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Any sufficiently advanced magic is indistinguishable from technology.
Variacién de la 32 ley de A. C. Clarke
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Disefio de modelos basados en aprendizaje para la estimacion de
pares articulares para la rehabilitacién motora mediante
exoesqueletos

Resumen

El presente Trabajo Fin de Mister se enmarca en el proyecto HYPER-Consolider, en el
que el Grupo de Robética de la Universidad de Zaragoza pretende desarrollar exoesqueletos
robdticos que ayuden a la rehabilitacién funcional de pacientes con trastornos motores. En este
sentido, uno de los elementos necesarios para su consecucion es la estimacién del par de fuerzas
producido durante el movimiento de las articulaciones a partir de las sefiales de electromiografia
superficial (SEMG) generadas por la activacién de los musculos. La razén de ello es que, una vez
conseguido predecir el movimiento voluntario que pretende realizar el paciente, se posibilita el
que pueda ser ajustado por el exoesqueleto de forma que contribuya mds eficientemente a su
rehabilitacién.

En este trabajo se han desarrollado modelos de caja negra basados en redes neuronales y
otras técnicas de aprendizaje automitico, disefiando su estructura y definiendo sus variables
de entrada, de forma que se permita comparar el rendimiento de las distintas opciones con el
obtenido anteriormente a partir de un modelo paramétrico basado en las técnicas de Hill. Como
conclusién final se propondrd el modelo que mejor se ajuste a las necesidades del proyecto,
valordndose sus posibilidades de generalizacion e indicindose sus limitaciones.
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cAPiTULO 1

Introduccion

El 4mbito de HYPER-Consolider [21], proyecto en el que se enmarca el presente Trabajo
de Fin de Mister (TFM), es la investigacién y desarrollo de dispositivos neurorrobéticos
y neuroprotésicos que ayuden a pacientes afectados por dolencias funcionales motoras en su
rehabilitacién o, al menos, promuevan la compensacién funcional de sus trastornos motores en las
diversas actividades de la vida diaria. El objetivo de HYPER es validar, funcional y clinicamente,
el empleo de novedosos sistemas robéticos hibridos con interacciéon hombre-maquina en el
ambito fisioterapéutico bajo un nuevo paradigma, el de la asistencia personalizada bajo demanda.
En dicho paradigma las terapias de rehabilitacion explotarian los diferentes niveles de actividad
neural y muscular del paciente para poder adecuarse completamente a sus necesidades. En lugar
de obviarse, se incorpora al propio modelo de rehabilitacién la inherente variabilidad del cuerpo
humano, mejorando su eficacia y posibilitando nuevas funcionalidades como es su adaptacién
automitica con la evolucién del paciente.

En la prictica HYPER supone la creacién de un exoesqueleto que, respondiendo a distintos
tipos de estimulos neuronales y musculares, potencie y ayude a restablecer las capacidades
de personas con trastornos motores, tanto en los miembros inferiores como superiores, pro-
porcionando capacidades que pueden ir desde el simple apoyo estructural hasta su uso como
protesis funcional. El tinico requisito para conseguirlo es la existencia de actividad neuronal
latente asociada a actividades motoras que pueda ser adecuadamente detectada como con la
electromiografia superficial (SEMG). Debido a ello HYPER tiene clara aplicacién con las causas
mds comunes de trastornos motores, los accidentes cerebrovasculares y las lesiones de médula
espinal, sin descartar que también sea factible con otras causas como la parilisis cerebral o la
miastenia.

La importancia de esta labor se pone en perspectiva al considerar la prevalencia e incidencia
de dichas causas. Por ejemplo, se estima que en EE.UU. las lesiones medulares tienen una
prevalencia de 270 000 casos y una incidencia de entre 12000 y 20 000 casos anuales, lo que
supone unos costos totales estimados en 14,5 millardos de délares. Por su parte, la prevalencia
de los accidentes cerebrovasculares alcanza los 6,8 millones (un 2,8 % de la poblacién) y su
incidencia es de 795 000 nuevos casos, de los que la mitad sufrirdn trastornos motores y una
cuarta parte terminaran siendo dependientes para las actividades de su vida diaria. Los costes
totales asociados se estiman, en este caso, de 34,3 a 65,5 millardos de délares [29]. Aunque
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en Espafia las incidencias estimadas sean menores, con 8 casos por millén para las lesiones
de medula espinal [37] y 187 por cada 100000 para los accidentes cerebrovasculares [15], los
efectos econdémicos y personales de la discapacidad asociada no dejan de ser cuantiosas.

El elemento clave para el éxito de HYPER es el Neuroestimador, una interfaz cerebro-
méquina que, en el marco de la rehabilitacién fisioterapéutica, predice el movimiento que
pretende realizar el paciente a partir del nivel de actividad neuromuscular capturada, lo caracte-
riza y, segtin las demandas especificas para su rehabilitacién, modifica el nivel de participacion
del paciente en dicho movimiento mediante el apoyo o la oposicién a este por el exoesqueleto.
Para alcanzar un fino control sobre la ayuda proporcionada es necesario una estimacién precisa
y adaptativa del movimiento que quiere realizar el paciente, con la dificultad de que dicho
movimiento no estd realmente constrefiido si no que es libre y ha de procesarse en tiempo real.
El presente TFM se centra en la caracterizacién del movimiento, lo que supone en la prictica,
por la arquitectura y construccién del exoesqueleto, la prediccién del momento que deberia
producirse en las articulaciones del paciente durante su ejecucion.

Los métodos para la realizacién de dicha prediccion estdn clasificados segtin el modelo del
sistema neuromusculoesqueletal en que se basan. Los modelos fisiolégicos, como el modelo
de Hill [17], parametrizan las estructuras internas del sistema (huesos, tendones y musculos)
realizando la prediccién mediante un proceso de Dindmica Directa (Forward Dynamics, FD) [7].
De esta forma proporcionan un grado de conocimiento muy elevado sobre el comportamiento
real del sistema motor, sin duda una de las razones por las que un TFM previo implement el
bloque predictor del Neuroestimador con un modelo de Hill optimizado [8].

Por otro lado, los métodos basados en aprendizaje automaitico, o de caja negra, recurren a
redes neuronales artificiales (Artificial Neural Networks, ANNs) o a técnicas de aprendizaje
estadistico como las maquinas de vectores soporte (Support Vector Machines, SVMs) para
realizar la prediccién. Entre la literatura relacionada podemos citar el estudio de RoseN et
al. [32] que compara el rendimiento en la prediccién del momento ejercido en el codo entre un
modelo de Hill y un modelo basado en el perceptrén multicapa (Multilayer Perceptron, MLP),
un tipo de ANN, a partir de las sefiales de activacién muscular y la cinemaitica de las secciones
del brazo. Song et 4l. [38] utilizaron para su estudio, también referido al codo, una Recurrent
ANN (RANN) comparando, ademds, su rendimiento cuando se elimina la sefial de cinemética.
Por su parte, Loconsote et l. [28] predijeron el momento en hombro y codo mediante
dos Time Delayed ANN (TDANN) independientes. Si nos referimos a la mufieca, tenemos
estudios independientes realizados por CasteLLin et 4l. [9] o Yane et 4l. [46] que, aparte de
comparar diversos métodos como MLP o Support Vector Regression (SVR), muestran como
el rendimiento del estimador disminuye conforme pasa el tiempo entre que se produjo el
entrenamiento y la captura de las muestras empleadas en la nueva prediccién.

Menos frecuentes son los estudios que, en lugar de emplear sujetos sanos como los anteriores,
se han realizado con pacientes afectados por parilisis. Au et 4l. [3] utilizaron otra TDANN para
predecir la cinemitica a partir de la SEMG en pacientes con pardlisis C5. Dicho trabajo fue
continuado por Hincapik et 4l. [18] que, a partir de la sSEMG, determinaron la estimulacién
muscular a ejercer para que el paciente pueda volver a mover voluntariamente los msculos del
brazo que dej6 de controlar por efecto de la lesion.

Nuestro cometido es disefiar e implementar un predictor basado en un modelo de caja
negra alternativo al modelo previo basado en Hill. De este modo, al permitir su sustitucién
directa, se facilitara su integracién con el sistema existente. La figura 1.1 muestra el diagrama de
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Figura 1.1: Diagrama de bloques del proceso de prediccion. Se predecird el par articular 7 partiendo
de la cinemitica de la extremidad y la activaciéon muscular y utilizando el momento calculado por
Dindmica Inversa 7y, como referencia durante el proceso de aprendizaje

bloques que seguir el proceso de prediccién propuesto. En concreto se propondran diferentes
implementaciones para un predictor capaz de estimar conjuntamente el momento en hombro,
codo y mufieca, valoridndose sus ventajas e inconvenientes y comparandose sus resultados con
los del modelo existente basado en Hill. Por los resultados obtenidos por Song et 4l. [38] se
usard tanto la activacién muscular como la cinematica como entradas al predictor propuesto,
aunque también se estudiardn los efectos en el rendimiento del modelo de las variaciones en la
seleccién de datos de entrada.

La estructura de la memoria es la siguiente: el capitulo 2 presenta los métodos empleados
en la captura de los datos disponibles junto con el proceso de Dindmica Inversa (Inverse
Dynamics, ID) [6] empleado para obtener el momento que utilizaremos como referencia
(bloques azules de la figura 1.1). Los métodos para reducir la dimensionalidad de la entrada se
ven en el capitulo 3 (bloques amarillos). El capitulo 4 expone los fundamentos de los modelos
de aprendizaje automitico propuestos para la estimacién del par articular detallindose, en
el capitulo 5, los pasos necesarios para configurar los modelos propuestos optimizando la
capacidad de generalizacién de su aprendizaje y mostrindose algunos de los resultados obtenidos
experimentalmente (bloque rojo de la figura 1.1). Finalmente, en el capitulo 6 se comparan
los distintos modelos propuestos mientras que en el capitulo 7 se presentan las conclusiones
alcanzadas junto con posibles lineas futuras para continuar el trabajo presentado.

Adicionalmente, en el apéndice A se comentan las pricticas realizadas en el entorno clinico.
Por su parte, el apéndice B incluye informacién detallada de las sefiales disponibles, mostrandose
los resultados de utilizar mapas auto-organizados (Self-organizing Maps, SOMs) para la reduc-
ci6n de la dimensionalidad en los datos de entrada en el apéndice C y revisindose brevemente
el proceso de Dindmica Directa y el modelo de Hill en que se basa el Neuroestimador existente
en el apéndice D. Finalmente, en los apéndices E, F y G, se muestran de forma detallada los
resultados obtenidos durante la validacion de los diversos modelos propuestos y variaciones.






CAPITULO 2

Descripcion de los datos experimentales disponibles

El Neuroestimador, para poder realizar su funcién de prediccién del movimiento voluntario
que desea ejercer un sujeto, necesita tener acceso a sefiales fisioldgicas que contengan dicha
informacién. El electroencefalograma (EEG) ha demostrado su potencial para la prediccién del
movimiento de un sujeto [1] pero es el SEMG la sefial més utilizada actualmente para el control
de protesis o dispositivos robéticos [9, 23, 26, 46]. La evaluacién del rendimiento del predictor
en estas fases preliminares se ha realizado usando datos proporcionados por el Hospital Nacional
de Parapléjicos de Toledo (HNPT) siguiendo un protocolo de adquisicién que, aunque no
emplee del sistema sensorial del propio exoesqueleto, simula el entorno de trabajo real.

Naturalmente, dicho protocolo estd avalado por el Comité Etico de Investigacion Clinica del
Hospital. En su realizacién han colaborado, tras firmar el preceptivo consentimiento informado,
19 sujetos de ambos sexos (12 pacientes y 7 controles) y edades entre 22 y 60 afios (véase la
tabla B.1). Los pacientes seleccionados padecen una lesion medular cervical de nivel metamérico
C6-C7, pero estan capacitados para realizar las actividades requeridas sin asistencia.

El protocolo establece un patrén de movimiento del miembro superior realizando la tarea de
beber de un vaso y en cuya eleccion influyé la experiencia previa del HNPT con un estudio
sobre la cinematica de dicho patrén [31]. A grandes rasgos el ejercicio, mostrado en la figura 2.1,
parte de un estado de reposo con el sujeto sentado en unassilla y el brazo en el respaldo, continua
con la fase de alcance y agarre del vaso situado en una mesa para, a continuacion, acercarlo
ala boca y simular el acto de beber. Finalmente el sujeto deja el vaso de vuelta en su sitio y
regresa a la posicién de reposo. Un ejercicio de estas caracteristicas, ademds de permitir a un
fisioterapeuta la evaluacién funcional de las capacidades del sujeto, supone un paso mis en la
complejidad del movimiento evaluado en estudios similares [9, 32, 38, 46] y posibilitando una
estimacion general del rendimiento del sistema en un entorno complejo.

Las variables disponibles para la realizacién del experimento son (véase el apéndice B para
una informacién més detallada):

SEMG Electromiograma de 9 musculos del hombro, brazo y antebrazo (correspondientes
al trapecio superior, deltoides posterior medio y anterior, pectorial mayor, biceps y
triceps braquiales y los flexores y extensores del antebrazo)

Activacion (Normalizada) Nivel de activacion del musculo correspondiente. Variable con
9 componentes que se usaran como entrada del predictor
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Figura 2.1: Vista esquemdtica cenital de la actividad de beber de un vaso por un sujeto diestro.
Dicho sujeto se encuentra sentado en una silla de ruedas situada a entre 18 cm 0 20 cm de distancia
de la mesa. Las alturas de ambas se pueden regular para que, en la posicién inicial de reposo, todos
los sujetos tengan el brazo pegado al tronco formando un dngulo de 90° respecto al antebrazo con
la mufieca reposando sobre la mesa y la palma perpendicular a esta y hacia adentro. El vaso de

plastico duro con 1dl de agua se ha situado enfrente del sujeto a 18 cm de distancia del borde de la
mesa. También se muestra el sistema de coordenadas XYZ convenido para el experimento

Cinematica Posicién angular tridimensional de tronco, hombro, codo y mufieca. Son 12
(4 x 3) variables que se usardn como entrada del predictor

Fuerza Fuerza tridimensional ejercida en hombro, codo y mufieca. Son 9 (3 x 3) variables
derivadas que se pueden usar como referencia para la salida del predictor

Momento Par de fuerzas ejercido en hombro, codo y mufieca. Son 9 (3 x 3) variables
derivadas que se usardn como referencia para la salida del predictor

Para la captura de los datos cinemiticos de la extremidad de cada sujeto se empled un equipo
de anilisis de movimiento tridimensional CodaMotion® muestreando a 200 Hz. El anilisis de
cinemitica inversa, para el cdlculo de los dngulos de las articulaciones a partir de las posiciones
de marcadores, y el de dindmica inversa, para el cdlculo de momentos netos en las articulaciones
y las fuerzas externas, se realiz mediante el software OpenSim [13], un sistema de simulacién y
anilisis del movimiento humano. Para ello se creé un modelo biomecinico con las dimensiones
y caracteristicas inerciales de la extremidad de cada sujeto, simuldndose la interaccién con el
vaso mediante una carga adicional de 0,3 kg. La figura 2.2 muestra el uso de las diversas variables
en el diagrama de bloques del proceso.

Precisamente, la sefial de momento 7p obtenida fruto de dicho proceso de ID serd la
utilizada como referencia o funcién objetivo en los procesos de optimizacién asociados tanto
al aprendizaje de los modelos de caja negra como a la calibracién del modelo basado en Hill,
de forma que gracias a este proceso de optimizacién se minimize el error cometido entre la
referencia utilizada 7y y la prediccion realizada por el modelo z.

Los datos de SEMG se capturaron con electrodos adhesivos bipolares Ag-AgCl mediante un
equipo Noraxon® muestreando a 1500 Hz, aunque sincronizados temporalmente con los datos
cinemdticos. Posteriormente se remuestrearon a 200 Hz para que el conjunto de variables que
forman cada muestra de entrada de nuestro modelo correspondan a un mismo instante temporal.
Mis atin, un estudio de la densidad espectral de potencia de las distintas sefiales nos confirmé
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Figura 2.2: Diagrama de bloques del proceso de cilculo de Dindmica Inversa realizado por OpenSim

que otra opcién es diezmar todas las sefiales a una frecuencia comun de 20 Hz, reduciéndose asi
los requerimientos computacionales de los algoritmos de aprendizaje empleados.

La sefial de activacién muscular se extrajo mediante un proceso de acondicionado empleado
habitualmente [7, 26, 27, 32, 38, 39]. Un primer filtrado paso alto (Butterworth de 4.° orden con
frecuencia de corte de 30 Hz) elimina el ruido producto del movimiento de los electrodos, y un
rectificado y posterior filtrado paso bajo (Butterworth de 4.° orden con f; = 6 Hz) proporciona
la envolvente de la sefial. Como el sistema final trabajard en tiempo real, se ha optado por una
implementacién causal del filtrado en lugar de una con retardo de fase nulo.

Es habitual normalizar la sefial de activacién con el nivel de Maxima Contraccién Voluntaria
(MVC) del musculo correspondiente, es decir, el valor de activacién muscular cuando se realiza
un esfuerzo miximo con dicho musculo. Para ello el protocolo de adquisicién establece la
captura previa para cada sujeto de una serie de ejercicios especificos con los que obtener dichos
miximos para los muisculos implicados. Sin embargo, su ejecucién se ha mostrado especialmente
problemitica con los pacientes, para los que ocasionalmente el nivel de activacién detectado
durante la tarea de beber es mayor que la MVC detectada durante el ejercicio especifico. Ademis
se ha establecido un umbral minimo de activacién muscular del 1% para evitar situaciones de
mal acondicionamiento numérico en los cdlculos realizados con dicha sefial.

Se han definido dos escenarios de pruebas distintos con los que verificar el comportamiento
de los sistemas propuestos. El primero, que denominaremos Escenario de Sujeto Unico (ESU),
verifica el rendimiento del modelo cuando utiliza exclusivamente para el aprendizaje datos de
varias iteraciones del movimiento realizadas por un mismo sujeto. Este escenario, caracterizado
por facilitar el aprendizaje al restringir la variabilidad de las sefiales de entrada, requiere a
cambio una fase de aprendizaje especifica para cada sujeto. Se dispone de 5 repeticiones del
movimiento realizadas por 8 sujetos (4 controles y 4 pacientes) realizindose, consiguientemente,
8 pruebas diferentes. Como muestra de los datos disponibles se representan las sefiales de un
sujeto de control (figura 2.3) y un paciente (figura 2.4), incluyéndose el resto en el apéndice B.

El segundo escenario, denominado Escenario de Sujetos Miiltiples (ESM), utilizard una tinica
iteracién por sujeto, simulando la creacién de una base de datos que, si es suficientemente general,
eliminaria la necesidad de entrenar previamente con cada sujeto. Este escenario determinard
lo factible de la propuesta y el nimero de sujetos necesario para un correcto aprendizaje. Se
podran realizar 3 pruebas diferentes (empleando solo controles, solo pacientes o mezclando
ambos), ya que se espera que una prueba con tinicamente controles presente menor dificultad
al aprendizaje.
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Figura 2.3: Representacion temporal de las sefiales disponibles de una iteraciéon del movimiento
realizado por el sujeto C009 (Fy, = 20 Hz)
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Figura 2.4: Representacion temporal de las sefiales disponibles de una iteraciéon del movimiento
realizado por el sujeto P002 (Fy, = 20 Hz)






CAPiTULO 3

Reduccion de dimensionalidad en los datos de entrada

Un aspecto destacable mostrado en el capitulo 2 es la elevada cantidad de informacién con la
que se puede terminar trabajando. El principal pardmetro del que depende la dimensionalidad
en la entrada es el nimero de muestras que formaran la base de datos de aprendizaje, por ser
el de mayor influencia en las requisitos computacionales de los algoritmos de entrenamiento
de los modelos estudiados. En nuestro caso se corresponde con la frecuencia de muestreo de
las sefiales y, naturalmente, es el motivo para usar el valor més bajo posible, ende los 20 Hz
propuestos.

En el otro lado tenemos el niimero y tipo de las variables de entrada, algo que, en realidad,
acabari siendo dependiente de las capacidades reales del propio exoesqueleto. Por ejemplo, en
una fase inicial del desarrollo podria no implementarse el antebrazo del exoesqueleto, por lo
que no se dispondrian de sus correspondientes datos de cinemitica y sSEMG. En el otro extremo,
puede llegar a interesar mejorar la captura de la sefial SEMG y proponerse cambiar los electrodos
bipolares individuales por una solucién en malla que cubra el miembro de forma mds uniforme.
Consecuentemente el nimero de variables de entrada aumentaria exponencialmente asi como
los requisitos computacionales. De cualquier manera, la eleccién de su niimero y, en definitiva,
la dimensionalidad global de la entrada ha de hacerse teniendo en cuenta los requisitos del
problema a resolver.

Por regla general, cuanta mis informacion relevante se introduzca a un sistema de aprendizaje
automdtico mayor serd su rendimiento, aunque esto también provoca un aumento de la capacidad
computacional requerida. Si bien es cierto que su efecto es mucho menor que el aumentar el
niimero de muestras de aprendizaje, cuando se trata de sistemas en tiempo real podria llegar
a ser apreciable. Mds atin, el aumentar el nimero de variables de entrada no ha de hacerse
con informacién irrelevante, y menos atin contradictoria, ya que esto conlleva el disminuir la
capacidad de aprendizaje efectiva del modelo. Dicho de otro modo, el rendimiento del predictor
dependerd de la calidad de la informacién con la que se alimenta.

Como el adaptarse a los requisitos computacionales puede suponer la necesidad de reducir
el nimero de variables a la entrada, es muy interesante el comprobar la degradacién del
rendimiento final al eliminar informacién de forma controlada. Entre los métodos estudiados
tenemos el genérico andlisis de componentes principales (Principal Component Analysis, PCA)
o las sinergias musculares, cuya aplicacién es exclusiva a la sefial de activacién muscular.

11



12 Capimlo 3 Reduccién de dimensionalidad en los datos de entrada

3.1 Principal Component Analysis (PCA)

El concepto fundamental tras PCA es el de una simple transformacién de bases [22]. Partiendo
de la base original definida por las propias variables que forman la sefial original, se define
una nueva seleccionando cada nueva componente en la direccién que explique la maxima
variabilidad de la parte de sefial que todavia no ha sido explicada por las componentes anteriores.
Dicho de otro modo, se define una nueva base cuyas componentes han sido ordenadas en
funcién de la parte que explican de la variabilidad presente en la sefial original. De esta forma,
llegado el caso de necesitar reducir el nimero de componentes de una sefial con el que se deba
trabajar, se pueden eliminar aquellas que menos contribuyen en su variabilidad.

La figura 3.1 muestra la media, y desviacion estdndar correspondiente, del porcentaje de
varianza explicada del conjunto de sefiales de Activacién Normalizada disponibles para ambos
escenarios de trabajo, ESU y ESM. Al estar implicadas para su realizacién un elevado niimero
de iteraciones del movimiento es razonable que ambas grificas presenten resultados similares.
De ellas se deduce que, de las 9 componentes de activacién muscular disponibles, suelen bastar
4 componentes de media para explicar un 80 % de la varianza de la sefial original aunque, al
considerar la desviacion, se necesiten 5 para asegurarlo de forma prictica. De forma similar
bastan 5 0 6 componentes para explicar el 90 % de la varianza de la Activacién Normalizada.

