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1. RESUMEN Y PALABRAS CLAVE   

 
RESUMEN 
 

El actual cambio climático producido por el calentamiento del sistema 

terrestre, es producido por un aumento en la atmósfera de los Gases de Efecto 

Invernadero (GEI) producidos por las actividades humanas. Este es un problema que 

debemos afrontar entre todos por sus dramáticas consecuencias para la humanidad. 

Este cambio en el clima mundial supone la variación climática de muchas regiones 

mundiales y, consecuencia de ello, es la alteración de los patrones de lluvia en muchas 

zonas del planeta. Un mayor calentamiento del sistema tierra-océano-atmósfera 

supone una mayor tasa de evaporación y un aumento de las precipitaciones. Sin 

embargo, la desestabilización del clima supone una perturbación en los regímenes de 

precipitación de muchos territorios produciendo grandes brechas de desigualdad 

pluviométrica, siendo Europa uno de ellos. Mientras que los modelos climáticos 

indican un progresivo aumento de las precipitaciones en la mitad norte del continente 

a lo largo del siglo XXI, para el sur prevén una disminución moderada de las 

cantidades, así como la intensificación de los períodos de sequía. En Aragón, los 

modelos climáticos han comprobado una notable disminución de las lluvias en los 

últimos cincuenta años, sobre todo en los meses de invierno y verano. Además, 

diversos estudios indican que en muchas zonas del planeta, los eventos de 

precipitación serán cada vez más extremos, situación que ocurrirá con alta 

probabilidad en Aragón. Por tanto, la sociedad aragonesa deberá tomar medidas 

destinadas a la atenuación de impactos sociales, económicos y medioambientales 

provocados por la escasez de pluviometría y el aumento de eventos extremos de 

precipitación. 

 
 
PALABRAS CLAVE 
 

Cambio climático, escenarios de emisión, proyecciones regionalizadas, modelos 
climáticos, estaciones meteorológicas. 
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2. INTRODUCCIÓN 
 

Las sustancias y los procesos naturales y antropógenos que alteran el balance 

energético de la Tierra son impulsores del cambio climático. Es evidente que se está 

produciendo un forzamiento radiativo positivo, consecuencia del aumento de la 

concentración de gases de efecto invernadero (GEI), que está dando lugar a un 

calentamiento global. La influencia en el clima ha sido la causa dominante (con una 

probabilidad superior al 95%) de más de la mitad del aumento observado en la 

temperatura superficial media global en el período 1951-2010. Los gases de efecto 

invernadero (GEI) contribuyen al calentamiento entre 0,5ºC y 1,3ºC siendo el factor 

que más ha elevado la temperatura. Concretamente, el actor principal ha sido el 

dióxido de carbono (CO2), cuya concentración ha aumentado en la atmósfera 

ininterrumpidamente desde 1750 a consecuencia de la quema imparable de 

combustibles fósiles por parte del ser humano (Panel Intergubernamental Contra el 

Cambio Climático (IPCC), 2013). Estos combustibles han sido y son utilizados en la 

actualidad mayoritariamente tanto para calentarse,  como para producir electricidad, 

o mover un vehículo entre otras funciones. 

 

Hay que decir que los cambios que se producirán en el ciclo global del agua, en 

respuesta al calentamiento durante el siglo XXI, no serán uniformes. Se acentuará el 

contraste en las precipitaciones estacionales medias entre las regiones húmedas y 

secas en la mayor parte de la Tierra con algunas excepciones. (Oficina Española Contra 

el Cambio Climático (OECC), 2013) 

  

Así como en el caso de la temperatura todos los modelos indican que van a aumentar 

sin ningún género de duda en mayor o menor medida en todas las zonas del globo en 

el próximo siglo, la cantidad de lluvia registrada no ofrece datos tan claros en cuanto a 

su aumento o disminución a escala planetaria. Habrá regiones del planeta en las que 

las precipitaciones aumentarán muy claramente, sin embargo, otras se verán 

disminuidas claramente en cuanto a cantidad de lluvia se refiere. En cualquier caso, la 

evidencia afirma que las precipitaciones se repartirán de una manera más desigual 

entre unas zonas y otras. (OECC, 2013) 

 

La verificación de este fenómeno no es fácil en ningún ámbito geográfico y tampoco lo 

es en Aragón, debido, entre otras cosas, al complejo reparto espacial que muestra la 

precipitación sobre el territorio, a las diferencias en cuanto a su reparto estacional y a 

su notable variabilidad interanual. (López, Cabrera y Cuadrat, 2007) 
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Es de vital importancia conocer las predicciones en cuanto a volúmenes de 

precipitación anuales que se registrarán en Aragón si continúa este escenario climático 

de calentamiento. Con un nivel de confianza alto, todo parece indicar que en el sur de 

Europa y por tanto, en la región aragonesa va a haber un claro descenso de las 

precipitaciones. (Dirección General de Calidad Ambiental y Cambio Climático del 

Gobierno de Aragón, 2009) El descenso de las precipitaciones también puede ir 

acompañado de una torrencialidad de las mismas y el aumento de eventos 

hidrometeorológicos extremos con el consiguiente aumento en el impacto económico 

en sectores estratégicos de Aragón como la agricultura o la ganadería. 

 

Por tanto, la realización de una síntesis de las predicciones del cambio en las 

precipitaciones como consecuencia del cambio climático referido al ámbito de Aragón, 

es clave para entender los futuros retos que debe asumir la comunidad para afrontar 

los problemas que generará el cambio climático en la estructura productiva de este 

territorio así como la diversidad de problemas ambientales a resolver que tendrá la 

sociedad civil y las distintas administraciones públicas. 

 

 
 

3. OBJETIVOS 
 

Objetivo principal 

 

Actualmente existe una amplia cantidad de investigaciones dedicadas al 

estudio del comportamiento de las precipitaciones debido al efecto del cambio 

climático que está sufriendo el planeta. Los estudios realizados a una escala grande 

como puede ser la referida a todo un continente, ayudan a observar comportamientos 

de masas de aire o las diferencias de presión atmosférica entre territorios con el fin de 

realizar predicciones climáticas. Sin embargo, cada vez son más reclamados por 

gobiernos y entidades públicas los modelos regionales del clima, es decir, estudios 

climáticos a escala regionalizada que pueden predecir lo que ocurrirá en un ámbito 

regional determinado. Ya lo adelantaba el IPCC en su tercer informe del año 2001, ya 

que dichos modelos, son considerados como la técnica más prometedora para realizar 

proyecciones realistas de cambio climático a escala regional.  

 

El objetivo principal de este Trabajo Fin de Grado (TFG) es realizar un análisis de los 

informes que aporten predicciones climáticas acerca de las variaciones de 

precipitación derivadas de modelos regionales realizados en la comunidad autónoma 

de Aragón, para el presente siglo, como consecuencia del cambio climático global 

según diversos escenarios de emisiones de GEI. 
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Objetivos específicos  

 

A través de los siguientes objetivos se pretende tanto introducir como desarrollar 

un cuerpo de narración que pretenda dar sostén al objetivo general indicado arriba. 

Los objetivos específicos son los siguientes: 

 

- Explicar los escenarios de emisiones con los que trabaja el IPCC. 

- Analizar las predicciones de variación de precipitación a escala mundial y 

europea, en la región mediterránea (sur de Europa) según distintos escenarios 

de emisiones. 

- Analizar las predicciones de los eventos hidrometeorológicos extremos en el 

continente europeo. 

- Conocer el clima de Aragón y su situación respecto a las precipitaciones. 

- Elaborar unas efemérides de la variación de precipitación acumulada en la 

región aragonesa en el último medio siglo con el fin de conocer la tendencia de 

las precipitaciones hacia las próximas décadas. Para ello: 

o Analizar los datos climatológicos referentes a precipitaciones 

disponibles en la página del Instituto Aragonés de Estadística. 

- Elaborar una pequeña efemérides de precipitaciones extremas en algunas 

zonas de Aragón. Para ello: 

o Analizar los datos climatológicos de Agencia Estatal de Meteorología a 

solicitud del autor de esta memoria. 

- Analizar episodios de fuertes tormentas en Aragón en los últimos años, como 

foco de eventos hidrometeorológicos extremos de precipitación. 

- Explicar el funcionamiento de los modelos regionales del clima. Utilización de la 

técnica de reducción de escala (downscaling). 
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4. MATERIAL Y MÉTODOS 
 

El contenido del presente TFG es puramente bibliográfico, y no se han realizado 

investigaciones de campo ni pruebas experimentales en el laboratorio. Principalmente 

se ha realizado una revisión de la bibliografía existente más actualizada sobre 

predicción del contenido de precipitaciones en la comunidad de Aragón en el siglo XXI 

como consecuencia del cambio climático. Además, se realiza también la revisión de 

otro tipo de bibliografía para complementar el documento, como la referida a eventos 

hidrometeorológicos extremos, a técnicas de reducción de escala o a escenarios de 

emisiones. Como documento de referencia para la extracción de información se tiene 

el Quinto Informe de Evaluación (AR5) del IPCC, del año 2013. Dado que este informe 

es la herramienta bibliográfica más actualizada del IPCC, se procura también realizar 

comparaciones de cómo ha evolucionado su contenido sobre los temas en cuestión 

que ocupa este trabajo en relación con los informes anteriores AR4 (2007) o AR3 

(2001). 

 

Antes de comenzar a escribir la presente memoria, el autor ha estado muchas 

semanas recopilando bibliografía. Las fuentes principales de donde se ha extraído las 

referencias bibliográficas de este trabajo han sido las páginas web de gobiernos y de 

organizaciones climáticas de diferente ámbito territorial. También hay reseñas de 

libros encontrados en diferentes páginas web o artículos científicos de prestigiosos 

climatólogos, todo ello colocado en el apartado de bibliografía de presente TFG. Como 

motor de búsqueda de bibliografía poco relevante se ha utilizado Google, 

principalmente para acceder a las páginas web de gobiernos como el Autonómico de 

Aragón, y el de España o entidades como el IPCC o la Organización Meteorológica 

Mundial (OMM). En cuanto a motores de búsqueda más específicos y acreditados se 

ha utilizado Dialnet, las bases de datos del CSIC o Science Direct sobre todo para la 

búsqueda de artículos científicos de revistas y para consulta en capítulos de 

monografías. 

 

Por último, en cuanto a cuestiones de formato del presente TFG, se han tomado las 

recomendaciones dadas por el personal de biblioteca de la Escuela Politécnica 

Superior de la Universidad de Zaragoza. Una de las principales ha sido el riguroso 

seguimiento del estilo de citación bibliográfica APA (American Psychological 

Association) recomendado en la plataforma virtual moodle por la biblioteca de la 

Universidad de Zaragoza.  También, se ha seguido un estricto control de tutorización 

de la memoria realizada por el Director de este TFG y se han ido cumpliendo los plazos 

que se habían establecido para sacar adelante el trabajo que se ha estado realizando. 
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5. RESULTADOS 

 
5.1 Escenarios de emisiones del IPCC 

 
Para entender las predicciones climáticas de un lugar determinado los científicos 

emiten hipótesis de lo que ocurrirá en el futuro. Estas hipótesis se basan en un 

conjunto de factores que al darse generarán un escenario determinado. 

 

Según el IPCC: 

 

     “Los escenarios son imágenes alternativas de lo que podría acontecer en el futuro, y 

constituyen un instrumento apropiado para analizar de qué manera influirán las 

fuerzas determinantes en las emisiones futuras, y para evaluar el margen de 

incertidumbre de dicho análisis” (Fundación para la Investigación del Clima (FIC), 2009) 

 

Las emisiones futuras de gases de efecto invernadero (GEI), principal motor del cambio 

climático, son el producto de muy complejos sistemas dinámicos, determinado por 

fuerzas tales como el crecimiento demográfico, el desarrollo socioeconómico o el 

cambio tecnológico. A partir de esto, el IPCC ha desarrollado cuatro líneas 

evolutivas/familias de escenarios que están basadas en políticas gubernamentales de 

los países del mundo, las cuales influyen en muy diverso grado sobre ciertos factores 

determinantes de las emisiones, como el cambio demográfico, el desarrollo social y 

económico, el cambio tecnológico, el uso de los recursos o la gestión de la 

contaminación. Hay que recalcar que ninguno de los escenarios del conjunto contiene 

las políticas adecuadas que aborden explícitamente el cambio climático. (Panel 

intergubernamental de expertos sobre el cambio climático (IPCC), 2000) 

 

 
 

Figura 1: Ilustración esquemática de los escenarios SRES. 
Fuente: IPCC (2000) 

 

Muchos de los estudios realizados sobre predicciones de temperatura y precipitación 

por el cambio climático, están contrastados a través de estas familias de escenarios 
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que elaboró el IPCC en el año 2000 en su “Informe Especial de Escenarios de 

Emisiones”. A lo largo del presente TFG se expondrán las predicciones climáticas de los 

territorios en estudio, basándose en estudios realizados sobre varios de estos 

escenarios de emisiones. 

 

Cada una de las líneas evolutivas se basa en una dirección concreta de los 

acontecimientos futuros de una forma muy desigual, de esta manera las cuatro líneas 

difieren con un grado de irreversibilidad creciente. En su conjunto, muestran futuros 

divergentes que cuben una parte importante de las incertidumbres naturales a las 

principales fuerzas determinantes. Para entender en qué modelo de sociedad están 

basadas estas cuatro líneas evolutivas, a continuación se realiza una pequeña 

descripción: 

 

Familia A1:  

 

Contempla un futuro mundo con un rápido crecimiento económico, una población 

mundial que alcanza su valor máximo hacia mediados de siglo y disminuye 

posteriormente, y una rápida introducción de tecnologías nuevas y más eficientes. Las 

características principales son la convergencia entre regiones, la creación de capacidad 

y el aumento de las interacciones culturales y sociales, acompañadas de una notable 

reducción de las diferencias regionales en cuanto a ingresos por habitante. La familia 

de escenarios A1 se desarrolla a su vez, en tres grupos que describen direcciones 

alternativas del cambio tecnológico en el sistema de energía. Los tres grupos A1 se 

diferencian en su orientación tecnológica:  

o Utilización intensiva de combustibles de origen fósil (A1FI)  

o Utilización de fuentes de energía no de origen fósil (A1T)  

o Utilización equilibrada de todo tipo de fuentes (A1B).  

 

De forma general podría decirse que esta familia describe seguramente uno de los 

peores escenarios posibles a la hora de maximizar los efectos del cambio climático. 

Concretamente, la subfamilia A1FI, constata la utilización intensiva de combustibles de 

origen fósil, principales generadores de GEI y contribuyentes sustanciales al 

calentamiento del planeta. 

 

Familia A2:  

 

Describe un mundo muy heterogéneo. Sus características más distintivas son la 

autosuficiencia y la conservación de las identidades locales. Las pautas de fertilidad en 

el conjunto de las regiones convergen muy lentamente, con lo que se obtiene una 

población mundial en continuo crecimiento. Las regiones son motores del desarrollo 
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económico y del crecimiento económico por habitante. Además el cambio tecnológico 

está más fragmentado a nivel mundial y es más lento que en otras líneas evolutivas. 

 

Familia B1: 

 

Se describe un mundo convergente con una tendencia poblacional similar a la línea 

evolutiva A1, es decir, alcanza un máximo hacia mediados del siglo y desciende 

posteriormente, pero con rápidos cambios de las estructuras económicas orientados a 

una economía de servicios y de información, acompañados de una utilización menos 

intensiva de los materiales y de la introducción de tecnologías limpias con un 

aprovechamiento eficaz de los recursos. En esta familia se da prioridad a las soluciones 

de orden mundial encaminadas a la sostenibilidad económica, social y 

medioambiental, así como a una mayor igualdad, pero en ausencia de iniciativas 

adicionales en relación con el clima. 

