (con la media o incluso la mediana para hacerlo
más robusto frente a valores atípicos) de sus salidas individuales. Para ayudar a distinguir este
modelo del MLP habitual lo denotaremos como Averaged Output MLP (aoMLP) teniendo en
cuenta que, en realidad, representa una forma básica de ensemble learning en la que la variación
se produce en la inicialización de los pesos y, por efecto del Early-Stopping, en la selección
de las muestras de entrenamiento [36]. Naturalmente, conforme se incrementa el número
de realizaciones r del ensamble, se reduce la variabilidad en su salida a costa de incrementar
linealmente el tiempo de entrenamiento. En el presente TFM se ha escogido r = 30 para
tener un alto grado de confianza de encontrar la media real de la salida, aunque también
comprobaremos que es factible usar un número menor.

Para finalizar, y aunque de menor importancia, indicar que como criterios de parada del
entrenamiento se configuró en 10 el número máximo de incrementos consecutivos del error
de validación y en 20 000 el número máximo de épocas de entrenamiento (correspondientes a
las iteraciones con las N muestras de entrenamiento). Al incrementarse los valores por defecto
aumenta la probabilidad de obtener un buen entrenamiento con entradas complicadas a costa
de un mayor riesgo de overfitting. El rendimiento de la red se computó mediante el error
cuadrático medio (Mean Square Error, MSE) optándose por normalizar su valor entre las
distintas salidas para tener en cuenta la distinta magnitud del momento en hombro y codo
frente al ejercido en la muñeca.

4.2 Radial Basis Network (RBN)

Las RBN son redes neuronales que, en su formulación más generalizada, utilizan para sus
neuronas intermedias cuya respuesta es una función de base radial (Radial Basis Function, RBF)
aunque, mayoritariamente, estas son directamente neuronas de tipo gaussiano [5]. Dichas
neuronas (figura 4.3a) tienen dos parámetros, el centroide cki y la anchura del kernel σk o spread,
mientras que su salida es proporcional a la distancia entre entrada y centroide (ecuación 4.4).
Finalmente, y utilizando la nomenclatura vista en la sección 4.1, la relación entre una salida y
las entradas de la red viene dada por la ecuación 4.5.

yk = e−
∑L
i=1(xi−cki )

2/2σ 2
k (4.4)
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Figura 4.3: Descripción de una red de base radial (RBN)

τ̂R j =
H∑

h=1

w jhyh − θ j =
H∑

h=1

w jh
(
e−

∑L
i=1(xi−chi )

2/2σ 2
h
)
− θ j (4.5)

En esta ocasión el algoritmo de entrenamiento está basado en añadir, con cada iteración,
un nueva neurona oculta que minimize el error resultante. Para ello simplemente sitúa el
centroide de la nueva neurona en el punto en el que se encuentra el error máximo, continuando
el proceso de entrenamiento hasta que se alcanza el rendimiento requerido (algoritmo 4.1).
Como la implementación del algoritmo empleado asigna idéntico spread a todas las neuronas,
este será uno de los hiperparámetros del modelo. El otro será, por determinar la duración del
entrenamiento tal y como muestra la figura 4.4, el nivel de error deseado o goal.

Un último parámetro que se configuró, aunque de menor importancia, fue el número máximo
de neuronas intermedias (1000) que, en la práctica, permite detener el entrenamiento cuando
el rendimiento alcanzado tarda en llegar al valor deseado. Aunque es posible encontrarse en
dicha situación al configurar un goal muy exigente, es más habitual que se produzca cuando los
datos de entrenamiento disponibles no permiten un aprendizaje efectivo.

Algoritmo 4.1 Algoritmo de entrenamiento de RBN
Inicializar a cero los pesos y bias de la capa de salida . w jh = 0 y θ j = 0
for h = 1 :max_neurons do .max_neurons ≤ N

Simular la configuración actual de la red
Salir si ya se ha alcanzado el error deseado . ¿MSE < дoal?
Encontrar el vector de entrada xn con mayor error
Añadir neurona gaussiana en la posición del vector . Determina chi
Actualizar la capa de salida minimizando el error . Actualiza w jh y θ j

end for
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Figura 4.4: Rendimiento de una RBN durante la fase de entrenamiento

4.3 Support Vector Machine (SVM)

La predicción del par articular impone, al tratarse de su ajuste funcional, implementar el
modelo SVM mediante la modalidad SVR. Concretamente se utilizará la formulación ϵ-SVR
proporcionada por el software LibSVM [12]. Aunque la interpretación geométrica de SVM
difiere según se realice regresión o clasificación, en general su algoritmo se divide en dos partes
diferenciadas.

En primer lugar el espacio muestral se transforma, mediante una transformación de kernel,
en un nuevo espacio de características (EC) que, usualmente, estará caracterizado por una
alta dimensionalidad que facilitará la linealización del problema. Un proceso subsecuente de
optimización buscará, de entre todos los datos de entrenamiento, los vectores soporte que definen
el tubo asociado a la línea de ajuste de regresión que minimiza el error empírico de predicción
cometido [43]. Lo interesante es que por su construcción, al mismo tiempo, se maximiza
el margen geométrico entre la línea de ajuste y la frontera del tubo (figura 4.5). Esta es la
razón por la que SVM se considera una extensión de las ANN, cuya solución no proporciona
necesariamente ese margen óptimo.

ϵ-SVR dispone para su configuración de dos hiperparámetros, la tolerancia del criterio de
terminación ϵ > 0 y el parámetro de coste o regularización del error C > 0. Además, se eligió
un kernel RBF por combinar una respuesta no lineal con la sencillez de requerir un único
hiperparámetro adicional γ > 0 [16, 20]. Considerando que se disponga de N muestras de
entrenamiento xn ∈ RL, con sus correspondientes salidas objetivo τIDn ∈ R

1, el kernel elegido
vendrá dado por:

K(xn ,xk ) = e
(
− 1

2σ2 ‖x n−x k ‖2
)
= e(−γ ‖x n−x k ‖2) (4.6)

Por otro lado, teniendo en cuenta que dicho kernel está definido en función de la función
de transformación del EC como K(xn ,xk ) ≡ ϕ(xn)Tϕ(xk ), y que la solución se puede definir,
como cualquier hiperplano, por el conjunto de puntos x que satisfacen w · x − b = 0 (con w el
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Figura 4.5: Interpretación geométrica de la regresión por vectores soporte (SVR). Reproducido
de Introduction to Machine Learning [2]

vector normal y b su offset), se puede obtener la forma estándar o primaria de ϵ-SVR:

min
w ,b,ξ ,ξ ′

1

2
wTw +C

N∑
n=1

ξn +C
N∑

n=1

ξ ′n (4.7)

sujeto a wTϕ(xn) + b − τIDn ≤ ϵ + ξn , n = 1, . . . ,N ,

τIDn −w
Tϕ(xn) − b ≤ ϵ + ξ ′n , n = 1, . . . ,N ,

ξn ,ξ
′
n ≥ 0, n = 1, . . . ,N

donde las variables ξ ,ξ ′ ∈ RN representan a las llamadas variables de slack, que habilitan la
existencia vectores erróneamente clasificados o los casos en que la linealización del EC no ha
sido totalmente efectiva.

Técnicamente la ecuación 4.7 representa un problema de optimización de programación
cuadrática con una restricción lineal, por lo que se puede construir su forma dual en el espacio
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de los multiplicadores de Lagrange usando los multiplicadores α ,α ′ ∈ RN :

min
α ,α ′

1

2
(α − α ′)TQ(α − α ′) + ϵ

N∑
n=1

(αn + α ′n) +
N∑

n=1

τIDn(αn − α
′
n) (4.8)

sujeto a eT(α − α ′) = 0, con e = [1, . . . ,1]T,

0 ≤ αn ,α
′
n ≤ C, n = 1, . . . ,N

donde Qnk = K(xn ,xk ) representa el kernel seleccionado. Lo interesante es que, mientras que
la solución de la forma primaria depende del número de dimensiones del EC y este puede ser
infinito, en la forma dual depende únicamente del número de vectores soporte.

Una vez resuelta la ecuación 4.8, y obtenido α ′−α , se podrán realizar predicciones mediante
la función aproximación [12, 44]:

τ̂V =
N∑

n=1

(−αn + α ′n)K(xn ,x) + b (4.9)

Señalar finalmente que SVR se ha desarrollado para el análisis de regresión de una única
variable. Consecuentemente, para nuestro caso con S variables de salida a estimar τ̂V j , cada una
de ellas requerirá la utilización de un modelo SVR independiente.



CAPÍTULO 5

Configuración de los hiperparámetros y predicción del par

Una vez seleccionados los métodos de aprendizaje automático bajo estudio, el siguiente paso
es configurar aquellos hiperparámetros sobre los que, durante la fase previa, no se ha podido
tomar una decisión evidente. El objetivo es evitar el riesgo de overfitting primando la capacidad
de generalización del estimador de forma que el rendimiento con entradas desconocidas sea
similar al del entrenamiento aunque, naturalmente, el límite estaría en que durante la fase de
producción las entradas presenten características estadísticas similares a las del entrenamiento.
Por ello CAWLEY et ál. [11] recomiendan determinar automáticamente los hiperparámetros a
la vez que se produce el entrenamiento. Sin embargo, para las situaciones en que esto no es
posible o deseable, como cuando los requerimientos computacionales son excesivos, habrá que
realizarlo manualmente durante la fase de diseño.

Tanto en el proceso manual como el automático el paso crítico será la estimación, a partir de los
datos de entrenamiento únicamente, del rendimiento del predictor con muestras desconocidas.
De este modo se podrán configurar los hiperparámetros optimizando dicha capacidad de
generalización del estimador. Más aún, este mismo concepto de generalización aparecerá al
caracterizar el rendimiento real de un predictor cuando se pretenden comparar varios de ellos.
De nuevo se busca generalizar la estimación de dicha capacidad de predicción de forma que se
pueda evaluar su efectividad con muestras diferentes a las del entrenamiento.

La estrategia para lograr dicha generalización de los resultados es la aplicación de validación
cruzada o cross-validation [11]. En su versión más común, k-fold cross-validation (k-fold CV), toda
la información de entrenamiento disponible se divide aleatoriamente en k grupos, de forma que
un grupo se usa para validar los cálculos realizados utilizando el resto. Repitiendo el proceso k
veces, para obtener resultados validados por cada uno de los grupos, y promediando se obtendrá
un valor del rendimiento que tiene en cuenta dicha capacidad de generalización. Sin embargo,
si se tiene en cuenta que las muestras de datos disponibles forman, ya de por sí, iteraciones de
movimientos, se puede aprovechar para obtener el rendimiento del estimador por iteración en
lugar de por muestra. En este caso, el limitado número de movimientos disponibles (solo 5 por
sujeto en el escenario ESU) impone recurrir a la variante leave-one-out cross-validation (LOOCV),
en la que cada que hay tantos grupos como elementos seleccionables y, consecuentemente, cada
iteración asumirá el papel de un grupo.

25
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5.1 Averaged Output MLP (aoMLP)

5.1.1 Optimización de los hiperparámetros

El procedimiento habitual para optimizar el número de neuronas intermedias es representar
conjuntamente la variación del rendimiento de entrenamiento y el de validación en función
de dicho número de neuronas. De forma similar a Early-Stopping, el error cuadrático medio
de validación mínimo determinará el número óptimo de neuronas para la iteración que está
siendo validada, mientras que la aplicación de LOOCV posibilitará una selección razonable de
la configuración del modelo. Sin embargo, en ocasiones los resultados parciales de validación
cruzada pueden ser incompatibles entre ellos y su promediado proporcionará, simplemente,
una solución de compromiso.

La figura 5.1 muestra algunos resultados obtenidos durante el proceso de optimización.
En el escenario ESU, de los 40 casos posibles, el 82,5% presentan una respuesta como la
de la figura 5.1a, en la que el rendimiento alcanza un nivel estable y, sorprendentemente,
independiente del número de neuronas ocultas en el rango estudiado. Este resultado contrasta
con el obtenido sin ensamble, apreciándose claramente la atenuación en la variabilidad del
rendimiento resultante tanto en entrenamiento como validación (figura 5.1b).

En el resto de casos, el rendimiento de validación empeora con el número de neuronas y,
a pesar del promediado, presenta mayor variabilidad (figura 5.1c). Precisamente, son estos
casos los que restringirán el rango óptimo de neuronas ocultas y, en su mayoría, se asocian
fácilmente a la presencia de datos erróneos o contradictorios en, lo que podría considerarse,
una falta de calidad en los datos. Afortunadamente, en 6 casos (el 15% del total) la red es
capaz de paliar razonablemente estos problemas, como indica el bajo valor del MSE mínimo
alcanzado. Sin embargo, en casos extremos en los que esto no sucede, el error de validación
alcanza directamente cotas elevadísimas. La única ocasión en que esta situación ha acaecido en
el escenario ESU se muestra en la figura 5.1d. Toda esta información sugiere que, no solo para
un sujeto si no para todos, 10 neuronas ocultas es un valor razonable evitándose, además, su
cálculo automático con cada entrenamiento.

En el escenario ESM, sin embargo, los resultados no son tan positivos. Esto era esperado
por la mayor dificultad impuesta por su planteamiento, pero tampoco se obtienen resultados
mucho mejores en la prueba exclusiva para controles. Desafortunadamente, los rendimientos
obtenidos en las tres pruebas empeoran ostensiblemente respecto al escenario ESU, tanto en
entrenamiento como validación, implicando peores predicciones en la validación. Además, hay
muchos más casos en los que el proceso de optimización no es el ideal, tanto casos similares al de
la figura 5.1d como, simultáneamente, otros que necesitan de un mayor número de neuronas
ocultas, dificultando su selección manual e imponiendo su búsqueda automatizada.

5.1.2 Predicciones de validación del escenario ESU

Para el diseño del estimador aoMLP propuesto se ha configurado un ensamble cuya salida es
la media de 30 MLP independientes constando, cada uno de ellos, de 10 neuronas ocultas y
empleando SCG como algoritmo de aprendizaje junto a Early-Stopping, con un máximo de
10 fallos de validación consecutivos, para evitar el sobreaprendizaje. De este modo, la instancia
particular a implementar en producción se entrenaría con las 5 iteraciones disponibles.
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(a) Optimización de la iteración 1 del sujeto C009 en
el escenario ESU para el modelo aoMLP
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(b) Optimización de la iteración 1 del sujeto C009 en
el escenario ESU para un MLP (sin ensamble)
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(c) Optimización de la iteración 1 del sujeto P002 en
el escenario ESU para el modelo aoMLP

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

(Neuronas de la capa oculta)

(P
e

rf
o

rm
a

n
c
e

)

(d) Optimización de la iteración 1 del sujeto C018 en
el escenario ESU para el modelo aoMLP

Figura 5.1: Casos de la variación del rendimiento en función del número de neuronas ocultas
durante el proceso de optimización para el modelo aoMLP. Se muestra en azul el rendimiento
conseguido, medido como MSE, para las iteraciones del movimiento utilizadas en el entrenamiento
frente al rendimiento alcanzado, en rojo, con la iteración de validación

Para valorar su comportamiento se muestran, para tres casos representativos, dos repre-
sentaciones complementarias de las respectivas predicciones de validación (figura 5.2). En el
primer panel, además de mostrarse la referencia τIDk y la predicción τ̂Pk (es decir, la media de
las predicciones de los submódulos), se visualiza la variabilidad de las estimaciones de dichos
submódulos mediante los rangos de los percentiles de dichas estimaciones calculados punto a
punto. Por su parte, el segundo panel muestra los intervalos de confianza, también calculados
punto a punto y usando una distribución t de Student, en el que se situará la media de las
estimaciones individuales y, por tanto, la predicción del modelo aoMLP τ̂Pk .

Para el primero de los ejemplos, el correspondiente al caso habitual, la mínima dispersión
de los percentiles (figura 5.2a) sugiere que la utilización de un ensamble es innecesaria. Este
hecho se desmiente, sin embargo, al considerar la variabilidad existente en cualquiera de los
casos problemáticos y cuya aplicación paliará sus efectos permitiendo la obtención de mejores
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(a) Iteración 1 del sujeto C009 – Percentiles
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(b) Iteración 1 del sujeto C009 – Intervalos de conf.
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(c) Iteración 1 del sujeto P002 – Percentiles
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(d) Iteración 1 del sujeto P002 – Intervalos de conf.
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(e) Iteración 1 del sujeto C018 – Percentiles
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(f ) Iteración 1 del sujeto C018 – Intervalos de conf.

Figura 5.2: Percentiles e intervalos de confianza de las predicciones de validación por el modelo
aoMLP del momento articular para algunas iteraciones seleccionadas del escenario ESU. Se repre-
senta la predicción τ̂Pk en rojo con la correspondiente función objetivo τIDk en negro. Además,
para las 30 estimaciones individuales de los respectivos submódulos MLP y tomadas punto a punto,
se muestran, según el panel, los rangos de los respectivos percentiles P50 (sombreado gris oscuro),
P95 (sombreado gris claro) y P99 (sombreado amarillo) o los intervalos de confianza, usando una dis-
tribución t de Student, de la media de las estimaciones al 95% (sombreado gris) y 99% (sombreado
amarillo)
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predicciones (figura 5.2d). En este sentido, la elección del tamaño del ensamble nos permitirá
estrechar el intervalo de confianza de la predicción final a costa, naturalmente, de mayores
requerimientos computacionales. Desafortunadamente, tal y como muestra la figura 5.2f, su
aplicación no garantiza la obtención de predicciones óptimas en todos los casos.

Finalmente, y para proporcionar una valoración completa del rendimiento alcanzado en
función del sujeto, las figuras 5.3 y 5.4 muestran las 5 predicciones de validación para un sujeto
de control y un paciente (el apéndice E.1 incluye todos). Una forma aproximada de visualizar
dicho rendimiento para un sujeto se muestra en la figura 5.3a, donde las diferentes predicciones
se superponen al rango de variación de las referencias expresado como su desviación estándar.
El problema de esta visualización es su sensibilidad a la variación de las funciones objetivo,
como cuando los pacientes, por la inherente dificultad de controlar su movimiento, tardan
diferente tiempo en realizar una fase del movimiento de una iteración a otra (figura 5.4a).

De cualquier manera, la representación individual de cada predicción de validación evidencia
un gran rendimiento alcanzado para el escenario ESU, tanto para controles como pacientes,
con un intervalo de confianza para la predicción apenas perceptible. Los casos en que no es así
coinciden con aquellos en los que la búsqueda del hiperparámetro no obtenía los resultados
ideales de la figura 5.1a. Esta mayor variabilidad se explica, en ciertos casos, por una perdida de
referencia de algunos marcadores del sistema VICON, que provoca la captura nula de las señales
CCX y CMY de las variables de Cinemática (véanse las figuras B.3c, B.3d, B.4a y B.4b). Cuando
este problema sucede en varias iteraciones es posible que la red pueda paliarlo, como para el
paciente P003, pero no así con solo una. Durante la validación de estos casos la red, que no espera
las entradas nulas al haber entrenado solamente con datos correctos, encontrará dificultades para
generalizar y, consiguientemente, la figura del rendimiento esperado empeorará artificiosamente.
A pesar de ello, se ha optado por mantener estos datos para mostrar el comportamiento del
modelo bajo estas circunstancias.

5.1.3 Predicciones de validación del escenario ESM

El diseño del estimador aoMLP para este escenario se ha configurado, a diferencia del ESU,
para el cálculo automático en cada entrenamiento del número óptimo de neuronas ocultas.
Además, en este caso, la selección de su número para la instancia particular de producción se
realizaría aplicando validación cruzada a nivel de muestra con los datos de todas las iteraciones
disponibles.

Por otro lado, para valorar el error esperado sigue siendo más interesante pensar a nivel
de iteración, por lo que los resultados que se comentan a continuación para las tres pruebas
realizadas, mostrando el proceso de optimización y la predicción finalmente obtenida, se han
obtenido aplicando LOOCV.

