«2s Universidad
1801 Zaragoza

1542

Proyeto Fin de Carrera

Fast Data Transfer based on a
USB3.0 Super Speed Device

Autor:
Jesus Benitez Lorente

Directores:

Dipl.-Ing. (FH) Markus Wohlschlager
Prof. Isidro Urriza Parroqué

Universidad de Zaragoza/EINA
2015

RESUMEN

El objetivo de este proyecto es comprobar si el chip FX3 del microcontrolador FX3 Super
Speed Device puede realizar una transmision de datos sin errores, para poder realizar el
depurado de las senales del monitor AVALON!. Estos datos serdn generados a una tasa
constante de 16 Mbps.

Para comprobarlo se llevaran a cabo varios experimentos en los que se utilizard una FPGA
como generador de senales, el microcontrolador FX3 Super Speed Device como interfaz
entre la FPGA y el ordenador y un disco duro externo donde se guardaran los datos

enviados desde la FPGA.

En el primero de ellos se implementara un contador de 16 bits en la FPGA y se enviaran
los datos al ordenador a través de un USB 3.0 sin ningtin tipo de control sobre el buffer del
DMA lo que producird una gran perdida de datos debido a que el buffer sera sobreescrito
antes de que dé tiempo a mandar los datos al bloque USB. Aunque con este primer exper-
imento no se consigan los objetivos propuestos servira de base al experimento ntimero dos
ya que se aprenderd a programar los diferentes mdédulos del FX3 Super Speed Device, se
comprobara que todos los bloques funcionan correctamente y se desarrollaran los scripts
de Matlab que serviran de punto de partida para el segundo experimento.

En el segundo experimento se enviara desde una FPGA al ordenador a través del FX3
Super Speed Device una senal en diente de sierra. Esta vez se inspeccionara el buffer del
DMA antes de escribir en él, esto se hara utilizando el flag DMAO_Ready que indicard si
el buffer esta preparado para recibir informacion y el lag DMAO_Watermark que avisara
con la antelacion que quiera el usuario de que el buffer se va a llenar, esto permitira enviar
datos al ordenador sabiendo con certeza de que no se perderan datos en el camino debido
al desbordamiento del buffer DMA.

Por ultimo analizando los datos se llegara a la conclusion de que el chip permite llevar a
cabo la transmisién con los requerimientos exigidos y se analizara la influencia de la tasa
de transmision sobre la tasa de error recogiendo muestras durante media hora a diferentes
frecuencias de reloj.

I Monitor médico hacia el que se enfoca este proyecto fin de carrera.
http://www.healthcare.philips.com/main/products/patient_monitoring/products/fetalmaternal_monitors/index.wpd

Indice de contenidos

1 INTRODUCCION
1.1 Koninklijke Philips N.V.o
1.2 Philips Healthcare
1.3 Philips Medizin Systeme Boeblingen GmbH
1.4 Motivacién y objetivos del proyecto
1.5 Esquema de la memoriao

2 USB (Universal Serial Bus)
2.1 Definicidn e e
2.2 Historia
2.3 Velocidad s
2.4 Conectores
2.5 estandar USB 3.0
2.6 jPor qué USB 3.07

3 ELEMENTOS DEL PROYECTO (HARDWARE)
3.1 Esquema
3.2 FPGA . . .
3.3 FX3 SuperSpeed Explorer Kit L.
3.3.1 Diagrama de bloques L
332 CPUblock.
333 GPIFIIblock
3.3.4 Low speed peripheral block
3.3.5 Distributed DMA Controller
336 USBblock
3.4 Cable USB 3.0 e
3.5 Tarjeta PCLUSB 3.0

4 PROGRAMAS UTILIZADOS (SOFTWARE)
4.1 Quartus IT web edition
4.2 ModelSim-Altera 10.1e
4.3 EZ USB Suite(eclipse) IDE oo o
4.4 GPIF IT designer
4.5 USB Control Center
4.6 Visual Studio 2013
4.7 Clear Terminal
4.8 CollectData.exe
4.9 MATLAB

5 EXPERIMENTOS
5.1 Experimento 1. e
51.1 FPGA
5.1.2 FX3 Super Speed device L
5.1.3 MATLAB
5.1.4 Funcionamiento
5.1.5 Conclusiones
5.2 Experimento 2.

11

5.2.1 FPGA s 40
5.2.2 FX3 Super Speed deviceo 44
5.2.3 Visual Studio 2013 51
5.2.4 MATLAB 51
5.2.5 Funcionamientoo 52
6 CONCLUSIONES 58

v

Lista de imagenes

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Avalon FM30 con un transductor de ultrasonidos para fetos y un TOCO
MP con un conector rojo para medir el pulso materno
Conector USB tipo A macho y hembra
Conector USB tipo B macho y hembra
Conector USB tipo Cmacho
Esquema que se utilizard durante los experimentos.
Plataforma de desarrolo FX3 SuperSpeed Explorer Kit
Diagrama de bloques del FX3 SuperSpeed Explorer Kit
Diagrama del CPU block
Diagrama del GPIF IT block
Diagrama del Low speed peripheral block
Diagrama USB block o
Patillaje cable USB 3.0 de tipo Ay B
Tarjeta PCTLUSB 3.0
Configuracion del primer experimento
Diagrama de bloques de la FPGA en el experimento 1.
Maquina de estados del experimento 1,
Simulacién de la FPGA en el experimento 1
Asignacion de pinesen la FPGA oL
Vista de la programacion de los dispositivos de la familia FX3
Interaccién del bloque GPIF II con el exterior
Diagrama de estados GPIF experimento 1
Apariencia del programa EZ USB Suite(eclipse)
Esquema de recoleccion de datos por parte del ejecutable CollectData.exe”
Apariencia del ejecutable CollectData cuando se realiza la transmision a
80 MHz
Resultados del analisis del contador a 80 MHz
Resultados analisis del contador a4 MHz
Configuracion del segundo experimento
Diagrama de bloques de la FPGA en el experimento 2.
Méquina de estados del experimento 2
Primera simulacion experimento 2
Segunda simulaciéon experimento 2.
Asignaciéon de pines en el experimento 2 L.
Configuracion de la matriz 10 del GPIF II experimento 2
Diagrama de estados del GPIF II experimento 2
Apariencia del ejecutable CollectData.exe después de su modificacion
Senales del experimento 21
Senales del experimento 2 IT
Senales del experimento 2 III
Velocidad de transmision a1 MHz
Estadisticas de la transmisiéon a 1 MHz
Representacion senal a 1 MHz
Representacion de la tasa de error respecto a la tasa de transmisiéon

35

1 INTRODUCCION

En este primer capitulo se hablara de la compania en la cual, se ha realizado el proyecto,
Koninklijke Philips N.V., asi como de los productos que se desarrollan en Boeblingen
(Stuttgart, Alemania). Ademds se hablard de la motivacién y objetivos de este proyecto
y para terminar se explicard como se ha estructurado la memoria y se harda un pequeno
resumen de cada capitulo.

