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A well-known geometrical approach to study implicit differential equations

_y
dx’
consists of the lift the multivalued direction field defined by equation (1) on the (x,y)-plane to a
single-valued direction field xr (wich is called the lifted field) on the surface .% given by the equation
F(x,y,p) =0 in the (x,y, p)-space. In this work, the function F is always supposed to be % and
regular. The lifted field xr is an intersection of the contact planes dy = pdx with the tangent planes to
the surface .#, that is, xr is defined by the vector field:

x(t>:FP7 y(t):pF[M p(t):G:_(Fx—i_pr)’ (2)

whose integral curves are 1-graphs of integral curves (briefly, solutions) of equation (1). Conversely,
solutions of (1) are m-projections of integrals curves of Yz, where 7 is the projection from the surface
Z to the (x,y)-plano along the p-direction (called vertical).

For instance, this approach can be used for studying the local behaviour of solutions of (1) near so-
called singular points- points of the surface . where F, = 0, that is, equation (1) cannot be locally
resolved with respect to p by the implicit function theorem. Moreover, this method allows to get a
stable list of local normal forms of equation (1). Recall that two implicit differential equations are
called smoothly (topologically) equivalent if there exists a diffeomorphism (homeomorphism) of the
(x,y)-plane that sends integral curves of the first equation to integral curves of the second one.

To describe the main results of this sort, we need to give some definitions. The locus of singular
points of equation (1) is called the criminant or the critical locus 2%, and it is given by the equalities
F =0, F, =0. The projection (%) on the (x,y)-plane is called the discriminant curve. The set
2 is given by the equalities F' = 0, F;, + pF, = 0 and is called the inflection curve. A singular point
Tp = (x0,¥0, po), of equation (1) is called proper if F + pF, # 0, that is, vector field (2) does not vanish
at Tp; otherwise, Ty is called improper.

Improper singular points belong to the intersection %" N .Z’; they are characterized by the condition
that the surface .# is not regular or it is tangent to the contact plane. Without loss of generality further
we always assume O to be the origin in the (x,y, p)-space (this can be obtained by an appropiate affine
map of the (x,y)-plane).

One of the main objectives in singularity theory is to charactize the singularities of smooth functions
S+ R" — R™ that are stable under small perturbations of function f — f¢ (singularity does not dissa-
pear under f; and it is of the same type ). We work with germs, i. e everything happens in sufficiently
small neighborhods of singular points This is equivalent to studying of generic singularities of map-
pings M" — N™, where M" and N are a real smooth n-manifold and an m-manifold respectively. It
is natural to pose the problem to characterize for smooth functions f: M"* — N™ called normal forms,
given in the form of symple polynomial functions, and to determine conditions which imply that a
given function is (locally) diffeomorphic to such a normal form.

In 1995 H. Whitney studied the case f : M?> — N? and discovered that there exist exactly two stable
singularities, the main idea is that given function:

2=f'(xy), w=Fxy), f0)=r0)=0 3)

in a neighborhood of the origin, with Jacobian:

(5
fx y

its singular points are defined by the condition ‘Af‘ =0,1e,1g Ay =0o0rrg Ay = 1. The set S| =
{(x,y) : rg Af(x,y) =0} in generic case it is empty, so we will study the singularities over S, =
{(x,y) : rg As(x,y) = 1}. Given xo € Sj, the map (3) is is locally diffeomorphic to the function:

F(x,y,p)=0 p 1)

z=F(x,y), w=y, F(0)=0 “4)
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in a neighbourhood of xy where F' is a smooth function. Whitney charactized fold and pleat singular-
ities in new coordinates as follow:

e Fold Singularities : F,,(0) =0, F,(0) #0
e Pleat Singularities : F(0) =0, F(0) =0, F,(0) #0, Fux(0) #0

These singularities are called fold and pleat, respectively. Whitney also proved the called Whitney
Theorem, it said that in neighborhoods of fold and pleat any map f : M> — N? is respectively diffeo-
morphic to the following normal forms:

[ ) Z:x,W:y

° z:x3—|—xy,w:y

(a) Folded proper point (b) Pleated proper point

Figure 1

So, what is the relationship between fold and pleat singularities defined by Whitney and singular-
ities of F(x,y, p)?
As we are working with regular functions F, that means that for any singularity 0 of .% (F,(0) = 0)
with F,(0) and F;(0), at least one of them is not 0. If we supposed that F(0) # 0, by implicit function
theorem we know that in a neighbourhood Uy C % of the origin we can express F(x,y,p) =0 as
F(x(y,p),y,p) =0 withx: (y,p) € D C R? — R?, being D a neighbourhood of (0,0). So considering
the locally p-proyection of .%, given by the function g(y,p) : D C M? — N? g(y,p) = (x(»,p),») »
we can use Whitney theory over g, and making some calculations we can determinate fold and pleat
stable singularities of F. If we use the same arguments with F;,(0) # 0 in our calculus, as we are
considering functions F € €™ crossed partial derivates coincide and we would get the same result.

e A folded proper point. (F,,(0) # 0 and G(0) # 0). The lifted field xr is defined, the critical
locus %" is regular and not vertical at 0, and the projection 7 has a fold at all points of .%. In a
neighbourhood of 0 each integral curve of yr transversally intersectes %", and the correspond-
ing solution of equation (1) has a cusp on the discriminant curve. Moreover, the whole family
of solutions of (1) can be brought to the normal form p? = x by a %-smooth diffeomorphism
of the (x,y) — plane preserving the point 0. This corresponding normal form is named after
italian mathematician Maria Cibrario (who established it in the analytic category).

e A pleated proper point. ({F},,(0) =0, F},,(0) # 0} and {F,,(0) # 0 or F,,(0) # 0}). The
lifted field xr is defined, the critical locus %" is regular and it has the vertical tangencial direc-
tion at 0, the projection 7 has a pleat. There is no a visible classification for equation (1) in this
case, so we will not study this kind of singularities in this work.

e A folded improper point (F),,(0) # 0 and G(0) = 0) The critical locus .#" is regular and not
vertical al 0, the projection & has a fold at all points of Z", but the lifted field yF is not defined
at O (the surface .% is tangent to the contact plane). In this case, as 0 is a critical point of yr we
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can study the linearization of this field Jy, (0) restricted to Tz being A; and A, eigenvalues of
Jy(0). If A1 and A», have got non-null real part, by Hartman-Grobman theorem xr and J,, (0)
are topologically equivalent in a neighbourhood of 0. There exists a smooth diffeomorphism
over a neighbourhood of folded improper points satisfying these conditions, that transform (1)
into the normal form: (p -+ ox)? =y, where the parameter o satisfies o < 0, 0 < & < 1/8,
o > 1/8 if the point 0 is respectively a sadle, a node or a focus.

W
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Figure 2: Folded improper point
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Prologo

En el estudio de ecuaciones diferenciales implicitas:

dy

= 5

F(x,y,p) =0

existen dos casos altamente diferenciados.

Si en F(x,y, p) podemos obtener una ecuacién explicita global de la variable p: p = ¢(x,y), ésta
nos define la pendiente de las curvas integrales que son solucién de (5) en cada punto del plano y
con ello podemos dibujar un diagrama de fases sobre el mismo, el cual nos aporta informacién sobre
la forma que tienen las curvas integrales pese a haber casos en que no podamos integrar la ecuacién
diferencial y obtener la ecuacion de las mismas. Sin embargo ; Cémo actiamos si no podemos despejar
p de forma explicita global?. La idea principal consiste en estudiar la ecuacién diferencial (5) en
el lenguaje de la superficie .# = (x,y, p) € R3|F(x,y, p) = 0 (en nuestro estudio siempre trataremos
con funciones F(x,y,p)€ %> regulares), para ello definimos el campo vectorial yr sobre la misma
delimitado por la interseccién del plano de contacto dy — pdx = 0 con el plano tangente Fydx + Fydy +
F,dp =0 a la superficie en cada punto de la misma, dicho campo viene dado por el sistema de
ecuaciones diferenciales:

x=F, Yy =pF) p=—(Fx+ pFy)

En los puntos donde F), # 0 (puntos regulares) el Teorema de la Funcién Implicita nos asegura que
en un entorno de los mismos podemos despejar de forma explicita la variable p mediante una funcién
p=f(x,y)con f€E (= y por tanto aplicar localmente todos los teoremas que nos garantizan la exis-
tencia, unicidad y diferenciabilidad de las soluciones de (5). El interés de este trabajo recaerd sobre
los puntos de la superficie que cumplan F;, = 0 a los que denotaremos como puntos singulares y cuya
p-proyeccion son los puntos criticos de (5) en el (x,y)-plano.