Pero la verdadera potencia de PCA estd en la generalidad del propio método al poderse
aplicar mezclando tipos de sefiales. La figura 3.2 muestra los resultados para las sefiales conjuntas
de Activacién Normalizada y Cinemdtica donde se aprecia que, a pesar de haber afiadido las 12
componentes correspondientes a la sefial de cinemitica, s6lo se necesitan 1 o 2 componentes
adicionales con respecto al caso anterior para alcanzar el porcentaje de varianza explicada
requerido.

o)

Varianza Explicada (%)
Varianza Explicada (%

3 4 5 6
Componentes Principales

3 4 5 6
Componentes Principales

(a) ESU (b) ESM

Figura 3.1: Promedio y desviacién por componente del porcentaje de varianza explicada de la
sefial de Activacién Normalizada (Fy, = 20 Hz)
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Varianza Explicada (%)
Varianza Explicada (%)

20 25 0 5

10 10
Componentes Principales Componentes Principales

(a) ESU (b) ESM

Figura 3.2: Promedio y desviacidén por componente del porcentaje de varianza explicada de las
sefiales de Activacién Normalizada y Cinemitica (F, = 20 Hz)

3.2 Sinergias musculares

El modelo de sinergias musculares ha sido propuesto en la literatura de control del sistema
motor para explicar la coordinacién existente entre diversos musculos durante la realizacién de
movimientos voluntarios. En este modelo la activacién de los musculos individuales se transfor-
ma, mediante algoritmos de anilisis de componentes, en un nimero menor de agrupaciones
musculares o sinergias. Estas representan subtareas motoras que el sistema nervioso combina de
forma flexible para producir movimientos naturales complejos [34]. La ventaja de esta apro-
ximacion es la mayor facilidad en la interpretacion funcional de la actividad muscular frente
a la que se puede conseguir simplemente con las sefiales de activacién normalizada aunque,
lamentablemente, estos patrones son especificos de cada sujeto y cambian ostensiblemente con
la existencia de trastornos motores. Sin embargo, y a pesar de lo plausible de su interpretacién
fisiolégica, la dificultad de acceder al interior del sistema nervioso complica, no solo la verifica-
bilidad de la propia teoria, sino también la determinacién del niimero de sinergias con las que
operar.

Para extraer las sinergias se han propuesto diversos métodos, como PCA o Independent
Component Analysis (ICA), pero es la factorizacién no-negativa de matrices (Nonnegative
Matrix Factorization, NMF) el que proporciona mejores resultados experimentales [41]. Més
ain, la restriccién que impone de no-negatividad facilita la reinterpretacion de sus resultados
como activaciones musculares. En esencia, NMF factorizard una matriz no-negativa A € RVM
en otras dos, W € RN*P y H € RP*M también no-negativas, tal que W x H es una aproximacién
de A con rango P < min(M,N) calculada mediante la minimizacién iterativa de:

f(W.H) = %IIA—WHII% (3.1)

donde A representa las N muestras de las sefiales de activacién muscular de los M masculos, H
es la definicidn de las P sinergias como combinaci6n lineal de los musculos y W representa las
sefiales de activacion sinergiales.
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Algoritmo 3.1 Algoritmo de actualizacién multiplicativa para NMF

W = rand(N,P) > Inicializar W como una matriz densa aleatoria
H = rand(P, M) > Inicializar H como una matriz densa aleatoria
fori =1 : max_iter do
H=H x (W'A) ./ (W'WH + epsilon) > Paso de actualizacién (MU)
W =W .« (AH") ./ (WHH' + epsilon) > Paso de actualizacién (MU)
end for

Algoritmo 3.2 Algoritmo Alternating Least-Squares (ALS) para NMF

W = rand(N,P) > Inicializar W como una matriz densa aleatoria
fori =1 : max_iter do
Resolver Hen WWH = W'A > Aplicar minimos cuadrados (LS)
Poner a 0 los elementos negativos de H > Aplicar restriccién (NONNEG)
Resolver W en HH'W'T = HAT > Aplicar minimos cuadrados (LS)
Poner a 0 los elementos negativos de W > Aplicar restriccion (NONNEG)
end for

Existen multiples algoritmos de actualizacién [4] pero, cominmente, un primer paso de
inicializacion aleatoria tiene efectos en los resultados obtenidos. Por ello, para obtener un mejor
resultado es habitual combinar dos de ellos, primero una serie de repeticiones del tradicional
algoritmo de actualizacién multiplicativa (algoritmo 3.1) aproxima la localizacién del minimo
global, mientras que se aprovecha la ripida convergencia del algoritmo Alternating Least-
Squares (ALS) (algoritmo 3.2) para encontrarlo propiamente. Atin asi no esté garantizado que
se alcance el minimo global, obteniéndose una solucién que podria no ser éptima en el sentido
de que, al aumentar el niimero de sinergias empleadas, disminuye el porcentaje de varianza
explicada. En este caso se necesitaria repetir el proceso hasta alcanzar un resultado aceptable.

o)

Varianza Explicada (%)
Varianza Explicada (%

Sinergias Sinergias

(a) ESU (b) ESM

Figura 3.3: Promedio y desviacién por nimero de Sinergias, o grupos musculares, del porcentaje
de varianza explicada de la sefial de Activacién Normalizada (F,, = 20 Hz)
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Un ejemplo de los resultados obtenidos se muestra en la figura 3.3. Frente a los resultados de
PCA (figura 3.1) destaca la mayor cantidad de varianza explicada de media con un niimero
pequefio de grupos musculares. Igualmente se aprecia su mayor variabilidad, lo que complica la
eleccién de un niimero comiin de sinergias aceptable para toda la poblacién. En este sentido
3 sinergias bastarian para explicar, pricticamente en todos los casos, el 80 % de la varianza
presente originalmente, mientras que son 5 las necesarias para elevarlo al 90 %. Este niimero es
inferior al necesitado por PCA, aunque su mayor variabilidad implica tomarlo con cautela.






CAPITULO 4

Métodos de prediccion del momento articular

Los modelos de aprendizaje automatico realizan su modelado del sistema neuromusculoes-
queletal en un plano superior al nivel en el que se sittian los modelos basados en Hill (véase
su descripcién en el apéndice D). En lugar de situarse el foco en cada uno de los elementos
que forman el sistema (musculos, tendones, etc.) se considera este en su conjunto, evitdndose la
complejidad del modelado individual de cada elemento a costa de perder la perspectiva fisiol6-
gica. De esta manera, se intercambia la dificultad del proceso de ajuste los distintos elementos
del modelo por un uso apropiado de los algoritmos que definen el modelo de caja negray la
obligatoriedad de una fase de entrenamiento supervisado que lo adapte a diferentes movimientos.
Adicionalmente, habré de asegurarse la calidad de la base de datos de muestras de entrenamiento
y que esta sea realmente representativa del problema.

En base a literatura relacionada [9, 32, 46] se ha decidido emplear modelos basados en MLP
y SVR, incluyéndose adicionalmente un modelo basado en redes de base radial (Radial Basis
Networks, RBNs) por su simplicidad. Todos los modelos han sido configurados para predecir
el par de fuerzas en las articulaciones del hombro, codo y mufieca de forma conjunta a partir,
inicialmente, de las sefiales de activacién muscular normalizada y cinemaitica correspondientes,
lo que en nuestro caso suponen 21 componentes disponibles para la entrada. En comparacién, la
seccién 6.3 estudiard los efectos de la variacidn en la seleccion de las variables de entrada junto
con la aplicacién de los resultados obtenidos en el capitulo 3 para la reduccién controlada del
niimero de componentes de las variables de entrada.

Remarcar, ademis, que se han empleado datos provenientes tanto de sujetos sanos como
de pacientes afectados de lesiones medulares a nivel C6-C7, lo que permitird comparar los
resultados obtenidos para ambos grupos. Por dltimo, para estimar el rendimiento en entornos
reales se ha optado por entrenar, no con un simple movimiento de flexién-extensién, sino con
un movimiento complejo que permite caracterizar la capacidad funcional del sujeto como es la
tarea de beber de un vaso.

El funcionamiento de los modelos de caja negra seleccionados estéd determinado por una serie
de pardmetros que influyen de diversas maneras en sus algoritmos de aprendizaje, pudiendo
distinguirse entre pardmetros e hiperparimetros. Los primeros serian los pardmetros internos
del algoritmo de aprendizaje y estarian calculados autométicamente por este durante la fase de
aprendizaje representando, de esta forma, el conjunto de informacién aprendida por el modelo.

17



18 Capz'tulo 4 Métodos de prea’iccio’n del momento articular

Sin embargo, los hiperpardmetros corresponderian a la configuraciéon del modelo seleccionado
(como el algoritmo de aprendizaje propiamente dicho, el niimero de neuronas y estructura de la
ANN, las condiciones de parada del entrenamiento, ...) y tanto podrian haber sido seleccionados
previamente por criterios de disefio, como ser calculados durante la fase de aprendizaje.

4.1 Multilayer Perceptron (MLP)

La estructura de un MLP [33], siendo una ANN, es equiparable a la de una red neuronal
biolégica, con una primera capa de sensores, una o varias capas de neuronas de procesamiento y
una capa final de neuronas de salida (figura 4.1b). Mas atin, el comportamiento de sus neuronas,
con una salida determinada por entradas altamente interconectadas y un coeficiente de bias, es
equiparable al de las neuronas biolégicas con sus dendritas y umbral de activacién neuronal
(Aigura 4.1a). Matemiticamente, para una neurona k genérica, su salida yx es proporcional
a sus L entradas ponderadas wg;x; y al bias de la neurona 6 (ecuacién 4.1). La funcién de
transferencia de la respuesta funcional mas cominmente empleada es la tangente hiperbdlica o
sigmoidea (ecuacién 4.2), aunque las neuronas de salida de un MLP configurado para ajuste
funcional han de ser lineales.

ye = f (Z WriXi = Gk) (4.1)
i=1

eX —e™*

R I— 2
e¥ +e™* (42)

tansig(x) =
EIMLP en el que nos basaremos dispondra, inicialmente, de L = 21 entradas, correspondientes

a las 12 componentes disponibles de cinemaitica y a las 9 de activacién normalizada, y § = 9
neuronas lineales de salida correspondientes a las respectivas componentes del momento en las
articulaciones de hombro, codo y mufieca. Ademis se ha configurado una capa intermedia u

f()_>yk

% purelin
fOr jF tansig

(a) Neurona tipo Perceptron (b) MLP para ajuste funcional de L entradas, S salidas
y una tnica capa intermedia con H neuronas ocultas

Figura 4.1: Descripcion de un perceptron multicapa (MLP)
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oculta con H neuronas sigmoideas cuyo nimero definitivo serd determinado por el proceso de
optimizacién que se detallard en el capitulo 5.

A partir de la ecuacién 4.1 que regula la salida de un neurona genérica se puede deducir
la ecuacién 4.3 que relaciona cada salida de la red con sus entradas. Denotando como x; a la
i-ésima entrada de la red, y;, a la salida de la h-ésima neurona oculta cuyos parimetros son w;
y 01, y, finalmente, 7p; a la salida de la j-ésima neurona de salida con pardmetros w]’. LY 0y que
corresponde a la j-ésima componente del momento predicho por el modelo, obtenemos:

H H L

~ ’ ’ ’ : ’

Tp; = E WipYh = Gj = E W), tansig E whix; — 0y | — Gj (4.3)
h=1 h=1 i=1

Los pardmetros de la red (pesos y bias), son establecidos durante el periodo de entrenamiento
mediante el procedimiento llamado back-propagation. Este es un proceso que, partiendo de una
inicializacién aleatoria los actualiza iterativamente buscando minimizar, en cada iteracién g, el
error de entrenamiento entre las salidas fp;.l del MLP y sus valores objetivos correspondientes
calculados por Dindmica Inversa TID;’ . En lugar del habitual Levenberg-Marquardt se decidi6
emplear como método de entrenamiento Scaled Conjugate Gradient (SCG) [30] por ser la
opcién més répida para el ajuste funcional con un elevado niimero de muestras [40].

El mayor problema de los métodos de aprendizaje automatico es el llamado overfitting o
sobreaprendizaje, consistente en que el modelo, en lugar de aprender el comportamiento general
del sistema, memoriza el ruido o informacién espuria presente entre los datos de entrenamiento
y disminuyendo asi su capacidad de generalizacién ante entradas desconocidas. Por ejemplo,
este aparece cuando el objetivo del entrenamiento se centra exclusivamente en minimizar el
error de entrenamiento. Un método comiin para evitarlo es recurrir a Early-Stopping, por
el que un subconjunto aleatorio de las muestras disponibles se reservan para validar el error
cometido en el entrenamiento y sefialar, cuando este crece, el momento en el que comienza
el sobreaprendizaje (figura 4.2a). Otra situacién en la que se puede incurrir en overfitting es
al determinar los hiperpardmetros del modelo [11], como el nimero de neuronas ocultas o el
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Figura 4.2: Rendimiento y estado de un MLP durante la fase de entrenamiento
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algoritmo de entrenamiento. En nuestro caso ya ha sido fijado el algoritmo SCG por su rapidez
pero habra que tenerlo en cuenta al definir el nimero de neuronas ocultas.

Por otro lado, la aleatoriedad inherente en Early-Stopping habilita que se puedan obtener
resultados distintos para un mismo entrenamiento. Mis atin, la misma presencia de neuronas
ocultas implica la existencia de minimos locales en el hiperparaboloide solucién [33] y, de nuevo,
que no siempre se alcance el mejor rendimiento posible. Para evitarlo es habitual repetir el
entrenamiento r veces y seleccionar el MLP con menor error de entrenamiento. Por ejemplo,
CasTeLLINI et 4l. [9] escogieron para su estudio la mejor de r = 10 repeticiones, aunque
habitualmente dicho niimero es menor.

Sin embargo, esta solucién es proclive al sobreaprendizaje, por lo que nuestra propuesta, en
lugar de descartar esos r — 1 MLP ya entrenados, es considerar como modelo el conjunto de los
r MLP y tomar como su salida el promediado (con la media o incluso la mediana para hacerlo
mis robusto frente a valores atipicos) de sus salidas individuales. Para ayudar a distinguir este
modelo del MLP habitual lo denotaremos como Averaged Output MLP (a0oMLP) teniendo en
cuenta que, en realidad, representa una forma bésica de ensemble learning en la que la variacién
se produce en la inicializacién de los pesos y, por efecto del Early-Stopping, en la seleccién
de las muestras de entrenamiento [36]. Naturalmente, conforme se incrementa el niimero
de realizaciones r del ensamble, se reduce la variabilidad en su salida a costa de incrementar
linealmente el tiempo de entrenamiento. En el presente TEM se ha escogido r = 30 para
tener un alto grado de confianza de encontrar la media real de la salida, aunque también
comprobaremos que es factible usar un niimero menor.

Para finalizar, y aunque de menor importancia, indicar que como criterios de parada del
entrenamiento se configurd en 10 el nimero miximo de incrementos consecutivos del error
de validacién y en 20 000 el nimero méximo de épocas de entrenamiento (correspondientes a
las iteraciones con las N muestras de entrenamiento). Al incrementarse los valores por defecto
aumenta la probabilidad de obtener un buen entrenamiento con entradas complicadas a costa
de un mayor riesgo de overfitting. El rendimiento de la red se computé mediante el error
cuadritico medio (Mean Square Error, MSE) optindose por normalizar su valor entre las
distintas salidas para tener en cuenta la distinta magnitud del momento en hombro y codo
frente al ejercido en la mufieca.

4.2 Radial Basis Network (RBN)

Las RBN son redes neuronales que, en su formulacién més generalizada, utilizan para sus
neuronas intermedias cuya respuesta es una funcién de base radial (Radial Basis Function, RBF)
aunque, mayoritariamente, estas son directamente neuronas de tipo gaussiano [5]. Dichas
neuronas (figura 4.3a) tienen dos pardmetros, el centroide ck; y la anchura del kernel o o spread,
mientras que su salida es proporcional a la distancia entre entrada y centroide (ecuacién 4.4).
Finalmente, y utilizando la nomenclatura vista en la seccién 4.1, la relacién entre una salida y
las entradas de la red viene dada por la ecuacién 4.5.

yp = e~ Sicy (xi—ei)? /207 (4.4)
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Figura 4.3: Descripcién de una red de base radial (RBN)
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En esta ocasién el algoritmo de entrenamiento estd basado en afiadir, con cada iteracién,
un nueva neurona oculta que minimize el error resultante. Para ello simplemente sitiia el
centroide de la nueva neurona en el punto en el que se encuentra el error maximo, continuando
el proceso de entrenamiento hasta que se alcanza el rendimiento requerido (algoritmo 4.1).
Como la implementacién del algoritmo empleado asigna idéntico spread a todas las neuronas,
este serd uno de los hiperparimetros del modelo. El otro sera, por determinar la duracién del
entrenamiento tal y como muestra la figura 4.4, el nivel de error deseado o goal.

Un dltimo pardmetro que se configurd, aunque de menor importancia, fue el nimero méximo
de neuronas intermedias (1000) que, en la practica, permite detener el entrenamiento cuando
el rendimiento alcanzado tarda en llegar al valor deseado. Aunque es posible encontrarse en
dicha situacién al configurar un goal muy exigente, es mas habitual que se produzca cuando los
datos de entrenamiento disponibles no permiten un aprendizaje efectivo.

Algoritmo 4.1 Algoritmo de entrenamiento de RBN

Inicializar a cero los pesos y bias de la capa de salida >wip=0y6; =0
for h = 1 : max_neurons do > max_neurons < N
Simular la configuracién actual de la red
Salir si ya se ha alcanzado el error deseado > sMSE < goal?
Encontrar el vector de entrada x,, con mayor error
Afiadir neurona gaussiana en la posicién del vector > Determina cp;
Actualizar la capa de salida minimizando el error > Actualiza wjy, y 6,

end for
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Performance is 0.047151, Goal is 0.047619
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Figura 4.4: Rendimiento de una RBN durante la fase de entrenamiento

4.3 Support Vector Machine (SVM)

La prediccion del par articular impone, al tratarse de su ajuste funcional, implementar el
modelo SVM mediante la modalidad SVR. Concretamente se utilizard la formulacién e-SVR
proporcionada por el software LibSVM [12]. Aunque la interpretacién geométrica de SVM
difiere segiin se realice regresién o clasificacién, en general su algoritmo se divide en dos partes
diferenciadas.

En primer lugar el espacio muestral se transforma, mediante una transformacién de kernel,
en un nuevo espacio de caracteristicas (EC) que, usualmente, estard caracterizado por una
alta dimensionalidad que facilitara la linealizacién del problema. Un proceso subsecuente de
optimizacién buscard, de entre todos los datos de entrenamiento, los vectores soporte que definen
el tubo asociado a la linea de ajuste de regresién que minimiza el error empirico de prediccién
cometido [43]. Lo interesante es que por su construccién, al mismo tiempo, se maximiza
el margen geométrico entre la linea de ajuste y la frontera del tubo (figura 4.5). Esta es la
raz6n por la que SVM se considera una extensién de las ANN, cuya solucién no proporciona
necesariamente ese margen Optimo.

e-SVR dispone para su configuracion de dos hiperpardmetros, la tolerancia del criterio de
terminacién e > 0 y el pardmetro de coste o regularizacién del error C > 0. Ademds, se eligi6
un kernel RBF por combinar una respuesta no lineal con la sencillez de requerir un tnico
hiperpardmetro adicional y > 0 [16, 20]. Considerando que se disponga de N muestras de
entrenamiento x, € RY, con sus correspondientes salidas objetivo 7ip,, € R, el kernel elegido
vendré dado por:

K(xn,xk) = e(_ﬁ”x"_xkllz) — e(_}’”xn_xk||2) (46)

Por otro lado, teniendo en cuenta que dicho kernel estd definido en funcién de la funcién
de transformacién del EC como K (x,xx) = ¢(x,) ¢(xk), y que la solucién se puede definir,
como cualquier hiperplano, por el conjunto de puntos x que satisfacen w - x — b = 0 (con w el
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(a) SVR con kernel lineal e hiperparimetros e = 0,25
y C = 10. Se representa la linea de ajuste de regresion
a las muestras de datos (x) junto a los mirgenes del
tubo asociado. Las muestras tipo (a), al quedar dentro
del tubo sin alcanzar la frontera, no contribuyen a
la solucién, al contrario que los vectores soporte. Se
representan inscritos en un circulo los vectores soporte
tipo (b), que estdn situados en la frontera del tubo
definiéndola, e inscritos en un cuadrado los tipo (c),
que al quedar fuera corresponden a datos espurios

(@)y=0.1

(b) SVR con kernel RBF e hiperpardmetros e = 0,25
y C = 10. Se representa, para diferentes valores de y,
la linea de ajuste de regresién a las muestras de datos
() junto a los mérgenes del tubo asociado. También
se representan, inscritos en un circulo, los vectores so-
porte situados en la frontera del tubo, e inscritos en un
cuadrado los datos espurios de fuera del tubo. Se ob-
serva como al decrementar y se suavizan las fronteras
que definen la solucién

Figura 4.5: Interpretacién geométrica de la regresion por vectores soporte (SVR). Reproducido

de Introduction to Machine Learning [2]

vector normal y b su offset), se puede obtener la forma estdndar o primaria de e-SVR:

N N

) 1 4

min -—ww+C ) &§+C ) &

sujeto a
Dy — ngzS(xn) -b<e+§,

gn’gr’lzo’ nzl,...,N

ngz’)(xn) +b-1p, <€+ &,

donde las variables £,&" € RN representan a las llamadas variables de slack, que habilitan la
existencia vectores erroneamente clasificados o los casos en que la linealizacién del EC no ha

sido totalmente efectiva.

Técnicamente la ecuacidn 4.7 representa un problema de optimizacién de programacién
cuadritica con una restriccion lineal, por lo que se puede construir su forma dual en el espacio
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de los multiplicadores de Lagrange usando los multiplicadores &, &’ € R":

N N
: 1 NT ’ ’ ’
min gle o0l -a) +e ) (b a) + ), amalen—a) (+8)
sujetoa e (@-a’)=0, cone=][1,...,1],

0<apa,<C, n=1,...,N

donde Qux = K(x,,xi) representa el kernel seleccionado. Lo interesante es que, mientras que
la solucién de la forma primaria depende del nimero de dimensiones del EC y este puede ser
infinito, en la forma dual depende tinicamente del nimero de vectores soporte.

Una vez resuelta la ecuacién 4.8, y obtenido @’ — e, se podran realizar predicciones mediante
la funcién aproximacién [12, 44]:

N
v = Z(—an +a,)K(xp,x)+b (4.9)
n=1

Sefialar finalmente que SVR se ha desarrollado para el andlisis de regresién de una tinica
variable. Consecuentemente, para nuestro caso con S variables de salida a estimar 7y, cada una
de ellas requerird la utilizacién de un modelo SVR independiente.



CAPiITULO 5

Configuracion de los hiperparametros y prediccion del par

Una vez seleccionados los métodos de aprendizaje automatico bajo estudio, el siguiente paso
es configurar aquellos hiperpardmetros sobre los que, durante la fase previa, no se ha podido
tomar una decisién evidente. El objetivo es evitar el riesgo de overfitting primando la capacidad
de generalizacién del estimador de forma que el rendimiento con entradas desconocidas sea
similar al del entrenamiento aunque, naturalmente, el limite estaria en que durante la fase de
produccién las entradas presenten caracteristicas estadisticas similares a las del entrenamiento.
Por ello Cawrey et 4l. [11] recomiendan determinar automaticamente los hiperpardmetros a
la vez que se produce el entrenamiento. Sin embargo, para las situaciones en que esto no es
posible o deseable, como cuando los requerimientos computacionales son excesivos, habrd que
realizarlo manualmente durante la fase de disefio.

