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Caṕıtulo 1

Introducción.

El objetivo de este trabajo es dar una aproximación a los procesos de “spreading” en concreto
en el marco de la propagación de un rumor. Entendemos por proceso de “spreading” aquellos
procesos que llevan asociados la propagación de un agente mediante la interacción entre varios
individuos, como se mostrará, este agente podrá ser desde un virus hasta una idea. Como se aprecia
a primera vista, dos son los elementos claves de estos procesos “la propagación de un agente” y
“la interacción entre varios individuos”. Si nos disponemos a afrontar el problema de entender
y posteriormente desarrollar un modelo matemático que recoja las ideas esenciales del proceso y
que además nos permita hacer predicciones sobre el comportamiento del sistema. Es conveniente
en primera instancia trabajar con estos dos elementos por separado y posteriormente llevarlos a
un marco común. En resumidas cuentas, nuestro problema inicial, ahora queda dividido en dos
problemas más sencillos, determinar cómo se lleva a cabo el proceso de propagación del agente y
de qué forma se lleva a cabo la interacción entre los individuos donde este proceso sucede.

Siempre con la idea en mente de que en última instancia nos interesa cómo se comporta un
rumor, elegiremos como punto de partida de nuestro estudio los modelos epidemiológicos, que
nos ayudarán a entender el proceso de propagación y las redes complejas que nos proporcionan
información de cómo están configuradas las estructuras que emergen fruto de la interacción entre
individuos.

En las siguientes secciones expondremos brevemente estos elementos, explicando cuál ha sido
la razón por la que han sido elegidos para nuestro empeño y dando una breve descripción de los
mismos.

1.1. Redes complejas.

En los ámbitos en los que trabajamos, la propagación de un virus o bien de un rumor, los agentes
que son susceptibles de ser infectados o de creer un rumor son seres humanos. Entonces necesitamos
encontrar una estructura que encapsule las relaciones que se establecen entre las diferentes personas.

Las relaciones que se establecen entre los seres humanos son complicadas de estudiar. Esto se
debe parcialmente a que estas relaciones se llevan a cabo entre un gran número de individuos pero
existen además otras consideraciones que hacen dif́ıcil trabajar con este tipo de relaciones. Por
ejemplo, si consideramos un gran número de individuos, un individuo elegido al azar no interaccio-
nará con el mismo número de personas que otro individuo elegido también al azar. Si a esto se le
suma el hecho de que las personas no interaccionan de forma local (pensemos por ejemplo tanto en
los medios transporte, que permiten a las personas recorrer grandes distancias en cortos periodos de
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tiempo, como también en los modernos métodos de comunicación, que hacen que personas que se
encuentran en lugares alejados puedan estar en contacto de manera casi inmediata) tenemos como
resultado la imposibilidad de utilizar métodos que se empleaban en otras disciplinas para describir
sistemas con muchos grados de libertad, como las aproximaciones de campo medio o la hipótesis
del “homogenous mixing” empleada en los modelos epidemiológicos.

Las estructuras que recogen esta información y nos permiten trabajar con ella son las denomi-
nadas “redes complejas”. Una red es un grafo (red), la palabra compleja es debida a que estos
grafos presentan una estructura no trivial, a diferencia de lo que seŕıa por ejemplo el grafo asociado
con un ret́ıculo cristalino.

Las redes complejas son un importante instrumento en muchos campos, no sólo en los mencio-
nados anteriormente. La razón de esto es que mediante las redes complejas podemos trabajar con
sistemas en los que las relaciones entre sus elementos tienen tal complejidad que no se pueden tratar
mediante los métodos tradicionales. Un campo donde las redes complejas han sido, y siguen siendo
de gran utilidad, es el de la bioloǵıa, debido a que en los procesos biológicos que constituyen la
vida hay un gran número de elementos que interaccionan de manera intrincada, como los genes, las
protéınas, las rutas metabólicas... [3][4]. Otro campo donde las redes están demostrando ser de gran
utilidad es en el campo de la neuroloǵıa [5][?], mediante, el uso de las redes neuronales se está lo-
grando hacer grandes avances en nuestro entendimiento de cómo funciona el cerebro. También la
teoŕıa de redes se emplea ampliamente es en el campo de la economı́a [6], donde las complicadas
relaciones que se establecen entre mercados pueden ser comprendidas mediante su uso. Estos son
solo unos ejemplos, entre muchos otros, de los campos donde la teoŕıa de redes se ha convertido en
una parte indispensable que ha permitido hacer grandes avances.

1.1.1. Redes complejas. Formalismo.

Como se ha mencionado, una red compleja es un grafo que tiene ciertas propiedades. Por lo
tanto, el formalismo que se emplea cuando se busca caracterizar y trabajar con este tipo de objetos
es el formalismo de la teoŕıa de grafos. De manera simplificada, podemos definir un grafo como un
catálogo de componentes, llamados nodos, y las relaciones directas entre ellos, denominadas links.
Hemos introducido entonces dos nuevos elementos, los nodos y los links, podemos también ahora
introducir dos nuevos parámetros que nos ayudaran a dar una primera caracterización de la red:

Número de nodos: lo denotaremos con la letra N. Frecuentemente N se conoce como el tamaño
de la red. Los nodos se numeran con i=1,2,3,...,N.

Número de links: lo denotaremos con la letra L, representa el número total de interacciones
que se dan en la red. Pare referirnos a un link lo haremos a través de los dos nodos que
relaciona. Por ejemplo el link (3,5) conecta los nodos 3 y 5.

Los links pueden ser de dos tipos: no direccionados o direccionados. En un link dirigido (o direc-
cionado) la relación que se establece entre los nodos que conecta no es bidireccional, en el sentido
de que si, por ejemplo, 2 está conectado con 3, esto no significa que 3 esté conectado con 2. Un
ejemplo de este tipo de redes seŕıa el de la red WWW, donde que una página enlace con otra
página, no significa que esta última tenga un enlace con la página precedente. En nuestro caso,
como nos reduciremos al ámbito de las relaciones sociales, nos ocuparemos solo de redes no direc-
cionadas. De forma sencilla se ve que cuando dos personas interaccionan entre ellas lo hacen de
manera bidireccional.
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Para trabajar con la red, necesitamos algún tipo de objeto que encapsule toda la información
del grafo, a saber; el número de nodos y como estos están conectados. Por lo general, el elemento
que se emplea es la denominada matriz de adyacencia que está constituida de la manera siguiente:
se trata de una matriz N ×N en la que cada elemento (i,j) puede tomar dos valores:

0 si los nodos i y j no están conectados.

1 si los nodos i y j están conectados.