Uno de los objetivos principales en la teoria de singularidades consiste en caracterizar las singularida-
des de funciones continuamente diferenciables f : R” — R” que son estables bajo pequefias perturba-
ciones f de la funcidn, en el sentido de que éstas no desaparecen ni pierden sus propiedades locales
bajo fr . Como nuestro estudio estd centrado en entornos suficientemente pequefios de los puntos sin-
gulares, esto es equivalente a considerar las singularidades generales de funciones M" — N, donde
M" y N™ son variedades infinitamente diferenciables. Para cada singularidad estable de una funcién
genérica f es natural tratar de determinar lo que denominamos forma normal (forma candnica) de
la singularidad, es decir funciones n : M" — N™ dadas por expresiones polinémicas simples que son
localmente equivalentes a f.

El matematico H. Whitney descubrié que para el caso de funciones f : M?> — N2 existen exactamen-
te dos tipos de singularidades estables a las que llamé singularidad fold y singularidad pleat. Aqui
es donde esta la clave de nuestro trabajo, haciendo uso del estudio de Whitney asi como del teore-
ma de la funcién implicita podemos considerar f : M> — N2 como la p-proyeccién local de nuestra
superficie .%# sobre el (x,y)-plano y con ello determinar que condiciones caracterizan a las singulari-
dades estables de .%. Una vez halladas, nos centraremos en la buisqueda de sus formas normales que
nos ayudardn a estudiar y entender el comportamiento de las curvas integrales en un entorno de la
singularidad en cuestién .

vii
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Capitulo 1

Teoremas de interés sobre la Teoria de
Singularidades

El objetivo principal de éste capitulo serd estudiar la forma de una funcién en un entorno de un punto
critico en funcién de la multiplicidad del mismo. Siempre trataremos con funciones de clase €.

1.1 Multiplicidad de puntos criticos de funciones de clase ¢ (e

Definicién 1.1.1. Sea f: R — R, de clase €, diremos que x* es punto critico de f si cumple que
%(x*) = 0. Si existe un niimero natural | tal que:

af . d'f . drrlf
a('x )_07"'7 ﬁ('x )_07 dxht1

diremos que el punto critico tiene multiplicidad U respecto de f. Si x* no es punto critico de f, pondre-
mos U =0y si x* es punto critico con multiplicidad infinita diremos |[L = oo, sin embargo en nuestro
estudio solo trabajaremos con puntos criticos de multiplicidades finitas.

(x") £0 (1.1)

Lema 1.1.2. Lema de Hadamard En un entorno del origen, cualquier funcion f: R? — R, con fé&
€=, puede ser representada de la forma:

fx)=£0)+xig1(x) +... +x,8p(x), x=(x1,...,xp) (1.2)

con gi(x)e €=, i=1,...,p.
Demostracion. Ver [12] ]
Estos dos teoremas nos servirdn mds adelante para poder desarrollar ciertas funciones de manera

que nos facilite el estudio del comportamiento de las curvas integrales en un entorno de los puntos

singulares de una ecuacién diferencial implicita F (x,y,p) =0, p = %.

1.2 Teorema de la Division

Tomemos F: R x R? — R, funcién de clase €' y separemos los argumentos de F de manera que
x € R tome el papel de variable principal, e y € RP como variable paramétrica. Fijado y € R? , podemos
considerar la funcion g(x) = F(x,y), y por tanto estudiar sus puntos criticos y la multiplicidad de los
mismos, coincidendo éstos con los de la funcién F respecto de la variable x.

Definicion 1.2.1. Sea Ty = (xo,y0) € R x R", punto critico respecto variable x de F (F(Ty) = g’ (xo) =
0. Definiremos la multiplicidad de Ty en F respecto de la variable x como al |l natural que cumpla:

oF oHF MR
g(TO):Ow--a ﬁ(T@:O» W(To)#o- (1.3)

1



2 Capitulo 1. Teoremas de interés sobre la Teoria de Singularidades

Por simplicidad, formularemos a continuacién el Teorema de la Division para el punto critico
x0=0, respecto la variable x. El caso general puede obtenerse facilmente mediante el cambio de varia-
ble x — x+x¢

Teorema 1.2.2 (Teorema de la Division). En un entorno Uy, del punto critico Ty = (0,y0) de multi-
plicidad 0 < U < oo, la funcion F (x,y), puede escribirse de la forma:

H .
F(x,y) = F(0,y0) + ¢(x,y) <X““ + Zai(y)X“’~> : (1.4)
i=0
con ai(y)v (p(xvy) € (g(ma (P(x,y) 7& Ov(xvy) € UTO y ai(y()) =0.
Demostracion. Ver [9]. OJ

Lema 1.2.3. Sea la funcion F (x,y) € € yx= Y(y)e €™ la ecuacion de una hipersuperficie tal que
F(y(y),y) =0, Vy € Uy, siendo Uy, entorno del punto To = (xo,yo). Entonces:

Fx,y) = (x=7()ox,y) (1.5)
Y (x,y) € Uy, C Uy, con ¢(x,y)€ €.

Demostracion. Empecemos efectuando el cambio de variable x — x — y(y) que nos transforma el
punto Ty = (x0,y0) a Tp = (0,y0) y la hipersuperficie x = y(y) en el hiperplano x = 0, con F(0,y) =0
V'y € Uy, entorno de Ty . De manera que es suficiente probar el Lema para la curva regular y(y) =0
y deshacer el cambio de variable anterior, es decir basta probar que:

F(x,y) = x¢(x,y)

V (x,y) € Uy, con @(x, y)€ €.

A continuacién distinguiremos dos casos posibles:

e Caso 1: Ty = (0,y) es punto critico de F(x,y) respecto la variable x de multiplicidad 0 <
H < oo. Por el Teorema de la Divisién 1.2.2, se sigue que en un entorno Uy, , la funcién F (x,y)
puede ser expresada de la forma:

u
F(x,) = F(0.0) + y(x.) (u " za[@)xui)
i=0

con a;(y), (x,y) € €, y(x,y) # 0y ai(yo) =0
Por hipétesis F(0,yo) = 0 de manera que la expresion anterior queda de la forma:

u
F(x,y) = y(x.y) <x““ - ;)ai(y)X“’)

Evaluando a continuacién F en (0,y) y sabiendo que w(0,y) # 0 Vy € Uy,, deducimos que
a, (y) = 0, quedando entonces la ecuacién anterior de la forma:

u—1 ) u—1 ]
F(x,y) = w(xy) <x““ + ;) af(y)X“’> =xy(x,y) <X" + ;) ai(y)X“’1> =x¢(x,y);

siendo @(x,y)=y(x,y) (x“ + 3t _01 a,‘(y)x“*ifl) € €™, por ser producto y suma de funciones
¢
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e Caso 2: Ty = (0,y0) es punto critico de F(x,y) respecto la variable x, con multiplicidad u
infinita (i = o). Tomemos la funcién G(x,y) = x+ F(x,y) tal que:

G

Luego la multiplicidad de G en (0,yp) respecto la variable x es u = 0. Aplicando nuevamente
el Teorema de la Divisién sobre G(x,y), deducimos que en un entorno Uy , la funcién G(x,y)
puede ser expresada de la forma:

G(x,y) =x+F(x,y) = G(0,y0) + y(x,y) (x +ao(y))

con aO(y)a lll(x7y) € (g(w’ l[/(x,y) 7é 0 y aO(yO) =0
Sabiendo que G(0,y) = 0, la expresion anterior queda de la forma:

G(x,y) =x+F(x,y) = y(x,y) (x+ao(y))

Evaluando a continuacién G en (0,y) y sabiendo que F(0,y) =0y que y(0,y) # 0 Vy € Uz,
deducimos que ao(y) = 0, quedando entonces la ecuacion anterior de la forma:

Glx,y) =x+F(x,y) = y(x,y)x
con Y € €(*. De esta manera obtenemos la funcién F(x,y) = x(y/(x,y — 1).

O

Proposicion 1.2.4. Para cualquier n € N y entorno U de cualquier punto Ty = (0,y), cualquier
funcion F(x,y) € €', puede ser escrita de la forma:

F(x,y) = fo) +xfi () + oot fuma () +4 fulx,y) (1.6)
donde f; € € i=0,...,n.

Demostracion. Tomemos fo(y) = F(0,y) y g(x,y) = F(x,y) — fo(y), entonces la funcién g(x,y) se
anula en el hiperplano x = 0 y por el Lema 1.2.3, tenemos que g(x,y) = x¢(x,y), con ¢ € €(*. De
manera que obtenemos F(x,y) = fo(y) +x¢(x,y) (Caso n = 1). Supongamos cierto para el caso n-1,
entonces:

F(x,y) = fo) +xfi(0) + .. + 2" fuo1 (x,)

con f; € € i=0,...,n— 1. Tomemos h(x,y) = f,_1(x,y) — f,_1(0,y), que se anula en el hiperplano
x = 0, aplicando nuevamente el Lema 1.2.3 tenemos que /(x,y) = x@(x,y), con ¢ € €* y quedando
la ecuacion anterior de la forma:

F(x,y) = fo) +xfi(y) + .2 o1 (6,3) = fo0) +xf1(3) + . X (x@(x,3) + f-1(0,))
= fo0) +xfi() 4.+ £1m1(0,) + X0 (x,y).