1.1 Koninklijke Philips N.V.

Koninklijke Philips N.V., més conocida como Philips es una empresa de electrénica fun-
dada en el ano 1981 en Eindhoven, Paises Bajos por Gerard Philips, su padre Benjamin
y su hermano Anton.

En la actualidad Philips tiene su sede en Amsterdam, Paises Bajos. Su director ejecutivo
es Frans Van Houten. Da trabajo a 115.000 personas aproximadamente, y reporté unas
ventas de 23.300 millones de euros en el ano 2014, teniendo al final unos beneficios de 415
millones de euros.?

Ademads Philips es una empresa que cotiza en la bolsa de Nueva York (NYSE:PHG) y en
la Euronexst de Amsterdam (AEX:PHI).? Su cotizacién actual en bolsa es de 25.02 euros
por accién(06.05.2015, 9:28 horas).*

Sus principales lineas de negocio son:

e Electronica para el hogar, se trata de una division que da trabajo a mas de 16.000
personas y desarrolla productos como maquinillas de afeitar o planchas.

e Alumbrado, es la division més grande de Philips con unos 50.000 empleados y desa-
rrolla productos como bombillas o LEDs.

e Sistemas médicos, se trata de una de las divisiones mas rentables y da trabajo a
méas de 35.000 personas. Desarrolla productos como monitores médicos o aparatos
de resonancia magnética.

Sera en esta divisién donde se desarrollard este proyecto fin de carrera.

Para los préoximos anos se espera una reestructuracion de la empresa, en la cual se fu-
sionaran las divisiones de electrénica para el hogar y sistemas médicos pasando a llamarse
"HealthTech” y el negocio de iluminacién seguird siendo independiente bajo el nombre de

”Lighting Solutions”.?

2http:/ /es.investing.com/equities/philips-kon-income-statement

3http://www.philips.es/about/company /companyprofile.page

4http://www.invertia.com/mercados/bolsa/empresas/philips/portada-rv024phillip

Shttp://www.newscenter.philips.com/main/standard /news/press/2014,/20140923-philips-to-sharpen-strategic-focus-by-
establishing-two-market-leading-companies-in-lighting-solutions-and-in-healthtech.wpd

1.2 Philips Healthcare

Philips Healthcare® es la divisién de productos médicos de Philips, tiene sedes a lo largo
de todo el mundo en méas de 100 paises, ocupando a mas de 37.000 empleados, con unos
ingresos anuales de 9.6 billones de euros.”

Desarrolla productos destinados a la prevencion de enfermedades como aparatos de mamo-
grafia, productos para el diagndstico de enfermedades como sistemas de resonancia magné-
tica o tomagrafia computerizada, asi como maquinas para el tratamiento de enfermedades
como por ejemplo equipos de radiacién oncoldgica y sistemas destinados a la monito-
rizacién de pacientes entre los que cabe destacar monitores para el seguimiento de las
constantes vitales o aparatos de ultrasonidos para la monitorizacion de los fetos.

Este proyecto fin de carrera se realizara en esta division, concretamente en la filial situada
en Boeblingen, Stuttgart, que se dedica al desarrollo y construccion de sistemas médicos
para la monitorizacién tanto de los fetos como de la madre basados en ultrasonidos.®

1.3 Philips Medizin Systeme Boeblingen GmbH

Es una filial de la divisién Philips Healtcare con sede en Boeblingen, localidad situada a
30 km de Stuttgart, Alemania, y da trabajo a unas 800 personas.

En la fabrica se desarrollan y construyen aparatos médicos, en concreto, monitores. En el
departamento OB and Special Measurements se desarrollan los dispositivos para la mo-
nitorizacién de mujeres en estado de gestacion y fetos. Todo esto se hara con el monitor
AVALON?, el cual, a través de pulsos de ultrasonidos emitidos por tranductores situados
en el vientre materno es capaz de medir el ritmo cardiaco de hasta dos fetos al mismo
tiempo (gemelos/mellizos), asi como el pulso materno y la presién intrauterina entre otros.
Estos parametros seran visibles en un display téctil, teniendo cada uno un color diferente
para poder diferenciarlos con claridad, asi por ejemplo el color naranja se utilizara para el
pulso de los fetos, el verde para mostrar la presion intrauterina y el azul claro mostrara el
pulso marterno, también existe la posibilidad de imprimir los resultados en papel a modo
de cardiograma.

Existen tambien versiones sin cables, como por ejemplo el AVALON CL,'° Este moni-
tor tienen la gran ventaja de permitir a la mujer una gran movilidad, reduciendo el estrés
preparto, mientras se toman constantes vitales tanto del feto/s como suyas propias (pulso
y contracciones). Ademads puede ser sumergido durante al menos 5 horas, lo que facilita la
vida al paciente que recibe una monitorizacién continuada. Este tipo de monitorizacién
se utiliza para mujeres que han tenido complicaciones durante el embarazo o que han
recibido la epidural, mientras esperan la hora del alumbramiento en el hospital.

Shttp://www.philips.es/healthcare

"http:/ /www.philips.es/healthcare-about /philips

8http://www.philips.es/healthcare-solutions/mother-and-child-care/fetal-maternal-monitoring

9http://www.healthcare.philips.com/main/products/patient_monitoring/products/fetalmaternal_monitors/index.wpd
10http:/ /www.healthcare.philips.com/main/products/patient_monitoring/products/Avalon_CL/

Imagen 1: Avalon FM30 con un transductor de ultrasonidos para fetos y un TOCO MP con un conector
rojo para medir el pulso materno

1.4 Motivacion y objetivos del proyecto

Electronics fetal monitors o Cardio-toco-Graphs se definen como instrumentos para la
medida y visualizaciéon de mas de un parametro fisiolégico, como por ejemplo, el ritmo
cardiaco o la actividad intrauterina.

Los parametros vitales tanto del feto como de la madre son recogidos por transductores
que se situaran en el vientre materno, estos parametros seran procesados por los trans-
ductores y enviados al monitor que esta equipado con un display téactil y una impresora
térmica para la representacion de los mismos. Los datos seran enviados utilizando un
protocolo de comunicacién CAN a través de un bus. Este CAN bus trabaja con una
velocidad de transmisién de 500KBit/s, lo que permite la transmisiéon de dos canales de
16 bits a una frecuencia de muestreo de 3 kHz por sensor.

Las nuevas mejoras planeadas para el futuro requieren un incremento drastico en la ca-
pacidad de transmisiéon de datos, siendo el minimo requerido 1 mega sample con una
resoluciéon de 16 bits por segundo, y eso estd muy lejos de la capacidad que proporciona

el CAN bus.

Por tanto el objetivo de este proyecto es investigar si el chip FX3, desarrollado por ”Cy-
press Semiconductor” se adapta a los requerimientos establecidos. Estos requirimientos
consistirdn en una comunicacién continuada y sin errores a 16 Mbits/s durante varios
minutos.