De esta definición se pueden extraer de forma inmediata ciertas caracteŕısticas de la matriz de
adyacencia: para el caso de una red no direccional, la matriz de adyacencia será simétrica y en
el caso en el que no se considere que un nodo está conectado consigo mismo los elementos de la
diagonal serán cero. Este tipo de matrices de adyacencia serán las empleadas en nuestro caso.

Introduzcamos ahora una serie de elementos asociados a cada red que nos permitirán obtener
información valiosa sobre cómo dicha red está constituida. Definimos en primer lugar el grado ki
de un nodo:

ki =
N
∑

j

Aij

donde Aij es la matriz de adyacencia definida arriba. El grado de un nodo se corresponde con el
número de links que éste tiene. En una red no direccionada, el número total del links puede ser
calculado mediante la expresión:

L =
1

2

N
∑

i=1

ki.

Una importante propiedad de las redes es el grado medio o la conectividad media que para una red
no direccionada se define como:

〈k〉 =
1

N

N
∑

i=1

ki =
2L

N

Finalmente, podemos introducir la distribución de la conectividad, es decir, la probabilidad de que
un nodo elegido al azar tenga conectividad k. Esta probabilidad viene dada por la expresión:

pk =
Nk

N

que como se observa esta sujeta a la relación de normalización:

∞
∑

k=1

pk = 1.

La distribución de la conectividad nos da valiosa información sobre cómo se organiza la red y sobre
muchas de sus propiedades intŕınsecas. Posteriormente esta herramienta será utilizada para discutir
cuáles son las diferencias entre distintos tipos de redes.
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1.2. Modelos epidemiológicos.

A pesar de que en un principio puede parecer que un rumor y agente infeccioso no tienen
nada en común, si examinamos detenidamente su comportamiento llegaremos a la conclusión de
que comparten ciertos aspectos, por lo tanto es conveniente examinar los modelos epidemiológicos,
sobre los que se ha trabajado de manera extensa durante años y que nos servirán de punto de
partida para desarrollar un modelo que represente el comportamiento de rumor.

Examinemos en primera instancia los elementos comunes que comparten los procesos de pro-
pagación de un virus y de un rumor. De manera sencilla, podŕıamos resumir el proceso de contagio
de un virus de la manera siguiente; para que un individuo se infecte, es necesario que entre en
contacto con otro individuo infectado y a su vez este nuevo individuo infectado se convierte en
una nueva fuente de infección, que es capaz de infectar a otros individuos con cierta probabilidad.
Examinado con un poco de detalle el comportamiento por el cual se propaga un rumor, llegamos
a la conclusión de que se trata de un comportamiento muy similar a aquél por el cual un virus se
contagia: un individuo que considera que el rumor es cierto lo compartirá, con cierta probabilidad,
con los individuos con los que esté en contacto. Si alguno de de ellos se cree este rumor tenderá a
compartirlo también con otros individuos; es decir, el comportamiento de “contagio” en ambos
casos es equivalente. Aunque, como se ha expuesto, el proceso de propagación es similar en ciertos
aspectos, también tiene ciertas diferencias que no podemos obviar, sobre todo referidas al proceso
por el cual un individuo deja de estar infectado, se recupera, o deja de considerar cierto un rumor.
Por ejemplo, en el caso de una infección, con el paso del tiempo, por lo general, la propia acción del
cuerpo hace que la infección desaparezca mientras que en principio, esto no sucede en el caso de
un rumor; si se considera que cierta información es cierta y no hay nada que indique lo contrario,
seguiremos considerando el rumor como cierto independiente del tiempo que transcurra. Por otro
lado, para que un individuo deje de considerar cierto un rumor es necesario la mediación con otro
individuo que sepa que no es cierto. Esto en el caso de un proceso infeccioso originado por un virus
no sucede; el hecho de interaccionar con un individuo sano no da lugar a la recuperación de la
infección. Por contra, otro elemento importante en común es que una vez que un individuo enfermo
ha superado la infección, éste se vuelve inmune a la misma, del mismo modo que una persona que
conoce que cierta información es falsa no volverá a considerarla como verdadera.

De estas consideraciones podemos concluir que en ambos casos un individuo puede encontrarse
en tres estados diferentes mutuamente excluyentes; un estado inicial en el que es susceptible, otro
estado en el que individuo se encuentra infectado y finalmente un estado final en el que éste se
recupera.

El modelo epidemiológico que considera estos tres casos, se conoce como modelo SIR (por sus
siglas en inglés “susceptible”,“infected”,“recovered”). Puesto que nos servirá de punto de partida
para desarrollar nuestro modelo para la propagación de un rumor, lo expondremos brevemente a
continuación.
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1.2.1. Modelo SIR.

El modelo SIR fue desarrollado en 1927 por W.O.Kermack y A.G.McKendrick[7]. Dentro del
marco de los modelos epidemiológicos, pertenece al grupo de los denominados modelos compar-
timentales, caracterización que es debida a que se divide la población en tres compartimentos;
los susceptibles, los infectados, y los recuperados. Es un modelo que se corresponde con el com-
portamiento de enfermedades como la varicela o las paperas, procesos infecciosos de los que se
obtiene inmunidad una vez que estos han sido superados. Junto con la hipótesis compartimental, la
otra hipótesis sobre la que esta fundamentado la versión clásica de este modelo es la denominada
hipótesis de “homegenous mixing”. Lo que se supone con esta hipótesis es que cada individuo tiene
la misma probabilidad de entrar en contacto con un individuo infectado. Esta hipótesis es la que
elimina la necesidad de conocer todas las relaciones que se establecen entre los individuos, es decir
es la que elimina la necesidad de trabajar con la red.

La descripción del modelo es la siguiente, como ya se ha mencionado, tenemos tres posibles
estados, susceptible, infectado y recuperado. La evolución temporal está regida por las siguientes
reglas:

La tasa de contagio es α.

La tasa de recuperación es β.

Una vez que un individuo se encuentra recuperado, permanece recuperado.