O

Lema 1.2.5. Sea la funcién F(x, y)e €=y Uz, entorno del punto Ty = (xo,y0) con Fy(y(y), y)=0Vy
€ Uy,. Entonces:

F(x,y) = foy) + (x—y()) 0 (x,y), (1.7)
V (x,y) € Ur, con ¢(x, y), fo(y)€ €.
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Demostracion. Empecemos efectuando el cambio de variable x — x — (y) que nos transforma el
punto Ty = (xo,y0) a To = (0,y0) y la hipersuperficie x = ¥(y) en el hiperplano x = 0, con F(0,y) =0
V'y € Uy, entorno de Ty . De manera que es suficiente probar el Lema para la hipersuperficie y(y) = 0
y deshacer el cambio de variable anterior, es decir basta probar que:

F(x,y) =x*@(x,9) + fo(y)-

Por la Proposicién 1.2.4 V'y € Uy, F(x,y) puede ser escrita de la forma:

F(x,y) = foy) +xf1(y) + 5 fo(x,).

Como F;(0,y) = fi(y) = 0, entonces F(x,y) = fo(y) +x*f2(x,y) V' y € Uy, y tenemos la férmula
buscada. O

Lema 1.2.6. Cualquier funcion f(x,y1,...,ym) : R = R, con f € R puede ser escrita en un
entorno del origen de la forma:

f(x,Y) :fl(xzvy) +xf2(x23y), y= (y17"'7ym)7 (18)
donde fi y f> € €.

Demostracién. Estudiaremos la demostracioén para funciones f(x,y) € €(*. Comenzaremos estudian-
do el caso m = 0 y més tarde observaremos que cambios deberemos de hacer para el caso m > 0.

Empezaremos descomponiendo la funcién f como la suma de sus partes par e impar: f(x) = fpar(x) +

fimpar(x), con:

fx)+f(=x)
2 )

flx)—f(—x
frar2) = s,
con frar(x), fimpar(x) € €.

Empleando el Lema de Hadamard!.1.2 podemos desarrollar fyper(x) = fimpar(0) +xg(x) = xg(x),
con g(x) € ¢ (=, funci6n par (por ser x impar). De manera que para completar nuestra demostracién

es suficiente con establecer la representacion en un entorno del origen:

fimpar (X) =

g(x) = fi(x?)

para cualquier funcién g(x) € €™, par.
De acuerdo con el Analisis de Fourier, la serie de Fourier para una funcién g(x) € %(‘”, par, viene
dada por la Serie de Fourier de cosenos:

T

ot 1
0 Z cpcosnx , donde ¢, = - f(x)cosnxdx. (1.9)
n=1

g(x) >

-7

Sabemos por el desarrollo en serie de Fourier que dicha serie converge uniformemente y absolutamen-
te a f(x) Vx € [—m, ). Usando el desarrollo de Taylor en el origen de la funcién cos(nx) , 1a expresion
(1.9) quedaria de la forma:

g(x):@+zcn2( )(n'x) :Z(x,,xz", —n <x<m.
2 =5 (26!

n=1

Dicha serie nos ofrece la representacién g(x) = fi(x?) requerida, donde f; estd bien definida en el
intervalo [—7, £%] como una serie absolutamente y uniformemente convergente.

A& =Y @&, —n* <x<7h (1.10)
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Para finalizar la demostracion sefialaremos los cambios que deberemos hacer para el caso m > 0. Em-
pezaremos separando los argumentos de la funcién f(x,y1,...,ym), con x jugando el papel de variable
principal e y = (y1,...ym) el de variable paramétrica. Descompondremos la funcién f como la suma
de sus partes par e impar respecto la variable x:

f(xvy) +f(—x,y)
2

f(x7)7) —f(—x,y)
D) )

fpar(xay) = ) fimpar(xvy) =

La representacion fimpar(X,y) = xg(x,y) en un entorno de x = 0, se puede deducir facilmente de la
Proposicion!.2.4, de manera que tomando n = 1, tenemos la expresion:

Simpar(x,y) = fo(y) +xg(x,y). (1.11)

con g(x,y)€ €', funcién par respecto la variable x. Por ser fo(y) = fimpar(0,y) = w =0

Vy € R™. , la ecuacién anterior se reduce a:

fimpar(xay) = Xg(xvy)'

El resto de la demostracién consiste en probar:

g(xay) = (xzvy)'

para cualquier funcién g(x,y) € €=, par respecto x. Usando los mismos razonamientos que en el
caso m = 0, y aproximando en este caso g(x,y) por su Serie de Fourier Mdltiple se puede demostrar
la propiedad anterior y con ello el Lema. O

1.3 Teorema de la Funciéon Implicita

Teorema 1.3.1. Teorema Funcion Implicita . Sean n, m € N y nsea f una aplicacion de clase €'?
(1 < p <o) de un abierto Q de R" x R™ 2 R"*™ en R™. Dado (xg,yo) € Q para el que f(xo,y0) =0
y det J,f(x0,y0) # O, existen abiertos U en R" y V en R", conteniendo respectivamente a xo, yo, de

manera que:
UxVCQ

y Vx € U existe un tnico 'y € V tal que f(x,y) = 0. Queda asi definida una funcion ¢ : U — V que
cumple:

e f(x,0(x))=0VxeU.
e pcEPenU.
en consecuencia, Jo(x) = —Jyf(x,9(x)) "' - Jf(x,@(x)) para cada x € U.

Demostracion. La demostracion puede ser vista en el Apéndice 2 de [5]. O
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Capitulo 2

Ecuaciones Diferenciales Implicitas y sus
Singularidades

En este capitulo, estudiaremos las ecuaciones diferenciales implicitas desde el punto de vista geomé-
trico. El paso principal consistird en leer la ecuacién diferencial implicita: F(x,y, p) = 0, con p=%
en el lenguaje de la superficie generada por F determinando las ecuaciones del campo vectorial yr
tangente a la misma delimitado por la interseccion del plano de contacto dy — pdx = 0 con el plano
tangente Fydx + Fydy + F,dp = 0 en cada punto de ésta. El objetivo de esta nueva perspectiva de la
ecuacidén diferencial consiste en identificar y hacer distincidn entre singularidad propia y singulari-
dad impropia para posteriormente hacer el estudio individualizado de cada una de ellas a través de la
Teoria de Singularidades.

2.1 Nociones basicas sobre las ecuaciones diferenciales

Definicion 2.1.1. Ecuacion diferencial ordinaria Definiremos como Ecuacion diferencial ordina-
ria(EDQO) a la relacion funcional:

[y, ") =0 @.1)

de una variable independiente x (a veces x) y de una variable dependiente y = y(x) y de las derivadas
y? p=1,...,n. Se llama orden de una ecuacion diferencial ordinaria al mdximo orden de deriva-
cion que interviene en ella. Una ecuacion diferencial se dice explicita si la derivada de mayor orden
aparece despejada en la ecuacion e implicita en caso contrario. Las nociones que se acaban de intro-
ducir se extienden del modo natural al dmbito de los sistemas de ecuaciones diferenciales (SEDO),
es decir, sistemas de ecuaciones de la forma:

FL (X, 91,05 s Y2: Y5 ces Yns Vi o) = 0
12 (-xaylvylla '”7y27y,27"‘7yﬂ7y;17 ) =0
F x’yl7y/7"'7y27y/7".7y 7y/7"' .
( 1 2 nyJn ) : (22)
Fn (-xayl?yllﬂ "'7)720’,27”-;)%7)’:17 ) =0

teR, yeR", F:D—R" DcCRx (R

en los que se entiende que las funcion F estd definida sobre un niimero finito de variables e y1,y2, ..., Yn
representan a las funciones definidas sobre la variable x.

Definicion 2.1.2. Solucion de una ecuacion diferencial. Decimos que una funcion ¢ : I - R", I CR
intervalo derivable hasta orden n en I, es una solucion de un sistema de ecuaciones diferenciales

7
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ordinarias (2.2) si verifica:

(. 0(),0'(x),...0"()) €D, vx el
y
F (x, o(x), 9 (x), ...,(p("(x)> =0,Vxel.

2.2 Ecuaciones Diferenciales Implicitas: Proyeccion
Sea:

d [e e}
F(x,y,p) =0, pzd—i, Few 2.3)

una ecuacion diferencial implicita de primer orden donde no podamos obtener una forma explicita
global p = % =g(x,y), (x,y) € R? para la derivada. A través del Andlisis Mtematico, sabemos que
si existiera dicha ecuacion explicita, estd nos aportaria informacion sobre la pendiente de las rectas
tangentes a las curvas integrales solucién de la ecuacién (2.3) en cada punto del (x,y)-plano, y con
ello podriamos construir el diagrama de fases de dicha ecuacién diferencial y "hacernos una idea"de
la forma que tienen dichas curvas integrales pese a no conocer su ecuacion explicita y = y(x). Pero
como no es ese el caso ;qué forma tienen las curvas integrales solucién de la ecuacién (2.3)?

