Test de primalidad
para sistemas criptograficos

macultad de Ciencias
Universidad Zaragoza

1542

Miguel Ascaso Nerin
Trabajo de fin del grado de Matematicas
Universidad de Zaragoza

Summary

0.1. Introduction

My main objective in this work was to present historical journey through the different cryptograp-
hic systems and problems that they solve or arise, finishing by presenting the latest development in
the area of primality.

A review of both the origins of cryptography and the major cryptographic methods currently used
is included, while highlighting the need for primes with a high number of digits to ensure insolubility.
Both the RSA method, which was the first one to use asymmetric keys for encryption and decryption
of messages, and the Diffie - Hellman method, based on the complexity of the discrete logarithm
resolution, serve as examples for this purpose.

0.2. Primes

The concept of prime number and severability is particularly relevant:

Definition 0.2.1. Given m,n € N we may say m divides n when 3r € N such that n =r-m.
Definition 0.2.2. Given p € N, p # 1 we may say p is prime if its only divisors are 1 and p.

These common and universally known numbers hide behind their innocent appearance many un-
solved problems. A review of the main theorems which represented a significant advance in this field
of primality will be presented, such as:

Theorem 0.2.3 (Euclid). There are infinite prime numbers.

And its important consequence:

Corollary 0.2.4. There are infinitely large prime numbers.

The problem of finding all prime numbers has been open for more than 2500 years and not few
solutions have been proposed, none actually successful given the apparent randomness with which

these famous numbers appear. However there are some trends worth noting:

Theorem 0.2.5 (of prime numbers). Being m(x) the amount of prime numbers lower or equal to x
then, when x grows, we have:

This theorem allows us to begin the search for large primes with the certainty that we will find
enough of them to establish secure cryptographic systems.

III

v Capitulo 0. Summary

0.3. Algorithmic complexity

The biggest a number is, the more difficult it is to know if that number is prime, also, the larger
it is the prime we seek, the more difficult it becomes to find it. The time it takes a computer to
perform calculations is particularly relevant when trying to use on to find primes with a high number
of digits. A study of the asymptotic behavior of the algorithms depending on the number entered will
be presented.

Definition 0.3.1. Given f : N — [0,) We note:
O(f)={g:N—=[0,) | e € R, ¢ > 0,n9 € Nsuchas g(n) < cf(n) Vn>np}

Definition 0.3.2. We say f is an algorithm solvable in polynomial time if there is a polynomial p such
that f € O(p).
Otherwise we may say that f is an algorithm that requires exponential time.

What really interests us is to see whether the algorithms are solvable in polynomial time using as
a parameter the number of digits a number needs to be represented.

0.4. Primality test

Definition 0.4.1. Primality test is the name given to a deterministic algorithm that decides whether
a candidate to be prime actually is so, based on the fulfillment of certain properties by the candidate
number.

A review of the best primality tests at our disposal will be presented, along with its features, the
numbers that the can be applied to and the results they offer. The test based on Fermat’s little theorem,
Miller - Rabin’s test or Lucas - Lehmer’s test are used for different purposes, as each of them has a
series of advantages and disadvantages that will be presented in this work.

0.5. AKS

Finally, the AKS primality test and its features will be introduced, while doing the appropriate
demonstration. The work will conclude with a small analysis of the impact that this result might have
in finding large prime numbers.

Test de primalidad para sistemas criptograficos

Indice general

Summary
0.1. Introduction e e e e
0.2, Primes o i e e e e e e e e
0.3. Algorithmic complexity o 0 i i e e e e
0.4. Primality teSt o o e e e e e e e e e e
0.5. AKS . . e

1. Sistemas Criptograficos
1.1. Origenes y objetivos de lacriptografia
L2, RSA . o e e e e e e
1.3. Diffie-Hellman e e e e e e e

2. (Es primo?
2,10 NUMErosS primos v v v v v vt e e e e e e e e e e e e e e e e e e

2.2. Coste computacional o it e e e e

3. Tests de primalidad

3.1. Testdepseudoprimalidad e
3.1.1. Pequefio teoremade Fermat
3.1.2. Miller-Rabin e e e e
3.1.3. Propiedadesdeseables

3.2. TestdeLucas-Lehmer. it
3.2.1. Namerosde Mersenneo v ..
322, Lucas-Lehmer e

4. El test de primalidad AKS
4.1, AKS . o
42, Unpequefoejemplo o v i v i e e e e e e e e e
4.3. Importanciadelresultado e

Bibliografia

111
II1
11
v
v
v

RO —

W

11
11
11
14
15
16
16
16

17
17
23
24

25

Scientia potentia est

Mucho antes de que el canciller inglés y filésofo Francis Bacon nos invitara a reflexionar con
su frase ‘El conocimiento es poder’, incluso antes de que el hombre empezara a escribir, el valor de
la informacién ya habia sido puesto en relieve en multitud de ocasiones. Conocer la localizacion de
un ejérecito enemigo o el nimero de efectivos del que dispone, conocer cudl es la época idénea para
sembrar los cultivos y que estos germinen adecuadamente, conocer cual es la causa de una enfermedad
y su posible tratamiento, conocer las férmulas matemadticas que se imponen en el mundo, conocer
marca la diferencia entre el éxito y el fracaso, la vida y la muerte, conocer nos predispone para actuar
y evitar el miedo que genera el desconocimiento.

Este bien inmaterial tan preciado es un producto directo de la inteligencia, sin pensamiento no hay
conocimiento. ;Qué son las lineas de un libro si no hay nadie capaz de entenderlas?

Cada uno de nosotros tenemos la capacidad de recopilar informacién mediante nuestras experien-
cias y nuestros sentidos pero, si nos paramos a pensar, la mayor parte de la informacién que recibimos
no viene de nosotros mismos si no de lo que los demds nos cuentan. Estamos al tanto de las protes-
tas en Atenas, del deshielo de los casquetes polares, de los sucesos en la batalla del Alcoraz en el
afio 1096, de la forma casi esférica del planeta o del plan que tiene nuestro amigo el fin de semana,
sin embargo no hemos sido testigos de ninguno de estos sucesos ni hemos hallado evidencias de su
veracidad sin embargo, asimilamos toda esta informacién que nos ha sido trasmitida por diferentes
medios de comunicacién.

Para poder acumular toda la sabiduria de la que hoy disponemos ha hecho falta juntar y procesar
toda la informacién recopilada por las personas a lo largo del tiempo y el espacio para luego trasmi-
tirla a otras personas para que estas continden afiadiendo pequefios granitos de arena a esa inmensa
montafa. Y es que esa es la principal caracteristica de la informacion, que se puede trasmitir.

Es obligatorio realizar especial énfasis en el concepto de la comunicacién y la necesidad, en la
préctica, de establecer sistemas de llevarla a cabo. Desde la voz y el sonido hasta la transferencia de
datos por internet pasando por las sefiales de humo, el telégrafo o la escritura el hombre ha ideado
multitud de formas de transmitir informacién que han permitido ampliar enormemente la capacidad
cognitiva de la sociedad.

Es de este proceso de transmision del que nace el problema que de aqui en adelante vamos a tratar:
(Es posible enviar informacién entre dos interlocutores de forma privada y segura frente a posibles
espias?

Capitulo 1

Sistemas Criptograficos

1.1. Origenes y objetivos de la criptografia

La informacion bien utilizada puede ser en ocasiones una herramienta muy valiosa y por lo tanto
merecedora de atencidn y precauciones especiales. ;Qué ocurre si queremos transmitir un mensaje de
forma discreta y privada? La criptografia es la rama de las matemadticas encargada de la codificacion
de informacién que nace ante la necesidad de enviar informacién de forma secreta entre dos interlo-
cutores ofreciendo ciertas garantias de que el mensaje no puede ser descifrado mds que por el receptor
escogido.

En la Biblia se cita un sistema de sustitucion de letras llamado Atbash que se remonta al afio 600
a.C.; en la Iliada, Homero nos cuenta como Belerofonte le entrega al rey I6bates una carta cifrada
por su homdlogo Preto de Tirinto; en el siglo V a.C. los espartanos utilizaban un instrumento apro-
ximadamente cilindrico denominado escitala que servia para, enrollando una cinta con letras escritas
alrededor de este aparato, escribir o leer un texto que variaba en funcién del didmetro de la escitala.

En el imperio romano Julio César necesitaba enviar mensajes de contenido bélico delicado y
para ello utiliz6 el hoy denominado cifrado César que consiste en desplazar el alfabeto un nimero
determinado de veces (la clave de cifrado-descifrado). Este método le permiti6 enviar sus 6rdenes de
forma que aunque el mensajero fuese capturado por el enemigo éste no tendria forma de entender el
contenido del mensaje.