 

Familia B2: 

 

La familia de líneas evolutivas y escenarios B2 describe un mundo en el que 

predominan las soluciones locales a la sostenibilidad económica, social y 

medioambiental. Es un mundo cuya población aumenta progresivamente a un ritmo 

menor que en A2, con unos niveles de desarrollo económico intermedios, y con un 

cambio tecnológico menos rápido y más diverso que en las líneas evolutivas B1 y A1. 

Aunque este escenario está también orientado a la protección del medio ambiente y a 

la igualdad social, se centra principalmente en los niveles local y regional. (IPCC, 2000) 

 

Para una mejor interpretación de los escenarios citados anteriormente es necesario 

conocer las predicciones de emisiones de GEI a las que van asociados, especialmente 

emisiones las de de dióxido de carbono, principal gas responsable del cambio 

climático, en el próximo siglo. En la figura siguiente se observan las previsiones de 

emisión de CO2 asociadas a las cuatro líneas evolutivas descritas. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 2: Emisiones anuales totales de CO2 provenientes de todas las fuentes (energía, 
industria y cambio de uso de las tierras) entre 1990 y 2100 (en GtC/año) para las 

familias y los seis grupos de escenarios. 
Fuente: IPCC (2000) 
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Como se observa, las familias evolutivas “A” son las que contemplan mayores 

incrementos de CO2 excepto la línea evolutiva A1T que no prevé la utilización de 

fuentes de energía de origen fósil. Sin embargo, las familias evolutivas “B” serían las 

que prevén un desarrollo económico y social con generación de bajos niveles de 

dióxido de carbono, lo cual indica que A1T, B1 y B2 serían los escenarios más ideales 

de cara a minimizar los efectos del cambio climático en el planeta.  

 

Pero el dióxido de carbono (CO2) no solo es el único GEI importante que se produce en 

estos escenarios, el metano (CH4) y el óxido de nitroso (N2O) también se producen en 

estas familias de escenarios contribuyendo al calentamiento de la atmósfera, aunque 

eso sí, no en cantidades tan relevantes como se observa en las siguientes figuras. 

 

 
Figura 3: Emisiones totales de CO2 acumulativas mundiales (GtC)  

desde 1990 hasta 2100 según escenario SRES de emisiones 
Fuente: IPCC (2000) 

 
Como se puede comprobar, la familia A1FI y la familia A2 son los escenarios de 

mayores emisiones y, por tanto, se deduce que son los escenarios menos favorables en 

cuanto a la lucha contra el cambio climático. A pesar de los esfuerzos de la sociedad 

por ir a escenarios menos contributivos en cuanto a CO2 se refiere como AIT o B1, las 

predicciones de la cantidad de emisiones acumulativas de CO2 hacia 2100 serán 

sumamente altas respecto a la actualidad. Cierto es que la diferencia entre los 

“peores” escenarios y los “mejores” es abismal, pues si la sociedad toma el rumbo 

hacia un escenario A1FI la cantidad de CO2 respecto a la actualidad, crecería de un 

modo exponencial. 
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Figura 4: Emisiones totales de metano (CH4) acumulativas mundiales (GtC)  
desde 1990 hasta 2100 según escenario SRES de emisiones 

Fuente: IPCC (2000) 

 
Se observa que las emisiones de gas metano crecen pero no de una manera tan brusca 

como las de CO2. De las familias de escenarios contempladas, se observa que todas 

ellas predicen un crecimiento similar en las emisiones de metano con una desviación 

típica e incertidumbre muy grande. Parece que el escenario A2 sería el que más 

aumentaría las emisiones de este gas invernadero. 

 

 
Figura 5: Emisiones normalizadas (con arreglo a los valores comunes para 1990 y 2000) 

anuales mundiales de óxido nitroso para los escenarios IE-EE (en Mtn/año)  
según escenario SRES de emisiones 

Fuente: IPCC (2000) 
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En cuanto al óxido nitroso, la incertidumbre es muy grande en cualquiera de las 

familias descritas, no hay una familia concreta a las que se les atribuyan mayores 

emisiones. La desviación típica de los escenarios es muy grande, aunque todos 

coinciden que habrá un incremento leve de las emisiones  respecto a la actualidad. 

 

En conclusión, las concentraciones atmosféricas de los gases de efecto invernadero, a 

saber, el dióxido de carbono (CO2), el metano (CH4) y el óxido nitroso (N2O), han 

aumentado desde 1750 debido a la actividad humana. En 2011, las concentraciones de 

estos gases de efecto invernadero eran de 391 ppm, 1.803 ppm y 324 ppm, 

respectivamente, valores que excedían los niveles preindustriales en 

aproximadamente el 40%, el 150% y el 20%, respectivamente.  

 

Las concentraciones de CO2, CH4 y N2O superan hoy considerablemente las 

concentraciones más altas registradas en los núcleos de hielo correspondientes a los 

últimos 800.000 años. Existe un nivel de confianza muy alto en cuanto a que las tasas 

promedio de aumento de las concentraciones atmosféricas durante el siglo pasado no 

han tenido precedentes en los últimos 22.000 años. (IPCC, 2013) 

 
Trece años después de la elaboración del informe especial de emisiones del 

IPCC, se ha publicado el quinto informe de evaluación del IPCC, conocido como AR5. En 

este informe se vuelven a definir escenarios de emisiones pero esta vez son nuevos. 

Salen a la luz cuatro escenarios de emisión nuevos, elaborados por este comité 

científico, las denominadas Trayectorias Representativas de Concentración (RCP, de 

sus siglas en inglés). 

 

Con estos nuevos escenarios de emisiones se han elaborado escasos estudios de 

predicción sobre cambio climático, debido a la cercana publicación del AR5 en cuanto 

a tiempo se refiere, no ha habido tiempo material para que organizaciones científicas 

como comités de expertos, universidades etc. promovidas por instituciones públicas, 

elaboren documentos de cierta relevancia basados en los nuevos escenarios. Por 

tanto, los estudios que se exponen en el siguiente TFG van a estar orientados hacia 

escenarios de emisiones de las familias evolutivas que el IPCC publicó en el año 2000, y 

no de los nuevos escenarios publicados en el AR5. 

 

El principal factor que condiciona los distintos escenarios de emisión son los gases de 

efecto invernadero (GEI) y supone el principal punto de estudio a la hora de trabajar 

con un escenario u otro. Aunque los GEI son los forzamientos principales, no son los 

únicos y cada escenario engloba características sociales y económicas propias. 

(Fundación para la Investigación del Clima (FIC), 2009) 
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Los nuevos escenarios se identifican por su Forzamiento Radiativo (FR) total para el 

año 2100 que varía desde 2,6 a 8,5 W/m2. Los escenarios de emisión utilizados en el 

AR4 (denominados SRES, de sus siglas en inglés) que son los vistos en la figura 1 no 

contemplan los efectos de las posibles políticas o acuerdos internacionales tendentes a 

mitigar las emisiones, representando posibles evoluciones socio-económicas sin 

restricciones en las emisiones. Por el contrario, las novedades de estos nuevos RCP 

pueden contemplar los efectos de las políticas orientadas a limitar el cambio climático 

del presente siglo XXI. (OECC, 2013) 

 

 
Figura 6: Trayectorias Representativas de Concentración (RCP) 

Fuente: OECC (2013) 

 
En las Trayectorias Representativas de Concentración se comenta el término 

“Forzamiento radiativo” el cual ha sido utilizado por el IPCC con el sentido específico 

de una perturbación externa impuesta al balance radiativo del sistema climático de la 

Tierra, que puede conducir a cambios en los parámetros climáticos. La definición 

exacta es: 

 

“Cambio en la irradiación neta vertical (expresada en Wm-²) en la tropopausa debido a 

un cambio interno o un cambio en el forzamiento externo del sistema climático (por 

ejemplo, un cambio en la concentración de dióxido de carbono o la potencia del Sol). 

Normalmente el forzamiento radiativo se calcula después de permitir que las 

temperaturas estratosféricas se reajusten al equilibrio radiativo, pero manteniendo 

fijas todas las propiedades troposféricas en sus valores sin perturbaciones”.   

(Wikipedia, 2015) 

 

Por tanto, vista la anterior definición, la figura 6 se basa en un incremento del FR en 

este caso, debido a un cambio externo del sistema climático, es decir, un cambio de 

concentración de CO2, con lo que el forzamiento radiativo es positivo aumentando 

acorde con el incremento del nivel de CO2 en la atmósfera u otros GEI. En la siguiente 

figura se puede ver el FR de diferentes gases y compuestos desde el inicio de la 

revolución industrial. 

 

https://es.wikipedia.org/wiki/Tropopausa
https://es.wikipedia.org/wiki/Di%C3%B3xido_de_carbono
https://es.wikipedia.org/wiki/Sol
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Figura 7: Contribución de diferentes factores al forzamiento radiativo terrestre  
(En W/m2) 

Fuente: OECC (2013) 

 
Como es bien sabido, el carácter antropogénico de este forzamiento es indudable. El 

CO2 es el mayor generador de forzamiento radiativo positivo debido en las grandes 

cantidades que ha sido expulsado a la atmósfera fundamentalmente por actividades 

referidas a quema indiscriminada de combustibles fósiles. En el siguiente gráfico se ve 

la clara relación entre los peores escenarios y un aumento de emisiones por la quema 

de combustibles fósiles. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 8: Evolución mundial de las emisiones procedentes de combustibles fósiles 

Fuente: OECC (2013) 

 
Como se ha descrito en las figuras anteriores, el FR de los GEI no ha parado de crecer 

en el planeta y eso se debe a un aumento de sus concentraciones en la atmósfera. El 

CO2 se sabe que ha crecido su concentración desde el período de la revolución 

industrial. Sin embargo, los datos más fiables se tienen desde los últimos cincuenta 

años en el momento que aparecieron las tecnologías de medición de estos gases, y el 

nivel tecnológico ayudo en la toma de muestras atmosféricas. Uno de los 

observatorios más famosos de análisis de la concentración del CO2 atmosférico en 



 

18 

 

Mauna Loa, Hawái (EEUU). La siguiente figura es una gráfica llamada curva Keeling que 

representa los cambios en la concentración atmosférica de dióxido de carbono en 

España desde 1958. 

 

Figura 9: Evolución reciente de la concentración de CO2 (ppm) en la atmósfera  
(Curva Keeling) 

Fuente: Wikipedia (2015) 

 
 
A través de la curva Keeling (figura 9) se muestra claramente el incremento sostenido 

de los niveles de dióxido de carbono en la atmósfera desde el año 1958 hasta el 2010. 

En los últimos cincuenta años la concentración no ha parado de aumentar siendo en 

un principio de poco más de 300 ppm y llegar según datos del 2015 a sobrepasar la 

barrera de los 400 ppm, es decir, un 0,04% de concentración atmosférica. Por tanto, 

en algo más de cincuenta años, la cantidad de CO2 ha aumentado en 80 ppm, de seguir 

en la misma línea, para el año 2100 habría 150 ppm más que en la actualidad, es decir, 

550 ppm que según las Trayectorias Representativas de Concentración sobrepasaría el 

escenario 4.5, un escenario “moderado”. 

 
Para relacionar la concentración de CO2 equivalente entre los nuevos escenarios de 

emisión del AR5 (RCP) y los escenarios (familias evolutivas SRES) dados por el IPCC en 

el año 2000 se explica en la siguiente figura. 
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Figura 10: Concentración de CO2 equivalente para distintos escenarios de emisión 

Fuente: OECC (2013) 

 

El escenario RCP 8.5 de “máximas emisiones” iría ligado con la familia SRES A1FI que 

sería aquella que prevé un modelo de sociedad desarrollado a partir de utilización 

masiva de combustibles de origen fósil. Los escenarios RCP 4.5 y 6.0 englobarían la 

práctica totalidad de las familias evolutivas SRES. El RCP 2.6, que incluso, prevé un 

retroceso de la concentración de CO2, no se aproxima a ninguna de las familias SRES. 

Los escenarios RCP 2.6 y 8.5 seguramente son los más improbables, el primero debido 

a que no va a haber una disminución de la actividad humana radical para que se 

mantengan los niveles de concentración de dióxido de carbono que hay actualmente, y 

el segundo también lo es ya que se prevé que la sociedad avance hacia una utilización 

de energías limpias y una progresiva disminución de combustibles fósiles. 

 

Las emisiones continuadas de GEI causan un calentamiento adicional al actualmente 

existente. Unas emisiones iguales a las tasas actuales o superiores inducirán cambios 

en todos los componentes del sistema climático, algunos de ellos sin precedentes en 

cientos o miles de años. Los cambios tendrán lugar en todas las regiones del globo, 

incluyendo cambios en la tierra y el océano, en el ciclo del agua, en la criosfera, en el 

nivel del mar, en algunos episodios extremos y en la acidez de los océanos. Muchos de 

estos cambios persistirán durante muchos siglos. La limitación del cambio climático 

requerirá reducciones substanciales y sostenidas de las emisiones de CO2. 

 

Las proyecciones para las próximas décadas de muchas magnitudes muestran cambios 

similares a los ya observados. El cambio climático proyectado basado en las 

Trayectorias Representativas de Concentración es similar al mostrado en el AR4. 

(OECC, 2013) 
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5.2 Evolución de la precipitación en el planeta y en Europa 
 
 

Según el informe de evaluación AR5 la variación de precipitación media en el 

planeta sería según los escenarios de emisión RCP 2.6 y 8.5, es decir, el escenario de 

menos emisiones y el de máximas emisiones, de la manera que se indica en la figura 

que viene a continuación.  

 

 
Figura 11: Cambio de precipitación media mundial según RCP 2.6 y RCP 8.5 

(Diferencia entre los períodos de 1986-2005 y 2081-2100) 
Fuente: IPCC (2013) 

 
Como se ha comentado en los apartados anteriores, estos dos escenarios son bastante 

improbables, ya que parece difícil que en el 2100 haya 421 ppm de CO2 según la RCP 

2.6 (actualmente supera los 400 ppm) o que haya más de 1000 ppm a final de siglo, 

como sucede en el RCP 8.5. Sin embargo, esta figura va muy bien a la hora de analizar 

el comportamiento de la precipitación a nivel mundial comparando estos dos 

escenarios, ya que así se puede predecir un escenario de emisiones intermedias, que 

es el que seguramente se dará (ya sea alguno que se parezca a un RCP 4.5 o 6.0). 
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Si nos fijamos en la figura 11 concretamente en el escenario RCP 2.6 vemos unos 

cambios de precipitación media muy tenues en comparación con el escenario de 

máximas emisiones (RCP 8.5) en el cual las desigualdades de precipitación entre 

regiones mundiales se disparan. 

 

Se pueden hacer dos observaciones de aumento y disminución de precipitaciones. 

Mientras que tanto en las zonas ecuatoriales como en las zonas polares las 

precipitaciones aumentan, en las zonas tropicales y latitudes medias disminuyen. La 

radiografía se ve muy bien en el continente europeo ya que mientras en el norte de 

Europa (países escandinavos, islas británicas) las precipitaciones aumentan, la zona 

mediterránea que es la que se encuentra en el Sur de Europa (península ibérica, itálica, 

islas griegas), registrará unos mayores descensos de precipitación. Se podría decir que 

cuanto más ascendemos o descendemos de latitud en el continente europeo las 

diferencias en futuras cuantías de precipitaciones a final de siglo, se agravarán. 