1.5 Esquema de la memoria

En un primer momento se explicaran las diferentes tecnologias utilizadas para la comu-
nicacion entre el ordenador y el FX3 Super Speed Device, luego se pasara a presentar
tanto el software como el hardware utilizados, y una vez introducidos todos los elementos
empleados se dara una descripcién detallada de los experimentos realizados para terminar

sacando una serie de conclusiones.
A continuacién se procedera a realizar un breve resumen de cada uno de los capitulos:

En el capitulo USB se hablara de la tecnologia de comunicacién utilizada en este proyecto,
USB proporcionando una deficién, y hablando tanto de su historia como de sus carac-
teristicas.

En el capitulo ELEMENTOS DEL PROYECTO se presentara el hardware utilizado para
llevar a cabo este proyecto, estos elementos seran:

e FPGA.

e X3 Super Speed Device.
e cable USB 3.0.

e Tarjeta PCI USB 3.0.

En el capitulo PROGRAMAS UTILIZADOS se presentaran los diferentes programas
empleados tanto para la programacion como para el andlisis y la captura de los datos.
Estos programas son:

e Quartus II web Edition.

e ModelSim-Altera 10.1e.

e EZ USB Suite(eclipse) IDE.
e GPIF II designer.

e USB Control Center.

e Visual Studio 2013.

e Clear Terminal.

e MATLAB.

e CollectData.exe.

El capitulo EXPERIMENTOS es el mas importante de todos, ya que es en el cual se
explica lo que se ha llevado a cabo. En el primer experimento se implementara un contador
de 16 bits en la FPGA y se enviaran los datos al ordenador de forma continuada sin
ningun tipo de control. En el segundo experimento se implementard en la FPGA una
senal de diente de sierra, esta senal se enviard al ordenador, pero esta vez si que se
controlardn los buffers a través de una serie de flags para evitar el desbordamiento de
estos con su correspondiente pérdida de datos, ademas se analizara la influencia de la tasa
de transmision sobre la tasa de error.

En el capitulo CONCLUSIONES se sacaran las conclusiones oportunas a la vista de los
datos proporcionados por las diferentes simulaciones que se han llevado a cabo.

2 USB (Universal Serial Bus)

A continuacién se presenta la tecnologia USB, la cual definiremos ademas de hablar de
su historia asi como de sus caracteristicas técnicas poniendo especial énfasis en su dltimo
estandar en el mercado, el USB 3.0.

2.1 Definicién

El USB (Universal Serial Bus) es un bus estandar industrial que define los cables , conec-
tores y protocolos usados en un bus para conectar, comunicar y proveer de alimentacién
eléctrica a ordenadores, periféricos y dispositivos electrénicos. Ha llegado a convertirse
en el estdandar de conexién de periféricos como teclados, impresoras o méviles. '

2.2 Historia

En el ano 1996 un consorcio de empresas formado entre otras por Microsoft, IBM, Intel
o Apple, presentaron la primera especificacion del USB, se trataba del USB 1.0. Esta
especificacion no tenia una gran velocidad, pero esto al principio no era importante ya
que se utilizaba con dispositivos HID(Human Interface Device), como el teclado o el raton.

En 1998 aparecié otro nuevo estandar el USB 1.1, que permitia por ejemplo hacer una
copia de una pelicula de 4 Gbytes en tan s6lo 45 minutos.

Los dispositivos se fueron desarrollando y el usuario demandaba cada vez maéas veloci-
dad y capacidad de transmisién, por tanto aparecio en el ano 2004 un nuevo estandar, el
USB 2.0, que permitia tener un gran ancho de banda y ademas era retrocompatible con el
estandar USB 1.0. A dia de hoy el USB 2.0 sigue siendo el estandar mas utilizado incluso
por delante del nuevo estandar el USB 3.0.

En el ano 2008 apareci6 el estandar USB 3.0 que ofrece entre sus muchas novedades
una gran capacidad de transmisién y una mayor potencia de alimentacion lo que hace que
los dispositivos se puedan recargar mucho mas rapido.

En el ano 2014 fue presentado el nuevo estdandar el USB 3.1, aunque todavia no ha
salido al mercado, promete una velocidad de transmisiéon de 10 Gbps y un nuevo tipo de
conector el tipo C, ademéas presentara la ventaja de tener puertos reversibles.

Mhttp://simson.net/clips/1999/99.Globe.05-20.USB_deserves_more_support+.shtml

2.3 Velocidad
Las velocidad que tienen los diferentes estandares del USB es:
e USB 1.0 = 1.5 Mbits/seg
e USB 1.1 = 12 Mbits/seg
e USB 2.0 = 480 Mbits/seg
e USB 3.0 = 5 Gbits/seg
e USB 3.1 = 10 Gbits/seg

2.4 Conectores
Existe tres tipos de conectores USB:

e Tipo A = Es un conector USB estandar. Se trata de un conector plano que por lo
general se conecta al equipo.

Imagen 2: Conector USB tipo A macho y hembra

e Tipo B = Es un conector cuadrado en la parte inferior y ligeramente inclinado en
la parte superior. Se utiliza para grandes dispositivos como por ejemplo impresoras
0 escaneres.

Imagen 3: Conector USB tipo B macho y hembra

e Tipo C = Aparecerd para el nuevo estandar el USB 3.1 y tendra la gran ventaja
de ser reversible.

~

Imagen 4: Conector USB tipo C macho

2.5 estandar USB 3.0

El estandar USB 3.0 ha sido desarrollado por un conglomerado de empresas entre las que
destacan Intel, Microsoft o Texas Instrument, fue presentado en el ano 2008 y destaca por
las siguientes caracteristicas:

e Permite la transmision de datos a 5 Gbps, esto es 10 veces mas rapido que el antiguo
estandar el USB 2.0.

e Proporciona una corriente de hasta 900 mA, en comparacion con los 500 mA del
antiguo estandar, lo que hace que se pueda cargar los dispositivos mucho mas rapido.

e Aunque aporta mas energia no consume mas, ya que utiliza un protocolo basado en
interrupciones a diferencia de su antecesor que consultaba los dispositivos periodica-
mente.

e Tiene compatibilidad con los estandares USB 2.0 y 1.1.
e Permite el trafico bidireccional.
e Soporta la transmision de imagenes y video en HD.

e Se suele distinguir de los otros estandares porque lleva una pestana azul y muestra
el simbolo SS.

e Tiene la desventaja de que al llevar mas filamentos, el cable es mas grueso y rigido,
como el cable Ethernet.

10

2.6 jPor qué USB 3.07

El objetivo final de este proyecto es hacer una transmision entre una FPGA y el ordenador
con el requerimiento de que se transmitan los datos a una tasa de 16 Mbps, utilizando en
este caso la tecnologia USB.