La figura 5.5, correspondiente a la prueba con solo controles, compara un buen resultado
de la prueba con uno malo y otro intermedio, y lo mismo sucede para la prueba con solo
pacientes y la figura 5.6. Indudablemente, el rendimiento esperado que se puede conseguir para
los controles es mayor que para los pacientes. Lo interesante, sin embargo, es la cantidad de
casos en que se observa una mejora del rendimiento obtenido cuando se emplean todos los
sujetos disponibles (figuras 5.7 y 5.8). Aunque esta circunstancia no ocurra en todos los casos, el
hecho de que se produzca de forma suficientemente generalizada invita a pensar que con un
número adecuado de sujetos se pueda lograr un predictor universal para toda la población.
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(a) Predicciones del sujeto C009
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(b) Iteración 1 – Intervalos de confianza
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(c) Iteración 2 – Intervalos de confianza
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(d) Iteración 3 – Intervalos de confianza
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(e) Iteración 4 – Intervalos de confianza
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(f ) Iteración 5 – Intervalos de confianza

Figura 5.3: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(f ) Iteración 5 – Intervalos de confianza

Figura 5.4: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(f ) Sujeto C009 – Intervalos de confianza

Figura 5.5: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – solo Controles. Los paneles
de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente al de validación
(en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la correspondiente
función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha estimacioń al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribucioń t de
Student
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(f ) Sujeto P020 – Intervalos de confianza

Figura 5.6: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – solo Pacientes. Los paneles
de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente al de validación
(en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la correspondiente
función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha estimacioń al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribucioń t de
Student
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(f ) Sujeto C009 – Intervalos de confianza

Figura 5.7: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – Población (Controles).
Los paneles de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validación (en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la
correspondiente función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha
estimacioń al 95% (sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando
la distribucioń t de Student
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Figura 5.8: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – Población (Pacientes).
Los paneles de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validación (en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la
correspondiente función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha
estimacioń al 95% (sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando
la distribucioń t de Student
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5.2 Radial Basis Network (RBN)

5.2.1 Optimización de los hiperparámetros

Para RBN tenemos dos hiperparámetros que optimizar, el goal del entrenamiento y el
spread de la RBF. Aunque escoger el menor goal posible sea lo natural, hacerlo tenderá al
sobreaprendizaje. Por su parte, un bajo spread incrementará la resolución disminuyendo el nivel
de error pero aumentará el riesgo de overfitting y los requisitos computacionales. Aumentándolo,
por contra, mejorará la generalización a costa de deteriorar el rendimiento alcanzable.

Para su selección se adaptará la estrategia de MLP, es decir, la búsqueda del mínimo MSE de
entrenamiento y validación, a una rejilla bidimensional con los hiperparámetros como ejes. Para
facilitar dicha búsqueda es habitual escalarlos por el logarítmo base 2, paso que se ha reutilizado
para la visualización de la magnitud del propio rendimiento tomando su logaritmo base 10.

La figura 5.9 muestra algunos ejemplos seleccionados, donde el marcador amarillo indica
la localización del MSE de entrenamiento mínimo y el magenta la solución óptima según el
error de validación. Para el mapa de entrenamiento se verifica como, por la propia naturaleza
del hiperparámetro, el mínimo recae siempre en el lateral de menor goal (figura 5.9a). En
validación, por contra, el área de menor error recae en la zona inferior derecha, sugiriendo que
un goal bajo y spread ancho mejoran la capacidad de predicción (figura 5.9b).

Sin embargo, para los pacientes P002 y P003 este área de error mínimo está desplazada y
forma un valle, indicando overfitting y un goal máximo recomendable (figura 5.9c). Estos
cambios en la estructura del mapa respecto al considerado normal son consecuencia de las
dificultades de la red en generalizar el aprendizaje, aunque es más sencillo intuirlo por el nivel
de profundidad del error de validación mínimo. Precisamente son los casos más difíciles para
el modelo aoMLP los que presentan cambios más radicales en ambos aspectos, tanto para el
escenario ESU (figura 5.9d) como para el ESM en el que son la norma (figuras 5.9e y 5.9f).

La dispersión de los mínimos de validación resultantes recomienda una selección automática
de los hiperparámetros. Sin embargo, al no existir una relación evidente entre los mínimos de
ambos mapas no es posible automatizarlo de modo sencillo sin recurrir a una validación cruzada
que incrementaría los tiempos de cómputo en varios ordenes de magnitud. Una selección
manual, por su parte, favorecerá unas predicciones sobre otras, pero es la opción propuesta por
mantener los tiempos de cómputo en niveles razonables.

Empíricamente se observa que el inverso del número de variables de entrada proporciona
una aproximación inicial razonable al valor óptimo del goal cuando la calidad de los datos de
entrada no es la óptima. Con 9 variables musculares y 12 cinemáticas se ha tomado como goal
д = 1/21 (o log2 д = −4,39). Para el spread, por su parte, los mapas sugieren un s = 27.

5.2.2 Predicciones de validación

Las figuras 5.10 y 5.11 muestran las predicciones de validación para dos sujetos del escenario
ESU. En concreto la figura 5.11a muestra como la predicción de validación usando la 1.ª
iteración del paciente P002 queda fuera del rango del par de fuerzas objetivo τID, sin que sean
paliados los efectos de la mala captura por el sistema VICON como si pudo el modelo aoMLP.

Para el escenario ESM el apéndice F.2 muestra como los resultados obtenidos con RBN no
mejoran a los de aoMLP, algo lógico considerando su menor optimización.
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Figura 5.9: Casos de la variación de los rendimientos de entrenamiento y validación durante el
proceso de optimización para el modelo RBN. El marcador amarillo indica la localización del
mínimo del MSE de entrenamiento, con el magenta indicando la localización del mínimo del MSE
de validación
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Figura 5.10: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura 5.11: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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5.3 Support Vector Machine (SVM)

5.3.1 Optimización de los hiperparámetros

El procedimiento de selección de hiperparámetros recomendado para LibSVM [20] prescribe
una búsqueda en rejilla similar a la planteada para RBN. La diferencia estriba en que, en lugar de
construir el mapa del rendimiento de entrenamiento a partir del propio error de entrenamiento,
utiliza k-fold CV. De este modo, y para k = 5 grupos de muestras aleatorios, entrenando 4
grupos permite predecir la salida asociada al quinto y, repitiendo el proceso, se obtiene una
estimación generalizada del error de entrenamiento que, al tener en cuenta la variabilidad de
las entradas disponibles, permite estimar su comportamiento con entradas desconocidas.

Este paso, que no se pudo realizar con RBN por sus peores tiempos de entrenamiento
promedio, integra la validación cruzada en el cálculo automático de los hiperparámetros de una
forma natural, estimando sus valores óptimos usando únicamente los datos de entrenamiento
disponibles. Sus efectos, mostrados en la figura 5.12, son los de restringir el área de error mínimo
donde localizar los hiperparámetros óptimos. En la práctica se descartan valores altos de γ que,
como sugería la figura 4.5b, proporcionan soluciones con menor capacidad de generalización.
Por otra parte, tampoco interesan valores bajos de C ya que, al no penalizar suficientemente los
errores de predicción, reducen la capacidad de aprendizaje produciendo underfitting.

Aún con todo ello, y al igual que con RBN como muestra la figura 5.13, estos hiperparámetros
obtenidos a partir únicamente de los datos de entrenamiento no proporcionan necesariamente
una solución óptima al validarlos con una iteración desconocida, tal y como se hace al aplicar
LOOCV para estimar el error esperado del sistema. De nuevo, la dispersión de estos hiperpará-
metros óptimos de validación dificulta una selección óptima, con muchos casos en los que dicho
rendimiento de validación empeora notablemente con los hiperparámetros favorecidos por el
mapa de entrenamiento (compárense por ejemplo las figuras 5.13c y 5.13d). Naturalmente esto
no ocurre siempre, normalmente el error de validación es lo suficientemente bajo como para
que, aún sin acertar en la selección óptima, la predicción sea suficientemente buena. Son los
casos que hemos dado en calificar como con baja calidad de entradas aquellos para los que los
cambios del mapa de validación son más extremos.

Indicar finalmente que, en lugar de implementar un algoritmo de búsqueda en rejilla, se
ha optado por el algoritmo Simplex de Nelder-Mead [25]. La decisión, con ciertos riesgos
por la existencia de mínimos locales en el mapa de entrenamiento calculado con CV como
evidencia la figura 5.12f, permite reducir el tiempo de entrenamiento mediante la limitación del
número de pasos de búsqueda sin llegar a requerir la paralelización del problema. Obviamente,
la paralelización ofrece unos recortes potenciales mucho mayores pero, considerando que el
equipo empleado para su cálculo era un portátil, sus efectos se reducían bastante.

5.3.2 Predicciones de validación

Las figuras 5.14 y 5.15 muestran las predicciones de validación para dos sujetos del escenario
ESU. Claramente, la figura 5.15a muestra como el modelo SVM tampoco consigue paliar de
forma efectiva los efectos de una mala captura.

En el escenario ESM los resultados obtenidos (apéndice F.3) tampoco superan a los de aoMLP
aunque se vuelve a apreciar mejoría al aumentar las iteraciones de entrenamiento empleadas.
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(f ) Rendimiento de entrenamiento por CV para el
sujeto C015 en la prueba de población mixta del ESM

Figura 5.12: Casos de la variación de los rendimientos de entrenamiento, con y sin validación
cruzada (CV), durante la optimización del modelo SVM. Los marcadores indican la localización
del mínimo del MSE de entrenamiento sin emplear CV (amarillo) o empleándola (verde)
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(e) Rendimiento de entrenamiento por CV para el
sujeto C015 en la prueba de población mixta del ESM
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(f ) Rendimiento de validación para el sujeto C015 en
la prueba de población mixta del escenario ESM

Figura 5.13:Casos de la variación de los rendimientos de validación y entrenamiento por validación
cruzada (CV) durante la optimización del modelo SVM. El marcador verde indica la localización del
mínimo del MSE de entrenamiento por CV, con el magenta indicando la localización del mínimo
del MSE de validación
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Figura 5.14: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura 5.15: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro



CAPÍTULO 6

Comparación de los modelos propuestos

En el capítulo 5 se ha visto como obtener distintas estimaciones del momento para una
iteración del movimiento por los 3 modelos propuestos, específicamente τ̂P para el modelo
aoMLP, τ̂R para el RBN y τ̂V para el SVM. Se puede valorar la calidad de dichas estimaciones,
denotadas genéricamente por τ̂ , comparando el error cometido con el correspondiente nivel
de referencia τID inferido por Dinámica Inversa tal y como se describió en el capítulo 2. Por
completitud, esta misma valoración de calidad se puede realizar con las estimaciones τ̂H obtenidas
por el modelo de Hill descrito en el apéndice D.

Naturalmente, no solo basta con comparar cualitativamente las distintas señales, aunque
hacerlo también proporcione información importante, si no que ha de cuantificarse su similitud.
Para ello se han empleado parámetros habituales como el error máximo absoluto Emax, la raíz
del error cuadrático medio Erms y, para facilitar la comparación entre sujetos y de señales con
distinta magnitud, su versión normalizada NRMSD y el coeficiente de determinación R2 (es
decir, el cuadrado del coeficiente de correlación de Pearson). Como definición de NRMSD se
ha usado la propuesta por SARTORI et ál. [35]:

NRMSD =

√
1
N

∑N
n=1(τ̂n − τIDn)2

max(τ̂ − τID) −min(τ̂ − τID)
(6.1)

donde N representa, en este caso, la duración en muestras de la iteración del movimiento a
comparar y n el índice de dicha muestra.

Por otro lado, al comparar conjuntos de resultados proporcionados por diversos métodos
predictivos es importante usar test de hipótesis para estar seguros, estadísticamente hablando,
de que la comparación es significativa. En lugar de emplear cualquier miembro de la familia
ANOVA, DEMŠAR [14] recomienda usar sus contrapartes no-paramétricas al no poderse asegurar
que las distintas poblaciones de errores producidas por los diversos métodos cumplan los
requisitos de aplicación de ANOVA. Para la comparación de modelos se empleará el test Signed
Rank de Wilcoxon y el de Friedman [19], tomando ventaja, cuando sea posible, de la estructura
repetitiva por sujetos de las pruebas del escenario ESU.
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6.1 Comparación de los modelos propuestos para el escenario ESU

Un resumen comparativo de los resultados obtenidos para cada sujeto del escenario ESU
por los distintos modelos se muestra en la tabla 6.1 (el apéndice G.1 incluye todos). Los datos
proporcionados muestran, una vez promediadas las 9 componentes del momento disponibles
correspondientes a la predicción del momento neto tridimensional en las 3 articulaciones
estudiadas, la media y desviación estándar de las 5 predicciones de validación posibles de aplicar
LOOCV a nivel de iteración con los 3 modelos de caja negra propuestos. Estos resultados
se comparan con los resultados obtenidos por el modelo de Hill descrito en el apéndice D y
calculado como la media y desviación estándar de las 4 predicciones de validación obtenidas
cuando el modelo se calibra con los datos de la 1.ª iteración del movimiento disponible.

Si nos centramos en los resultados por sujetos, se aprecia una clara diferencia entre los niveles
de error esperados para los controles C001 y C009 frente a los de los controles C017 y C018.
Dicha diferencia se explica por ser estos últimos los afectados por el fallo del sistema VICON.
Esta misma razón es por la que hay que tomar con cautela el que un test de Kruskall-Wallis,
aplicado a las predicciones del modelo aoMLP para los 8 sujetos, confirma la diferencia para al
menos un sujeto en la mediana de la distribución de errores normalizados con un p-valor de
3,2 · 10−3. Por otra parte, un test Signed Rank de Wilcoxon no llega a confirmar la diferencia
de comportamiento entre el bloque de sujetos de control frente al de pacientes, aunque con un
p-valor de solo 0,093.

Por otro lado, comparando los modelos estudiados, la tabla 6.1 también muestra como el
modelo de Hill tiende a obtener resultados peores para las 4 características recogidas. Se puede
apreciar como consistentemente tiende a obtenerse un valor de R2 menor, indicando un menor
parecido en la forma de la función predicha τ̂H y la que tomamos como referencia τID. Del
mismo modo, las figuras de error Emax, Erms y NRMSD tienden a alcanzar valores más altos,

Tabla 6.1: Comparativa cuantitativa de los modelos propuestos para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

MLP 0,92 ± 0,01 0,93 ± 0,02 0,76 ± 0,08 0,93 ± 0,04 0,88 ± 0,02 0,90 ± 0,01 0,70 ± 0,09 0,80 ± 0,15
RBN 0,87 ± 0,02 0,92 ± 0,02 0,62 ± 0,24 0,88 ± 0,08 0,79 ± 0,19 0,78 ± 0,03 0,66 ± 0,09 0,70 ± 0,14
SVM 0,88 ± 0,04 0,89 ± 0,01 0,67 ± 0,14 0,81 ± 0,23 0,67 ± 0,30 0,80 ± 0,06 0,48 ± 0,04 0,68 ± 0,08

R2

Hill 0,83 ± 0,07 0,86 ± 0,08 0,81 ± 0,13 0,85 ± 0,05 0,42 ± 0,36 0,68 ± 0,14 0,53 ± 0,20 0,61 ± 0,31

MLP 0,06 ± 0,01 0,06 ± 0,01 0,11 ± 0,03 0,11 ± 0,10 0,10 ± 0,03 0,08 ± 0,01 0,10 ± 0,02 0,09 ± 0,02
RBN 0,09 ± 0,01 0,07 ± 0,01 0,17 ± 0,11 0,12 ± 0,10 0,13 ± 0,10 0,13 ± 0,04 0,12 ± 0,03 0,11 ± 0,02
SVM 0,08 ± 0,01 0,08 ± 0,01 0,13 ± 0,05 0,12 ± 0,10 0,15 ± 0,08 0,11 ± 0,02 0,14 ± 0,03 0,10 ± 0,02

NRMSD

Hill 0,24 ± 0,01 0,25 ± 0,16 0,14 ± 0,12 0,14 ± 0,34 0,24 ± 0,05 0,25 ± 0,04 0,27 ± 0,05 0,23 ± 0,04

MLP 0,11 ± 0,02 0,19 ± 0,03 0,24 ± 0,06 0,33 ± 0,34 0,29 ± 0,09 0,27 ± 0,04 0,24 ± 0,06 0,15 ± 0,08
RBN 0,17 ± 0,03 0,21 ± 0,03 0,42 ± 0,28 0,36 ± 0,37 0,47 ± 0,38 0,60 ± 0,27 0,30 ± 0,12 0,20 ± 0,08
SVM 0,14 ± 0,04 0,25 ± 0,03 0,33 ± 0,13 0,37 ± 0,42 0,52 ± 0,35 0,40 ± 0,09 0,40 ± 0,09 0,23 ± 0,04

Erms
(Nm)

Hill 0,43 ± 0,16 0,65 ± 0,17 0,47 ± 0,25 0,65 ± 0,34 0,97 ± 0,19 1,45 ± 0,39 1,04 ± 0,23 0,95 ± 0,31

MLP 0,36 ± 0,10 0,75 ± 0,16 0,96 ± 0,22 0,75 ± 0,46 0,91 ± 0,21 0,96 ± 0,21 1,44 ± 0,70 0,91 ± 0,82
RBN 0,51 ± 0,12 0,74 ± 0,16 1,21 ± 0,57 0,81 ± 0,52 1,19 ± 0,62 1,54 ± 0,54 1,46 ± 0,75 1,00 ± 0,75
SVM 0,49 ± 0,22 0,90 ± 0,20 1,10 ± 0,28 0,89 ± 0,64 1,36 ± 0,57 1,19 ± 0,24 2,05 ± 0,99 1,52 ± 0,44

Emax
(Nm)

Hill 1,17 ± 0,18 1,83 ± 0,73 1,42 ± 0,54 1,37 ± 0,74 2,41 ± 0,43 2,91 ± 0,67 2,37 ± 0,55 2,82 ± 0,52
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indicando un error cometido mayor. Estos resultados se pueden comprobar visualmente en las
figuras D.2 y D.3.

Del mismo modo, la comparación entre los 3 modelos de caja negra sugiere al modelo aoMLP
como el que proporciona mejor rendimiento en los 4 parámetros medidos. Esto lo confirma
un test de Friedman aplicado a los resultados de NRMSD de los tres modelos estudiados y que
indica que la mediana de los errores esperados es estadísticamente diferente, para al menos
uno de ellos, con un p-valor de 3,2 · 10−6. Además, y con las precauciones habituales por las
pocas iteraciones utilizadas y la gran cantidad de test de hipótesis realizadas, la interpretación
de los intervalos producidos por el test sugiere que la distribución de los errores de validación
normalizados de los modelos RBN y SVM tienen medianas idénticas, mientras que la del modelo
aoMLP es claramente menor.

Los resultados experimentales muestran que los distintos modelos propuestos pueden pre-
decir movimientos funcionales complejos como representa la tarea de beber utilizada en el
experimento. Sin embargo, sorprenden por decepcionantes los resultados de SVM que, a pesar
de sus a priori ventajas teóricas, no mejora apreciablemente los resultados de RBN. Por el
contrario, ha sido el modelo aoMLP con el que mejor rendimiento esperado se obtiene, con un
NRMSD del (8,84 ± 3,97)% y un R2 de 0,85 ± 0,10, sin duda alguna gracias a la existencia de
un hiperparámetro óptimo único válido para todos los sujetos y a la ayuda del aprendizaje por
ensamble para las predicciones más complicadas.

Una comparación de los resultados obtenidos por el modelo aoMLP con los de estudios previos
similares muestra rendimientos comparables a pesar de estar siendo realizado simultáneamente
para los 9 grados de libertad que representan las tres articulaciones del miembro superior y,
más importante todavía, haber sido realizados con un movimiento funcional más complejo.
Por ejemplo, en el estudio de SONG et ál. [38] el Erms conseguido para sujetos sanos fue de
(0,35 ± 0,06)Nm, mientras que el rendimiento de aoMLP es superior incluso para pacientes.
Por su parte, y aún a pesar de los problemas con la captura de datos de cinemática, nuestros
resultados son similares a los obtenidos por CASTELLINI et ál. [9], que indicaron haber obtenido
un NRMSD del (7,89 ± 0,09)% para sujetos de control. Por último comentar que, a nuestro
leal saber y entender, no existen estudios similares de predicción del momento articular para las
extremidades superiores con pacientes. En su lugar, los estudios existentes son específicos de las
extremidades inferiores complicando una comparación adecuada.

6.2 Comparación de los modelos propuestos para el escenario ESM

Los resultados obtenidos para cada modelo en las 3 pruebas realizadas se resumen en la
tabla 6.2. Señalar que los modelos basados en Hill no tienen sentido en este escenario por estar
necesariamente adaptados a la biométrica de cada persona. A simple vista parece claro que el
rendimiento obtenido para los sujetos de control es mayor que el obtenido con los pacientes,
tanto si se entrena con la población completa como si se hace solamente con los miembros de su
grupo. También parece apreciarse en cada caso una mejora al pasar a entrenar con la población
completa, pero esta situación no llega a ser confirmada por un test Signed Rank de Wilcoxon
comparando los resultados obtenidos por el modelo aoMLP para los controles en las dos pruebas
(con un p-valor de 0,469) o en la comparación correspondiente para los pacientes (0,204).