Con lo que la evolución temporal de los individuos que se encuentran en cada uno de los estados
posibles viene dada por el siguiente sistema de ecuaciones diferenciales:

dS

dt
= −αSI

dI

dt
= αSI − γI

dR

dt
= γI
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Una de las caracteŕısticas de esta ecuaciones es que podemos observar que hay un parámetro cŕıtico
para que se pueda producir una epidemia. Dicha condición se sigue directamente del sistema de
ecuaciones anterior, para que haya posibilidad de que se produzca una epidemia se debe cumplir
que dI

dt > 0 de donde se sigue la siguiente condición: S > γ
α . Es decir, para un α y un γ fijados hay

un número cŕıtico de susceptibles el cual da lugar a una epidemia. Si denotamos con S0 el número
inicial de susceptibles, la condición para que se de lugar a una epidemia se escribe como:

S0 >
γ

α

Cabe señalar que la aplicación de la teoŕıa de redes a este modelo modifica esta condición, uno
de los resultados más importantes es que, en determinadas redes como por ejemplo las que se dan
en las relaciones humanas o bien en la WWW, esta condición prácticamente desaparece, haciendo
que para un gran abanico de valores de los parámetros α y γ se produzca una epidemia[8]. Esto
da una explicación a un gran número de fenómenos (como son por ejemplo la gran facilidad con la
que se propaga un virus informático en la WWW, o bien las epidemias estacionales de gripe que se
producen con relativa frecuencia) que la teoŕıa clásica, en la que no se tiene en cuenta la estructura
de red, se ve incapaz de explicar. Mediante este tipo de modelos se lleva a una conclusión sobre las
redes antes mencionadas y es su gran vulnerabilidad frente a este tipo de procesos.



Caṕıtulo 2

Modelo para la propagación de

rumores.

En este caṕıtulo desarrollaremos nuestro modelo para la propagación de rumores. Primero
expondremos las redes sobre las que se trabajará y las razones para su elección, posteriormente
se indicará el modelo desarrollado para la propagación del rumor explicando cuales han sido las
consideraciones tenidas en cuenta.

2.1. Redes empleadas.

Mediante el estudio de las relaciones que se establecen entre individuos se ha llegado a la
conclusión de que las redes que se establecen son las denominadas redes libres de escala; este
tipo de redes serán las elegidas para nuestro estudio. También emplearemos otro tipo de redes, las
redes aleatorias o de “Erdös-Rényi”, con el fin de estudiar cuales son los cambios en la dinámica
cuando se modifica la estructura de la red.

2.1.1. Red de Erdös-Rényi.

En primera instancia, las redes aleatorias o redes de Erdös-Rényi[9], en honor a los matemáticos
Pál Erdös y Alfréd Rényi que durante los años sesenta mediante una serie de art́ıculos desarrollaron
toda una teoŕıa en torno a este tipo de redes. Se tratan de los primeros modelos propuestos para
entender como estaban constituidas las redes reales.

Un red aleatoria se define como sigue:
Una red aleatoria esta constituida de N nodos, donde cada pareja de nodos está conectada

con un probabilidad p.

Basándonos en la definición anterior, podemos desarrollar un sencillo procedimiento para cons-
truir una red aleatoria:

(1) Comenzamos con N nodos aislados

(2) Seleccionamos una pareja de nodos, y generamos un numero aleatorio entre 0 y 1. Si este
número es mayor que p conectamos ambos nodos, de otra forma los dejamos desconectados.

(3) Repetimos el paso (2) para cada uno de los N(N − 1)/2 pares de nodos.

7
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Para obtener la distribución de grado, tenemos que tener en cuenta que la probabilidad de que un
nodo tenga exactamente k conexiones viene dada por el producto de tres términos:

La probabilidad de que tenga k conexiones, pk.

La probabilidad de que no este conectado con los nodos restantes (N − k − 1),es decir,
(1− p)N−k−1.

El número de formas en las que podemos seleccionar k conexiones de las N − 1 potenciales
conexiones que podemos tener, esto es:

(

N − 1

k

)

Con lo que finalmente la distribución de grado obtenida resulta ser:

pk =

(

N − 1

k

)

pk(1− p)N−1−k

Es decir se trata de una distribución binomial. En el ĺımite cuando 〈k〉 ≪ N , la distribución
binomial puede ser correctamente aproximada a una distribución de Poisson:

pk = e−〈k〉 〈k〉
2

k!

Es importante mencionar que las redes aleatorias no se corresponden en la gran mayoŕıa de los
casos con las redes observadas en la realidad, éste hecho tiene importantes implicaciones. Significa
que en la mayor parte de los casos los individuos que constituyen un sistema no interaccionan de
manera aleatoria. Las relaciones que se establecen entre ellos siguen unas determinadas reglas, y
son estas reglas que rigen a escala microscópica las que dan lugar las diferentes estructuras que
presentan las redes.

Como se ha mencionado con anterioridad, aun cuando las redes aleatorias no se corresponden
con redes reales, las presentaremos y las utilizaremos en las simulaciones, para comprobar cómo
cambios en la estructura de la red modifican los resultados.

 0

 100

 200
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Figura 2.1: Distribución de la conectividad para una red de Erdös-Rényi. N = 4000 ; p = 0, 0025.
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2.1.2. Red libre de escala.

El principal objeto con el que trabajaremos serán las redes libres de escala. Estas redes son,
de forma siempre aproximada, las que surgen cuando tratamos con las relaciones que se establecen
entre seres humanos. Aunque han demostrado también tener una aplicación mucho mayor, dado
que en un gran número de sistemas las relaciones que se establecen entre sus componentes dan
lugar a redes similares.

Como una primera definición, diremos que las redes libre de escala son aquellas redes cuya
distribución de grado sigue una ley de potencias de la siguiente forma:

pk ∼ k−γ

donde γ es un parámetro que caracteriza la red.

La razón de que este tipo de redes reciban el nombre de libres de escala es la siguiente.
Definamos en primer lugar los momentos de la distribución, el momento enésimo de la distribución
viene dado por la siguiente expresión:

〈kn〉 =

∞
∑

kmin

knpk =

∫ ∞

kmin

knp(k)dk

Los momentos de orden menor tienen importantes interpretaciones:

n=1: el primer momento es el grado medio, 〈k〉.

n=2: el segundo momento nos permite calcular la varianza σ2 =
〈

k2
〉

− 〈k〉2, cuya ráız
cuadrada, nos da la desviación estándar que es una medida de cómo están distribuidos los
valores en torno a la media.

En el caso de una red libre de escala tenemos que:

〈kn〉 = C

∫ kmax

kmin

knk−γdk = C
kn−γ+1
max − kn−γ+1

min

n− γ + 1

Mientras que el valor de kmin está fijado, el valor de kmax depende en general del tamaño del
sistema, con lo que para entender el comportamiento de 〈kn〉 es conveniente considerar el ĺımite
asintótico kmax → ∞. En este ĺımite observamos que el valor de 〈kn〉 depende de los valores de n
y γ:

Si n − γ + 1 ≤ 0 entonces el término kn−γ+1
max se hace cero conforme kmax aumenta, lo que

significa que los momentos de orden n ≤ γ − 1, serán finitos.