Dentro de la tecnologia USB hay varios estandares que se han presentado anteriormente,
pero entre todos ellos se ha elegido el ultimo estandar, el USB 3.0, ya que ademas de
que el microcontrolador elegido para realizar la transferencia de datos entre la FPGA y
el ordenador incluye este estandar, el USB 3.0 puede alcanzar una velocidad de 5 Gbps
(625 MBps) en comparacién con el estindar USB 2.0 que tiene una tasa de velocidad de
480 Mbps (60 MBps) y ademds el USB 3.0 incluye un nuevo protocolo basado en inter-
rupciones que permite consumir un 50% menos de energia.

Por tanto se elegira el estandar USB 3.0 ya que ademds de que su ancho de banda es
mucho mayor y permite transmisiones a muchas mas velocidad, los dispositivos que se
alimentan a través de esta tecnologia consumen mucha menos energia.

11

3 ELEMENTOS DEL PROYECTO (HARDWARE)

En este capitulo se introducird al lector en el proyecto fin de carrera presentando el ma-
terial utilizado durante su realizacién y su disposicién durante los experimentos.

3.1 Esquema

Como se ha comentado anteriormente el objetivo del proyecto es investigar si el chip FX3,
desarrollado por ”Cypress Semiconductor” se adapta a los requerimientos establecidos
para la comunicacién entre los sensores y el monitor, para poder capturar esos datos y
enviarlos al ordenador para su depuraciéon. Para ello una senal serd enviada desde una
FPGA hasta el ordenador a través del FX3 Super Speed Device, que estara controlado
por el usuario a través de una consola.

Para ello se dispondra del siguiente esquema:

Datos
e=> [FX3 SUPER | oates IPC CON Datos ?ii‘éiﬁé”éiN
FPGA « SPEED I I INTERFAZ I‘CONEXIONUSB
contral DEVICE USB 3.0 3.0
Envio
Debugging de
' ' comandos
DEBUG
ICONSOLE

Imagen 5: Esquema que se utilizard durante los experimentos

En primer lugar se dispone de una FPGA (Field Programmable Gate Array), una FPGA es
un dispositivo semiconductor que posee bloques légicos interconectados para que puedan
ser programados !2, se utilizard como un generador de datos, se creard una senal que

tenga una frecuencia de 1 MHz, esta senal se enviara a través de los pines de propdsito
general(GPIO).

En segundo lugar se dispondra del FX3 Super Speed Explorer Kit que tendra el chip que
se quiere investigar. Este dispositivo recibird las senales de la FPGA de forma paralela a
través de sus pines GPIO, que son pines de propédsito general que pueden ser controlados
por el usuario en tiempo de ejecucién'® y estos datos serdn enviados al bloque USB 3.0
del que dispone la placa.

2http://www.alegsa.com.ar/Dic/fpga.php
Bhttp:/ /es.wikipedia.org/wiki/GPIO

12

El microcontrolador estara controlado por el usuario a través de una consola. La con-
sola se comunicara con el microcontrolador a través del puerto serie UART, enviando
comandos al procesador del FX3 Super Speed Device, con los cuales se podra iniciar la
transmision o resetear la FPGA entre otros.

Por 1ltimo estos datos serdan recibidos en el ordenador a través de un interfaz que soporte
la tecnologia USB 3.0 y enviados a un disco duro externo con conexiéon USB 3.0 donde
seran guardados en un archivo con extension .bin. Luego estos seran tratados, analizados
y representados con MATLAB para descartar la presencia de errores.

3.2 FPGA

Una FPGA (Field Programmable Gate Array), es un dispositivo semiconductor que posee
bloques 16gicos interconectados para que puedan ser programados.'? La FPGA que se
utilizard durante los experimentos es la 10M08SAE144C8GES fabricada por Altera y
perteneciente a la famila MAX10.1?

Esta FPGA se caracteriza porque:

e Se puede comprar por un precio unitario de 25,56 dolares, aunque se obtiene un
descuento al comprar paquetes de 25, 100 o 500 unidades.

e Dispone de 8.000 elementos logicos.

e Tiene 144 pines.

e de los cuales 101 se consideran pines de proposito general (GPIO).

e El voltaje oscila entre los 2.85 V y los 3.465 V.

e El rango de temperatura de trabajo varia entre los 0 y los 85 grados centigrados.
e Contiene 500 LABs(Logic Array Block)/CLBs(Configuration Logic. Block).

La FPGA se programard utilizando los lenguajes de programacién Verilog y VHDL con
ayuda del programa Quartus II proporcionado por el fabricante.

3.3 FX3 SuperSpeed Explorer Kit

El FX3 Super Speed Explorer Kit es una plataforma de desarrolo que permite controlar
periféricos anadiendo la funcionalidad del USB 3.0 a cualquier sistema.

Para su correcto uso y entendimiento existe un libro llamado SuperSpeed Device by
Example!S escrito por John Hyde, antiguo ingeniero de Intel, que ird guiando al lector a
través de todas las etapas del aprendizaje.

Mhttp:/ /www.alegsa.com.ar/Dic/fpga.php
Bhttp:/ /www.buyaltera.com /scripts/partsearch.dll?Detail&name=544-3037-ND
6http:/ /www.cypress.com/?rID=99917

13

Los elementos mas importantes de este microcontrolador seran:

1.
2.
3.

El chip FX3 en el cual se basa todo este proyecto.
El puerto USB 3.0 a través del cual se mandaran datos a alta velocidad al ordenador.

Un puerto mini USB en el que se conectara un ordenador y servira tanto para realizar
el depurado del programa como para enviar comandos desde el ordenador.

El GPIO a través del cual se recibiran los datos de la FPGA y seran controlados por
el bloque GPIF II.

Interruptor con el cual se podra realizar un reboot del dispositivo.

Interruptor de uso general, que puede ser utilizado entre otras cosas para encender
el LED o para iniciar una nueva transmision.

LED, durante este proyecto sera utilizado para indicar cuando hay una transmisién
en curso.

Imagen 6: Plataforma de desarrolo FX3 SuperSpeed Explorer Kit

3.3.1 Diagrama de bloques

El corazon del FX3 se puede considerar la ”Distributed DMA Controller” que unira a los
diferentes bloques a través de tuberfas (sockets) a una velocidad méxima de 800 MBps.

Los bloques méas importantes de los que dispondrd el FX3 y que se explicaran en las
siguientes secciones son:

e CPU block.
e GPIF II block.