 

Lo que se puede sacar en claro de la anterior figura es que a nivel europeo van a 

producirse cambios significativos en el régimen de precipitaciones aunque no se sabe 

con certeza como serán, ya que va a depender del escenario de emisiones que se 

produzca. 

 

En el presente TFG se pretende estudiar los cambios de precipitaciones producidos en 

Aragón así como las predicciones de los modelos más actualizados sobre final de siglo. 

A escala europea, se ha visto como hay dos regiones bien diferenciadas, la norte y la 

Sur. Aragón se sitúa en la región mediterránea, dentro de la Península Ibérica. 

 

Según el informe de evaluación AR5, dependiendo de los nuevos escenarios de 

emisiones que se tomen, hay una reducción de las precipitaciones en el sur de Europa, 

es decir, en los países que son bañados por el Mediterráneo. Según la figura siguiente, 

la incertidumbre aun así, es muy grande por tanto la desviación típica también lo es.  

 
 
 
 
 
 
 
 

 
 

Figura 12: Cambio estimado de la precipitación anual media en el sur de Europa y la Región 
Mediterránea para distintos escenarios de emisión.  

Fuente: OECC (2013) 
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Según la figura 12 no hay un  claro cambio en la precipitación en el sur de Europa. 

Todo apunta a que las precipitaciones van a disminuir pero con matices. Tanto en los 

escenarios 2.6; 4.5; y 6.0 las precipitaciones disminuyen muy ligeramente (menos de 

un 10%) sin haber una progresividad si subimos a escenarios de emisiones más altos. 

En el escenario 8.5 las precipitaciones sí se desmarcan de los anteriores escenarios 

hacia una menor precipitación de forma clara, en torno al 25% de la del periodo actual. 

Dicho escenario se puede ver de manera más nítida en la siguiente figura: 

 

 
Figura 13: Cambio estimado de la precipitación anual media para finales del siglo XXI 

(promedio entre 2081 y 2100) respecto a la actualidad (promedio entre 1986 y 2005) para el 
escenario RCP 8.5. 
Fuente: OECC (2013) 

 
Se observa como las zonas más al sur de la región mediterránea tendrían los descensos 

pluviométricos más grandes, concretamente las zonas más cercanas al continente 

africano como pueden ser el sur de la península Ibérica contemplarían los mayores 

descensos de lluvia. 

 

Tras ver que el último informe del IPCC deja claro los cambios de precipitaciones en el 

continente europeo, a continuación se va a comparar con otros informes y modelos 

realizados para ver si efectivamente coinciden o no con el AR5. Los elegidos han sido el 

AR4, anterior informe de evaluación del IPCC y un ENSEMBLE basado en un modelo 

MRI con alta resolución. Este último es un proyecto europeo que ha protagonizado la 

investigación en cambio climático del 6º Programa Marco de la Unión Europea.  

(FIC, 2009) 
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Figura 14: Cambio estimado (2081-2100 respecto 1986-2005) de la precipitación estival 

(gráfico superior) e invernal (gráfico inferior) estimada por el AR4 (izquierda), el AR5 (centro), y 
por un ensemble basado en un modelo (MRI) con alta resolución. 

Fuente: OECC (2013) 

 
Como se ha dicho anteriormente, la figura anterior es muy interesante ya que compara 

los futuros escenarios del periodo 2081-2100 en Europa sobre los cambios en 

precipitaciones en tres informes, el AR4, AR5 y por un ensemble basado en un modelo 

(MRI) con alta resolución. Se observa como la disminución de la precipitación en los 

meses invernales es marcadamente menor que la disminución en los meses estivales, 

además, todos los modelos coinciden en una disminución de precipitación en el sur de 

Europa y un aumento de la misma en latitudes más altas, a pesar de que todavía no 

puede proyectar con gran confianza si las trayectorias de las tormentas van a cambiar. 

 

Según el AR5 y de un modo general, en toda Europa los inviernos serán, más húmedos 

y los veranos más secos. Además, habrá diferencias de cambio en toda Europa, con 

condiciones más secas en el sur de Europa y más húmedas en el norte de Europa. 

(Norwegian Meteorological Institute, 2013) 

 

Las predicciones del IPCC sobre el presente siglo indican en Europa una disminución de 

las cantidades de lluvia en la región mediterránea. Sin embargo, es necesario conocer 

qué ha ocurrido en estos últimos años para valorar las predicciones futuras. Tal como 

recoge la figura siguiente, a nivel mundial ha habido descensos y ascensos de 

precipitación muy repartidos en todas las partes del mundo. 
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Figura 15: Cambios observado en la precipitación anual sobre el planeta entre los períodos 

1901 y 2010, y entre 1951 y 2010 (en mm/año por decenio) 
Fuente: IPCC (2013) 

 
Al igual que pronosticaban las predicciones hacia los últimos veinte años del presente 

siglo, lo que ya ha ocurrido ofrece un diagnóstico parecido. En el último medio siglo, ha 

disminuido la cantidad de lluvia en el sur de Europa y por el contrario ha aumentado 

en el norte, diferencias que se acentúan más si estudiamos solo los últimos sesenta 

años tal como recoge la figura 15. 

 

A nivel mundial, hay muchas más zonas que han aumentado sus precipitaciones 

respecto zonas que han bajado sus promedios; y es que como se ve, las lluvias tienden 

a aumentar en un mundo más cálido. En conclusión, el calentamiento global afecta lo 

más probablemente al ciclo hidrológico, principalmente en términos de aumento de 

las tasas de evaporación asociada con la temperatura más alta. Las desigualdades 

entre territorios se acentúan. (IPCC, 2013) 

 

La utilización de múltiples modelos conjuntos de proyecciones climáticas, muestran 

aumentos de lluvia en promedio a nivel mundial a lo largo del siglo XXI. Sin embargo, 

los escenarios de precipitación muestran un fuerte desfase, entre regiones y 

diferencias anuales. En Europa, existe un marcado contraste entre el cambio futuro de 

precipitación entre el invierno y el verano. Se espera que los inviernos sean más 

húmedos en todo el continente a excepción de la región del Mediterráneo, en muchos 

lugares menos nieve y más lluvia, mientras que en verano, el norte de Europa será más 

húmedo, y por el contrario, el sur de Europa, será más seco, según lo que se proyecta. 

(Norwegian Meteorological Institute, 2013) 

 

A pesar de que múltiples modelos auguren aumentos de precipitación en promedio a 

nivel mundial hacia final del siglo XXI, hay un nivel de confianza medio en que las 

sequías se intensifiquen en el siglo XXI en algunas zonas y estaciones del año, debido a 

la disminución de las precipitaciones y/o al aumento de la evapotranspiración. Es el 

caso de las regiones del sur de Europa y la zona mediterránea, Europa central, la zona 

central de América del Norte, América Central y México, el noreste de Brasil y África 



 

25 

 

meridional. Los aspectos relativos a las definiciones, la falta de suficientes datos de 

observación y la imposibilidad de que los modelos incluyan todos los factores que 

influyen en las sequías impiden asignar un nivel de confianza superior al medio en las 

proyecciones sobre las mismas.  

 

 
5.3 Eventos hidrometeorológicos extremos en Europa 

 
 

“Los eventos extremos en la naturaleza y la sociedad son, por definición, escasos, 

pero pueden tener un importante impacto físico y socioeconómico en las personas y 

países en las regiones afectadas (Albeverio et al., 2006)”. (Sura P., 2011). A nivel 

mundial,  ''es muy probable que los extremos calientes, olas de calor y los eventos de 

fuertes  precipitaciones tenderán a ser más frecuentes ''. Esta es una conclusión 

común a todos los informes de evaluación del IPCC. (Millán, 2014). Los eventos de 

precipitaciones extremas para el fin de siglo tienen una tendencia claramente menor 

que la temperatura. Sin embargo, “los escenarios climáticos proyectados en Europa 

sugieren una disminución global de precipitación total y un aumento significativo en la 

duración de períodos de sequía, en particular durante el otoño y la primavera, y un 

aumento de las precipitaciones intensas (Costa et al., 2011)”. (Norwegian 

Meteorological Institute, 2013). Estudios indican que hay alguna evidencia de un 

aumento general de las observaciones sobre precipitaciones extremas, mientras que 

no hay indicios claros de tendencias crecientes significativas a mayor escala regional o 

nacional. Aunque hay evidencia en la literatura científica de las tendencias de 

precipitación observada extrema y la descarga de inundaciones en los últimos años, el 

uso de las proyecciones de los modelos climáticos muestra un probable impacto de 

estos eventos hidrometeorológicos extremos en el siglo XXI en Europa. (Madsen, 

Lawrence, Lang, Martinkova, y Kjeldsen, 2014) 

 

Lo que sí se conoce con certeza es que habrá de forma más frecuente, eventos de alta 

intensidad de precipitación (aumento de mm/h) y menos eventos de precipitación 

moderada o baja en el futuro. “En los últimos 50 años, han aumentado los eventos 

intensos de precipitación en la mayor parte de regiones extratropicales (Groisman et 

al., 2005; Trenberth et.al, 2007)”. (Norwegian Meteorological Institute, 2013)  

 

“Es probable que durante el siglo XXI la frecuencia de precipitaciones intensas o la 

proporción de lluvias totales derivadas de precipitaciones intensas aumente en 

muchas zonas del mundo”. Sobre todo es el caso de regiones situadas en latitudes 

septentrionales, y en latitudes tropicales, y en invierno en las latitudes medias del 

hemisferio norte. (IPCC, 2012) 
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Además, hay evidencia de que algunos fenómenos climáticos extremos han cambiado 

como resultado de la influencia antropógena, entre otros, el aumento de las 

concentraciones atmosféricas de gases de efecto invernadero. Existe un nivel medio de 

confianza en que la influencia antropógena ha contribuido a intensificar las 

precipitaciones extremas a escala mundial. (IPCC, 2012) 

 

Como puede observarse en la figura siguiente, el número de desastres naturales en el 

mundo no ha cesado de aumentar desde 1980 hasta la actualidad. Los eventos 

meteorológicos y climatológicos como son las precipitaciones torrenciales están entre 

ellos. 

 
 

Figura 16: Número de desastres naturales en el mundo. Período 1980-2010 
Fuente: World meteorological organization (2011) 

 

En la siguiente figura se expone lo mismo que en la figura anterior pero a nivel de 

España y sin los eventos geofísicos. Como se observa se ha notado un leve aumento en 

el número de desastres naturales en las últimas décadas. 

 

 
Figura 17: Número de desastres naturales en España. Período 1980-2010 

Fuente: Norwegian Meteorological Institute (2013) 
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“Se ha argumentado de manera heurística que los eventos extremos de precipitación 

se incrementarán durante el cambio climático debido a que la superficie de la Tierra es 

más caliente y la altura de la troposfera es más baja (Trenberth et al., 2003; Giorgi et 

al., 2011; Trenberth, 2011)”. Este argumento heurístico se basa en el hecho de que la 

capacidad de la atmósfera para contener vapor de agua aumenta en un 7% por grado 

centígrado en que se aumenta la temperatura de la atmósfera. Por tanto, el 

incremento es mayor para temperaturas más altas. Los aumentos en la humedad del 

aire alimentan sobre todo tormentas las cuales serán las que descarguen altas 

cantidades de precipitación en poco tiempo”. (Norwegian Meteorological Institute, 

2013) 

 

 
 
Figura 18: Cambios en los patrones espaciales de intensidad de la precipitación (definida como 
la precipitación total anual dividido por el número de días de lluvia) sobre la tierra, basado en 

simulaciones multi-modelo de nueve modelos globales del clima, junto 
Fuente: Norwegian Meteorological Institute (2013) 

 

En Europa, el aumento de la intensidad de la precipitación domina sobre todo en el 

norte del continente, esto es debido a un aumento de la temperatura ligado a la ya de 

por sí zona húmeda que es el norte de Europa. En el sur aumenta el tamaño de los 

períodos secos mientras que las precipitaciones intensas también aumentan pero de 

una manera más leve, ya que a pesar de que hay más evaporación, la cantidad de 

humedad en el aire como en el norte de Europa no es tan alta, esto es debido a que la 

humedad transportada en esta parte de Europa se debe a regiones remotas del 

Atlántico Norte. (Norwegian Meteorological Institute, 2013) 

 

A modo de conclusión y cerrando este capítulo, según el quinto informe de evaluación 

(AR5) del IPCC, para la Región Mediterránea se pueden hacer las siguientes 

consideraciones, las cuales serán objeto de estudio sobre el territorio de Aragón: 
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 Una reducción de la precipitación anual sobre la península Ibérica, que será 

más acusada cuanto más al sur. Las precipitaciones se reducirán fuertemente 

en los meses estivales. 

 Para el escenario RCP 8.5 y para finales del siglo XXI, la Región Mediterránea 

experimentará reducciones medias de precipitación de 12% y de 24% en los 

meses invernales y estivales, respectivamente. 

 Un aumento de los extremos relacionados con las precipitaciones de origen 

tormentoso.  

 

(IPCC, 2013) 

 

 

5.4 La variación de lluvias en Aragón en los últimos 50 años 

 

El área de estudio es el ámbito territorial de la comunidad autónoma de Aragón, 

que se puede ver en la siguiente imagen: 

 
Figura 19: Situación de Aragón sobre el continente europeo 

Fuente: Ribalaygua et al. (2013) 

 
El clima en Aragón destaca fundamentalmente por su originalidad. Es fruto por una 

parte de factores atmosféricos y geográficos comunes al conjunto de la península 

Ibérica y, circunstancias intrínsecas a la región. El clima está influenciado tanto por la 

propia atmósfera regional como por la interferencia de rasgos oceánicos y 

mediterráneos. Pero, los aspectos más sobresalientes del clima de Aragón se 

relacionan sobre todo con su posición interior dentro de la Península Ibérica, el 

contrastado relieve entre la montaña y el llano y su especial configuración topográfica. 

(Cuadrat, 2004) 
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Por su latitud,  se encuentra en el límite meridional del dominio templado de la 

circulación de vientos del Oeste, en contacto con la zona de altas presiones 

subtropicales. Por ello, buena parte del año, la región está gobernada por los 

mecanismos propios del área templada, como son la presencia de masas de aire polar 

y las típicas borrascas atlánticas con sus frentes asociados; mientras que, a medida que 

se aproximan los meses estivales, se aprecia una disminución de esta influencia y el 

progresivo dominio de las masas de aire cálido y de las células anticiclónicas de las 

regiones subtropicales, más concretamente del anticiclón de las Azores. (Cuadrat, 

2004) 

 

Dicho lo cual, Aragón, quedaría incluido dentro del denominado clima Mediterráneo 

continentalizado, caracterizado por unas escasas precipitaciones, localizadas 

fundamentalmente en primavera y otoño, y un claro ritmo térmico anual, con veranos 

cálidos e inviernos frescos. (López, Cabrera, y Cuadrat, 2007) 

 

En conjunto, Aragón es un territorio con lluvias poco abundantes (la media anual es 

tan sólo de 549 mm anuales, frente a los 665 mm anuales de la media española), 

sujetas a una fuerte irregularidad y con un predominio claro de días sin precipitación. 