Tanto en el proceso manual como el automatico el paso critico serd la estimacién, a partir de los
datos de entrenamiento tinicamente, del rendimiento del predictor con muestras desconocidas.
De este modo se podrin configurar los hiperpardmetros optimizando dicha capacidad de
generalizacién del estimador. Més atin, este mismo concepto de generalizacién aparecerd al
caracterizar el rendimiento real de un predictor cuando se pretenden comparar varios de ellos.
De nuevo se busca generalizar la estimacién de dicha capacidad de prediccién de forma que se
pueda evaluar su efectividad con muestras diferentes a las del entrenamiento.

La estrategia para lograr dicha generalizacion de los resultados es la aplicacion de validacién
cruzada o cross-validation [11]. En su versién mds comun, k-fold cross-validation (k-fold CV), toda
la informaci6n de entrenamiento disponible se divide aleatoriamente en k grupos, de forma que
un grupo se usa para validar los cdlculos realizados utilizando el resto. Repitiendo el proceso k
veces, para obtener resultados validados por cada uno de los grupos, y promediando se obtendrd
un valor del rendimiento que tiene en cuenta dicha capacidad de generalizacién. Sin embargo,
si se tiene en cuenta que las muestras de datos disponibles forman, ya de por si, iteraciones de
movimientos, se puede aprovechar para obtener el rendimiento del estimador por iteracién en
lugar de por muestra. En este caso, el limitado nimero de movimientos disponibles (solo 5 por
sujeto en el escenario ESU) impone recurrir a la variante leave-one-out cross-validation (LOOCV),
en la que cada que hay tantos grupos como elementos seleccionables y, consecuentemente, cada
iteracién asumird el papel de un grupo.

25
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5.1 Averaged Output MLP (aoMLP)

5.1.1 Optimizacion de los hiperparametros

El procedimiento habitual para optimizar el nimero de neuronas intermedias es representar
conjuntamente la variacién del rendimiento de entrenamiento y el de validacién en funcién
de dicho niimero de neuronas. De forma similar a Early-Stopping, el error cuadritico medio
de validacién minimo determinari el nimero éptimo de neuronas para la iteracién que estd
siendo validada, mientras que la aplicacién de LOOCV posibilitard una seleccion razonable de
la configuracién del modelo. Sin embargo, en ocasiones los resultados parciales de validacion
cruzada pueden ser incompatibles entre ellos y su promediado proporcionard, simplemente,
una solucién de compromiso.

La figura 5.1 muestra algunos resultados obtenidos durante el proceso de optimizacién.
En el escenario ESU, de los 40 casos posibles, el 82,5% presentan una respuesta como la
de la figura 5.1a, en la que el rendimiento alcanza un nivel estable y, sorprendentemente,
independiente del nimero de neuronas ocultas en el rango estudiado. Este resultado contrasta
con el obtenido sin ensamble, aprecidndose claramente la atenuacién en la variabilidad del
rendimiento resultante tanto en entrenamiento como validacién (figura 5.1b).

En el resto de casos, el rendimiento de validacién empeora con el niimero de neuronas vy,
a pesar del promediado, presenta mayor variabilidad (figura 5.1c). Precisamente, son estos
casos los que restringirin el rango 6ptimo de neuronas ocultas y, en su mayoria, se asocian
facilmente a la presencia de datos erréneos o contradictorios en, lo que podria considerarse,
una falta de calidad en los datos. Afortunadamente, en 6 casos (el 15% del total) la red es
capaz de paliar razonablemente estos problemas, como indica el bajo valor del MSE minimo
alcanzado. Sin embargo, en casos extremos en los que esto no sucede, el error de validacién
alcanza directamente cotas elevadisimas. La tinica ocasién en que esta situacién ha acaecido en
el escenario ESU se muestra en la figura 5.1d. Toda esta informacién sugiere que, no solo para
un sujeto si no para todos, 10 neuronas ocultas es un valor razonable evitindose, ademds, su
calculo automitico con cada entrenamiento.

En el escenario ESM, sin embargo, los resultados no son tan positivos. Esto era esperado
por la mayor dificultad impuesta por su planteamiento, pero tampoco se obtienen resultados
mucho mejores en la prueba exclusiva para controles. Desafortunadamente, los rendimientos
obtenidos en las tres pruebas empeoran ostensiblemente respecto al escenario ESU, tanto en
entrenamiento como validacién, implicando peores predicciones en la validacién. Ademds, hay
muchos mis casos en los que el proceso de optimizacién no es el ideal, tanto casos similares al de
la figura 5.1d como, simultdneamente, otros que necesitan de un mayor niimero de neuronas
ocultas, dificultando su seleccién manual e imponiendo su bisqueda automatizada.

5.1.2 Predicciones de validacion del escenario ESU

Para el disefio del estimador aoMLP propuesto se ha configurado un ensamble cuya salida es
la media de 30 MLP independientes constando, cada uno de ellos, de 10 neuronas ocultas y
empleando SCG como algoritmo de aprendizaje junto a Early-Stopping, con un miximo de
10 fallos de validacion consecutivos, para evitar el sobreaprendizaje. De este modo, la instancia
particular a implementar en produccién se entrenaria con las 5 iteraciones disponibles.
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Figura 5.1: Casos de la variacién del rendimiento en funcién del nimero de neuronas ocultas
durante el proceso de optimizacidn para el modelo aoMLP. Se muestra en azul el rendimiento
conseguido, medido como MSE, para las iteraciones del movimiento utilizadas en el entrenamiento
frente al rendimiento alcanzado, en rojo, con la iteracién de validaciéon

Para valorar su comportamiento se muestran, para tres casos representativos, dos repre-
sentaciones complementarias de las respectivas predicciones de validacién (figura 5.2). En el
primer panel, ademds de mostrarse la referencia 7py y la prediccion 7py (es decir, la media de
las predicciones de los submédulos), se visualiza la variabilidad de las estimaciones de dichos
submddulos mediante los rangos de los percentiles de dichas estimaciones calculados punto a
punto. Por su parte, el segundo panel muestra los intervalos de confianza, también calculados
punto a punto y usando una distribucién t de Student, en el que se situard la media de las
estimaciones individuales y, por tanto, la prediccién del modelo aoMLP 7py.

Para el primero de los ejemplos, el correspondiente al caso habitual, la minima dispersién
de los percentiles (figura 5.2a) sugiere que la utilizacién de un ensamble es innecesaria. Este
hecho se desmiente, sin embargo, al considerar la variabilidad existente en cualquiera de los
casos problemdticos y cuya aplicacion paliard sus efectos permitiendo la obtencién de mejores
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Figura 5.2: Percentiles e intervalos de confianza de las predicciones de validacion por el modelo
aoMLP del momento articular para algunas iteraciones seleccionadas del escenario ESU. Se repre-
senta la prediccidn 7py en rojo con la correspondiente funcidn objetivo 7ipg en negro. Ademds,
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tribucién t de Student, de la media de las estimaciones al 95 % (sombreado gris) y 99 % (sombreado
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predicciones (figura 5.2d). En este sentido, la eleccién del tamafio del ensamble nos permitira
estrechar el intervalo de confianza de la prediccién final a costa, naturalmente, de mayores
requerimientos computacionales. Desafortunadamente, tal y como muestra la figura 5.2f, su
aplicacién no garantiza la obtencién de predicciones éptimas en todos los casos.

Finalmente, y para proporcionar una valoracién completa del rendimiento alcanzado en
funcion del sujeto, las figuras 5.3 y 5.4 muestran las 5 predicciones de validacién para un sujeto
de control y un paciente (el apéndice E.1 incluye todos). Una forma aproximada de visualizar
dicho rendimiento para un sujeto se muestra en la figura 5.3a, donde las diferentes predicciones
se superponen al rango de variacién de las referencias expresado como su desviacién estandar.
El problema de esta visualizacién es su sensibilidad a la variacién de las funciones objetivo,
como cuando los pacientes, por la inherente dificultad de controlar su movimiento, tardan
diferente tiempo en realizar una fase del movimiento de una iteracién a otra (figura 5.4a).

De cualquier manera, la representacion individual de cada prediccion de validacién evidencia
un gran rendimiento alcanzado para el escenario ESU, tanto para controles como pacientes,
con un intervalo de confianza para la prediccién apenas perceptible. Los casos en que no es asi
coinciden con aquellos en los que la biisqueda del hiperpardmetro no obtenia los resultados
ideales de la figura 5.1a. Esta mayor variabilidad se explica, en ciertos casos, por una perdida de
referencia de algunos marcadores del sistema VICON, que provoca la captura nula de las sefiales
CCX 'y CMY de las variables de Cinematica (véanse las figuras B.3c, B.3d, B.4a y B.4b). Cuando
este problema sucede en varias iteraciones es posible que la red pueda paliarlo, como para el
paciente P003, pero no asi con solo una. Durante la validacion de estos casos la red, que no espera
las entradas nulas al haber entrenado solamente con datos correctos, encontrar dificultades para
generalizar y, consiguientemente, la figura del rendimiento esperado empeorard artificiosamente.
A pesar de ello, se ha optado por mantener estos datos para mostrar el comportamiento del
modelo bajo estas circunstancias.

5.1.3 Predicciones de validacion del escenario ESM

El disefio del estimador aoMLP para este escenario se ha configurado, a diferencia del ESU,
para el cilculo automitico en cada entrenamiento del niimero éptimo de neuronas ocultas.
Ademis, en este caso, la seleccién de su ndmero para la instancia particular de produccién se
realizarfa aplicando validacion cruzada a nivel de muestra con los datos de todas las iteraciones
disponibles.

Por otro lado, para valorar el error esperado sigue siendo mds interesante pensar a nivel
de iteracidn, por lo que los resultados que se comentan a continuacién para las tres pruebas
realizadas, mostrando el proceso de optimizacién y la prediccién finalmente obtenida, se han
obtenido aplicando LOOCV.

La figura 5.5, correspondiente a la prueba con solo controles, compara un buen resultado
de la prueba con uno malo y otro intermedio, y lo mismo sucede para la prueba con solo
pacientes y la figura 5.6. Indudablemente, el rendimiento esperado que se puede conseguir para
los controles es mayor que para los pacientes. Lo interesante, sin embargo, es la cantidad de
casos en que se observa una mejora del rendimiento obtenido cuando se emplean todos los
sujetos disponibles (figuras 5.7 y 5.8). Aunque esta circunstancia no ocurra en todos los casos, el
hecho de que se produzca de forma suficientemente generalizada invita a pensar que con un
niimero adecuado de sujetos se pueda lograr un predictor universal para toda la poblacién.
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Figura 5.3: Predicciones de validacién por el modelo aoMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
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Figura 5.6: Optimizacién automitica del niimero de neuronas ocultas y prediccién de validacion
por el modelo aoMLP del momento articular para el escenario ESM - solo Pacientes. Los paneles
de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente al de validacién
(en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la correspondiente
funcion objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
Student
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Figura 5.7: Optimizacién automitica del niimero de neuronas ocultas y prediccién de validacion
por el modelo a0oMLP del momento articular para el escenario ESM — Poblacién (Controles).
Los paneles de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validacién (en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la
correspondiente funcién objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha
estimacién al 95 % (sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando
la distribucidn t de Student
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5.2 Radial Basis Network (RBN)

5.2.1 Optimizacion de los hiperparametros

Para RBN tenemos dos hiperpardmetros que optimizar, el goal del entrenamiento y el
spread de la RBF. Aunque escoger el menor goal posible sea lo natural, hacerlo tendera al
sobreaprendizaje. Por su parte, un bajo spread incrementari la resolucién disminuyendo el nivel
de error pero aumentard el riesgo de overfitting y los requisitos computacionales. Aumenténdolo,
por contra, mejorard la generalizacién a costa de deteriorar el rendimiento alcanzable.

Para su seleccién se adaptar la estrategia de MLP, es decir, la bisqueda del minimo MSE de
entrenamiento y validacién, a una rejilla bidimensional con los hiperparimetros como ejes. Para
facilitar dicha basqueda es habitual escalarlos por el logaritmo base 2, paso que se ha reutilizado
para la visualizacién de la magnitud del propio rendimiento tomando su logaritmo base 10.

La figura 5.9 muestra algunos ejemplos seleccionados, donde el marcador amarillo indica
la localizacién del MSE de entrenamiento minimo y el magenta la solucién 6ptima segiin el
error de validacién. Para el mapa de entrenamiento se verifica como, por la propia naturaleza
del hiperpardmetro, el minimo recae siempre en el lateral de menor goal (figura 5.9a). En
validacién, por contra, el drea de menor error recae en la zona inferior derecha, sugiriendo que
un goal bajo y spread ancho mejoran la capacidad de prediccién (figura 5.9b).

Sin embargo, para los pacientes PO02 y P003 este drea de error minimo estd desplazada y
forma un valle, indicando overfitting y un goal miximo recomendable (figura 5.9¢). Estos
cambios en la estructura del mapa respecto al considerado normal son consecuencia de las
dificultades de la red en generalizar el aprendizaje, aunque es mis sencillo intuirlo por el nivel
de profundidad del error de validacién minimo. Precisamente son los casos mas dificiles para
el modelo a0oMLP los que presentan cambios mds radicales en ambos aspectos, tanto para el
escenario ESU (figura 5.9d) como para el ESM en el que son la norma (figuras 5.9¢ y 5.91).

La dispersién de los minimos de validacion resultantes recomienda una seleccién automatica
de los hiperpardmetros. Sin embargo, al no existir una relacién evidente entre los minimos de
ambos mapas no es posible automatizarlo de modo sencillo sin recurrir a una validacion cruzada
que incrementaria los tiempos de cémputo en varios ordenes de magnitud. Una seleccién
manual, por su parte, favorecerd unas predicciones sobre otras, pero es la opcién propuesta por
mantener los tiempos de cémputo en niveles razonables.

Empiricamente se observa que el inverso del niimero de variables de entrada proporciona
una aproximacién inicial razonable al valor éptimo del goal cuando la calidad de los datos de
entrada no es la éptima. Con 9 variables musculares y 12 cinemaiticas se ha tomado como goal
g =1/21 (0 log, g = —4.39). Para el spread, por su parte, los mapas sugieren un s = 27.

5.2.2 Predicciones de validacion

Las figuras 5.10 y 5.11 muestran las predicciones de validacién para dos sujetos del escenario
ESU. En concreto la figura 5.11a muestra como la prediccién de validacién usando la 1.2
iteracion del paciente P002 queda fuera del rango del par de fuerzas objetivo 7ip, sin que sean
paliados los efectos de la mala captura por el sistema VICON como si pudo el modelo aoMLP.

Para el escenario ESM el apéndice F.2 muestra como los resultados obtenidos con RBN no
mejoran a los de aoMLP, algo légico considerando su menor optimizacion.
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5.3 Support Vector Machine (SVM)

5.3.1 Optimizacion de los hiperparametros

El procedimiento de seleccion de hiperparametros recomendado para LibSVM [20] prescribe
una buisqueda en rejilla similar a la planteada para RBN. La diferencia estriba en que, en lugar de
construir el mapa del rendimiento de entrenamiento a partir del propio error de entrenamiento,
utiliza k-fold CV. De este modo, y para k = 5 grupos de muestras aleatorios, entrenando 4
grupos permite predecir la salida asociada al quinto vy, repitiendo el proceso, se obtiene una
estimacién generalizada del error de entrenamiento que, al tener en cuenta la variabilidad de
las entradas disponibles, permite estimar su comportamiento con entradas desconocidas.

Este paso, que no se pudo realizar con RBN por sus peores tiempos de entrenamiento
promedio, integra la validacién cruzada en el célculo automético de los hiperparimetros de una
forma natural, estimando sus valores éptimos usando tnicamente los datos de entrenamiento
disponibles. Sus efectos, mostrados en la figura 5.12, son los de restringir el drea de error minimo
donde localizar los hiperpardmetros dptimos. En la prictica se descartan valores altos de y que,
como sugeria la figura 4.5b, proporcionan soluciones con menor capacidad de generalizacion.
Por otra parte, tampoco interesan valores bajos de C ya que, al no penalizar suficientemente los
errores de prediccion, reducen la capacidad de aprendizaje produciendo underfitting.

Atn con todo ello, y al igual que con RBN como muestra la figura 5.13, estos hiperpardmetros
obtenidos a partir tinicamente de los datos de entrenamiento no proporcionan necesariamente
una solucién éptima al validarlos con una iteracién desconocida, tal y como se hace al aplicar
LOOCYV para estimar el error esperado del sistema. De nuevo, la dispersién de estos hiperpari-
metros 6ptimos de validacién dificulta una seleccién éptima, con muchos casos en los que dicho
rendimiento de validacién empeora notablemente con los hiperpardmetros favorecidos por el
mapa de entrenamiento (comparense por ejemplo las figuras 5.13¢ y 5.13d). Naturalmente esto
no ocurre siempre, normalmente el error de validacién es lo suficientemente bajo como para
que, atin sin acertar en la seleccion 6ptima, la prediccion sea suficientemente buena. Son los
casos que hemos dado en calificar como con baja calidad de entradas aquellos para los que los
cambios del mapa de validacién son més extremos.

Indicar finalmente que, en lugar de implementar un algoritmo de busqueda en rejilla, se
ha optado por el algoritmo Simplex de Nelder-Mead [25]. La decisién, con ciertos riesgos
por la existencia de minimos locales en el mapa de entrenamiento calculado con CV como
evidencia la figura 5.12f, permite reducir el tiempo de entrenamiento mediante la limitacion del
nimero de pasos de bisqueda sin llegar a requerir la paralelizacién del problema. Obviamente,
la paralelizacién ofrece unos recortes potenciales mucho mayores pero, considerando que el
equipo empleado para su cdlculo era un portétil, sus efectos se reducian bastante.

5.3.2 Predicciones de validacion

Las figuras 5.14 y 5.15 muestran las predicciones de validacién para dos sujetos del escenario
ESU. Claramente, la figura 5.15a muestra como el modelo SVM tampoco consigue paliar de
forma efectiva los efectos de una mala captura.

En el escenario ESM los resultados obtenidos (apéndice F.3) tampoco superan a los de aoMLP
aunque se vuelve a apreciar mejoria al aumentar las iteraciones de entrenamiento empleadas.
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Figura 5.13: Casos de la variacién de los rendimientos de validacién y entrenamiento por validacién
cruzada (CV) durante la optimizacién del modelo SVM. El marcador verde indica la localizacién del
minimo del MSE de entrenamiento por CV, con el magenta indicando la localizacién del minimo
del MSE de validacién
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Figura 5.14: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura 5.15: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro



CAPITULO 6

Comparacion de los modelos propuestos

En el capitulo 5 se ha visto como obtener distintas estimaciones del momento para una
iteracién del movimiento por los 3 modelos propuestos, especificamente 7p para el modelo
aoMLP, 7 para el RBN y iy para el SVM. Se puede valorar la calidad de dichas estimaciones,
denotadas genéricamente por 7, comparando el error cometido con el correspondiente nivel
de referencia rp inferido por Dindmica Inversa tal y como se describi6 en el capitulo 2. Por
completitud, esta misma valoracién de calidad se puede realizar con las estimaciones 733 obtenidas
por el modelo de Hill descrito en el apéndice D.

Naturalmente, no solo basta con comparar cualitativamente las distintas sefiales, aunque
hacerlo también proporcione informacién importante, si no que ha de cuantificarse su similitud.
Para ello se han empleado parimetros habituales como el error méximo absoluto Ejay, la raiz
del error cuadritico medio Ens y, para facilitar la comparacién entre sujetos y de sefiales con
distinta magnitud, su versién normalizada NRMSD y el coeficiente de determinacién R? (es
decir, el cuadrado del coeficiente de correlacién de Pearson). Como definicién de NRMSD se
ha usado la propuesta por Sartori et 4l. [35]:

\/% Zi,v:l(%n - TIDn)2

NRMSD = - —
max(7 — 71p) — min(7 — 7pp)

(6.1)

donde N representa, en este caso, la duracién en muestras de la iteracién del movimiento a
comparar y n el indice de dicha muestra.

Por otro lado, al comparar conjuntos de resultados proporcionados por diversos métodos
predictivos es importante usar test de hiptesis para estar seguros, estadisticamente hablando,
de que la comparacion es significativa. En lugar de emplear cualquier miembro de la familia
ANOVA, Dem3AR [14] recomienda usar sus contrapartes no-paramétricas al no poderse asegurar
que las distintas poblaciones de errores producidas por los diversos métodos cumplan los
requisitos de aplicacién de ANOVA. Para la comparacién de modelos se empleari el test Signed
Rank de Wilcoxon y el de Friedman [19], tomando ventaja, cuando sea posible, de la estructura
repetitiva por sujetos de las pruebas del escenario ESU.
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6.1 Comparacion de los modelos propuestos para el escenario ESU

Un resumen comparativo de los resultados obtenidos para cada sujeto del escenario ESU
por los distintos modelos se muestra en la tabla 6.1 (el apéndice G.1 incluye todos). Los datos
proporcionados muestran, una vez promediadas las 9 componentes del momento disponibles
correspondientes a la prediccién del momento neto tridimensional en las 3 articulaciones
estudiadas, la media y desviacién estdndar de las 5 predicciones de validacién posibles de aplicar
LOOCYV a nivel de iteracién con los 3 modelos de caja negra propuestos. Estos resultados
se comparan con los resultados obtenidos por el modelo de Hill descrito en el apéndice D y
calculado como la media y desviacién estindar de las 4 predicciones de validacién obtenidas
cuando el modelo se calibra con los datos de la 1.# iteracién del movimiento disponible.

Si nos centramos en los resultados por sujetos, se aprecia una clara diferencia entre los niveles
de error esperados para los controles C001 y C009 frente a los de los controles C017 y C018.
Dicha diferencia se explica por ser estos tiltimos los afectados por el fallo del sistema VICON.
Esta misma razén es por la que hay que tomar con cautela el que un test de Kruskall-Wallis,
aplicado a las predicciones del modelo 20MLP para los 8 sujetos, confirma la diferencia para al
menos un sujeto en la mediana de la distribucién de errores normalizados con un p-valor de
3,2-1073. Por otra parte, un test Signed Rank de Wilcoxon no llega a confirmar la diferencia
de comportamiento entre el bloque de sujetos de control frente al de pacientes, aunque con un
p-valor de solo 0,093.