Si n− γ+1 > 0 entonces kn−γ+1
max se hace infinito cuando kmax → ∞ con lo que los momentos

de orden n > γ − 1 divergen.

Este hecho tiene importantes consecuencias, para la mayoŕıa de las redes libres de escala reales,
γ toma valores entre 2 y 3 [1, cap. 4, p. 53], lo que conlleva que que el primer momento 〈k〉
se finito. Sin embargo, los momentos de orden superior,

〈

k2
〉

,
〈

k3
〉

... divergen, es decir, se hacen
infinitos. En esta divergencia está la razón de que estas redes se denominen libres de escala. Para
entender mejor este hecho analicemos paralelamente qué sucede con las redes aleatorias. En el caso
de una red general, si elegimos un nodo al azar, obtendremos un valor para la conectividad que se
encontrará t́ıpicamente en el rango dado por:

k = 〈k〉 ± σk
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Veamos que valores toma σ para cada tipo de red:

En el caso de una red aleatoria, que sigue una distribución de Poisson, el valor para σk =
〈k〉1/2 será siempre menor que 〈k〉 con lo que los nodos tienen una conectividad en el rango

dado por k = 〈k〉 ± 〈k〉1/2. Es decir, los nodos de la red tienen una conectividad comparable
y el valor de 〈k〉 nos da una escala para la conectividad t́ıpica de sus elementos.

Para una red libre de escala si se da el caso de que γ < 3, el primer momento es finito,
mientras que el segundo momento es infinito. Entonces cuando N, el número de nodos, es
elevado, las fluctuaciones en torno al valor medio 〈k〉 pueden ser arbitrariamente grandes.
Esto significa que, cuando elegimos un nodo de forma aleatoria, no sabemos que esperar; la
conectividad del nodo podŕıa ser arbitrariamente grande o pequeña. Con lo que podemos
concluir que las redes con γ < 3 no tienen una escala caracteŕıstica: son libres de escala.

Otro rasgo importante y caracteŕıstico de las redes libres de escala es la existencia de ciertos
nodos denominados “hubs”. Un “hub” es un nodo que posee una gran conectividad en comparación
con la conectividad promedio de la red. Este tipo de nodos juegan un papel vital en los procesos
dinámicos que se llevan a cabo en una red, por ejemplo, en el caso de un proceso epidemiológico,
si un “hub” resulta infectado, la infección se propagará rápidamente por el resto de la red debido
a la gran cantidad de nodos que ahora son susceptibles de ser contagiados.

Modelo de Barabási-Albert

Una vez expuestas las diferencias entre los dos tipos de redes empleadas, podemos preguntarnos
cuál es la razón de que las interacciones entre varios sujetos den lugar a una u otra. Se ha expuesto
cuál es el método por el que se origina una red aleatoria; dado una serie de nodos estos se conectan
de forma aleatoria dada una determinada probabilidad. Como se ha mencionado, las redes aleatorias
no se encuentran por lo general en la realidad mientras que las redes libres de escala se encuentran
mucho más frecuentemente. Entonces, podemos preguntarnos cuál es la razón de que esto suceda,
¿por qué las redes aleatorias no se dan en la realidad?, ¿cuál es el proceso que da lugar a las redes
libres de escala y que las dota de una mayor universalidad?. En primer lugar cabe señalar que el
método por el cual se genera una red aleatoria parte de una premisa que es falsa y que no se da en
la realidad, i.e., el modelo de las redes aleatorias asume que la red tiene un número fijo de nodos,
N. Pero en la realidad esto no sucede; en las redes reales el número de nodos crece continuamente
gracias a la adición de nuevos nodos. Como ejemplos podemos pensar en la WWW; cada vez que
se crea una nueva página, ésta se enlaza con otras páginas existentes que a su vez forman parte
de una estructura anterior. Otro ejemplo quizás menos evidente es el de las interacciones entre
las protéınas que en un principio puede parecer estáticas, dado que el número de genes para cada
persona es fijo, pero si lo examinamos detenidamente esto no es cierto nuestro número de genes ha
crecido desde unos pocos hasta los cerca de 20000 que contienen una célula humana. Este proceso
de evolución se ha llevado a cabo durante millones de años. Por lo tanto si buscamos un modelo
que se corresponda con las redes reales debemos tener en cuenta que el número de nodos no es fijo.

El modelo de la red aleatoria también asume que las parejas de que se elijen para unirse lo
hacen de modo aleatorio pero en la realidad esto no sucede. De hecho, en las redes reales los nodos
que se incorporan a la red no eligen con qué nodos conectarse de forma aleatoria sino que prefieren
unirse con los nodos que tienen una mayor conectividad. Este proceso se conoce como “preferential
attachment”.



CAPÍTULO 2. MODELO PARA LA PROPAGACIÓN DE RUMORES. 11

En resumen tenemos dos elementos en el modelo de las redes aleatorias que no son correctos:

Crecimiento: Las redes reales son el resultado de un proceso que continuamente incremente
el numero de nodos.

“Preferential attachment”: En las redes reales, los nuevos nodos se incorporan a la red, eli-
giendo como nodos con los cuales conectarse aquellos que tienen una mayor conectividad.

Basándose principalmente en estos dos principios, Barabási-Albert [10] propusieron un modelo que
permite generar redes libres de escala:

Comenzamos con m0 nodos; las conexiones entre ellos se eligen de manera aleatoria. Éste será el
núcleo sobre el cual comenzamos a construir nuestra red. El resto de la red se desarrolla siguiendo
los dos siguientes pasos:

A cada instante de tiempo añadimos un nuevo nodo con m (6 m0) conexiones que conectan
el nuevo nodo a m nodos ya existentes en la red.

La probabilidad p(k) de que un nuevo nodo se conecte al nodo i depende de la conectividad
ki de la forma:

p(ki) =
ki

∑

j kj

Mediante este algoritmo generamos una red libre de escala con γ = 3. Este algoritmo será el
empleado en las simulaciones cuando necesitemos trabajar con una red libre de escala.
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Figura 2.2: Distribución de la conectividad para una red libre de escala, generada mediante el
modelo de Barabási-Albert. N = 4000 ; m = 3.
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2.2. Mecanismo de propagación.

Basándonos en los modelos epidemiológicos desarrollamos también un modelo compartimental.
En este caso los individuos podrán encontrarse en tres estados diferentes, cuando son susceptibles
de creerse el rumor (S), una vez que han sido “infectados” (I), es decir que se han créıdo el rumor y
lo comparten con los individuos cercanos y finalmente pueden encontrarse “recuperados” (R), una
vez que conocen que el rumor no es cierto.