Para responder a esa pregunta deberemos pensar de forma local, es decir deberemos estudiar sobre
qué puntos del plano (x —y) si podemos obtener una ecuacion explicita para la derivada p = % en un
entorno de los mismos y cémo actdar en los puntos en los que ésto no sea posible. Estas cuestiones
serdn el nicleo principal de nuestro trabajo.

Definicién 2.2.1. Sea F : R> = R, con F € €. Definimos F = {(x,y,p) ER®| F(x,y,p) =0,}.

Definicion 2.2.2. Dada y:1 — R, con € I C R, defino y: 1 — R, y(x) = (x,y(x),y'(x)) con ¥ =
Im(7y(x)). Es claro que si y(x) es solucion de (2.3) entonces ¥ C 7.

Ejemplo 2.2.3. Sea la ecuacion diferencial implicita: F(x,y, p) = p+y—sin(x) = 0. La ecuacion del
haz de curvas sobre el (x,y)-plano solucién de F es : y(x) = (e “c+ 4(—Cos(x) + Sin(x)) ,x, c € R,
mientras que la ecuacion paramétrica del haz de curvas sobre F solucion de F viene dada por:
Y(x) = (x,e *c+ (—cos(x) +sin(x)), —e~*c + 3 (cos(x) +sin(x))) ,x, c € R.

e En color rojo representamos .7 .

e En color negro representamos el haz de cur-
vas paramétricas sobre .# cuya ecuacion es
solucién de F.

Figura 2.1
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Definicion 2.2.4. Definimos como plano de contacto w.(x,y,p) al plano de ecuacion: dy — pdx =0
¥(x,y,p) € R%.

Observacion 2.2.5. La ecuacion paramétrica de T, en cada punto (xg,yo, po) viene dada por:
x=xo+A
y=yo+ poA , VA, u € R cuya proyeccion sobre el (x, y)-plano es el conjunto de rectas de ecua-
pP=po+HU

x=xo+A

, YA € R, cuyo vector direccional es (1, py).
Yy =Yo+ poh Y (1, o)

cion paramétrica: {
Proposicion 2.2.6. Daday:1 — R, con € I C R entonces el plano de contacto es tangente en todo
puntode ¥ .

Demostracion. Daday:I — R, con € I C R, tomemos ¥ curva de ecuacién ecuacién paramétrica:

')/(X) = (x,y(x),y’(x)).Fijemos TO = (XO,’)/(XQ),’J/(X())) = (x0>)’0aP0) € 7 Dado EC<T0) = p(x—xo) -
(y —yo) = 0,tenemos que el vector tangente de 7 sobre Ty: 7o = (1, Y (x0), Y’ (x0)) = (1, po, Y (x0)), €s

ortogonal al vector normal de 7. (Ty): ig = (po, —1,0): 7ip.fo = 0 y con ello concluye la demostracion.
O

Sabemos por geometria que la posicién relativa de dos planos en R? es que sean secantes o coin-
cidentes, de manera que para cada punto de la curva ¥, tenemos dos posibilidades:

1. dim(m,Nm)=1.
2. dim(mNm) =2.

En el segundo caso, es equivalente a decir que los vectores normales de ambos planos son linealmente
dependientes en 7y € ¥y por tanto su producto vectorial es nulo, es decir:

nxne = (anF‘vap)x(p7_170) = (vapra _Fx_pF’) = (_) (24)
De manera que tenemos la relacion:
F,=0
2.5
{ F.+pF, =0. (2:5)

En el resto de puntos de la superficie .% . que no satisfacen la ecuacion (2.5), la interseccion del plano
tangente 7; y plano de contacto 7., es una recta (Caso 1).

Definicion 2.2.7. Llamaremos como campo superficial, al campo de rectas sobre .F, generado por
la interseccion del plano tangente T, y plano de contacto 7. en los puntos de la superficie .% . que no
satisfacen la ecuacion (2.5).

La relacién entre la ecuacién (2.3) y el campo superficial es obvia: las curvas ¥ € .% son las curvas
integrales del campo superficial. Inversamente, las curvas integrales solucién de la ecuacién (2.3) en
el (x,y)—plano, son la proyeccién de las curvas integrales del campo superficial sobre el (x,y)—plano
a lo largo del eje p.

Para poder analizar las curvas integrales del campo superficial es conveniente hallar el sistema
de ecuaciones diferenciales sobre .# que lo define. Sea una curva en el (x,y, p)-espacio de ecuacion
paramétrica r : [a,b] — R>,r(t) = (x(t),y(t), p(t)), si para cada t € [a,b], identificamos el vector tan-
gente de la curva anterior #/(r) como el vector direccional de la recta tangente a .# formada por la
interseccién de 7 (r(t)) N 7.(r(¢)) , entonces Im(r) € J' y su ecuacién vendra dada por el sistema de
ecuaciones diferenciales:

X(1) = Fp, y(t) = pFp, p(t) = —(F+ pFy) (2.6)
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Figura 2.2

Definicion 2.2.8. Definiremos los siguientes conjuntos:
H ={(x,y,p) € Z | Fy(x,y,p) = 0}.
Z ={(x,y,p) € F | Fx(x,y,p) + pF,(x,y,p) = 0}.

que llamaremos criminante y curva de inflexion de la ecuacion (2.3).

Definicion 2.2.9. Un punto Ty = (x0,Y0, po) de F serd denominado punto singular de la ecuacion
diferencial implicita (2.3) si F,(To) = 0. En caso contrario, lo denominaremos como punto regular.
Usando las notaciones previas, podemos decir que Ty es singular si Ty € vy Ty es regular si Ty €

F\A.

Definicion 2.2.10. Llamaremos singularidades propias (P;) a los puntos Ty € F tales que Ty €

Definicion 2.2.11. Llamaremos singularidades impropias (I;) a los puntos Ty € ¥ que satisfacen la
ecuacion (2.5). Es claro ver que % N.L = Ii.

Observacion 2.2.12. Observamos como el campo superficial estd bien definido en todos los puntos
de la superficie F y éste es nulo en las singularidades impropias (I;) que son los puntos criticos de
la ecuacion (2.6) en donde el plano tangente m;|;, y de contacto m.|;, coinciden.

Definicion 2.2.13. Liamaremos discriminante de la ecuacion diferencial (2.3) a la p-proyeccion
In(7y| v )= D, del criminante sobre el plano (x —y).

Observacion 2.2.14. Es claro como el discriminante conforma el conjunto de valores criticos de la
ecuacion (2.3) sobre el (x, y)-plano.

Ejemplo 2.2.15. En este ejemplo, determinaremos la superficie %, las curvas integrales del cam-
po superficial, su proyeccion sobre el (x —y)-plano asi como el criminante y discriminante de las
siguientes ecuaciones diferenciales implicitas:

a) F(xayap) :p2_1:0

Ecuaciones diferenciales campo superficial:

X(t)=2p Y(t)=2p* p'(t)=0
Curvas integrales campo superficial:

El conjunto de curvas integrales que satisfacen el sistema de ecuaciones diferenciales anterior vienen
dadas por las ecuaciones paramétricas: y(t) := (ZClt + C2,2C%l‘ +c3, cl) , C1,C2,c3,ctes,t € R. Eva-
luandolas en F obtenemos: F(y(t)) = ¢? —1=0=c| =|1|. De manera que Im(y) = Im(y;) UIm(p),
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con: 11 (t) :==A{[2t + 2,2t +¢c3,1], c2,03 — ctes,t €R}y pa(t) :={[-2t + 2,2t +¢3,—1], c2,03 —
ctes,t € R}.

Criminante y Discriminante:

H ={(x,y,p) € F | Fy(x,y,p) = 0}. Como F, =2p=0=p =0,y como F(x,y,0) =—1%#0
= el criminante es el conjunto vacio y por tanto el discriminante también.

En el primer dibujo representamos de color rojo la superficie F, y en azul las curvas integrales
solucion del campo vectorial y en el segundo representamos de color azul la proyeccion de las mismas
sobre el (x,y)-plano.

b) F(x,y,p) =p*+x=0

Ecuaciones diferenciales campo superficial:

X)=2p y()=2p* pt)=1

Curvas integrales campo superficial:

El conjunto de curvas integrales que satisfacen el sistema de ecuaciones diferenciales anterior vienen
dadas por las ecuaciones paramétricas: y(t) 1= (—t2 +2cit 4¢3, %t3 + 26’%1 —2t%c; + c3,—t+ c1) ,
c1,cp,c3,ctes,t € R. Evaluandolas en F obtenemos:

F(y(t)) = c%+cz =0=c, = —c% =y(t) = (—t2 +2c1t — C%%ﬁ +2C%l —21%¢i +c3,—t +cl) , C1,C3,ctes.