Por otro lado, comparando los modelos estudiados, la tabla 6.1 también muestra como el
modelo de Hill tiende a obtener resultados peores para las 4 caracteristicas recogidas. Se puede
apreciar como consistentemente tiende a obtenerse un valor de R? menor, indicando un menor
parecido en la forma de la funcién predicha 7j; y la que tomamos como referencia rjp. Del
mismo modo, las figuras de error Epayx, Erms y NRMSD tienden a alcanzar valores mis altos,

Tabla 6.1: Comparativa cuantitativa de los modelos propuestos para el escenario ESU

Controles Pacientes
C001 C009 Co017 C018 P002 P003 P020 P021

MLP 0,92+0,01 0,93+0,02 0,76+0,08 093+0,04 0,88+0,02 0,90+0,01 0,70=+0,09 0,80=+0,15
RBN 0,87 +0,02 0,92+0,02 0,62+0,24 0,88+0,08 0,79+0,19 0,78+0,03 0,66+0,09 0,70 +0,14

R2
SVM 0,88 +0,04 0,89+0,01 0,67+0,14 0,81+0,23 0,67 +0,30 0,80+0,06 0,48 +0,04 0,68 0,08
Hill 0,83+0,07 0,86+0,08 0,81+0,13 0,85+0,05 0,42+0,36 0,68 +0,14 0,53 +0,20 0,61 +0,31
MLP 0,06 +0,01 0,06+0,01 0,11+0,03 0,11+0,10 0,10+0,03 0,08 +0,01 0,10 +0,02 0,09 + 0,02
NRMSD RBN 0,09 +0,01 0,07+0,01 0,17+0,11 0,12+0,10 0,13+0,10 0,13+0,04 0,12+0,03 0,11 +0,02
SVM 0,08 +£0,01 0,08+0,01 0,13+0,05 0,12+0,10 0,15+0,08 0,11 +0,02 0,14 +0,03 0,10 + 0,02
Hill 0,24+0,01 025+0,16 0,14+0,12 0,14+034  0,24+0,05 0,25+0,04 0,27 +0,05 0,23 + 0,04
MLP 0,11 +0,02 0,19+0,03 0,24+0,06 033+0,34 0,29+0,09 0,27 +£0,04 0,24 +0,06 0,15=+0,08
Eims RBN 0,17 £0,03 0,21 £0,03 0,42+0,28 0,36 +0,37 0,47 +0,38 0,60 +0,27 0,30 +0,12 0,20 + 0,08
(N'm) SVM 0,14 £0,04 0,25+0,03 0,33+0,13 0,37+0,42 0,52+0,35 0,40 +0,09 0,40 +0,09 0,23 +0,04
Hill 0,43+0,16 0,65+0,17 0,47 £0,25 0,65+034 0,97 0,19 1,45+0,39 1,04+0,23 0,95+ 0,31
MLP 0,36 +0,10 0,75+0,16 0,96 +0,22 0,75+0,46 091+0,21 0,96+0,21 1,44+0,70 0,91 +0,82
Emax RBN 0,51+0,12 0,74+0,16 1,21+0,57 0,81+0,52 1,19+0,62 1,54+0,54 1,46+0,75 1,00 0,75
(N'm) SVM 0,49 +£0,22 0,90 +0,20 1,10+0,28 0,89+0,64 1,36+0,57 1,19+0,24 2,05+0,99 1,52 +0,44

Hill 1,17+0,18 1,83+0,73 1,42+0,54 1,37+0,74 2,41+0,43 291+0,67 237+0,55 2,82+0,52
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indicando un error cometido mayor. Estos resultados se pueden comprobar visualmente en las
figuras D.2 y D.3.

Del mismo modo, la comparacién entre los 3 modelos de caja negra sugiere al modelo aoMLP
como el que proporciona mejor rendimiento en los 4 pardmetros medidos. Esto lo confirma
un test de Friedman aplicado a los resultados de NRMSD de los tres modelos estudiados y que
indica que la mediana de los errores esperados es estadisticamente diferente, para al menos
uno de ellos, con un p-valor de 3,2 - 107°. Ademds, y con las precauciones habituales por las
pocas iteraciones utilizadas y la gran cantidad de test de hip6tesis realizadas, la interpretacion
de los intervalos producidos por el test sugiere que la distribucién de los errores de validacién
normalizados de los modelos RBN y SVM tienen medianas idénticas, mientras que la del modelo
aoMLP es claramente menor.

Los resultados experimentales muestran que los distintos modelos propuestos pueden pre-
decir movimientos funcionales complejos como representa la tarea de beber utilizada en el
experimento. Sin embargo, sorprenden por decepcionantes los resultados de SVM que, a pesar
de sus a priori ventajas tedricas, no mejora apreciablemente los resultados de RBN. Por el
contrario, ha sido el modelo a0MLP con el que mejor rendimiento esperado se obtiene, con un
NRMSD del (8,84 + 3,97) % y un R? de 0,85 + 0,10, sin duda alguna gracias a la existencia de
un hiperpardmetro éptimo tnico vélido para todos los sujetos y a la ayuda del aprendizaje por
ensamble para las predicciones mas complicadas.

Una comparacién de los resultados obtenidos por el modelo aoMLP con los de estudios previos
similares muestra rendimientos comparables a pesar de estar siendo realizado simultineamente
para los 9 grados de libertad que representan las tres articulaciones del miembro superior v,
mds importante todavia, haber sido realizados con un movimiento funcional més complejo.
Por ejemplo, en el estudio de Sone et 4l. [38] el B conseguido para sujetos sanos fue de
(0,35 + 0,06) N m, mientras que el rendimiento de a0MLP es superior incluso para pacientes.
Por su parte, y atin a pesar de los problemas con la captura de datos de cinemitica, nuestros
resultados son similares a los obtenidos por CasteLLin et 4l. [9], que indicaron haber obtenido
un NRMSD del (7,89 + 0,09) % para sujetos de control. Por tltimo comentar que, a nuestro
leal saber y entender, no existen estudios similares de prediccién del momento articular para las
extremidades superiores con pacientes. En su lugar, los estudios existentes son especificos de las
extremidades inferiores complicando una comparacién adecuada.

6.2 Comparacion de los modelos propuestos para el escenario ESM

Los resultados obtenidos para cada modelo en las 3 pruebas realizadas se resumen en la
tabla 6.2. Sefialar que los modelos basados en Hill no tienen sentido en este escenario por estar
necesariamente adaptados a la biométrica de cada persona. A simple vista parece claro que el
rendimiento obtenido para los sujetos de control es mayor que el obtenido con los pacientes,
tanto si se entrena con la poblacién completa como si se hace solamente con los miembros de su
grupo. También parece apreciarse en cada caso una mejora al pasar a entrenar con la poblacién
completa, pero esta situacion no llega a ser confirmada por un test Signed Rank de Wilcoxon
comparando los resultados obtenidos por el modelo a0oMLP para los controles en las dos pruebas
(con un p-valor de 0,469) o en la comparacién correspondiente para los pacientes (0,204).

La comparacién de los 3 modelos propuestos mediante un test de Friedman establece que el
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Tabla 6.2: Comparativa cuantitativa de los modelos propuestos para el escenario ESM

solo solo Poblacién completa
Controles Pacientes Controles Pacientes Todos
MLP 0,72 + 0,08 0,46 + 0,16 0,73 + 0,07 0,47 £ 0,15 0,56 + 0,18
R2 RBN 0,64 + 0,14 0,21 + 0,09 0,54 + 0,09 0,23 + 0,09 0,34+ 0,18
SVM 0,45+ 0,16 0,23 + 0,15 0,54 + 0,15 0,25+ 0,18 0,35 + 0,22
Hill = - = - =
MLP 0,24 + 0,07 0,28 + 0,09 0,22 + 0,03 0,27 + 0,08 0,25 + 0,07
NRMSD RBN 0,28 = 0,07 0,30 = 0,10 0,25 + 0,09 0,26 = 0,08 0,26 = 0,08
SVM 0,27 £ 0,03 0,30 = 0,08 0,23 + 0,04 0,29 + 0,07 0,27 £ 0,07
Hill = - = - =
MLP 0,67 = 0,21 1,14 £ 0,58 0,53 £ 0,11 0,99 + 0,34 0,82+ 0,36
Erms RBN 0,97 + 0,45 4,81 + 3,52 1,10 = 0,46 3,51 +2,78 2,62 + 2,49
(N m) SVM 0,86 = 0,20 1,17 £ 0,35 0,69 = 0,13 1,09 + 0,26 0,94 + 0,29
Hill = - = - =
MLP 1,37 £ 0,26 2,54 + 0,96 1,14+ 0,14 2,29 + 0,72 1,87 + 0,80
Emax RBN 1,96 + 1,01 13,50 + 13,36 2,73 + 1,57 10,19+ 8,24 7,44 +7,48
(N m) SVM 1,78 + 0,20 2,71+ 0,87 1,55 + 0,31 2,51 +0,72 2,15+ 0,76
Hill - - - - -

modelo aoMLP difiere, estadisticamente hablando, del SVM pero no del RBN con un p-valor
de 0,021, aunque un resultado tan ajustado es mejor tomarlo con cautela. En este sentido, y
hablando cualitativamente, si que parece claro que el modelo 20MLP también presenta para este
escenario un rendimiento mejor que el resto obteniendo, para la prueba con toda la poblacién,
un NRMSD del (25,07 + 6,90) % y un R? de 0,56 + 0,18. Esos valores mejoran teniendo solo
en cuenta a los controles, con un NRMSD del (21,65 + 3,40) % y un R? de 0,73 + 0,07.

Para finalizar indicar que nuevamente, a nuestro leal saber y entender, este es el primer
estudio que intenta predecir el momento articular asociado al movimiento de la extremidad
superior de un sujeto a partir de datos de entrenamiento de sujetos diferentes y, por tanto,
no se dispone de referencias con las que comparar los resultados obtenidos. Obviamente el
rendimiento obtenido no llega a ser aceptable para su uso prictico, pero los resultados también
sugieren que aumentando el nimero de sujetos empleados para el entrenamiento aumentara tal
rendimiento. La incégnita que queda por responder es el nimero de sujetos necesarios y cudl
serd el rendimiento final alcanzado.

6.3 Variaciones de las configuraciones propuestas

Como complemento a los 3 modelos propuestos originales se han realizado una serie de
estudios adicionales mediante la variacién de elementos claves de las configuraciones propuestas,
proporcionando asi una perspectiva adicional del comportamiento del modelo original. Sin
embargo, por no extender en demasia el desarrollo, los elementos presentados se centrarin
principalmente en el modelo ao0MLP del escenario ESU por ser el que mejores prestaciones ha
proporcionado. Un resumen de estos resultados se adjunta en la tabla 6.3.
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Tabla 6.3: Resumen de los rendimientos obtenidos para el escenario ESU

Modelo o variacién Emax (Nm)  Epns (Nm)  NRMSD (%) R? p-valor?
aoMLP 0,88 £0,49 0,23 +0,14 8,84 +£3,97 0,85+ 0,10

RBN 1,06 £ 0,60 0,34 +0,26 11,70 +6,67 0,78 +0,15 1,3-1077
SVM 1,19+0,65 0,33+0,22 1138+542 0,73+0,19 8,8-10°%
Sin ensamble 1,10+ 0,61 0,32+0,27 10,77 +5,90 0,80 +0,13 3,9-107%
Ensamble de 10 MLP 0,90+0,49 0,23 +0,14 9,03 +£4,05 0,85+0,10 1,1-1073
Frn de 200Hz 0,89+0,51 0,23 +0,19 8,65+4,70 0,86 +0,11 3,6-107
Entrenamiento LM 1,40+1,85 0,41 +0,70 10,30+6,53 0,79 +0,19 4,5-107"
Sin Cinemadtica 1,41 +0,38 0,44+0,13 16,77 £2,67 0,55+ 0,14 2,6-1077
80 % PCA 1,06 £0,48 0,32+0,19 11,85+4,11 0,77 0,12 4,5-107%
90 % PCA 1,02+0,51 0,30 +0,20 10,97 +4,80 0,80 +0,12 1,2-1077
3 Sinergias 0,89 +0,48 0,23 +0,14 9,04 + 3,84 0,85+0,10 4,8-1072
5 Sinergias 0,91 +£0,48 0,24 +0,12 9,24 +3,62 0,84 +0,11 1,9-10™*

1 p-valor del test Signed Rank de Wilcoxon comparando la similitud con la mediana de la distribucién
del NRMSD del modelo aoMLP propuesto.

Un aspecto clave del modelo a0MLP ha sido la aplicacion de aprendizaje por ensamble para
mejorar la calidad de la estimacién realizada. Un test de Signed Rank de Wilcoxon, comparando
los resultados obtenidos para el NRMSD al usar ensamble frente a no usatlo, favorece claramente
su adopcién con un p-valor de 3,9 - 1078, De este modo, el mayor tiempo de computo se justifica
por un descenso del 1,92% en el error esperado normalizado del escenario ESU.

Por otro lado, otra comparacién entre un ensamble cuya salida es la media de 30 submédulos
MLP frente a otro cuya salida es la mediana de solo 10 submddulos también encuentra diferencias
estadisticamente hablando (el p-valor es de 1,1 - 107°) pero, como el error esperado normalizado
sélo aumenta un 0,19 % se puede recomendar su aplicacion para disminuir el tiempo de computo
sin perjudicar apenas el rendimiento. Del mismo modo el utilizar una frecuencia de muestreo
de 200 Hz frente a una de 20 Hz vuelve a producir diferencias significativas con un p-valor de
0,036, pero en la prictica esto simplemente equivale a una disminucién del 0,20 %.

Otra variacién considerada ha sido el cambiar a un algoritmo de aprendizaje de Levenberg-
Marquardt. En este caso el p-valor de un test de Signed Rank de Wilcoxon es de 0,452, por lo
que en cuanto al rendimiento no se encontrarian diferencias significativas en los resultados, no
asi en el tiempo de cémputo que si que es apreciable.

También ha sido estudiado el efecto del cambio de entradas a la red como la diferencia entre
usar o no datos de cinemitica junto a las de activacién muscular. Este cambio supone en la
practica la disminucién a solo 9 neuronas de entrada (por las 9 componentes disponibles de
activacién muscular) en contraposicién con las 21 neuronas de entrada del modelo propuesto
(correspondientes a las 9 componentes disponibles de activacién muscular y a las 12 de la
sefial de cinemitica de tronco, hombro, codo y mufieca). En este caso un test de Signed Rank
de Wilcoxon nos confirma, con un p-valor de 2,6 - 1077, que el aumento del 7,92% en el
error esperado normalizado es ciertamente significativo estadisticamente, tal y como indica la
literatura existente.

Naturalmente es 16gico obtener una perdida en el rendimiento de la red cuando se elimina
informacién importante de su entrada. Sin embargo, el capitulo 3 proporciona métodos para
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reducir el niimero de componentes de entrada sin desechar completamente la informacién
disponible. Por ejemplo, la aplicacién de PCA a las entradas conjuntas de cinemitica y activacion
normalizada para eliminar las componentes correspondientes al 10 % menos significativo de
la varianza explicada permite reducir a inicamente 7 el niimero de componentes a la entrada.
Este cambio, que supone una reduccién de % en el nimero de neuronas de entrada, supone un
incremento del 2,13 % del error esperado normalizado con un p-valor de 1,2 - 1077 calculado
por el test de Wilcoxon.

Del mismo modo, la utilizacién de 3 y 5 sinergias musculares en lugar de la sefial de activacion
muscular normalizada también permite, aunque en menor grado, la reduccién del niimero de
entradas a la red. Un test de Friedman con los 3 modelos (es decir, comparando la utilizacién
de las 9 componentes de activacién muscular frente a la utilizacién de 3 0 5 componentes de
sinergias) no confirma diferencia apreciable al haberse obtenido un p-valor de 0,198, con un
aumento del error esperado normalizado que siquiera llega al 0,5 % en el peor de los casos. Este
resultado contrasta con el mostrado en la tabla 6.3 donde la comparacién se ha realizado de
forma individual aunque, en cualquier caso, el incremento del error es tan somero como para
no resultar un problema la utilizacién de sinergias musculares en lugar de la activacién en caso
de estar disponible este tipo de entradas.



CAPITULO 7

Conclusiones y lineas futuras

El objetivo del presente TFM era la seleccién y configuracién de un modelo de estimador del
momento producido en las articulaciones de un sujeto de manera que pudiese ser implementado
en el control de un exoesqueleto dedicado a la rehabilitacién motora bajo un paradigma de
asistencia bajo demanda. En el entorno descrito serd clave combinar sencillez de operacién para
su uso en un entorno no especializado junto con precision en las predicciones del movimiento
de pacientes para conseguir una rehabilitacién personalizada a las necesidades de cada paciente.

En estas circunstancias, un resultado positivo del estudio realizado para el escenario ESM
hubiese sido altamente relevante por no necesitar de una fase de entrenamiento especifica para
cada paciente. Desafortunadamente, las figuras del rendimiento alcanzado en este escenario no
han sido suficientemente satisfactorias para habilitarlo como propuesta factible. Sin embargo,
la tendencia subyacente de mejora del rendimiento al incrementarse la cantidad de sujetos
disponible para el entrenamiento deja abierta la puerta a poder alcanzar los rendimientos
necesarios con la disponibilidad de las capturas de un nimero suficiente de sujetos para el
entrenamiento.

Afortunadamente el estudio del escenario ESU si ha obtenido resultados satisfactorios, con
el modelo aoMLP presentando las mejores caracteristicas. Este modelo combina precisién en
las predicciones con un R? esperado de 0,85 + 0,10 y un NRMSD del (8,84 =+ 3,97) %, junto
con la mayor robustez frente a fallos en el proceso de captura de los datos de entrada. Ademis,
al menos para los sujetos disponibles, no se aprecia sensibilidad aparente en la seleccion del
hiperpardmetro éptimo, siendo vélido el mismo tanto para pacientes como sujetos de control.
Por tltimo, y a pesar de necesitar un proceso de entrenamiento especifico para cada sujeto, los
tiempos de entrenamiento son bajos y estables (en el sentido de que no hay mucha variabilidad
entre los tiempos de cada sujeto), habilitando que su implantacién en el 4mbito clinico no sea
onerosa para el paciente.

La tabla 7.1 permite la comparacion de las caracteristicas principales de los distintos modelos
propuestos. En relacién al modelo propuesto, el modelo de Hill presenta la desventaja de su
peor rendimiento en la estimacién de pacientes a pesar de un mayor tiempo de calibracién.
Por su parte, para los modelos RBN y SVM no se ha logrado encontrar un hiperpardmetro
éptimo compartido entre todos los sujetos como sucedi6 con el modelo aoMLP, perjudicando
su capacidad de generalizacién o aumentando la complejidad de su disefio.
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Tabla 7.1: Comparativa cualitativa de los modelos propuestos para el escenario ESU

Modelo de caja negra

Categoria Caracteristica Modelo de Hill
aoMLP RBN SVM
Tipo Red neuronal Red neuronal Apren}d{zaj © Fi 51010g1c9 /
estadistico Biomecéanico
Formulacién Simple Simple Simple Compleja
Significado fisiolégico d
ignificado fisiologico de No No No S
los (hiper-)parametros
319 846 parametros 1876
Nii de pard (x el nimero de  (para una media vect(éres
timero de pardmetros submédulos de 27 neuronas soporte de 64
media2?
MLP) ocultas?)
Arquitectura Valor de los pardmetros Ajustable Ajustable Ajustable Ajustable
1 2
Ndmero de (ntimero de 2 (gamma y
. . No
hiperpardmetros neuronas (goal y spread) coste)
intermedias) (x 9 salidas)
Un valor No hay un No hay un
Valor de los Sptimo comin valor dnico y valor tinico y N
hiperpardmetros para todos los comdn para comtin para ©
sujetos todos todos
Tipo Entrenamiento  Entrenamiento  Entrenamiento Calibracién
Ajuste de los
pardmetros Tiempo 6min paralos 8 4 min para los 8 1h para los 8 6h por sujeto*
sujetos? sujetos? sujetos®
. del 11h para
A}J:}Ste ¢ los Tiem 14 h paralos 8 15h para los 8 generar los N
1perpara- 1empo sujetos’ sujetos’ mapas de los 8 °
metros suj etos?
Uso de‘ Bajo Altos Bajo Alto”
memoria
. Control Medio Medio Alto Alto
Entrenamiento -
Paciente Medio Medio Alto Bajo
Rendimiento
o Control Alto Medio Medio Aceptable
Validacién -
Paciente Alto Medio Medio Bajo

! El nimero de neuronas ocultas, desconocido a priori, depende del entrenamiento.
2 El nimero de vectores soporte, desconocido a priori, depende del entrenamiento.

3 Depende de la duracién de los movimientos entrenados y la configuracién de las condiciones de parada del algoritmo de
entrenamiento.

4 Depende de la duracién del movimiento calibrado y la configuracién de las condiciones de parada del algoritmo de calibracién.

5 Depende, ademas, del rango de la rejilla de bisqueda de hiperpardmetros.

¢ Dependiendo de la duracién de los movimientos entrenados.

7 Dependiendo de la duracién del movimiento calibrado.
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7.1 Lineas de desarrollo futuro

La novedad asociada a un estudio del rendimiento de modelos neuromusculoesqueletales
para la prediccién de un movimiento funcional complejo realizado por pacientes de lesiones
medulares junto con el interés de los resultados obtenidos para el escenario ESU, sobretodo
en relacién a que dicho rendimiento es suficientemente equiparable al obtenido para sujetos
de control cuando se utilizan modelos de aprendizaje automitico frente a modelos basados en
Hill, ha motivado la preparacién de un articulo titulado «An evaluation of EMG-driven muscle
models for assistive exoskeletons» para su publicacion en la revista Journal of Neuroengineering and
Rehabilitation. Sin embargo, los modelos propuestos corresponden simplemente a una primera
aproximacién en la implementacién de un Neuroestimador basado en modelos de caja negra,
existiendo todavia un amplio margen de mejora a estudiar en desarrollos futuros.

A partir de lo conseguido en el presente TEM se propone, como linea de desarrollo mis
evidente, aumentar el nimero de iteraciones del movimiento disponibles para el entrenamiento
del escenario ESM. Lamentablemente no hay una forma de conocer el nimero de sujetos de los
que seria necesario disponer nuevos datos para obtener un rendimiento suficiente ni, incluso, si
esto llegaria a ser posible, pero la ventaja en la sencillez de implementacién de un predictor
basado en este escenario seria notable.

En un sentido mis tedrico, otra posible via de desarrollo seria la utilizacién de modelos que
tengan en cuenta la caracteristica temporal de los datos utilizados. Modelos como RANN o
TDANN, en el caso de las redes neuronales, o el uso de Dynamic Least Squares SVM (DLS-
SVM) tienen en cuenta que estamos tratando con series temporales, por lo que presentan un
mayor potencial para alcanzar mejores rendimientos a costa de afiadir complejidad al disefio.
Un estudio comparado de los resultados obtenidos por las nuevas implementaciones y los pre-
sentados en este TEM estableceria una buena base para avanzar en la mejora del bloque de
control del exoesqueleto.

Una dltima linea de desarrollo futuro radicaria en el tratamiento de la sefial SEMG capturada
y que sirve como entrada al estimador. En lugar de un procesamiento de la sefial basado en un
filtrado temporal, se podria estudiar el empleo de formas mas modernas de procesamiento como
transformadas Wavelet (WT) o, simplemente, mediante el uso de caracteristicas representativas
de la sefial como Higher Order Statistics (HOS). La ventaja de esta aproximacion se encontraria
en la reduccién del ruido introducido al estimador de forma que aumentase el rendimiento
potencial obtenido.






APENDICE A

Practicas en el entorno clinico

Durante la realizacién del Trabajo Fin de Mister se han mantenido reuniones con diversos
miembros de la Unidad de Investigacidn en Fisioterapia (UIF) de la Universidad de Zaragoza
con el fin de encontrar vias de cooperacién mutuas con el Grupo de Robética de la Escuela
de Ingenieria y Arquitectura (EINA) de la propia Universidad. La idea inicial por el Grupo
de Robotica para esta colaboracion era desarrollarla en el dmbito de la rehabilitacién y el
seguimiento de la evolucién de pacientes por ser éste el dmbito en el que estd centrando sus
proyectos actuales. Sin embargo, la descripcion de los proyectos en los que estd embarcada la UIF
puso de manifiesto el potencial existente en extenderlo al dmbito de la mejora del rendimiento
deportivo. En la prictica los retos serfan similares, si no més sencillos, pero aumentarian
ostensiblemente las posibilidades de encontrar financiacién.

Fue en este proceso de puesta en comtin de pareceres en el que se pudo constatar lo sencillo
que es introducir, inadvertidamente, malentendidos y dificultades en la comunicacién por
las diferencias en el lenguaje utilizado por ambos grupos. Sin llegar a haber transcurrido un
minuto en la presentacién del proyecto HYPER 'y los trabajos realizados con el modelo del
exoesqueleto disponible, se requiri6 que se clarificara el concepto empleado como par. Y es que,
por circunstancias que podian considerarse histdricas, en el dmbito de la fisioterapia el concepto
de par puede sobreentenderse, o considerarse incluso mds afin, al concepto de activacién
muscular empleado en el presente TEM que al concepto de momento de par de fuerzas que se
pretendia trasmitir.