La comparación de los 3 modelos propuestos mediante un test de Friedman establece que el
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Tabla 6.2: Comparativa cuantitativa de los modelos propuestos para el escenario ESM

Población completasolo
Controles

solo
Pacientes Controles Pacientes Todos

MLP 0,72 ± 0,08 0,46 ± 0,16 0,73 ± 0,07 0,47 ± 0,15 0,56 ± 0,18
RBN 0,64 ± 0,14 0,21 ± 0,09 0,54 ± 0,09 0,23 ± 0,09 0,34 ± 0,18
SVM 0,45 ± 0,16 0,23 ± 0,15 0,54 ± 0,15 0,25 ± 0,18 0,35 ± 0,22

R2

Hill – – – – –

MLP 0,24 ± 0,07 0,28 ± 0,09 0,22 ± 0,03 0,27 ± 0,08 0,25 ± 0,07
RBN 0,28 ± 0,07 0,30 ± 0,10 0,25 ± 0,09 0,26 ± 0,08 0,26 ± 0,08
SVM 0,27 ± 0,03 0,30 ± 0,08 0,23 ± 0,04 0,29 ± 0,07 0,27 ± 0,07

NRMSD

Hill – – – – –

MLP 0,67 ± 0,21 1,14 ± 0,58 0,53 ± 0,11 0,99 ± 0,34 0,82 ± 0,36
RBN 0,97 ± 0,45 4,81 ± 3,52 1,10 ± 0,46 3,51 ± 2,78 2,62 ± 2,49
SVM 0,86 ± 0,20 1,17 ± 0,35 0,69 ± 0,13 1,09 ± 0,26 0,94 ± 0,29

Erms
(Nm)

Hill – – – – –

MLP 1,37 ± 0,26 2,54 ± 0,96 1,14 ± 0,14 2,29 ± 0,72 1,87 ± 0,80
RBN 1,96 ± 1,01 13,50 ± 13,36 2,73 ± 1,57 10,19 ± 8,24 7,44 ± 7,48
SVM 1,78 ± 0,20 2,71 ± 0,87 1,55 ± 0,31 2,51 ± 0,72 2,15 ± 0,76

Emax
(Nm)

Hill – – – – –

modelo aoMLP difiere, estadísticamente hablando, del SVM pero no del RBN con un p-valor
de 0,021, aunque un resultado tan ajustado es mejor tomarlo con cautela. En este sentido, y
hablando cualitativamente, sí que parece claro que el modelo aoMLP también presenta para este
escenario un rendimiento mejor que el resto obteniendo, para la prueba con toda la población,
un NRMSD del (25,07 ± 6,90)% y un R2 de 0,56 ± 0,18. Esos valores mejoran teniendo solo
en cuenta a los controles, con un NRMSD del (21,65 ± 3,40)% y un R2 de 0,73 ± 0,07.

Para finalizar indicar que nuevamente, a nuestro leal saber y entender, este es el primer
estudio que intenta predecir el momento articular asociado al movimiento de la extremidad
superior de un sujeto a partir de datos de entrenamiento de sujetos diferentes y, por tanto,
no se dispone de referencias con las que comparar los resultados obtenidos. Obviamente el
rendimiento obtenido no llega a ser aceptable para su uso práctico, pero los resultados también
sugieren que aumentando el número de sujetos empleados para el entrenamiento aumentará tal
rendimiento. La incógnita que queda por responder es el número de sujetos necesarios y cuál
será el rendimiento final alcanzado.

6.3 Variaciones de las configuraciones propuestas

Como complemento a los 3 modelos propuestos originales se han realizado una serie de
estudios adicionales mediante la variación de elementos claves de las configuraciones propuestas,
proporcionando así una perspectiva adicional del comportamiento del modelo original. Sin
embargo, por no extender en demasía el desarrollo, los elementos presentados se centrarán
principalmente en el modelo aoMLP del escenario ESU por ser el que mejores prestaciones ha
proporcionado. Un resumen de estos resultados se adjunta en la tabla 6.3.
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Tabla 6.3: Resumen de los rendimientos obtenidos para el escenario ESU

Modelo o variación Emax (Nm) Erms (Nm) NRMSD (%) R2 p-valor¹

aoMLP 0,88 ± 0,49 0,23 ± 0,14 8,84± 3,97 0,85 ± 0,10
RBN 1,06 ± 0,60 0,34 ± 0,26 11,70± 6,67 0,78 ± 0,15 1,3 · 10−7

SVM 1,19 ± 0,65 0,33 ± 0,22 11,38± 5,42 0,73 ± 0,19 8,8 · 10−8

Sin ensamble 1,10 ± 0,61 0,32 ± 0,27 10,77± 5,90 0,80 ± 0,13 3,9 · 10−8

Ensamble de 10 MLP 0,90 ± 0,49 0,23 ± 0,14 9,03± 4,05 0,85 ± 0,10 1,1 · 10−3

Fm de 200Hz 0,89 ± 0,51 0,23 ± 0,19 8,65± 4,70 0,86 ± 0,11 3,6 · 10−2

Entrenamiento LM 1,40 ± 1,85 0,41 ± 0,70 10,30± 6,53 0,79 ± 0,19 4,5 · 10−1

Sin Cinemática 1,41 ± 0,38 0,44 ± 0,13 16,77± 2,67 0,55 ± 0,14 2,6 · 10−7

80% PCA 1,06 ± 0,48 0,32 ± 0,19 11,85± 4,11 0,77 ± 0,12 4,5 · 10−8

90% PCA 1,02 ± 0,51 0,30 ± 0,20 10,97± 4,80 0,80 ± 0,12 1,2 · 10−7

3 Sinergias 0,89 ± 0,48 0,23 ± 0,14 9,04± 3,84 0,85 ± 0,10 4,8 · 10−2

5 Sinergias 0,91 ± 0,48 0,24 ± 0,12 9,24± 3,62 0,84 ± 0,11 1,9 · 10−4

¹ p-valor del test Signed Rank de Wilcoxon comparando la similitud con la mediana de la distribución
del NRMSD del modelo aoMLP propuesto.

Un aspecto clave del modelo aoMLP ha sido la aplicación de aprendizaje por ensamble para
mejorar la calidad de la estimación realizada. Un test de Signed Rank de Wilcoxon, comparando
los resultados obtenidos para el NRMSD al usar ensamble frente a no usarlo, favorece claramente
su adopción con un p-valor de 3,9 · 10−8. De este modo, el mayor tiempo de cómputo se justifica
por un descenso del 1,92% en el error esperado normalizado del escenario ESU.

Por otro lado, otra comparación entre un ensamble cuya salida es la media de 30 submódulos
MLP frente a otro cuya salida es la mediana de solo 10 submódulos también encuentra diferencias
estadísticamente hablando (el p-valor es de 1,1 · 10−3) pero, como el error esperado normalizado
sólo aumenta un 0,19% se puede recomendar su aplicación para disminuir el tiempo de computo
sin perjudicar apenas el rendimiento. Del mismo modo el utilizar una frecuencia de muestreo
de 200Hz frente a una de 20Hz vuelve a producir diferencias significativas con un p-valor de
0,036, pero en la práctica esto simplemente equivale a una disminución del 0,20%.

Otra variación considerada ha sido el cambiar a un algoritmo de aprendizaje de Levenberg-
Marquardt. En este caso el p-valor de un test de Signed Rank de Wilcoxon es de 0,452, por lo
que en cuanto al rendimiento no se encontrarían diferencias significativas en los resultados, no
así en el tiempo de cómputo que sí que es apreciable.

También ha sido estudiado el efecto del cambio de entradas a la red como la diferencia entre
usar o no datos de cinemática junto a las de activación muscular. Este cambio supone en la
práctica la disminución a solo 9 neuronas de entrada (por las 9 componentes disponibles de
activación muscular) en contraposición con las 21 neuronas de entrada del modelo propuesto
(correspondientes a las 9 componentes disponibles de activación muscular y a las 12 de la
señal de cinemática de tronco, hombro, codo y muñeca). En este caso un test de Signed Rank
de Wilcoxon nos confirma, con un p-valor de 2,6 · 10−7, que el aumento del 7,92% en el
error esperado normalizado es ciertamente significativo estadísticamente, tal y como indica la
literatura existente.

Naturalmente es lógico obtener una perdida en el rendimiento de la red cuando se elimina
información importante de su entrada. Sin embargo, el capítulo 3 proporciona métodos para
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reducir el número de componentes de entrada sin desechar completamente la información
disponible. Por ejemplo, la aplicación de PCA a las entradas conjuntas de cinemática y activación
normalizada para eliminar las componentes correspondientes al 10% menos significativo de
la varianza explicada permite reducir a únicamente 7 el número de componentes a la entrada.
Este cambio, que supone una reducción de 2⁄3 en el número de neuronas de entrada, supone un
incremento del 2,13% del error esperado normalizado con un p-valor de 1,2 · 10−7 calculado
por el test de Wilcoxon.

Del mismo modo, la utilización de 3 y 5 sinergias musculares en lugar de la señal de activación
muscular normalizada también permite, aunque en menor grado, la reducción del número de
entradas a la red. Un test de Friedman con los 3 modelos (es decir, comparando la utilización
de las 9 componentes de activación muscular frente a la utilización de 3 o 5 componentes de
sinergias) no confirma diferencia apreciable al haberse obtenido un p-valor de 0,198, con un
aumento del error esperado normalizado que siquiera llega al 0,5% en el peor de los casos. Este
resultado contrasta con el mostrado en la tabla 6.3 donde la comparación se ha realizado de
forma individual aunque, en cualquier caso, el incremento del error es tan somero como para
no resultar un problema la utilización de sinergias musculares en lugar de la activación en caso
de estar disponible este tipo de entradas.



CAPÍTULO 7
Conclusiones y líneas futuras

El objetivo del presente TFM era la selección y configuración de un modelo de estimador del
momento producido en las articulaciones de un sujeto de manera que pudiese ser implementado
en el control de un exoesqueleto dedicado a la rehabilitación motora bajo un paradigma de
asistencia bajo demanda. En el entorno descrito será clave combinar sencillez de operación para
su uso en un entorno no especializado junto con precisión en las predicciones del movimiento
de pacientes para conseguir una rehabilitación personalizada a las necesidades de cada paciente.

En estas circunstancias, un resultado positivo del estudio realizado para el escenario ESM
hubiese sido altamente relevante por no necesitar de una fase de entrenamiento específica para
cada paciente. Desafortunadamente, las figuras del rendimiento alcanzado en este escenario no
han sido suficientemente satisfactorias para habilitarlo como propuesta factible. Sin embargo,
la tendencia subyacente de mejora del rendimiento al incrementarse la cantidad de sujetos
disponible para el entrenamiento deja abierta la puerta a poder alcanzar los rendimientos
necesarios con la disponibilidad de las capturas de un número suficiente de sujetos para el
entrenamiento.

Afortunadamente el estudio del escenario ESU sí ha obtenido resultados satisfactorios, con
el modelo aoMLP presentando las mejores características. Este modelo combina precisión en
las predicciones con un R2 esperado de 0,85 ± 0,10 y un NRMSD del (8,84 ± 3,97)%, junto
con la mayor robustez frente a fallos en el proceso de captura de los datos de entrada. Además,
al menos para los sujetos disponibles, no se aprecia sensibilidad aparente en la selección del
hiperparámetro óptimo, siendo válido el mismo tanto para pacientes como sujetos de control.
Por último, y a pesar de necesitar un proceso de entrenamiento específico para cada sujeto, los
tiempos de entrenamiento son bajos y estables (en el sentido de que no hay mucha variabilidad
entre los tiempos de cada sujeto), habilitando que su implantación en el ámbito clínico no sea
onerosa para el paciente.

La tabla 7.1 permite la comparación de las características principales de los distintos modelos
propuestos. En relación al modelo propuesto, el modelo de Hill presenta la desventaja de su
peor rendimiento en la estimación de pacientes a pesar de un mayor tiempo de calibración.
Por su parte, para los modelos RBN y SVM no se ha logrado encontrar un hiperparámetro
óptimo compartido entre todos los sujetos como sucedió con el modelo aoMLP, perjudicando
su capacidad de generalización o aumentando la complejidad de su diseño.
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Tabla 7.1: Comparativa cualitativa de los modelos propuestos para el escenario ESU

Modelo de caja negra
Categoría Característica

aoMLP RBN SVM
Modelo de Hill

Tipo Red neuronal Red neuronal Aprendizaje
estadístico

Fisiológico /
Biomecánico

Formulación Simple Simple Simple Compleja

Significado fisiológico de
los (hiper-)parametros No No No Sí

Número de parámetros

319
(× el número de

submódulos
MLP)

846 parámetros
(para una media
de 27 neuronas

ocultas¹)

1876 vectores
soporte de

media²
64

Valor de los parámetros Ajustable Ajustable Ajustable Ajustable

Número de
hiperparámetros

1
(número de
neuronas

intermedias)

2
(goal y spread)

2
(gamma y

coste)
(× 9 salidas)

No

Arquitectura

Valor de los
hiperparámetros

Un valor
óptimo común
para todos los

sujetos

No hay un
valor único y
común para

todos

No hay un
valor único y
común para

todos

No

Tipo Entrenamiento Entrenamiento Entrenamiento Calibración
Ajuste de los
parámetros Tiempo 6min para los 8

sujetos³
4min para los 8

sujetos³
1 h para los 8

sujetos³ 6 h por sujeto⁴

Ajuste de los
hiperpará-
metros

Tiempo 14 h para los 8
sujetos⁵

15 h para los 8
sujetos⁵

11 h para
generar los

mapas de los 8
sujetos⁵

No

Uso de
memoria

Bajo Alto⁶ Bajo Alto⁷

Control Medio Medio Alto Alto
Entrenamiento

Paciente Medio Medio Alto Bajo

Control Alto Medio Medio Aceptable
Rendimiento

Validación
Paciente Alto Medio Medio Bajo

¹ El número de neuronas ocultas, desconocido a priori, depende del entrenamiento.
² El número de vectores soporte, desconocido a priori, depende del entrenamiento.
³ Depende de la duración de los movimientos entrenados y la configuración de las condiciones de parada del algoritmo de
entrenamiento.

⁴ Depende de la duración del movimiento calibrado y la configuración de las condiciones de parada del algoritmo de calibración.
⁵ Depende, además, del rango de la rejilla de búsqueda de hiperparámetros.
⁶ Dependiendo de la duración de los movimientos entrenados.
⁷ Dependiendo de la duración del movimiento calibrado.
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7.1 Líneas de desarrollo futuro

La novedad asociada a un estudio del rendimiento de modelos neuromusculoesqueletales
para la predicción de un movimiento funcional complejo realizado por pacientes de lesiones
medulares junto con el interés de los resultados obtenidos para el escenario ESU, sobretodo
en relación a que dicho rendimiento es suficientemente equiparable al obtenido para sujetos
de control cuando se utilizan modelos de aprendizaje automático frente a modelos basados en
Hill, ha motivado la preparación de un artículo titulado «An evaluation of EMG-driven muscle
models for assistive exoskeletons» para su publicación en la revista Journal of Neuroengineering and
Rehabilitation. Sin embargo, los modelos propuestos corresponden simplemente a una primera
aproximación en la implementación de un Neuroestimador basado en modelos de caja negra,
existiendo todavía un amplio margen de mejora a estudiar en desarrollos futuros.

A partir de lo conseguido en el presente TFM se propone, como línea de desarrollo más
evidente, aumentar el número de iteraciones del movimiento disponibles para el entrenamiento
del escenario ESM. Lamentablemente no hay una forma de conocer el número de sujetos de los
que sería necesario disponer nuevos datos para obtener un rendimiento suficiente ni, incluso, si
esto llegaría a ser posible, pero la ventaja en la sencillez de implementación de un predictor
basado en este escenario sería notable.

En un sentido más teórico, otra posible vía de desarrollo sería la utilización de modelos que
tengan en cuenta la característica temporal de los datos utilizados. Modelos como RANN o
TDANN, en el caso de las redes neuronales, o el uso de Dynamic Least Squares SVM (DLS-
SVM) tienen en cuenta que estamos tratando con series temporales, por lo que presentan un
mayor potencial para alcanzar mejores rendimientos a costa de añadir complejidad al diseño.
Un estudio comparado de los resultados obtenidos por las nuevas implementaciones y los pre-
sentados en este TFM establecería una buena base para avanzar en la mejora del bloque de
control del exoesqueleto.

Una última línea de desarrollo futuro radicaría en el tratamiento de la señal sEMG capturada
y que sirve como entrada al estimador. En lugar de un procesamiento de la señal basado en un
filtrado temporal, se podría estudiar el empleo de formas más modernas de procesamiento como
transformadas Wavelet (WT) o, simplemente, mediante el uso de características representativas
de la señal como Higher Order Statistics (HOS). La ventaja de esta aproximación se encontraría
en la reducción del ruido introducido al estimador de forma que aumentase el rendimiento
potencial obtenido.
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Durante la realización del Trabajo Fin de Máster se han mantenido reuniones con diversos
miembros de la Unidad de Investigacioń en Fisioterapia (UIF) de la Universidad de Zaragoza
con el fin de encontrar vías de cooperación mutuas con el Grupo de Robótica de la Escuela
de Ingeniería y Arquitectura (EINA) de la propia Universidad. La idea inicial por el Grupo
de Robótica para esta colaboración era desarrollarla en el ámbito de la rehabilitacioń y el
seguimiento de la evolucioń de pacientes por ser éste el ámbito en el que está centrando sus
proyectos actuales. Sin embargo, la descripción de los proyectos en los que está embarcada la UIF
puso de manifiesto el potencial existente en extenderlo al ámbito de la mejora del rendimiento
deportivo. En la práctica los retos serían similares, si no más sencillos, pero aumentarían
ostensiblemente las posibilidades de encontrar financiación.

Fue en este proceso de puesta en común de pareceres en el que se pudo constatar lo sencillo
que es introducir, inadvertidamente, malentendidos y dificultades en la comunicación por
las diferencias en el lenguaje utilizado por ambos grupos. Sin llegar a haber transcurrido un
minuto en la presentación del proyecto HYPER y los trabajos realizados con el modelo del
exoesqueleto disponible, se requirió que se clarificara el concepto empleado como par. Y es que,
por circunstancias que podían considerarse históricas, en el ámbito de la fisioterapia el concepto
de par puede sobreentenderse, o considerarse incluso más afín, al concepto de activación
muscular empleado en el presente TFM que al concepto de momento de par de fuerzas que se
pretendía trasmitir.

En este mismo proceso también se pudo apreciar de primera mano las diferencias de visión
existentes entre grupos que, aún siguiendo el mismo método científico, provienen de diferentes
backgrounds. Mientras que en el caso de la ingeniería la motivación puede ser más difusa como
el simple afán de conocimiento o el deseo de resolver un problema presente en el mundo real,
en el caso de la fisioterapia todo gira en torno a la funcionalidad motora del cuerpo humano y
siempre con el objetivo de recuperarla, mantenerla o simplemente mejorarla. La presencia de
dificultades en la validación de resultados de sus proyectos de investigación estaría relacionada,
al menos en parte, con esta focalización en la capacidad funcional del sujeto. Precisamente,
alcanzar una mayor capacidad de objetivar dichos resultados sería uno de sus frutos deseados de
dicha colaboración.

Naturalmente, llegar a conseguirlo no es sencillo ya que, en un entorno clínico, las dificultades
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prácticas son absolutamente diferentes. Por un lado hay que tener en cuenta que la respuesta a
estímulos por parte de músculos, tendones y, en definitiva, el cuerpo humano es muy variable y
dependiente del sujeto, por lo que es muy difícil conseguir una adecuada repetibilidad en los
resultados. Aunque este no sea un problema exclusivo de las disciplinas más biológicas, lo cierto
es que en el ámbito de la ingeniería se puede paliar acudiendo a métodos como simulaciones
o modelado, mientras que en el ámbito fisioterapéutico las posibilidades son más limitadas.
Además, el trato directo con pacientes incrementa los problemas éticos existentes y obliga a
utilizar métodos cómodos y que no sean excesivamente onerosos con ellos. Más aún, el personal
en el entorno clínico no tiene por qué ser especialista por lo que se deben de primar métodos
sencillos e intuitivos.

La verdad es que todas las dificultades mencionadas anteriormente se comentaron en relación
a la electromiografía. Y es que éste puede ser un caso paradigmático, aun cuando la sEMG
contenga gran cantidad de información a nivel muscular y, sin duda alguna, al menos parte de
ella será relevante en el ámbito de la fisioterapia, su uso a nivel práctico es residual debido a las
dificultades de manejo que presenta. La gran variabilidad presente, ya no solo entre distintos
sujetos, sino para un mismo sujeto, dificulta enormemente correlacionar sus variaciones con los
efectos motrices producidos. Este hecho imposibilita su interpretación práctica de forma genera-
lizada y, menos aún, por personal no especializado. Más aún, los parámetros derivados existentes,
como Integrated EMG (IEMG), Mean Absolute Value (MAV), Root Mean Square(RMS) o
Waveform Length (WL), suelen ser poco prácticos ya que o proporcionan información dema-
siado estática, o no son suficientemente flexibles o son, directamente, excesivamente técnicos.
Precisamente, es por este cúmulo de circunstancias por el que la UIF ha iniciado la búsqueda
de nuevas parametrizaciones que eliminen las deficiencias de los parámetros actuales.