Criminante y Discriminante:

H ={(x,y,p) € F | Fy(x,y,p) = 0}. Sea (x,y,p) € JH, entonces debemos de encontrar los pun-
tos de (x,y,p) € R* t. ¢ F(x,y,p) =0y F,(x,y,p) = 0. Como Fy(x,y,p) =2p =0, entonces p=10y
F(x,9,0) =x=0= % :={(0,y,0)]y c R} = Eje yen R? y 2, := {(0,y)|y € R} = Eje y en plano
(x,y)-

En el primer dibujo representamos de color rojo la superficie & ,de color negro el criminante y de
color azul las curvas integrales solucion del campo vectorial y en el segundo representamos de color
azul la proyeccion de las mismas sobre el (x,y)-plano y de color rojo el discriminante.

El estudio del diagrama de fases de una ecuacién diferencial ordinaria p = r(x,y) con r € ¢ (e
en todo punto (xp,yo) es muy sencillo: la familia de curvas integrales es localmente equivalente a
una familia de lineas rectas. Por ejemplo, en una vecindad de cualquier punto (xo,yo), la ecuacién
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p = r(x,y) puede ser llevada a la forma p = 0 con ayuda de un cambio de variable en el (x —y)-
plano. Esta afirmacion se sostiene gracias al Teorema del Flujo Tubular , sin embargo ;qué ocurre
si tomamos un punto singular 7) € ¢ sobre .%# de la ecuacién (2.3)? ;qué podemos decir de las
curvas integrales en un entorno de los mismos?;y de las curvas integrales en un entorno de los puntos
del discriminante?. Para contestar a estas preguntas haremos el estudio distinguiendo los casos de
singularidades propias e impropias: Tp € # \ Ly Ty € # NZL.



Capitulo 3

Teoria de Whitney sobre Singularidades

Uno de los objetivos importantes de la Teoria de Singularidades consiste en clasificar las singulari-
dades xo de funciones f : R” — R™, f € €=, que son estables bajo pequefias perturbaciones de f
(fe), asi como encontrar aquellas funciones f a las que denominaremos como formas normales que
cumplen la propiedad de que cualquier perturbacion de dicha funcidn, f, es localmente equivalente a
la propia funcién f en un entorno de la singularidad en cuestidn xg. Todo nuestro estudio se reduce a
un problema local sobre la singularidad x¢ que tratemos, de manera que podremos aproximar nuestra
funcién f por su desarrollo de Taylor en un entorno de xg y con ello observar qué términos de la
expansion nos garantizan el cambio de coordenadas mencionado anteriormente.

3.1 Teoria de Singularidades

Definiciéon 3.1.1. Dadas dos funciones f, g:R" — R"™, con f,g € € (R",R™) diremos que son local-
mente equivalentes en un punto po € R", si existe un cambio de coordenadas ¢ € €' en un entorno
de po tal que f o @ = g salvo multiplicacion por funciones que no se anulan en ningiin punto.

Definicion 3.1.2. Sea f: R — Ry xo punto critico con multiplicidad u =1 (f'(xo) = 0, " (xo) # 0),
entonces llamaremos a xq es singularidad fold de f.

Proposicion 3.1.3. Sea una funcion f: R — R y xq singularidad fold de f, entonces f(x) es local-

mente equivalente a la forma normal n(x) = x*, en un entorno de x.

Demostracion. Comenzaremos efectuando un cambio de variable x — x — xo que traslade la singula-
ridad al origen, (f'(0) =0, f”(0) # 0). Por el lema de Hadamard 1.2.4, podemos descomponer f de la
forma:

f(x) = f(0)+xg(x), cong € €. 3.1

Aplicando nuevamente el lema sobre g tenemos:

£x) = £(0) +x(g(0) +xh(x)) = £(0) +xg(0) + X*h(x), conh €%, (32)
Derivando respecto a x y sustituyendo en el 0, deducimos que f'(0) = g(0) = 0 obteniendo f(x) =
£(0) +x>h(x).Hacemos el cambio de variable x — ——z, si g < 0 hacemos el cambio 7z — —z ,de

it
esta manera obtenemos: f(z) = f(0) +z> — n(z) = f(z) — f(0) = 2.
O

Uno de los aspectos mas importantes de la Teoria de Singularidades es la estabilidad de las mis-
mas, por ejemplo en el caso de funciones f: R - R, f € CK(""(R), las tnicas singularidades estables
son las singularidades fold en el sentido de que si tenemos cualquier funcién f € C5("°(R) que posea
otro tipo de singularidad x¢ que no sea fold, podemos hacer que ésta desaparezca o transformarla en
una singularidad fold a través de una pequefia perturbacion de la funcién f — fe. %(“’(R).

13
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Ejemplo 3.1.4. Consideremos la funcién x>, que posee una singularidad en xy = 0 que no es de tipo

fold puesto que f"(0) = 0. Tomemos ahora fe = x> — €x, dicha funcién posee dos singularidades:

S0 = +\/§y 51 = —\/g, con f7(s0), f (s1) # 0, siendo pues sy y s\ singularidades fold respecto f.

| / _/
Figura 3.1: Funciones f(x) = x>y fe =x> —é&x. Se

puede apreciar la aparicién de dos singularidades
fold en f;.

3.2 Teoria de Singularidades de Whitney

En esta parte del capitulo estudiaremos las singularidades genéricas de funciones f : R? — R?, sin
embargo todos nuestros resultados son perfectamente aplicables para funciones f : M?> — N2, res-
tringiéndonos a entornos suficientemente pequefios de la singularidad a estudiar y siendo M? y N?
2-variedades de clase €.

1 gl
Definicion 3.2.1. Dada f : M> — N? con matriz Jacobiana A = (;"2 ?2> llamaremos puntos
x Jy

singulares de f a los puntos de M* que cumpldn la condicion ‘A f‘ =0

Con este nuevo tipo de funciones cabe plantearse las siguientes preguntas: ;Qué singularidades
son estables?; Cudles son las ecuaciones de las formas normales?;Qué condiciones debe cumplir una
funcién para ser localmente equivalente a una ecuacién en forma normal?

En 1955 Whitney estudio el caso de funciones f : R?> — R? y descubrié que existen dos tipos de
singularidades estables a las que denominé como fold y pleat y caracterizé de la siguiente manera:
Sea f:M?> N2, fe %=, dada por las funciones

z=f'xy), w=fAxy), £(0)=r,0)=0 (3.3)

un entorno del origen. La matriz Jacobiana de f es:

1 1
Af = (]fcz J}) (3.4)

Los puntos singulares de f vienen dados por la condicién ’A f’ =0, entoncesig Ay =00rg Ay =1
. El conjunto S; = {(x,y) : rg A¢(x,y) =0}, en el caso genérico es el conjunto vacio, de manera
que estudiaremos las singularidades pertenecientes a S = {(x,y) : rg A¢(x,y) = 1}, que son a fin de
cuentas las que nos interesan para el proximo capitulo.

Proposicién 3.2.2. Sea f: M?> — N2, f € € como en (3.3) y suponer que el conjunto de puntos
singulares de f viene dado por Sy, = {(x,y) 18 As(x,y) = 1}, entonces dado po € Sy f es localmente
equivalente en pg a la funcion:

z=F(x,y), w=y, F(0)=0 (3.5)
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Demostracion. Haremos la demostracién para el caso de funciones de R? en R?, y ésta serd igual
de valida para funciones entre 2-variedades en entornos suficientemente pequefios de la singularidad.
Sea po = (x0,y0) € S> entonces rg As(xo,y0) = 1 y existe un elemento de A r(xo,yo) distinto de 0.
Consideremos las aplicaciones:

Ty : R2 _>R> (x,y) — nx(x,y) =X
my i RE R, (x,y) = my(x,y) =y

y la funcién:
h:R? =R, (x,y) = h(x,y) = (T, o f) = (v, f (x,7))

Tenemos pues que

3= () i) <o U0l = £ o) £0

Por el teorema de la funcién inversa h, es un difeomorfismo en un entorno U de pg. Llamemos 7 =

(hly) ™",y seaW =~ (U) y consideremos (z,w) € R2. Llamemos (x,y) = h(z,w) = (h' (z,w), 2 (z,w)) €

U oo que es lo mismo h(x,y) = (z,w) = 0.f '(x,y)) = (R (z,w), f' (R (z,w),h*(z,w))). De manera
) ey Sicomponemos foh = (71(h (2w).2). P2 zw).2) =
(w,G(z,w)) con G(z,w) = f2(h'(z,w),z) y con esto concluimos la demostracién. En el caso en el que
sea otro menor de A ¢(xp,yo) distinto de 0, bastara con redefinir la funcién 4 segtin convenga. O

que tenemos la identificacion: {

Los puntos singulares de la funcién (3.3) vienen dados por:

F. K

al=| 5 [oemt =0

Whitney demostré que dentro de éste conjunto de singularidades, s6lamente las singularidades fold y
pleat eran estables, cada una de ellas quedaban determinadas por las siguientes condiciones:

e Singularidad Fold : F;,(0) =0, F,,(0) #0
e Singularidad Pleat : F,(0) =0, F(0) =0, F,(0) # 0, Fe(0) #0

Whitney también demostré que el el conjunto de funciones que poseen singularidades fold o pleat
es denso en €' (R?) en la llamada Topologia de Whitney que definiremos a continuacion.