Sin embargo estos método tienen muchos puntos débiles: hay muy pocas combinaciones posibles
asi que es factible probarlas todas, para que el receptor pueda descifrar el mensaje tiene que conocer
la clave utilizada en la encriptacién lo que obliga a enviar previamente un mensaje sin codificar o
haberse reunido en persona emisor y receptor...

Por ejemplo, en la edad media el filésofo y cientifico arabe Al-Kindi realizé un concienzudo
trabajo al analizar cudles eran las letras y palabras que m4s aparecian en el Coran descubriendo asf
que en dicha obra existe una caracteristica frecuencia de letras que se repetia en cualquier texto escrito
en drabe. Naci6 de este modo el criptoandlisis y el denominado ataque por frecuencia utilizado para,
sabiendo el idioma en el que estd escrito el mensaje, intentar adivinar por la frecuencia de aparicién
de las letras del mensaje cifrado cual es el mensaje original.

Con el paso del tiempo se han ideado diversos sistemas criptograficos mas complejos que permiten
la verificacién de la identidad de los interlocutores y aseguran que ningin extrafio ha accedido al
contenido del mensaje original.

Con la entrada en escena de las matematicas y especialmente los ordenadores como herramienta
principal para codificar mensajes se ha tendido a transformar todo mensaje que se desee enviar en un
mensaje numérico permitiendo una mayor manejabilidad de la informacién. Algunos de los tests mas
conocidos y utilizados son advanced encryption standard (AES) o el método RSA, los basados en el
logaritmo discreto como curvas elipticas, ElGamal o Diffie-Hellman.

2 Capitulo 1. Sistemas Criptogrdficos

1.2. RSA

En 1977 Rivest, Shamir y Adleman (RSA) idearon el primer sistema criptografico asimétrico (de
clave puiblica) que utiliza un algoritmo cuyo funcionamiento es comparable a la siguiente situacién:

Si Bob quiere entregarle un mensaje a Alicia pero nunca se han visto ni disponen de un medio
seguro de comunicarse (y por lo tanto no han acordado ninguna clave secreta comin) basta con que
Alicia fabrique una caja con un cierre que se abre exclusivamente con una llave que ella misma posee.
Alicia le manda a Bob la caja de seguridad abierta y cuando él la recibe, introduce el mensaje y la
cierra de tal forma que solo Alicia, la propietaria de la llave, puede abrirla y acceder al mensaje que
contiene.

Este algoritmo estd muy extendido y es utilizado, por ejemplo, a la hora de realizar conexiones
seguras a través de internet. No obstante, se trata de un método que requiere la realizacion de muchos
célculos por lo que en la préictica se utiliza s6lo para intercambiar una clave que posteriormente se
utilizard para comunicarse mediante otro sistema criptografico simétrico (de clave privada).

Supongamos que Bob quiere enviar a Alicia un mensaje secreto que solo ella pueda leer, lo primero
que ha de hacer es transformar mediante una identificacién acordada el mensaje en un nimero natural
m para poder manejarlo con las herramientas matemadticas de las que disponemos. Todos los mensajes,
claves y cédigos de los que vamos a hablar de aqui en adelante serdn numéricos.

= Alicia elige dos niimeros primos p y q distintos y muy grandes (de mds de 100 digitos).

» Calculan=pqy @(n)=(p—1)(g—1) (¢(n) es la llamada funcién de Euler, que veremos mds
adelante).

= Escoge un entero positivo e menor y coprimo con @(n) (inversible en médulo ¢(n)). Ademas
Alicia calcula d € Zgy,) que es el inverso de e méd ¢(n)

= Alicia manda a Bob un mensaje inseguro solamente con los nimeros n y e. Llamamos a esta
pareja de nimeros (n,e) la clave publica de Alicia.

= Bob recibe dichos nimeros y cifra su mensaje utilizando n y e para hallar su mensaje cifrado:
c=m® médn

= Por ultimo Bob envia ¢ a Alicia sabiendo que su mensaje esta cifrado de tal forma que solo
Alicia es capaz de descifrarlo.

d=m=m médn

= Alicia calcula ¢¢ = (m°)
Luego Alicia recupera el mensaje original que Bob queria enviarle.

La seguridad de este algoritmo estd basada en la dificultad de factorizar n como producto de
primos cuando estos son muy grandes, el tiempo requerido por un ordenador actual para dicha tarea
es inmenso por muy potente que sea su capacidad de célculo.

Para realizar este proceso utilizamos en el primer paso dos nimeros primos muy grandes. La
seguridad del algoritmo reside en la magnitud de estos primos, cuanto mas grandes, mas complicado
resulta factorizar su producto. Sin embargo es complicado encontrar nimeros primos de gran tamaifio.
Dado un nimero de muchos bits, ;como podemos estar seguros de que dicho ndmero es o no pri-
mo? Al igual que se hace muy dificil descomponer n en primos, igualmente es dificil demostrar que
no existe ninguna factorizacién no trivial de p. Para tratar este problema disponemos de los test de
primalidad.

1.3. Diffie-Hellman

Otra alternativa interesante para intercambiar claves a distancia y de forma segura es el sistema de
Diffie-Hellman.

Test de primalidad para sistemas criptograficos

1.3. Diffie-Hellman 3

En el método criptogréifico inventado por Whitfield Diffie y Martin Hellman los interlocutores
van a comunicarse por un medio no seguro de forma que aunque cualquier curioso tenga acceso a la
informacién enviada, no podrd obtener la informacién que se quiere transmitir. Este sistema al igual
que el RSA se suele utilizar para transmitir una clave que se pueda utilizar en un sistema simétrico.

Alicia quiere enviarle una clave secreta a Bob mediante el algoritmo Diffie-Hellman. Para ello Ali-
cia escoge un nimero primo p, una clave publica g perteneciente al grupo multiplicativo de nimeros
enteros menores que p: Z,,. Escoge también una clave secreta a € Zp—; siendo Z,_; grupo abeliano
con la suma esta vez, que sélo es conocida por Alicia, Bob por su parte escoge otra clave privada
b € Z,_1 y la guarda en secreto. Una vez se tienen todas las claves comienza el envio de informacion:

= Alicia calculaA = g% méd p

= AliciamandaaBobg,pyA

Bob calcula Z=A" = (g*)’ =¢” médpy B=g’ médp

= Bob manda a Alicia B

» Por iltimo Alicia calcula Z = B* = (g%)¢ = g** méd p

Al final, Alicia y Bob obtienen Z que serd su clave privada para futuras conversaciones. Pero,
(pueden estar seguros de que nadie m4s ha podido calcular Z? Supongamos que Oscar ha interceptado
todas las comunicaciones.

Alicia ha mandado por un canal inseguro g, p y A = g mdéd p, Oscar dispone pues de g mdd p,
de p y de g, (le permite esto calcular a'?

Este problema es el denominado problema del logaritmo discreto.

a = logDis,(A)

No se ha encontrado la manera de realizar, en general, en un tiempo aceptable este cdlculo.

Cuando se escoge un nimero primo p lo suficientemente grande el nimero de operaciones ne-
cesarias para resolver esa ecuacion se vuelve astrondmico, cosa deseable para asegurar la privacidad
de la informacién enviada. Por ejemplo, en el micro chip del DNI electrénico hay registrada infor-
macién que nos permite realizar la firma digital mediante otro sistema criptografico similar al RSA o
Diffie-Hellman. Esta informacién no es otra cosa que una clave privada: dos nlimeros primos de gran
tamafio que nos sirven como testigos de la veracidad de nuestra identidad ya que se suponen indesci-
frables precisamente por su gran longitud con lo que volvemos a encontrarnos con el reto de tener que
encontrar un nimero primo de gran tamafio teniendo que recurrir de nuevo a los tests de primalidad.

! Andlogo en el caso de querer encontrar b

Miguel Ascaso Nerin

Capitulo 2

(Es primo?

2.1. Numeros primos

Hemos utilizado hasta aqui muchas veces el concepto de niimero primo pero convendria concretar
un poco mas a qué nos referimos con ese término. Para poder definir un nimero primo tenemos
primero que definir qué es un divisor:

Definicion 2.1.1. Sean m,n € N decimos que m divide a n cuando Ir € N tal que n =r-m.

Es equivalente decir que m divide a n o bien que m es divisor de n o bien m es un factor
de 1 o bien n es divisible por m o bien m|n o bien n =0 méd (m)

Definicion 2.1.2. Sea p € N, p # 1 decimos que p es un primo si los tinicos divisores que posee son
lyp.
Definicion 2.1.3. Un niimero n € N se dice compuesto si no es primo.

Definicion 2.1.4. Sea p,q € N, p,q # 1 decimos que p y q son coprimos si el iinico divisor comiin
que poseen es el 1.