La dinámica propuesta es la siguiente:

Mediante la mediación con un individuo infectado, un individuo sano puede ser contagiado
con una probabilidad α, es decir el individuo se cree el rumor. Por otro lado, otra opción que
debemos tener en cuenta es la situación en la que mediante la interacción con un individuo
que conoce que el rumor es falso el individuo sano puede pasar directamente a recuperado, el
individuo recuperado le informa de la existencia del rumor y de que éste no es cierto, es decir
un individuo sano también puede transitar al estado recuperado mediante la interacción con
un individuo recuperado con probabilidad β.

Un individuo que se encuentra infectado únicamente puede recuperarse cuando otro individuo
recuperado interacciona con él, comunicándole que el rumor no es cierto. Es decir, un individuo
infectado puede pasar a recuperado mediante la interacción con un individuo recuperado con
probabilidad β.

Finalmente un individuo que se encuentra recuperado, permanecerá en este estado. Su función
en la dinámica del sistema será la de favorecer que otros individuos susceptibles o infectados,
pasen a estar recuperados.

Ésta seŕıa la dinámica seguida por los individuos “normales”, pero es necesario introducir otro
tipo de individuos con el fin de modelizar correctamente la propagación del rumor. Primero de
todo, cabe señalar que en el caso en que nos restringiéramos a utilizar solo los individuos indicados
anteriormente, el rumor se extendeŕıa por toda la red, no habŕıa ningún mecanismo por el cuál
algún individuo pudiese conocer que el rumor es falso. Para solucionar este hecho, introducimos
un nuevo tipo de individuos, los “polićıas”. Mediante la adición de los mismos, buscamos intro-
ducir un mecanismo mediante el cual se pueda hacer frente al rumor. Estos nuevos individuos se
correspondeŕıan con determinadas personas que tienen cierto tipo de información que les permite
discernir si el rumor es cierto o falso por sus propios medios, sin necesidad de la mediación con otros
individuos. Por lo tanto un “polićıa” únicamente se puede encontrar en dos estados, un estado en el
que susceptible, es decir todav́ıa no conoce la existencia del rumor, y un otro estado en el que esta
recuperado, conoce la existencia del rumor e interacciona con otros individuos, comunicándoles que
el rumor es falso. Su dinámica es por lo tanto diferente:

Mediante la mediación con un individuo infectado, un “polićıa” puede transitar directamente
al estado recuperado con una probabilidad α, de la misma forma mediante la interacción con
otro individuo recuperado este también pasará a encontrarse recuperado con una probabilidad
β.

Cuando el “polićıa” se encuentre recuperado, la dinámica es la misma que para un individuo
normal que se encuentre recuperado. Es decir su contribución será la de mediar para que el
resto de individuos sean capaces de pasar al estado recuperado.
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En resumen, con la adición de este nuevo tipo de individuos tenemos el proceso que nos faltaba
anteriormente, es decir, un proceso mediante el cual podemos tener personas que conozcan que el
rumor es falso, recuperadas, sin la necesidad de tener con anterioridad individuos de este tipo.

Desde el punto de vista puramente de la evolución del sistema, las personas “normales” y los
“polićıas” son tratadas de la misma forma cuando interaccionan entre ellos, en el sentido de que
si un individuo interacciona con otro y este es susceptible o se encuentra recuperado es irrelevante
del tipo que sea.

Dado que este nuevo tipo de individuos son los encargados de comenzar con el proceso mediante
el cual podemos controlar el rumor y evitar que este se extienda, se puede intuir desde un principio, y
se comprobará posteriormente mediante las simulaciones, como su número y colocación son cŕıticos.
De hecho, como se mostrará, es suficiente un número muy reducido de estos agentes, siempre y
cuando sean situados en puntos estratégicos de la red, para conseguir que el rumor apenas tenga
efecto sobre la misma.
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2.3. Control de la difusión del rumor.

Si lo que queremos es encontrar una serie de mecanismos que nos permitan detener la extensión
del rumor, es evidente que estos estarán relacionados con los “polićıas”, dado que son estos indi-
viduos los que favorecen los mecanismos del sistema para frenar y hacer desaparecer el rumor. En
primer lugar, puede parecer que la opción mas sencilla seŕıa aumentar el número de estos sujetos.
Sin embargo debido a la estructura de red que rige las relaciones entre los individuos, se mos-
trará que es mucho mas eficiente (en el sentido de que con un número menor de polićıas lograremos
que su efecto en la expansión del rumor sea mucho mayor) desarrollar ciertas estrategias que nos
permitan determinar cuáles son los sitios de la red en los que debemos situar a los “polićıas” para
que su efecto se vea potenciado.

Dado que el ámbito en el que se lleva a cabo la propagación del rumor es el de las relaciones
entre personas y que como hemos visto este tipo de relaciones dan lugar a redes libres de escala,
serán estas redes las que debemos analizar detenidamente para determinar dónde debemos situar
a los “polićıas”. Como se mencionó, una de las caracteŕısticas de este tipo de redes es la existencia
de ciertos nodos, los denominados “hubs”, cuya conectividad es muy superior a la media. Se llega
inmediatamente a la conclusión de que en el caso de que en estos nodos se encuentre un “polićıa”, su
acción sobre la red se verá notablemente potenciada. Basándonos en estas consideraciones podemos
desarrollar una serie de estrategias para la distribución de los polićıas:

Mayor Grado: En primer lugar debido a la existencia de los “hubs”, podemos recorrer la red
y calcular la conectividad de cada nodo para posteriormente distribuir los “polićıas” entre los
nodos de mayor a menor conectividad. De esta forma nos aseguramos que en los “hubs” haya
un “polićıa”.

Aleatorio-Aleatorio: Otra opción para la colocación de los polićıas consiste en elegir un nodo
al azar y de entre sus vecinos elegir otro al azar en el que situaremos al polićıa. La razón
para esto es la siguiente: si bien cuando elegimos un nodo al azar, la probabilidad de que éste
sea un “hub” es muy pequeña, la probabilidad de que eligiendo uno de sus vecinos al azar
tengamos un “hub” es mucho mayor. Esto es debido a la alta conectividad de los “hubs”, que
hace que la probabilidad de que un nodo esté conectado con uno de ellos es mucho mayor que
para el resto.

Aleatorio-Mayor Grado: De forma similar al caso anterior, elegimos en primera instancia un
nodo de forma aleatoria y posteriormente, de entre sus vecinos, ahora elegimos al que tenga
una mayor conectividad. De esta forma la probabilidad de que este nodo sea un “hub” es
mayor que en el caso anterior.