Como experiencia complementaria al trabajo desarrollado en el presente TFM se dedicó
una jornada a tomar contacto con el proceso de captura de los datos electromiográficos y
de movimiento, tanto desde el punto de vista de la organización del proceso como el que
experimenta un sujeto de pruebas. Una primera fase de reconocimiento del entorno de pruebas,
en la que también se explicaron las capacidades de los distintos equipos a utilizar, sirvió para
familiarizarse con el papel desarrollado por los distintos actores del proceso.

En la siguiente fase se procedió a revisar la documentación de un protocolo de captura de
datos para un experimento similar al empleado en el presente TFM, de forma que permitiese
seguir más fácilmente su desarrollo cuando se presenció su puesta en práctica por parte de la
persona que dirigía la captura. A pesar de todo esto, fue revelador la cantidad de dudas y veces
que hubo que revisar la documentación cuando, con un compañero, se procedió a repetir el
protocolo de pruebas, comprobándose la gran cantidad de atención al detalle necesaria a la
hora de elaborar este tipo de documentos y, más aún, cuando pueden ser otras personas las que
tengan que encargarse de su aplicación y desarrollo en un futuro.

Otro aspecto a destacar fruto de esta experiencia es la dificultad en la realización de las
contracciones musculares asociadas a la captura de la máxima contracción voluntaria (MVC) de
cada músculo. Cada una de estas capturas requiere la realización de una contracción tetánica del
músculo en cuestión procurando mantener el resto en reposo, situación facilitada en cierto grado
por la existencia de unas posturas establecidas. Vista la dificultad asociada no es de extrañar que
sea en los datos de los pacientes, con las dificultades de movimiento propias de de sus dolencias,
en las que se aprecia claramente como la MVC capturada no se corresponde con la capacidad
de contracción real del individuo, situación menos evidente para los sujetos de control.
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Se dispone de datos de un total de 7 sujetos de control y 12 pacientes para la realización
del presente TFM. Un listado con el resumen de las características más relevantes de dichos
voluntarios se muestra en la tabla B.1.

Con el fin de proporcionar una visión completa del conjunto de datos disponibles se repre-
sentan a continuación las señales capturadas a los distintos sujetos. Por simplicidad, los datos
disponibles se han dividido en función del escenario al que pertenecen, el Escenario de Sujeto
Único (ESU) o el de Sujetos Múltiples (ESM). Indicar que para nombrar las distintas variables

Tabla B.1: Características de los sujetos

Sujeto Capturas Lesión Edad Sexo Altura (m) Peso (kg)

C001 5 control 22 M 1,6 65
C009 5 control 22 H 1,8 79
C011 1 control 27 M 1,68 57
C013 1 control 45 H 1,79 78
C015 1 control 28 H 1,88 81,5
C017 5 control 26 M 1,63 48,5
C018 5 control 27 M 1,64 66
P002 5 C6 31 H 1,8 95
P003 5 C6 26 H 1,9 89
P005 1 C6 34 M 1,55 50
P006 1 C7 26 H 1,9 89
P007 1 C6 31 H 1,8 95
P008 1 C6 36 H 1,75 90
P010 1 C7 35 H 1,84 79
P012 1 C7 25 H 1,8 76,9
P016 1 C7 35 H 1,84 79
P019 1 C6 34 M 1,75 70
P020 5 35 H 1,81 90
P021 5 60 M 1,65 51
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biomecánicas se ha empleado la codificación mostrada en la tabla B.2, y su listado completo
junto con su descripción se indican en las tablas B.3 (variables de cinemática), B.4 (variables de
fuerza) y B.5 (variables de momento). Por su parte, las variables de origen electromiográfico se
han denominado en función de la abreviatura del músculo correspondiente y han sido listadas
en la tabla B.6.

Tabla B.2: Codificación de las variables biomecánicas

Tipo de variable Segmento / Articulación Dirección del eje del segmento

C Cinemática H Hombro X Antero-posterior
F Fuerzas C Codo Y Eje longitudinal
M Momentos M Mano Z Medio-lateral

T Tronco

Tabla B.3: Listado de las variables biomecánicas de cinemática

Cinemática (°)
Tronco

CTX Balanceo lateral (derecha positivo)
CTY Rotación de tronco (izquierda positivo)
CTZ Flexión-extensión de tronco (extensión positivo)
Hombro

CHX Abducción-aducción de hombro (abducción positivo)
CHY Rotación interna del húmero (positivo)
CHZ Flexión-extensión de hombro (extensión positivo)
Codo

CCX Abducción-Aducción de codo (valor nulo)
CCY Pronación-supinación del antebrazo (supinación positivo)
CCZ Flexión-extensión de codo (extensión positivo)
Muñeca

CMX Desviación ulnar-radial de muñeca (desviación ulnar positivo)
CMY Rotación interna de la muñeca (Valor nulo)
CMZ Flexión palmar-dorsal de muñeca (flexión palmar positivo)
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Tabla B.4: Listado de las variables biomecánicas de fuerza

Fuerza (N)
Hombro

FHX Fuerza sobre el eje antero-posterior del hombro (sentido anterior positivo)
FHY Fuerza sobre el eje longitudinal del hombro (sentido vertical positivo)
FHZ Fuerza sobre el eje medio-lateral del hombro (sentido lateral positivo)
Codo

FCX Fuerza sobre el eje antero-posterior del codo (sentido anterior positivo)
FCY Fuerza sobre el eje longitudinal del codo (sentido vertical positivo)
FCZ Fuerza sobre el eje medio-lateral del codo (sentido lateral positivo)
Muñeca

FMX Fuerza sobre el eje antero-posterior de la muñeca (sentido anterior positivo)
FMY Fuerza sobre el eje longitudinal de la muñeca (sentido vertical positivo)
FMZ Fuerza sobre el eje medio-lateral de la muñeca (sentido lateral positivo)

Tabla B.5: Listado de las variables biomecánicas de momento

Momento (Nm)
Hombro

MHX Momento en el eje antero-posterior del hombro (sentido anterior positivo)
MHY Momento en el eje longitudinal del hombro (sentido vertical positivo)
MHZ Momento en el eje medio-lateral del hombro (sentido lateral positivo)
Codo

MCX Momento en el eje antero-posterior del codo (sentido anterior positivo)
MCY Momento en el eje longitudinal del codo (sentido vertical positivo)
MCZ Momento en el eje medio-lateral del codo (sentido lateral positivo)
Muñeca

MMX Momento en el eje antero-posterior de la muñeca (sentido anterior positivo)
MMY Momento en el eje longitudinal de la muñeca (sentido vertical positivo)
MMZ Momento en el eje medio-lateral de la muñeca (sentido lateral positivo)
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Tabla B.6: Listado de las variables electromiográficas

Electromiografía (µV)
Activación, Activación Normalizada y sEMG

TS Trapecio superior
DP Deltoides posterior
DM Deltoides medio
DA Deltoides anterior
PM Pectoral mayor
BB Bíceps braquial
TB Tríceps braquial
EA Extensores antebrazo
FA Flexores antebrazo

B.1 Señales del Escenario de Sujeto Único (ESU)

El escenario ESU está compuesto por las señales de 5 repeticiones del movimiento realizadas
por cuatro sujetos de control (C001, C009, C017 y C018) y cuatro pacientes (P002, P003, P020
y P021). Se incluyen la activación y la cinemática junto con la fuerza y el momento derivadas
por Dinámica Inversa. Las señales de las iteraciones se muestran concatenadas en el eje temporal
para poder apreciar las diferencias en sus amplitudes dependiendo del sujeto y repetición.

Activación Normalizada véanse las figuras B.1 (controles) y B.2 (pacientes)

Cinemática véanse las figuras B.3 (controles) y B.4 (pacientes)

Fuerza véanse las figuras B.5 (controles) y B.6 (pacientes)

Momento véanse las figuras B.7 (controles) y B.8 (pacientes)

B.2 Señales del Escenario de Sujetos Múltiples (ESM)

Por su parte este escenario está compuesto por las señales de una única iteración del movi-
miento realizadas por cada uno de los 7 sujetos de control (C001, C009, C011, C013, C015,
C017 y C018) y los 12 pacientes (P002, P003, P005, P006, P007, P008, P010,P012, P016,
P019, P020 y P021). Como se pueden realizar tres pruebas diferentes según se agrupen los
datos (específicamente en solo controles, solo pacientes o con la población completa mezclando
ambos tipos de sujetos) se han mostrado las tres posibles agrupaciones aunque, obviamente,
esto significa que los datos se encuentran duplicados. Las señales de las iteraciones se muestran
concatenadas en el eje temporal con los controles primero y seguidamente los pacientes.

Activación Normalizada véase la figura B.9

Cinemática véase la figura B.10

Fuerza véase la figura B.11

Momento véase la figura B.12
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Figura B.1: Concatenación de las 5 iteraciones de las señales de Activación Normalizada (Escenario
de Sujeto Único – Controles, Fm = 20Hz)
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Figura B.2: Concatenación de las 5 iteraciones de las señales de Activación Normalizada (Escenario
de Sujeto Único – Pacientes, Fm = 20Hz)
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Figura B.3: Concatenación de las 5 iteraciones de las señales de Cinemática (Escenario de Sujeto
Único – Controles, Fm = 20Hz)
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Figura B.4: Concatenación de las 5 iteraciones de las señales de Cinemática (Escenario de Sujeto
Único – Pacientes, Fm = 20Hz)
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Figura B.5: Concatenación de las 5 iteraciones de las señales de Fuerza (Escenario de Sujeto Único
– Controles, Fm = 20Hz)
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Figura B.6: Concatenación de las 5 iteraciones de las señales de Fuerza (Escenario de Sujeto Único
– Pacientes, Fm = 20Hz)
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Figura B.7: Concatenación de las 5 iteraciones de las señales de Momento (Escenario de Sujeto
Único – Controles, Fm = 20Hz)
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Figura B.8: Concatenación de las 5 iteraciones de las señales de Momento (Escenario de Sujeto
Único – Pacientes, Fm = 20Hz)
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Figura B.9: Concatenación de las señales de Activación Normalizada (Escenario de Sujetos Múlti-
ples, Fm = 20Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001,
C009, C011, C013, C015, C017 y C018) y siguiendo con los 12 pacientes (P002, P003, P005, P006,
P007, P008, P010,P012, P016, P019, P020 y P021)
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Figura B.10: Concatenación de las señales de Cinemática (Escenario de Sujetos Múltiples, Fm =
20Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011,
C013, C015, C017 y C018) y siguiendo con los 12 pacientes (P002, P003, P005, P006, P007, P008,
P010,P012, P016, P019, P020 y P021)
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Figura B.11: Concatenación de las señales de Fuerza (Escenario de Sujetos Múltiples, Fm = 20Hz).
El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011, C013,
C015, C017 y C018) y siguiendo con los 12 pacientes (P002, P003, P005, P006, P007, P008,
P010,P012, P016, P019, P020 y P021)
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Figura B.12: Concatenación de las señales de Momento (Escenario de Sujetos Múltiples, Fm =
20Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011,
C013, C015, C017 y C018) y siguiendo con los 12 pacientes (P002, P003, P005, P006, P007, P008,
P010,P012, P016, P019, P020 y P021)



APÉNDICE C
Reducción de dimensionalidad en los datos de entrada:
Self-organizing Map (SOM)

En lugar de encontrarnos ante un algoritmo de reducción de la dimensionalidad propiamente
dicho, los mapas auto-organizados son ANN de aprendizaje no supervisado con aspecto com-
petitivo, es decir, premian a aquella neurona, y sus vecinas, con menor distancia a la muestra
presente en la entrada de la red [24]. De esta forma las neuronas se reconfiguran automática-
mente durante la fase de aprendizaje siguiendo las características de las muestras de entrada para
obtener finalmente la U-Matrix [42], un mapa de las distancias existentes entre las diferentes
neuronas y sus vecinas. Una vez ya en fase de producción, la red agrupará las nuevas muestras
en diferentes clústeres según las características aprendidas.

En la figura C.1 se muestra un ejemplo de los resultados obtenidos por SOM para la señal
de Activación Normalizada en el escenario ESM, aunque dichos resultados son similares a los
obtenidos con el resto de señales de ambos escenarios y las conclusiones, por tanto, extrapolables.
Concretando, la figura C.1a corresponde a la U-Matrix resultante del proceso de aprendizaje,
mientras que el resto de figuras muestran mapas etiquetados con el identificador más frecuen-
temente detectado por cada neurona, siendo este el número del sujeto (figura C.1b), su sexo
(figura C.1c) o el tipo, es decir, si es control o paciente (figura C.1d).

Desafortunadamente, las regiones que se pueden llegar a apreciar en la U-Matrix no están
claramente definidas y sus distancias con sus vecinas tampoco son destacables. Si acaso, en la
zona de esquina inferior derecha aparecen ciertas regiones que distinguirían al sujeto P008 de sus
vecinos P019 y P007, pero también establece diferencias entre partes de la propia señal del sujeto
P008. Consiguientemente, se puede establecer que no es factible utilizar una red SOM como
clasificador para este tipo de entradas, siendo precisamente la naturaleza analógico-temporal de
la señal la hipótesis para la falta de resultados.

Sin embargo, la verdadera razón por la que SOM ha sido incluido como un método de reduc-
ción de dimensionalidad en los datos de entrada es una consecuencia de las características de la
U-Matrix producto del hecho de que se le pueden asignar a las distintas variables o componentes
de la entrada sus contribuciones a la distancia final entre neuronas presente en el mapa. De esta
manera se pueden detectar aquellas componentes que obtengan respuestas similares, pudiendo
ser eliminadas directamente al ser redundante su contribución a la información presente en las
entradas de la red.
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U−matrix

 

 

0.0388

2.29  

4.54  

(a) U-Matrix (b) Etiquetas por número identificativo del sujeto

(c) Etiquetas por sexo del sujeto (d) Etiquetas por tipo (Control-Paciente)

Figura C.1: U-Matix de la señal de Activación Normalizada de toda la población del escenario
ESM (Fm = 20Hz) junto con mapas de clasificación en función del identificador más frecuente por
neurona (número del sujeto, sexo y tipo de sujeto)
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0.0102
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Figura C.2: Norma, por componentes, de la distancia entre neuronas de la señal de Activación
Normalizada de toda la población del escenario ESM (Fm = 20Hz)

La figura C.2 muestra la contribución de cada componente a la U-Matrix final para el ejemplo
anterior con la Activación Normalizada. Desafortunadamente no se aprecian similitudes como
para determinar la existencia de componentes redundantes o, en este caso, músculos con
similares cargas de trabajo en la realización del movimiento, situación que se repite con el
resto de escenarios y entradas. Definitivamente, aunque SOM no haya ayudado a reducir la
dimensión de las variables de entrada, al menos nos confirma que su selección no estaba mal
encaminada.





APÉNDICE D

Predicción del momento articular: Modelo de Hill

La relación entre la señal sEMG producida por un músculo y la fuerza realizada por este es
no lineal y depende de gran cantidad de variables y condiciones. Entre los distintos factores
tenemos el sistema de captura de la señal, la cantidad de fibras musculares, su velocidad de
contracción y si esta es de tipo isométrica o isotónica, es decir, si el músculo mantiene constante
su longitud al contraerse o si lo que se mantiene constante es la tensión en el músculo, siendo la
longitud la que se modifica alargándose o acortándose.

Los primeros modelos musculares basados en sus propiedades viscoelásticas fueron propuestos
por primera vez por Hill en 1938 [17]. Ya de una época más actual destaca la formulación
mucho más refinada de Winters [45] pero, continuamente, surgen estudios que mejoran
distintos aspectos del modelo [7, 8, 10]. En su forma más básica cada músculo es modelado
por los tres elementos representados en la figura D.1. Por un lado la parte activa del músculo,
la fibra muscular, se modela con un elemento contráctil (CE). Por el otro, su parte pasiva
se modela añadiéndose dos elementos elásticos, uno en serie (SE) y otro en paralelo (PE),
representando respectivamente el tendón y el tejido conjuntivo muscular (fascia, epimisio,
perimisio y endomisio). Por la disposición de sus elementos sabemos que, para cualquier músculo,

SE CE

PE

FPE

FT

FSE = FCE

Figura D.1: Esquema del modelo de Hill de un músculo elástico mostrando el elemento contráctil
(CE) y los elementos elásticos en serie (SE) y paralelo (PE) junto con sus respectivas fuerzas
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la relación entre la fuerza ejercida por sus elementos y la total vendrá dada por:

FCE = FSE (D.1a)
FT = FCE + FPE (D.1b)

Una explicación detallada del funcionamiento del modelo no entra dentro del contexto del
presente TFM, pero un somero listado de alguno de sus resultados puede proporcionar una
idea suficiente de su complejidad:

FCE = FCEmax fl(LCE0)fv
(
VCE0(u,LCE0,α)

)
u (D.2)

FSE =

(
Fmax(FCEmax)

eSSE − 1

) (
e
(

SSE
∆Lmax(LTs)

∆L(LTs)
)
− 1

)
(D.3)

FPE =

(
Fmax(FCEmax)

eSPE − 1

) (
e
(

SPE
∆Lmax(Lmax,LCE0,LTs)

∆L(LCE0,LTs)
)
− 1

)
(D.4)

donde u es la activación muscular normalizada y Fmax, que es la fuerza máxima ejercida por el
músculo, depende de la fuerza máxima de su elemento contráctil FCEmax. También se ha tenido
en cuenta la relación entre la fuerza ejercida por el elemento contráctil con la longitud activa de
la fibra fl, que depende adicionalmente de la longitud de la fibra óptima LCE0, así como con la
velocidad de contracción del músculo fv. Esta última depende a su vez de la máxima velocidad
del elemento contráctil con nivel de activacioń máximo VCE0, la cual depende, a sí mismo, del
porcentaje de fibras contráctiles rápidas α entre otros parámetros. Por otro lado, SSE y SPE son
los factores de forma de los elementos correspondientes, LTs es la longitud de distensión del
tendón en reposo, ∆L es la variación de longitud del elemento con respecto al reposo y ∆Lmax
su variación máxima, siendo su longitud máxima Lmax.

Como se puede comprobar, la cantidad de parámetros es realmente elevada y ha de calibrarse
para cada sujeto mediante un proceso de optimización con los datos de una iteración del
movimiento de entrenamiento. Si se quiere conocer el momento neto en una articulación en
cuyo movimiento intervengan M músculos, deberán modelarse todos ellos para conocer la
fuerza total ejercida por cada uno FTm y las longitudes de los distintos huesos afectados. De esta
manera, el momento neto de Hill para el k-ésimo grado de libertad (DoF), τ̂Hk , vendrá dado
por la fuerza que ejercen cada uno de los M músculos modelados FTm y el brazo de momento
de cada uno ellos en relación con el k-ésimo DoF rm,k :

τ̂Hk =
M∑

m=1

FTmrm,k (D.5)

Como representación del rendimiento obtenido mediante el modelo de Hill optimizado
propuesto por BUENO et ál. [8] se representa en la figura D.2 las predicciones del momento
articular para hombro (componente MHX) y codo (componente MCZ) de 4 iteraciones del
movimiento calculadas con el modelo calibrado por la 1.ª iteración. Del mismo modo se
reproducen de forma más detallada en la figura D.3 las predicciones obtenidas para el paciente
P002, pudiéndose comprobar el peor resultado obtenido en este caso con la predicción de la
componente del hombro sobretodo.
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(a) Sujeto C001 (b) Sujeto C009

(c) Sujeto C017 (d) Sujeto C018

Figura D.2: Predicciones de validación por el modelo de Hill del momento articular en hombro
(componente MHX) y codo (componente MCZ) producido en 4 iteraciones del movimiento
realizadas por los sujetos de control. Se muestran, normalizadas en el tiempo, las distintas predicciones
τ̂Hk en rojo con el correspondiente momento de referencia τIDk en azul
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(a) Iteración 2 (b) Iteración 3

(c) Iteración 4 (d) Iteración 5

Figura D.3: Predicciones de validación por el modelo de Hill del momento articular en hombro
(componente MHX) y codo (componente MCZ) producido en 4 iteraciones del movimiento
realizadas por el paciente P002. Se muestran, normalizadas en el tiempo, las distintas predicciones
τ̂Hk en rojo con el correspondiente momento de referencia τIDk en azul



APÉNDICE E
Predicciones de validación del escenario ESU

Una aproximación mediante parámetros estadísticos para la valoración de los resultados
obtenidos por un estimador es indispensable por la objetividad proporcionada. Sin embargo,
para alcanzar una comprensión más completa de su funcionamiento, también es interesante
inspeccionar visualmente los resultados de dichas estimaciones. Es por ello que a continuación
se muestran los resultados obtenidos durante la fase de validación de los diversos entrenamientos
realizados en el escenario ESU para las predicciones del momento en las distintas articulaciones
por los tres modelos seleccionados una vez en su configuración propuesta definitiva. Como
entradas se han empleado las señales de Activación Normalizada y Cinemática muestreadas
a Fm = 20Hz. En todos los casos, al tratarse del escenario ESU, cada una de las iteraciones
mostradas ha sido estimada por unmodelo entrenado con los datos de las otras cuatro repeticiones
del movimiento de la tarea de beber de un vaso realizadas por el sujeto.