Esta definicion puede ampliarse para ntimeros en Z o cualquier otro dominio de integridad. De
aqui en adelante consideraremos los nimeros primos como niimeros positivos y enteros o equivalen-
temente, el conjunto de los nimeros primos P C N

N es un conjunto infinito y podemos encontrar nimeros naturales todo lo grandes que deseemos.
Tal y como hemos visto, para poder aplicar con seguridad todos esos métodos criptograficos hacen
falta dos niimeros primos muy grandes, para encontrarlos debemos primero asegurarnos de que existen
para lo que utilizaremos el antiguo (pero no por ello menos valido)

Teorema 2.1.5 (Euclides). Existen infinitos niimeros primos.

Demostracion. Por reduccion al absurdo: Supongamos que existe un ndmero finito £ de primos
P1,D2,---, Pk € N, definimos
Or=pip2---pe+1

por la definicién anterior tenemos que Vi = 1, ..., k; p; < O, como Qy € N pero segiin nuestra hipdtesis
Oy no puede ser primo ya que es mayor que cualquiera de los ndmeros primos existentes luego se
deduce que tiene que ser un nimero compuesto y por tanto Ji € 1,..., k tal que p;|Qy pero entonces

pilpip2-..pr+1

y esto implica que p;|1 lo cual es absurdo ya que el tnico divisor de 1 es 1y p; # 1 por la definicién
de nimero primo.

Por tanto el conjunto de los niimeros primos no puede tener tan solo k elementos y en consecuencia
obtenemos que infinitos primos. O

6 Capitulo 2. ;Es primo?

Corolario 2.1.6. Existen niimeros primos infinitamente grandes.

Queda claro que es posible encontrar primos lo suficientemente grandes como para aplicarlos
en los métodos criptograficos anteriormente citados. Ahora bien, eso no excluye la posibilidad de
que existan s6lo primos muy alejados entre si teniendo por ejemplo 20 digitos de diferencia entre
un primo y el siguiente. En dicho caso tendriamos un problema ya que seguramente seria sencillo
descifrar las claves privadas de los sistemas criptograficos asimétricos basidndose en la longitud de
la clave publica. Por tanto, estamos obligados a estudiar la proporcién de primos que encontramos
conforme trabajamos con nimeros mds y mds grandes.

La criba de eratdstenes consiste en escribir todos los nimeros naturales hasta cierto n e ir tachando
en esa lista todos los miiltiplos de 2, luego de 3, luego del siguiente niimero que no se ha tachado,
el 5, y asi sucesivamente hasta que se llega a n. Obtenemos asi todos los nimeros primos menores o
iguales que n. Este método evidencia que conforme avanzamos en la lista de los ndmeros naturales es
mads dificil encontrar un ndmero primo.

A finales del siglo XVIII Gauss escribia en su cuaderno de notas la siguiente conjetura cuya
demostracién se demoré 100 afios aproximadamente convirtiéndose en:

Teorema 2.1.7 (de los nimeros primos). Sea 7t(x) el niimero de primos menores o iguales a x entonces
conforme x crece tenemos:

Corolario 2.1.8. La proporcion de niimeros menores o iguales a x que son primos es, cuando x es
grande, aproximadamente

Queda confirmada la suposiciéon de que los nimeros primos disminuian en proporcién conforme
escogiamos magnitudes mds grandes, sin embargo esta disminucién es relativa ya que respecto al
nimero de primos con un determinado nimero de cifras ocurre justo lo contrario como veremos a
continuacion:

La cantidad de ndimeros primos que podemos encontrar de »n cifras es, segin lo anterior, aproxi-
madamente

o 10 10" (n=1)10"=n10""" (9n—10)10""!
" nIn(10) (n—1)In(10) n(n—1)In(10) (n2—n)In(10)
y por tanto tenemos que
lim M,, = o
n—oo

Ejemplo 2.1.9. La cantidad de niimeros primos que podemos encontrar de 100 cifras en base 10 es
aproximadamente
(900 —10)10%
Moo = >
(1002 — 100)In(10)

~3,9042-10"7

Unas 1,77 -10'8 veces el niimero de particulas que se estima que hay en el universo.

Podemos considerar cualquier otra base y bastara sustituir el 10 de la férmula anterior por la base
deseada, no viéndose alterado el resultado. Es particularmente interesante la base 2 ya que estariamos
tratando con la longitud en bites de datos informaéticos.

Ejemplo 2.1.10. Podemos encontrar un ejemplo muy representativo en el DNI electronico (ver [PDNI]).
Como hemos comentado en el primer capitulo, en el micro chip que encontramos en nuestra tarjeta
del DNI hay guardada una clave privada de 2048 bits, esto es, 2048 cifras en binario.

Test de primalidad para sistemas criptograficos

2.2. Coste computacional 7

Esta clave es ni mds ni menos que el producto de dos niimeros primos grandes. Aunque no debe
ser asi por motivos de seguridad, supondremos que se tratan de dos niimeros de aproximadamente
1024 bits cada uno, ; Cudntos niimeros primos podemos obtener de ese tamafio?

1023-2'924 10242102 1022.21023
1024-1023-In(2) 1037322-In(2)

Mioos = ~1,421-10%04%

Como consecuencia de esta observacién podemos considerar que vamos a disponer de abundantes
primos todo lo grandes que queramos para aplicar los métodos criptograficos.

Ahora es cuando llega el verdadero problema: encontrarlos. Pongdmonos a ello inmediatamente,
lo ideal seria disponer de una funcién f(n) que tomara el valor del nimero primo n-ésimo, pero
las cosas no suelen ser tan féciles... ;O si? En [Gauss] encontramos una introduccién al interesante
resultado que nos ofrecia William H. Mills en 1947:

Teorema 2.1.11 (De Mills). Existe al menos un niimero real A tal que la funcion

f(n) = [A"]
es funcion generadora de primos.

Donde |b] es la parte entera de b.

Desgraciadamente este resultado no va a facilitarnos la tarea ya que para el cdlculo de los deci-
males de A (que vale aproximadamente 1,3063778838...) hace falta calcular ciertos nimeros primos
muy grandes. En definitiva, la pescadilla que se muerde la cola. Se han hallado los 7000 decimales
conocidos de A gracias a la simplificacion de cdlculos que permite tomar por cierta la Hipotesis de
Riemann

Conjetura 2.1.12 (Hipétesis de Riemann). La parte real de todo cero no trivial de la funcion zeta de
Riemann es % Siendo la funcion zeta (o dseta) de Riemann la siguiente

{.C—cC

oo

s =Y ~

s
n=1 n

Desafortunadamente la Hipotesis de Riemann sigue siendo una conjetura desde hace mas de 150
afios a pesar de los multiples intentos que ha habido de demostrarla asi que tendremos que tomar otra
senda: dado un niimero p, ;podemos afirmar que dicho nlimero es primo?

Si consideramos discernir la primalidad del nimero 107 podemos utilizar la criba de Eratéstenes
o bien comprobar si tiene algiin divisor entero entre el 2 'y | /107 . Estos métodos son dos ejemplos
bésicos de los llamados tests de primalidad.

Pero, ;qué ocurre cuando el niimero con el que tenemos que trabajar es el 1.647.382.901.873? El
tiempo que nos llevaria analizar la primalidad de esta nueva cifra utilizando alguno de los anteriores
métodos citados seria desorbitado, hay que buscar otros métodos mas rapidos.

Pero, ;qué quiere decir exactamente rdpidos?

2.2. Coste computacional

Sacar papel y lapiz para empezar a hacer célculos no es la mejor herramienta de la que dispone-
mos hoy en dia, todos los tests de los que hablamos estdn pensados para ser implementados en un
ordenador. La forma de calcular la rapidez de un algoritmo consiste basicamente en calcular de forma
asintética el nimero de operaciones necesarias para terminar el proceso, en nuestro caso, decidir si un
ndmero es primo o no lo es.

Miguel Ascaso Nerin

8 Capitulo 2. ;Es primo?

A los algoritmos informdticos se acostumbra a suministrarles datos a partir de los cuales el orde-
nador puede realizar las operaciones pertinentes, el nimero de operaciones dependera entonces del
nimero 7 introducido. En general lo que nos interesa es acotar superiormente dicha cifra en funcién
del tamafio del pardmetro que introduzcamos, mds concretamente, vamos a estudiar qué ocurre cuando
n se hace muy grande.

Definicion 2.2.1. Sea f : N — [0,00) Se define el conjunto de funciones de orden O de f como:
O(f)={g:N—=[0,00) | Ic € R, ¢ > 0,np € N tal que g(n) < cf(n) Vn > noy}

Nétese que si g € O(f) entonces 2-g € O(f) y que si g € O(f), entonces O(g) C O(f) pero no
necesariamente se tiene que f € O(g)

Definicion 2.2.2. Decimos que f es un algoritmo resoluble en tiempo polinomial si existe un polino-
mio p tal que f € O(p).
En caso contrario diremos que f es un algoritmo que requiere un tiempo exponencial.