Ésta acusada irregularidad de la distribución pluviométrica en Aragón refleja dos 

hechos relacionados: la difícil penetración de los frentes atmosféricos y la dependencia 

constante de la topografía. El promedio anual de lluvias difícilmente alcanza los 400 

mm en el interior de la cubeta del Ebro y en las depresiones del Jalón y Jiloca Alcañiz, 

381 mm; Calatayud, 336 mm; Teruel, 369 mm). Además, en una amplia franja del 

sector centro-oriental de Aragón la sequedad es aún más extrema al recibir una 

precipitación media inferior a los 350 mm (Zaragoza, 315 mm; Fraga, 303 mm; Caspe, 

318 mm). (López et al. 2007) 

 

Resulta especialmente destacable el hecho de que más del 60% de Aragón recibe 

totales anuales de precipitación por debajo de los 500 mm así como que 2/3 del 

territorio registren valores inferiores a la media de 548,8 mm. Únicamente en el 

Pirineo y aunque en menor medida también en el Sistema Ibérico las precipitaciones 

alcanzan valores importantes. Aquí, la decisiva influencia del relieve, favorecedor de 

las lluvias de inestabilidad y orográficas y la mejor exposición de estas áreas 

montañosas a los frentes lluviosos, crea un verdadero cinturón húmedo al Norte y Sur 

de la región, con precipitaciones más cuantiosas. (López et al. 2007) 

 

En absoluto se puede pensar que Aragón constituye un espacio climático homogéneo. 

Por el contrario, característica fundamental del clima regional son la variedad y los 

contrastes, porque tan representativa es la sequedad de las estepas que rodean 

Zaragoza como el intenso frío de los glaciares de los macizos de la Maladeta o el 

Aneto. (López et al. 2007) 
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Figura  20: Precipitación total anual en Aragón 
Fuente: López et al. (2007) 

 
En la figura anterior, se pueden distinguir al menos cuatro grandes zonas: 

 

o El centro de la cubeta del Ebro y las depresiones del Jalón y Jiloca son el espacio 

más seco, con menos de 400 mm anuales de precipitación. 

o En los somontanos y hacia los bordes montañosos se produce la gradual y 

moderada transición entre la sequedad del centro de Aragón y las más altas 

precipitaciones de los relieves marginales. 

o En la cordillera Ibérica las cantidades son mayores, pero por su 

compartimentación y escasa altitud sólo se aproximan a los 1.000 mm anuales 

en las vertientes más lluviosas de las sierras del Moncayo o Albarracín. 

o Únicamente en el Pirineo las precipitaciones alcanzan valores importantes, por 

la decisiva influencia del relieve y la mejor exposición a los frentes 

atmosféricos. 

 

(Dirección General de Calidad Ambiental y Cambio Climático del Gobierno de Aragón, 

Departamento de Medio Ambiente, 2009) 

 

Si el volumen de precipitaciones recogidas es ya muy significativo para conocer la 

imagen pluviométrica de Aragón, de mayor interés es conocer el ritmo con que estas 

se producen, es decir, su distribución y régimen estacional. A la indigencia 

pluviométrica de buena parte del territorio se une un régimen francamente 
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equinoccial, con dos cortos períodos de lluvias, primavera y otoño, separados por dos 

acentuados mínimos, verano e invierno. (López et al., 2007) 

 

La heterogeneidad absoluta de este territorio da lugar a una gran diversidad de climas. 

Su diversidad topográfica y su situación geográfica dan lugar a una multitud de 

escenarios climáticos que se pueden observar en la siguiente imagen: 

 

 
 

Figura 21: División climática de Aragón 
Fuente: López et al. (2007) 

 
Como se observa, gran parte del territorio presenta un clima árido asociado a 

regímenes de lluvia anuales escasos. Se puede decir que únicamente se puede decir 

que cae abundantes precipitaciones en las zonas más al norte de Pirineo y puntos de la 

serranía ibérica como la Sierra de Gúdar y Javalambre en Teruel, Albarracín, o el 

Moncayo en Zaragoza. 

 

Como se ha visto anteriormente, el IPCC ha alertado de unas posibles 

disminuciones de lluvia hacia final de siglo especialmente en la región 

mediterránea/sur de Europa en la que se encuentra Aragón. Sin embargo, la 

verificación de este fenómeno en esta región no es fácil debido principalmente a 

factores como el complejo reparto espacial que muestra la precipitación sobre el 
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territorio, a las diferencias en cuanto a su reparto estacional y a su notable variabilidad 

interanual. 

 

En cualquier caso, la densa red de observatorios utilizados en este atlas y la longitud 

de las series disponibles ha permitido realizar una cartografía de la tendencia de los 

totales anuales y estacionales de precipitación, de forma absoluta y porcentual, en 

Aragón durante la segunda mitad del siglo XX, en concreto en el periodo 1950-2002. 

 

El periodo analizado es más extenso que el utilizado para cartografiar los valores 

medios de los distintos elementos del clima, teniendo en cuenta la necesidad que 

existe de observar un fenómeno como las tendencias en periodos más prolongados. 

Estas tendencias se calculan mediante regresiones lineales, ofreciendo el valor de 

pendiente de la recta resultante del modelo una cuantificación de la tendencia positiva 

o negativa que la variable ha experimentado año a año teniendo en cuenta los datos 

de todo el periodo. Para simplificar la lectura, los mapas se presentan en tendencias 

absolutas o porcentuales por década. 

 

 
 
Figura 22: Tendencia de la precipitación en el período 1950-2002 (mm/década) respecto a los 

totales anuales. 
Fuente: López et al. (2007) 
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Figura 23: Tendencia de la precipitación en el período 1950-2002 (%/década) respecto a los 
totales anuales. 

Fuente: López et al. (2007) 
 
 

Como se observa en las figura 22 y 23, es evidente que ha habido en el último medio 

siglo una disminución evidente de la cuantía de precipitación. Los mayores descensos 

se han producido en la Sierra de Albarracín y en la zona oriental del pirineo mientras 

que los menores descensos se han producido en la zona occidental del pirineo y ciertos 

sectores del valle del Ebro.  

 

Según el Atlas Climático de Aragón, en los últimos cincuenta años la precipitación 

media ha disminuido cerca del 12%, aunque la tendencia futura de las precipitaciones 

está sujeta a una gran incertidumbre que impide realizar predicciones fiables sobre 

precipitaciones. (Dirección General de Calidad Ambiental y Cambio Climático del 

Gobierno de Aragón, Departamento de Medio Ambiente, 2009) Desde el año 1950, el 

descenso pluviométrico anual medio en Aragón se evalúa en 12,7 mm por década. Por  

estaciones del año los descensos se establecen en -6,2 mm/década, -0,98 mm/década, 

-6,4 mm/década, -0,5 mm/década de las estaciones invierno, primavera, verano y 

otoño, respectivamente. (Cuadrat, Serrano, Saz y Marín, 2011) 

 

En lo que respecta a la nieve igualmente se ha venido registrando una tendencia 

negativa significativa en la acumulación, ligada a la disminución de precipitaciones 

contabilizadas en el área pirenaica durante los meses de invierno, en particular febrero 
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y marzo. Esto constituye además una de las razones fundamentales del retroceso 

glaciar (pérdida de superficie, espesor y volumen), junto con el aumento de las 

temperaturas y el descenso de las precipitaciones de invierno-primavera. (Dirección 

General de Calidad Ambiental y Cambio Climático del Gobierno de Aragón, 

Departamento de Medio Ambiente, 2009) 

 

Pero en este TFG no solo se pretende recopilar información bibliografía sobre la 

variabilidad de las precipitaciones en el territorio aragonés. A continuación se van a 

analizar y discutir datos climatológicos de precipitación en la comunidad autónoma 

Aragón que hay disponibles en el Instituto Aragonés de Estadística y que pretende 

demostrar las tesis que se muestran de reducción de precipitaciones tanto en el Atlas 

Climático de Aragón como en otros documentos. 

 

Se realiza un análisis de un paquete Excel de datos climáticos llamado “Valores 

normales de precipitación mensual y anual por comarcas, municipios y estaciones 

medidoras en los períodos 1961-1990 y 1981-2010” y en el que salen multitud de 

municipios con su correspondiente estación meteorológica. Los resultados analizados 

se exponen a continuación. 

 

Comarcas 
aragonesas 

Municipio – 
Estación 

meteorológica 

        1961-1999  
1º período 
(38 años) 

    1981-2010 
2º período 
(29 años)  

Diferencia 
pluviométrica 

La Jacetania Ansó 1194,3 1104,4 -89,9 

Canfranc  
(Los Arañones) 

1870,2 1839,4 -30,8 

Jaca 856,6 767,5 -89,1 

Alto Gállego Sabiñanigo 839,5 818,6 -20,9 

Biescas 1231,9 1160,9 -71 

Sallent de Gállego 1307,9 1312,3 +4,4 

Sobrarbe Gistaín 1372,3 1246,5 -125,8 

Boltaña  1040,1 917,8 -122,3 

Aínsa-Sobrarbe 872,6 801,3 -71,3 

La Ribagorza Sesué central 1004,4 1020 +15,6 

Monesma y Cajigar 454,2 413,3 -40,9 

Sahún (Eriste 
central) 

1110,2 1056,9 -53,3 

La Hoya de 
Huesca 

Loarre  745,7 715,7 -30 

Nueno 745,5 660,2 -85,3 

Huesca (Apiés) 690,8 650 -40,8 

Somontano de 
Barbastro 

Berbegal 480,5 438,7 -41,8 

Santa María de 
Dulcis (Huerta de 

Vero) 

571,8 520,2 -51,6 

Alquezar 
(Radiquero) 

716,8 637,6 -79,2 

La Litera Altorricón 407,7 378,8 -28,9 
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San Esteban de 
Litera 

460,4 413,3 -47,1 

Esplús Ráfales 1 379,6 341,3 -38,3 

Los Monegros Bujaraloz (Petris) 399,4 341,1 -55,3 

Lanaja 463,5 389 -74,5 

Grañén 
(montesusín) 

497 414,8 -82,2 

Bajo Cinca Mequinenza 398,2 396,7 -1,5 

Belver de Cinca 
(Julia) 

425,7 361,4 -64,3 

Candasnos 363,1 330 -33,1 

Cinco Villas Uncastillo 569,2 533,7 -35,5 

Ejea de los 
Caballeros  
(El Bayo) 

476,9 398,5 -78,4 

Marracos 531,3 442,1 -89,2 

Zaragoza D.C Zaragoza 
Aeropuerto 

314,2 322 +7,8 

Zuera “Casa Pérez” 414,5 385,8 -28,7 

Fuentes de Ebro 359,8 333,6 -26,2 

Ribera baja 
del Ebro 

Pina de Ebro PFE 358,5 322,1 -36,4 

Sástago “La Balsa” 387,8 334,8 -53 

Bajo Aragón 
Caspe 

Caspe 
“ayuntamiento” 

302,4 307,9 +5,5 

Fabara 338,9 313,6 -25,3 

Maella DGA 424,8 351,6 -73,2 

Valdejalón Calatorao 
cooperativa 

387,6 356,1 -31,5 

Almunia de Doña 
Godina 

“Frigorífico” 

413,4 380,7 -32,7 

Ricla 392,4 369 -23,4 

Campo de 
Cariñena 

Longares 2 407,1 382 -25,1 

Paniza 429,9 431,5 +1,6 

Aguarón PFE 554,8 511,6 -43,2 

Campo de 
Belchite 

Azuara (Moneva-
Embalse) 

402,3 362,7 -40 

Comunidad de 
Calatayud 

Calatayud Aguas 360,9 329 -31,9 

Cetina 360,5 336,8 -23,7 

Monterde PFE 415,8 382,1 -33,7 

Campo de 
Daroca 

Atea 483,2 433,6 -49,6 

Mainar 522,1 454,7 -67,4 

Las Cuerlas 
(gasolinera) 

485,9 386,4 -99,5 

Bajo Martín La Puebla de Híjar 348,1 305,4 -42,7 

Azaila 322,2 304,7 -17,5 

Jatiel 383,6 316,1 -67,5 

Bajo Aragón Torrevelilla 446,8 471 +24,2 

Alcorisa 445,9 440,9 -5 
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Tabla 1: Comparación de la cantidad de precipitación registrada entre dos períodos de estudio 
en diferentes poblaciones de Aragón 

Fuente: Elaboración propia – Datos IAEST (2015) 

 
Se ha analizado una muestra de 73 municipios escogidos homogéneamente por el 

territorio aragonés. Contando con que según datos oficiales en Aragón hay 731 

municipios, tenemos una muestra aproximada del 10%. Los resultados son evidentes: 

 

 86% de los municipios analizados (63 municipios) los valores de precipitación 

fueron menores en el segundo período que en el primero, por tanto, 

disminuyó la precipitación. 

 El 14% restante (10 municipios) las cantidades recogidas son mayores en el 

segundo período que en el primero, por tanto aumenta la precipitación. 

 Sólo en cuatro municipios de los diez en que suben las precipitaciones, 

aumenta significativamente la cantidad de precipitación (>20 mm). Todos ellos 

ubicados en la provincia de Teruel. 

 Si ponemos la misma barrera que el anterior punto (20 mm) pero en sentido 

inverso, es decir, si contamos los municipios que disminuye la cantidad de lluvia 

por debajo de 20 mm el número sube a cincuenta y cinco de sesenta y cinco. 

Esto supone casi un 85% de los municipios que disminuye. 

 En un tercio de los municipios que disminuye la precipitación (21 municipios 

de 63)  lo hace más de 50 mm. 

 Los mayores descensos se producen en los pueblos más septentrionales de la 

comunidad como Ansó (-89,9 mm), Jaca (-89,1 mm), incluso superando 

Matarraña Valderrobres 564,4 500,4 -64 

Monroyo 532,6 532,4 -0,2 

Beceite 679,6 650,9 -28,7 

Andorra-
Sierra de 

Arcos 

Oliete cueva 
foradada embalse 

386,8 364,2 -22,6 

Cuencas 
mineras 

Palomar de 
arroyos 

528,6 504,4 -24,2 

Jiloca Cucalón 540,8 490,2 -50,6 

Ojos negros 462 421,3 -40,7 

Bañón 483,6 479,9 -3,7 

Sierra de 
Albarracín 

Albarracín (PFE) 477,6 462 -15,6 

Guadalaviar 982,9 986,2 +3,3 

Ródenas 493,3 456,2 -37,1 

Comunidad de 
Teruel 

Teruel (San Blas) 373,7 365 -8,7 

Argente 430,8 472,3 +41,5 

Ababuj 454,5 395,6 -58,9 

Gúdar-
Javalambre 

Rubielos de Mora 520,9 490,2 -30,7 

Manzanera (PFE) 447 512 +65 

Alcalá de la Selva 533,9 576,4 +42,5 
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descensos de más de 100 mm como Gistaín (-125,8 mm) o Boltaña (-122,3 

mm). 

  

A continuación, se realiza un nuevo análisis de un paquete Excel de datos 

climáticos llamado “Precipitaciones y temperaturas medias mensuales y anuales en las 

estaciones climatológicas seleccionadas en el Atlas Climático de Aragón, por estación y 

año disponible”. Aquí se pretende estudiar la variación de la precipitación en el 

período elegido 1955-2005 mediante la interpretación de la línea de tendencia 

facilitada por la herramienta ofimática Excel. En la siguiente tabla se encuentran los 

municipios de estudio ordenados alfabéticamente por comportamiento de la línea de 

tendencia. 
 