Mı́nima distancia máxima: Podemos calcular la distancia máxima de cada nodo, es decir, para
cada nodo, determinamos cuál es la distancia al nodo más lejano. Entonces, si distribuimos
los “polićıas” en los nodos cuya distancia máxima sea mı́nima, los procesos iniciados en estos
nodos se propagaran rápidamente por todo la red (en este caso la información de que el rumor
no es cierto).

Cabe mencionar que aun a pesar de que puede parecer que no tiene mucho sentido proponer ciertas
estrategias diferentes a la de situar los “polićıas” en los “hubs” de la red, si la examinamos con de-
tenimiento, observamos que esta estrategia tiene un inconveniente: para llevarla a cabo es necesario
conocer por completo la estructura de la red. Por otro lado, en las estrategias de “Aleatorio-
Aleatorio” y “Aleatorio-Mayor Grado”,pese a no ser tan eficientes no es necesario conocer toda la
red para implementarlas de forma correcta.



Caṕıtulo 3

Resolución del modelo.

En esta sección intentaremos obtener una expresión que nos permita determinar cómo será la
evolución temporal del sistema. En concreto, esto se llevará a cabo entendiendo el proceso como
una cadena de Markov. Este tipo de proceso se expone brevemente a continuación.

Proceso de Markov. Los procesos de Markov forman parte de un tipo de procesos más generales
conocidos como procesos estocásticos. Un proceso estocástico es una sucesión de variables aleatorias
X1,X2, ... donde el sub́ındice indica el tiempo. Un proceso de Markov se dice de Markov si satisface
la llamada propiedad de Markov, es decir, la probabilidad condicionada:

P (Xn = xn|Xn−1 = xn−1, ...,X1 = x1) = P (Xn = xn|Xn−1 = xn−1)

o dicho con brevedad, un proceso de Markov sólo tiene memoria de lo acontecido en el instante
previo. Llamamos al segundo miembro probabilidad de transición.

Para intentar dar una expresión de la evolución temporal de nuestro modelo, entendiéndolo en
el marco de los procesos de Markov, debemos hacer algunas consideraciones previas. En primer
lugar estamos empleando un enfoque probabiĺıstico, con lo que ahora para un determinado tiempo
t un individuo i no se encontrará en un estado determinado. Sino que se encuentra:

En el estado S(susceptible) con probabilidad Si(t).

En el estado I(infectado) con probabilidad Ii(t).

En el estado R(recuperado) con probabilidad Ri(t).

Sobre estas tres probabilidades se exige la condición de normalización, de forma que tenemos que:
Si(t) + Ii(t) +Ri(t) = 1 ∀t.

15
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Figura 3.1: Ejemplo cálculo de pro-
babilidades.

Antes de comenzar con el cálculo de las probabilidades para
cada nodo en función del tiempo, es conveniente explicar de
manera un poco más detenida cómo se realiza el cálculo de las
probabilidades de transición, puesto que estas probabilidades
serán empleadas posteriormente en nuestros cálculos.

Para explicar de qué forma calculamos las probabilidades
de transición nos apoyamos en la imagen adjunta. En esta
imagen se representa una situación genérica en la que el nodo
central es susceptible y se encuentra en contacto con otros
nodos en diferentes estados; infectados, recuperados y otros
también susceptibles. Supongamos por sencillez que el nodo
central es un individuo normal (no un “polićıa”). Calculemos,
por ejemplo, la probabilidad de que este nodo se encuentre
infectado al tiempo t+1. Para que esto suceda, es suficiente con
que alguno de los nodos vecinos que se encuentren infectados lo
contagien. Para calcular la probabilidad de que esto suceda en
un principio podŕıamos pensar en calcular la probabilidad de
que alguno de los nodos lo infecte. Sin embargo, la dificultad
del cálculo de esta probabilidad se incrementa con el número de nodos que pueden contagiar al nodo
central. Por este motivo, calcularemos la probabilidad del suceso complementario, i.e., que ningún
nodo infectado infecte al nodo central ,y luego tomaremos de nuevo la probabilidad complementaria.
Habremos calculado aśı la probabilidad de que al menos un nodo contagie al nodo central. La
probabilidad de que un nodo infectado contagie a otro nodo con el que está en contacto, viene dada
por el parámetro α, con lo que la probabilidad complementaria, es decir, que el nodo no lo contagie
será 1 − α; finalmente fijándonos en la figura, tendremos que la probabilidad de que ningún nodo
infecte al nodo central será:

(1− α) · (1− α) · (1− α) = (1− α)3

Con lo que podemos concluir que la probabilidad de que, al tiempo t+1, el nodo central se encuentre
infectado viene dada por:

1− (1− α)3

De la misma forma podemos escribir la probabilidad de que el nodo central pase a estar recuperado,
debido a la mediación con alguno de los nodos recuperados:

1− (1− β)2

Como se ha mencionado, cuando entendemos la dinámica como un proceso de Markov, los nodos no
se encuentran en un estado definido para cada tiempo, sino que a cada uno de sus posibles estados
se le asocia una probabilidad, con lo que por ejemplo, ahora la probabilidad de que cierto nodo i
infecte a otro nodo con el cual está conectado , es αIi(t). Entonces para la situación descrita en la
figura, la probabilidad de contagio para un determinado instante de tiempo t será (asumiendo la
independencia de las probabilidades I1,I2 e I3):

1− (1− αI1(t)) · (1− αI2(t)) · (1− αI3(t))
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Para el caso mas general podemos escribir la probabilidad de transición (S → I), de que un
nodo susceptible, i, se infecte a un tiempo t como

Pi(t)S→I = 1−
N
∏

j=1

(1− αAijIj(t)),

donde N es el número total de nodos (el producto recorre toda la red), Aij se corresponde con la
matriz de adyacencia de la red; Aij = 1 si los nodos i y j están conectados o bien Aij = 0 si los
nodos están separados o por otro lado si i = j.