En este mismo proceso también se pudo apreciar de primera mano las diferencias de visién
existentes entre grupos que, atin siguiendo el mismo método cientifico, provienen de diferentes
backgrounds. Mientras que en el caso de la ingenieria la motivacién puede ser ms difusa como
el simple afén de conocimiento o el deseo de resolver un problema presente en el mundo real,
en el caso de la fisioterapia todo gira en torno a la funcionalidad motora del cuerpo humano y
siempre con el objetivo de recuperarla, mantenerla o simplemente mejorarla. La presencia de
dificultades en la validacién de resultados de sus proyectos de investigacion estaria relacionada,
al menos en parte, con esta focalizacién en la capacidad funcional del sujeto. Precisamente,
alcanzar una mayor capacidad de objetivar dichos resultados serfa uno de sus frutos deseados de
dicha colaboracién.

Naturalmente, llegar a conseguirlo no es sencillo ya que, en un entorno clinico, las dificultades
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précticas son absolutamente diferentes. Por un lado hay que tener en cuenta que la respuesta a
estimulos por parte de musculos, tendones y, en definitiva, el cuerpo humano es muy variable y
dependiente del sujeto, por lo que es muy dificil conseguir una adecuada repetibilidad en los
resultados. Aunque este no sea un problema exclusivo de las disciplinas més biolgicas, lo cierto
es que en el dmbito de la ingenieria se puede paliar acudiendo a métodos como simulaciones
o modelado, mientras que en el 4mbito fisioterapéutico las posibilidades son més limitadas.
Ademas, el trato directo con pacientes incrementa los problemas éticos existentes y obliga a
utilizar métodos cémodos y que no sean excesivamente onerosos con ellos. Més atin, el personal
en el entorno clinico no tiene por qué ser especialista por lo que se deben de primar métodos
sencillos e intuitivos.

La verdad es que todas las dificultades mencionadas anteriormente se comentaron en relacién
a la electromiografia. Y es que éste puede ser un caso paradigmatico, aun cuando la SEMG
contenga gran cantidad de informacién a nivel muscular y, sin duda alguna, al menos parte de
ella seré relevante en el ambito de la fisioterapia, su uso a nivel prictico es residual debido a las
dificultades de manejo que presenta. La gran variabilidad presente, ya no solo entre distintos
sujetos, sino para un mismo sujeto, dificulta enormemente correlacionar sus variaciones con los
efectos motrices producidos. Este hecho imposibilita su interpretacién practica de forma genera-
lizada y, menos adn, por personal no especializado. Ms atin, los pardmetros derivados existentes,
como Integrated EMG (IEMG), Mean Absolute Value (MAV), Root Mean Square(RMS) o
Waveform Length (WL), suelen ser poco précticos ya que o proporcionan informacién dema-
siado estética, o no son suficientemente flexibles o son, directamente, excesivamente técnicos.
Precisamente, es por este cimulo de circunstancias por el que la UIF ha iniciado la basqueda
de nuevas parametrizaciones que eliminen las deficiencias de los pardmetros actuales.

Como experiencia complementaria al trabajo desarrollado en el presente TFM se dedicé
una jornada a tomar contacto con el proceso de captura de los datos electromiograficos y
de movimiento, tanto desde el punto de vista de la organizacién del proceso como el que
experimenta un sujeto de pruebas. Una primera fase de reconocimiento del entorno de pruebas,
en la que también se explicaron las capacidades de los distintos equipos a utilizar, sirvié para
familiarizarse con el papel desarrollado por los distintos actores del proceso.

En la siguiente fase se procedi6 a revisar la documentacién de un protocolo de captura de
datos para un experimento similar al empleado en el presente TEM, de forma que permitiese
seguir mas ficilmente su desarrollo cuando se presenci6 su puesta en prictica por parte de la
persona que dirigia la captura. A pesar de todo esto, fue revelador la cantidad de dudas y veces
que hubo que revisar la documentacién cuando, con un compafiero, se procedié a repetir el
protocolo de pruebas, comprobdndose la gran cantidad de atenci6n al detalle necesaria a la
hora de elaborar este tipo de documentos y, mds atin, cuando pueden ser otras personas las que
tengan que encargarse de su aplicacién y desarrollo en un futuro.

Otro aspecto a destacar fruto de esta experiencia es la dificultad en la realizacién de las
contracciones musculares asociadas a la captura de la maxima contraccién voluntaria (MVC) de
cada musculo. Cada una de estas capturas requiere la realizacién de una contraccién tetdnica del
musculo en cuestion procurando mantener el resto en reposo, situacion facilitada en cierto grado
por la existencia de unas posturas establecidas. Vista la dificultad asociada no es de extrafiar que
sea en los datos de los pacientes, con las dificultades de movimiento propias de de sus dolencias,
en las que se aprecia claramente como la MVC capturada no se corresponde con la capacidad
de contraccién real del individuo, situacién menos evidente para los sujetos de control.
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Listado de los datos disponibles

Se dispone de datos de un total de 7 sujetos de control y 12 pacientes para la realizacién
del presente TEM. Un listado con el resumen de las caracteristicas més relevantes de dichos
voluntarios se muestra en la tabla B.1.

Con el fin de proporcionar una visién completa del conjunto de datos disponibles se repre-
sentan a continuacién las sefiales capturadas a los distintos sujetos. Por simplicidad, los datos
disponibles se han dividido en funcién del escenario al que pertenecen, el Escenario de Sujeto

Unico (ESU) o el de Sujetos Multiples (ESM). Indicar que para nombrar las distintas variables

Tabla B.1: Caracteristicas de los sujetos

Sujeto  Capturas Lesion Edad Sexo Altura (m) Peso (kg)

Co001 5 control 22 M 1,6 65
C009 5 control 22 H 1,8 79
Co11 1 control 27 M 1,68 57
Co013 1 control 45 H 1,79 78
Co015 1 control 28 H 1,88 81,5
Co017 5 control 26 M 1,63 48,5
Co018 5 control 27 M 1,64 66
P002 5 C6 31 H 1,8 95
P003 5 C6 26 H 1,9 89
P005 1 C6 34 M 1,55 50
P006 1 Cc7 26 H 1,9 89
P007 1 C6 31 H 1,8 95
P008 1 Co 36 H 1,75 90
P010 1 C7 35 H 1,84 79
P012 1 Cc7 25 H 1,8 76,9
P016 1 C7 35 H 1,84 79
P019 1 Co6 34 M 1,75 70
P020 5 35 H 1,81 90
P021 5 60 M 1,65 51
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biomecdnicas se ha empleado la codificacién mostrada en la tabla B.2, y su listado completo
junto con su descripcion se indican en las tablas B.3 (variables de cinemitica), B.4 (variables de
fuerza) y B.5 (variables de momento). Por su parte, las variables de origen electromiogréfico se
han denominado en funcién de la abreviatura del musculo correspondiente y han sido listadas

en la tabla B.6.
Tabla B.2: Codificacién de las variables biomecanicas
Tipo de variable Segmento / Articulacién  Direccidn del eje del segmento
C Cinemadtica H Hombro X Antero-posterior
F  Fuerzas C Codo Y Eje longitudinal
M  Momentos M Mano Z Medio-lateral
T Tronco

Tabla B.3: Listado de las variables biomecanicas de cinemitica

Cinemitica (°)

Tronco

CTX Balanceo lateral (derecha positivo)
CTY Rotacién de tronco (izquierda positivo)
CTZ  Flexién-extensién de tronco (extensién positivo)

Hombro

CHX Abduccién-aduccion de hombro (abduccién positivo)
CHY Rotacién interna del himero (positivo)
CHZ Flexién-extensién de hombro (extension positivo)

Codo

CCX  Abduccién-Aduccién de codo (valor nulo)
CCY Pronacién-supinacién del antebrazo (supinacién positivo)
CCZ  Flexién-extensién de codo (extensién positivo)

Muneca

CMX Desviacién ulnar-radial de mufieca (desviacién ulnar positivo)
CMY Rotacién interna de la mufieca (Valor nulo)
CMZ  Flexién palmar-dorsal de mufieca (flexién palmar positivo)




59

Tabla B.4: Listado de las variables biomecanicas de fuerza

Fuerza (N)
Hombro

FHX  Fuerza sobre el eje antero-posterior del hombro (sentido anterior positivo)
FHY Fuerza sobre el eje longitudinal del hombro (sentido vertical positivo)
FHZ  Fuerza sobre el eje medio-lateral del hombro (sentido lateral positivo)

Codo

FCX  Fuerza sobre el eje antero-posterior del codo (sentido anterior positivo)
FCY  Fuerza sobre el eje longitudinal del codo (sentido vertical positivo)
FCZ  Fuerza sobre el eje medio-lateral del codo (sentido lateral positivo)

Mufieca

FMX  Fuerza sobre el eje antero-posterior de la mufieca (sentido anterior positivo)
EMY Fuerza sobre el eje longitudinal de la mufieca (sentido vertical positivo)
FMZ  Fuerza sobre el eje medio-lateral de la mufieca (sentido lateral positivo)

Tabla B.5: Listado de las variables biomecinicas de momento

Momento (N m)

Hombro

MHX Momento en el eje antero-posterior del hombro (sentido anterior positivo)
MHY Momento en el eje longitudinal del hombro (sentido vertical positivo)
MHZ Momento en el eje medio-lateral del hombro (sentido lateral positivo)

Codo

MCX Momento en el eje antero-posterior del codo (sentido anterior positivo)
MCY Momento en el eje longitudinal del codo (sentido vertical positivo)
MCZ Momento en el eje medio-lateral del codo (sentido lateral positivo)

Muneca

MMX Momento en el eje antero-posterior de la mufieca (sentido anterior positivo)
MMY Momento en el eje longitudinal de la mufieca (sentido vertical positivo)
MMZ Momento en el eje medio-lateral de la mufieca (sentido lateral positivo)
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Tabla B.6: Listado de las variables electromiogrificas

Electromiografia (pV)

Activacion, Activacién Normalizada y sSEMG

TS  Trapecio superior
DP  Deltoides posterior
DM Deltoides medio

DA  Deltoides anterior
PM  Pectoral mayor

BB  Biceps braquial

TB  Triceps braquial

EA  Extensores antebrazo
FA  Flexores antebrazo

B.1 Senales del Escenario de Sujeto Unico (ESU)

El escenario ESU estd compuesto por las sefiales de 5 repeticiones del movimiento realizadas
por cuatro sujetos de control (COOl, C009, C017y C018) y cuatro pacientes (POO2, P003, P020
y P021). Se incluyen la activacién y la cinemtica junto con la fuerza y el momento derivadas
por Dindmica Inversa. Las sefiales de las iteraciones se muestran concatenadas en el eje temporal
para poder apreciar las diferencias en sus amplitudes dependiendo del sujeto y repeticion.

Activacion Normalizada véanse las figuras B.1 (controles) y B.2 (pacientes)
Cinematica véanse las figuras B.3 (controles) y B.4 (pacientes)
Fuerza véanse las figuras B.5 (controles) y B.6 (pacientes)
Momento véanse las figuras B.7 (controles) y B.8 (pacientes)

B.2 Senales del Escenario de Sujetos Maltiples (ESM)

Por su parte este escenario estd compuesto por las sefiales de una tnica iteracién del movi-
miento realizadas por cada uno de los 7 sujetos de control (C001, C009, C011, C013, CO15,
Co17y C018) y los 12 pacientes (P002, P003, P005, PO06, P0O07, P00S, P010,P012, PO16,
P019, P020 y P021). Como se pueden realizar tres pruebas diferentes segtin se agrupen los
datos (especificamente en solo controles, solo pacientes o con la poblacién completa mezclando
ambos tipos de sujetos) se han mostrado las tres posibles agrupaciones aunque, obviamente,
esto significa que los datos se encuentran duplicados. Las sefiales de las iteraciones se muestran
concatenadas en el eje temporal con los controles primero y seguidamente los pacientes.

Activacion Normalizada véase la ﬁgura B.9
Cinematica véase la figura B.10
Fuerza véase la figura B.11

Momento véase la figura B.12
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Figura B.1: Concatenacién de las 5 iteraciones de las sefiales de Activacién Normalizada (Escenario
de Sujeto Unico — Controles, F,, = 20 Hz)
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Figura B.2: Concatenacién de las 5 iteraciones de las sefiales de Activacién Normalizada (Escenario
de Sujeto Unico - Pacientes, F, = 20 Hz)



B.1

Seiiales del Escenario de Sujeto Unico (ESU)
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Figura B.4: Concatenacién de las 5 iteraciones de las sefiales de Cinemitica (Escenario de Sujeto
Unico — Pacientes, F, = 20 Hz)
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Figura B.5: Concatenacién de las 5 iteraciones de las sefiales de Fuerza (Escenario de Sujeto Unico
— Controles, F,, = 20 Hz)
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Figura B.6: Concatenacién de las 5 iteraciones de las sefiales de Fuerza (Escenario de Sujeto Unico

— Pacientes, F,

= 20Hz)
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Figura B.7: Concatenacién de las 5 iteraciones de las sefiales de Momento (Escenario de Sujeto
Unico — Controles, F,, = 20 Hz)
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Figura B.8: Concatenaci6n de las 5 iteraciones de las sefiales de Momento (Escenario de Sujeto
Unico — Pacientes, F, = 20 Hz)
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Figura B.9: Concatenacién de las sefiales de Activacién Normalizada (Escenario de Sujetos Multi-
ples, Fr, = 20 Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001,
C009, C011, C013, C015, C017 y C018) y siguiendo con los 12 pacientes (POOZ, P003, P005, P0O06,
P007, P008, P010,P012, PO16, PO19, P020 y POZI)
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Figura B.10: Concatenacién de las sefiales de Cinematica (Escenario de Sujetos Multiples, Fy, =
20 Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011,
C013, C015, C017 y C018) y siguiendo con los 12 pacientes (POOZ, P003, P005, P006, P007, P0OOS,
P010,P012, PO16, P0O19, P020 y POZI)
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Figura B.11: Concatenacién de las sefiales de Fuerza (Escenario de Sujetos Miiltiples, Fy, = 20 Hz).
El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011, C013,
Co15, C017 y C018) y siguiendo con los 12 pacientes (POO2, P003, P005, P006, P0O07, P0OOS,
P010,P012, PO16, P0O19, P020 y POZI)
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Figura B.12: Concatenacién de las sefiales de Momento (Escenario de Sujetos Multiples, Fy, =
20 Hz). El orden de los sujetos se ha dispuesto empezando por los 7 controles (C001, C009, C011,
C013, C015, C017 y C018) y siguiendo con los 12 pacientes (POOZ, P003, P005, P006, P007, P0OOS,
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APENDICE C

Reduccion de dimensionalidad en los datos de entrada:
Self-organizing Map (SOM)

En lugar de encontrarnos ante un algoritmo de reduccién de la dimensionalidad propiamente
dicho, los mapas auto-organizados son ANN de aprendizaje no supervisado con aspecto com-
petitivo, es decir, premian a aquella neurona, y sus vecinas, con menor distancia a la muestra
presente en la entrada de la red [24]. De esta forma las neuronas se reconfiguran automatica-
mente durante la fase de aprendizaje siguiendo las caracteristicas de las muestras de entrada para
obtener finalmente la U-Matrix [42], un mapa de las distancias existentes entre las diferentes
neuronas y sus vecinas. Una vez ya en fase de produccioén, la red agrupard las nuevas muestras
en diferentes clusteres segtin las caracteristicas aprendidas.

En la figura C.1 se muestra un ejemplo de los resultados obtenidos por SOM para la sefial
de Activacién Normalizada en el escenario ESM, aunque dichos resultados son similares a los
obtenidos con el resto de sefiales de ambos escenarios y las conclusiones, por tanto, extrapolables.
Concretando, la figura C.1a corresponde a la U-Matrix resultante del proceso de aprendizaje,
mientras que el resto de figuras muestran mapas etiquetados con el identificador més frecuen-
temente detectado por cada neurona, siendo este el nimero del sujeto (figura C.1b), su sexo
(Aigura C.1c) o el tipo, es decir, si es control o paciente (figura C.1d).

Desafortunadamente, las regiones que se pueden llegar a apreciar en la U-Matrix no estin
claramente definidas y sus distancias con sus vecinas tampoco son destacables. Si acaso, en la
zona de esquina inferior derecha aparecen ciertas regiones que distinguirian al sujeto P008 de sus
vecinos P019 y P007, pero también establece diferencias entre partes de la propia sefial del sujeto
P008. Consiguientemente, se puede establecer que no es factible utilizar una red SOM como
clasificador para este tipo de entradas, siendo precisamente la naturaleza analégico-temporal de
la sefial la hipdtesis para la falta de resultados.

Sin embargo, la verdadera razén por la que SOM ha sido incluido como un método de reduc-
cién de dimensionalidad en los datos de entrada es una consecuencia de las caracteristicas de la
U-Matrix producto del hecho de que se le pueden asignar a las distintas variables o componentes
de la entrada sus contribuciones a la distancia final entre neuronas presente en el mapa. De esta
manera se pueden detectar aquellas componentes que obtengan respuestas similares, pudiendo
ser eliminadas directamente al ser redundante su contribucién a la informacién presente en las
entradas de la red.
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Figura C.2: Norma, por componentes, de la distancia entre neuronas de la sefial de Activacién
Normalizada de toda la poblacién del escenario ESM (Fy, = 20 Hz)

La figura C.2 muestra la contribucién de cada componente a la U-Matrix final para el ejemplo
anterior con la Activacién Normalizada. Desafortunadamente no se aprecian similitudes como
para determinar la existencia de componentes redundantes o, en este caso, musculos con
similares cargas de trabajo en la realizacién del movimiento, situacién que se repite con el
resto de escenarios y entradas. Definitivamente, aunque SOM no haya ayudado a reducir la
dimensién de las variables de entrada, al menos nos confirma que su seleccién no estaba mal

encaminada.






APENDICE D

Prediccion del momento articular: Modelo de Hill

La relacion entre la sefial SEMG producida por un musculo y la fuerza realizada por este es
no lineal y depende de gran cantidad de variables y condiciones. Entre los distintos factores
tenemos el sistema de captura de la sefial, la cantidad de fibras musculares, su velocidad de
contraccion y si esta es de tipo isométrica o isotonica, es decir, si el musculo mantiene constante
su longitud al contraerse o si lo que se mantiene constante es la tensién en el misculo, siendo la
longitud la que se modifica alargindose o acortindose.

Los primeros modelos musculares basados en sus propiedades viscoel4sticas fueron propuestos
por primera vez por Hill en 1938 [17]. Ya de una época mas actual destaca la formulacién
mucho mis refinada de Winters [45] pero, continuamente, surgen estudios que mejoran
distintos aspectos del modelo [7, 8, 10]. En su forma mds bésica cada musculo es modelado
por los tres elementos representados en la figura D.1. Por un lado la parte activa del masculo,
la fibra muscular, se modela con un elemento contrictil (CE). Por el otro, su parte pasiva
se modela afiadiéndose dos elementos elasticos, uno en serie (SE) y otro en paralelo (PE),
representando respectivamente el tendén y el tejido conjuntivo muscular (fascia, epimisio,
perimisio y endomisio). Por la disposicién de sus elementos sabemos que, para cualquier musculo,

Fy =F
-
|: SE CE
F PE
T
- 7

Figura D.1: Esquema del modelo de Hill de un musculo elstico mostrando el elemento contrictil
(CE) y los elementos elasticos en serie (SE) y paralelo (PE) junto con sus respectivas fuerzas
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la relacién entre la fuerza ejercida por sus elementos y la total vendra dada por:

Fcg = Fsg (D.1a)
Fr = Fcg + Fre (D.1b)

Una explicacién detallada del funcionamiento del modelo no entra dentro del contexto del
presente TFM, pero un somero listado de alguno de sus resultados puede proporcionar una
idea suficiente de su complejidad:

Feg = Fepmafi(Lero) fo (Vero (. Lerg. @) ) (D.2)
_ Fmax(FCEmax) (%AL(I‘TS))
Fsg = (ﬁ e Ts -1 (D3)
Fpg = (FmaXS(FCEnfaX)) (C(ALmamnichEo,LTs)AL(LCEO’LTS)) - 1) (D.4)
e PE —

donde u es la activacién muscular normalizada y Fiay, que es la fuerza méxima ejercida por el
musculo, depende de la fuerza mixima de su elemento contréctil Fcg .. También se ha tenido
en cuenta la relacién entre la fuerza ejercida por el elemento contrictil con la longitud activa de
la fibra f}, que depende adicionalmente de la longitud de la fibra éptima Lcgg, asi como con la
velocidad de contraccién del misculo f;. Esta dltima depende a su vez de la maxima velocidad
del elemento contréctil con nivel de activacién maximo Vg, la cual depende, a si mismo, del
porcentaje de fibras contrictiles ripidas a entre otros pardmetros. Por otro lado, Ssg y Spg son
los factores de forma de los elementos correspondientes, Lts es la longitud de distension del
tenddn en reposo, AL es la variacion de longitud del elemento con respecto al reposo y ALpax
su variacién mixima, siendo su longitud maxima L.

Como se puede comprobar, la cantidad de pardmetros es realmente elevada y ha de calibrarse
para cada sujeto mediante un proceso de optimizacién con los datos de una iteracién del
movimiento de entrenamiento. Si se quiere conocer el momento neto en una articulacién en
cuyo movimiento intervengan M musculos, deberdn modelarse todos ellos para conocer la
fuerza total ejercida por cada uno Fr,, y las longitudes de los distintos huesos afectados. De esta
manera, el momento neto de Hill para el k-ésimo grado de libertad (DoF), i1y, vendra dado
por la fuerza que ejercen cada uno de los M muisculos modelados Fr,, y el brazo de momento
de cada uno ellos en relacién con el k-ésimo DoF r, x:

M
THE = Z Frmm.k (D.5)

m=1

Como representacion del rendimiento obtenido mediante el modelo de Hill optimizado
propuesto por Bueno et 4l. [8] se representa en la figura D.2 las predicciones del momento
articular para hombro (componente MHX) y codo (componente MCZ) de 4 iteraciones del
movimiento calculadas con el modelo calibrado por la 1.2 iteracién. Del mismo modo se
reproducen de forma mis detallada en la figura D.3 las predicciones obtenidas para el paciente
P002, pudiéndose comprobar el peor resultado obtenido en este caso con la prediccién de la
componente del hombro sobretodo.
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Figura D.2: Predicciones de validacién por el modelo de Hill del momento articular en hombro
(componente MHX) y codo (componente MCZ) producido en 4 iteraciones del movimiento
realizadas por los sujetos de control. Se muestran, normalizadas en el tiempo, las distintas predicciones
Thk en rojo con el correspondiente momento de referencia ripy en azul
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Figura D.3: Predicciones de validacién por el modelo de Hill del momento articular en hombro
(componente MHX) y codo (componente MCZ) producido en 4 iteraciones del movimiento
realizadas por el paciente P002. Se muestran, normalizadas en el tiempo, las distintas predicciones
Th en rojo con el correspondiente momento de referencia ripy en azul



APENDICE E

Predicciones de validacion del escenario ESU

Una aproximacién mediante parimetros estadisticos para la valoracién de los resultados
obtenidos por un estimador es indispensable por la objetividad proporcionada. Sin embargo,
para alcanzar una comprensién mis completa de su funcionamiento, también es interesante
inspeccionar visualmente los resultados de dichas estimaciones. Es por ello que a continuacién
se muestran los resultados obtenidos durante la fase de validacién de los diversos entrenamientos
realizados en el escenario ESU para las predicciones del momento en las distintas articulaciones
por los tres modelos seleccionados una vez en su configuracién propuesta definitiva. Como
entradas se han empleado las sefiales de Activacién Normalizada y Cinemdtica muestreadas
a F,, = 20Hz. En todos los casos, al tratarse del escenario ESU, cada una de las iteraciones
mostradas ha sido estimada por un modelo entrenado con los datos de las otras cuatro repeticiones
del movimiento de la tarea de beber de un vaso realizadas por el sujeto.