Definicion 3.2.3. Sea Cf(“’(R",R[’ ) el espacio vectorial formado por el conjunto de funciones f :
R" — R? continuamente diferenciables con f = (fi,..., fp). Paracadam=0,1, ..., e, la C" —topologia
de Whitney sobre %(w(R”,RP ), es la que tiene por subase , los abiertos:

Al <e}

d91xq...09x,
Ve > 0. Con g =qi + ... + qn, el mdximo es tomado para todo x € R", todo i € 1,...,p y todas las
derivadas parciales de orden g < m.

B(e) = {fe(f(m:mdx

Proposicién 3.2.4. Dada una funcion f: R?> — R?, f € €y so = (x0,y0) singularidad fold de f,
entonces existen unas coordenadas locales en un entorno de sy que transforma la funcion f a la forma
normal:

z:xz, w=y (3.6)
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X—X—Xp
y—=y=>o
al origen. Como, F;(0,0) =0y F(0,0) # 0 por el Teorema de la Funcién Implicita 1.3.lexiste un
intervalo I centrado en el punto 0 y una dnica funcién ¢ : y € I CR — x = ¢(y) € R tal que ¢(0) =0,
que verifica que Fy(¢(x),y) =0 paratodoy € I.

Haciendo el cambio de variable x — x — ¢(y), trasladamos los puntos de la curva @(y) al eje x =0, de
manera que en las nuevas coordenadas la funcién F, se anula en el eje x = 0. Obsérvese tambien como
en este cambio se mantienen las propiedades: F;(0 — ¢(0),0) = F;(0,0) =0y F(0— ¢(0),0) =
Fuu(0,0) 0.

Aplicando el Lemma 1.2.5, en un entorno del origen tenemos la representacion:

Demostracion. Comenzaremos efectuando un cambio de coordenadas { que traslade sg

F(x,y) = Fy(y) +x*W(x,y), con Fy(y)=F(0,y). 3.7)

siendo y(x,y) € €. La condicién F(0) # 0 llevada a (3.7) implica w(0) # 0. Asumamos que
y(0) > 0, en caso contrario el cambio z — —z cambia el signo de y.

Consideremos a continuacién el cambio de variable x — x4/ y(x,y) con el que obtenemos F(x,y) =
Fy(y) +x2, la funcién tiene entonces la forma:

z=FRy)+x*, w=y.

Finalmente usando el cambio de variable z — z — Fy(y), tenemos la férmula:

z=x% w=y.

O]

Proposicién 3.2.5. Dada una funcion f R - R?, f € € y s = (x0,y0) singularidad pleat de f,
entonces en un entorno de sy existen unas coordenadas locales que transforma la funcion f a la forma
normal:

=X 4xy, w=y. (3.8)

Demostracion. Ver pagina 29 de [2]. O

Son las singularidades de funciones planares estudiadas por Whitney , las que nos interesan en
nuestro estudio, sin embargo como dato histérico sefialaremos que fue R. Thom quien relanzé la
teoria de singularidades determinando las 7 singularidades estables y densas de funciones f : R* —
R* y proponiendo un amplio rango de aplicaciones de su estudio. A medida que aumentamos las
dimensiones, también aumenta el nimero de singularidades estables.



Capitulo 4

Ecuaciones Diferenciales Implicitas:
Formas Normales y Diagrama de Fases

En este capitulo haremos uso de la teoria de Whitney estudiada en el capitulo anterior para poder hallar
las condiciones que nos aseguran que una singularidad de .# es estable y determinaremos también sus
formas normales (en el caso en el que se pueda) para poder entender el comportamiento de las curvas
integrales en un entorno de estas singularidades en cuestion.

4.1 Clasificacion de Singularidades de una Ecuacion Diferencial Impli-
cita

En el capitulo anterior vimos la definicién de Singularidades Pleat y Singularidades Fold para fun-
ciones f : R — R2 ¥ (*-diferenciables, sin embargo ;qué condiciones debe cumplir la singularidad
Ty € ¢ para clasificarla como fold o pleat?

Para poder contestar a esta pregunta, comenzaremos efectuando un cambio de coordenadas

{ X —>X—X0
Yy —Y—Y0— Po(x—xo)

que traslade 7p al origen. Sea F'(x,y, p) ecuacion diferencial de la forma (2.3) y Tp € ¢ punto singular.

Al efectiar nuestro estudio sobre superficies .# regulares, entonces VF = (F(x,y, p), Fy(x,y, p), Fp(x,y,p)) #
0V(x,y,p) € .Z siendo VF, el vector normal en cada punto de .%. Sea Ty = (x0, Y0, po) = (0,0,0) € &

con F,(Ty) = 0 como VF(Ty) # 0, lo cual significa que dados Fy(Tp) y F; (7o), al menos uno de los

dos debe ser distinto de 0.

L. Fx(TO) 750
2. F,(To) #0

Si F(Ty) # 0 (Caso 1) por el Teorema 1.3.1 sabemos que existe un disco D C R2, centrado en el
punto (yo, po) y una tinica funcién x : (y, p) € D C R* — x(y, p) € R con derivadas parciales continuas
en D tal que xo = x(yo,p0) ¥y x = x(y,p) es solucion de la ecuacién F(x,y, p) = 0, es decir, que se
verifica que F(x(y, p),y,p) = 0 para todo (y, p) € D. Ademds, las derivadas parciales de la funcién x
vienen dadas por:

Fy(x(y,p),y,p)
F(x(y,p),y,p)

Fy(x(y,p),y,p)

para cada (y,p) € D. 4.1)
F(x(y,p),y,p) 0:7)

Xy (%, p) = — y xp(y,p) = —

Tomemos a continuacién la funcién g(y, p) : D € M* — N2, con g(y,p) = (x(»,p),y). Retomando

la seccion (3. 2) del capitulo anterior y sabiendo que g(yo,po) = g(0,0) = (x(yo, po),y0) = (0,0),
deducimos que las singularidades fold y pleat de g vienen definidas por los siguientes conjuntos:

17
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e Singularidades Fold = {(y, p) € D|x,(y,p) = 0,x,,(y, p) # 0}
e Singularidades Pleat = {(y, p) € D|x,(y, p) = 0,xpp(y, P) = 0,xppp (3, P) 7 0,xy(y, p) # 0}
Proposicion 4.1.1. Dada una singularidad (yo, po) € M? de g se cumple:

1) (yo,po) es una singularidad fold respecto la funcion g < F,,(Ty) # 0.

p2) (yo,po) es una singularidad pleat respecto la funcion g < (Fpp(To) = 0,F,,p(To) # O) y
(F(To) # 06 Fp(To) #0)
Demostracion. De la ecuacion (4.1) obtenemos las igualdades:
a) xp(y, p)-Fe(x(y,p),y,p) = —Fp(x(y,p),y, p)

b) x,(y,p)-F(x(y,p),y,p) = —F(x(y,p),yp)

Derivando respecto a p en a) y aplicando la regla de la cadena tenemos que: x,.(Fi.x, + Fyp) +

F, ;Cpﬁ = —F).x, —F,, . Evaluando la ecuacién anterior en (yo, po) y teniendo en cuenta que x,(yo, po) =
_B(MH) _ 0, obtenemos la ecuacién:
EY(TO)

Fx(TO>-xpp()’OaP0) = _FPP(TO) 4.2)

Como F(Ty) # 0 por hipotesis, deducimos que: x,,(yo, po) = 0 < F,,(Ty) = 0y con ello demostra-
mos pl).

0"x o"F

— (vo, =0& Tp) = 0. 4.3

o (3o, Po) o (To) (4.3)
Derivando respecto a y en a), tenemos que: Xpy.Fy + X, (Foe Xy + Fyy) = —Fpexy — Fpy

Evaluando la ecuacién anterior en (yy, pg) obtenemos la ecuacion:

Xpy(¥0, P0)-Fe(To) = —(Fpx(To) -xy(yo, po) + Fpy(To)) 4.4)

Tomemos (yo,po) singularidad pleat respecto la funcion g = x,,(yo, po) 7 0 y como por hipotesis
F(Tp) # 0, tenemos que X,y (Yo, po).Fx(To) # 0. A continuacion distinguiremos 3 casos:

c1) Fyp(To) =0
c2) Fp(Tp) =0

c3) pr(TO) #006 FPX(TO) #0

Llevando el caso ¢y ) a (4.4), deducimos que xpy (y0, po)-Fx(To) = —Fpx(To)-xy (Yo, Po), cOmO Xy (0, Po)
.FX(T()) 75 0= pr(T()) 75 0.
Llevando el caso ¢3) a (4.4), deducimos que X, (o, po)-Fx(To) = —Fpy(Tp), como x,(yo, po) .Fx(To) #
0= pr(To) 75 0.
Observamos como tanto el caso ¢j) como el ¢3), nos conducen al caso ¢3) que junto con (4.3) demos-
tramos p2).