 

 

7 Municipios con línea 
de tendencia de 

precipitación 
ascendente 

Alcalá de la Selva (Gúdar-Javalambre); Ariza 
(Comunidad de Calatayud); Biel (Cinco Villas); 
Cucalón (Jiloca); Lécera (Campo de Belchite); 
Mequinenza (Bajo Cinca); Oliete (Andorra) 
 

19 Municipios con 
línea de tendencia de 

precipitación 
constante 

Arcos de Salinas (Gúdar-Javalambre); Argente 
(Comunidad de Teruel); Borja (Campo de Borja); 
Bujaraloz (Monegros); Calatorao (Valdejalón); 
Canfranc (La Jacetania); Griegos (Sierra de 
Albarracín); Maella (Bajo Aragón Caspe); Mainar 
(Campo de Daroca); Paniza (Campo de Cariñena); 
Panticosa (Alto Gállego); Ricla (Valdejalón); 
Rubielos de mora (Gúdar-Javalambre); 
Sabiñanigo (Alto Gállego); Sallent de Gállego 
(Alto Gállego); Sástago (Ribera baja del Ebro); 
Zaragoza-Aeropuerto (Comarca de Zaragoza); 
Valle de Hecho (La Jacetania); Villanua (La 
Jacetania) 
 

47 Municipios con 
línea de tendencia de 

precipitación 
descendente 

 

Atea (Campo de Daroca); Ababuj (Comunidad de 
Teruel); Albarracín (Sierra de Albarracín); Alcañiz 
(Bajo Aragón); Alcorisa (Bajo Aragón); Almunia de 
Doña Godina, La (Valdejalón); Alquézar 
(Somontano de Barbastro); Ayerbe (Hoya de 
Huesca); Azaila (Bajo Martín); Barbastro 
(Somontano de Barbastro); Berbegal (Somontano 
de Barbastro); Belver de Cinca (Bajo Cinca); Bielsa 
(Sobrarbe); Broto (Sobrarbe); Calatayud 
(Comunidad de Calatayud); Caspe (Bajo Aragón 
Caspe); Castiello de Jaca (La Jacetania); Cella 
(Comunidad de Teruel); Cetina (Comunidad de 
Calatayud); Daroca (Campo de Daroca); Ejea de 
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los Caballeros (Cinco Villas); Grañen (Monegros); 
Huesca (Hoya de Huesca); Jaca (La Jacetania); 
Lanaja (Monegros); Luna (Cinco Villas); Marracos 
(Cinco Villas); Monegrillo (Monegros); Monreal 
del campo (Jiloca); Monterde (Comunidad de 
Calatayud); Monzón (Cinca medio); Morata de 
Jalón (Valdejalón); Pedrola (Ribera Alta del Ebro); 
Perdiguera (Monegros); Pina de Ebro (Ribera Baja 
del Ebro); Plan (Sobrarbe); Ródenas (Sierra de 
Albarracín); Sádaba (Cinco Villas); Sahún 
(Ribagorza); San Esteban de Litera (La Litera); 
Sariñena (Monegros); Tamarite de Litera (La 
Litera); Teruel (Comunidad de Teruel); Tornos 
(Jiloca); Valderrobres (Matarraña); Villar del Cobo 
(Sierra de Albarracín);  Zuera (Comarca Zaragoza) 

 
Tabla 2: Comprobación de la evolución de la línea de tendencia de la cantidad de precipitación 

registrada entre el período 1955-2005. 
Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 
Figura 24: Comportamiento de la línea de tendencia de las precipitaciones de los municipios 

de la tabla 2 en el período de estudio 1955-2005. 
Fuente: Elaboración propia - Datos IAEST (2015) 

 
 

En la tabla 2 hay exactamente el mismo número de municipios que en la tabla 1, sin 

embargo, se han cambiado algunas estaciones para dar más fiabilidad a los resultados.  
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Como se aprecia en la figura 24, los datos no pueden ser más reveladores. La 

precipitación ha bajado en 47 municipios, es decir, que tienen línea de tendencia 

descendente, 19 municipios tienen línea estable y 7 línea ascendente. Esto indica que 

hay una disminución de la precipitación de una manera incuestionable. 

 

Las gráficas elaboradas a partir de la herramienta ofimática Excel se ofrecen en el 

anexo  del presente TFG dada la imposibilidad de poner aquí todas ellas. Sin embargo, 

tres de ellas se van a presentar a continuación para mostrar cómo se han realizado. 

Van a ser tres localidades de cada provincia, una constante, otra descendente y otra 

ascendente. 

 

 Línea de tendencia constante: 
 

 
 

Figura 25: Precipitación anual acumulada en el aeropuerto de Zaragoza en el período  
1955-2005 

Fuente: Elaboración propia -  Datos IAEST (2015) 
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 Línea de tendencia descendente: 
 
 

 
 

Figura 26: Precipitación anual acumulada en Huesca en el período 1955-2005 
Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 Línea de tendencia ascendente: 
 

 
 

Figura 27: Precipitación anual acumulada en Alcalá de la Selva en el período 1955-2005 
Fuente: Elaboración propia – Datos IAEST (2015) 
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Evolución de la estacionalidad de las precipitaciones, período 1955-2005 
 
Se han analizado 29 estaciones meteorológicas de otros tantos municipios cuyos 

nombres se exponen en la tabla siguiente. En el anexo se encuentran los gráficos 

elaborados con la herramienta ofimática Excel. Se ha elegido este número puesto que 

se ha escogido una estación por comarca aragonesa. Las comarcas Tarazona y el 

Moncayo, Aranda, el Maestrazgo y Ribera Alta del Ebro no han sido analizadas puesto 

que no se ha encontrado ninguna estación meteorológica en el archivo de datos 

empleado.  

 

Estación meteorológica/municipio Comarca 

Albarracín PFE Sierra de Albarracín 

Alcalá de la Selva Gúdar-Javalambre 

Alcorisa Bajo Aragón 

Beceite Peña Embalse Matarraña 

Berbegal Somontano de Barbastro 

Boltaña Sobrarbe 

Borja (ayuntamiento) Campo de Borja 

Canfranc Los Arañones La Jacetania 

Caspe Forcaballes Bajo Aragón Caspe 

Ejea de los Caballeros Cinco Villas 

Jatiel Bajo Martín 

Lanaja Los Monegros 

Lécera Campo de Belchite 

Mainar Campo de Daroca 

Mequinenza Bajo Cinca 

Monflorite-Lascasas Hoya de Huesca 

Monreal del Campo DGA Jiloca 

Monterde PFE Comunidad de Calatayud 

Monzón (silo) Cinca medio 

Morata de Jalón Valdejalón 

Oliete cueva foradada embalse Andorra Sierra de Arcos 

Palomar de arroyos Cuencas mineras 

Pina de Ebro PFE Ribera baja del Ebro 

Sabiñanigo Alto Gállego 

San Blas Comunidad de Teruel 

San Esteban de Litera La Litera 

Sesué-central La Ribagorza 

Tosos Campo de Cariñena 

Zaragoza-aeropuerto Comarca de Zaragoza 

Tabla 3: Municipios elegidos para el estudio sobre la evolución de la precipitación en las 
estaciones del año de las siguientes estaciones meteorológicas en el período 1955-2005 

Fuente: Elaboración propia  
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El resultado de la línea de tendencia en cada una de las estaciones del año de los 

siguientes municipios se representa en las siguientes figuras. 

 

 
 

Figura 28: Número de estaciones y estado de la línea de tendencia en los meses de invierno 
(Diciembre-Enero-Febrero). 

Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 
 
Figura 29: Número de estaciones y estado de la línea de tendencia en los meses de primavera 

(Marzo-Abril-Mayo). 
Fuente: Elaboración propia – Datos IAEST (2015) 
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Figura 30: Número de estaciones y estado de la línea de tendencia en los meses de verano 
(Junio-Julio-Agosto). 

Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 
 

Figura 31: Número de estaciones y estado de la línea de tendencia en los meses de otoño 
(Septiembre-Octubre-Noviembre). 

Fuente: Elaboración propia – Datos IAEST (2015) 

 
 
El pequeño análisis hecho nos muestra que los mayores descensos de precipitación se 

han dado tanto en invierno como en verano, después el otoño es la estación que 

mayor número de estaciones registran descensos, y por último, la primavera, está 

equilibrada en el número de estaciones que disminuye, aumenta o permanece 

constante la precipitación.  
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“Este comportamiento se corresponde en buena medida con el observado por De Luís 

et al. (2007) en su investigación sobre la cuenca del Ebro, o los más amplios realizados 

por Nieto y Rodríguez-Puebla (2006) y Rodríguez-Puebla y Brunet (2008) sobre la 

península Ibérica, donde coinciden en señalar para el ámbito aragonés la disminución 

mayor de las lluvias en los meses de invierno y verano, siendo el periodo otoñal el de 

descensos menos significativos. En primavera, el descenso es más moderado”. 

(Cuadrat et al. 2011) 

 

En la estación otoñal difieren estos dos análisis, pero hay que decir que en el estudio 

de Cuadrat et al. 2011, el número de estaciones meteorológicas revisadas fueron 122 

frente a las 29 (tabla 3) que se han analizado en el presente TFG, por ello, es de 

muchísima más fiabilidad y rigor el análisis hecho por estos autores en el año 2011. 

 

Los mapas elaborados por su trabajo se presentan a continuación. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figura 32:  
Anomalías de las 

precipitaciones de  
1981-2010 respecto de  

1951-1980 
Fuente: Cuadrat et al. (2011) 
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Además de la evolución de la estacionalidad de la precipitación, el resultado de la 

comparación de las precipitaciones de 1981-2010 respecto de 1951-1980 muestra una 

clara tendencia hacia el descenso de las cantidades totales anuales como se observa 

en la figura 32, con porcentajes de cambio moderados y pocas diferencias territoriales. 

 

“Este descenso se cree que se debe a una pérdida de importancia de los sistemas 

frontales procedentes del Atlántico, principales responsables de las lluvias invernales, 

como sugieren Paredes et al (2006) o Nieto y Rodríguez Puebla (2006), y con cambios 

en verano en los sistemas advectivos mediterráneos y el reforzamiento de las 

condiciones anticiclónicas, como apuntan Fernández García y Martín Vide (2004). En 

sentido opuesto, el aumento de los eventos extremos podría explicar ciertos 

contrastes espaciales y sobre todo los valores más altos de la estación otoñal (Vicente 

Serrano et al, 2007)”. (Cuadrat et al, 2011) 
 
 

 

5.5 Eventos hidrometeorológicos extremos en Aragón 
 
El IPCC ha declarado lo siguiente: 

 

“Existe un nivel de confianza medio en que aumenten las precipitaciones intensas en 

algunas regiones, a pesar de que en ellas se proyecte una disminución en el total de las 

precipitaciones de dichas regiones.” 

 

Por tanto, en Aragón como ya se ha visto se ha producido una disminución y se va a 

proyectar todavía menos cantidad de lluvia hacia final de siglo, por tanto, existe entre 

un 66% y 100% de posibilidad de que aumenten las precipitaciones intensas. 

 

Además, el IPCC alega que: 

 

“Con base en los diversos escenarios de emisiones (B1, A1B, A2), es probable (con una 

probabilidad de resultado de 66-100% de ocurrencia) que la cantidad máxima anual de 

precipitación diaria registrada una vez cada 20 años pase a producirse con una 

frecuencia de una vez cada 5 años a una vez cada 15 años en muchas regiones a finales 

del siglo XXI y, en la mayoría de ellas, los escenarios con mayores emisiones (A1B y A2) 

presentan una mayor disminución proyectada en el período de retorno”. (IPCC, 2012) 

 

Dicho lo cual, el Atlas Climático de Aragón, señala que en una proporción notable del 

solar aragonés (cerca del 85%) se han registrado en algún momento del periodo 

analizado precipitaciones superiores en 24 horas a los 80 mm. La mayor torrencialidad 

de la precipitación suele estar asociada a perturbaciones generadas en el tramo final 

del verano o primeras semanas de otoño en el Mar Mediterráneo, una inestabilidad 
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que se ve acentuada por la acción del relieve. El efecto de la topografía sobre la 

intensidad de la precipitación es claro en este mapa y así es al pie de los Puertos de 

Beceite y de los macizos pirenaicos de Monte Perdido, Posets, Aneto y Maladeta, 

donde se registran los valores máximos, superiores a los 160 mm en un solo día. La 

orla mediterránea ofrece una mayor torrencialidad, descendiendo de forma clara los 

valores máximos hacia el oeste. (López et al. 2007) “Desde tiempos remotos, la 

precipitación en el sur de Europa (y tal como ocurre en la mayor parte de Aragón), se 

basa más en la evaporación regional que en la humedad (Trenberth et al., 2003; 

Trenberth, 2011) que viene transportada por frentes desde otras regiones más 

húmedas”. (Norwegian Meteorological Institute, 2013) 

 

Las predicciones por tanto, parecen indicar que cuanto más avancen los años en el 

presente siglo, mayores episodios de eventos hidrometeorológicos extremos van a 

ocurrir y por lo visto en Aragón asociados a carácter más tormentoso. Aun así, las 

previsiones para este territorio no son del todo las peores teniendo en cuenta que en 

el continente Europeo donde más parece que van a aumentar estos eventos 

hidrometeorológicos extremos es en el norte de Europa, según la figura 18. 

 

En este apartado, se va a realizar un pequeño estudio sobre eventos de precipitación 

intensa en algunas localidades de Aragón en las últimas décadas así como una 

pequeña observación de la actividad tormentosa de la comunidad en estos últimos 

años. Se pretende obtener algún dato concluyente concordante con lo escrito párrafos 

más arriba. 

 

La Agencia Estatal de Meteorología (AEMET) ofrece a disposición del público, unos 

determinados umbrales de precipitación acumulada en 1h y 12h sobre un territorio 

concreto que marca un nivel de alerta por una determinada torrencialidad de 

precipitación, y por tanto, marcan la peligrosidad de un evento extremo de 

precipitación intensa para avisar a la población sobre la que previsiblemente va a 

ocurrir.  

 

 
Figura 33: Umbrales de aviso de precipitación acumulada en 1h y 12h en Aragón y 

escala de peligrosidad de riesgo. 
Fuente: AEMET (2015) 
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A continuación se estudian tres municipios de Aragón, concretamente de la provincia 

de Huesca. Se han escogido en zonas climáticamente diferentes para ver lo que ha 

sucedido y si realmente se ha producido un aumento en el número y en la intensidad 

de los eventos extremos de precipitación. Los municipios son Jaca (clima de 

mediterráneo de transición a oceánico), Huesca (clima mediterráneo continental) y 

Sariñena (seco estepario) según el Atlas Climático de Aragón. Los datos para el estudio 

han sido solicitados a AEMET en varios pedidos meteorológicos que se han hecho. El 

período de estudio ha sido desde el año 1990 al 2014, es decir, 25 años. 

 
Los datos del municipio de Jaca son los siguientes: 
 

Cantidad de 
precipitación 

Tiempo Nivel de aviso Fecha 

20,9 mm 1h Amarillo 08/09/1992 

57,9 mm 12h Amarillo 04/11/1994 

45,8 mm 12h Amarillo 22/01/1996 

23,1 mm 1h Amarillo 26/07/1996 

49,1 mm 12h Amarillo 26/07/1996 

52,0 mm 12h Amarillo 05/12/1996 

21,1 mm 1h Amarillo 14/05/1999 

18,4 mm 1h Amarillo 13/10/2005 

16,8 mm 1h Amarillo 29/10/2005 

19,5 mm 1h Amarillo 22/09/2006 

21,2 mm 1h Amarillo 23/09/2006 

49,7 mm 12h Amarillo 23/09/2006 

17,4 mm 1h Amarillo 21/04/2007 

18 mm 1h Amarillo 01/10/2009 

37,8 mm 1h Naranja 19/10/2012 

131,1 mm 12h Rojo 19/10/2012 

72,6 mm 12h Amarillo 20/10/2012 

19,1 mm 1h Amarillo 18/06/2013 

55,1 mm 12h Amarillo 18/06/2013 

37,1 mm 1h Naranja 11/07/2013 

31,5 mm 1h Naranja 16/08/2013 

41,7 mm 12h Amarillo 16/08/2013 

46,1 mm 1h Naranja 04/10/2013 

89,1 mm 12h Naranja 04/10/2013 

 
Tabla 4: Avisos registrados en la ciudad de Jaca en el período 1990-2014 
Fuente: Elaboración propia. Datos pedido meteorológico privado AEMET (2015) 

 
Como se ha ido viendo en la tabla 4, los fenómenos extremos no han parado de crecer 

en los últimos años y concretamente también aquellos relacionados con 

precipitaciones extremas. Como se puede ver en la figura anterior, casi la mitad de los 

avisos registrados en un período de 25 años, en concreto 10 de 24 en total (41%) han 

sido registrados entre los años 2010 y 2014. De estos diez registrados 4 han sido 
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amarillos, 5 naranjas y 1 rojo. Si se comprueba en el resto de años hasta el año 90 

todos han sido de nivel amarillo. Hay que destacar sobre todo el nivel de aviso rojo 

que se llegó a materializar tras caer 131,1 mm de precipitación en 12h el día 19 de 

octubre de 2012, ese mismo día se correspondió también al aviso naranja que hubo  

de 37,8 mm en 1h como manifiesta la tabla 4. Las precipitaciones de octubre de 2012, 

sobre todo en el norte de la comunidad (zona pirenaica) han sido objeto de estudio 

por parte de diversos autores como forma de evaluar la respuesta hidrológica que se 

dio en los principales cursos fluviales pirenaicos y trabajar en la gestión del riesgo. 