14

e Low speed peripherals block.
e USB block.
e Distributed DMA Controller.

o | Mode Mode Debug

iy i

8= 5 5 g gl eatRi ALt AR
Power ‘, [t nc ceenl w15 | [0 |

| Toten | | ann | [Hamweputl= ||

|_brem | [icacke]ocacu]

< Y
ata
T i

UsB —)
e N, Distributed '
4l 3.0 GPIF Il {efSLK,
T Deics DMA Controller “

Lﬁﬁun_im_;
i
2c |uarT| sPi W—_Lﬂ']’f

=l _ 128 || RAM ||| |
giziﬁ o —:I '_1:‘_‘_—'“

,i_._

=

Low Speed I0s

Imagen 7: Diagrama de bloques del FX3 SuperSpeed Explorer Kit

3.3.2 CPU block

Se trata del bloque que contiene el procesador,'” dispondréd de un procesador ARM9 que
trabajara a una frecuencia de 200 MHz y dispondra de 2 memorias cache de 8 KB cada
una, ademas la senal Clock la podra recibir internamente a través de un cristal de cuarzo
que vibrara a una frecuencia de 19,2 MHz o a través de un reloj externo. También dispone
de un JTAG que servira para la descargar y depuracién de los programas y un contro-
lador de interrupciones estandar PL192'8. Unido a este bloque se tendrdn 3 memorias.
La primera serda una memoria de 32 KB que dispondra del cédigo de arranque para el
dispositivo. Este cédigo se podra descargar en la memoria a través de un USB o a través
de una memoria EEPROM conectada en serie. Para la realizacion del proyecto se cargara
el programa a través de un cable USB 3.0. Ademas dispondra de una memoria de 16 kB
para instrucciones y otra de 8 kB para datos.

El procesador tendrd asignado un VID (Vendor ID) y un PID (Product ID) que seran
reconocidos por el driver CyUSB3.sys, y serviran para que el ordenador pueda reconocer
el dispositivo cuando se conecta.

17SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059
18http:/ /infocenter.arm.com/help/topic/com.arm.doc.ddi0273a/DDI0273.pdf

15

Boot Oplions: Clock Options: ARM Standard Industry
USB,5PI,12C,GPIF 19.2MHz XTAL or Vectored Standard
with fallbacks Choice of 4 Ext. Clks Interrupt Controller JTAG Port

| .L.i_l__ .t.li'.Jl | li'“.l-l :iltt
32KB Boot ROM—‘ Clocks | VIC JTAG

5L | == aam| R |
y | |
16KB ITCM 200 MHz ARM 9 |

8KB DTCM [EKB ICACHE‘ laKB DCACHE
|

Imagen 8: Diagrama del CPU block

Este bloque serd donde se cargara el firmware ya que en él se ejecutara la aplicacion. Serd
el encargado entre otras cosas de configurar e iniciar el resto de los bloques y periféricos
ademas de interpretar los comandos que el usuario mandard desde la consola que llegaran a
través del periférico UART y de controlar la tuberia que ird a través del DMA y conectard
el bloques GPIF II con el bloque USB 3.0 Device.

3.3.3 GPIF II block

Este bloque dispone de una memoria RAM de 8 KB donde se cargara el programa disenado
con el software GPIF II Designer y que controlara el bloque. Este bloque consiste en una
serie de vectores de elementos légicos que tienen que ser programados. Su frecuencia
maxima de funcionamiento es de 100 MHz que podra recibir interna o externamente.

Dispone de 32 lineas de datos y 14 lineas de control ademds de 32 tuberias(sockets) para
comunicarse con otros elementos de la plataforma de desarrollo, que podran funcionar de
una manera independiente unas de otras.

Para programar este bloque se utilizard el programa GPIF II Designer, proporcionado
por Cypress. Este bloque usa la filosofia de programacion de una FPGA y admite hasta
256 estados logicos diferentes.

El bloque serd uno de los mas importantes del FX3 Super Speed Device durante el ex-
perimento, ya que sera el encargado de la comunicacién entre el microcontrolador y la
FPGA, por tanto, habra que prestarle especial atencién.

16

El bloque GPIF (General Programmable Interface) tiene la siguiente forma:'®

(o |
32 Data Lines
5 GPIF Il
Up to 100MHz CLK
Sockets idss =
Soft Configured
State Machine
14 Control Lines
Comparators
GPIF
8KB RAM : | Coulg

Imagen 9: Diagrama del GPIF II block

3.3.4 Low speed peripheral block

Este bloque contendra los periféricos necesarios para las comunicaciones mas lentas,
servird para conectar dispositivos como una EEPROM o para ser utilizado como ”de-
bug console” (consola de depuracién), su diagrama serd:?°

2 Sockets Each
: i}
I 2s |
,‘ Transmitter Only]
o intExt Clocks
T o rirt rrrorrre
SCL SDA RX TX CTSRTS MISOMOSISCKSSN MCLK SD WS CLK

Imagen 10: Diagrama del Low speed peripheral block

De este bloque el periférico mas importante serd el puerto serie UART con el cual se
establecerd la comunicacién entre el procesador y la consola para el envio de comandos y
mensajes de depuracion.

9SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059
20SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059

17

3.3.5 Distributed DMA Controller

Este bloque se puede considerar como el corazon del dispositivo ya que a través de él
discurrirdn todas las tuberias(sockets) que unirdn a los diferentes periféricos y que estos
utilizaran para enviar informacién de un punto a otro. En este proyecto se utilizaran dos
tuberias una que ird desde el GPIF II block pasando por el Distributed DMA Controller
hasta el bloque USB y otra que comunicara el procesador con el periférico UART.

3.3.6 USB block

Este bloque se utilizard para el envio de datos a gran velocidad desde la placa de desar-
rollo hasta el ordenador, asi como de fuente de alimentacion.

El bloque implementa 32 endpoints diferentes a los que se podran conectar cada una de las
32 tuberias disponibles, permitiendo la transmision de datos de 32 conexiones diferentes
al mismo tiempo.

También incluye un bloque denominado EZ-Dtect, que esta controlado por el procesador

y permite detectar la presencia de una carga a través del USB para alimentar a los
periféricos.

Su esquema es:

=)

o

o

a| USB

+
/I—N 5 3.0 39 32
\lSuper_Spe?i = Device | EPs Sockets

G -

- {E (+HS Device

o +HS-0TG)

=

f—

_ Battery Charging
EZ'Dtect Spec 20

OTG_ID + ACA detection

Imagen 11: Diagrama USB block

18

3.4 Cable USB 3.0

El USB que se conectara al ordenador sera de tipo A y el que se conectara al dispositvo
sera de tipo B, se puede observar el color azul tipico del USB 3.0. Estos ademas se
caracterizaran por tener la siguiente forma y patillaje:

"
|—1:|—\:r-|:'—|:|—| b v

4 32 I 4 -3
Imagen 12: Patillaje cable USB 3.0 de tipo A y B
Pin | Nombre | Color cable | Descripciéon

1 VCC Rojo +5V

2 D- Blanco Data-

3 D+ Verde Data+

4 GND Negro Tierra

3.5 Tarjeta PCI USB 3.0

Se utilizara una tarjeta PCI USB 3.0 para recibir los datos enviados desde el FX3 Super
Speed Device en el ordenador. La tarjeta utilizada serd la tarjeta PCI de NEC-Chipsatz,
la cual proporcionard 4 puertos externos USB 3.0.

Imagen 13: Tarjeta PCI USB 3.0

Una vez explicado el Hardware utilizado se pasard a introducir los programas (software)

empleados.