Ejemplo 2.2.3. Dado n € N cualquiera, queremos verificar si n es primo mediante el test de pri-
malidad de las divisiones sucesivas visto anteriormente. Para implementar dicho método habria que
programar un algoritmo, que denominaremos T (n) similar al siguiente:

mientras i < sqrt(am)
si resto de dividir i entre n es O entonces
devolver ’n es compuesto’
fin si
fin mientras
devolver ’n es primo’

Como lo que nos interesa es dar una cota mdxima para el niimero de operaciones necesarias del
algoritmo vamos a suponer que nos encontramos en la situacion mds costosa, que en este caso serd
cuando n sea primo. En dicho supuesto, habrd que hacer una division por cada valor de i desde 2
hasta | \/n|, por tanto habrd que realizar como mucho

| v/n] — 2 divisiones

Diremos que la complejidad algoritmica de T (n) € O(\/n)
Si afinamos un poco mds, podemos modificar este algoritmo y dividir por solo los niimeros impares

[v/n] =2
2

O mejor atin, suponiendo que conocemos todos los primos menores que n podemos dividir sim-
plemente por todos los que sean menores de \/n con lo que el algoritmo acabard como mucho tras
Lv/n]
In(n)
Sin embargo, los tres algoritmos pertenecen al orden O(~/n) y cuando el niimero al que queremos
aplicar el test es muy grande, todos los algoritmos tendrdn que realizar un niimero similar de cdlculos.
Sea k el niimero de cifras de n (en base 10, por comodidad, aunque el sentido de esta notacion vie-

ne por la longitud en bits que necesita un ordenador para escribir en base 2 los niimeros candidatos),

lo que hard que tan solo necesitemos divisiones.

operaciones.

podemos escribir
n= aklOk—i—ak_] 10"‘1 +...+a;10+ap

y entonces el orden de complejidad de
T(n) =T (ax 10" + a1 105" + ...+ a1 10+ a) = T (k)

Test de primalidad para sistemas criptograficos

2.2. Coste computacional 9

y cuando queramos trabajar directamente con el niimero de cifras tendremos

O(T(k))=0 <\/ak10k +ag 1101+ L+ a 10—|—a0) = 5(105)

En este caso estamos ante un algoritmo resoluble en tiempo polinomial pero de tiempo exponen-
cial siempre que nos refiramos al nimero de cifras. Esto no es deseable para nuestros propdsitos ya
que queremos que el algoritmo trabaje rdpidamente, o sea, en tiempo polinomial, cuando aumentemos
el niimero de cifras.

Si f € O(log(n)) entonces f € O(log(10%)) — f € O(k). En consecuencia, lo ideal serfa encon-
trar un algoritmo que tuviera un orden de complejidad similar al del logaritmo o equivalentemente,
polinomial cuando consideramos como pardmetro el niimero de cifras.

En general, el problema de la factorizacién es un problema resoluble en tiempo exponencial res-
pecto al ndmero de cifras, de ese hecho nace la seguridad de los sistemas criptograficos.

Miguel Ascaso Nerin

Capitulo 3

Tests de primalidad

Definicion 3.0.4. Se llama test de primalidad a un algoritmo determinista que decide si un niimero
candidato a ser primo lo es, basdndose en el cumplimiento de ciertas propiedades por parte del
niimero candidato.

3.1. Test de pseudoprimalidad

Dado que los test de primalidad son muy costosos cuando crece la magnitud de los candidatos a
primos, podemos relajar las exigencias de determinacion ya que es mas fécil verificar que un nimero
es compuesto. Para ello disponemos de los llamados test de pseudoprimalidad.

Definicion 3.1.1. Se llama test de pseudoprimalidad a un algoritmo que decide si un niimero can-
didato es compuesto, basdndose en el cumplimiento de ciertas propiedades por parte del niimero
candidato.

Esto quiere decir que si el algoritmo decide que el candidato n es compuesto, entonces n serd
compuesto con toda seguridad, sin embargo, los test de pseudoprimalidad no aseguran la primalidad
del candidato.

En [DHMO5] vamos a encontrar un estudio muy préctico sobre los test de primalidad y pseudo-
primalidad aplicados en esencia al sistema criptogrifico RSA y de donde se ha obtenido gran parte de
la informacion de este capitulo.

Uno de los test de pseudoprimalidad mds conocidos estd basado en el siguiente teorema:

3.1.1. Pequeiio teorema de Fermat

Sobre el afio 1636 Pierre de Fermat enunciaba en una carta el siguiente célebre resultado:

Teorema 3.1.2 (Pequefio teorema de Fermat). Sea p € N un niimero primo, entonces se tiene que
Vae€Zya#0
a”'=1 médp

De forma equivalente podemos escribir a’> =a mbd p

Demostracion. Existen varias formas de demostrar este teorema, aqui utilizaremos una version de la
demostracién que dio Euler basada en el principio de induccién a pesar de no ser la més corta.
Pero antes, necesitaremos demostrar el siguiente lema:

Lema 3.1.3. Sea p € N, p es primo si y solo si (f{’) =0 méd (p)Vke Z,,k#0

11

12 Capitulo 3. Tests de primalidad

Demostracion. Si acudimos a la definicién de un nimero combinatorio tenemos que Vp,k € N, p > k

se defin
s <p> P! pp—1)(p—2)---2.1

k)~ (p—kk (p—k)(p—k—1)---2-1-k(k—1)(k—2)---2-1

Supongamos que p es primo. Como los nimeros combinatorios son enteros, es inmediato com-
probar que si p es primo entonces se cumple que Ak € N,o < k < p tal que k|p o bien (p —k)|p y en

consecuencia se deduce que
.. 14
divid
p divide (k)
o lo que es lo mismo, (¥) =0 mad p.
Supongamos ahora que p es compuesto, entonces J¢g,i € N con ¢ primo tal que ¢'|p pero ¢'+! Jp.

(p)_ p! p(p—q+1)---2-1 p-(p—q+1)
q

(r—9)'q" (p—q)(p—q—1)---2-1-q(qg—1)(g—2)---2-1 q---2-1

Sabemos que ¢'|p fijémonos que g /1, g J2...., ¢ Jg— 1 luego el denominador es divisible por g
mientras que como ¢ Jp—1, q fp—2,...., ¢ Jp —q+ 1 el numerador es divisible por ¢’ pero no por

¢! en consecuencia
i P
q)(()
q

dg € Z,,q # 0tal que (Z) #0

como ¢'|p tenemos que p)/(’q’) y por tanto

O

Con esta pequefia herramienta estamos listos para demostrar el teorema de Fermat por induccién
sobre la base a.

Suponemos que p es un nimero primo.

Sia =1, tenemos que 1”7 =1 mdd (p).

Si a = 2, por la férmula del binomio, 27 = (1+1)? = Y7_o (!)1¥17* = ¥2_ (¥) y por el lema
que acabamos de demostrar, tenemos que Y7_o (£) = (§) + (;’) =1+1=2 mdd (p)

Supongamos ahora que se cumple a” = a mdd p para un cierto a. Veamos que ocurre con el
siguiente término (a + 1)7.

p
— D\ kip—k
1)P = 17
(a+1) kgb < k) a
de nuevo por el lema anterior, todos los coeficientes serdn 0 menos los correspondientes a k =0y
k = p asi pues
p
(a+1)P = Z (i) d1P*=a"1°+ 1P =a+1 mdd (p)
k=0

quedando asi completada al demostracién por el método de induccién. O

El trabajo de Euler en este problema no se detuvo ahi, Euler logro demostrar una versién mas
general de este resultado:

Teorema 3.1.4 (Euler). Sea p € N, entonces se tiene que Va € Z, coprimo con p
a®P) =1 médp

Test de primalidad para sistemas criptograficos

3.1. Test de pseudoprimalidad 13

Donde ¢(p) es la funcion de Euler, que toma como valor el niimero de elementos mds pequeiios y
coprimos con p o lo que es lo mismo,

¢o(n) =|{a < n|mcd(a,n) =1}

En particular, si p es primo, todos los a € Z,, son coprimos con p'y en consecuencia ¢(n) =p—1
obteniendo asi el pequeiio teorema de Fermat.

Si echamos la vista atrds ya habfamos hablado de la funcién de Euler ¢(n) en el primer capitulo
ya que se utiliza en el método criptografico RSA como parte de la clave privada.

Nos centraremos ahora en el caso particular del teorema de Fermat en el que p es primo y entonces
¢(p) = p— 1. Hay que tener cuidado pues en general no se cumple el reciproco de ninguno de los dos
teoremas tal y como podemos ver en el siguiente

Ejemplo 3.1.5. Tomando a =2y p = 341 se tiene que

20=1 méd 341
pero sin embargo p = 341 = 11-31 luego p no es primo

La situacién anterior se podria intentar solucionar cambiando el valor de a para encontrar una
congruencia distinta de 1, sin embargo en general esto no va a ser posible.