E.1 Averaged Output MLP (aoMLP)

El estimador aoMLP se ha configurado mediante la utilización de un ensamble cuya salida
es una simple media de los 30 MLP independientes que lo componen. Cada MLP individual
cuenta con una capa oculta de 10 neuronas intermedias, emplea SCG como algoritmo de
aprendizaje y Early-Stopping con un máximo de 10 fallos de validación consecutivos para
detectar las condiciones de parada evitando caer en el sobreaprendizaje.

Sujeto C001 véase la figura E.1

Sujeto C009 véase la figura E.2

Sujeto C017 véase la figura E.3

Sujeto C018 véase la figura E.4

Sujeto P002 véase la figura E.5

Sujeto P003 véase la figura E.6

Sujeto P020 véase la figura E.7

Sujeto P021 véase la figura E.8
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E.2 Radial Basis Network (RBN)

En este caso, la configuración del estimador RBN se ha elegido manualmente tomando
s = 27 como spread de las neuronas gaussianas y configurando el goal, o objetivo del algoritmo
de aprendizaje, como д = 1/21. Recordar que este valor no se ha seleccionado rigurosamente si
no por heurística, correspondiendo el 21 a la dimensión de la entrada de la red, es decir, al total
de las 9 variables de Activación Normalizada y las 12 de Cinemática.

Sujeto C001 véase la figura E.9
Sujeto C009 véase la figura E.10
Sujeto C017 véase la figura E.11
Sujeto C018 véase la figura E.12
Sujeto P002 véase la figura E.13
Sujeto P003 véase la figura E.14
Sujeto P020 véase la figura E.15
Sujeto P021 véase la figura E.16

E.3 Support Vector Machine (SVM)

Por último, para la configuración del estimador SVM se ha empleado la formulación ϵ-SVR
con un kernel RBF. Además, se ha dejado el hiperparámetro ϵ en su valor por defecto (0,001)
mientras que los otros dos hiperparámetros,C y γ , se han optimizado automáticamente mediante
la búsqueda de dichos valores que maximizan la estimación del rendimiento del modelo calculada
por validación cruzada.

Sujeto C001 véase la figura E.17
Sujeto C009 véase la figura E.18
Sujeto C017 véase la figura E.19
Sujeto C018 véase la figura E.20
Sujeto P002 véase la figura E.21
Sujeto P003 véase la figura E.22
Sujeto P020 véase la figura E.23
Sujeto P021 véase la figura E.24
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(a) Predicciones del sujeto C001
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(b) Iteración 1 – Intervalos de confianza
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(c) Iteración 2 – Intervalos de confianza
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(d) Iteración 3 – Intervalos de confianza
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(e) Iteración 4 – Intervalos de confianza
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(f ) Iteración 5 – Intervalos de confianza

Figura E.1: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(a) Predicciones del sujeto C009
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(b) Iteración 1 – Intervalos de confianza
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(c) Iteración 2 – Intervalos de confianza
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(f ) Iteración 5 – Intervalos de confianza

Figura E.2: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la t distribución de
Student
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(a) Predicciones del sujeto C017
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(b) Iteración 1 – Intervalos de confianza
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(f ) Iteración 5 – Intervalos de confianza

Figura E.3: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la t distribución de
Student
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(f ) Iteración 5 – Intervalos de confianza

Figura E.4: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student



E.1 Averaged Output MLP (aoMLP) 87

0 50 100
−5

0

5
MHX

(%)

(N
m

)

0 50 100
−10

−5

0
MHY

(%)
(N

m
)

0 50 100
0

5

10
MHZ

(%)

(N
m

)

0 50 100
−4

−3

−2

−1

0
MCX

(%)

(N
m

)

0 50 100
−6

−4

−2

0
MCY

(%)

(N
m

)

0 50 100
−4

−2

0

2

4
MCZ

(%)

(N
m

)

0 50 100
−1

−0.5

0

0.5
MMX

(%)

(N
m

)

0 50 100
−1

−0.5

0

0.5
MMY

(%)

(N
m

)

0 50 100
−1.5

−1

−0.5

0

0.5
MMZ

(%)

(N
m

)

(a) Predicciones del sujeto P002

0 100 200
−6

−4

−2

0

2
MHX

(sample)

(N
m

)

0 100 200
−10

−8

−6

−4
MHY

(sample)

(N
m

)

0 100 200
0

2

4

6

8
MHZ

(sample)

(N
m

)

0 100 200
−6

−4

−2

0
MCX

(sample)

(N
m

)

0 100 200
−6

−4

−2

0
MCY

(sample)

(N
m

)

0 100 200
−5

0

5
MCZ

(sample)

(N
m

)

0 100 200
−1

−0.5

0

0.5
MMX

(sample)

(N
m

)

0 100 200
−0.5

0

0.5
MMY

(sample)

(N
m

)

0 100 200
−1.5

−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(b) Iteración 1 – Intervalos de confianza

0 50 100 150
−1

0

1

2
MHX

(sample)

(N
m

)

0 50 100 150
−8

−6

−4

−2
MHY

(sample)

(N
m

)

0 50 100 150
2

4

6

8

10
MHZ

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−2

0

2

4

6
MCZ

(sample)

(N
m

)

0 50 100 150
−0.4

−0.2

0

0.2

0.4
MMX

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMY

(sample)

(N
m

)

0 50 100 150
−1.5

−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(c) Iteración 2 – Intervalos de confianza

0 50 100 150
−4

−2

0

2

4
MHX

(sample)

(N
m

)

0 50 100 150
−8

−6

−4

−2
MHY

(sample)

(N
m

)

0 50 100 150
2

4

6

8
MHZ

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)
(N

m
)

0 50 100 150
−2

0

2

4
MCZ

(sample)

(N
m

)

0 50 100 150
−0.2

−0.1

0

0.1

0.2
MMX

(sample)

(N
m

)

0 50 100 150
−0.6

−0.4

−0.2

0

0.2
MMY

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(d) Iteración 3 – Intervalos de confianza

0 50 100 150
−5

0

5
MHX

(sample)

(N
m

)

0 50 100 150
−8

−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
0

5

10
MHZ

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−2

0

2

4
MCZ

(sample)

(N
m

)

0 50 100 150
−0.4

−0.2

0

0.2

0.4
MMX

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMY

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(e) Iteración 4 – Intervalos de confianza

0 100 200
−4

−2

0

2

4
MHX

(sample)

(N
m

)

0 100 200
−8

−6

−4

−2

0
MHY

(sample)

(N
m

)

0 100 200
0

5

10
MHZ

(sample)

(N
m

)

0 100 200
−4

−3

−2

−1

0
MCX

(sample)

(N
m

)

0 100 200
−6

−4

−2

0
MCY

(sample)

(N
m

)

0 100 200
−2

0

2

4

6
MCZ

(sample)

(N
m

)

0 100 200
−0.5

0

0.5
MMX

(sample)

(N
m

)

0 100 200
−1

−0.5

0

0.5
MMY

(sample)

(N
m

)

0 100 200
−1.5

−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(f ) Iteración 5 – Intervalos de confianza

Figura E.5: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(f ) Iteración 5 – Intervalos de confianza

Figura E.6: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P003. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(f ) Iteración 5 – Intervalos de confianza

Figura E.7: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(f ) Iteración 5 – Intervalos de confianza

Figura E.8: Predicciones de validación por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Pk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro, añadiéndose los intervalos de confianza de dicha estimación al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribución t de
Student
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(a) Predicciones del sujeto C001
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(f ) Iteración 5

Figura E.9: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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(a) Predicciones del sujeto C009
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Figura E.10: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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(f ) Iteración 5

Figura E.11: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro



94 Apéndice E Predicciones de validación del escenario ESU

0 50 100
−5

−4

−3

−2

−1
MHX

(%)

(N
m

)

0 50 100
−8

−6

−4

−2

0
MHY

(%)

(N
m

)

0 50 100
0

2

4

6

8
MHZ

(%)

(N
m

)

0 50 100
−2

0

2

4
MCX

(%)

(N
m

)

0 50 100
−10

−5

0

5
MCY

(%)

(N
m

)

0 50 100
−4

−2

0

2
MCZ

(%)

(N
m

)

0 50 100
−1.5

−1

−0.5

0

0.5
MMX

(%)

(N
m

)

0 50 100
−0.1

−0.05

0

0.05

0.1
MMY

(%)

(N
m

)

0 50 100
−1.5

−1

−0.5

0

0.5
MMZ

(%)

(N
m

)

(a) Predicciones del sujeto C018
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Figura E.12: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.13: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.14: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P003. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.15: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.16: Predicciones de validación por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Rk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.17: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro



100 Apéndice E Predicciones de validación del escenario ESU

0 50 100
−6

−4

−2

0
MHX

(%)

(N
m

)

0 50 100
−6

−4

−2

0
MHY

(%)

(N
m

)

0 50 100
−5

0

5

10
MHZ

(%)

(N
m

)

0 50 100
−2

−1

0

1

2
MCX

(%)

(N
m

)

0 50 100
−4

−3

−2

−1

0
MCY

(%)

(N
m

)

0 50 100
−5

0

5

10
MCZ

(%)

(N
m

)

0 50 100
−0.8

−0.6

−0.4

−0.2

0
MMX

(%)

(N
m

)

0 50 100
−0.1

0

0.1

0.2

0.3
MMY

(%)

(N
m

)

0 50 100
−1

−0.5

0

0.5
MMZ

(%)

(N
m

)

(a) Predicciones del sujeto C009

0 50 100 150
−6

−4

−2

0
MHX

(sample)

(N
m

)

0 50 100 150
−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
0

2

4

6

8
MHZ

(sample)

(N
m

)

0 50 100 150
−2

−1

0

1

2
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−4

−2

0

2

4
MCZ

(sample)

(N
m

)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.05

0

0.05

0.1

0.15
MMY

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(b) Iteración 1

0 50 100 150
−6

−4

−2

0
MHX

(sample)

(N
m

)

0 50 100 150
−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
−5

0

5

10
MHZ

(sample)

(N
m

)

0 50 100 150
−2

−1

0

1

2
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−4

−2

0

2

4
MCZ

(sample)

(N
m

)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.1

−0.05

0

0.05

0.1
MMY

(sample)

(N
m

)

0 50 100 150
−0.6

−0.4

−0.2

0

0.2
MMZ

(sample)

(N
m

)

(c) Iteración 2

0 50 100 150
−6

−4

−2

0
MHX

(sample)

(N
m

)

0 50 100 150
−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
−5

0

5

10
MHZ

(sample)

(N
m

)

0 50 100 150
−2

−1

0

1

2
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)
(N

m
)

0 50 100 150
−5

0

5

10
MCZ

(sample)

(N
m

)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.1

0

0.1

0.2

0.3
MMY

(sample)

(N
m

)

0 50 100 150
−0.6

−0.4

−0.2

0

0.2
MMZ

(sample)

(N
m

)

(d) Iteración 3

0 50 100 150
−4

−3

−2

−1

0
MHX

(sample)

(N
m

)

0 50 100 150
−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
0

5

10
MHZ

(sample)

(N
m

)

0 50 100 150
−2

−1

0

1

2
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−2

0

2

4

6
MCZ

(sample)

(N
m

)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.05

0

0.05

0.1

0.15
MMY

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(e) Iteración 4

0 50 100 150
−4

−3

−2

−1

0
MHX

(sample)

(N
m

)

0 50 100 150
−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
0

2

4

6

8
MHZ

(sample)

(N
m

)

0 50 100 150
−2

−1

0

1

2
MCX

(sample)

(N
m

)

0 50 100 150
−4

−3

−2

−1

0
MCY

(sample)

(N
m

)

0 50 100 150
−2

0

2

4

6
MCZ

(sample)

(N
m

)

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.1

0

0.1

0.2

0.3
MMY

(sample)

(N
m

)

0 50 100 150
−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)
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Figura E.18: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.19: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.20: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.21: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.22: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P003. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.23: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro
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Figura E.24: Predicciones de validación por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviación estándar) de las 5 iteraciones del momento de referencia τIDk
junto con las 5 estimaciones τ̂Vk realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la predicción en rojo con la correspondiente
función objetivo en negro



APÉNDICE F
Predicciones de validación del escenario ESM

Para poder valorar los rendimientos obtenido en el escenario ESM se han incluido algunos de
los resultados más representativos obtenidos durante la fase de validación de los diversos entrena-
mientos realizados en el escenario para las predicciones de los pares en las distintas articulaciones
por los tres modelos seleccionados una vez en su configuración propuesta definitiva. Como
entradas se han empleado las señales de Activación Normalizada y Cinemática muestreadas
a Fm = 20Hz. Al tratarse del escenario ESM, se han realizado tres pruebas diferentes: una
empleando solo controles, otra con solo pacientes y una última mezclando ambos tipos de
sujetos. En cada una de ellas se ha aplicado LOOCV, de forma que cada iteración mostrada ha
sido estimada por un modelo entrenado con los datos del resto de repeticiones del movimiento
de la tarea de beber de un vaso realizadas por los sujetos disponibles en la prueba.

F.1 Averaged Output MLP (aoMLP)

El estimador aoMLP se ha configurado mediante la utilización de un ensamble cuya salida
es una simple media de los 30 MLP independientes que lo componen. Todos los MLP indivi-
duales comparten el mismo número de neuronas en la capa oculta y que ha sido optimizado
automáticamente para cada sesión. Además se emplea SCG como algoritmo de aprendizaje
y Early-Stopping con un máximo de 10 fallos de validación consecutivos para detectar las
condiciones de parada evitando caer en el sobreaprendizaje.

solo Controles véase la figura F.1
solo Pacientes véase la figura F.2
Población (Controles) véase la figura F.3
Población (Pacientes) véase la figura F.4

F.2 Radial Basis Network (RBN)

En este caso, la configuración del estimador RBN se ha elegido manualmente tomando
s = 27 como spread de las neuronas gaussianas y configurando el goal, o objetivo del algoritmo
de aprendizaje, como д = 1/21. Recordar que este valor no se ha seleccionado rigurosamente si
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no por heurística, correspondiendo el 21 a la dimensión de la entrada de la red, es decir, al total
de las 9 variables de Activación Normalizada y las 12 de Cinemática.

solo Controles véase la figura F.5
solo Pacientes véase la figura F.6
Población (Controles) véase la figura F.7
Población (Pacientes) véase la figura F.8

F.3 Support Vector Machine (SVM)

Por último, para la configuración del estimador SVM se ha empleado la formulación ϵ-SVR
con un kernel RBF. Además, se ha dejado el hiperparámetro ϵ en su valor por defecto (0,001)
mientras que los otros dos hiperparámetros,C y γ , se han optimizado automáticamente mediante
la búsqueda de dichos valores que maximizan la estimación del rendimiento del modelo calculada
por validación cruzada.

solo Controles véase la figura F.9
solo Pacientes véase la figura F.10
Población (Controles) véase la figura F.11
Población (Pacientes) véase la figura F.12
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(a) Sujeto C013 – Optimización
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(b) Sujeto C013 – Intervalos de confianza
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(c) Sujeto C017 – Optimización
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(d) Sujeto C017 – Intervalos de confianza
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(e) Sujeto C009 – Optimización

0 50 100 150
−6

−4

−2

0

2
MHX

(sample)

(N
m

)

0 50 100 150
−8

−6

−4

−2

0
MHY

(sample)

(N
m

)

0 50 100 150
0

2

4

6

8
MHZ

(sample)

(N
m

)

0 50 100 150
−4

−2

0

2
MCX

(sample)

(N
m

)

0 50 100 150
−8

−6

−4

−2

0
MCY

(sample)

(N
m

)

0 50 100 150
−4

−2

0

2

4
MCZ

(sample)

(N
m

)

0 50 100 150
−2

−1.5

−1

−0.5

0
MMX

(sample)

(N
m

)

0 50 100 150
−0.1

0

0.1

0.2

0.3
MMY

(sample)

(N
m

)

0 50 100 150
−1.5

−1

−0.5

0

0.5
MMZ

(sample)

(N
m

)

(f ) Sujeto C009 – Intervalos de confianza

Figura F.1: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – solo Controles. Los paneles
de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente al de validación
(en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la correspondiente
función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha estimacioń al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribucioń t de
Student
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Figura F.2: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – solo Pacientes. Los paneles
de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente al de validación
(en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la correspondiente
función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha estimacioń al 95%
(sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando la distribucioń t de
Student
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Figura F.3: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – Población (Controles).
Los paneles de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validación (en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la
correspondiente función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha
estimacioń al 95% (sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando
la distribucioń t de Student
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Figura F.4: Optimización automática del número de neuronas ocultas y predicción de validación
por el modelo aoMLP del momento articular para el escenario ESM – Población (Pacientes).
Los paneles de optimización muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validación (en rojo). Los paneles de predicción muestran la predicción τ̂Pk en rojo con la
correspondiente función objetivo τIDk en negro, añadiéndose los intervalos de confianza de dicha
estimacioń al 95% (sombreado gris) y 99% (sombreado amarillo) calculados punto a punto usando
la distribucioń t de Student
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Figura F.5: Mapa de rendimiento de validación y predicción de validación por el modelo RBN
del momento articular para el escenario ESM – solo Controles. Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en cian los
hiperparámetros finalmente empleados. Los paneles de predicción muestran la predicción τ̂Rk en
rojo con la correspondiente función objetivo τIDk en negro
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Figura F.6: Mapa de rendimiento de validación y predicción de validación por el modelo RBN del
momento articular para el escenario ESM – solo Pacientes. Los paneles de optimización muestran
con un marcador magenta la localización del mínimo del MSE de validación y en cian los hiperpa-
rámetros finalmente empleados. Los paneles de predicción muestran la predicción τ̂Rk en rojo con
la correspondiente función objetivo τIDk en negro
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Figura F.7: Mapa de rendimiento de validación y predicción de validación por el modelo RBN del
momento articular para el escenario ESM – Población (Controles). Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en cian los
hiperparámetros finalmente empleados. Los paneles de predicción muestran la predicción τ̂Rk en
rojo con la correspondiente función objetivo τIDk en negro
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Figura F.8: Mapa de rendimiento de validación y predicción de validación por el modelo RBN
del momento articular para el escenario ESM – Población (Pacientes). Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en cian los
hiperparámetros finalmente empleados. Los paneles de predicción muestran la predicción τ̂Rk en
rojo con la correspondiente función objetivo τIDk en negro
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Figura F.9: Mapa de rendimiento de validación y predicción de validación por el modelo SVM
del momento articular para el escenario ESM – solo Controles. Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en verde
los hiperparámetros encontrados por el proceso de búsqueda con el entrenamiento generalizado
por validación cruzada. Los paneles de predicción muestran la predicción τ̂Vk en rojo con la
correspondiente función objetivo τIDk en negro
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Figura F.10: Mapa de rendimiento de validación y predicción de validación por el modelo SVM del
momento articular para el escenario ESM – solo Pacientes. Los paneles de optimización muestran
con un marcador magenta la localización del mínimo del MSE de validación y en verde los
hiperparámetros encontrados por el proceso de búsqueda con el entrenamiento generalizado
por validación cruzada. Los paneles de predicción muestran la predicción τ̂Vk en rojo con la
correspondiente función objetivo τIDk en negro
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(a) Sujeto C013 – Rendimiento de validación
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(b) Sujeto C013 – Predicción de validación

0 5 10

−10

−5

0

−0.4

−
0
.2

0

0−0.62

MHX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0 −0.2

0
0

0
0 0.2

−0.23
MHY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0
−0.4
−0.2

0

0
0

0.2

−0.69

MHZ

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1

−1
−0.8

−0.8

−0.8

−0.6−0.4

−1.21

MCX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−0.8

−0.6
−0.6

−0.6

−0.6

−0.4

−0.4

−0.99

MCY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1

−1

−0.8
−0.8
−0.8

−0.6

−1.22

MCZ

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.2

−1.2−1.2−0.8

−0.8

−0.4

−1.63

MMX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.2 −1.2

−1.2

−0.8
−0.4 0

−1.60

MMY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1

−1
−1

0

−1.32

MMZ

(log2c)

(l
o

g
2

g
)

(c) Sujeto C017 – Rendimiento de validación

0 100 200
−6

−4

−2

0
MHX

(sample)

(N
m

)

0 100 200
−8

−6

−4

−2

0
MHY

(sample)

(N
m

)

0 100 200
0

2

4

6

8
MHZ

(sample)

(N
m

)

0 100 200
−4

−2

0

2
MCX

(sample)

(N
m

)

0 100 200
−4

−3

−2

−1

0
MCY

(sample)
(N

m
)

0 100 200
−2

0

2

4
MCZ

(sample)

(N
m

)

0 100 200
−1

−0.5

0

0.5
MMX

(sample)

(N
m

)

0 100 200
−0.2

0

0.2

0.4

0.6
MMY

(sample)

(N
m

)

0 100 200
−0.5

0

0.5
MMZ

(sample)

(N
m

)

(d) Sujeto C017 – Predicción de validación

0 5 10

−10

−5

0

−0.8

−
0
.8

−
0
.4

0

−1.11

MHX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−0.8

−0.8

−0.4

−0.4

−0.4 0

−1.30

MHY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−0.6−0.4
−0.4

−0.4

−0.2

−0.2

0

0

0

0.2

0
.2

0.4

−0.71

MHZ

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.2
−1.2

−0.8

−0.8

−0.4
−0.4

−0.4

−0.4
0

0

−1.69

MCX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.2
−1.2−0.8

−0.8

−0.8

−0.4

−0.4

−1.55

MCY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−
0
.6

−0.4

−
0.4

−0.2

−0.2

−0.2

0

0

0
−0.74

MCZ

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.6
−1.2

−1.2
−0.8

−0.8

−0.8−0.4 −0.4

−0.4

−0.4 0

−1.64

MMX

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−1.2

−0.8

−0.8

−0.4 0
−1.27

MMY

(log2c)

(l
o

g
2

g
)

0 5 10

−10

−5

0

−0.8

−0.8
−0.4 0

−1.26

MMZ

(log2c)

(l
o

g
2

g
)

(e) Sujeto C009 – Rendimiento de validación
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(f ) Sujeto C009 – Predicción de validación

Figura F.11: Mapa de rendimiento de validación y predicción de validación por el modelo SVM
del momento articular para el escenario ESM – Población (Controles). Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en verde
los hiperparámetros encontrados por el proceso de búsqueda con el entrenamiento generalizado
por validación cruzada. Los paneles de predicción muestran la predicción τ̂Vk en rojo con la
correspondiente función objetivo τIDk en negro
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(d) Sujeto P003 – Predicción de validación
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(e) Sujeto P020 – Rendimiento de validación
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(f ) Sujeto P020 – Predicción de validación

Figura F.12: Mapa de rendimiento de validación y predicción de validación por el modelo SVM
del momento articular para el escenario ESM – Población (Pacientes). Los paneles de optimización
muestran con un marcador magenta la localización del mínimo del MSE de validación y en verde
los hiperparámetros encontrados por el proceso de búsqueda con el entrenamiento generalizado
por validación cruzada. Los paneles de predicción muestran la predicción τ̂Vk en rojo con la
correspondiente función objetivo τIDk en negro



APÉNDICE G
Tablas complementarias de resultados obtenidos

Para complementar los datos proporcionados en el capítulo 6 se anexan los resultados, deta-
llados a nivel de articulación (hombro, codo o muñeca), para los distintos modelos propuestos
junto con las variaciones del modelo aoMLP del escenario ESU.