19

4 PROGRAMAS UTILIZADOS (SOFTWARE)

En esta seccién se van a introducir los programas utilizados durante la realizacion de este
proyecto.

Para programar la FPGA se utilizaran los siguiente programas proporcionados por Al-
tera:?!

e Quartus II web Edition = Para escribir el cédigo de los programas en un lenguaje
de descripcién de hardware como por ejemplo VHDL o Verilog.

e ModelSim-Altera 10.1e = Para simular el programa escrito anteriormente con un
lenguaje de descripcién de hardware.

Para la programacion y control de la placa de desarrollo FX3 Super Speed Device se
utilizaran los siguientes programas:

e EZ USB Suite Files = Para escribir los programas.
e GPIF II designer = Para programar el bloque GPIF II.
e USB control center => Para cargar los programas en el dispositivo.

Estos programas son proporcionados por el fabricante de la placa, Cypress. 22

Por daltimo en el ordenador se utilizara:

e Visual Studio 2013 = Con el cual se escribird un programa para recolectar los datos
que van llegando.

e Clear Terminal = Para mandar los comandos al dispositivo FX3 Super Speed.

e CollectData.exe = Con el que se guardarén los datos que nos van llegando en un
archivo .bin.

e MATLAB = Para analizar y representar los datos recibidos.

4.1 Quartus II web edition

Quartus II es un software de diseno de dispositivos logicos programables producido por
Altera. Permite el diseno y anélisis de circuitos 16gicos y disefios en HDL (Hardware De-
scription Language). Quartus II incluye ademds una implementacién de VHDL y Verilog
para la descripcion de hardware, asi como la edicion de circuitos légicos y un simulador
de formas de onda.

La version web que serd la utilizada es una version gratuita proporcionada por Altera,
con ella, se puede trabajar con algunas familias de dispositivos como la familia Cyclone o
la familia MAX, cabe destacar la MAX 10% que se utilizard durante los experimentos.

2Ihttps://www.altera.com/
22http://www.cypress.com/
23https://www.altera.com/products/fpga/max-series/max-10/overview.html

20

4.2 ModelSim-Altera 10.1e

Programa que sirve para la simulacién de lenguajes de descripcién de hardware como
por ejemplo VHDL o Verilog. Se puede utilizar de forma independiente o junto con el
programa Quartus II web Edition.

4.3 EZ USB Suite(eclipse) IDE

EZ USB Suite es un programa con el cual se pueden importar proyectos ya realizados,
editarlos y compilarlos, asi como realizar proyectos propios. El Software trabaja bajo un
entorno de tiempo de ejecucién de Java (JRE), el cual permite la ejecucion de programas
en Java.

4.4 GPIF II designer

Se trata de un programa gréafico que permite la configuracion de la interfaz GPIF II del
controlador EZ-USB FX3 USB 3.0.

El programa permite la creacién de diferentes estados logicos, la configuracién de los
saltos entre estados asi como la asignacién de los pines del dispositivo. Ademas permite
la simulacion del diagrama de estados disenado especificando las diferentes transiciones y
tiempos.

4.5 USB Control Center
También es un programa administrado por Cypress que sirve entre otras cosas para:

e Cargar el programa ya compilado en la memoria RAM del dispositivo FX3 Super
Speed Explorer Kit.

e Ver la configuracion del dispositivo, entre otras cosas se podra saber los puntos de
acceso del USB o el tipo de comunicacién (Stream, bulk...).

e Transferencia y recepcién de datos.

4.6 Visual Studio 2013

Es un entorno de programacion para sistemas operativos de Windows. Permite a los de-
sarroladores la creacion de aplicaciones y sitios web. Soporta entre otros lenguajes C++,
C#, Visual Basic .NET, Java, Phyton, PHP...

Sera utilizado para la modificacién de ejecutables .exe que son proporcionados por Cy-
press.

21

4.7 Clear Terminal

Se trata de una aplicacién gratuita desarrollada por ClearConnex?* que corre sobre Win-
dows y permite entre otras cosas una comunicacién serie entre dispositivos(UART).
Sera utilizado para la recepcion de mensajes de depuracion y para el envio de comandos
al dispositivo.

4.8 CollectData.exe

Ejecutable proporcionado por Cypress con el que se irdn guardando los datos que van
llegando al ordenador en un archivo .bin.

4.9 MATLAB

Matlab (MATrix LABoratory) es una herramienta de software matemaético que ofrece un
entorno de desarrollo integrado con un lenguaje de programacién propio.

Se caracteriza por la manipulacion de matrices, la representacién y el analisis de datos,
la implementacién de algoritmos y la comunicaciéon de programas en otro lenguaje de
programacion.?’

Sera utilizado para la manipulacion y el andlisis de datos que seran recibidos en el orde-
nador a través del USB 3.0.

24http://www.clearconnex.com/
25http://de.wikipedia.org/wiki/Matlab

22

5 EXPERIMENTOS

En esta seccion se explicaran los dos experimentos que se han llevado a cabo. El primero
serd un contador de 16 bits en el cual se enviaran los datos desde la FPGA hasta el
ordenador a través del USB 3.0 y servira para verificar que todos los elementos funcio-
nan correctamente y para analizar las dificultades que se nos pueden plantear durante la
transmision. En el segundo experimento se enviara una senal en diente de sierra. Para
que no halla perdida de datos se llevara a cabo control de flujo a través de dos flags de
control que seran DMAQO_Ready y DMAO_Watermark.

5.1 Experimento 1

Este primer experimento se usara para empezar a entender las diferentes partes de la
programaciéon tanto del dispositivo FX3 Super Speed Device como de la FPGA, asi como
para comprobar que todos los bloques del microcontrolador funcionan correctamente y
ver los posibles problemas con los que nos podremos encontar durante la transmision.
Ademas se desarrollardn los scripts de MATLAB para el analisis de datos que serviran de
base para el préximo experimento.

El experimento consistird en un contador de 16 bits que se implementard en la FPGA.
En este experimento la FPGA ejercerd el rol de master y el FX3 Super Speed Device
el de slave, por tanto, ademas de propocionar los datos, la FPGA enviara una senal de-
nominada WR que le indicard al dispositivo cuando estaran los datos preparados para su
lectura en los pines GPIO.

El bloque GPIF II (slave) del microcontrolador recibira los datos y los enviara al bloque
USB 3.0 a través de una tuberia que ira por el bloque ”Distributed DMA Controller”,
ademds también se encargara de enviarle a la FPGA una sefial denominada Reset para
indicarle que tiene que reiniciar el contador, mientras esta senal este activa (Reset=1) el
contador no funcionara. Esta senal estard controlada por el usuario y para cambiar su
valor actual sera necesario enviar el comando Reset a través de la consola al FX3 Super
Speed Device.

El bloque USB 3.0 enviara los datos al ordenador, donde tras poner en funcionamiento
el ejecutable CollectData.exe proporcionado por Cypress los datos seran recibidos en la
tarjeta PCI USB 3.0 y guardados en un archivo .bin en un disco duro externo con conexién
USB 3.0.