E.1 Averaged Output MLP (aoMLP)

El estimador aoMLP se ha configurado mediante la utilizacién de un ensamble cuya salida
es una simple media de los 30 MLP independientes que lo componen. Cada MLP individual
cuenta con una capa oculta de 10 neuronas intermedias, emplea SCG como algoritmo de
aprendizaje y Early-Stopping con un méiximo de 10 fallos de validacién consecutivos para
detectar las condiciones de parada evitando caer en el sobreaprendizaje.

Sujeto COO1 véase la figura E.1
Sujeto CO09 véase la figura E.2
Sujeto CO17 véase la figura E.3
Sujeto CO18 véase la figura E.4
Sujeto POO2 véase la figura E.5
Sujeto POO3 véase la figura E.6
Sujeto PO20 véase la figura E.7
Sujeto PO21 véase la figura E.8
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E.2 Radial Basis Network (RBN)

En este caso, la configuracién del estimador RBN se ha elegido manualmente tomando
s = 27 como spread de las neuronas gaussianas y configurando el goal, o objetivo del algoritmo
de aprendizaje, como g = 1/21. Recordar que este valor no se ha seleccionado rigurosamente si
no por heuristica, correspondiendo el 21 a la dimension de la entrada de la red, es decir, al total
de las 9 variables de Activacién Normalizada y las 12 de Cinemitica.

Sujeto COO1 véase la figura E.9

Sujeto CO09 véase la figura E.10
Sujeto CO17 véase la figura E.11
Sujeto CO18 véase la figura E.12
Sujeto POO2 véase la figura E.13
Sujeto POO3 véase la figura E.14
Sujeto PO20 véase la figura E.15
Sujeto PO21 véase la figura E.16

E.3 Support Vector Machine (SVM)

Por ultimo, para la configuracién del estimador SVM se ha empleado la formulacién e-SVR
con un kernel RBF. Ademis, se ha dejado el hiperpardmetro € en su valor por defecto (0,001)
mientras que los otros dos hiperpardmetros, C y y, se han optimizado automdticamente mediante
la biisqueda de dichos valores que maximizan la estimacion del rendimiento del modelo calculada
por validacién cruzada.

Sujeto COO1 véase la figura E.17
Sujeto CO09 véase la figura E.18
Sujeto CO17 véase la figura E.19
Sujeto CO18 véase la figura E.20
Sujeto POO2 véase la figura E.21
Sujeto POO3 véase la figura E.22
Sujeto PO20 véase la figura E.23
Sujeto PO21 véase la figura E.24
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Figura E.1: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de

Student
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Figura E.2: Predicciones de validacién por el modelo 20oMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la t distribucién de

Student
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Figura E.3: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la t distribucién de

Student
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Figura E.4: Predicciones de validacién por el modelo a0oMLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
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Figura E.5: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P002. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
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Figura E.6: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P003. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
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Figura E.7: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de

Student



Apéndice E Predicciones de validacion del escenario ESU

MHX MHY MHZ MHX MHY MHZ
2 0 6 1 0 3
0 -1 y S N — 0 _ -1 2
E A E , M £ 4 £ £
7 2 |l 2 e 2 z 2
2f U 2 U o " 2 1
-4 - - -3
0 50 100 0 50 100 0 50 100 0 100 200 300 0 100 200 300 0 100 200 300
(%) (%) (sample) (sample) (sample)
MCX mMcz MCX MCZ
1 4 05 2 3
M
_ okbe 3 o o 25
- 1 -1 2 15
2 - -15 -4 1
0 50 100 0 50 100 0 50 100 0 100 200 300 0 100 200 300 0 100 200 300
(%) (%) (%) (sample) (sample) (sample)
MMX MMY MMZ MMX
04 04 04, 02 04 04
02 02 02 04 02 02
M _ y o= _ _ —
0 £ o £ o £ o £ o £ o
NN < < < < <
-02 ~ 02 -02{ o 0.1 -02 -02
-04 -04 -04 -02 -04 -04
0 50 100 0 50 100 0 50 100 0 100 200 300 0 100 200 300 0 100 200 300
(%) (%) (%) (sample) (sample) (sample)

(a) Predicciones del sujeto P021 (b) Iteracién 1 — Intervalos de confianza

MHX MHY MHZ MHX MHY MHZ
4 0 10 0 -05 3
2 1 -1 - 2
£o £-2 £s £ £-1s £
2 W 3 3 2 0
" 4 -4 25 -1
0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 0 200 400 0 200 400
(sample) (sample) (sample) (sample) (sample) (sample)
MCX MCY mcz MCX mcY Mcz
2 4 4 1 2 3
o 2 s o o i
g0 g0 g2 H H H
-1 -2 1
-1 -2 1
-4 -2 -4
0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 0 200 400 0 200 400
(sample) (sample) (sample) (sample) (sample) (sample)
MMX MMY MMZ MNX MMY MMZ
04 06 0 02 04 04
0.2 0.4 -0.1 0.1 0.2 0.2
£ o £ o2 £ 02 ) ,J\ﬂ\N\WW £ o £ o
02 0 -03 01 02 02
04 02 04 02 04 04
0 200 400 600 0 200 400 o 200 400 o 200 400
(sample) (sample) (sample)

200 400 600 0 200 400 600
(sample)

o

(sample) (sample)

d) Iteracién 3 — Intervalos de confianza

—

(c) Iteracién 2 — Intervalos de confianza

MHY MHX

(Nm)
L Lo
jg
:
:
(Nm)
b Lo o
(Nm)
f;
:
:
(Nm)
L L s L o
(Nm)
b, LS
fg
:
:
(Nm)
>
)
8
)
8

o
3
8
N
8
8
@
&
8
o
o
3
8
N
8
8
9
5
8
o

100 200 300
(sample)

o

&
o

100 200 300
(sample)
MCY

]
o

100 200 300
(sample)
MCX

1 1
300 0 100 200 300 0 100 200 300

!
o
3
8
N
8
8

(Nm)
°
(Nm)
o - n ow
(Nm)
- S
P I
i :
S
N
(Nm)
L o
(Nm)
o -+ n
(Nm)
- ~
o v o

-2
0 100 200 300 0 100 200 300 0 100 200 300
(sample) (sample) (sample) (sample) (sample) (sample)
MMX MMY MMZ MMX MMY MMZ
01 03 0 02 03 0
0 02 -0.1 0.1 02 0.1
£ o1 £ o £ 02 £ o £ o £ 02
-02 0 -03 0.1 0 -03
-0.2 -0.1 -04
0 100 200 300 0 100 200 300

100 200 300
(sample)

-04

o

.
s

100 200 300
(sample)

(sample) (sample)

o

-03
100 200 300

(sample)

o=

0 100 200 300
(sample)

(e) Iteracién 4 — Intervalos de confianza (f) Iteracién 5 — Intervalos de confianza

Figura E.8: Predicciones de validacién por el modelo 20MLP del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7p;. realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de

Student



E.2 Radial Basis Network (RBN)

91

MHY MHZ
0 3
2 j 2 o/
- - R )/ ~
H £ -4\ y £
-6 0
-8 -1
0 50 100 0 50 100
(%) (%)
MCY mCz
0 2
| )
B g / T oAy \
z z 7\ 20 / >
-2 4 4 g
-3 -2
0 50 100 0 50 100 0 50 100
(%) (%) (%)
MMX MMY MMZ
0 015 0
0.1 0.1 01
— \ _ —_
£ 4.2& £ oos £ mzA
—03fS 0 J -03
04 005 04
0 50 100 0 50 100 0 50 100
(%) (%) (%)

(Nm)
o 4 n w

0 50 100 150

(sample)
MCZ

_ o0
E Y
B
4 \
2
0 50 100 150 o s 100 15 0 5 10 150
(sample) (sample) (sample)
MMX MY MMz
0 0.06 0
-01 P 0.04 -0
~ y ~ \ . I\
< 70‘2/\{/[\&/9\ € oy / ¢ 702#%
-03ff\wd \ 0 \ v -03 N
04 002 04
o 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)

(c) Iteracién 2

MHY

(Nm)

L b
|
\X

(Nm)

) 50 100 150 0 50 100 150

0 50 100 150
(sample) (sample) (sample)
MCX McY mcz
2 0 2
1 1
= =1 A = A \
g0 £ £ oM ;
=l 2y -1 \
2 -3 -2
0 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)
MMX MMY MMZ
0 0.15 0
0.1 01 -01
£ 02 \ £ oos . A £ m
-03 0 -03
0.4 -0.05 04
0 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)

(e) Iteracién 4

MHY MHZ
0 4
= = \\ 2 = 2 /X
£ g i
-6 0
150 “o 50 100 150 o 50 100 150
(sample) (sample)
MCY MCcz
2 0 2
. ! | A~ _ !
: : W °
-2
-1 \ - -1 \
-2 -3
0 50 100 150 0 50 100 150 [ 50 100 150
(sample) (sample) (sample)
MM: MMY
o 0.15 0
-0 ~4 0.1 -0.1
£ 02 [ £ oos - £ 70.2@
-03 0 o/ -03
-0.4 -0.05 -0.4
0 50 100 150 0 50 100 150 o 50 100 150
(sample) (sample) (sample)
(b) Iteracion 1
MHY MHZ

(Nm)

(Nm)
o - N w

0 50 100 150
(sample)
MCcZ

= _0
E E [
z z
1 \
0 50 100 150 0 50 100 150
(sample) (sample)
MMX MMZ
0
-0.1

(Nm)
s b
S 8
}

. 04
0 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)
d .z
Iteracién 3
MHX MHY MHZ
-1 0 3
—2| W/
_ \ . 2
55 m ; o \
4 1 )
5 -
0 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)
MCX MCY MCZ
2 0
_ ! -1
g0 , :
1Y -2 af
-2 E -2
0 50 100 150 0 50 100 150 0 50 100 150
(sample) (sample) (sample)
MMX MMY MMZ
0 0.15 0
01 [ 01
£ -02 \ £ oos i £ 02 m
03 0 03
-04 -0.05 -04
0 50 100 150 0 50 100 150 0 5 100 150
(sample) (sample) (sample)

(£) Iteracién 5

Figura E.9: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.10: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.11: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.12: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro
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Figura E.13: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto PO02. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.14: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P003. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro
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Figura E.15: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia iy
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.16: Predicciones de validacién por el modelo RBN del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia iy
junto con las 5 estimaciones 7, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.17: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C001. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia rip
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro
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Figura E.18: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C009. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia rip
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.19: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C017. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia rip
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.20: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto C018. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia rip
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente
funcién objetivo en negro
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Figura E.21: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto PO02. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.22: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto PO03. El primer panel muestra en negro
(sombreado gris) la media (desviacién estindar) de las 5 iteraciones del momento de referencia i
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.23: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P020. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia iy
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro
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Figura E.24: Predicciones de validacién por el modelo SVM del momento articular producido en
las 5 iteraciones del movimiento realizadas por el sujeto P021. El primer panel muestra en negro
(sombreado gris) la media (desviacion estindar) de las 5 iteraciones del momento de referencia iy
junto con las 5 estimaciones 7y, realizadas por el modelo (en rojo). El resto de paneles comparan,
separadamente para cada una de las 5 iteraciones, la prediccién en rojo con la correspondiente

funcién objetivo en negro



APENDICE F

Predicciones de validacion del escenario ESM

Para poder valorar los rendimientos obtenido en el escenario ESM se han incluido algunos de
los resultados més representativos obtenidos durante la fase de validacién de los diversos entrena-
mientos realizados en el escenario para las predicciones de los pares en las distintas articulaciones
por los tres modelos seleccionados una vez en su configuracién propuesta definitiva. Como
entradas se han empleado las sefiales de Activacién Normalizada y Cinemdtica muestreadas
a F, = 20Hz. Al tratarse del escenario ESM, se han realizado tres pruebas diferentes: una
empleando solo controles, otra con solo pacientes y una dltima mezclando ambos tipos de
sujetos. En cada una de ellas se ha aplicado LOOCV, de forma que cada iteracién mostrada ha
sido estimada por un modelo entrenado con los datos del resto de repeticiones del movimiento
de la tarea de beber de un vaso realizadas por los sujetos disponibles en la prueba.

F.1 Averaged Output MLP (aoMLP)

El estimador aoMLP se ha configurado mediante la utilizacién de un ensamble cuya salida
es una simple media de los 30 MLP independientes que lo componen. Todos los MLP indivi-
duales comparten el mismo nimero de neuronas en la capa oculta y que ha sido optimizado
automdticamente para cada sesién. Ademais se emplea SCG como algoritmo de aprendizaje
y Early-Stopping con un méximo de 10 fallos de validacién consecutivos para detectar las
condiciones de parada evitando caer en el sobreaprendizaje.

solo Controles véase la figura F.1
solo Pacientes véase la figura F.2
Poblacion (Controles) véase la figura F.3

Poblacion (Pacientes) véase la figura F.4

F.2 Radial Basis Network (RBN)

En este caso, la configuracién del estimador RBN se ha elegido manualmente tomando
s = 27 como spread de las neuronas gaussianas y configurando el goal, o objetivo del algoritmo
de aprendizaje, como g = 1/21. Recordar que este valor no se ha seleccionado rigurosamente si
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no por heuristica, correspondiendo el 21 a la dimension de la entrada de la red, es decir, al total
de las 9 variables de Activacién Normalizada y las 12 de Cinemitica.

solo Controles véase la figura F.5
solo Pacientes véase la figura F.6
Poblacion (Controles) véase la figura F.7

Poblacion (Pacientes) véase la figura F.8

F.3 Support Vector Machine (SVM)

Por tltimo, para la configuracién del estimador SVM se ha empleado la formulacién e-SVR
con un kernel RBF. Ademds, se ha dejado el hiperpardmetro € en su valor por defecto (0,001)
mientras que los otros dos hiperpardmetros, C y y, se han optimizado automdticamente mediante
la biisqueda de dichos valores que maximizan la estimacion del rendimiento del modelo calculada
por validacién cruzada.

solo Controles véase la figura F.9
solo Pacientes véase la ﬁgura F.10
Poblacién (Controles) véase la ﬁgura F.11

Poblacion (Pacientes) véase la figura F.12
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Figura F.1: Optimizacién automdtica del nimero de neuronas ocultas y prediccion de validacion
por el modelo 20MLP del momento articular para el escenario ESM - solo Controles. Los paneles
de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente al de validacién
(en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la correspondiente
funcion objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
Student
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Figura F.2: Optimizacién automdtica del nimero de neuronas ocultas y prediccion de validacion
por el modelo aoMLP del momento articular para el escenario ESM - solo Pacientes. Los paneles
de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente al de validacién
(en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la correspondiente
funcion objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha estimacién al 95 %
(sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando la distribucién ¢ de
Student
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Figura F.3: Optimizacién automdtica del nimero de neuronas ocultas y prediccion de validacion
por el modelo a0oMLP del momento articular para el escenario ESM — Poblacién (Controles).
Los paneles de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validacién (en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la
correspondiente funcién objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha
estimacién al 95 % (sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando

la distribucién t de Student
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Figura F.4: Optimizacién automdtica del nimero de neuronas ocultas y prediccién de validacion
por el modelo aoMLP del momento articular para el escenario ESM — Poblacién (Pacientes).
Los paneles de optimizacién muestran el rendimiento MSE del entrenamiento (en azul) frente
al de validacién (en rojo). Los paneles de prediccién muestran la prediccién 7y en rojo con la
correspondiente funcién objetivo 7px en negro, afiadiéndose los intervalos de confianza de dicha
estimacién al 95 % (sombreado gris) y 99 % (sombreado amarillo) calculados punto a punto usando
la distribucidn t de Student
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Figura F.5: Mapa de rendimiento de validacién y prediccion de validacién por el modelo RBN
del momento articular para el escenario ESM — solo Controles. Los paneles de optimizaciéon
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en cian los
hiperpardmetros finalmente empleados. Los paneles de predicciéon muestran la prediccion 7y en
rojo con la correspondiente funcién objetivo 7y en negro
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Figura F.6: Mapa de rendimiento de validacién y prediccién de validacién por el modelo RBN del
momento articular para el escenario ESM — solo Pacientes. Los paneles de optimizacién muestran
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la correspondiente funcién objetivo 7jp, en negro
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Figura F.7: Mapa de rendimiento de validacién y prediccién de validacién por el modelo RBN del
momento articular para el escenario ESM — Poblacién (Controles). Los paneles de optimizacién
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en cian los
hiperpardmetros finalmente empleados. Los paneles de predicciéon muestran la prediccion 7y en
rojo con la correspondiente funcién objetivo 7y en negro
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Figura F.8: Mapa de rendimiento de validacién y prediccion de validacién por el modelo RBN
del momento articular para el escenario ESM — Poblacién (Pacientes). Los paneles de optimizacién
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en cian los
hiperpardmetros finalmente empleados. Los paneles de predicciéon muestran la prediccion 7y en
rojo con la correspondiente funcién objetivo 7y en negro
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Figura F.9: Mapa de rendimiento de validacién y prediccién de validacién por el modelo SVM
del momento articular para el escenario ESM — solo Controles. Los paneles de optimizacién
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en verde
los hiperpardmetros encontrados por el proceso de buisqueda con el entrenamiento generalizado
por validacion cruzada. Los paneles de prediccion muestran la prediccién 7y, en rojo con la

correspondiente funcién objetivo 7ip, en negro
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Figura F.10: Mapa de rendimiento de validacién y prediccién de validacién por el modelo SVM del
momento articular para el escenario ESM — solo Pacientes. Los paneles de optimizacién muestran
con un marcador magenta la localizacién del minimo del MSE de validacién y en verde los
hiperpardmetros encontrados por el proceso de busqueda con el entrenamiento generalizado
por validacion cruzada. Los paneles de prediccion muestran la prediccién 7y, en rojo con la
correspondiente funcién objetivo 7ip, en negro
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Figura F.11: Mapa de rendimiento de validacién y prediccién de validacién por el modelo SVM
del momento articular para el escenario ESM - Poblacién (Controles). Los paneles de optimizacién
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en verde
los hiperpardmetros encontrados por el proceso de buisqueda con el entrenamiento generalizado
por validacion cruzada. Los paneles de prediccion muestran la prediccién 7y, en rojo con la

correspondiente funcién objetivo 7ip, en negro
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Figura F.12: Mapa de rendimiento de validacién y prediccién de validacién por el modelo SVM
del momento articular para el escenario ESM — Poblacién (Pacientes). Los paneles de optimizacién
muestran con un marcador magenta la localizacién del minimo del MSE de validacién y en verde
los hiperpardmetros encontrados por el proceso de buisqueda con el entrenamiento generalizado
por validacion cruzada. Los paneles de prediccion muestran la prediccién 7y, en rojo con la
correspondiente funcién objetivo 7ip, en negro



APENDICE G

Tablas complementarias de resultados obtenidos

Para complementar los datos proporcionados en el capitulo 6 se anexan los resultados, deta-
llados a nivel de articulacién (hombro, codo o mufieca), para los distintos modelos propuestos
junto con las variaciones del modelo a0oMLP del escenario ESU.

G.1 Modelos propuestos para el escenario ESU

aoMLP véanse la figura G.1 y la tabla G.1
RBN  véanse la figura G.2 y la tabla G.2
SVM  véanse la figura G.3 y la tabla G.3

G.2 Modelos propuestos para el escenario ESM

aoMLP véanse la figura G.4 y la tabla G.4
RBN  véanse la figura G.5 y la tabla G.5
SVM  véanse la figura G.6 y la tabla G.6

G.3 Variaciones de las configuraciones propuestas

Sin ensamble véanse la figura G.7 y la tabla G.7
Ensamble de 10 MLP véanse la figura G.8 y la tabla G.8
F,, de 200 Hz véanse la figura G.9 y la tabla G.9
Entrenamiento LM véanse la figura G.10 y la tabla G.10
Sin Cinematica véanse la figura G.11 y la tabla G.11
3 Sinergias véanse la figura G.14 y la tabla G.14
5 Sinergias véanse la figura G.15 y la tabla G.15
80 % PCA véanse la figura G.12 y la tabla G.12
90 % PCA véanse la figura G.13 y la tabla G.13
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Figura G.1: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU. Estd
representado tanto por la media y desviacién estindar (en azul) como por la mediana (en rojo) de
las predicciones de validacion realizadas al aplicar LOOCV

Tabla G.1: Resultados del modelo aoMLP para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,86 +0,03 0,92+0,01 0,85+0,12 0,89+0,05 0,88 +0,03 0,85+0,02 0,49 +0,27 0,77 0,24
Codo 0,96 +0,01 0,96+0,02 0,90+0,02 0,98+0,01 0,92+0,03 0,94 +0,03 0,92+0,03 0,83+0,18

R2
Mufie 0,93 +0,02 0,92+0,03 0,51+0,14 0,91+0,05 0,85+0,04 0,90+0,01 0,69=+0,08 0,81+0,08
Total 0,92+0,01 0,93+0,02 0,76+ 0,08 0,93+0,04 0,88+0,02 0,90+0,01 0,70+0,09 0,80+0,15
Homb 0,07 +0,01 0,06+0,00 0,11+0,03 0,13+0,09 0,09+ 0,02 0,08 +0,01 0,11+0,03 0,08+ 0,02
NRMSD Codo 0,05+0,01 0,06+0,01 0,080,001 0,07+0,07 0,09+0,04 0,06+0,01 0,08=0,01 0,080,03
Muiie 0,08 £0,01 0,08+0,01 0,12+0,04 0,14+0,14 0,12+0,06 0,09 +0,02 0,10+0,02 0,10+0,01
Total 0,06 +0,01 0,06+0,01 0,11+0,03 0,11+0,10 0,10+ 0,03 0,08 + 0,01 0,10+0,02 0,09 + 0,02
Homb 0,21+0,04 0,30+0,02 038+0,13 0,52+0,52 0,46+ 0,07 0,49 +0,06 0,42+0,14 0,22 +0,12
Erms Codo 0,11 +0,02 0,25+0,08 0,21 £0,05 0,36+039 0,31 £0,15 0,27 0,05 0,23 +0,05 0,18 +0,11
(Nm) Muifie 0,01 +0,00 0,03 +0,00 0,14+0,05 0,09+0,10 0,11 +0,07 0,06 +0,01 0,06 +0,01 0,04 +0,01
Total 0,11 £0,02 0,19+0,03 0,24+0,06 033+0,34 0,29+0,09 027 +0,04 0,24 +0,06 0,15+0,08
Homb 0,70+0,24 1,20+0,35 1,32+0,32 1,23+0,75 1,52+0,27 1,71+£0,33 2,88+ 1,55 1,58+ 1,61
Emax Codo 0,33 +0,09 0,96+0,49 0,72+0,14 0,80+0,49 0,91 +0,31 0,91+035 1,09+0,47 0,99 + 0,83
(N'm) Mufie 0,04 +£0,00 0,09+0,01 0,85+0,52 0,22+0,13 0,29 +0,13 0,25+0,03 0,34+0,17 0,16 + 0,06

Total 0,36 +0,10 0,75+0,16 0,96+0,22 0,75+0,46 0,91+021 096+0,21 1,44+0,70 091 +0,82
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Figura G.2: NRMSD esperado para el modelo RBN propuesto en el escenario ESU. Estd repre-
sentado tanto por la media y desviacién estdndar (en azul) como por la mediana (en rojo) de las
predicciones de validacion realizadas al aplicar LOOCV