 

El episodio de precipitaciones puede calificarse de extremo, principalmente en la 

cuenca alta del río Aragón, por los elevados volúmenes de precipitación y caudal 

registrados, pero en absoluto puede considerarse excepcional. Hay importante 

antecedentes de precipitaciones intensas en el pirineo aragonés. Como la ciudad de 

Jaca, en Aragón hay numerosos núcleos de población expuestos a las inundaciones 

fluviales. Las intensas precipitaciones acumuladas dieron lugar a importantes crecidas 

en las cuencas del Aragón, Arba, Gállego y Cinca. Los daños generados por la crecida 

de río Aragón fueron el derribo de dos pequeñas casas de huerta aguas debajo de 

Castiello, la erosión del talud de la carretera N-330 y la generación de daños en  

Canfranc, Villanúa y Jaca. (Acín V. et. al. 2012) Dicho esto, un aumento de fenómenos 

extremos en partes de Aragón como la zona pirenaica conlleva un gran aumento del 

riesgo dado la vulnerabilidad de las poblaciones que allí se asientan. 

 

Los datos del municipio de Huesca son los siguientes: 

 

Cantidad de 
precipitación 

Tiempo Nivel de aviso Fecha 

18,3 mm 1h Amarillo 23/05/1990 

27,8 mm 1h Amarillo 15/10/1990 

17 mm 1h Amarillo 22/10/1990 

45,1 mm 12h Amarillo 22/10/1990 

21 mm 1h Amarillo 25/09/1991 

17,9 mm 1h Amarillo 08/08/1992 

21,1 mm 1h Amarillo 09/08/1992 

15,8 mm 1h Amarillo 09/09/1992 

48,1 mm 12h Amarillo 22/09/1992 

16,3 mm 1h Amarillo 28/10/1993 

57,4 mm 12h Amarillo 28/10/1993 

26,2 mm 1h Amarillo 23/09/1994 

92,8 mm 12h Naranja 23/09/1994 

56,8 mm 12h Amarillo 05/12/1996 

28,4 mm 1h Amarillo 28/07/1997 

18,5 mm 1h Amarillo 08/10/2002 

19,4 mm 1h Amarillo 09/10/2003 

41,1 mm 12h Amarillo 20/03/2003 

30,5 mm 1h Naranja 12/10/2003 
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20,2 mm 1h Amarillo 09/10/2003 

31 mm 1h Naranja 07/05/2006 

51,5 mm 1h Naranja 19/07/2006 

60,3 mm 12h Amarillo 19/07/2006 

20,4 mm 1h Amarillo 27/07/2006 

24 mm 1h Amarillo 19/05/2007 

31,2 mm 1h Naranja 06/06/2010 

19,6 mm 1h Amarillo 16/06/2010 

44,6 mm 12h Amarillo 16/06/2010 

53,1 mm  1h Naranja 02/09/2010 

64,8 mm 12h Amarillo 02/09/2010 

25,1 mm 1h Amarillo 09/10/2010 

47,4 mm 12h Amarillo 09/10/2010 

21,5 mm 1h Amarillo 04/07/2012 

28,2 mm 1h Amarillo 29/08/2012 

18,9 mm 1h Amarillo 20/10/2012 

50,7 mm 12h Amarillo 20/10/2012 

32,2 mm 1h Naranja 20/05/2014 

16,4 mm 1h Amarillo 07/09/2014 

 
Tabla 5: Avisos registrados en la ciudad de Huesca en el período 1990-2014 

Fuente: Elaboración propia. Datos pedido meteorológico privado AEMET (2015) 

 
 
En la tabla anterior se observa que un tercio de los avisos registrados se han producido 

en el último lustro de estos 25 años de estudio. Concretamente han sido 13 avisos de 

38 (34%). Además, casi la mitad de los avisos de intensidad naranja se han producido 

en este período. No se han producido avisos rojos. 

 
Los datos del municipio de Sariñena son los siguientes: 

 
Cantidad de 
precipitación 

Tiempo Nivel de aviso Fecha 

18,7 mm 1h Amarillo 30/06/1992 

44,8 mm 12h Amarillo 17/11/1996 

19,7 mm 1h Amarillo 5/12/1996 

57,6 mm 12h Amarillo 5/12/1996 

16,4 mm 1h Amarillo 23/10/2000 

53,4 mm 12h Amarillo 23/10/2000 

29,8 mm 1h Amarillo 08/08/2009 

24 mm 1h Amarillo 15/03/2011 

47,2 mm 12h Amarillo 15/03/2011 

21,8 mm 1h Amarillo 24/09/2011 

47,2 mm 12h Amarillo 29/11/2014 

 
Tabla 6: Avisos registrados en la ciudad de Huesca en el período 1990-2014 

Fuente: Elaboración propia. Datos pedido meteorológico privado AEMET (2015) 
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Un tercio (33%) de los avisos se han producido en los últimos cinco años de este 

período de estudio de 25 años. Es importante destacar la importancia de la aparición 

de estos fenómenos de precipitación extrema en una zona tan árida 

pluviométricamente hablando. 

 

De las tablas 4, 5 y 6 con sus correspondientes tres municipios, Jaca, Huesca y Sariñena 

se concluye: 

o Aumenta el número de avisos en los últimos años del período de estudio. 

o Aumenta la intensidad de los avisos en los últimos años del período de estudio. 

o Hay una correspondencia entre un aumento de los eventos extremos de 

precipitación a medida que avanzamos en el presente siglo y los años son más 

cálidos. 

 

En la región mediterránea de Europa, el quinto informe de evaluación del IPCC 

(AR5) vaticina un aumento de los extremos relacionados con las precipitaciones de 

origen tormentoso. Como se ve en el mapa siguiente Aragón es una de las 

comunidades autónomas de España con más actividad tormentosa, es decir, con un 

mayor número de días al año con tormenta.  

 

 
 

Figura 34: Número de días de tormenta al año en España 
Fuente: González (2006) – Datos AEMET y Stormwatch (meteored) 
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Especialmente tormentosa es la zona pirenaica y también el sistema ibérico, 

especialmente la sierra de Gúdar turolense y demás sierras próximos al mar 

Mediterráneo. La cuenca del Ebro y el sur de Huesca como la zona de Monegros están 

entre las zonas menos tormentosas, sin embargo, están por encima de la media en 

número de tormentas sobre la media española, como se puede ver en la figura 34. 

 

La actividad tormentosa en España sigue un desplazamiento anual del centro de 

máxima actividad desde el mar a la tierra. La actividad ceráunica sigue unas pautas de 

estacionalidad por el territorio de la siguiente manera: 

 

- La actividad comienza débilmente en primavera en las comarcas atlánticas del 

golfo de Cádiz y de Vizcaya y se va extendiendo hacia el interior por los 

sistemas montañosos de la mitad norte y por ambas mesetas. 

- En el inicio del verano llega a Aragón y al cuadrante nordeste peninsular, la 

actividad máxima se centra en los sistemas montañosos de la cuenca del Ebro y 

continúa desplazándose durante el verano hacia el este, hasta que al final de la 

estación, por la captación de energía del Mediterráneo, el máximo se centra 

sobre el mar, frente al delta del Ebro. 

- En el otoño, la actividad ceráunica alcanza su máximo sobre el mar Balear y el 

número de días con fenómenos eléctricos va remitiendo lentamente al mismo 

tiempo que se va enfriando la superficie marítima afectada hasta que, 

avanzado el invierno prácticamente se iguala la actividad marítima atlántica 

con la mediterránea. (Pérez y Zancajo, 2008) 

 

Dicho esto, la estación con mayor actividad tormentosa y por tanto, que presenta un 

mayor riesgo de que se produzcan precipitaciones intensas en Aragón es el verano. 

 

Se ha realizado un pequeño examen de la actividad tormentosa en las tres capitales de 

provincia de la comunidad así como en cada uno de los territorios provinciales. Para 

ello se ha contado con datos del IAEST sacados de su web, concretamente del archivo 

“Número de días de tormenta eléctrica por provincia y observatorios”. Años 2006-

2011. Los años 2006 y 2011 están incompletos así que sólo se ha analizado el número 

de días de los años 2007, 2008, 2009 y 2010. 
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Estudio de actividad tormentosa por territorios provinciales de Aragón 
 

 
 

Figura 35: Número de días de tormenta eléctrica por año en la provincia de Huesca en el 
período 2007-2010 

Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 
 

Figura 36: Número de días de tormenta eléctrica por año en la provincia de Teruel en el 
período 2007-2010 

Fuente: Elaboración propia – Datos IAEST (2015) 
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Figura 37: Número de días de tormenta eléctrica por año en la provincia de Zaragoza 
Fuente: Elaboración propia – Datos IAEST (2015) 

 

 
 
 

Estudio de actividad tormentosa por capitales de provincia de Aragón 

 

 
 

Figura 38: Número de días de tormenta eléctrica por año en la ciudad de Huesca  
(2007-2010) 

Fuente: Elaboración propia -  Datos IAEST (2015) 
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Figura 39: Número  de días de tormenta eléctrica por año en la ciudad de Teruel  

(2007-2010) 
Fuente: Elaboración propia – Datos IAEST (2015) 

 
 

 
Figura 40: Número de días de tormenta eléctrica por año en la ciudad de Zaragoza (2007-2010) 

Fuente: Elaboración propia – Datos IAEST (2015) 
 

 
*Las medias han sido extraídas del documento Climatología de tormentas en España (Jorge 
Gonzalez Márquez) 
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Para finalizar este apartado se concluye lo siguiente de las figuras 35 a la 40 en 

relación con la actividad tormentosa y los eventos hidrometeorológicos extremos en 

Aragón: 

o De los cuatro años de estudio de cada capital de provincia aragonesa (12 años), 

solo en uno se registra un número de días de tormenta anual muy por encima 

de los valores normales de la media anual. Concretamente este se sitúa en la 

provincia de Zaragoza, en el año 2007 cuando se produjeron más de 60 días de 

tormenta al año, esto es tres veces la media (20 días). 

o De los cuatro años de estudio de cada territorio provincial de Aragón (12 años) 

solamente en dos se han producido anomalías. Estos han sido la provincia de 

Teruel en los años 2007 y 2008 donde se han producido respectivamente más 

de 160 tormentas al año y casi 240 tormentas al año (la media está en 80). 

o En ningún caso se ha producido en los años estudiados, ninguna anomalía de 

tormentas a la baja, por el contrario, si se han producido anomalías, ha sido al 

alza. 

o Los resultados son de una validez escasa pues no se analiza un número alto de 

años y esto es debido por la poca información pública existente que se ha 

encontrado. 

 
 

5.6 Las técnicas de reducción de escala (downscaling) 
 

Hasta ahora se han utilizado modelos globales que daban un patrón de las pautas 

de precipitación a escala planetaria y se ha podido estudiar de una manera efectiva lo 

que ocurrirá en este siglo en el continente europeo. Sin embargo, si profundizamos en 

un territorio concreto, es decir, si disminuimos la escala de estudio, por ejemplo, 

hacemos referencia a Aragón serán necesarias la utilización de otras técnicas que 

produzcan datos de predicción más concretos y detallados ya que obviamente la 

utilización de los anteriores modelos no sirve para el estudio a largo plazo de un 

territorio concreto localizado. Según el IPCC en su tercer informe del año 2001, los 

modelos regionales del clima (en adelante, RCM) son considerados como la técnica 

más prometedora para realizar proyecciones realistas de cambio climático a escala 

regional. (Oficina Española de Cambio Climático y Universidad de Castilla La Mancha, 

2005) 

 

Existe una demanda creciente de proyecciones regionalizadas de cambio climático 

consecuencia de los distintos escenarios de emisión a la atmósfera de GEI, para ser 

utilizadas como entradas en modelos de análisis de impactos en ecosistemas y 

sectores económicos y sociales sensibles a las condiciones climáticas. (Petisco de Lara, 

S. E., 2008) 
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Todas estas proyecciones se construyen a partir de la información suministrada por 

modelos climáticos globales que tratan de reproducir el comportamiento del sistema 

climático en función de las concentraciones de gases de efecto invernadero en la 

atmósfera, derivadas de diversos escenarios de emisión. (Petisco de Lara, S. E., 2008) 

 

No obstante, hay que tener en cuenta que la actual resolución de los modelos 

climáticos no es suficientemente fina como para suministrar datos climáticos en alta 

resolución espacial o en puntos geográficos localizados, que en realidad son los que 

interesan en un análisis de impactos. Se hace, pues, necesario emplear técnicas o 

procedimientos que permitan inferir, en base a los datos de baja resolución mejor 

simulados por los modelos climáticos, información localizada de parámetros de interés 

para el analista de impactos. Esto se trata de conseguir mediante las técnicas de 

mejora de resolución o regionalización o downscaling según la nomenclatura inglesa. 

(Petisco de Lara, S. E., 2008) 

 

Existen dos tipos básicos de downscaling: 

o Downscaling estadístico: Se basa en encontrar relaciones empíricas y/o 

estadísticas entre las variables mejor simuladas (presión, geopotencial, 

temperatura o parámetros derivados) en baja resolución por los modelos 

climáticos, y las variables de interés en la zona de estudio. Estas relaciones se 

buscan en una base de datos de referencia observados y después se aplican a 

los datos simulados por los modelos obteniéndose así estimaciones de las 

variables climáticas en la zona de interés, siempre bajo la hipótesis de que las 

relaciones obtenidas siguen manteniéndose válidas.  