Existe un conjunto de nimeros llamados niimeros de Carmichael que cumplen la congruencia del
teorema de Fermat pero no son primos. Concretamente todos los nimeros de Carmichael son producto
de tres o mas primos distintos todos ellos dos a dos.

Hay infinitos nimeros de Carmichael aunque aparecen de forma muy esporddica. Solo hay 7
niimeros de este tipo menores de 10000, menos de 600000 que estén por debajo de 10!7 esto hace que

la probabilidad de que eligiendo un niimero 7 al azar por debajo de 10!7 este sea de Carmichael es

1
aproximadamente 10~!! mientras que la probabilidad de encontrar un primo se acerca a W =
n
1 1

17In(10) ~ 39
Si n es un nimero impar compuesto y no es un nimero de Carmichael hay como mucho @
valores de a que verifican "' =1 méd n

que es notoriamente mayor.

En consecuencia, a pesar de que en la mayoria de los casos obtendremos el buen resultado, no
podemos utilizar el algoritmo como un test de primalidad pero del contra reciproco del pequeiio
teorema de Fermat podemos sacar un interesante test de pseudoprimalidad.

Corolario 3.1.6. Si existe a # 0 € Zj, tal que
a’'#£1 médp
entonces p es un nimero compuesto.
Escogiendo varios valores de a al azar y calculando a”~! aumentan las probabilidades de dar con
el buen resultado para decidir la primalidad de p siempre y cuando no hayamos topado con un nimero

de Carmichael.

Si se utiliza la exponenciacion modular, para cada base a el algoritmo tiene un orden de comple-
jidad de

O(log*(n) -log(log(n)) - log(log(log(n))))

Miguel Ascaso Nerin

14 Capitulo 3. Tests de primalidad

3.1.2. Miller-Rabin

El test de Miller-Rabin es el sistema que mds se utiliza en la actualidad dada su rapidez, aunque
se sacrifica la certitud de un test de primalidad, con pocas iteraciones que se realicen se alcanza una
muy buena precision. El algoritmo se basa en el siguiente lema:

Lema 3.1.7. Sea p un niimero primo, y sea x € 7, tal que

¥=1 méd)4
entonces, x =1 o bien x = p — 1 en médulo p.

Demostracion. Como p es un nimero primo, Z, es un dominio de integridad, por tanto tenemos

¥>*=1 médp
x> —1=0 médp
(x+1)(x—1)=0 mdd p
Como Z, es un dominio de integridad, se tiene o bienx=1obienx=—-1=p—1 O

Teorema 3.1.8 (Miller - Rabin). Sea p un niimero primo, escribimos p — 1 = 2°m donde m es un
niimero impar, entonces Va € 7, se tiene

a’=1

o por el contrario, existe al menos un r entre 0y s — 1 tal que

amn=—

Demostracion. Por el pequefio teorema de Fermat tenemos que
_ K
a l=ag"m=1
luego por el lema anterior tenemos

s—1 . s—1
a® m=1lobiend® "=-1

s—1 sl
En el caso de que a®> " = —1 tenemos el resultado. En el caso contrario si s # 1 podemos volver
a calcular la raiz cuadrada y tenemos de nuevo por el lema anterior

s—2 . s—2
a® "=1obiena® "=-1

iteramos sucesivamente hasta que encontramos —1 o bien llegamos a

En ambos casos, obtenemos el resultado. O

En su versién original, este test basado en el anterior teorema fue propuesto por G. L. Rabin como
un test de primalidad determinista que se apoyaba, al igual que el teorema de Mills, en la Hip6tesis
generalizada de Riemann', sin embargo, tras unos pequefios retoques M. O. Rabin lo transformé
en un algoritmo de pseudoprimalidad aleatorizado que o bien asegura que un nimero candidato es
compuesto o bien afirma que es primo con una probabilidad determinada.

Se elige k un parametro que indicard la precision del test. Sea n un nimero impar, sea aj, ...,a; €
Z,, elegidos de forma aleatoria e independiente en el intervalo 2,n — 2, escribimos n — 1 = 2°m donde
m es un nimero impar.

En el teorema de Mills se habla sobre la Hipétesis de Riemann, la cual no se debe confundir con la HipGtesis generali-
zada de Riemann.

Test de primalidad para sistemas criptograficos

3.1. Test de pseudoprimalidad 15

para j=1 hasta k
si (a(j)°m !'= 1 (mod n) y a(j)"m !'=n-1 (mod n))
devolver n compuesto
en otro caso
para i=1 hasta s-1
si a(j)"((271)*m) =1
devolver n compuesto
fin si
fin para
fin si
fin para
devolver n probable primo

La velocidad de este algoritmo es O(log*(n))

La ventaja de este método respecto a los anteriores radica en que no existe ningtin nimero n
compuesto que supere el test para todos los posibles valores de a (tal como ocurria con los nimeros
de Carmichael en el test de Fermat), mas adn, la proporcién de valores de a que superan el test

respecto a los posibles valores que toma dicho pardmetro siendo n compuesto es inferior a i con

lo cual con k iteraciones superadas hay como mucho una probabilidad de (%)k de obtener un falso

positivo. Conforme aumenta el nimero de iteraciones la probabilidad tiende a 0 sin embargo, nunca
podremos estar totalmente seguros de la primalidad de un niimero, siempre existird cierto riesgo de
habernos equivocado.

Ejemplo 3.1.9. Hemos hablado anteriormente de la clave privada guardada en nuestro DNI com-
puesta por dos niimeros primos de gran tamaiio. Cada DNI contiene dos claves distintas, esto quiere
decir cuatro primos en total. Estos niimeros primos se buscan mediante varias pasadas del algorit-
mo Miller - Rabin con lo que existe cierta probabilidad de dar por primos niimeros que no lo son.
Si cada ciudadano espaiiol posee cuatro niimeros primos y en Espaiia hay 47 millones de personas
con un DNI a su nombre quiere decir que se han generado 188 millones de niimeros primos, si cada
primo ha sido verificado utilizando por ejemplo 6 veces el algoritmo de Miller - Rabin quiere decir
que cada uno de esos primos son niimeros primos probables con una probabilidad de, como mucho,
(1)6 ~2,4414-10* de ser en realidad niimeros compuestos lo que quiere decir que hay unos 45898

4
falsos primos en Espariia que pueden causar problemas a la hora de identificarnos de forma digital.

3.1.3. Propiedades deseables

En general es deseable que los test de primalidad que se buscan cumplan una serie de propiedades
que garantizan el buen comportamiento y la validez del algoritmo frente a cualquier situacion.

= Un test de primalidad que ofrece una cierta probabilidad de que un niimero sea primo se de-
nomina test aleatorizado, mientras que uno que afirma con determinacién dicha propiedad se
conoce como test determinista. Preferiremos un test determinista sobre uno aleatorizado, como
en este caso es el algoritmo de Miller-Rabin.

= Larapidez del algoritmo es vital, sobre todo nos interesa su comportamiento asintético. Consi-
derandose rapido un test si su orden de complejidad es polinémico respecto al nimero de cifras
de entrada.

= Los algoritmos incondicionales son aquellos que funcionan sin tener que trabajar bajo ciertas
suposiciones como en el test de Fermat, donde tenfamos que suponer que no habiamos encon-
trado un ndimero de Carmichael.

Miguel Ascaso Nerin

16 Capitulo 3. Tests de primalidad

= Existen ciertos tests de primalidad que no pueden ser aplicados a cualquier candidato si no que
solo funcionan utilizando cierto subconjunto de nimeros. Buscaremos algoritmos generales
aunque en ciertas ocasiones pueden resultar Utiles dichos tests més especificos.

Miller - Rabin cumple tres de las cuatro propiedades. En la préctica, el caricter aleatorizado
del test no supone un problema critico ya que si ejecutamos el test 50 veces la probabilidad de que
devuelva probable primo siendo compuesto es inferior a la probabilidad real de que ocurra un fallo de
hardware en el ordenador que computa las instrucciones.

3.2. Test de Lucas-Lehmer

El test de Lucas - Lehmer es un algoritmo rapido, incondicional y determinista pero aplicable solo
a cierto tipo de niimeros.

3.2.1. Numeros de Mersenne

Definicion 3.2.1. Se dice que un niimero M es de Mersenne si es una unidad menor que una potencia
de 2.

M,=2"—1

El conjunto de los nimeros de Mersenne cumple que si n es compuesto, entonces M,, también lo
es. Desafortunadamente no se cumple en general el reciproco, de hecho, tan solo se conocen actual-
mente 48 nimeros de Mersenne que sean primos. Una de las ventajas que tienen estos nimeros es que
disponemos de mds herramientas para discernir su primalidad que si se tratase de un nimero cualquie-
ra. Esto ha hecho que historicamente desde la aparicién de las computadoras, el nimero primo mas
grande conocido practicamente siempre ha sido (y es) un nimero de Mersenne. El nimero primo que
ostenta dicho record en la actualidad es el 2°7:88%:161 _ | y e trata de un nimero de més de diecisiete
millones de cifras.