Este archivo .bin donde se encuentran los datos se analizarda con MATLAB, que pro-
porcionara el nimero de datos leidos, el nimero de errores y la proporcion de estos con
respecto al nimero de datos leidos.

24

FX3 SUPERSPEED DISCO DURO

FPGA DEVICE PC LXTERNQ
RESET I(RESET
DATOS 7] DATOS DATOS H‘DATOS DATOS 7] DATOS
WR > WR

LED CONTROL cMD
LEDS

CONTROL CMD

CLK

CONSOLA

Imagen 14: Configuracién del primer experimento

Durante el experimento se programaran las siguientes partes:
e La FPGA para lo cual se utilizara:

— Quartus II web Edition para escribir el cédigo.

— ModelSim-Altera 10.1e para simular el programa.
e El FX3 Super Speed Device para lo cual se utilizara:

— GPIF II designer para programar el bloque GPIF II.
— EZ USB Suite(eclipse) para escribir los programas que controlaran el chip FX3.

— USB Control Center para cargar los programas en la RAM del dispositivo.
e MATLAB para el analisis de datos.

5.1.1 FPGA

Lo primero que se hara es el diseno del contador de 16 bits que correra en la FPGA
diferenciando las senales de entrada y salida que pertenceran al bloque de control y al
contador.

Se tendran dos entradas, la pertenciente al reloj que hara que la FPGA funcione, esta
fuente de reloj sera proporcionada por el FX3 Super Speed Device y una senal Reset que
indicara cuando se cuenta o cuando se tienen que reiniciar las variables.

Se dispondra ademas de 3 salidas, WR con la cual indicaré al microcontrolador cuando se
pueden leer los datos que se envian desde la FPGA, LED que servira para que el usuario
sepa en todo momento en que estado del programa se encuentra la FPGA dependiendo
de los LEDs que se enciendan y DATOS[0:15] que contendra al contador.

25

> WR
RESET —1—>{ CONTROL

> LED[0:4]

CONTADOR > DATOS[0:15]

>

CLK

Imagen 15: Diagrama de bloques de la FPGA en el experimento 1

El bloque de control tendra la siguiente maquina de estados que establecera como va a
funcionar el programa:

RESET=0

CONTADOR

RESET=1

Imagen 16: Maquina de estados del experimento 1

En un primer momento se estara en el estado de INICIO, en este estado el contador sera
reseteado y a la FPGA se estaran enviando ceros que serviran para saturar los buffers del
ordenador por tanto la senal WR.n=0 y LED[0:4]="11111" por lo que todos los leds se
encenderan.

Cuando el usuario mande el comando Reset a través de la consola se pasara al estado
CONTADOR, en este estado la FPGA estara contando y enviando esos datos al micro-
controlador por tanto la senal WR_n=0 y LEDI[0:4]="10000" por lo que sélo se encendera
el primer led que indicara al usuario que hay una transmision el la cual se esta enviando

el contador.

26

Una vez que se ha diseniado el contador habra que programarlo, para ello se utilizara el
programa Quartus II web Edition. El lenguaje de programacion de hardware elegido para
este experimento es Verilog.

Una vez escrito el programa, este debera de ser compilado para comprobar que no se han
cometido errores en la sintaxis. Si la compilacién no reporta ningin error el siguiente
paso en el proceso sera el de simular el programa, ya que aunque no se halla cometido
ningun error de sintaxis es posible que el programa no haga exactamente lo que se busca.
Para simular el programa se utilizara el programa ModelSim y este es el resultado:

Jgpif11/RESET

Imagen 17: Simulacién de la FPGA en el experimento 1

Como se puede observar en un primer momento la senal reset esta activa por tanto, se
estard en el estado inicio y sélo se mandaran ceros por lo tanto WR_n=0 y todos los leds
estaran encendidos, cuando se reciba la senal reset=0 se pasara al estado contador por lo
que la FPGA activara el contador, WR_n=0 y sdélo se encedera el primer led.

Escrito y simulado el codigo el siguiente paso es realizar la asignacion de pines de la
FPGA, en la cual se tendran 16 pines que se asignaran a la salida del contador, 1 pin
para la senal de reloj y 7 pines para el control del programa que corresponderan a la senal
WR_n, al Reset y a los leds. Esta asignacién se hara con la tool ”Pin-Planner”.

Node Name Direction Location Ij0 Bank VREF Group Fitter Location 10 Standard
2ut pQ[15] Output PIN_52 3 B3_ND PIN_52 2.5V (default)
Ut p[i4] Output PIN_48 3 B3_ND PIN_48 2.5 (default)
Ut p[i3] Output PIN_47 3 B3_ND PIN_47 2.5 (default)
Ut p[i7) Output PIN_46 3 B3_ND PIN_46 2.5 (default)
Ut po[iy] Output PIN_44 3 B3_ND PIN_44 2.5 (default)
Ut D[] Output PIN_43 3 B3_ND PIN_43 2.5 (default)
2t pole] Output PIN_41 3 B3_ND PIN_41 2.5 (default)
2t pQlE] Output PIN_39 3 B3_ND PIN_39 2.5V (default)
Ut bl Output PIN_70 4 B4_NO PIN_70 2.5V (default)
2t polE] Output PIN_&9 4 B4_NO PIN_59 2.5V (default)
Ut pQ[E] Output PIN_55 4 B4_NO PIN_§5 2.5V (default)
Ut pol4] Output PIN_52 4 B4_NO PIN_52 2.5V (default)
Ut po[E Output PIN_51 4 B4_NO PIN_&1 2.5V (default)
e) Output PIN_&0 3 B3_ND PIN_&0 2.5V (default)
2t pQ[] Output PIN_57 3 B3_ND PIN_57 2.5 (default)
Ut polo] Output PIN_55 3 B3_ND PIN_55 2.5 (default)
In_ pCLE Input PIN_38 3 B3_ND PIN_38 2.5V (default)
In_ RESET Input PIN_5& 4 B4_NO PIN_&& 2.5V (default)
Ut WR_n Output PIN_54 4 B4_NO PIN_54 2.5V (default)
2 leds[4] Output PIN_14 14 B1_ND PIN_14 2.5V (default)
2 leds[3] Output PIN_13 14 B1_ND PIN_13 2.5V (default)
2 leds[Z] Output PIN_12 14 B1_ND PIN_12 2.5V (default)
2 leds[1] Output PIN_11 14 B1_ND PIN_11 2.5V (default)
2 leds[d] Output PIN_10 14 B1_ND PIN_10 2.5V (default)

Imagen 18: Asignacién de pines en la FPGA

27

Por 1ltimo antes de cargar el programa en la FPGA, este se volverd a compilar y se creard
un archivo .sof que es el que se tendra que cargar en la FPGA a través del USB-Blaster.