 

o Downscaling dinámico: Se basa en el aumento de resolución de los modelos en 

el área donde se sitúan las zonas de estudio. Esto puede hacerse aumentando 

directamente la resolución en dicha área, o bien anidando en el modelo 

climático de baja resolución un modelo de área limitada de alta resolución. La 

aplicación conjunta de ambos procedimientos (dinámico y estadístico) en un 

downscaling dinámico-estadístico puede aprovechar las ventajas de los dos 

tipos de downscaling. (Petisco de Lara, S. E., 2008) 

 

La dificultad para realizar una síntesis global y con carácter comparativo de los 

resultados obtenidos en los diversos análisis y estudios sobre las tendencias recientes 

de las variables climáticas en un territorio como Aragón es evidente. Entre las razones 

que explican este alto esfuerzo destacan la utilización de distintos períodos de 

observación, la variedad de métodos con que se aborda el tratamiento estadístico de 

los datos, la diferente cobertura espacial y la propia complejidad del territorio. Por 

ejemplo, a escala española, no cabe duda que la temperatura ha aumentado 
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notablemente en el último cuarto de siglo, sin embargo, la precipitación no ha 

mostrado un patrón definido en el conjunto del Estado. (Petisco de Lara, S. E., 2008) 

 

Precisamente las irregularidades espaciales y temporales que se aprecian en los 

cambios proyectados en las precipitaciones indican la mayor incertidumbre que 

presentan, si se comparan con los obtenidos para el caso de las temperaturas. Esto se 

debe esencialmente a que la ocurrencia de precipitación en cualquier lugar y momento 

está ligada a procesos físicos que resultan más difíciles de simular correctamente por 

los modelos. Mientras que los procesos que determinan la temperatura del aire junto 

al suelo están más condicionados por la estacionalidad de la radiación solar que llega 

al planeta a lo largo del año, cuyo cálculo se realiza con mucha certidumbre. (OECC y 

UCLM, 2005) 

 

El procedimiento más razonable para reducir la incertidumbre de las proyecciones de 

cambios en las precipitaciones es considerar los resultados proporcionados por un 

conjunto de Modelos AOGCM (del inglés Atmosphere-Ocean General Circulation 

Model) que son los Modelos de Circulación General de la atmósfera. (OECC y UCLM, 

2005) 

 

Aunque los resultados de proyecciones de clima obtenidos con diversos AOGCM 

presentan razonables semejanzas a escala global, cuando se consideran escalas 

regionales las distribuciones de temperatura y, sobre todo, de precipitación muestran 

notables discrepancias. 

 
 

5.7 Proyecciones de precipitación para Aragón hacia final de siglo 
 

Los estudios realizados de cambio climático a escala estatal son una manera 

importante de entender la climatología que va a suceder en la península ibérica como 

consecuencia del cambio climático. Son un espejo importante para conocer las 

predicciones de las variables importantes que cambian a lo largo del tiempo, como 

consecuencia del cambio climático, como la precipitación o la temperatura. Los 

estudios más importantes realizados que se van a tener en cuenta a la hora de evaluar 

las proyecciones en Aragón han sido principalmente dos informes, que se van a tratar 

a continuación. 

 
Según el informe realizado por el ministerio de medio ambiente en el año 2005 

“Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático” 

basado en el AR3 del IPCC del año 2001, las conclusiones más relevantes resumidas de 

manera esquemática se presentan en el siguiente cuadro. Para ello, se ha considerado 

el grado de consenso entre los diversos modelos climáticos disponibles, de manera 
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que la certeza más elevada se asigna a aquellos cambios en los que todos los modelos 

coinciden disminuyendo el grado de certidumbre a medida que lo haga el número de 

modelos coincidentes. La certeza más baja corresponde a cuando solo un grupo 

minoritario de modelos ofrecen resultados similares. (OECC y UCLM, 2005) 

 

 
Figura 41: Cambios climáticos más relevantes proyectados en España 

Fuente: OECC y UCLM (2005) 

 
Como se puede observar, hay una probabilidad alta de que la precipitación acumulada 

anual para cualquier escenario de emisiones a final de siglo sea menor. Sin embargo, la 

probabilidad disminuye a media  cuando se afirma que la mayor reducción de 

precipitación en la Península se proyecta en los meses de primavera en ambos 

escenarios de emisiones. Además, muy pocos modelos coinciden en que los cambios 

de precipitación tiendan a ser más significativas en el escenario de emisiones más 

aceleradas (SRES-A2), presentando esto una probabilidad baja. Hay que contar que en 

este informe en  su publicación (año 2005) las tecnologías de regionalización no eran 

aún muy utilizadas y que en años posteriores se realizan importantes avances para la 

concreción de las predicciones en un territorio mediante estas técnicas.  

 

Por tanto, en la figura 41 se presentan los cambios absolutos proyectados en las 

precipitaciones estacionales a lo largo del siglo con respecto al periodo climatológico 

1960-1990, expresados en mm/día. Para deducir los cambios en la precipitación 

acumulada en cada estación habría que multiplicar los valores en mm/día por el 

número de días de dicho periodo, es decir 90, pues en las simulaciones con modelos 

climáticos los años se consideran con una duración uniforme de 360 días. 
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Figura 42: Proyecciones de cambio de precipitación media (en mm / día), promediadas para 

cada estación del año (DEF invierno, MAM primavera, JJA verano y SON otoño), 

correspondientes a tres periodos del siglo 21: 2010-2040 2040-2070 y 2070-2100, y a dos 

escenarios SRES de emisiones (A2 y B2). Las simulaciones se realizaron con el modelo HadCM3 

y los resultados se tomaron del IPCC-DDC. 

Fuente: OECC y UCL (2005) 

 
Como se observa en la figura 42, el cambio en la precipitación se representa 

igualmente mediante comparaciones promediadas anual y mensualmente para tres 

períodos de 30 años que abarcan desde 2011 hasta 2100. Como en el caso de la 

temperatura, la discusión se restringe al comportamiento de los valores medios tanto 

anuales como mensuales. (Brunet et al., 2009) 

 
Como se observa en la figura 42 el cuadrado nordeste de la península ibérica que 

engloba el territorio aragonés, parte del catalán y navarro, para ambos escenarios de 

emisiones estudiados las precipitaciones disminuyen principalmente en la estación de 

primavera y en período estival y en segunda mitad de siglo. También se contemplan 

bajadas de precipitación en los últimos treinta años del siglo en la estación otoñal. 

Como escenario de mayor emisiones el A2 respecto al B2 hay una relación entre una 

mayor bajada de precipitación con escenarios de más emisiones. En este modelo se 

indica que en los meses invernales prácticamente no hay diferencia de precipitaciones. 
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En el informe siguiente llamado “Generación de Escenarios regionalizados de 

cambio climático en España” como su propio nombre indica, el informe presenta en su 

sección 6 los resultados de las proyecciones regionalizadas (por comunidades 

autónomas) que se generan en el marco de este proyecto. Es muy novedoso este 

trabajo pues realiza las primeras proyecciones de las distintas regiones de España 

sobre la influencia del cambio climático a través de sus parámetros climáticos 

(temperatura y precipitación). 

 

En él se utilizan las técnicas de regionalización por reducción de escala con el método 

estadístico. Se utilizan análogos sinópticos del antiguo Instituto Nacional 

Meteorológico como de la Fundación de Investigación del Clima. Los escenarios de 

emisión SRES utilizados son el A2 y el B2 y para aplicar la técnica de regionalización, a 

diferencia del anterior trabajo este utiliza cuatro modelos de circulación general por 

tanto sus resultados serán mucho más concretos y fiables que el anterior informe. 

Todo lo anterior mencionado se expone en la figura siguiente. 

 

 
Figura 43: Proyecciones regionalizadas con los métodos estadísticos utilizados. Los datos 

diarios de las proyecciones se refieren al período 2011-2100 y el período de control al período 
1961-1990 y a las variables: precipitación, temperatura máxima y temperatura mínima.  

Fuente: Brunet M. et al. (2009) 
 

Los resultados de estos modelos globales asociados a las diferentes metodologías 

empíricas aplicadas y contrastados con el período de control 1961-1990 de las 

estaciones meteorológicas estudiadas ubicadas en territorio aragonés, arroja la 

siguiente gráfica de cambio de precipitación (%) referida al período 2011-2100 en el 

ámbito de la comunidad autónoma de Aragón. 

 
 
 
 
 

Figura 44:  
Cambio de la precipitación (%) en 
Aragón en el horizonte de 2100 

Fuente: Brunet M. et al. (2009) 
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Las proyecciones basadas en el escenario de emisión SRES B2 no muestran 

comportamientos significativamente diferentes en cuanto a estructuras, no así en 

cuanto a valores, de las mostradas para el escenario A2. (Brunet M. et al., 2009). En un 

escenario de mayores emisiones (A2) respecto al escenario (B2) menores emisiones de 

GEI los cambios en precipitación son significativamente mayores en cuanto a 

descensos. Sin embargo, claramente se concluye como la precipitación disminuye en 

incertidumbres más pesimistas en torno a un 20%. Claramente también, se visualiza 

como la precipitación disminuye y en ningún de los dos escenarios de emisión parece 

que aumenten las lluvias hacia final de siglo en la región aragonesa. 

 
 

Pero sin duda, el informe que ofrece un exhaustivo análisis sobre los impactos 

del cambio climático en Aragón es el publicado en diciembre del 2009 titulado 

“Generación de escenarios de cambio climático en Aragón” y que concretará mejor sus 

resultados en el artículo científico publicado en julio 2013 titulado “Climate change 

scenarios and precipitation in Aragón (Spain)” 

 

Los resultados dados, generan algunas dudas en torno a la precipitación. Los métodos 

de reducción de escala (downscaling) generan una incertidumbre asociada a los 

escenarios de precipitación, la cual es común para todos ellos. Esto es debido a la 

dificultad encontrada con la variable precipitación debido a su alta variabilidad 

espacial (diferencia topográfica en el territorio aragonés muy significativa) y 

heterogeneidad temporal. Además, parte de la precipitación causada por estructuras 

atmosféricas de pequeña escala (en el espacio y el tiempo), como pueden ser acciones 

tormentosas, no se puede resolver en la resolución de la MCG, por tanto, el resultado 

de verificación de las estaciones con una mayor actividad convectiva se espera que sea 

mucho más pobre que los de estaciones con menos precipitación convectiva. También 

es posible que un GCM específico podría proporcionar mejores resultados para 

algunas áreas que para otros (por ejemplo, para las estaciones en una ladera de una 

montaña, si eso GCM representa mejor las condiciones atmosféricas provocando 

lluvias en esa pendiente, por ejemplo, sistemas frontales en una cierta latitud). Por 

consiguiente, los resultados de las precipitaciones se deben usar con mucha mayor 

cautela que por ejemplo, los resultados de las temperaturas. 

 

En este informe se aplica una técnica de reducción de escala estadística doble 

(análogo/regresión) la cual es desarrollada por la Fundación para la Investigación del 

Clima. En algunos de estos proyectos, esta metodología se utiliza con otras tecnologías 

de reducción de escala como la dinámica. La comparación de estas, origina una 

excelente verificación de los resultados. (Ribalaygua et al. 2013) 
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Uno de los puntos fuertes de este estudio es el uso de bases de datos meteorológicos 

largas y estandarizados registros meteorológicos, que datan de aproximadamente 50 

años y sumado a ello se le proporcionó 267 estaciones de temperatura y 563 

estaciones de precipitación a partir de la Agencia Española de Meteorología (AEMET) y 

el Gobierno de Aragón. En las figuras siguientes se puede observar los puntos en las 

que están situadas todas ellas además de la clasificación que realiza el estudio sobre la 

ubicación climática que se ubican. 

 
 

Figura 45: Número de estaciones usadas en el estudio 

Fuente: Fundación para la Investigación del Clima (2009) 

 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 46: Ubicación de las estaciones meteorológicas de temperatura (267) y precipitaciones 

(563) utilizado en el estudio, y la zona climática a la que pertenecen. Estaciones de la periferia 

de Aragón se muestran en azul oscuro. 

Fuente: Ribalaygua et al. (2013) 
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En este documento se estudian tres escenarios SRES de emisiones, el B1, A1B y A2. Los 

tres escenarios sugieren un descenso moderado de las precipitaciones a lo largo del 

siglo XXI, especialmente en otoño (en aproximadamente un 9%), seguido por la 

primavera (7%) y en muy pocas cantidades tanto en verano como en invierno (menos 

de 5%). Tal como se comenta, estos descensos no siguen un patrón tan claro como el 

de la temperatura. Tanto la primavera y el otoño, que son las estaciones más húmedas 

de Aragón parece claro que disminuirá en ambas de manera clara. En términos de 

precipitación anual total, las zonas submediterránea norte y continental 

experimentarán mayores disminuciones que en el sur, donde se prevé una disminución 

también pero con una ligera compensación debido a un pequeño aumento en las 

lluvias de verano. (Ribalaygua et al. 2013) En la figura siguiente se visualizan los 

descensos de precipitación según estación del año y escenario de emisiones a lo largo 

del siglo XXI. 

 
Figura 47: Los cambios esperados en las precipitaciones de la temporada del año y para cada 

uno de los escenarios de emisiones de gases de efecto invernadero de tres elegidos. El 
aumento esperado se muestra como una media (Línea) junto con la desviación estándar 

(sombreado en el mismo color). 
Fuente: Ribalaygua et al. (2013) 

 

* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 
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Las simulaciones derivadas de la reducción de escala de los tres escenarios utilizados 

en el proyecto resultado (A1, B1 y A1B) son sorprendentemente bastante similares. 

Todas las simulaciones indican la disminución de las precipitaciones, aunque en 

diferentes magnitudes. Lo curioso de los tres escenarios es su comportamiento de 

manera bastante similar ya que no muestran el cambio en las tendencias que se 

observaron para la temperatura. Este cambio de dirección en la precipitación va 

acorde con los resultados de la validación de la precipitación de los procesos descritos 

anteriormente. (Ribalaygua et al. 2013)  

 

El área central de Aragón en la que se sitúa el valle del Ebro, tendrá variaciones 

generalmente menos significativas en la precipitación. Esto de por sí ya es evidente 

dada la escasa pluviometría existente que encontramos en la zona. Por el contrario, 

este estudio indica que la primavera será mucho más seca que actualmente en la 

región. La parte norte de Aragón (descrita como Transición Mediterráneo) y Áreas 

mediterráneas continentales del Norte podrían sufrir más de disminución de las 

precipitaciones en todas las estaciones, sobre todo en otoño, con un máximo a 12% 

menos de precipitación, seguido por la primavera (aproximadamente 8%) y 

ligeramente menor en verano. No hay ningún cambio claro en invierno. (Ribalaygua et 

al. 2013)   La figura siguiente, explica lo mencionado anteriormente. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 48: Representación geográfica del porcentaje de variación de precipitación en Aragón 
durante el siglo XXI 

Fuente: Ribalaygua et al. (2013) 
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Como se aprecia en la figura 48, los descensos pluviométricos son generalizados en la 

totalidad del territorio de Aragón salvo en ciertas zonas de Teruel. Los mayores 

descensos se dan en la primavera en todo el territorio, probablemente asociados a la 

disminución de frentes atmosféricos que barren la comunidad durante la estación 

debido a un aumento de las condiciones anticiclónicas. Seguidamente, el otoño tendría 

los descensos más acusados, sobre todo al norte de la comunidad (zona pirenaica) y 

muy notablemente en toda la provincia de Huesca y en la comarca de Cinco Villas, en 

la provincia de Zaragoza. Por el contrario, a final de siglo, las precipitaciones 

aumentarían homogéneamente en la provincia turolense en los meses estivales y  

otoñales seguramente debido al tradicional carácter convectivo que tiene la provincia 

referido a las tormentas. Este aumento estaría asociado a más intensos aguaceros 

debido a fenómenos hidrometeorológicos extremos de carácter tormentoso. Con toda 

seguridad, estas estaciones estarán más marcadas por el aumento de la evaporación 

regional marcada por el incremento de la temperatura en el planeta que por la 

presencia de masas de aire húmedas que provengan del océano Atlántico o del 

Mediterráneo. Además, como se percibe en la figura 48, la estación que sufriría menos 

cambios en las precipitaciones sería el invierno que no contemplaría grandes cambios, 

salvo descensos moderados en zonas de la provincia de Teruel. 