G.1 Modelos propuestos para el escenario ESU

aoMLP véanse la figura G.1 y la tabla G.1
RBN véanse la figura G.2 y la tabla G.2
SVM véanse la figura G.3 y la tabla G.3

G.2 Modelos propuestos para el escenario ESM

aoMLP véanse la figura G.4 y la tabla G.4
RBN véanse la figura G.5 y la tabla G.5
SVM véanse la figura G.6 y la tabla G.6

G.3 Variaciones de las configuraciones propuestas

Sin ensamble véanse la figura G.7 y la tabla G.7
Ensamble de 10 MLP véanse la figura G.8 y la tabla G.8
Fm de 200 Hz véanse la figura G.9 y la tabla G.9
Entrenamiento LM véanse la figura G.10 y la tabla G.10
Sin Cinemática véanse la figura G.11 y la tabla G.11
3 Sinergias véanse la figura G.14 y la tabla G.14
5 Sinergias véanse la figura G.15 y la tabla G.15
80 % PCA véanse la figura G.12 y la tabla G.12
90 % PCA véanse la figura G.13 y la tabla G.13
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Figura G.1: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU. Está
representado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de
las predicciones de validación realizadas al aplicar LOOCV

Tabla G.1: Resultados del modelo aoMLP para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,86 ± 0,03 0,92 ± 0,01 0,85 ± 0,12 0,89 ± 0,05 0,88 ± 0,03 0,85 ± 0,02 0,49 ± 0,27 0,77 ± 0,24
Codo 0,96 ± 0,01 0,96 ± 0,02 0,90 ± 0,02 0,98 ± 0,01 0,92 ± 0,03 0,94 ± 0,03 0,92 ± 0,03 0,83 ± 0,18
Muñe 0,93 ± 0,02 0,92 ± 0,03 0,51 ± 0,14 0,91 ± 0,05 0,85 ± 0,04 0,90 ± 0,01 0,69 ± 0,08 0,81 ± 0,08

R2

Total 0,92 ± 0,01 0,93 ± 0,02 0,76 ± 0,08 0,93 ± 0,04 0,88 ± 0,02 0,90 ± 0,01 0,70 ± 0,09 0,80 ± 0,15

Homb 0,07 ± 0,01 0,06 ± 0,00 0,11 ± 0,03 0,13 ± 0,09 0,09 ± 0,02 0,08 ± 0,01 0,11 ± 0,03 0,08 ± 0,02
Codo 0,05 ± 0,01 0,06 ± 0,01 0,08 ± 0,01 0,07 ± 0,07 0,09 ± 0,04 0,06 ± 0,01 0,08 ± 0,01 0,08 ± 0,03
Muñe 0,08 ± 0,01 0,08 ± 0,01 0,12 ± 0,04 0,14 ± 0,14 0,12 ± 0,06 0,09 ± 0,02 0,10 ± 0,02 0,10 ± 0,01

NRMSD

Total 0,06 ± 0,01 0,06 ± 0,01 0,11 ± 0,03 0,11 ± 0,10 0,10 ± 0,03 0,08 ± 0,01 0,10 ± 0,02 0,09 ± 0,02

Homb 0,21 ± 0,04 0,30 ± 0,02 0,38 ± 0,13 0,52 ± 0,52 0,46 ± 0,07 0,49 ± 0,06 0,42 ± 0,14 0,22 ± 0,12
Codo 0,11 ± 0,02 0,25 ± 0,08 0,21 ± 0,05 0,36 ± 0,39 0,31 ± 0,15 0,27 ± 0,05 0,23 ± 0,05 0,18 ± 0,11
Muñe 0,01 ± 0,00 0,03 ± 0,00 0,14 ± 0,05 0,09 ± 0,10 0,11 ± 0,07 0,06 ± 0,01 0,06 ± 0,01 0,04 ± 0,01

Erms
(Nm)

Total 0,11 ± 0,02 0,19 ± 0,03 0,24 ± 0,06 0,33 ± 0,34 0,29 ± 0,09 0,27 ± 0,04 0,24 ± 0,06 0,15 ± 0,08

Homb 0,70 ± 0,24 1,20 ± 0,35 1,32 ± 0,32 1,23 ± 0,75 1,52 ± 0,27 1,71 ± 0,33 2,88 ± 1,55 1,58 ± 1,61
Codo 0,33 ± 0,09 0,96 ± 0,49 0,72 ± 0,14 0,80 ± 0,49 0,91 ± 0,31 0,91 ± 0,35 1,09 ± 0,47 0,99 ± 0,83
Muñe 0,04 ± 0,00 0,09 ± 0,01 0,85 ± 0,52 0,22 ± 0,13 0,29 ± 0,13 0,25 ± 0,03 0,34 ± 0,17 0,16 ± 0,06

Emax
(Nm)

Total 0,36 ± 0,10 0,75 ± 0,16 0,96 ± 0,22 0,75 ± 0,46 0,91 ± 0,21 0,96 ± 0,21 1,44 ± 0,70 0,91 ± 0,82
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Figura G.2: NRMSD esperado para el modelo RBN propuesto en el escenario ESU. Está repre-
sentado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de las
predicciones de validación realizadas al aplicar LOOCV

Tabla G.2: Resultados del modelo RBN para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,79 ± 0,03 0,89 ± 0,03 0,67 ± 0,27 0,85 ± 0,08 0,73 ± 0,21 0,64 ± 0,11 0,45 ± 0,29 0,55 ± 0,23
Codo 0,93 ± 0,01 0,97 ± 0,02 0,74 ± 0,23 0,98 ± 0,01 0,86 ± 0,15 0,89 ± 0,09 0,89 ± 0,02 0,79 ± 0,17
Muñe 0,89 ± 0,02 0,92 ± 0,01 0,47 ± 0,24 0,81 ± 0,17 0,76 ± 0,20 0,81 ± 0,06 0,63 ± 0,07 0,76 ± 0,13

R2

Total 0,87 ± 0,02 0,92 ± 0,02 0,62 ± 0,24 0,88 ± 0,08 0,79 ± 0,19 0,78 ± 0,03 0,66 ± 0,09 0,70 ± 0,14

Homb 0,10 ± 0,01 0,07 ± 0,01 0,17 ± 0,09 0,15 ± 0,11 0,14 ± 0,09 0,16 ± 0,04 0,13 ± 0,05 0,12 ± 0,04
Codo 0,07 ± 0,00 0,06 ± 0,01 0,15 ± 0,10 0,07 ± 0,07 0,12 ± 0,10 0,09 ± 0,03 0,10 ± 0,02 0,10 ± 0,02
Muñe 0,09 ± 0,01 0,09 ± 0,02 0,17 ± 0,18 0,15 ± 0,13 0,15 ± 0,12 0,13 ± 0,05 0,13 ± 0,04 0,10 ± 0,02

NRMSD

Total 0,09 ± 0,01 0,07 ± 0,01 0,17 ± 0,11 0,12 ± 0,10 0,13 ± 0,10 0,13 ± 0,04 0,12 ± 0,03 0,11 ± 0,02

Homb 0,34 ± 0,08 0,35 ± 0,04 0,57 ± 0,32 0,58 ± 0,57 0,78 ± 0,56 1,23 ± 0,56 0,55 ± 0,28 0,34 ± 0,13
Codo 0,15 ± 0,01 0,24 ± 0,06 0,44 ± 0,34 0,38 ± 0,40 0,46 ± 0,45 0,46 ± 0,15 0,28 ± 0,08 0,22 ± 0,11
Muñe 0,02 ± 0,00 0,03 ± 0,01 0,25 ± 0,18 0,12 ± 0,15 0,15 ± 0,14 0,13 ± 0,10 0,08 ± 0,02 0,04 ± 0,01

Erms
(Nm)

Total 0,17 ± 0,03 0,21 ± 0,03 0,42 ± 0,28 0,36 ± 0,37 0,47 ± 0,38 0,60 ± 0,27 0,30 ± 0,12 0,20 ± 0,08

Homb 1,04 ± 0,28 1,29 ± 0,25 1,60 ± 0,61 1,34 ± 0,82 2,06 ± 0,94 3,08 ± 1,10 2,89 ± 1,69 1,66 ± 1,38
Codo 0,43 ± 0,09 0,84 ± 0,34 1,12 ± 0,55 0,81 ± 0,53 1,14 ± 0,75 1,20 ± 0,39 1,11 ± 0,47 1,18 ± 0,85
Muñe 0,05 ± 0,00 0,10 ± 0,02 0,90 ± 0,59 0,29 ± 0,22 0,39 ± 0,20 0,32 ± 0,20 0,37 ± 0,16 0,18 ± 0,08

Emax
(Nm)

Total 0,51 ± 0,12 0,74 ± 0,16 1,21 ± 0,57 0,81 ± 0,52 1,19 ± 0,62 1,54 ± 0,54 1,46 ± 0,75 1,00 ± 0,75
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Figura G.3: NRMSD esperado para el modelo SVM propuesto en el escenario ESU. Está repre-
sentado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de las
predicciones de validación realizadas al aplicar LOOCV

Tabla G.3: Resultados del modelo SVM para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,80 ± 0,07 0,87 ± 0,03 0,74 ± 0,20 0,76 ± 0,21 0,66 ± 0,23 0,76 ± 0,05 0,20 ± 0,12 0,65 ± 0,12
Codo 0,95 ± 0,01 0,95 ± 0,02 0,83 ± 0,04 0,92 ± 0,14 0,73 ± 0,33 0,86 ± 0,08 0,78 ± 0,07 0,68 ± 0,15
Muñe 0,88 ± 0,04 0,87 ± 0,05 0,42 ± 0,24 0,76 ± 0,34 0,61 ± 0,33 0,79 ± 0,05 0,46 ± 0,19 0,70 ± 0,15

R2

Total 0,88 ± 0,04 0,89 ± 0,01 0,67 ± 0,14 0,81 ± 0,23 0,67 ± 0,30 0,80 ± 0,06 0,48 ± 0,04 0,68 ± 0,08

Homb 0,08 ± 0,02 0,08 ± 0,01 0,13 ± 0,04 0,13 ± 0,08 0,16 ± 0,09 0,12 ± 0,02 0,16 ± 0,05 0,11 ± 0,02
Codo 0,06 ± 0,01 0,07 ± 0,01 0,11 ± 0,03 0,09 ± 0,11 0,14 ± 0,09 0,10 ± 0,02 0,13 ± 0,02 0,09 ± 0,02
Muñe 0,10 ± 0,01 0,09 ± 0,01 0,15 ± 0,09 0,14 ± 0,12 0,16 ± 0,08 0,12 ± 0,02 0,14 ± 0,04 0,09 ± 0,02

NRMSD

Total 0,08 ± 0,01 0,08 ± 0,01 0,13 ± 0,05 0,12 ± 0,10 0,15 ± 0,08 0,11 ± 0,02 0,14 ± 0,03 0,10 ± 0,02

Homb 0,27 ± 0,08 0,40 ± 0,05 0,46 ± 0,12 0,50 ± 0,43 0,93 ± 0,62 0,71 ± 0,18 0,77 ± 0,24 0,40 ± 0,16
Codo 0,14 ± 0,03 0,32 ± 0,05 0,27 ± 0,10 0,53 ± 0,76 0,50 ± 0,37 0,42 ± 0,13 0,36 ± 0,05 0,25 ± 0,09
Muñe 0,02 ± 0,02 0,04 ± 0,01 0,25 ± 0,26 0,09 ± 0,08 0,13 ± 0,07 0,09 ± 0,01 0,09 ± 0,02 0,05 ± 0,02

Erms
(Nm)

Total 0,14 ± 0,04 0,25 ± 0,03 0,33 ± 0,13 0,37 ± 0,42 0,52 ± 0,35 0,40 ± 0,09 0,40 ± 0,09 0,23 ± 0,04

Homb 1,01 ± 0,51 1,46 ± 0,23 1,46 ± 0,39 1,33 ± 0,65 2,35 ± 0,89 2,10 ± 0,50 4,31 ± 2,70 2,75 ± 1,59
Codo 0,43 ± 0,16 1,13 ± 0,51 0,91 ± 0,32 1,11 ± 1,11 1,37 ± 0,73 1,20 ± 0,33 1,45 ± 0,34 1,52 ± 0,52
Muñe 0,05 ± 0,01 0,11 ± 0,02 0,94 ± 0,67 0,23 ± 0,16 0,37 ± 0,12 0,27 ± 0,04 0,38 ± 0,14 0,28 ± 0,13

Emax
(Nm)

Total 0,49 ± 0,22 0,90 ± 0,20 1,10 ± 0,28 0,89 ± 0,64 1,36 ± 0,57 1,19 ± 0,24 2,05 ± 0,99 1,52 ± 0,44
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Figura G.4: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESM. Está
representado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de
las predicciones de validación realizadas al aplicar LOOCV

Tabla G.4: Resultados del modelo aoMLP para el escenario ESM

Población completasolo
Controles

solo
Pacientes Controles Pacientes Todos

Homb 0,63 ± 0,14 0,50 ± 0,17 0,67 ± 0,18 0,52 ± 0,14 0,58 ± 0,17
Codo 0,89 ± 0,07 0,59 ± 0,15 0,91 ± 0,04 0,63 ± 0,22 0,74 ± 0,22
Muñe 0,66 ± 0,15 0,29 ± 0,22 0,60 ± 0,12 0,24 ± 0,19 0,37 ± 0,24

R2

Total 0,72 ± 0,08 0,46 ± 0,16 0,73 ± 0,07 0,47 ± 0,15 0,56 ± 0,18

Homb 0,25 ± 0,08 0,28 ± 0,12 0,22 ± 0,09 0,27 ± 0,09 0,25 ± 0,09
Codo 0,19 ± 0,08 0,30 ± 0,12 0,16 ± 0,04 0,27 ± 0,12 0,23 ± 0,11
Muñe 0,28 ± 0,13 0,27 ± 0,09 0,27 ± 0,04 0,27 ± 0,09 0,27 ± 0,07

NRMSD

Total 0,24 ± 0,07 0,28 ± 0,09 0,22 ± 0,03 0,27 ± 0,08 0,25 ± 0,07

Homb 1,04 ± 0,20 1,51 ± 0,71 0,87 ± 0,29 1,41 ± 0,51 1,21 ± 0,51
Codo 0,80 ± 0,47 1,58 ± 1,05 0,58 ± 0,18 1,26 ± 0,60 1,01 ± 0,59
Muñe 0,18 ± 0,14 0,31 ± 0,16 0,13 ± 0,06 0,29 ± 0,16 0,23 ± 0,15

Erms
(Nm)

Total 0,67 ± 0,21 1,14 ± 0,58 0,53 ± 0,11 0,99 ± 0,34 0,82 ± 0,36

Homb 2,12 ± 0,42 3,30 ± 0,87 1,88 ± 0,37 3,06 ± 0,63 2,63 ± 0,79
Codo 1,62 ± 0,56 3,20 ± 1,56 1,30 ± 0,19 2,74 ± 0,97 2,21 ± 1,05
Muñe 0,36 ± 0,13 1,11 ± 1,12 0,25 ± 0,09 1,05 ± 1,12 0,76 ± 0,96

Emax
(Nm)

Total 1,37 ± 0,26 2,54 ± 0,96 1,14 ± 0,14 2,29 ± 0,72 1,87 ± 0,80
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Figura G.5: NRMSD esperado para el modelo RBN propuesto en el escenario ESM. Está repre-
sentado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de las
predicciones de validación realizadas al aplicar LOOCV

Tabla G.5: Resultados del modelo RBN para el escenario ESM

Población completasolo
Controles

solo
Pacientes Controles Pacientes Todos

Homb 0,57 ± 0,21 0,15 ± 0,10 0,45 ± 0,22 0,16 ± 0,08 0,27 ± 0,21
Codo 0,85 ± 0,08 0,34 ± 0,22 0,80 ± 0,11 0,38 ± 0,21 0,53 ± 0,27
Muñe 0,50 ± 0,20 0,15 ± 0,09 0,37 ± 0,15 0,15 ± 0,13 0,23 ± 0,18

R2

Total 0,64 ± 0,14 0,21 ± 0,09 0,54 ± 0,09 0,23 ± 0,09 0,34 ± 0,18

Homb 0,28 ± 0,10 0,30 ± 0,10 0,26 ± 0,11 0,28 ± 0,08 0,27 ± 0,09
Codo 0,20 ± 0,05 0,30 ± 0,14 0,18 ± 0,06 0,26 ± 0,10 0,23 ± 0,09
Muñe 0,35 ± 0,12 0,29 ± 0,10 0,31 ± 0,14 0,23 ± 0,07 0,26 ± 0,11

NRMSD

Total 0,28 ± 0,07 0,30 ± 0,10 0,25 ± 0,09 0,26 ± 0,08 0,26 ± 0,08

Homb 1,61 ± 0,73 6,05 ± 4,51 1,51 ± 0,64 4,66 ± 4,18 3,50 ± 3,64
Codo 0,95 ± 0,44 4,74 ± 4,00 0,98 ± 0,46 3,41 ± 2,49 2,52 ± 2,30
Muñe 0,34 ± 0,23 3,65 ± 3,55 0,80 ± 0,58 2,46 ± 2,42 1,85 ± 2,09

Erms
(Nm)

Total 0,97 ± 0,45 4,81 ± 3,52 1,10 ± 0,46 3,51 ± 2,78 2,62 ± 2,49

Homb 3,21 ± 1,59 16,25 ± 12,79 3,58 ± 1,66 11,96 ± 7,75 8,87 ± 7,41
Codo 2,03 ± 1,01 11,97 ± 11,40 2,50 ± 1,45 9,61 ± 8,21 6,99 ± 7,37
Muñe 0,65 ± 0,50 12,27 ± 17,51 2,11 ± 1,81 9,02 ± 10,81 6,47 ± 9,18

Emax
(Nm)

Total 1,96 ± 1,01 13,50 ± 13,36 2,73 ± 1,57 10,19 ± 8,24 7,44 ± 7,48
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Figura G.6: NRMSD esperado para el modelo SVM propuesto en el escenario ESM. Está repre-
sentado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de las
predicciones de validación realizadas al aplicar LOOCV