Tabla G.2: Resultados del modelo RBN para el escenario ESU

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,79 +0,03 0,89 +0,03 0,67 +0,27 0,85+0,08 0,73+0,21 0,64 +0,11 0,45+0,29 0,55+ 0,23
Codo 0,93+0,01 0,97 +0,02 0,74+0,23 0,98+0,01 0,86+0,15 0,89 +0,09 0,89 +0,02 0,79+ 0,17

R2
Mufie 0,89 +0,02 0,92+0,01 0,47+0,24 0,81+0,17 0,76+0,20 0,81 +0,06 0,63+0,07 0,76 +0,13
Total 0,87 0,02 0,92+0,02 0,62+0,24 0,88+0,08 0,79+0,19 0,78 +0,03 0,66 +0,09 0,70 + 0,14
Homb 0,10+0,01 0,07+0,01 0,17 +0,09 0,15+0,11 0,14 +0,09 0,16+0,04 0,13+0,05 0,12+ 0,04
NRMSD Codo 0,07 +0,00 0,06+0,01 0,15+0,10 0,07+0,07 0,12+0,10 0,09 +0,03 0,10 +0,02 0,10 + 0,02
Muiie 0,09 +£0,01 0,09 +0,02 0,17+0,18 0,15+0,13 0,15+0,12 0,13+0,05 0,13+0,04 0,10+ 0,02
Total 0,09 +0,01 0,07+0,01 0,17+0,11 0,12+0,10 0,13+0,10 0,13+ 0,04 0,12+0,03 0,11 0,02
Homb 0,34 +0,08 0,35+0,04 057+0,32 0,58+0,57 0,78+0,56 1,23+0,56 0,55+0,28 0,34 +0,13
Erms Codo 0,15+0,01 0,24+0,06 0,44 +0,34 0,38+0,40 0,46 £0,45 0,46 +0,15 0,28 +0,08 0,22 +0,11
(Nm) Muifie 0,02 +0,00 0,03+0,01 0,25+0,18 0,12+0,15 0,15+0,14 0,13+0,10 0,08 +0,02 0,04 + 0,01
Total 0,17 £0,03 0,21 +0,03 0,42+0,28 036+0,37 0,47 +0,38 0,60+0,27 030+0,12 0,20 + 0,08
Homb 1,04+0,28 1,29+0,25 1,60+0,61 1,34+0,82 2,06+0,94 3,08+1,10 2,89 +1,69 1,66+ 1,38
Emax Codo 0,43+0,09 0,84+0,34 1,12+0,55 0,81+0,53 1,14+0,75 1,20+0,39 1,11+0,47 1,18 +0,85
(N'm) Mufie 0,05+0,00 0,10+0,02 0,90+0,59 0,29+0,22 0,39 +0,20 0,32+0,20 0,37 £0,16 0,18 +0,08

Total 0,51+0,12 0,74+0,16 1,21+0,57 0,81+0,52 1,19+0,62 1,54+0,54 1,46+0,75 1,00 +0,75
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Figura G.3: NRMSD esperado para el modelo SVM propuesto en el escenario ESU. Estd repre-
sentado tanto por la media y desviacién estindar (en azul) como por la mediana (en rojo) de las
predicciones de validacion realizadas al aplicar LOOCV

Tabla G.3: Resultados del modelo SVM para el escenario ESU

Controles Pacientes
C001 C009 C017 CO018 P002 P003 P020 P021

Homb 0,80 +0,07 0,87 0,03 0,74 +0,20 0,76+0,21 0,66 +0,23 0,76 + 0,05 0,20+ 0,12 0,65 + 0,12
Codo 0,95+0,01 0,95+0,02 0,83+0,04 0,92+0,14 0,73+0,33 0,86+0,08 0,78 +0,07 0,68+ 0,15

R2
Muidie 0,88 +£0,04 0,87 £0,05 0,42+0,24 0,76 +0,34 0,61 +0,33 0,79 +0,05 0,46+0,19 0,70 +0,15
Total 0,88 +0,04 0,89+0,01 0,67+0,14 0,81+0,23 0,670,330 0,80+0,06 0,48 +0,04 0,68 + 0,08
Homb 0,08 0,02 0,08 +0,01 0,13+0,04 0,13+0,08 0,16+0,09 0,12+0,02 0,16 +0,05 0,11 +0,02
NRMSD Codo 0,06 +0,01 0,07+0,01 0,11+0,03 0,09+0,11 0,14 +0,09 0,10 0,02 0,13 +0,02 0,09 + 0,02
Mufie 0,10+0,01 0,09 +0,01 0,15+0,09 0,14+0,12 0,16+0,08 0,12+0,02 0,14 +0,04 0,09 + 0,02
Total 0,08 0,01 0,08+0,01 0,13+0,05 0,12+0,10 0,15+ 0,08 0,11 +0,02 0,14 +0,03 0,10 0,02
Homb 0,27 +0,08 0,40+ 0,05 0,46+0,12 0,50+0,43 0,93 +0,62 0,71 +0,18 0,77 £0,24 0,40 0,16
Erms Codo 0,14+0,03 0,32+0,05 0,27 +0,10 0,53+0,76 0,50 +0,37 0,42+0,13 0,36 + 0,05 0,25+ 0,09
(N'm) Muiie 0,02+0,02 0,04+0,01 0,25+0,26 0,09+0,08 0,13+0,07 0,09+0,01 0,09+0,02 0,05+0,02
Total 0,14 £0,04 0,25+0,03 0,33+0,13 037+0,42 0,52+0,35 0,40+0,09 0,40+0,09 0,23 +0,04
Homb 1,01 +0,51 1,46+0,23 1,46+0,39 1,33+0,65 235+0,89 2,10+0,50 4,31 £2,70 2,75+ 1,59
Emax Codo 0,43+0,16 1,13+0,51 091032 1,11+ 1,11 1,37+0,73 1,20+0,33 1,45+0,34 1,52+0,52
(N'm) Muifie 0,05+0,01 0,11 +0,02 0,94+0,67 0,23+0,16 0,37 +0,12 0,27 +0,04 0,38 +0,14 0,28 +0,13

Total 0,49 +0,22 0,90+0,20 1,10+0,28 0,89+0,64 1,36+0,57 1,19+0,24 2,05+0,99 1,52 +0,44
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Figura G.4: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESM. Estd
representado tanto por la media y desviacién estdndar (en azul) como por la mediana (en rojo) de
las predicciones de validacion realizadas al aplicar LOOCV

Tabla G.4: Resultados del modelo aoMLP para el escenario ESM

solo solo Poblacién completa
Controles Pacientes Controles Pacientes Todos

Homb 0,63 = 0,14 0,50 +0,17 0,67 = 0,18 0,52 +0,14 0,58 +0,17

R2 Codo 0,89 + 0,07 0,59+ 0,15 0,91 £ 0,04 0,63 = 0,22 0,74 £ 0,22
Mune 0,66 + 0,15 0,29 + 0,22 0,60 = 0,12 0,24 + 0,19 0,37 £ 0,24

Total 0,72 = 0,08 0,46 = 0,16 0,73 £ 0,07 0,47 = 0,15 0,56 +0,18

Homb 0,25 + 0,08 0,28 = 0,12 0,22 + 0,09 0,27 = 0,09 0,25 + 0,09

NRMSD Codo 0,19 £ 0,08 0,30 = 0,12 0,16 = 0,04 0,27 = 0,12 0,23 0,11
Mune 0,28 +0,13 0,27 = 0,09 0,27 = 0,04 0,27 = 0,09 0,27 = 0,07

Total 0,24 + 0,07 0,28 = 0,09 0,22 + 0,03 0,27 = 0,08 0,25 + 0,07

Homb 1,04 + 0,20 1,51 £0,71 0,87 £ 0,29 1,41 £ 0,51 1,21 £ 0,51

Erms Codo 0,80 0,47 1,58 £ 1,05 0,58 £ 0,18 1,26 + 0,60 1,01 £ 0,59
(Nm) Mufie 0,18 0,14 0,31+ 0,16 0,13 £ 0,06 0,29 = 0,16 0,23 £ 0,15
Total 0,67 = 0,21 1,14 £ 0,58 0,53 £ 0,11 0,99 + 0,34 0,82 + 0,36

Homb 2,12+ 0,42 3,30+ 0,87 1,88 + 0,37 3,06 + 0,63 2,63 + 0,79

Emax Codo 1,62 + 0,56 3,20+ 1,56 1,30 + 0,19 2,74 + 0,97 2,21 +£1,05
(Nm) Mune 0,36 + 0,13 1,11 £ 1,12 0,25 + 0,09 1,05+ 1,12 0,76 + 0,96
Total 1,37 + 0,26 2,54 + 0,96 1,14 £ 0,14 2,29+ 0,72 1,87 + 0,80
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Figura G.5: NRMSD esperado para el modelo RBN propuesto en el escenario ESM. Estd repre-
sentado tanto por la media y desviacién estindar (en azul) como por la mediana (en rojo) de las
predicciones de validacion realizadas al aplicar LOOCV

Tabla G.5: Resultados del modelo RBN para el escenario ESM

solo solo Poblacién completa
Controles Pacientes Controles Pacientes Todos

Homb 0,57 £ 0,21 0,15+ 0,10 0,45+ 0,22 0,16 = 0,08 0,27 £ 0,21

R2 Codo 0,85 + 0,08 0,34 + 0,22 0,80 = 0,11 0,38 = 0,21 0,53 0,27
Mune 0,50 = 0,20 0,15+ 0,09 0,37 = 0,15 0,15+ 0,13 0,23 +0,18

Total 0,64 = 0,14 0,21 = 0,09 0,54 = 0,09 0,23 = 0,09 0,34+ 0,18

Homb 0,28 £ 0,10 0,30 = 0,10 0,26 = 0,11 0,28 = 0,08 0,27 = 0,09

NRMSD Codo 0,20 = 0,05 0,30 = 0,14 0,18 £ 0,06 0,26 = 0,10 0,23 + 0,09
Mune 0,35+ 0,12 0,29 = 0,10 0,31 +0,14 0,23 = 0,07 0,26 = 0,11

Total 0,28 + 0,07 0,30 = 0,10 0,25 + 0,09 0,26 = 0,08 0,26 = 0,08

Homb 1,61 +0,73 6,05 + 4,51 1,51 + 0,64 4,66 + 4,18 3,50 + 3,64

Erms Codo 0,95+ 0,44 4,74 + 4,00 0,98 + 0,46 3,41 +£ 2,49 2,52 + 2,30
(N m) Mune 0,34 + 0,23 3,65 + 3,55 0,80 0,58 2,46 2,42 1,85 £ 2,09
Total 0,97 £ 0,45 4,81 £ 3,52 1,10 £ 0,46 3,51 +£2,78 2,62 + 2,49

Homb 3,21+ 1,59 16,25 + 12,79 3,58 + 1,66 11,96 +7,75 8,87 £ 7,41

Emax Codo 2,03 + 1,01 11,97 £ 11,40 2,50 + 1,45 9,61 + 8,21 6,99 + 7,37
(N m) Mufie 0,65 = 0,50 12,27 £ 17,51 2,11+ 1,81 9,02+ 10,81 6,47 +£9,18

Total 1,96 + 1,01 13,50 + 13,36 2,73+1,57 10,19 +8,24 7,44 +£7,48
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Figura G.6: NRMSD esperado para el modelo SVM propuesto en el escenario ESM. Estd repre-
sentado tanto por la media y desviacién estindar (en azul) como por la mediana (en rojo) de las
predicciones de validacion realizadas al aplicar LOOCV

Tabla G.6: Resultados del modelo SVM para el escenario ESM

solo solo Poblacién completa
Controles Pacientes Controles Pacientes Todos

Homb 0,32 +0,12 0,22 +0,17 0,50 = 0,22 0,24 + 0,18 0,34+ 0,23

R2 Codo 0,67 = 0,27 0,37 £ 0,23 0,78 0,13 0,39 = 0,28 0,54 + 0,30
Mune 0,36 = 0,16 0,08 £ 0,10 0,33 £ 0,22 0,11+ 0,15 0,19 + 0,20

Total 0,45+ 0,16 0,23 + 0,15 0,54 = 0,15 0,25+ 0,18 0,35 + 0,20

Homb 0,30 = 0,05 0,31 +0,11 0,25+ 0,10 0,32 + 0,10 0,29 = 0,10

NRMSD Codo 0,23 = 0,06 0,31 + 0,10 0,18 £ 0,02 0,29 = 0,11 0,25 + 0,10
Mune 0,28 = 0,05 0,28 = 0,09 0,26 = 0,06 0,26 = 0,08 0,26 = 0,07

Total 0,27 = 0,03 0,30 = 0,08 0,23 + 0,04 0,29 = 0,07 0,27 = 0,07

Homb 1,58 + 0,48 1,68 £ 0,57 1,17+ 0,43 1,70 £ 0,50 1,51 £ 0,54

Erms Codo 0,85+ 0,18 1,41 £0,33 0,75+ 0,10 1,25+ 0,32 1,07 £ 0,36
(N m) Mufie 0,16 = 0,07 0,43 £ 0,38 0,15 = 0,05 0,31 0,16 0,25+ 0,15
Total 0,86 = 0,20 1,17 £ 0,35 0,69 + 0,13 1,09 + 0,26 0,94 + 0,29

Homb 3,21+ 0,59 3,79 +£ 0,97 2,61 +0,85 3,73+ 0,92 3,32 + 1,04

Emax Codo 1,82 + 0,33 2,92 + 0,61 1,69 + 0,13 2,67 0,59 2,31+ 0,67
(N m) Mune 0,30 = 0,11 1,42 + 1,33 0,36 = 0,09 1,12 + 1,06 0,84 +£ 0,91
Total 1,78 + 0,20 2,71+ 0,87 1,55 + 0,31 2,51 +0,72 2,15+ 0,76
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Figura G.7: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU sin usar
aprendizaje por ensamble. Estd representado tanto por la media y desviacién estindar (en azul)
como por la mediana (en rojo) de las predicciones de validacién realizadas al aplicar LOOCV

Tabla G.7: Resultados del modelo aoMLP para el escenario ESU — Sin ensamble

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,84 +0,05 0,89 +0,03 0,76+0,17 0,73+0,30 0,81+0,11 0,78+0,07 0,39 +0,26 0,75+ 0,21

R2 Codo 0,93 +0,04 0,96+0,02 0,84 +0,06 0,94+ 0,08 0,83 +0,12 0,90+0,05 0,89 +0,03 0,80+ 0,16
Mune 0,91 +0,03 0,91 +0,03 0,41+0,12 0,83+0,17 0,71 £0,12 0,85+ 0,04 0,64 +0,06 0,79 +0,05

Total 0,89 +0,02 0,92+0,02 0,67 +0,10 0,84 +0,18 0,79 +0,11 0,84 +0,04 0,64 +0,08 0,78 +0,13

Homb 0,08 +0,02 0,07 +0,01 0,15+0,06 0,17 +0,17 0,11 +£0,05 0,11 +0,02 0,13 +£0,05 0,09 + 0,02

NRMSD Codo 0,07 +0,02 0,06+0,01 0,11+0,03 0,09+0,09 0,11+0,05 0,09+0,03 0,09+0,01 0,09+ 0,03
Mudne 0,08 +£0,01 0,08 +0,01 0,14 +0,07 0,15+0,16 0,17+ 0,09 0,12+0,04 0,11 £0,02 0,10 + 0,01

Total 0,08 +0,02 0,07 +0,01 0,13+0,05 0,14+0,14 0,13+0,06 0,10+0,03 0,11 +0,02 0,10 + 0,02

Homb 0,25+ 0,05 0,36 +0,03 0,60 +0,34 0,93 + 1,28 0,62+0,33 0,78+0,33 0,53+0,22 0,25+0,10

Eims Codo 0,17 £0,06 0,26 +0,05 0,28 +0,09 0,47 +0,54 0,46 +0,30 0,40 +0,11 0,27 + 0,04 0,20 + 0,11
(N m) Mudne 0,01 +£0,00 0,03 +0,00 0,19+0,11 0,10 +0,11 0,18 +0,16 0,10 +0,07 0,07 +£0,01 0,04 +0,01
Total 0,15+ 0,04 0,22+0,02 0,35+0,16 0,50 +0,64 0,42+0,26 0,43+0,16 0,29 +0,08 0,16 + 0,07

Homb 0,79+0,22 1,51+0,34 1,79+0,98 1,87 +1,62 1,86 £ 0,66 2,61 +0,95 2,95+1,57 1,66+1,39

Emax Codo 0,55+0,23 1,01 £0,35 0,99+0,35 1,15+ 0,91 1,30 £ 0,61 1,27+0,36 1,19+0,39 1,04 +0,81
(N'm) Mudne 0,04 +£0,01 0,09+0,01 1,11 +0,70 0,24+0,16 0,48 +£0,29 0,30 +0,12 0,34 +0,16 0,19 +0,08
Total 0,46 +0,14 0,87 +0,12 1,30 £0,60 1,09 + 0,89 1,21 £0,51 1,40+0,44 1,50+0,68 0,96 +0,75
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Figura G.8: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU con un
ensamble menor, de tinicamente 10 MLP, y aplicando la mediana. Estd representado tanto por
la media y desviacién estdndar (en azul) como por la mediana (en rojo) de las predicciones de
validacion realizadas al aplicar LOOCV

Tabla G.8: Resultados del modelo aoMLP para el escenario ESU — Ensamble de 10 MLP

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,86+ 0,03 0,92+0,01 0,86+0,10 0,86+0,09 0,86+ 0,04 0,85+0,02 0,47 +0,26 0,78 + 0,25

R2 Codo 0,96 +0,01 0,96+ 0,02 0,90 +0,02 0,97 + 0,03 0,92+0,03 0,94+0,02 091+0,03 0,83+0,16
Mufne 0,93 +0,02 0,91 +0,03 0,53 +0,14 0,88 +0,11 0,83 +0,05 0,89+0,02 0,67+0,08 0,83+0,06

Total 0,92+0,01 0,93+0,02 0,76 +0,06 0,90 + 0,08 0,87 +£0,03 0,90+0,01 0,68+0,09 0,81+0,14

Homb 0,07 +0,01 0,06+ 0,00 0,11+0,04 0,13+0,09 0,09 +0,02 0,09+0,01 0,11 +0,03 0,08 + 0,02

NRMSD Codo 0,05+0,01 0,06+0,01 0,09+0,02 0,08+0,07 0,09+0,03 0,06+0,01 0,08+0,01 0,08+ 0,02
Mufne 0,08 +£0,01 0,08 +0,01 0,13+0,05 0,13+0,13 0,13+ 0,07 0,09+0,02 0,11+0,02 0,10+0,01

Total 0,07 +0,01 0,07+0,01 0,11+0,03 0,11+0,10 0,10+ 0,04 0,08 +0,01 0,10 +0,02 0,09 + 0,01

Homb 0,21 +0,04 0,32+0,02 0,40+0,15 0,51 +0,49 0,49+0,12 0,50+ 0,07 0,43 +0,13 0,22 +0,13

Eims Codo 0,12+0,03 0,25+0,07 0,22+0,06 0,39+0,44 0,32+0,15 0,27 +0,03 0,23 +0,05 0,18 +0,11
(N'm) Mudne 0,01 +£0,00 0,03 +0,00 0,12+0,04 0,10+0,11 0,12+ 0,08 0,06 +0,01 0,06+0,01 0,03+0,01
Total 0,12+0,02 0,20 +0,02 0,25+0,07 0,33 + 0,35 0,31 +0,12 0,28 £0,04 0,24 +£0,06 0,14 + 0,08

Homb 0,75 +0,27 1,25+0,39 1,33+0,36 1,31 +0,70 1,60 £ 0,34 1,79+0,43 2,90+ 1,52 1,58 +£1,65

Emax Codo 0,36 £0,09 0,95+0,47 0,73+0,19 0,89+0,62 0,93+0,33 0,94+0,30 1,11 +0,47 1,01 +0,83
(N'm) Mufie 0,04 +0,00 0,10+0,02 0,78 +£0,57 0,23 +0,15 0,32+ 0,14 0,26 +0,02 0,35+0,16 0,16 + 0,06
Total 0,38 +0,11 0,77+0,15 0,95+0,23 0,81 +0,49  0,95+0,25 0,99 +0,23 1,45+0,69 0,91 + 0,83
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Figura G.9: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU usando una
Fi de 200 Hz. Est4 representado tanto por la media y desviacién estindar (en azul) como por la
mediana (en rojo) de las predicciones de validacién realizadas al aplicar LOOCV

Tabla G.9: Resultados del modelo a0oMLP para el escenario ESU - Fy,, de 200 Hz

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,87 +0,03 0,92+0,01 0,85+0,15 0,88 +0,12 0,88 +0,04 0,88 +0,03 0,53 +0,28 0,80+ 0,23
Codo 0,96 +0,02 0,97 0,00 0,87 0,09 0,97 +0,04 0,92+0,04 0,93+0,05 0,93+0,02 0,87 +0,15

R2
Mufie 0,92 +0,03 0,92+0,02 0,59 +0,20 0,85+0,20 0,83 +0,08 0,90+ 0,04 0,70=+0,08 0,84 +0,08
Total 0,92+0,02 0,94+0,01 0,77+0,11 090+0,12 0,88 +0,04 0,90+ 0,03 0,72+0,09 0,84 +0,13
Homb 0,07 +0,02 0,06+0,00 0,11+0,05 0,12+0,12 0,09 +0,03 0,08 +0,01 0,10 0,03 0,07 £ 0,01
NRMSD Codo 0,05+0,02 0,05+0,00 0,10+0,05 0,06+0,06 0,08+0,04 0,06=+0,02 0,08+0,01 0,07+0,02
Muiie 0,08 £0,02 0,08 +0,01 0,10+0,04 0,13+0,15 0,15+0,11 0,08 +0,02 0,10+0,02 0,08 + 0,02
Total 0,07 0,02 0,07+0,01 0,10+0,04 0,11+0,11 0,11+0,06 0,07 +0,02 0,09 + 0,02 0,08 + 0,01
Homb 0,21 +0,07 0,30+0,02 0,40+0,20 0,60+0,84 0,51 +0,19 0,45+0,09 0,40 0,15 0,20 +0,11
Erms Codo 0,13+0,05 0,23+0,02 0,26+0,14 0,36 +0,44 0,31 £0,17 0,26 +0,06 0,21 +0,05 0,16+ 0,10
(Nm) Muifie 0,01 +£0,00 0,03+0,01 0,10+0,05 0,11+0,15 0,15+0,16 0,06 +0,02 0,06 +0,02 0,03 + 0,01
Total 0,12+0,04 0,19+0,01 025+0,12 036+0,48 0,32+0,17 0,26+0,05 0,22+0,07 0,13 +0,07
Homb 0,69+021 1,21+0,24 1,33+0,29 1,34+1,23 1,67+0,37 1,65+0,37 2,80+1,57 1,57 + 1,60
Emax Codo 0,34+0,11 0,87+0,19 091+032 0,80+0,57 0,89+0,25 0,92+0,31 1,11+0,42 0,91 +0,75
(N'm) Mufie 0,04 +0,01 0,10+0,01 0,77+0,50 0,23+0,20 0,35+0,22 0,24 +0,05 0,35+0,15 0,16 +0,07

Total 0,36 +0,10 0,73+0,10 1,00+0,30 0,79+0,66 0,97 +0,26 0,94 +0,24 1,42+0,69 0,88 +0,79
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Figura G.10: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU entrenando
con el algoritmo Levenberg-Marquardt (LM). Est4 representado tanto por la media y desviacién

estindar (en azul) como por la mediana (en rojo) de las predicciones de validacién realizadas al
aplicar LOOCV

Tabla G.10: Resultados del modelo aoMLP para el escenario ESU - Entrenamiento LM

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,87 +0,03 0,89 +0,05 0,84+0,14 0,89+0,10 0,87 +0,06 0,86+ 0,03 0,27 +0,13 0,45 + 0,09