O

Observacion 4.1.2. La proposicion anterior es igual de vdlida si consideramos el Caso 2) ya que
al tratar con funciones F € €' las derivadas parciales cruzadas de F son intercambiables y al
intercambiar los papeles de las variables x e y obtendriamos las mismas equivalencias anteriores.

Teniendo en cuenta la Proposicion 4.1.1 y lo visto en el Capitulo 2, clasificaremos los puntos
singulares de una ecuacion diferencial implicita (2.3) de la siguiente manera:
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o {T) € F | F,,(Th) # 0y G(Tv) # 0} = Singularidades propias (Fold).
o {Th € F | F,,(To) # 0y G(Ty) = 0} = Singularidades impropias (Fold).

o {Ty € .7 | condicion (4,3) y G(Tp) # 0} = Singularidades Pleat.

con G(x,y,p) = Fi(x,y,p) + p.Fy(x,y, p)

4.2 Forma normal de una Singularidad Propia (Fold)

Teorema 4.2.1. Teorema de Cibrario-Tricomi. En una vecindad Ur, de una singularidad propia
To = (x0,¥0, Po) € F, (Fpp(To) # 0,F(To) + poFy(To) # 0), la ecuacion diferencial:

@, Fe¢™ (4.5)

F(x,y,p)=0, p= -

es localmente equivalente en Ty a:
p=x (4.6)

Demostracion. Todos los resultados que demos en este teorema tendrdn cardcter local sobre un en-
torno del origen. Recordemos que el sistema de ecuaciones diferenciales que conformaban el campo
vectorial yr era:

x(t):va ).)(t):pr, p(t):_(FX+pF;) (47)
X —X— X0
Y =Y =0 — po(x — Xo)
origen. ;/Es el campo vectorial yr (4.7) transversal en todo punto de Uy ()%, siendo Uy entorno del
origen ? El campo yr sobre el origen es: r(0) = (0,0, F(0)) # (0,0,0), ya que F.(Tp) + poFy,(To) =
F(0) # 0 por ser Ty singularidad propia, como F € €((R?) (en particular F € €' (R?)), luego existe
un entorno Uy C .# del origen tal que F + pF, # 0 V(x,y, p) € Up y en particular V(x,y, p) € Uy #,
de manera que X |y,n.» 1o se anula.

Comenzaremos efectuando un cambio de coordenadas { que traslade Ty al

o . . . F=
Los puntos del criminante, vienen dados por el sistema de ecuaciones: G(x, y, p){ F _00 , donde

)4
Jo = (Ifx Ify 5”) , si evaluamos G en 0, tenemos J;(0) = (IfX((OO)) Iﬁ((o())) - 0(0)

px Lpy Lpp px py pp
Fyp(0) # 0, como |Jg, ,| = F,p(0).F:(0) # 0 por el Teorema de la funcién Implicita en un entorno
del origen, podemos despejar de forma explicita la variable (x, p) = h(y),y evaluandola en p = O tene-
mos x = h(y) , ecuacion explicita local del discriminante . Definiremos a continuacion los siguientes
cambios de coordenadas sobre el (x-y)-plano :

> , donde

b (pa(xvy) = (X—]’l(y),y) = (xa,ya) ’ (pa(xvy) = (Ovya) V (x7y) € ﬂ(‘%/)
Con este cambio de coordenadas trasladamos el discriminante al eje de ordenadas.

o Op(x4,v4) = (x4,Ya —xgtan(a(y,)) = (xp,Yp), con este nuevo cambio conseguimos que los
vectores del campo vectorial de (2.3) sobre los puntos del discriminante sean paralelos al eje de
abcisas. Comprobemoslo:

Primero demostramos que los puntos del discriminante permanecen invariantes por @: @,(0,y,)
(0,y4) YV (0,y,) € m(£"). A continuacién hallamos la ecuacién de la pendiente p;, de la ecua-
cién diferencial implicita (4.5) en las nuevas coordenadas (xp,yp):

d d(ys— x4t dy, d
Db _ (Va = Xa tan(a(ya)) = L—tan(a(ya))—xa&a’(ya)secz(a(ya)),yobserva—

Pb

dxp, dx, dx, dx,
d .
mos que py(0,y9) = d—i}a(o,yo)—tan(a(yo)) = tan(o(yp)) —tan(ot(yp)) = O probando asi

que pplg, = 0.



20 Capitulo 4. Ecuaciones Diferenciales Implicitas: Formas Normales y Diagrama de Fases

(Qué forma tiene el criminante en las nuevas coordenadas (xp,yp)? Teniendo en cuenta la Obser-
vacion 2.2.5 sabemos que los vectores direccionales de las rectas obtenidas mediante la p-proyeccién
del plano de contacto de cada punto de la superficie .% son (1, p;), y el conjunto de los mismos definen
el campo vectorial de 4.5 en el (x,,y5)-plano. Hemos probado que dicho campo vectorial restringido a
los puntos del discriminante tiene pendiente nula, luego particularizando lo mencionado anteriormen-
te en los planos de contacto de los puntos del criminante deducimos facilmente que (1, pp) = (1,0) =
pr =0,y con ello demostramos que en las nuevas coordenadas (xp,yp) el criminante y discriminante
coinciden localmente. En lo que sigue de demostracién, renombraremos las variables (x,y,) = (x,y).

&t té

To /‘“‘\-—&
N
L To _
q =
Dr
Figura 4.1

Por el Teorema Division 1.2.2 sabemos que en un entorno del punto critico Ty = (0,0,0) respecto a
la variable p (F,(Ty) = 0), F(x,y,p) se puede desarrollar como:

F(x,y,p) = F(0,0,0)+¢(x,y,p)[p> + pa(x,y) + b(x,y)] = 0. (4.8)

con a(x,y),b(x,y), @(x,y,p) € C, @(x,y,p) # 0, a(0,0) = b(0,0) = 0.
Como ¢(x,y,p) # 0, tenemos:F(x,y, p)= p* + pa(x,y) +b(x,y) =0V (x,y,p) €.%.Evaluando F y
en F), en los puntos del criminante %~ en los obtenemos las siguientes propiedades:

e i) F|» =F(0,,0)=b(0,y) =0.

e ii) F, =2p+a(x,y),
Fp’% = Fp(O,y,O) = a(O,y) =0.

Por i) e ii) y tomando x = y(y) = 0, podemos aplicar el Lema 1.2.3 a las funciones a(x,y),b(x,y), de
manera que en un nuevo entorno del origen intersectado con el plano (X, y) éstas se pueden expresar

como: ) (
a(x,y) = xo(x,y) (oo
, a,peC. 4.9
L b P :
De esta manera podemos encontrar un nuevo entorno del origen donde podemos expresar F' de la
forma:
F(x,y,p) = p* + pxa(x,y) +xB(x,y) =0. (4.10)
Sustituyendo a(x,y)— w € €=, podemos reescribir (4.10) de la forma:
F(x,y,p) = p* = 2pxa(x,y) +xB(x,y) =0. (4.11)

con G(x,y, p) = Fx(x,y,p) + p-Fy(x,y, p) = 2p(0u(x, y)x+ 0t(x,y)) + B (x,y) +xBx (x,y) + p(2pxoty (x,y) +
xBy(x,y)), y G(Tp) = G(0,0,0) = B(0,0) # 0 por ser Ty singularidad propia.

Sin pérdida de generalidad, supongamos f3(0) < 0, en caso contrario, hacemos el cambio x — —x.
Determinemos a continuacién las raices de p de la ecuacién (4.10):
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p(x,y) = xa £ \/x(xa? — B) =xa £ VaT, conT(x,y)=xa*—p (4.12)

Notese como la interseccion de la superficie .# con el entorno del origen a estudiar, viene dada por la
unién de las imdgenes de las dos ecuaciones explicitas de p(x,y).
Por ser f(0) < 0, deducimos que I'(0,0) = —f(0,0) > 0 y por ser I" continua en el origen, entonces
existe un entorno del mismo donde I'(x,y) > 0. Obsérvese que sobre dicho entorno las raices de (4.12)
satisfacen: p(x,y) € R < x > 0, que son a fin de cuentas las que nos interesa estudiar ya que nuestro
trabajo estd centrado sobre el cuerpo de los reales, por esta razén en lo que sigue de demostracién
restringiremos el entorno mencionado anteriormente exclusivamente al semiplano positivo x > 0.
A continuacién efectuaremos sobre dicho entorno el cambio: x = €2, bien definido por ser x > 0
(semiplano donde estdn ubicadas las raices reales de p). El cambio anterior nos da la siguiente para-
x=¢g?
metrizacién de la superficie: ¢ y=y
p=(e2a+eyT)

dy _ dy siendo p la pendiente en las nuevas coordenadas.Es claro como en las

dy -
__ay de _— P
Dondep_dx_ds2 T a2 T 2e

de
nuevas coordenadas el criminante es invariante y el campo vectorial restringido al mismo es paralelo
al eje de abcisas. Obsérvese como la variable € toma valores tanto positivos como negativos, razén
por la cual sustituimos =+ por + en (4.12) en las nuevas coordenadas.