Escribamos finalmente el conjunto de probabilidades de transición para los individuos normales:

Pi(t)S→I = 1−
∏N

j=1
(1− αAijIj(t))

Pi(t)S→R = 1−
∏N

j=1
(1− βAijRj(t))

Pi(t)I→R = 1−
∏N

j=1
(1− βAijRj(t))

En el caso de los polićıas, para calcular la probabilidad de transición de susceptible a recupera-
do, debemos tener en cuenta que la transición se puede llevar a cabo mediante la mediación con
una persona infectada o bien mediante la mediación con una persona recuperada. Por lo tanto la
probabilidad de que no pase al estado recuperado viene dada por la probabilidad de que ambos
sucesos sucedan simultáneamente, es decir, que no transite debido a la mediación con un infectado
y que no transite mediante la mediación con un recuperado, esta probabilidad se corresponde con
el producto de las dos probabilidades, con lo que la probabilidad buscada será su complementaria:

Pi(t)S→R = 1− [
∏N

j=1
(1− αAijIj(t))][

∏N
j=1

(1− βAijRj(t))]

Una vez llegados a este punto estamos preparados para escribir las ecuaciones para la evolución
temporal. Como se ha mencionado, nos encontramos ante un proceso de Markov, por lo que el
estado a tiempo t+1 depende de cuál era el estado a tiempo t. Para cada nodo tendremos un
conjunto de ecuaciones, una para cada estado posible. Escribamos por ejemplo las ecuaciones para
la evolución del estado recuperado en el caso de un nodo normal:

Ri(t+ 1) = Ri(t) + Ii(t) · Pi(t)I→R + Si(t) · (1− Pi(t)S→I)Pi(t)S→R (3.1)

Examinemos cada término:

Ri(t) Dado que una vez que el individuo se encuentra recuperado no puede transitar a otro
estado, si se encuentra recuperado a tiempo t lo estará a t+1.

Ii(t) · Pi(t)I→R Si el individuo se encuentra infectado a tiempo t, es posible que mediante la
interacción con un individuo recuperado, este pase a estar recuperado en t+1.

Si(t) · (1 − Pi(t)S→I)Pi(t)S→R Si el individuo es susceptible a tiempo t, es posible que me-
diante la interacción con un individuo recuperado se encuentre recuperado a t+1. Con lo
que la probabilidad de que esta transición suceda será la probabilidad de que el individuo
esté susceptible a tiempo t por la probabilidad de que pueda pasar a recuperado multiplicado
por la probabilidad de que no se contagie por la acción de un infectado.
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Siguiendo un planteamiento similar y utilizando la condición de normalización, que nos permite
expresar una ecuación en función de las otras, podemos escribir el resto de las ecuaciones para cada
tipo de individuo:

Individuos normales:

• Ri(t+ 1) = Ri(t) + Ii(t) · Pi(t)I→R + Si(t) · (1− Pi(t)S→I)Pi(t)S→R

• Ii(t+ 1) = Ii(t) · (1− Pi(t)I→R) + Si(t) · Pi(t)S→I(1− Pi(t)S→R)

• Si(t+ 1) = 1−Ri(t+ 1)− Ii(t+ 1)

Individuos “polićıas”:

• Ri(t+ 1) = Ri(t) + Si(t) · Pi(t)S→R

• Si(t+ 1) = 1−Ri(t+ 1)

Como aquello que nos interesa conocer es el impacto del rumor en la población, debemos encontrar
algún tipo de marcador que dé cuenta de cómo éste ha sido y que, a su vez, nos permita comparar
cómo vaŕıa dicho impacto cuando modificamos ciertos parámetros del modelo. Estos parámetros
serán los valores de α y β, las posiciones de la red en donde se sitúan los “polićıas” (sin embargo,
el número inicial de infectados será siempre pequeño, puesto que son un número reducido de
personas las que originan un rumor). También comprobaremos como vaŕıan los resultados para
diferentes tipos de redes. Una vez fijados estos parámetros iniciales, procedemos con la iteración
de las ecuaciones anteriores. Éste proceso nos permite obtener resultados de una forma mucho más
eficiente que mediante la simulación directa del sistema.

Como cantidad que cuantifica el impacto del rumor, hemos elegido el número de individuos que
son “infectados”, es decir, el número de individuos que en algún momento han llegado a considerar
el rumor como cierto. La expresión que nos aporta esta información se obtiene teniendo en cuenta
que, para un instante de tiempo, el número promedio de personas que son infectadas viene dado por
la expresión

∑N
i=1

Si(t) ·Pi(t)S→I · (1−Pi(t)S→R), con lo que el número total de sujetos infectados
durante el proceso se puede calcular mediante la expresión:

#(S → I) =

t=∞
∑

t=0

[

N
∑

i=1

Si(t) · Pi(t)S→I · (1− Pi(t)S→R)
]



Caṕıtulo 4

Resultados.

En esta sección expondremos los resultados obtenidos mediante los cálculos realizados con las
herramientas expuestas en la sección anterior. Comprobaremos cómo se ajustan las ecuaciones
obtenidas anteriormente a los datos obtenidos mediante la simulación directa del proceso.

Con el fin de comprobar la validez de las herramientas desarrolladas, realizaremos una simulación
directa del proceso mediante el método de Monte Carlo y comprobaremos cómo las expresiones
anteriores se ajustan a los resultados obtenidos mediante dichas simulaciones.

Para realizar las simulación de Monte Carlo procedemos de la manera siguiente; a cada instante
de tiempo, recorremos los nodos y, para cada nodo inspeccionamos sus vecinos, entonces en función
del estado del vecino examinado comprobamos si este modifica el estado del nodo, por ejemplo en
el caso de que el nodo fuese susceptible y el vecino examinado estuviese infectado, generamos un
número aleatorio, n, entre 0 y 1; en el caso en el que n < α, el nodo se infectará, en caso contrario
examinaremos otro vecino. Si al final del proceso el nodo no ha modificado su estado, permanecerá en
el estado inicial. Para cada conjunto de valores de los parámetros realizaremos varias simulaciones,
consiguiendo aśı un conjunto de datos sobre los que podremos hacer estad́ıstica y obtener de esta
forma medidas más precisas de los valores que queremos conocer.

19
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En primer lugar, comparamos cómo evoluciona en el tiempo el sistema para diferentes valores
de los parámetros.
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(a) α = 0,2 β = 0,2.
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(b) α = 0,2 β = 0,4.
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(c) α = 0,4 β = 0,2.
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(d) α = 0,1 β = 0,8.
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(e) α = 0,8 β = 0,1.

Figura 4.1: Evolución temporal del número de individuos susceptibles, infectados y recuperados
para diferentes valores de los parámetros. En todos los casos, el porcentaje de polićıas es del 1% y
el porcentaje inicial de infectados es también del 1%. La red empleada es una red libre de escala,
generada mediante el Modelo de Barabási-Albert con N = 4000 ; m = 3 ; 〈k〉 = 6

Como se aprecia en las imágenes, salvo pequeñas desviaciones, hay un buen acuerdo entre los
datos aportados por la simulación de Monte Carlo y lo predicho por las ecuaciones de Markov.



CAPÍTULO 4. RESULTADOS. 21

En segundo lugar conviene comprobar la validez de la ecuación:

#(S → I) =
t=∞
∑

t=0

[

N
∑

i=1

Si(t) · Pi(t)S→I · (1− Pi(t)S→R)
]

mediante la cual determinamos el impacto del rumor en la población.
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(d) “Polićıas”=1 %, β = 0,5. Variando α.