R2 Codo 0,96 +0,02 0,96 +0,01 0,86+0,10 0,98 +0,02 0,91+0,05 0,94 +0,03 0,66+0,31 0,74 +0,16
Mudne 0,92 +0,04 0,90 +0,03 0,63 +0,21 0,86 + 0,20 0,81 +0,11 0,90+0,03 0,44 +0,29 0,64 +0,13

Total 0,92+0,02 0,92+0,02 0,78 +0,13 0,91 +0,11 0,86 £ 0,06 0,90+0,03 0,46+0,21 0,61 +0,10

Homb 0,06 +0,02 0,07 +0,02 0,11 +0,04 0,11+0,09 0,10 +0,04 0,08 +0,01 0,22+0,12 0,13 +0,07

NRMSD Codo 0,05+0,02 0,06+0,01 0,10+ 0,06 0,06+ 0,05 0,09 +0,03 0,06+0,01 0,16+0,10 0,09 + 0,04
Mudne 0,08 +£0,02 0,09 +0,01 0,11+0,06 0,12+0,12 0,15+0,11 0,08 +0,02 0,18 +0,11 0,13 +0,03

Total 0,07 +0,02 0,07 +0,01 0,10+0,05 0,09+0,09 0,11 +0,06 0,07+0,01 0,18+0,11 0,12+ 0,04

Homb 0,20 +0,06 0,31 +0,04 0,39+0,19 0,45+0,52 0,54 +0,25 0,46+ 0,08 3,17 +3,63 0,79 + 0,47

Eims Codo 0,12+0,04 0,24 +0,04 0,25+0,14 0,28+0,29 0,32+0,16 0,24 +0,03 1,04 +1,08 0,24 +0,11
(N'm) Mune 0,01 +£0,00 0,03+0,01 0,11+0,03 0,08+0,10 0,14 +0,13 0,06 +0,01 0,30 + 0,32 0,06 + 0,02
Total 0,11 +0,04 0,19+0,02 025+0,11 0,27 +0,30 0,34 +0,18 0,25+0,04 1,50+1,68 0,36+ 0,18

Homb 0,66 +0,18 1,17+0,39 1,20+0,15 1,09 + 0,83 1,64 £ 0,39 1,56 +0,34 9,97 + 8,29 4,43 +0,96

Emax Codo 0,34+0,11 0,77+0,26 0,87 +0,33 0,69 +0,47 0,90 +0,22 0,91+0,28 3,29+252 1,26+ 0,75
(N'm) Mufie 0,04 +0,01 0,09 +0,03 0,66+0,27 0,19+0,16 0,34 +0,18 0,19+0,03 0,97 +0,73 0,29 + 0,08
Total 0,34 +0,09 0,68 +0,20 091+0,16 0,66 +0,49 0,96+0,25 0,89 +0,21 4,74 +3,85 1,99 + 0,46
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Figura G.11: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU sin usar la
sefial de Cinemdtica. Est4 representado tanto por la media y desviacién estindar (en azul) como por
la mediana (en rojo) de las predicciones de validacién realizadas al aplicar LOOCV

Tabla G.11: Resultados del modelo aoMLP para el escenario ESU - Sin Cinemadtica

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,57 +0,12 0,73 +0,06 0,73+0,15 0,72+0,07 0,44+0,11 0,74+0,08 0,24 +0,13 0,46 +0,15

R2 Codo 0,44 +0,07 0,57 +0,05 0,61 +0,02 0,72+ 0,05 0,31 +£0,09 0,70 +0,06 0,68 +0,07 0,51+0,11
Mufne 0,46 +0,07 0,57 +£0,02 0,33 +0,11 0,67 +0,11 0,30+ 0,08 0,74 +0,06 0,43 +0,04 0,45+0,12

Total 0,49 +0,07 0,62 +0,02 0,56 +0,03 0,70+0,07 0,35+0,05 0,72+0,04 0,45+0,05 0,47 +0,12

Homb 0,15+0,02 0,12+0,01 0,15+0,02 0,15+0,02 0,18 +0,02 0,13+0,02 0,16 0,04 0,16 + 0,03

NRMSD Codo 0,22+0,01 0,21+0,02 0,17+0,02 0,17+0,02 0,23+0,02 0,14+0,01 0,15+0,02 0,18 + 0,02
Mune 0,21 +0,01 0,17+0,01 0,15+0,05 0,16+0,02 0,21 +£0,01 0,13 +0,01 0,15+0,02 0,19 + 0,02

Total 0,19+0,01 0,17 +0,01 0,16+0,02 0,16 +0,02 0,21 +0,02 0,13+0,01 0,15+0,02 0,18 + 0,02

Homb 0,54 +0,06 0,57 +0,03 0,49 +0,06 0,54 + 0,08 1,02+0,18 0,79 +0,05 0,61+0,11 0,40 +0,12

Eims Codo 0,53 +0,03 0,85+0,03 0,42+0,05 0,78+0,10 0,84 +0,08 0,66+ 0,07 0,41 +0,07 0,38 + 0,05
(N'm) Mudne 0,04 +0,00 0,07 +0,00 0,13+0,06 0,10+0,02 0,17 £0,02 0,09 +0,00 0,08 +0,02 0,06 + 0,01
Total 0,37 +0,03 0,49 +0,01 0,35+0,03 0,47 +0,06 0,68 +0,07 0,51 +0,02 0,37 +0,05 0,28 + 0,06

Homb 1,67 +0,31 1,82+0,31 1,58+0,13 1,61+0,17 2,83+0,50 2,31 +0,45 3,06+ 1,36 1,78 +1,26

Emax Codo 1,42+0,19 2,24+0,19 1,29+0,27 2,22+0,13 2,10+ 0,24 2,30+0,53 1,43+0,40 1,42+0,28
(N'm) Mufie 0,10 +0,01 0,18 +0,02 0,85+ 0,66 0,29 +0,02 0,46 +0,06 0,31 +0,05 0,36 +0,15 0,23 + 0,07
Total 1,06+0,15 1,41 +0,07 1,24+0,22 1,37 +0,10 1,80 +£ 0,25 1,64 +0,28 1,62+0,59 1,14 +0,47
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Figura G.12: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU aplicando
PCA para dejar tinicamente las componentes que explican el 80 % de la varianza de la entrada. Estd
representado tanto por la media y desviacién esténdar (en azul) como por la mediana (en rojo) de
las predicciones de validacion realizadas al aplicar LOOCV

Tabla G.12: Resultados del modelo aoMLP para el escenario ESU - 80 % PCA

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,81 +0,02 0,88 +0,02 0,84 +0,10 0,80 + 0,15 0,80 +£0,06 0,75+0,07 0,30+0,17 0,72 +0,20

R2 Codo 0,86 +0,06 0,93+0,03 0,78 +0,04 0,93 +0,03 0,85+ 0,05 0,83+0,05 0,76 +0,06 0,76 + 0,15
Mudne 0,85 +0,09 0,87 +0,04 0,54 +0,08 0,85+0,10 0,70 £ 0,13 0,82 +0,04 0,55+0,06 0,67 +0,09

Total 0,84 +0,05 0,90 +0,02 0,72+0,04 0,86+0,09 0,79+0,07 0,80+0,03 0,54 +0,05 0,72+0,14

Homb 0,09 +0,01 0,08+0,01 0,11+0,02 0,16+0,12 0,13+0,05 0,13+0,01 0,15+0,04 0,11 +0,03

NRMSD Codo 0,11 +0,03 0,08+0,02 0,13+0,02 0,12+0,07 0,12+0,04 0,11+0,01 0,14 +0,03 0,11 +0,03
Mufne 0,11 +0,03 0,10+0,01 0,11 +0,03 0,13 +0,08 0,16 £ 0,09 0,11 +0,01 0,13+0,02 0,13 +0,01

Total 0,11 +0,02 0,09 +0,01 0,12+0,02 0,13+0,09 0,14+0,06 0,11 +0,01 0,14 +0,03 0,11 +0,02

Homb 0,29 +0,03 0,39 +0,01 0,37 +£0,07 0,69 + 0,68 0,76 + 0,45 0,75 +0,04 0,54+0,09 0,27 +0,10

Eims Codo 0,28 +£0,08 0,34 +0,09 0,31 +0,07 0,54+0,39 0,48+0,31 0,48+0,05 0,37 +0,07 0,23 + 0,09
(N'm) Mune 0,02 +0,00 0,04 +0,00 0,12+0,07 0,08+0,04 0,15+0,12 0,07 +0,00 0,07 +0,02 0,04 + 0,01
Total 0,20 + 0,04 0,26 +0,03 0,27 +0,05 0,44+0,37 0,47 +0,29 0,43+0,03 0,33+0,06 0,18+ 0,07

Homb 0,90 +0,18 1,42+0,29 1,17 +0,22 1,59 + 1,13 2,03+0,82 2,16+0,22 294+1,47 1,53+1,58

Emax Codo 0,84+0,30 1,18+0,46 1,09 +0,37 1,27 +0,46 1,19+ 0,51 1,44+0,18 1,24+0,36 1,12 + 0,62
(N'm) Mufie 0,05+0,01 0,11+0,02 0,83 +0,56 0,20+ 0,08 0,36 + 0,18 0,29 +0,03 0,34+0,16 0,17 +0,08
Total 0,60 +0,15 0,91 +0,13 1,03+0,24 1,02 +0,54 1,19+ 0,49 1,30+0,10 1,51 +0,63 0,94 +0,73
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Figura G.13: NRMSD esperado para el modelo aoMLP propuesto en el escenario ESU aplicando
PCA para dejar tinicamente las componentes que explican el 90 % de la varianza de la entrada. Estd
representado tanto por la media y desviacién esténdar (en azul) como por la mediana (en rojo) de
las predicciones de validacion realizadas al aplicar LOOCV

Tabla G.13: Resultados del modelo aoMLP para el escenario ESU - 90 % PCA

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,83 +0,03 0,90+0,01 0,83+0,12 0,82+0,17 0,82+0,06 0,80+ 0,04 0,33+0,17 0,75 +0,22

R2 Codo 0,91 +0,02 0,94 +0,03 0,83 +0,03 0,95+ 0,03 0,86 +0,06 0,86+0,03 0,80+0,06 0,80+0,13
Mufne 0,91 +0,02 0,90 +0,03 0,51 +0,10 0,86 +0,11 0,72+ 0,11 0,85+0,03 0,60+ 0,05 0,78 +0,05

Total 0,88 +0,01 0,91 +0,02 0,73+0,08 0,87 +0,10 0,80+ 0,06 0,84+0,02 0,58 +0,06 0,78 +0,13

Homb 0,08 +0,01 0,07+0,00 0,12+0,04 0,15+0,12 0,14 +0,09 0,11 +0,01 0,14+ 0,04 0,09 + 0,02

NRMSD Codo 0,09 +0,01 0,08+0,02 0,11 +0,02 0,10 +0,08 0,12+ 0,07 0,10+0,01 0,13+0,03 0,10+ 0,02
Mufne 0,09 +0,01 0,09+0,01 0,11+0,03 0,12+0,09 0,17+0,11 0,10+0,01 0,13 +0,02 0,11 +0,01

Total 0,09+ 0,01 0,08+0,01 0,11+0,02 0,12+0,09 0,14 +0,09 0,10+0,01 0,13 +0,03 0,10 + 0,01

Homb 0,27 +0,04 0,36 +0,02 0,39 +0,12 0,62+0,66 0,77 +0,59 0,64 +0,04 0,54+0,12 0,25 +0,12

Eims Codo 0,20 +£0,04 0,34+0,08 0,25+0,05 0,47+0,39 0,49 +0,37 0,44 +0,04 0,34+0,07 0,21 +0,07
(N'm) Mune 0,02 +0,00 0,03+0,00 0,14+0,06 0,08+0,06 0,15+0,13 0,07 +0,00 0,07 +0,02 0,04 + 0,01
Total 0,16 +0,02 0,24 +0,03 0,26 +0,06 0,39+0,37 0,47 +0,36 0,38 +0,03 0,32+0,06 0,16 + 0,06

Homb 0,84 +0,13 1,31+0,37 1,28 +0,40 1,45+ 1,20 1,96 £0,82 2,03+0,14 2,92+1,52 1,57 +1,59

Emax Codo 0,54+0,08 1,17+0,45 0,86+0,25 1,11 0,57 1,30 £ 0,65 1,44 +0,23 1,25+0,37 1,06 + 0,61
(N'm) Mufie 0,05+ 0,00 0,10+0,02 0,97 +0,38 0,23 +0,09 0,36 +0,18 0,28 +0,02 0,33 +0,17 0,16 = 0,07
Total 0,48 +0,05 0,86+0,13 1,03+0,24 0,93+ 0,61 1,21 +£0,54 1,25+0,07 1,50+0,65 0,93 +0,74
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Figura G.14: NRMSD esperado para el modelo ao0MLP propuesto en el escenario ESU codificando
la actividad muscular con solo 3 Sinergias. Estd representado tanto por la media y desviacién
estindar (en azul) como por la mediana (en rojo) de las predicciones de validacién realizadas al

aplicar LOOCV

Tabla G.14: Resultados del modelo a0MLP para el escenario ESU - 3 Sinergias

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,85+0,02 0,91 +0,01 0,84+0,13 0,87+0,07 0,88 +0,04 0,84 +0,03 0,47 +0,28 0,78 +0,24

R2 Codo 0,96 +0,01 0,96+ 0,02 0,89 +0,03 0,98 + 0,01 0,93 +0,02 0,92+0,04 0,92+0,03 0,83+0,18
Mufne 0,92 +0,03 0,91 +0,02 0,49 +0,13 0,89 + 0,09 0,85+ 0,05 0,88 +0,02 0,69 +0,07 0,80+0,09

Total 0,91 +0,01 0,93+0,01 0,74 +0,06 0,92+ 0,05 0,89 +0,03 0,88+0,01 0,69+0,09 0,81+0,14

Homb 0,07 +0,01 0,07+0,01 0,11+0,03 0,13+0,10 0,09 +0,02 0,09+ 0,00 0,11 +0,03 0,08 + 0,02

NRMSD Codo 0,05+0,01 0,06+0,01 0,09+0,02 0,07+ 0,05 0,08 +£0,02 0,07 +0,02 0,08 +0,01 0,08 +0,03
Mune 0,08 +£0,01 0,08+0,01 0,13+0,04 0,14+0,14 0,11 +0,05 0,09 +0,01 0,11 +0,02 0,10+ 0,02

Total 0,07 +0,01 0,07 +0,01 0,11+0,03 0,11+0,10 0,09+ 0,02 0,08+0,01 0,10 +0,02 0,09 + 0,02

Homb 0,21 +0,05 0,33+0,01 0,39+0,13 0,59+0,66 0,46 +0,07 0,52+ 0,04 0,44+0,17 0,22 +0,12

Eims Codo 0,11 +0,03 0,25+0,06 0,21 +0,05 0,31 +0,28 0,27 £ 0,08 0,29 +0,06 0,23 +0,05 0,18 +0,12
(N'm) Mudne 0,01 +£0,00 0,03 +0,00 0,14 +0,04 0,08 +0,08 0,10 £ 0,06 0,06 +0,01 0,06 +0,01 0,04 +0,01
Total 0,11 +0,02 0,20 +0,02 0,25+0,07 0,33+0,34 0,28 +0,07 0,29 +0,03 0,25+0,07 0,14 + 0,08

Homb 0,73 +0,28 1,36 +0,33 1,29 +0,37 1,30 +0,82 1,56 £ 0,29 1,75+0,29 291+1,57 1,56+ 1,61

Emax Codo 0,34+0,08 092+0,40 0,72+0,16 0,72 +0,35 0,87 +0,22 0,94+0,25 1,07 +0,46 1,00+ 0,86
(N'm) Mufie 0,04 +0,00 0,10+0,01 0,86+0,53 0,21 +0,09 0,28+0,13 0,28 +0,02 0,35+0,16 0,16 0,07
Total 0,37 +0,12 0,80 +0,14 0,96+0,21 0,74+0,42 0,90+0,18 0,99 +0,14 1,45+0,71 0,91 +0,83
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Figura G.15: NRMSD esperado para el modelo ao0MLP propuesto en el escenario ESU codificando
la actividad muscular con solo 5 Sinergias. Esta representado tanto por la media y desviacién
estindar (en azul) como por la mediana (en rojo) de las predicciones de validacién realizadas al

aplicar LOOCV

Tabla G.15: Resultados del modelo a0oMLP para el escenario ESU - 5 Sinergias

Controles Pacientes
C001 C009 C017 C018 P002 P003 P020 P021

Homb 0,84 +0,01 0,89 +0,02 0,81+0,14 0,88 +0,05 0,87 +£0,03 0,84+0,03 0,45+0,27 0,79 +0,25

R2 Codo 0,96 +0,01 0,96 +0,02 0,89 +0,02 0,98 + 0,01 0,92 +0,02 0,92+0,04 091+0,03 0,81+0,20
Mufne 0,92 +0,03 0,91 +0,02 0,44 +0,12 0,89 + 0,09 0,85+ 0,05 0,88 +0,03 0,65+0,05 0,80+0,08

Total 0,90 +0,02 0,92+0,01 0,71 +0,07 0,92+ 0,05 0,88 +0,03 0,88 +0,01 0,67+0,08 0,80+0,15

Homb 0,07 +0,01 0,07 +0,01 0,12+0,03 0,11 +0,05 0,09 +£0,02 0,09 +0,00 0,12+0,04 0,08 +0,02

NRMSD Codo 0,05+0,01 0,06+0,01 0,09+0,01 0,07+0,05 0,09 +0,03 0,07 +0,01 0,09+0,02 0,09+ 0,03
Mudne 0,08 +£0,01 0,08 +0,00 0,15+0,06 0,14 +0,15 0,12+ 0,06 0,10+0,02 0,11 +0,02 0,10+ 0,01

Total 0,07 +0,01 0,07 +0,01 0,12+0,03 0,11 +0,08 0,10 £ 0,04 0,08 +£0,01 0,10+0,02 0,09 + 0,02

Homb 0,23 +0,05 0,35+0,01 0,40+0,11 0,47 +0,38 0,48 +0,09 0,51 +0,03 0,47 +0,17 0,21 +0,13

Eims Codo 0,12+0,03 0,26 +0,07 0,21 +0,04 0,33+0,30 0,32+0,15 0,29 +0,04 0,24 +0,06 0,19 +0,13
(N'm) Mune 0,01 +£0,00 0,03 +0,00 0,17 +0,08 0,10 +0,11 0,11 +£0,08 0,07 +0,01 0,06+0,01 0,04+0,01
Total 0,12+0,03 0,21 +0,02 0,26 +0,07 0,30+0,26 0,30+ 0,10 0,29 + 0,03 0,26 + 0,07 0,15 + 0,09

Homb 0,83+0,33 1,41+0,32 1,34+0,34 1,20+ 0,48 1,60 + 0,41 1,80+0,34 2,92+1,56 1,57 +1,61

Emax Codo 0,36 +£0,10 0,95+0,44 0,74 +0,17 0,74 +0,35 0,97 +0,41 0,98 +£0,33 1,06 +0,48 1,04 +0,91
(N'm) Mufie 0,04 +0,01 0,10+0,01 0,89 +0,52 0,22 +0,13 0,30+ 0,16 0,28 +0,04 0,35+0,17 0,16 + 0,06
Total 0,41 +0,14 0,82+0,12 0,99 +0,21 0,72 +0,31 0,96 +£ 0,30 1,02+0,20 1,44 +0,70 0,92 +0,84
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Siglas

ANN
aoMLP
MLP
NMF
PCA
RBF
RBN
SOM
SVM
SVR

Artificial Neural Network
Averaged Output MLP
Multilayer Perceptron
Nonnegative Matrix Factorization
Principal Component Analysis
Radial Basis Function

Radial Basis Network
Self-organizing Map

Support Vector Machine

Support Vector Regression

143






Glosario

Analisis de componentes principales

véase Principal Component Analysis

Artificial Neural Network (ANN)

Las redes neuronales artificiales son un conjunto de algoritmos de aprendizaje automitico
inspiradas en las redes neuronales biolégicas. En concreto son dos los elementos claves
en los que se basan, la interconexién existente entre las salidas de unas neuronas a las
entradas de otras, y la no linealidad en la funcién de respuesta de las neuronas que realizan
el aprendizaje 2, 18, 143, 145, 146

Averaged Output MLP (aoMLP)

Ensamble de multiples MLP configurado para que su salida sea un simple promediado de
las salidas de los MLP individuales 20, 26, 27, 29, 36, 40, 45-49, 51, 81, 107, 121, 143

Factorizacion no-negativa de matrices

véase Nonnegative Matrix Factorization

Funcion de base radial

véase Radial Basis Function

Mapa auto-organizado

véase Self-organizing Map

Multilayer Perceptron (MLP)

El perceptrén multicapa en un tipo de ANN caracterizada por la utilizacién de neuronas
con respuesta sigmoidea dispuestas una estructura feedforward y cuyo aprendizaje de tipo
supervisado estd basado en algoritmos de retropropagacioén o, en inglés, back-propagation
2, 17-20, 36, 49, 81, 143, 145

145



146 Glosario

Maquina de vectores soporte

véase Support Vector Machine

Nonnegative Matrix Factorization (NMF)

La factorizacién no-negativa de matrices es un conjunto de técnicas de anilisis multi-
variable que permite la descomposicién de matrices a la vez que asegura conservar el
caricter no negativo de los elementos de la matriz original. De esta forma se puede aplicar
una transformacién de bases a un conjunto de datos cuando es importante que mantenga
su caracter no negativo original 13, 143

Perceptron multicapa

véase Multilayer Perceptron

Principal Component Analysis (PCA)

El anilisis de componentes principales es una técnica estadistica que permite reducir
la dimensionalidad de un conjunto de datos mediante una transformacién de bases. La
eleccién de las bases del nuevo sistema de coordenadas dependerd de la variabilidad
presente en el conjunto de datos y con el tinico requisito de que sean ortonormales 11-13,
15, 50, 143

Radial Basis Function (RBF)

Las funciones de base radial son un tipo de funciones cuya respuesta depende tnicamente
de la distancia al origen o a algtin otro punto conocido como centroide. Aunque existen
varias funciones de esta clase, la gaussiana es su representante més habitualmente empleado
20, 22, 36, 82, 108, 143, 146

Radial Basis Network (RBN)

Las redes de base radial son un tipo de ANN que usa neuronas cuya funcién de respuesta
es de tipo RBF, aunque mayoritariamente suele ser la gaussiana. Su sencilla estructura y
algoritmo de aprendizaje las hace muy féciles de manejar, a costa de requerir una mayor
potencia computacional 17, 36, 40, 45, 47, 48, 51, 82, 107, 143

Red de base radial

véase Radial Basis Network

Red neuronal artificial

véase Artificial Neural Network

Self-organizing Map (SOM)

Los mapas auto-organizados de Kohonen son un tipo de ANN basadas en un algoritmo
de aprendizaje competitivo no supervisado. Sus caracteristicas propician una efectiva
aplicacién a problemas de clustering 3, 73, 75, 143
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Glosario

Support Vector Machine (SVM)

Las miquinas de vectores soporte son un conjunto de modelos de aprendizaje supervisado
mediante algoritmos estadisticos. Estas técnicas son empleadas en el reconocimiento de
patrones, tanto en tareas de clasificacién como de ajuste funcional 2, 22, 40, 45, 47, 48,
51, 53, 82, 108, 143, 147

Support Vector Regression (SVR)

Conjunto de las SVM destinadas al andlisis de regresién o ajuste funcional 2, 17, 22-24,
82, 108, 143
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