3.2.2. Lucas - Lehmer

El test de Lucas - Lehmer es un test de primalidad que decide si un nimero de Mersenne es primo
o no lo es.

Teorema 3.2.2. Sea p un primo impar M), el niimero de Mersenne tal que M, = 2P — 1. Definimos la
sucesion {S;} como

S — 4 sii=0
T Sl-27172 En otro caso

Se cumple que M), es primo si'y solo si S,_» =0 méd (p)

Nota: p es un nimero primo exponencialmente mas pequefio que M, y podremos asegurar su
primalidad facilmente.

El nimero de operaciones requeridas para llevar a cabo este algoritmo es del orden de O(log(n -
log(n))) o equivalentemente O(k>log(k)) donde k representa la longitud de 7.

Test de primalidad para sistemas criptograficos

Capitulo 4

El test de primalidad AKS

4.1. AKS

En 2002 Manindra Agrawal, Neeraj Kayal y Nitin Saxena (AKS), tres cientificos computacionales
del Instituto Tecnol6gico Hindd de Kanpur disefiaron el primer test de primalidad que cumple las
cuatro propiedades deseables de estos algoritmos: determinismo, de tiempo polinomial (respecto la
longitud del nimero candidato), generalidad e incondicionalidad.

El algoritmo estd basado en una generalizacion del pequefio teorema de Fermat en los polinomios.

Teorema 4.1.1. Sean n,a € N con n'y a coprimos, entonces se cumple
(x+a)"=x"+a mdbd (n)
si 'y solo si n es primo.

Demostracién. =) Supongamos n primo.

(x+a)"= i <Z>xka”_k

k=0

como n es primo sabemos que (Z) =0 mod (n) Vk,0 < k < n'y entonces se cumple

(x+a)" = <g> x’a" + <n> X'a®=x"+d" méd (n)
n
por el pequefio teorema de Fermat tenemos que ¢” =a mdd (n) por tanto
(x+a)"'=x"+d"=x"+a mdd (n)

<) Supongamos ahora que n es compuesto. Como n es compuesto existen g,k € N, con p primo
tal que ¢¥|n, ¢**' fn. Entonces tenemos que g*)((;’) y es coprimo con a"~ 7 (por ser a coprimo con n)

luego el coeficiente de x4, (Z) a"~4 no es dividido por ¢¥, y por tanto tampoco por n, en consecuencia
(x+a)"—x"+a#0 mdd (n)
O

Este teorema constituye de por si una caracterizaciéon de nimero primo a partir de la que pue-
de construirse un test de primalidad aunque demasiado lento y no serviria para mejorar nada. Sin
embargo, la idea de los tres autores consiste en realizar los cdlculos médulo x” — 1 donde r sea lo
suficientemente pequeiio. Esto provoca una pérdida de generalidad en el teorema anterior pero la so-
lucionan demostrando que existe un r y un nimero maximo de bases a acotado por una funcién de

17

18 Capitulo 4. El test de primalidad AKS

tiempo polinomial de tal forma que si se sigue cumpliendo la igualdad para dichos a, se recupera la
caracterizacion del teorema 4.1.1

Los pasos del algoritmo AKS que hay que implementar en un ordenador para averiguar si n es
primo serian, escritos de forma simplificada, los siguientes:

1. Siexiste a € N tal que n = a” para algiin b > 1 devolver COMPUESTO.
2. Encontrar el menor r de forma que o,(n) > log?(n).
3. Si 1 <mecd(a,n) < npara algin a < r devolver COMPUESTO.

4. Sin < r devolver PRIMO.

5. Desde a = 1 hasta | \/¢(r)log(n)| comprobar

» si(x+a)"#x"+a moéd (x"— 1,n) devolver COMPUESTO.

6. Devolver PRIMO.
Donde log es el logaritmo en base 2 y 0,(n) es el orden de n médulo 7:
or(n) = mfn{k eNjp¥=1 méd r}

Notar que, en los pasos 3 y 5, si r no es pequefio, el nimero de operaciones a realizar corre el
riego de dispararse. Tal y como veremos en la demostracién, r est acotado por log’ (n) manteniendo
asf el orden de complejidad polinomial respecto al nimero de cifras de n. Por otro lado, en el paso 3 se
realizan r cdlculos del mcd(a,n), esto implica que, si cuando elegimos r en el paso 2, se cumple que
vn <r<log’ (n) es mas rapido aplicar el test de las divisiones sucesivas que realizar el paso 3. Esto
puede ocurrir para todos los n < 3,43 - 10" y claramente, si \/z < r, no tiene sentido aplicar los pasos
3y 4 (ni seguir con la ejecucion del AKS) cuando podemos aplicar el algoritmo de las divisiones. En
el caso contrario, si n > 3,43 -10'> tampoco tiene sentido realizar la comparacién entre n y r ya que
n > \/n>1log>(n) > r. De este hecho puede estudiarse una mejora del algoritmo suprimiendo el paso
4 para evitar cédlculos en caso de que el candidato n sea relativamente pequefio.

No obstante aqui utilizaremos el algoritmo original que cobra sentido para n grande ya que lo
importante en el AKS es justamente, tal como veremos, su buen comportamiento cuando n crece.
Vamos a demostrar que el algoritmo AKS devuelve PRIMO en el caso de que el nimero n lo sea y
COMPUESTO en el caso contrario mediante una sucesion de pequefios lemas:

Lema 4.1.2. Si n es primo, el algoritmo AKS devuelve PRIMO

Demostracion. Si n es primo, es inmediato comprobar que los pasos 1 y 3 nunca devolveran COM-
PUESTO. Como consecuencia del teorema 4.1.1 en el paso 5 tampoco devolvera nunca COMPUES-
TO. Por tanto, el algoritmo devolverda PRIMO en el paso 4 o en tdltimo lugar en el 6. O

Fijémonos que si el algoritmo devolviese PRIMO en el paso 4, entonces n debe ser primo obli-
gatoriamente, de lo contrario, habriamos sido capaces de encontrar un divisor en el paso anterior. En
consecuencia, s6lo nos queda comprobar que si el algoritmo devuelve PRIMO en el tdltimo punto
habiendo realizado todos los pasos previos, entonces 7 es primo; o lo que es equivalente, comprobar
que no hay nimeros compuestos que superen los pasos 1, 3 y 5. Para ello tiene especial relevancia el
paso 2 en el que hay que elegir de forma adecuada .

Lema 4.1.3. Existe r € N, r < méx {3, [log>(n)]} tal que o,(n) > log*(n)

Test de primalidad para sistemas criptograficos

4.1. AKS 19

Demostracién. Sin =2 tenemos que r = 3 satisface la propiedad 03(2) = 2 > 1 = log?(2) por tanto
supondremos que 7 > 3 lo que implica que [log’(n)] > 10.
Consideremos el producto:
(l0g()] Llog(n)] i
n . H (n'—1)

i=1

Elegimos r € N de forma que sea el menor entero positivo que no divide dicho producto, que
sabemos que existe.

Fijémonos que el maximo nimero k € N que satisface m* < B = [log®(n)] es k = |[log(B)]. Sea
r{t---r la descomposicién de r en potencias de primos, tenemos que si todos los primos ry, ..
dividen a n y siendo ¢; = max(cy,...,c;) se tiene que r|(r;---r;) y por lo anterior, tendrlamos que
r|nl°¢(B)] Deducimos de aqui que no todos los primos de r dividen a med(r,n) y que W(rn) tampoco
divide al producto de los (n' — 1) por la coprimalidad entre ny n’ — 1.

Como r es el minimo nimero con esas condiciones, forzosamente se cumple que med(r,n) =1,y
como r no divide a ningtin n’ — 1 para 1 < i < |log?(n)] tenemos o,(n) > log?(n).

Finalmente, basta comprobar que r < [log®(1)], teniendo en cuenta que hemos supuesto 7 > 2

llog*(n)] logz(" llog2(n)] ;
pllog(B)] (n' —1) < [nlloe(B) < npllosB)] . pkiey T
i=1 i=1

< n_log(B)j ‘n1+2+3+...+(log2(n)—l) _ n[log(B)j-&-%(logz(n)—l)logz(n) < nlog4(n) < 210g5(n) < 28

Como [log5 (n)] > 10 podemos aplicar el siguiente lema cuya demostracién no realizaremos por
apartarse demasiado de nuestros objetivos pero que se puede encontrar en [Nai82]:

Lema 4.1.4. Liamamos MCM (m) al mem(1,2,3,4,...,m) donde mem es el minimo conuin miiltiplo.
Si m > 7 entonces:
MCM(m) > 2"

Asi pues, dado que r no divide al producto y el producto es menor que MCM (B), el lema 4.1.4
implica que r < B ya que de lo contrario por la minimalidad de r, todos los niimeros i < B dividirian
al producto que estd acotado llegando asi a una contradiccion.