_dy

pP= de p =2 <82(X(82,y) +8\/82a(827y) —[3(82,)’)> _ eza)(sz,y) 4.13)

donde w(&2,y) = 2[ea(e?,y) + /T(€2,y)] con 0(0,0) =2,/T(0,0) =2,/—B(0,0) # 0, por ser
B(0,0) <0, weC,
Por ser @ continua en el origen y @(0,0) # 0, entonces existe un entorno sobre el mismo con

®(€2,y) # 0. A continuacién determinaremos la forma que tienen las curvas integrales sobre dicho
entorno determinando el orden de tangencia con la horizontal.

a) ye=¢€*o(e%y) , ye(0,y)=0.
b) yee =26e0(e%,y) +2€302(€%,y) , yee(0,y) =0.

) Yeee = 2[0(€2,y) + 26202 (€2,y)] + 236202 (€2,y) + 264 W22 (€2, Y))]
Veee(0,y) =20(0,y) # 0.

Y (x) =xa(x,y)
¥(0) = yo
con ®(0,0) # 0y sea y(x) = y(x,0,yp) una solucién cualquiera.

Consideremos ahora el PVI: {

e Por a), b) y c¢) sabemos que y(x,0,yp) tiene un punto critico de orden 3 para x = 0 con
%—i’(x,o,yo) = x>0 (x, ¥(x,0,yo)), entonces por el Teorema de la Divisién 1.2.2 y puede ser

desarrolada de la forma: y(x,0,y0) = w(0,0,y0) + 0 (x, y0) = yo + 0 (x,0) con 9 (x, o) 0
Vx.

e El teorema de unicidad de ecuaciones diferenciales nos asegura que: y(x,0,y(0,x,y)) =
W(X,O,y(X)) = Yo Vx.

e Consideremos la funcién I(x,y) =y —x>¢ (x,y0) =y — x*¢ (x, w(x,0,y)) ésta es una constante
de movimiento ya que evaluando I(x,y) en y(x,0,yo) solucién cualquiera del PVI tenemos que

I(x7 l"’(xv()?yO)) = ‘I/(X707YO) _x3¢(x7y0) =Yo Vx.
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I(e,y)=y—£&f(e,y) =k, f(0,0)# 0,f¢ c, Y y(€) solucion de (4.13). (4.14)

Aplicando el Lemal.2.6 sobre I(€,y) podemos expresar f(¢,y) de la forma f(g,y) = fi1(€2,y) +
£f>(€2,y), transformandose I(,y) en:

I(e,y) =y fi(e’y) — €' fa(e?,y) = k. (4.15)
con £1(0,0) = (f — ££2)(0,0) = £(0,0) # 0, f1,f> € C. Definimos a continuacién el cambio de
variable: y(g,y) = (8f11/3(82,y),y —e*f2(€%,y)) = (E,Y), de manera que: I =Y — =3, y también
el cambio de variable: ¢(Z,Y) = (22,Y) = (X,Y) = (&2 ]2/3(82,y),y —e*f(€2,y)). Deshaciendo el
cambio €2 = x, tenemos que: (X,Y) = (x f12 / 3(x, ),y —x2f>(x,y)) , tranformandose la ecuacién ¥ —

B =kenY =k+X/?, correspondiente a la familia de curvas integrales de la ecuacion (4.5) sobre
el (x,y)-plano en un entorno del origen y cuya imagen estd contenida en el semiplano positivo x > 0.

2
Para finalizar la demostracidén, basta con hacer el cambio X — (g)z/ 3x , (contraccion variable X),

. . 2 : .
transformandose la ecuacion de las curvas integrales en : ¥ = k+ §X 3/2  siendo éstas solucién de la

ecuacién diferencia implicita P> = X. 0

‘u J =K E'Qik

To

O

br

Figura 4.2

4.3 Forma normal de una Singularidad Impropia (Fold)

Usualmente, el primer paso en el anélisis de sistemas de ecuaciones diferenciales no lineales es realizar
una linealizacién en torno a un punto de equilibrio y analizar el comportamiento del modelo lineal.
Entonces el siguiente teorema establece condiciones bajo las cuales es posible extraer conclusiones
sobre la forma que tienen las curvas integrales en un entorno del punto de equilibrio del sistema no
lineal a través del andlisis de del modelo linealizado en torno a dicho punto de equilibrio.

Definicion 4.3.1. Sea un Sistema de ecuaciones diferenciales de la forma:
X'=F(X) (4.16)

con F : D — R" funcion de clase €' en un abierto D C R". Diremos que Xy es punto critico de F (X)
si F(Xp) =0.

Definicion 4.3.2. Dado un Sistema de ecuaciones diferenciales de la forma:

X' =F(X) 4.17)
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con F : D — R" funcion de clase €' en un abierto D C R" y X, punto critico de F (X), entonces
llamaremos Xo como punto hiperbdlico si todos los valores propios de Jr(Xo) tienen parte real no
nula, siendo Jg(Xo), la matriz jacobiana de F en Xy.

Teorema 4.3.3. Teorema de Hartman-Grobman Sea F : Q C R" — R" un campo de clase €', y sea
Xo un punto hiperbolico de F. Entonces existen V, U entornos abiertos de Xo y de 0 respectivamente
tales que los campos Fy y Jp(Xo) |y son topologicamente conjugados.

Demostracion. Ver pagina 119 de [11]. O

Consideremos el campo vectorial yr sobre el (x,y, p)-espacio definido por el Sistema de ecuacio-

nes diferenciales:
X(1) = Fp, ¥(t) = pFp, p(t) = —(F+pF)=G. (4.18)

Tomemos Ty € .#, singularidad impropia, (F,,(To) # 0y G(Tp) = 0), y estudiemos que forma tiene
xr en un entorno de la misma. Aplicando el diferencial a ambos lados de la ecuacién anterior tenemos
que:
V(xr-VF)=Jy. -VF + xr - Jyr = 0, teniendo en cuenta que xr(Tp) = 0 obtenemos que J,, (Tp) -
VF =0 V(x,y,p) € % luego el vector normal de la superficie pertenece al nicleo de la aplicacion
lineal J,, (Tp) y su valor propio asociado es 0, por tanto en el sistema de ecuaciones diferenciales
lineal X" = J,, (To)X restringido a Tr, la forma de las curvas integrales en torno al origen dependerdn
de los otros dos valores propios A; y A3, que en el caso de tener ambos parte real no nula podemos
aplicar el Teorema de Hartman-Grobman (4.3.3), de manera que el campo vectorial xr(x,y,p) en
un entorno de Tj es topologicamente conjugado al de la aplicacion lineal Jy, (7p)X restringida a TF,
espacio vectorial tangente en 7. Las posibilidades serfan las siguientes:

e Nodo estable— 4, < A, < 0.

Punto silla— A; > A, > 0.

Nodo estelar— A doble, A diagonal (estable si A < 0, inestable si A > 0).

Nodo inestable— A; < 0 < A,.

Nodo tangencial— A doble, A no diagonal (estable si A < 0, inestable si A > 0).

Foco— A, , A, complejos conjugados A = p + g1 (estable si p < 0, inestable si p > 0).

T T
Vo \ Ll =y |
M V| ---—fEer A
\ _J_q\“-:‘ L \ N / \
i

W \\ 778 , I
\/ /2/ -| .' \!\ f P _,..-—:__ \
\"ﬂ\'{\ = l\x /i\\\\

Figura 4.3: Ejemplo de punto silla, nodo y foco

Proposicion 4.3.4. En un entorno de una singularidad impropia Ty de una Ecuacion Diferencial
Implicita F(x,y,p) = 0 (2. 6), existe un cambio de coordenadas local que transforma F en:

= (p+xa)® donde ¢ <000<a<1/800a>1/8 (4.19)

donde cada uno de estos tres intervalos para el pardmetro ., corresponden a tres tipos de singulari-
dades definidas por yr: punto silla, nodo, foco.



24 Capitulo 4. Ecuaciones Diferenciales Implicitas: Formas Normales y Diagrama de Fases

Demostracion. Ver [7]. OJ

Con esta dltima proposicion, hemos demostrado que la funcidn F de una ecuacién diferencial (2.3)
es localmente equivalente en un entorno de una singularidad impropia fold Ty, a una de las tres formas
candnicas de 4.3.4, definidas sobre tres intervalos distintos para el pardmetro & que corresponden al
caso en el que Ty es punto silla,nodo o foco.
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