Tabla G.6: Resultados del modelo SVM para el escenario ESM

Población completasolo
Controles

solo
Pacientes Controles Pacientes Todos

Homb 0,32 ± 0,12 0,22 ± 0,17 0,50 ± 0,22 0,24 ± 0,18 0,34 ± 0,23
Codo 0,67 ± 0,27 0,37 ± 0,23 0,78 ± 0,13 0,39 ± 0,28 0,54 ± 0,30
Muñe 0,36 ± 0,16 0,08 ± 0,10 0,33 ± 0,22 0,11 ± 0,15 0,19 ± 0,20

R2

Total 0,45 ± 0,16 0,23 ± 0,15 0,54 ± 0,15 0,25 ± 0,18 0,35 ± 0,20

Homb 0,30 ± 0,05 0,31 ± 0,11 0,25 ± 0,10 0,32 ± 0,10 0,29 ± 0,10
Codo 0,23 ± 0,06 0,31 ± 0,10 0,18 ± 0,02 0,29 ± 0,11 0,25 ± 0,10
Muñe 0,28 ± 0,05 0,28 ± 0,09 0,26 ± 0,06 0,26 ± 0,08 0,26 ± 0,07

NRMSD

Total 0,27 ± 0,03 0,30 ± 0,08 0,23 ± 0,04 0,29 ± 0,07 0,27 ± 0,07

Homb 1,58 ± 0,48 1,68 ± 0,57 1,17 ± 0,43 1,70 ± 0,50 1,51 ± 0,54
Codo 0,85 ± 0,18 1,41 ± 0,33 0,75 ± 0,10 1,25 ± 0,32 1,07 ± 0,36
Muñe 0,16 ± 0,07 0,43 ± 0,38 0,15 ± 0,05 0,31 ± 0,16 0,25 ± 0,15

Erms
(Nm)

Total 0,86 ± 0,20 1,17 ± 0,35 0,69 ± 0,13 1,09 ± 0,26 0,94 ± 0,29

Homb 3,21 ± 0,59 3,79 ± 0,97 2,61 ± 0,85 3,73 ± 0,92 3,32 ± 1,04
Codo 1,82 ± 0,33 2,92 ± 0,61 1,69 ± 0,13 2,67 ± 0,59 2,31 ± 0,67
Muñe 0,30 ± 0,11 1,42 ± 1,33 0,36 ± 0,09 1,12 ± 1,06 0,84 ± 0,91

Emax
(Nm)

Total 1,78 ± 0,20 2,71 ± 0,87 1,55 ± 0,31 2,51 ± 0,72 2,15 ± 0,76
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Figura G.7: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU sin usar
aprendizaje por ensamble. Está representado tanto por la media y desviación estándar (en azul)
como por la mediana (en rojo) de las predicciones de validación realizadas al aplicar LOOCV

Tabla G.7: Resultados del modelo aoMLP para el escenario ESU – Sin ensamble

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,84 ± 0,05 0,89 ± 0,03 0,76 ± 0,17 0,73 ± 0,30 0,81 ± 0,11 0,78 ± 0,07 0,39 ± 0,26 0,75 ± 0,21
Codo 0,93 ± 0,04 0,96 ± 0,02 0,84 ± 0,06 0,94 ± 0,08 0,83 ± 0,12 0,90 ± 0,05 0,89 ± 0,03 0,80 ± 0,16
Muñe 0,91 ± 0,03 0,91 ± 0,03 0,41 ± 0,12 0,83 ± 0,17 0,71 ± 0,12 0,85 ± 0,04 0,64 ± 0,06 0,79 ± 0,05

R2

Total 0,89 ± 0,02 0,92 ± 0,02 0,67 ± 0,10 0,84 ± 0,18 0,79 ± 0,11 0,84 ± 0,04 0,64 ± 0,08 0,78 ± 0,13

Homb 0,08 ± 0,02 0,07 ± 0,01 0,15 ± 0,06 0,17 ± 0,17 0,11 ± 0,05 0,11 ± 0,02 0,13 ± 0,05 0,09 ± 0,02
Codo 0,07 ± 0,02 0,06 ± 0,01 0,11 ± 0,03 0,09 ± 0,09 0,11 ± 0,05 0,09 ± 0,03 0,09 ± 0,01 0,09 ± 0,03
Muñe 0,08 ± 0,01 0,08 ± 0,01 0,14 ± 0,07 0,15 ± 0,16 0,17 ± 0,09 0,12 ± 0,04 0,11 ± 0,02 0,10 ± 0,01

NRMSD

Total 0,08 ± 0,02 0,07 ± 0,01 0,13 ± 0,05 0,14 ± 0,14 0,13 ± 0,06 0,10 ± 0,03 0,11 ± 0,02 0,10 ± 0,02

Homb 0,25 ± 0,05 0,36 ± 0,03 0,60 ± 0,34 0,93 ± 1,28 0,62 ± 0,33 0,78 ± 0,33 0,53 ± 0,22 0,25 ± 0,10
Codo 0,17 ± 0,06 0,26 ± 0,05 0,28 ± 0,09 0,47 ± 0,54 0,46 ± 0,30 0,40 ± 0,11 0,27 ± 0,04 0,20 ± 0,11
Muñe 0,01 ± 0,00 0,03 ± 0,00 0,19 ± 0,11 0,10 ± 0,11 0,18 ± 0,16 0,10 ± 0,07 0,07 ± 0,01 0,04 ± 0,01

Erms
(Nm)

Total 0,15 ± 0,04 0,22 ± 0,02 0,35 ± 0,16 0,50 ± 0,64 0,42 ± 0,26 0,43 ± 0,16 0,29 ± 0,08 0,16 ± 0,07

Homb 0,79 ± 0,22 1,51 ± 0,34 1,79 ± 0,98 1,87 ± 1,62 1,86 ± 0,66 2,61 ± 0,95 2,95 ± 1,57 1,66 ± 1,39
Codo 0,55 ± 0,23 1,01 ± 0,35 0,99 ± 0,35 1,15 ± 0,91 1,30 ± 0,61 1,27 ± 0,36 1,19 ± 0,39 1,04 ± 0,81
Muñe 0,04 ± 0,01 0,09 ± 0,01 1,11 ± 0,70 0,24 ± 0,16 0,48 ± 0,29 0,30 ± 0,12 0,34 ± 0,16 0,19 ± 0,08

Emax
(Nm)

Total 0,46 ± 0,14 0,87 ± 0,12 1,30 ± 0,60 1,09 ± 0,89 1,21 ± 0,51 1,40 ± 0,44 1,50 ± 0,68 0,96 ± 0,75
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Figura G.8: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU con un
ensamble menor, de únicamente 10 MLP, y aplicando la mediana. Está representado tanto por
la media y desviación estándar (en azul) como por la mediana (en rojo) de las predicciones de
validación realizadas al aplicar LOOCV

Tabla G.8: Resultados del modelo aoMLP para el escenario ESU – Ensamble de 10 MLP

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,86 ± 0,03 0,92 ± 0,01 0,86 ± 0,10 0,86 ± 0,09 0,86 ± 0,04 0,85 ± 0,02 0,47 ± 0,26 0,78 ± 0,25
Codo 0,96 ± 0,01 0,96 ± 0,02 0,90 ± 0,02 0,97 ± 0,03 0,92 ± 0,03 0,94 ± 0,02 0,91 ± 0,03 0,83 ± 0,16
Muñe 0,93 ± 0,02 0,91 ± 0,03 0,53 ± 0,14 0,88 ± 0,11 0,83 ± 0,05 0,89 ± 0,02 0,67 ± 0,08 0,83 ± 0,06

R2

Total 0,92 ± 0,01 0,93 ± 0,02 0,76 ± 0,06 0,90 ± 0,08 0,87 ± 0,03 0,90 ± 0,01 0,68 ± 0,09 0,81 ± 0,14

Homb 0,07 ± 0,01 0,06 ± 0,00 0,11 ± 0,04 0,13 ± 0,09 0,09 ± 0,02 0,09 ± 0,01 0,11 ± 0,03 0,08 ± 0,02
Codo 0,05 ± 0,01 0,06 ± 0,01 0,09 ± 0,02 0,08 ± 0,07 0,09 ± 0,03 0,06 ± 0,01 0,08 ± 0,01 0,08 ± 0,02
Muñe 0,08 ± 0,01 0,08 ± 0,01 0,13 ± 0,05 0,13 ± 0,13 0,13 ± 0,07 0,09 ± 0,02 0,11 ± 0,02 0,10 ± 0,01

NRMSD

Total 0,07 ± 0,01 0,07 ± 0,01 0,11 ± 0,03 0,11 ± 0,10 0,10 ± 0,04 0,08 ± 0,01 0,10 ± 0,02 0,09 ± 0,01

Homb 0,21 ± 0,04 0,32 ± 0,02 0,40 ± 0,15 0,51 ± 0,49 0,49 ± 0,12 0,50 ± 0,07 0,43 ± 0,13 0,22 ± 0,13
Codo 0,12 ± 0,03 0,25 ± 0,07 0,22 ± 0,06 0,39 ± 0,44 0,32 ± 0,15 0,27 ± 0,03 0,23 ± 0,05 0,18 ± 0,11
Muñe 0,01 ± 0,00 0,03 ± 0,00 0,12 ± 0,04 0,10 ± 0,11 0,12 ± 0,08 0,06 ± 0,01 0,06 ± 0,01 0,03 ± 0,01

Erms
(Nm)

Total 0,12 ± 0,02 0,20 ± 0,02 0,25 ± 0,07 0,33 ± 0,35 0,31 ± 0,12 0,28 ± 0,04 0,24 ± 0,06 0,14 ± 0,08

Homb 0,75 ± 0,27 1,25 ± 0,39 1,33 ± 0,36 1,31 ± 0,70 1,60 ± 0,34 1,79 ± 0,43 2,90 ± 1,52 1,58 ± 1,65
Codo 0,36 ± 0,09 0,95 ± 0,47 0,73 ± 0,19 0,89 ± 0,62 0,93 ± 0,33 0,94 ± 0,30 1,11 ± 0,47 1,01 ± 0,83
Muñe 0,04 ± 0,00 0,10 ± 0,02 0,78 ± 0,57 0,23 ± 0,15 0,32 ± 0,14 0,26 ± 0,02 0,35 ± 0,16 0,16 ± 0,06

Emax
(Nm)

Total 0,38 ± 0,11 0,77 ± 0,15 0,95 ± 0,23 0,81 ± 0,49 0,95 ± 0,25 0,99 ± 0,23 1,45 ± 0,69 0,91 ± 0,83
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Figura G.9: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU usando una
Fm de 200Hz. Está representado tanto por la media y desviación estándar (en azul) como por la
mediana (en rojo) de las predicciones de validación realizadas al aplicar LOOCV

Tabla G.9: Resultados del modelo aoMLP para el escenario ESU – Fm de 200Hz

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,87 ± 0,03 0,92 ± 0,01 0,85 ± 0,15 0,88 ± 0,12 0,88 ± 0,04 0,88 ± 0,03 0,53 ± 0,28 0,80 ± 0,23
Codo 0,96 ± 0,02 0,97 ± 0,00 0,87 ± 0,09 0,97 ± 0,04 0,92 ± 0,04 0,93 ± 0,05 0,93 ± 0,02 0,87 ± 0,15
Muñe 0,92 ± 0,03 0,92 ± 0,02 0,59 ± 0,20 0,85 ± 0,20 0,83 ± 0,08 0,90 ± 0,04 0,70 ± 0,08 0,84 ± 0,08

R2

Total 0,92 ± 0,02 0,94 ± 0,01 0,77 ± 0,11 0,90 ± 0,12 0,88 ± 0,04 0,90 ± 0,03 0,72 ± 0,09 0,84 ± 0,13

Homb 0,07 ± 0,02 0,06 ± 0,00 0,11 ± 0,05 0,12 ± 0,12 0,09 ± 0,03 0,08 ± 0,01 0,10 ± 0,03 0,07 ± 0,01
Codo 0,05 ± 0,02 0,05 ± 0,00 0,10 ± 0,05 0,06 ± 0,06 0,08 ± 0,04 0,06 ± 0,02 0,08 ± 0,01 0,07 ± 0,02
Muñe 0,08 ± 0,02 0,08 ± 0,01 0,10 ± 0,04 0,13 ± 0,15 0,15 ± 0,11 0,08 ± 0,02 0,10 ± 0,02 0,08 ± 0,02

NRMSD

Total 0,07 ± 0,02 0,07 ± 0,01 0,10 ± 0,04 0,11 ± 0,11 0,11 ± 0,06 0,07 ± 0,02 0,09 ± 0,02 0,08 ± 0,01

Homb 0,21 ± 0,07 0,30 ± 0,02 0,40 ± 0,20 0,60 ± 0,84 0,51 ± 0,19 0,45 ± 0,09 0,40 ± 0,15 0,20 ± 0,11
Codo 0,13 ± 0,05 0,23 ± 0,02 0,26 ± 0,14 0,36 ± 0,44 0,31 ± 0,17 0,26 ± 0,06 0,21 ± 0,05 0,16 ± 0,10
Muñe 0,01 ± 0,00 0,03 ± 0,01 0,10 ± 0,05 0,11 ± 0,15 0,15 ± 0,16 0,06 ± 0,02 0,06 ± 0,02 0,03 ± 0,01

Erms
(Nm)

Total 0,12 ± 0,04 0,19 ± 0,01 0,25 ± 0,12 0,36 ± 0,48 0,32 ± 0,17 0,26 ± 0,05 0,22 ± 0,07 0,13 ± 0,07

Homb 0,69 ± 0,21 1,21 ± 0,24 1,33 ± 0,29 1,34 ± 1,23 1,67 ± 0,37 1,65 ± 0,37 2,80 ± 1,57 1,57 ± 1,60
Codo 0,34 ± 0,11 0,87 ± 0,19 0,91 ± 0,32 0,80 ± 0,57 0,89 ± 0,25 0,92 ± 0,31 1,11 ± 0,42 0,91 ± 0,75
Muñe 0,04 ± 0,01 0,10 ± 0,01 0,77 ± 0,50 0,23 ± 0,20 0,35 ± 0,22 0,24 ± 0,05 0,35 ± 0,15 0,16 ± 0,07

Emax
(Nm)

Total 0,36 ± 0,10 0,73 ± 0,10 1,00 ± 0,30 0,79 ± 0,66 0,97 ± 0,26 0,94 ± 0,24 1,42 ± 0,69 0,88 ± 0,79
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Figura G.10: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU entrenando
con el algoritmo Levenberg-Marquardt (LM). Está representado tanto por la media y desviación
estándar (en azul) como por la mediana (en rojo) de las predicciones de validación realizadas al
aplicar LOOCV

Tabla G.10: Resultados del modelo aoMLP para el escenario ESU – Entrenamiento LM

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,87 ± 0,03 0,89 ± 0,05 0,84 ± 0,14 0,89 ± 0,10 0,87 ± 0,06 0,86 ± 0,03 0,27 ± 0,13 0,45 ± 0,09
Codo 0,96 ± 0,02 0,96 ± 0,01 0,86 ± 0,10 0,98 ± 0,02 0,91 ± 0,05 0,94 ± 0,03 0,66 ± 0,31 0,74 ± 0,16
Muñe 0,92 ± 0,04 0,90 ± 0,03 0,63 ± 0,21 0,86 ± 0,20 0,81 ± 0,11 0,90 ± 0,03 0,44 ± 0,29 0,64 ± 0,13

R2

Total 0,92 ± 0,02 0,92 ± 0,02 0,78 ± 0,13 0,91 ± 0,11 0,86 ± 0,06 0,90 ± 0,03 0,46 ± 0,21 0,61 ± 0,10

Homb 0,06 ± 0,02 0,07 ± 0,02 0,11 ± 0,04 0,11 ± 0,09 0,10 ± 0,04 0,08 ± 0,01 0,22 ± 0,12 0,13 ± 0,07
Codo 0,05 ± 0,02 0,06 ± 0,01 0,10 ± 0,06 0,06 ± 0,05 0,09 ± 0,03 0,06 ± 0,01 0,16 ± 0,10 0,09 ± 0,04
Muñe 0,08 ± 0,02 0,09 ± 0,01 0,11 ± 0,06 0,12 ± 0,12 0,15 ± 0,11 0,08 ± 0,02 0,18 ± 0,11 0,13 ± 0,03

NRMSD

Total 0,07 ± 0,02 0,07 ± 0,01 0,10 ± 0,05 0,09 ± 0,09 0,11 ± 0,06 0,07 ± 0,01 0,18 ± 0,11 0,12 ± 0,04

Homb 0,20 ± 0,06 0,31 ± 0,04 0,39 ± 0,19 0,45 ± 0,52 0,54 ± 0,25 0,46 ± 0,08 3,17 ± 3,63 0,79 ± 0,47
Codo 0,12 ± 0,04 0,24 ± 0,04 0,25 ± 0,14 0,28 ± 0,29 0,32 ± 0,16 0,24 ± 0,03 1,04 ± 1,08 0,24 ± 0,11
Muñe 0,01 ± 0,00 0,03 ± 0,01 0,11 ± 0,03 0,08 ± 0,10 0,14 ± 0,13 0,06 ± 0,01 0,30 ± 0,32 0,06 ± 0,02

Erms
(Nm)

Total 0,11 ± 0,04 0,19 ± 0,02 0,25 ± 0,11 0,27 ± 0,30 0,34 ± 0,18 0,25 ± 0,04 1,50 ± 1,68 0,36 ± 0,18

Homb 0,66 ± 0,18 1,17 ± 0,39 1,20 ± 0,15 1,09 ± 0,83 1,64 ± 0,39 1,56 ± 0,34 9,97 ± 8,29 4,43 ± 0,96
Codo 0,34 ± 0,11 0,77 ± 0,26 0,87 ± 0,33 0,69 ± 0,47 0,90 ± 0,22 0,91 ± 0,28 3,29 ± 2,52 1,26 ± 0,75
Muñe 0,04 ± 0,01 0,09 ± 0,03 0,66 ± 0,27 0,19 ± 0,16 0,34 ± 0,18 0,19 ± 0,03 0,97 ± 0,73 0,29 ± 0,08

Emax
(Nm)

Total 0,34 ± 0,09 0,68 ± 0,20 0,91 ± 0,16 0,66 ± 0,49 0,96 ± 0,25 0,89 ± 0,21 4,74 ± 3,85 1,99 ± 0,46
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Figura G.11: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU sin usar la
señal de Cinemática. Está representado tanto por la media y desviación estándar (en azul) como por
la mediana (en rojo) de las predicciones de validación realizadas al aplicar LOOCV

Tabla G.11: Resultados del modelo aoMLP para el escenario ESU – Sin Cinemática

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,57 ± 0,12 0,73 ± 0,06 0,73 ± 0,15 0,72 ± 0,07 0,44 ± 0,11 0,74 ± 0,08 0,24 ± 0,13 0,46 ± 0,15
Codo 0,44 ± 0,07 0,57 ± 0,05 0,61 ± 0,02 0,72 ± 0,05 0,31 ± 0,09 0,70 ± 0,06 0,68 ± 0,07 0,51 ± 0,11
Muñe 0,46 ± 0,07 0,57 ± 0,02 0,33 ± 0,11 0,67 ± 0,11 0,30 ± 0,08 0,74 ± 0,06 0,43 ± 0,04 0,45 ± 0,12

R2

Total 0,49 ± 0,07 0,62 ± 0,02 0,56 ± 0,03 0,70 ± 0,07 0,35 ± 0,05 0,72 ± 0,04 0,45 ± 0,05 0,47 ± 0,12

Homb 0,15 ± 0,02 0,12 ± 0,01 0,15 ± 0,02 0,15 ± 0,02 0,18 ± 0,02 0,13 ± 0,02 0,16 ± 0,04 0,16 ± 0,03
Codo 0,22 ± 0,01 0,21 ± 0,02 0,17 ± 0,02 0,17 ± 0,02 0,23 ± 0,02 0,14 ± 0,01 0,15 ± 0,02 0,18 ± 0,02
Muñe 0,21 ± 0,01 0,17 ± 0,01 0,15 ± 0,05 0,16 ± 0,02 0,21 ± 0,01 0,13 ± 0,01 0,15 ± 0,02 0,19 ± 0,02

NRMSD

Total 0,19 ± 0,01 0,17 ± 0,01 0,16 ± 0,02 0,16 ± 0,02 0,21 ± 0,02 0,13 ± 0,01 0,15 ± 0,02 0,18 ± 0,02

Homb 0,54 ± 0,06 0,57 ± 0,03 0,49 ± 0,06 0,54 ± 0,08 1,02 ± 0,18 0,79 ± 0,05 0,61 ± 0,11 0,40 ± 0,12
Codo 0,53 ± 0,03 0,85 ± 0,03 0,42 ± 0,05 0,78 ± 0,10 0,84 ± 0,08 0,66 ± 0,07 0,41 ± 0,07 0,38 ± 0,05
Muñe 0,04 ± 0,00 0,07 ± 0,00 0,13 ± 0,06 0,10 ± 0,02 0,17 ± 0,02 0,09 ± 0,00 0,08 ± 0,02 0,06 ± 0,01

Erms
(Nm)