 

En la figura 49, se calcula la variación de la precipitación según los climas definidos en 

la figura 46.  Los mayores descensos, de hasta el 12%, se dan en meses como marzo y 

octubre. Únicamente se observan aumentos en meses invernales como diciembre o 

febrero sobre todo en climas del norte de la comunidad, y algún mes estival debido a 

fenómenos tormentosos en la provincia de Teruel. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figura 49: Incrementos esperados en las cantidades de precipitación (inferior) en cada región 
climática de Aragón durante el período que abarca 2040-2070 de la simulación basada en el 

escenario A1B.  
Fuente: Ribalaygua et al. (2013) 
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Los modelos más novedosos realizados a día de hoy, corresponden a los modelos 

hechos por la Agencia Estatal de Meteorología, y corresponden a gráficas 

regionalizadas de todas las comunidades autónomas de España, con los nuevos 

escenarios de emisiones del IPCC presentados el año 2013, es decir las Trayectorias 

Representativas de Concentración (RCP) del informe AR5. Se exponen a continuación 

en las figuras siguientes. 

 
 

Figuras 50: Cambio de la precipitación (%) por el método de regionalización estadística de 
análogos (izquierda) y el método de regionalización estadística de regresión (derecha) 

Fuente: AEMET (2015) 
 

 

* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 

 
Figuras 51: Cambio en precipitaciones intensas (%) por el método de regionalización 

estadística de análogos (izquierda) y el método de regionalización estadística de regresión 
(derecha) 

Fuente: AEMET (2015) 
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* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 

 

 
 Figuras 52: Cambio en duración de períodos secos (días) por el método de 

regionalización estadística de análogos (izquierda) y el método de regionalización estadística 
de regresión (derecha) 

Fuente: AEMET (2015) 

 
* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 

desviación típica en torno al valor medio. 

 
 Figuras 53: Cambio en nº de días de lluvia (días) por el método de regionalización 
estadística de análogos (izquierda) y el método de regionalización estadística de regresión 

(derecha) 
Fuente: AEMET (2015) 



 

68 

 

 
* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 

 
 

La precipitación es una variable de gran interés para el estudio de impactos del cambio 

climático. Sin embargo, su comportamiento estadístico se aleja bastante de la 

distribución normal, especialmente en el caso de las precipitaciones diarias, por lo que 

es preferible la utilización de métodos no basados en relaciones lineales como, por 

ejemplo, los fundamentados en la obtención previa de análogos sinópticos. (Petisco 

de Lara, S. E. 2008) Dicho lo cual, según el anterior autor las gráficas de la izquierda 

presentan una mayor fiabilidad predictiva que las de la derecha. Según Petisco de Lara, 

los modelos estadísticos de regresión (por estar basados en relaciones lineales) 

ofrecen una menor concreción y por tanto mayor incertidumbre. 

 

De las gráficas expuestas, llama la atención el margen de incertidumbre que tienen 

que puede llegar incluso a un ± 10%. En cualquier caso, está incertidumbre puede 

deberse a la influencia de factores locales no completamente controlables 

sinópticamente. (Petisco de Lara, S. E. 2008) 

 

Al margen de la gran desviación típica que desprenden todas las gráficas, sorprende la 

constante tendencia de las proyecciones regionales estadísticas basadas en análogos  

sinópticos (gráficas de la izquierda) sin observar todas un claro aumento o 

disminución. Sin embargo, las gráficas de la derecha que son las proyecciones 

regionales estadísticas basadas en regresión lineal decantan la balanza hacia un 

aumento de los fenómenos meteorológicos extremos (que se agrava con escenarios de 

emisión mayores) y un pequeño descenso del número de días de lluvia. La 

precipitación total anual como el cambio de número de días de periodos secos no 

sufre variaciones al igual que los estadísticos por análogos. AEMET también realizó 

modelos para el informe AR4 y a diferencia del AR5, los hizo con los escenarios SRES 

del año 2000. Para concluir el apartado de resultados, se presentan todos estos 

gráficos elaborados por AEMET y se observa que respecto a las figuras 50, 51, 52 y 53 

no hay prácticamente diferencia en lo referido a variación de precipitación, 

precipitaciones intensas, períodos secos y cambio en número de días de lluvia. 
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Figuras 54: Cambio de la precipitación (%) por el método de regionalización estadística de 
análogos (izquierda) y el método de regionalización estadística de regresión (derecha) 

Fuente: AEMET (2015) 

 
* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 

 

 
 

Figuras 55: Cambio en precipitaciones intensas (%) por el método de regionalización 
estadística de análogos (izquierda) y el método de regionalización estadística de regresión 

(derecha) 
Fuente: AEMET (2015) 

 

* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 
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Figuras 56: Cambio en duración de períodos secos (días) por el método de regionalización 
estadística de análogos (izquierda) y el método de regionalización estadística de regresión 

(derecha) 
Fuente: AEMET (2015) 

 

* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 

 

 
 

Figuras 57: Cambio en nº de días de lluvia (días) por el método de regionalización estadística 
de análogos (izquierda) y el método de regionalización estadística de regresión (derecha) 

Fuente: AEMET (2015) 

 
* Las zonas sombreadas expresan los márgenes de incertidumbre y corresponden a ± una 
desviación típica en torno al valor medio. 
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6. CONCLUSIONES 
 
Tras la exposición de los resultados y la discusión de los mismos, se han obtenido diez 

conclusiones principales que son: 

 

 PRIMERA. La precipitación mundial ha aumentado en promedio debido a una 

mayor tasa de evaporación. Esto no impide que se incrementen las 

desigualdades de precipitación entre territorios como los ya citados norte/sur 

de Europa, o que en dicho continente se produzcan menos días de lluvia y más 

períodos de sequía. 

 

 SEGUNDA. Las predicciones para el presente siglo indican una disminución de 

precipitaciones en el sur de Europa y aumentos en el norte del continente. 

 

 TERCERA. Para el sur del continente no hay una pauta clara de disminución 

dependiendo de qué escenario de emisión se escoja, aunque todo apunta a 

que los escenarios de máximas emisiones darían lugar a las mayores tasas de 

descensos pluviométricos. 

 

 CUARTA. Los eventos extremos de precipitación serán más abundantes, 

especialmente en las regiones extratropicales, como el ecuador o las zonas 

polares (latitudes altas). En Europa se intensificarán sobre todo en latitudes 

septentrionales debido a la alta cantidad de humedad del aire. 

 

 QUINTA. Tras los datos analizados y la bibliografía revisada se concluye que en 

Aragón ha habido una reducción notable de las precipitaciones en el último 

medio siglo, principalmente en los meses de invierno y verano. Las zonas más 

castigadas por estos descensos de cantidad de lluvia han sido puntos del norte 

de la región, sobre todo el pirineo oriental, ciertas serranías de la provincia de 

Teruel y el valle del Ebro. 

 

 SEXTA. Tras los análisis realizados de las últimas décadas en los municipios 

estudiados de Aragón se aprecia un aumento del número e intensidad de los 

eventos extremos de precipitación. 

 

 SÉPTIMA. Los descensos de las precipitaciones se pueden atribuir a la pérdida 

de sistemas frontales procedentes del Atlántico, debido a reforzamientos de las 

condiciones anticiclónicas en estas latitudes. Por el contrario, el aumento de los 

fenómenos de precipitación extremos puede deberse a las mayores tasas de 
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evaporación sobre todo en la región mediterránea, ocasionado por el aumento 

de la temperatura media que se producirá a escala mundial, lo que originará 

tormentas eléctricas que descarguen fuertes aguaceros. 

 

 OCTAVA. Las técnicas de  reducción de escala (downscaling) se han 

consolidado como referentes para realizar proyecciones realistas de cambio 

climático a escala regional, como así lo avala su utilización en multitud de 

informes de estudio sobre el cambio climático. 

 

 NOVENA. Estas técnicas hacen unas predicciones para Aragón hacia final de 

siglo de una primavera mucho más seca. También se prevén unos descensos 

notables en la estación otoñal. Estos descensos estarán marcados por la 

pérdida de frentes atmosféricos que provienen de la región atlántica. La 

estación estival también sufrirá descensos que serán compensados por una 

precipitación ligada a la actividad ceráunica. Mientras tanto, en invierno no se 

contemplan cambios importantes. 

 

 DÉCIMA. Los descensos de precipitación no solo afectarán a los ricos 

ecosistemas naturales y hábitats de Aragón sino que determinarán también la 

cantidad de agua disponible para usos urbanos, industriales y agrícolas sobre 

todo en el valle del Ebro, cuyo recurso es limitado debido a la habitual escasa 

pluviometría y alta evapotranspiración. Dicho esto, se recomienda a las 

administraciones públicas educar ambientalmente a los ciudadanos a hacer un 

eficiente uso del agua así como exigir la implantación de tecnologías que 

favorezcan su ahorro en actividades de un gran uso de este recurso, como las 

agrícolas o las industriales. 
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8. ANEXO  
 

Estaciones meteorológicas analizadas en el período 1955-2005 en las que 
aumenta la línea de tendencia 

 

 

Ariza (Comunidad de Calatayud)                                                    Biel (Cinco Villas) 
 

 
           Cucalón (Jiloca)                                                                   Lécera (Campo de Belchite) 

 
Mequinenza (Bajo Cinca)                                                   Oliete (Andorra) 
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Estaciones meteorológicas analizadas en el período 1955-2005 en las que 
permanece constante la línea de tendencia 

 
Arcos de Salinas (Gúdar-Javalambre)                            Argente (Comunidad de Teruel) 

 
Borja (Campo de Borja)                                                            Bujaraloz (Monegros) 

 
     Calatorao (Valdejalón)                                                                    Canfranc (La Jacetania) 
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Griegos (Sierra de Albarracín)                                     Maella (Bajo Aragón Caspe) 

 
       Mainar (Campo de Daroca)                                        Paniza (Campo de Cariñena) 

 
     Panticosa (Alto Gállego)                                                                      Ricla (Valdejalón) 
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Rubielos de mora (Gúdar-Javalambre)                                   Sabiñanigo (Alto Gállego)  

 
Sallent de Gállego (Alto Gállego)                                           Sástago (Ribera baja del Ebro) 
 

 
Valle de Hecho (La Jacetania)                                                            Villanua (La Jacetania) 
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Estaciones meteorológicas analizadas en el período 1955-2005 en las que 
disminuye la línea de tendencia 

 
          Atea (Campo de Daroca)                                               Ababuj (Comunidad de Teruel) 

 

 
         Albarracín (Sierra de Albarracín)                                               Alcañiz (Bajo Aragón) 

 
        Alcorisa (Bajo Aragón)                                 Almunia de Doña Godina, La (Valdejalón) 
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Alquézar (Somontano de Barbastro)                                          Ayerbe (Hoya de Huesca) 

 
            Azaila (Bajo Martín)                                          Barbastro (Somontano de Barbastro) 

 
 
Berbegal (Somontano de Barbastro)                                   Belver de Cinca (Bajo Cinca) 
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           Bielsa (Sobrarbe)                                                                      Broto (Sobrarbe) 

 
Calatayud (Comunidad de Calatayud)                                      Caspe (Bajo Aragón Caspe) 

 
Castiello de Jaca (La Jacetania)                                   Cella (Comunidad de Teruel) 
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Cetina (Comunidad de Calatayud)                                           Daroca (Campo de Daroca) 

 
 Ejea de los Caballeros (Cinco Villas)                                                   Grañen (Monegros)  

 
            Jaca (La Jacetania)                                                                  Lanaja (Monegros)  
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Luna (Cinco Villas)                                            Marracos (Cinco Villas) 

 
 

Monegrillo (Monegros)                                                 Monreal del campo (Jiloca) 

 
Monterde (Comunidad de Calatayud)                                             Monzón (Cinca medio) 
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Morata de Jalón (Valdejalón)                                   Pedrola (Ribera Alta del Ebro) 

 
    Perdiguera (Monegros)                                         Pina de Ebro (Ribera Baja del Ebro) 

 
       Plan (Sobrarbe)                                                                  Ródenas (Sierra de Albarracín) 
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                     Sádaba (Cinco Villas)                                            Sahún (Ribagorza) 

 
 
               San Esteban de Litera (La Litera)                                Sariñena (Monegros) 

        
       Tamarite de Litera (La Litera)                                           Teruel (Comunidad de Teruel) 
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                      Tornos (Jiloca)                                                             Valderrobres (Matarraña) 

 
 

Villar del Cobo (Sierra de Albarracín)                                        Zuera (Comarca Zaragoza) 

 

 

Estaciones meteorológicas analizadas en el período 1955-2005 sobre la 
evolución de los regímenes de estacionalidad de las precipitaciones 

 

 Albarracín PFE (Sierra de Albarracín) 
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 Alcalá de la Selva (Gúdar-Javalambre) 
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 Alcorisa (Bajo Aragón) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Beceite (Peña Embalse) 
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 Berbegal (Somontano de Barbastro) 

 

 

 

 

 

 

 Boltaña (Sobrarbe) 
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 Borja-ayuntamiento (Campo de Borja) 
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 Canfranc-Los Arañones (La Jacetania) 

 

 

 

 

 

 

 

 Caspe-Forcaballes (Bajo Aragón Caspe) 
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 Ejea de los Caballeros (Cinco Villas) 
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 Jatiel (Bajo Martín) 

 

 

 

 

 

 

 Lanaja (Los Monegros) 
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 Lécera (Campo de Belchite) 

 

 

 

 

 

 



 

95 

 

 

 

 

 Mainar (Campo de Daroca) 

 

 

 

 

 

 

 Mequinenza (Bajo Cinca) 
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 Monflorite-Lascasas (Hoya de Huesca) 
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 Monreal del campo-DGA (Jiloca) 

 

 

 

 

 

 

 Monterde-PFE (Comunidad de Calatayud) 
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 Monzón-silo (Cinca Medio) 
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 Morata de Jalón (Valdejalón) 

 

 

 

 

 

 

 

 Oliete-cueva foradada embalse (Andorra Sierra de Arcos) 
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 Palomar de arroyos (Cuencas mineras) 

 

 

 

 

 

 

 



 

101 

 

 Pina de Ebro-PFE (Ribera Baja del Ebro) 

 

 

 

 

 

 Sabiñanigo (Alto Gállego) 
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 San Blas (Comunidad de Teruel) 
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 San Esteban de Litera (La Litera) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Sesué-central (La Ribagorza) 
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 Tosos (Campo de Cariñena) 
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 Zaragoza-aeropuerto 
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Bibliografía del anexo (datos meteorológicos) 
 
Los datos meteorológicos empleados durante los diferentes análisis que se han hecho 
en el presente TFG provienen de los siguientes lugares: 
 

 Instituto Aragonés de Estadística. Recuperado el 27 de mayo de 2015 en 
http://www.aragon.es/DepartamentosOrganismosPublicos/Institutos/Instituto
AragonesEstadistica/AreasTematicas/14_Medio_Ambiente_Y_Energia/ci.05_Cli
ma_Datos_climatologicos.detalleDepartamento?channelSelected=ea9fa856c66
de310VgnVCM2000002f551bacRCRD 

o “Valores normales de precipitación mensual y anual, por comarcas, 
municipios y estaciones medidoras. Aragón. Períodos 1961-1990 y 
1981-2010”. 

o “Precipitaciones y temperaturas medias mensuales y anuales en las 
estaciones climatológicas seleccionadas en el Atlas Climático de Aragón, 
por estación y año disponible”. 

o “Número de días de tormenta eléctrica por provincia y observatorios. 
Años 2006-2011”. 

 

 Agencia Estatal de Meteorología. Pedidos hechos el 12 de mayo de 2015 y 
recibidos al correo electrónico en formato Excel el 2 y 9 de junio de 2015. 
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