O

Hemos conseguido demostrar la existencia y acotar superiormente por [log’(n)]. Ademés dado
que n # 1 se cumple o,(n) > 1 y entonces debe existir un factor primo p de n de forma que o,(p) > 1
y ademds p > r o de lo contrario habriamos obtenido alguna caracterizacién de n en los pasos 3 y 4.
Como mcd(n,r) =1=mcd(p,r), p,n € Z;, llamaremos [= | \/¢(r)log(n) | al nimero de ecuaciones
que se verifican en el paso 5. Como hemos supuesto que el algoritmo no ha devuelto COMPUESTO
en el paso 5 quiere decir que se han verificado cada una de las ecuaciones y tenemos:

(x+a)"=x"+a mod (x"—1,n)

Va=0,...,I esto implica:
(x+a)"=x"+a mdd (x"—1,p) 4.1)

Ya=0,....,] yporel teorema 4.1.1

(x+a)’ =x4+a mdd (x"—1,p) 4.2)
al juntar las ecuaciones 4.1 y 4.2 deducimos

(x+a)r =xr +a méd (x' —1,p)

Ya=0,...,1
Vemos que el comportamiento de % y n en médulo (x" — 1, p) es el mismo, vamos a definir esta
propiedad:

Miguel Ascaso Nerin

20 Capitulo 4. El test de primalidad AKS

Definicion 4.1.5. Para un polinomio f(x) y m € N decimos que m es introspectivo para f(x) si

)" = £ mod (¢ —1,p)
Por tanto 2y n son introspectivos para f (x) =x+a
Lema 4.1.6. Los niimeros introspectivos son cerrados respecto a la multiplicacion.

Demostracion. Sean m'y m' dos nimeros introspectivos para f(x), tenemos que comprobar que m - m’
también es introspectivo para f(x).
Dado que m es introspectivo, se cumple

O™ =" méd ("1, p)

igualmente, ya que m’ es introspectivo, si sustituimos x por x tenemos

[FM]™ = f("™™) méd (¢ — 1, p)
=) méd (x"—1,p)

ya que x" — 1 divide a x™" — 1

Uniendo ambas ecuaciones concluimos

O
Ademds ocurre algo similar con los polinomios:
Lema 4.1.7. Si m es introspectivo para g(x) y f(x) también lo es para g(x) - f(x).
Demostracion. Sea g(x), f(x) dos polinomios tal que m es introspectivo para ellos.
[f(x)-g)]" = [f(x)]" - [g(x)]"
= /(") g(x") méd (x"—1,p)
U

Los dos lemas anteriores justifican que cada nimero en el conjunto [= {(%)’ plli,j > 0} es
introspectivo para todos los polinomios del conjunto P = {Hla:o (x+a)%|e, > O}. Definiremos ahora
dos grupos basados en estos resultados que serdn cruciales para el desarrollo de la demostracion.

El primero es el conjunto de todos los residuos del conjunto / médulo r, lo denominaremos G.
Este conjunto es un subgrupo de 7' puesto que como hemos visto, med(n,r) = 1 = med(p,r) cuyo
cardinal denotamos |G| = ¢. Tanto n como p (médulo) son generadores de G y en consecuencia
como o,(n) > log?(n), se verifica t > log?(n).

Para definir el segundo grupo utilizaremos polinomios ciclotémicos sobre cuerpos finitos. Deno-
taremos £, al cuerpo finito de p elementos con p primo. Utilizaremos el hecho de que si i(x) es un
polinomio irreducible de grado d sobre F, entonces F),[x]/(h(x)) es un cuerpo finito de orden p?.

Sea Q,(x) el r-ésimo polinomio ciclotémico sobre Fy,, Q,(x) divide ax” — 1 y se descompone como
factores irreducibles de orden o,(p) (podemos encontrar todas estas propiedades mds desarrolladas en
[LN8&6]). Sea h(x) uno de dichos factores irreducibles, como o,(p) > 1 el grado de h(x) también es
mayor que 1. El segundo grupo es el conjunto de todos los residuos de los polinomios de P médulo
h(x) y p al que llamaremos & y que estd generado por los elementos x, x + 1,....x + 1 del cuerpo
F = F,[x]/(h(x)), ademds, & es un subgrupo multiplicativo de F.

Test de primalidad para sistemas criptograficos

4.1. AKS 21

t+1
= <;—1>

Demostracion. En primer lugar vamos a comprobar que para dos polinomios distintos cualesquiera
de grado menor que ¢ pertenecientes a P se obtienen dos elementos distintos de . Sean f(x) y g(x)
dos polinomios de P. Supongamos f(x) = g(x) en F, para cada m € I se verifica [f(x)]" = [g(x)]".
Como m es introspectivo para f y g y ademas h(x) divide a x” — 1 se tiene

Lema 4.1.8 (Hendrik Lenstra Jr.).

") = g(x™)
Luego es obvio que para cada m € G, X" es una raiz del polinomio Q(y) = f(y) —g(y) y como G
es un subgrupo de Z;, cada uno de los x™ es una raiz primitiva r-ésima de la unidad. Por tanto habra

|G| = ¢ raices distintas de Q(y) en F. Sin embargo, el grado de Q(y) es estrictamente menor que 7 ya
que f'y g pertenecen a . Por tanto llegamos a contradiccién.

Fijémonos que i # j en F}, paratodo 1 <i, j <[puesto que /= |\/@(r)log(n)] <+/rlogn<r<p
y por tanto los elementos x, x + 1,...,x + [son todos distintos en F.

Como el grado de &(x) es mayor que 1, x+ a no es idénticamente nulo para ningin a =0, ...,/. En
consecuencia existen al menos [+ 1 polinomios distintos de grado 1 en £y por lo tanto existen como
minimo (1) polinomios distintos de grado menor o igual que 7 en .

O

En el caso de que # no sea una potencia de p, es posible acotar superiormente el cardinal de .
Lema 4.1.9. Si n no es una potencia de p entonces | p| < nV".

Demostracion. Consideramos el siguiente subconjunto de /
~ n.. . o
T={ypo<i< vil
p

Si n no es una potencia de p entonces existen (|\/t] 4+ 1)? > ¢ elementos distintos en 1. Como
|G| = t deben existir al menos dos elementos de I que sean iguales médulo r, llamémosles m; y m;
con m; > my. En este caso tenemos que

XM =x" médx —1
Para cada f(x) € P se cumple que

x™) méd (x"—1,p)
x™) méd (x"—1,p)
1™

Esta ecuacién se cumple por tanto en F, 1o que implica f(x) € £ es una raiz del polinomio Q'(y) =
Y™ —y™ en F. Dado que esto se cumple para todos los polinomios de & tenemos que el polinomio
Q' (y) tiene al menos || raices distintas en F. Y se tiene

9] < grado(Q/(y)) =m1 < (- p) V) < nl"

Obteniéndose la cota del lema. O
Con todos estos lemas a nuestra disposicién estamos listos para terminar la demostracion:

Teorema 4.1.10. Si el algoritmo devuelve PRIMO, entonces n es primo.

Miguel Ascaso Nerin

22 Capitulo 4. El test de primalidad AKS

Demostracion. Tal como hemos visto al principio de la demostracion, si el algoritmo devuelve pri-
mo en los primeros pasos es inmediato comprobar que efectivamente n lo es. Supongamos que el
algoritmo ha devuelto PRIMO en el dltimo paso.

El lema 4.1.8 implica que siendo t = |G|y [= [/ ¢(r)log(n)]| se cumple

E Cfi)
S (l—i— 1+ |Vtlog(n)]
“\ VD)log(n)]
2| Vrlog(n)] + 1 B
> < (/rlog(n)|)(Por ser [= |\/o(r)log(n)| > |Vtlog(n)|)
> 2lVilee I+ vy que [v/log(n)] > [log?(n)] > 1)
>nV'

)(Puesto que t > +/tlog(n))

Por el lema 4.1.9 tenemos que si # no es una potencia de p, entonces nVi > || > nV!, lo que es
absurdo, asf que necesariamente 7 es una potencia de p y por tanto, siendo n = p*, si k > 1 entonces
el algoritmo habria devuelto COMPUESTO en el primer paso. Finalmente k =1y n = p primo. [J

Para estimar el nimero de operaciones necesarias para llevar a cabo el test de primalidad vamos a
estudiar cada paso por separado:

1. En el primer paso se puede factorizar el polinomio x” — n para b < log(n+ 1). Si obtenemos
un factor de grado uno se tiene que x* —n = (x — a)g(x) => a® = n y el algoritmo devuelve
COMPUESTO. Este proceso se puede realizar en O(log?(n)) para cada uno de los log(n + 1)
distintos b posibles por lo que concluimos que este paso tiene un orden de O(log>(n)).