Figura 4.2: Comparación del numero de individuos que alguna vez han estado infectados, calculado
mediante la expresión dada por el proceso de Markov y determinados mediante la simulación
directa. En todos los casos, el porcentaje de polićıas es del 1% y el porcentaje inicial de infectados
es también del 1%. La red empleada es una red libre de escala, generada mediante el Modelo de
Barabási-Albert con N = 2000 ; m = 3 ; 〈k〉 = 6.

En este caso también se observa que el ajuste entre los datos dados por la simulación directa y
los estimados mediante las ecuaciones es correcto.
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Finalmente, mostramos los resultados obtenidos para la implementación de las diferentes es-
trategias de control de la difusión del rumor. Mostramos el numero de individuos que en algún
momento han sido infectados, frente al porcentaje de “policias” en la red.
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Figura 4.3: Estrategias para el control del rumor. La red empleada es una red de Erdös-Rényi con
N = 2000 ; p = 0, 003 ; 〈k〉 = 6. α = 0,4 ; β = 0,3.
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Figura 4.4: Estrategias para el control del rumor. La red empleada es una red libre de escala,
generada mediante el Modelo de Barabási-Albert con N = 2000 ; m = 3 ; 〈k〉 = 6. α = 0,4 ; β =
0,3.
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Conclusiones.

Basándonos en los modelos epidemiológicos clásicos desarrollados con el fin de modelizar el
comportamiento de un agente infeccioso, hemos construido un modelo que pretende explicar como
se comporta un rumor cuando éste se propaga entre una serie de personas. El elemento central que
hemos implementado y que es la principal diferencia entre el comportamiento de un virus y el de un
rumor, es la adición de cierto mecanismo de “inmunización activa”; a diferencia del comportamiento
propio de un proceso infeccioso, ahora los individuos pueden “recuperarse” mediante la interacción
con otros individuos. Parte esencial de este nuevo mecanismo de “inmunización” es la existencia
de un nuevo tipo de individuos, los “polićıas”, que actúan como centros de propagación para el
proceso de “recuperación”.

Paralelamente, otro importante elemento del modelo es el estudio detallado de la estructura que
emerge fruto de las interacciones entre personas. Dicho estudio se lleva a cabo mediante el empleo
de la teoŕıa de redes. La motivación para el uso de estos elementos ha sido el fuerte impacto que
han tenido en un gran número de campos (en concreto en el ámbito de los procesos epidemiológicos
donde la consideración de este tipo de estructura ha dado lugar a la explicación de ciertos fenómenos,
como por ejemplo el bajo umbral de epidemia) que no pod́ıan ser explicados mediante el uso de
otras técnicas, en particular mediante el empleo de aproximaciones de campo medio. En nuestro
caso, hemos optado por trabajar con la red entera, sin realizar otro tipo de aproximaciones como
podŕıan ser la aproximaciones de campo medio heterogéneo[11], que si bien tienen en cuenta cierta
estructura en la relación entre los individuos, no dan lugar a una precisión en los resultados tan
alta como la obtenida mediante el uso de la red.

Hemos desarrollado nuestro modelo mediante el uso de los elementos antes mencionados. Además
hemos propuesto una serie de estrategias para la colocación de los “polićıas” que nos permiten mini-
mizar el impacto del rumor en la red de modo que éste sea lo más pequeño posible. Cabe mencionar
en este punto como estas estrategias también guardan cierta semejanzas con las estrategias de “in-
munización” que se estudian en el ámbito de la propagación de las enfermedades infecciosas. Sin
embargo, hay una importante diferencia: como se ha mencionado con anterioridad, el proceso me-
diante el cual los individuos se “recuperan” difiere del de un proceso infeccioso originado por un
virus, pues aqúı los individuos “recuperados” se convierten en fuentes de un nuevo proceso (la
propagación de la recuperación). Con lo que aparece una competición entre los dos procesos, el
proceso de “infección” y el proceso de “recuperación”. Esta diferencia también hace que las estra-
tegias para frenar el avance, o bien del rumor o bien del virus, difieran. En el caso de un virus, se
busca inmunizar a los individuos que se encuentren en posiciones de la red que permitan frenar el
avance de la infección [12][13], mientras que en el caso de la propagación del rumor, lo que se busca
es que la posición de los “polićıas” sea tal, que la acción del proceso de “recuperación” sea máxima.
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Para mostrar de manera más clara como la estructura de la red condiciona la dinámica de los
procesos que se llevan a cabo en la misma, elaboramos la siguiente tabla. En la primera columna se
indica el porcentaje de individuos que en algún momento han llegado a considerar el rumor cierto,
es decir el impacto del rumor en la red. Mientras que en la segunda y tercera columna se muestra
la fracción de “polićıas” que hay que introducir en la red para lograr este objetivo, colocándolos
siguiendo la estrategia de “Mayor Grado”, pero tratándose de una red de “Erdös-Rényi” en la
segunda columna y de una red libre de escala en la tercera.

% Impacto Erdös-Rényi Libre de escala

40% 0.11 0.01

20% 0.21 0.04

5% 0.36 0.14

1% 0.54 0.3

Se aprecia claramente cómo en el caso de una red libre de escala la estrategia para frenar el
avance del rumor es mucho más eficiente y simplemente hace falta añadir un número muy reducido
de “polićıas” para que el impacto del rumor se vea notablemente reducido. Esto es debido a las
diferencias en la estructura de la red, en concreto a la existencia de “hubs” en las redes libres de
escala.

Una contribución importante del trabajo presentado es la modelización de la dinámica de pro-
pagación de rumores en términos de un proceso markoviano. El buen ajuste de los resultados de la
dinámica markoviana a los datos de las simulaciones numéricas, parece indicar que genéricamen-
te, la hipótesis de independencia de las probabilidades asociadas a nodos del entorno, subyacente
al cálculo de las probabilidades de transición, no distorsiona de forma importante los resultados,
constituyendo aśı una buena aproximación. Ello permite un procedimiento enormemente eficiente
de obtención de resultados.

En resumen, hemos mostrado que haciendo uso de los modelos epidemiológicos clásicos e intro-
duciendo ciertas modificaciones ( principalmente el procesos de “inmunización activa” y empleando
la teoŕıa de redes, la cual nos permite encapsular y trabajar con las complicadas relaciones que se
establecen entre las personas) somos capaces de desarrollar un modelo que nos permite entender
en cierta medida cuál es el comportamiento de un rumor y mediante el que podemos desarrollar
estrategias para controlar su propagación.



Bibliograf́ıa
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