Total 0,37 ± 0,03 0,49 ± 0,01 0,35 ± 0,03 0,47 ± 0,06 0,68 ± 0,07 0,51 ± 0,02 0,37 ± 0,05 0,28 ± 0,06

Homb 1,67 ± 0,31 1,82 ± 0,31 1,58 ± 0,13 1,61 ± 0,17 2,83 ± 0,50 2,31 ± 0,45 3,06 ± 1,36 1,78 ± 1,26
Codo 1,42 ± 0,19 2,24 ± 0,19 1,29 ± 0,27 2,22 ± 0,13 2,10 ± 0,24 2,30 ± 0,53 1,43 ± 0,40 1,42 ± 0,28
Muñe 0,10 ± 0,01 0,18 ± 0,02 0,85 ± 0,66 0,29 ± 0,02 0,46 ± 0,06 0,31 ± 0,05 0,36 ± 0,15 0,23 ± 0,07

Emax
(Nm)

Total 1,06 ± 0,15 1,41 ± 0,07 1,24 ± 0,22 1,37 ± 0,10 1,80 ± 0,25 1,64 ± 0,28 1,62 ± 0,59 1,14 ± 0,47
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Figura G.12: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU aplicando
PCA para dejar únicamente las componentes que explican el 80% de la varianza de la entrada. Está
representado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de
las predicciones de validación realizadas al aplicar LOOCV

Tabla G.12: Resultados del modelo aoMLP para el escenario ESU – 80% PCA

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,81 ± 0,02 0,88 ± 0,02 0,84 ± 0,10 0,80 ± 0,15 0,80 ± 0,06 0,75 ± 0,07 0,30 ± 0,17 0,72 ± 0,20
Codo 0,86 ± 0,06 0,93 ± 0,03 0,78 ± 0,04 0,93 ± 0,03 0,85 ± 0,05 0,83 ± 0,05 0,76 ± 0,06 0,76 ± 0,15
Muñe 0,85 ± 0,09 0,87 ± 0,04 0,54 ± 0,08 0,85 ± 0,10 0,70 ± 0,13 0,82 ± 0,04 0,55 ± 0,06 0,67 ± 0,09

R2

Total 0,84 ± 0,05 0,90 ± 0,02 0,72 ± 0,04 0,86 ± 0,09 0,79 ± 0,07 0,80 ± 0,03 0,54 ± 0,05 0,72 ± 0,14

Homb 0,09 ± 0,01 0,08 ± 0,01 0,11 ± 0,02 0,16 ± 0,12 0,13 ± 0,05 0,13 ± 0,01 0,15 ± 0,04 0,11 ± 0,03
Codo 0,11 ± 0,03 0,08 ± 0,02 0,13 ± 0,02 0,12 ± 0,07 0,12 ± 0,04 0,11 ± 0,01 0,14 ± 0,03 0,11 ± 0,03
Muñe 0,11 ± 0,03 0,10 ± 0,01 0,11 ± 0,03 0,13 ± 0,08 0,16 ± 0,09 0,11 ± 0,01 0,13 ± 0,02 0,13 ± 0,01

NRMSD

Total 0,11 ± 0,02 0,09 ± 0,01 0,12 ± 0,02 0,13 ± 0,09 0,14 ± 0,06 0,11 ± 0,01 0,14 ± 0,03 0,11 ± 0,02

Homb 0,29 ± 0,03 0,39 ± 0,01 0,37 ± 0,07 0,69 ± 0,68 0,76 ± 0,45 0,75 ± 0,04 0,54 ± 0,09 0,27 ± 0,10
Codo 0,28 ± 0,08 0,34 ± 0,09 0,31 ± 0,07 0,54 ± 0,39 0,48 ± 0,31 0,48 ± 0,05 0,37 ± 0,07 0,23 ± 0,09
Muñe 0,02 ± 0,00 0,04 ± 0,00 0,12 ± 0,07 0,08 ± 0,04 0,15 ± 0,12 0,07 ± 0,00 0,07 ± 0,02 0,04 ± 0,01

Erms
(Nm)

Total 0,20 ± 0,04 0,26 ± 0,03 0,27 ± 0,05 0,44 ± 0,37 0,47 ± 0,29 0,43 ± 0,03 0,33 ± 0,06 0,18 ± 0,07

Homb 0,90 ± 0,18 1,42 ± 0,29 1,17 ± 0,22 1,59 ± 1,13 2,03 ± 0,82 2,16 ± 0,22 2,94 ± 1,47 1,53 ± 1,58
Codo 0,84 ± 0,30 1,18 ± 0,46 1,09 ± 0,37 1,27 ± 0,46 1,19 ± 0,51 1,44 ± 0,18 1,24 ± 0,36 1,12 ± 0,62
Muñe 0,05 ± 0,01 0,11 ± 0,02 0,83 ± 0,56 0,20 ± 0,08 0,36 ± 0,18 0,29 ± 0,03 0,34 ± 0,16 0,17 ± 0,08

Emax
(Nm)

Total 0,60 ± 0,15 0,91 ± 0,13 1,03 ± 0,24 1,02 ± 0,54 1,19 ± 0,49 1,30 ± 0,10 1,51 ± 0,63 0,94 ± 0,73
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Figura G.13: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU aplicando
PCA para dejar únicamente las componentes que explican el 90% de la varianza de la entrada. Está
representado tanto por la media y desviación estándar (en azul) como por la mediana (en rojo) de
las predicciones de validación realizadas al aplicar LOOCV

Tabla G.13: Resultados del modelo aoMLP para el escenario ESU – 90% PCA

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,83 ± 0,03 0,90 ± 0,01 0,83 ± 0,12 0,82 ± 0,17 0,82 ± 0,06 0,80 ± 0,04 0,33 ± 0,17 0,75 ± 0,22
Codo 0,91 ± 0,02 0,94 ± 0,03 0,83 ± 0,03 0,95 ± 0,03 0,86 ± 0,06 0,86 ± 0,03 0,80 ± 0,06 0,80 ± 0,13
Muñe 0,91 ± 0,02 0,90 ± 0,03 0,51 ± 0,10 0,86 ± 0,11 0,72 ± 0,11 0,85 ± 0,03 0,60 ± 0,05 0,78 ± 0,05

R2

Total 0,88 ± 0,01 0,91 ± 0,02 0,73 ± 0,08 0,87 ± 0,10 0,80 ± 0,06 0,84 ± 0,02 0,58 ± 0,06 0,78 ± 0,13

Homb 0,08 ± 0,01 0,07 ± 0,00 0,12 ± 0,04 0,15 ± 0,12 0,14 ± 0,09 0,11 ± 0,01 0,14 ± 0,04 0,09 ± 0,02
Codo 0,09 ± 0,01 0,08 ± 0,02 0,11 ± 0,02 0,10 ± 0,08 0,12 ± 0,07 0,10 ± 0,01 0,13 ± 0,03 0,10 ± 0,02
Muñe 0,09 ± 0,01 0,09 ± 0,01 0,11 ± 0,03 0,12 ± 0,09 0,17 ± 0,11 0,10 ± 0,01 0,13 ± 0,02 0,11 ± 0,01

NRMSD

Total 0,09 ± 0,01 0,08 ± 0,01 0,11 ± 0,02 0,12 ± 0,09 0,14 ± 0,09 0,10 ± 0,01 0,13 ± 0,03 0,10 ± 0,01

Homb 0,27 ± 0,04 0,36 ± 0,02 0,39 ± 0,12 0,62 ± 0,66 0,77 ± 0,59 0,64 ± 0,04 0,54 ± 0,12 0,25 ± 0,12
Codo 0,20 ± 0,04 0,34 ± 0,08 0,25 ± 0,05 0,47 ± 0,39 0,49 ± 0,37 0,44 ± 0,04 0,34 ± 0,07 0,21 ± 0,07
Muñe 0,02 ± 0,00 0,03 ± 0,00 0,14 ± 0,06 0,08 ± 0,06 0,15 ± 0,13 0,07 ± 0,00 0,07 ± 0,02 0,04 ± 0,01

Erms
(Nm)

Total 0,16 ± 0,02 0,24 ± 0,03 0,26 ± 0,06 0,39 ± 0,37 0,47 ± 0,36 0,38 ± 0,03 0,32 ± 0,06 0,16 ± 0,06

Homb 0,84 ± 0,13 1,31 ± 0,37 1,28 ± 0,40 1,45 ± 1,20 1,96 ± 0,82 2,03 ± 0,14 2,92 ± 1,52 1,57 ± 1,59
Codo 0,54 ± 0,08 1,17 ± 0,45 0,86 ± 0,25 1,11 ± 0,57 1,30 ± 0,65 1,44 ± 0,23 1,25 ± 0,37 1,06 ± 0,61
Muñe 0,05 ± 0,00 0,10 ± 0,02 0,97 ± 0,38 0,23 ± 0,09 0,36 ± 0,18 0,28 ± 0,02 0,33 ± 0,17 0,16 ± 0,07

Emax
(Nm)

Total 0,48 ± 0,05 0,86 ± 0,13 1,03 ± 0,24 0,93 ± 0,61 1,21 ± 0,54 1,25 ± 0,07 1,50 ± 0,65 0,93 ± 0,74
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Figura G.14: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU codificando
la actividad muscular con solo 3 Sinergias. Está representado tanto por la media y desviación
estándar (en azul) como por la mediana (en rojo) de las predicciones de validación realizadas al
aplicar LOOCV

Tabla G.14: Resultados del modelo aoMLP para el escenario ESU – 3 Sinergias

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,85 ± 0,02 0,91 ± 0,01 0,84 ± 0,13 0,87 ± 0,07 0,88 ± 0,04 0,84 ± 0,03 0,47 ± 0,28 0,78 ± 0,24
Codo 0,96 ± 0,01 0,96 ± 0,02 0,89 ± 0,03 0,98 ± 0,01 0,93 ± 0,02 0,92 ± 0,04 0,92 ± 0,03 0,83 ± 0,18
Muñe 0,92 ± 0,03 0,91 ± 0,02 0,49 ± 0,13 0,89 ± 0,09 0,85 ± 0,05 0,88 ± 0,02 0,69 ± 0,07 0,80 ± 0,09

R2

Total 0,91 ± 0,01 0,93 ± 0,01 0,74 ± 0,06 0,92 ± 0,05 0,89 ± 0,03 0,88 ± 0,01 0,69 ± 0,09 0,81 ± 0,14

Homb 0,07 ± 0,01 0,07 ± 0,01 0,11 ± 0,03 0,13 ± 0,10 0,09 ± 0,02 0,09 ± 0,00 0,11 ± 0,03 0,08 ± 0,02
Codo 0,05 ± 0,01 0,06 ± 0,01 0,09 ± 0,02 0,07 ± 0,05 0,08 ± 0,02 0,07 ± 0,02 0,08 ± 0,01 0,08 ± 0,03
Muñe 0,08 ± 0,01 0,08 ± 0,01 0,13 ± 0,04 0,14 ± 0,14 0,11 ± 0,05 0,09 ± 0,01 0,11 ± 0,02 0,10 ± 0,02

NRMSD

Total 0,07 ± 0,01 0,07 ± 0,01 0,11 ± 0,03 0,11 ± 0,10 0,09 ± 0,02 0,08 ± 0,01 0,10 ± 0,02 0,09 ± 0,02

Homb 0,21 ± 0,05 0,33 ± 0,01 0,39 ± 0,13 0,59 ± 0,66 0,46 ± 0,07 0,52 ± 0,04 0,44 ± 0,17 0,22 ± 0,12
Codo 0,11 ± 0,03 0,25 ± 0,06 0,21 ± 0,05 0,31 ± 0,28 0,27 ± 0,08 0,29 ± 0,06 0,23 ± 0,05 0,18 ± 0,12
Muñe 0,01 ± 0,00 0,03 ± 0,00 0,14 ± 0,04 0,08 ± 0,08 0,10 ± 0,06 0,06 ± 0,01 0,06 ± 0,01 0,04 ± 0,01

Erms
(Nm)

Total 0,11 ± 0,02 0,20 ± 0,02 0,25 ± 0,07 0,33 ± 0,34 0,28 ± 0,07 0,29 ± 0,03 0,25 ± 0,07 0,14 ± 0,08

Homb 0,73 ± 0,28 1,36 ± 0,33 1,29 ± 0,37 1,30 ± 0,82 1,56 ± 0,29 1,75 ± 0,29 2,91 ± 1,57 1,56 ± 1,61
Codo 0,34 ± 0,08 0,92 ± 0,40 0,72 ± 0,16 0,72 ± 0,35 0,87 ± 0,22 0,94 ± 0,25 1,07 ± 0,46 1,00 ± 0,86
Muñe 0,04 ± 0,00 0,10 ± 0,01 0,86 ± 0,53 0,21 ± 0,09 0,28 ± 0,13 0,28 ± 0,02 0,35 ± 0,16 0,16 ± 0,07

Emax
(Nm)

Total 0,37 ± 0,12 0,80 ± 0,14 0,96 ± 0,21 0,74 ± 0,42 0,90 ± 0,18 0,99 ± 0,14 1,45 ± 0,71 0,91 ± 0,83
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Figura G.15: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU codificando
la actividad muscular con solo 5 Sinergias. Está representado tanto por la media y desviación
estándar (en azul) como por la mediana (en rojo) de las predicciones de validación realizadas al
aplicar LOOCV

Tabla G.15: Resultados del modelo aoMLP para el escenario ESU – 5 Sinergias

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,84 ± 0,01 0,89 ± 0,02 0,81 ± 0,14 0,88 ± 0,05 0,87 ± 0,03 0,84 ± 0,03 0,45 ± 0,27 0,79 ± 0,25
Codo 0,96 ± 0,01 0,96 ± 0,02 0,89 ± 0,02 0,98 ± 0,01 0,92 ± 0,02 0,92 ± 0,04 0,91 ± 0,03 0,81 ± 0,20
Muñe 0,92 ± 0,03 0,91 ± 0,02 0,44 ± 0,12 0,89 ± 0,09 0,85 ± 0,05 0,88 ± 0,03 0,65 ± 0,05 0,80 ± 0,08

R2

Total 0,90 ± 0,02 0,92 ± 0,01 0,71 ± 0,07 0,92 ± 0,05 0,88 ± 0,03 0,88 ± 0,01 0,67 ± 0,08 0,80 ± 0,15

Homb 0,07 ± 0,01 0,07 ± 0,01 0,12 ± 0,03 0,11 ± 0,05 0,09 ± 0,02 0,09 ± 0,00 0,12 ± 0,04 0,08 ± 0,02
Codo 0,05 ± 0,01 0,06 ± 0,01 0,09 ± 0,01 0,07 ± 0,05 0,09 ± 0,03 0,07 ± 0,01 0,09 ± 0,02 0,09 ± 0,03
Muñe 0,08 ± 0,01 0,08 ± 0,00 0,15 ± 0,06 0,14 ± 0,15 0,12 ± 0,06 0,10 ± 0,02 0,11 ± 0,02 0,10 ± 0,01

NRMSD

Total 0,07 ± 0,01 0,07 ± 0,01 0,12 ± 0,03 0,11 ± 0,08 0,10 ± 0,04 0,08 ± 0,01 0,10 ± 0,02 0,09 ± 0,02

Homb 0,23 ± 0,05 0,35 ± 0,01 0,40 ± 0,11 0,47 ± 0,38 0,48 ± 0,09 0,51 ± 0,03 0,47 ± 0,17 0,21 ± 0,13
Codo 0,12 ± 0,03 0,26 ± 0,07 0,21 ± 0,04 0,33 ± 0,30 0,32 ± 0,15 0,29 ± 0,04 0,24 ± 0,06 0,19 ± 0,13
Muñe 0,01 ± 0,00 0,03 ± 0,00 0,17 ± 0,08 0,10 ± 0,11 0,11 ± 0,08 0,07 ± 0,01 0,06 ± 0,01 0,04 ± 0,01

Erms
(Nm)

Total 0,12 ± 0,03 0,21 ± 0,02 0,26 ± 0,07 0,30 ± 0,26 0,30 ± 0,10 0,29 ± 0,03 0,26 ± 0,07 0,15 ± 0,09

Homb 0,83 ± 0,33 1,41 ± 0,32 1,34 ± 0,34 1,20 ± 0,48 1,60 ± 0,41 1,80 ± 0,34 2,92 ± 1,56 1,57 ± 1,61
Codo 0,36 ± 0,10 0,95 ± 0,44 0,74 ± 0,17 0,74 ± 0,35 0,97 ± 0,41 0,98 ± 0,33 1,06 ± 0,48 1,04 ± 0,91
Muñe 0,04 ± 0,01 0,10 ± 0,01 0,89 ± 0,52 0,22 ± 0,13 0,30 ± 0,16 0,28 ± 0,04 0,35 ± 0,17 0,16 ± 0,06

Emax
(Nm)

Total 0,41 ± 0,14 0,82 ± 0,12 0,99 ± 0,21 0,72 ± 0,31 0,96 ± 0,30 1,02 ± 0,20 1,44 ± 0,70 0,92 ± 0,84
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Siglas

ANN Artificial Neural Network

aoMLP Averaged Output MLP

MLP Multilayer Perceptron

NMF Nonnegative Matrix Factorization

PCA Principal Component Analysis

RBF Radial Basis Function

RBN Radial Basis Network

SOM Self-organizing Map

SVM Support Vector Machine

SVR Support Vector Regression
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Glosario

Análisis de componentes principales

véase Principal Component Analysis

Artificial Neural Network (ANN)

Las redes neuronales artificiales son un conjunto de algoritmos de aprendizaje automático
inspiradas en las redes neuronales biológicas. En concreto son dos los elementos claves
en los que se basan, la interconexión existente entre las salidas de unas neuronas a las
entradas de otras, y la no linealidad en la función de respuesta de las neuronas que realizan
el aprendizaje 2, 18, 143, 145, 146

Averaged Output MLP (aoMLP)

Ensamble de múltiples MLP configurado para que su salida sea un simple promediado de
las salidas de los MLP individuales 20, 26, 27, 29, 36, 40, 45–49, 51, 81, 107, 121, 143

Factorización no-negativa de matrices

véase Nonnegative Matrix Factorization

Función de base radial

véase Radial Basis Function

Mapa auto-organizado

véase Self-organizing Map

Multilayer Perceptron (MLP)

El perceptrón multicapa en un tipo de ANN caracterizada por la utilización de neuronas
con respuesta sigmoidea dispuestas una estructura feedforward y cuyo aprendizaje de tipo
supervisado está basado en algoritmos de retropropagación o, en inglés, back-propagation
2, 17–20, 36, 49, 81, 143, 145

145
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Máquina de vectores soporte

véase Support Vector Machine

Nonnegative Matrix Factorization (NMF)

La factorización no-negativa de matrices es un conjunto de técnicas de análisis multi-
variable que permite la descomposición de matrices a la vez que asegura conservar el
carácter no negativo de los elementos de la matriz original. De esta forma se puede aplicar
una transformación de bases a un conjunto de datos cuando es importante que mantenga
su carácter no negativo original 13, 143

Perceptrón multicapa

véase Multilayer Perceptron

Principal Component Analysis (PCA)

El análisis de componentes principales es una técnica estadística que permite reducir
la dimensionalidad de un conjunto de datos mediante una transformación de bases. La
elección de las bases del nuevo sistema de coordenadas dependerá de la variabilidad
presente en el conjunto de datos y con el único requisito de que sean ortonormales 11–13,
15, 50, 143

Radial Basis Function (RBF)

Las funciones de base radial son un tipo de funciones cuya respuesta depende únicamente
de la distancia al origen o a algún otro punto conocido como centroide. Aunque existen
varias funciones de esta clase, la gaussiana es su representante más habitualmente empleado
20, 22, 36, 82, 108, 143, 146

Radial Basis Network (RBN)

Las redes de base radial son un tipo de ANN que usa neuronas cuya función de respuesta
es de tipo RBF, aunque mayoritariamente suele ser la gaussiana. Su sencilla estructura y
algoritmo de aprendizaje las hace muy fáciles de manejar, a costa de requerir una mayor
potencia computacional 17, 36, 40, 45, 47, 48, 51, 82, 107, 143

Red de base radial

véase Radial Basis Network

Red neuronal artificial

véase Artificial Neural Network

Self-organizing Map (SOM)

Los mapas auto-organizados de Kohonen son un tipo de ANN basadas en un algoritmo
de aprendizaje competitivo no supervisado. Sus características propician una efectiva
aplicación a problemas de clustering 3, 73, 75, 143
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Support Vector Machine (SVM)

Las máquinas de vectores soporte son un conjunto de modelos de aprendizaje supervisado
mediante algoritmos estadísticos. Estas técnicas son empleadas en el reconocimiento de
patrones, tanto en tareas de clasificación como de ajuste funcional 2, 22, 40, 45, 47, 48,
51, 53, 82, 108, 143, 147

Support Vector Regression (SVR)

Conjunto de las SVM destinadas al análisis de regresión o ajuste funcional 2, 17, 22–24,
82, 108, 143
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