2. En el segundo paso calculamos el orden de n médulo r para cada r hasta comprobar si el orden
es superior a log?(n). Por el lema 4.1.3 sabemos que r < log®(n) luego realizaremos este paso
en O(log’ (n)) operaciones.

3. En este paso calcularemos r veces el mcd. Calcular el mcd tiene un orden de complejidad de
O(log(n)) luego el tercer paso tiene un coste de O(log®(n)).

4. Sélo realizamos una comparacién: O(1).

5. En este paso debemos realizar |/¢(r)log(n)| comprobaciones de nulidad. Para cada uno de
ellos hay que realizar O(log(n)) multiplicaciones de polinomios de grado r con coeficientes no
mayores que O(log(n)). El orden de complejidad de este paso es por tanto O(r/@(r)log*(n)) =

O(log? (n))

El tiempo que requiere el cuarto paso es mayor (asintéticamente hablando) que el de todos los
demés pasos. Es del orden de 0(10g271 (n)), lo que marca el coste computacional del algoritmo. Ya
se han encontrado formas de mejorar el tiempo de ejecucion principalmente en la forma de acotar r
llegando a reducir el orden a

O(log® (n) = O(K)

En el propio articulo en el que se publicé el método AKS [AKS](pag. 7) los autores proponian
una forma de reducir el tiempo a O(log*(n)) si se demostraba como cierta la llamada conjetura de
Agrawal.

Test de primalidad para sistemas criptograficos

4.2. Un pequefio ejemplo 23

Conjetura 4.1.11 (Agrawal). Sean r,n € N coprimos, entonces si
(x—1)"=x"—1 méd (n,x"—1)
se cumple que n es primo o bien n> =1 méd (r)

Desafortunadamente, se sospecha que dicha conjetura no se cumple en general. Se estd intentando
demostrar alguna version de la conjetura con hipdtesis menos restrictivas o comprobar que se cumple
para nimeros mayores de cierta cota.

4.2. Un pequeiio ejemplo

Vamos a aplicar el algoritmo AKS para averiguar si el nimero n = 31 es primo o no:

Primer paso

n = a’ <= a = y/n Basta comprobar las raices k-ésimas de n desde k =2 hasta k < log,(n) ~4,95:
V31 ~5,56; v/31 ~3,14; v/31 ~2,35

Por tanto concluimos que 31 no es una potencia de a € N con a < n.

Segundo paso

log%(31) ~ 24 54 luego buscamos un r que verifique que el orden de n médulo r sea 25 o mayor.
No tiene sentido buscar r < 25 puesto que el orden del grupo no puede ser menor que el orden de sus
elementos.

0-(31)=min{k € N31¥=1 méd r}

025(31) =5<25
026(31) =4<25
027(31) =9 < 25
028(31) =6<25
029(31) = 30 > 25
Por tanto » = 29.
Tercer paso
Hay que calcular el mcd(a,n) paracadaa <r.
med(2,31) =1
med(3,31) =1
med(4,31) =1

med(29,31) = 1

Superado el tercer paso pasamos al siguiente.

Cuarto paso

Como 29 < 31 no nos pronunciamos sobre la primalidad de 31 y pasamos al siguiente paso.

Miguel Ascaso Nerin

24 Capitulo 4. El test de primalidad AKS

Quinto paso

Hay que calcular en primer lugar ¢(29) = 28

1=1/9(29)1og,(31)| = [26,21514...| =26

Calculamos para a = 1 hasta 26:

(x+a)* méd (x* —1,31)

y verificamos que en los 26 casos se verifica la igualdad (x+a)*' = x*! +a méd (x*° —1,31)

Sexto paso

Como hemos superado todos los pasos anteriores podemos concluir que 31 es un nimero primo.

4.3. Importancia del resultado

Est4 claro que no tiene sentido utilizar el algoritmo AKS para verificar la primalidad de nimeros
de pocas cifras: hasta que n no sea un nimero de unas 50 cifras sigue siendo mds facil realizar \/n
operaciones que loglo’5 (n). Tal y como podemos comprobar en el ejemplo anterior, en el tercer paso
se verifican 29 maximos comunes divisores cuando utilizando el método de las divisiones sucesivas
solo harfa falta comprobar |1/31| = 5 divisiones.

En el trabajo de final de carrera [BorTFC] encontramos un interesante estudio y aplicacion de este
algoritmo y su complejidad computacional asi como de sus futuras posibles implicaciones.

Hasta el descubrimiento de este resultado sélo se habian logrado implementar algoritmos que
cumpliesen tres de las cuatro propiedades deseables para los test de primalidad. El orden de comple-
jidad del método AKS es cuadritico respecto al algoritmo de Miller - Rbin, ademads las constantes
multiplicativas que acompaiian al orden del método AKS son muy grandes, por lo tanto el tiempo
es proporcionalmente mucho mayor aunque no se refleje en los 6rdenes de complejidad lo que ha
hecho que se siga utilizando en la practica el test aleatorizado. Tal vez si se demostrase la conjetura
de Agrawal el AKS podria empezar a competir por ser utilizado como test de primalidad eficaz.

Para decidir si un nimero es primo de forma rotunda se dispone también de distintos test de
primalidad basados en curvas elipticas que son de tiempo exponencial pero muy eficientes incluso
para nimeros grandes, ya que las constantes multiplicativas que acompaifian los tiempos de ejecucion
son pequeiias al igual que los exponentes. Esto no quiere decir que a partir de un cierto ng el algoritmo
AKS no sea més eficaz que los utilizados actualmente (que segin la teoria, lo es), pero como dicho ng
tiene un nimero de cifras extremadamente elevado y no se utilizan en la practica nimeros tan grandes,
realizan menos operaciones los test basados en curvas elipticas. Por tanto no hay lugar a implementar
de forma eficaz el algoritmo AKS. No se espera que el algoritmo AKS suponga una revolucién en
la prictica a pesar de haberlo supuesto en la teoria al tratarse del primer test que demuestra que
la primalidad es un problema resoluble en tiempo polinomial lo que ha impulsado enormemente la
investigacion en esta rama de las matematicas y la computacion.

El AKS no supone un problema de seguridad en las claves de encriptacién ya que estas estdn
basadas en la dificultad de factorizar un nimero en sus factores primos, no en determinar la primalidad
de dicho niimero. En realidad el AKS permitiria encontrar primos con mds digitos que no pertenezcan
a ninguna familia conocida con mayor facilidad, lo cual dificultaria la bisqueda por fuerza bruta o por
los métodos més comunes de descifrado de claves.

Test de primalidad para sistemas criptograficos

Bibliografia

[Nai82] M. Nair, On Chebyshev-type inequalities for primes., Amer. Math. Monthly, 89:126 - 129,
1982.

[LN86] R. Lidl y H. Niederreiter, Introduction to finite fields and their applications., Cambridge
University Press, 1986.

[Gauss] Miguel Angel Morales Medina, El teorema de Mills: mucho ruido y pocas nueces,
http://gaussianos.com/el-teorema-de-mills-mucho-ruido-y-pocas-nueces/, 5 octubre 2015.

[BorTFC] C. E. Borges Hernandez, Test de primalidad AKS, Universidad de Cantabria, 2005.

[AKS] M. Agrawal N. Kayal y N. Saxena, PIMES is in P, Department of Computer Science and
Engineering Indian Institute of Technology Kanpur, 2002.

[DHMO5] R. Duran L. Hernandez y J. Mufioz, El criptosistema RSA, Instituto de fisica aplicada
C.S.I.C. Madrid, 2005.

[GV98] R. Guerequeta y A. Vallecillo, Técnicas de Disefio de Algoritmos, Escuela Técnica Superior
de Ingenierfa Informética de la universidad de Méalaga, 1998.

[DMmr] David Marker, The Rabin-Miller Primality Test, http://homepages.math.uic.edu/ mar-
ker/math435/rm.pdf, Dep. of Mathematics, Statistics, and Comp. Science, University of Illinois.
Edicién septiembre 2015.

[PDNI] Cuerpo Nacional de Policia, DNI electrénico, http://www.dnie.es/PortalDNIe/

25

	Summary
	Introduction
	Primes
	Algorithmic complexity
	Primality test
	AKS

	Sistemas Criptográficos
	Orígenes y objetivos de la criptografía
	RSA
	Diffie-Hellman

	¿Es primo?
	Números primos
	Coste computacional

	Tests de primalidad
	Test de pseudoprimalidad
	Pequeño teorema de Fermat
	Miller-Rabin
	Propiedades deseables

	Test de Lucas-Lehmer
	Números de Mersenne
	Lucas - Lehmer

	El test de primalidad AKS
	AKS
	Un pequeño ejemplo
	Importancia del resultado

	Bibliografía