5.1.2 FX3 Super Speed device

A la hora de programar el dispositivo se tendra que configurar y controlar todos los bloques
y periféricos de los cuales dispone este microcontrolador, para ello, el fabricante Cypress
proporciona un RTOS (Real Time Operating System), un RTOS es Sistema manejador
de recursos que permite una distribucién controlada y ordenada del procesador, memoria,
E/S, entre los diversos programas que compiten por ellos.? El RTOS que se utilizard
durante este proyecto fin de carrera es el Express Logic’s ThreadX?" (version 5.1).

A continuacion se presenta una vista de los diferentes partes a programar en la plataforma
de la familia FX3.

T - “GPIF ||
User Standard C Libraries User ADD“CB’[!OH 1 O | |I
B i
API
RTOS —

DMA Driver and Power Management

Device | Device | Device Device| Device | Device
Driver | Driver | Driver | Driver Driver Driver

GPIO | 12C |UART| SPI | 128 | USB |GPIF I

| Device Driver

i imers
Hardware | Time
|Counters

Imagen 19: Vista de la programacién de los dispositivos de la familia FX3

Como se puede observar se tendran tres niveles diferentes, el primero es el nivel de usuario,
en el cual se podran utilizar las librerias estandar de C, en este nivel se programara el
GPIF y las diferentes funciones que el usuario quiera para su programa. Luego en el se-
gundo nivel se encontrara el sistema operativo de tiempo real (RTOS), en el cual a través
de las funciones API proporcionadas por Cypress se activaran los drivers que serviran
para controlar los bloques y periféricos situados en el bloque tres, el correspondiente al
Hardware.

En primer lugar se procedera a la programacion del bloque GPIF II, este bloque sera
el que se encargue de la comunicacion entre el microcontrolador y la FPGA para ello se
utilizara el programa GPIF II Designer, que proporcionara una interfaz grafica para la
programacion de este bloque.

26http://www.ing.unlp.edu.ar/electrotecnia/procesos/transparencia/SOTR._1.pdf
2Thttp://rtos.com/products/threadx/

28

Se configurard la relacion del GPIF con la FPGA.

Interface Settings: [0 Matrix Configuration
FI3 periphersis used
[12 [125 [F] uart [ot
Interface ype
Master
@ Siave
Communication type
© syncaronous
Asynchranous
Clock settings
® Intemal
External
Active cock edge
® positve

) Negative

Engianness
@ Little endian
) Big endian =
Data bus witdn =
8Bt @168t
)24t © 3281

Address bus usage

[T Address/data bus multiplexed

Number of adcress pins used: 0

Specia functions

Elwe [Eoe DLE
ae [lreack [Core

sigrals

nputs: 1

EZ-USB® FX3™ Application Processor

Outputss 1 DMAfiags: O

Imagen 20: Interaccién del bloque GPIF II con el exterior

Se tendra que seleccionar el tipo de rol que el dispositivo tomara durante la comunicacion
con el exterior, en este caso, el FX3 Super Speed Device sera el slave, tendra una comuni-
cacion sincrona, la fuente del reloj serd interna, se utilizara un flanco de reloj ascendente
y el numero de bits de datos que seran enviados sera 16. Ademads también habra que
seleccionar el nimero de entradas y salidas de control, en este caso seran tres. Dos sali-
das pertencientes a las senales CLK (reloj) y RESET y una entrada WR. Por ultimo se
tendran que seleccionar los pines del GPIO a los cuales corresponderd cada senal.

senal | Pin GPIO Descripcion

CLK GPIO 16 | Se corresponde con la senal clock que alimentard a la FPGA

WR GPIO 26 Senal que le dird al GPIF cuando puede leer
RESET | GPIO 27 Senal que dira a la FPGA cuando reiniciarse

Datos | GPIO 0:15 Bits pertenecientes a los datos

Una vez configurado habrd que programar su relaciéon con el exterior, esto se realizara a
través de un diagrama de estados.

Una vez que se inicie el programa se pasard del primer estado START al estado WAIT
de forma automatica. En el estado WAIT se esperara hasta que llegué la senal WR=0,
en este momento se pasara al estado SAVE donde se leeran los datos que vayan llegando
desde la FPGA, esto es posible gracias a la operacion IN_.DATA que permite la lectura de
datos de los pines GPIO. Se permanecerd en el estado SAVE mientras que la senal WR=0
cuando se reciba WR=1 se volvera al estado WAIT y se seguira en este bucle mientras el
usuario lo desee.

29

START

Imagen 21: Diagrama de estados GPIF experimento 1

Una vez que se halla programado todo habra que compilar el programa para verificar que

no hay errores. Si no ha habido errores se creard un archivo .h(SupplyGpifData.h) que se
compilara mas adelante con el resto de archivos del firmware.

Una vez programado el GPIF II se pasara a configurar y programar todos los periféricos del
dispositivo asi como los diferentes bloques que atin quedan. Para esto se utilizaran tanto

las librerfas estdandar de C como las funciones API y los drivers proporcionados Cypress,
asi como el programa EZ USB Suite(eclipse), el cual tiene la siguiente apariencia:

B C/C=+ - GPIF_Bxamplel/StartUp.c - Cypress EZ USB Suite

jow _Help

G- NF-0 AU

(8 StartUpc
[SupplyGpifata.h

o that GPIF can be

e, CyTrue, CyTrue); Zcache, Deache, DiAcache

. sizeof (do_Config));

21 Problems |] Tasks | B Console 52

(CDT Build Console [GPIF_ Eamplel]

5 Propertes

CoE BB -3--0

berkeley
ext data bss dec he
122772 1684 6328 130780 1fed
*Finished building: GPIF_Examplel.siz’

12:54:51 Build Finished (took 7s.815ms)

& G Bampel

Imagen 22: Apariencia del programa EZ USB Suite(eclipse)

30

Los scripts que se tendran que programar seran:

e Startup.c = Donde se inicializaran los parametros de la CPU y la matriz de entrada
y salidas.

e RunApplication.c = En el cual se mandara inicializar la consola, la FPGA y el
USB ademaés se configuraran los threads y estard la aplicacién que correrd sobre la
CPU.

e DebugConsole.c = Iniciara el periférico UART, creara la tuberia entre el UART
y la CPU ademas de programar el funcionamiento de la consola con los comandos
incluidos.

e StartStopApplication.c = Configurara e iniciara el bloque GPIF II asi como los
puntos de acceso a los bloques GPIF II y USB y las tuberia necesaria para llevar
los datos desde el bloque GPIF II al bloque USB 3.0. También servird para que
la aplicacion destruya las tuberias y los puntos de acceso asi como para limpiar la
memoria.

e USB_Handler.c = Script con el cual se iniciard y configurara el bloque USB.

e USB_Descriptors.c = Donde se encontraran los descriptores necesarios para la con-
figuracion del bloque USB.

e SupplyGpifData.h = Este archivo contendra la informacién necesaria para iniciar
el bloque GPIF II ya que es el archivo que proporciona el programa GPIF II Designer
después de la compilacion.

e Support.c = Contendra algunas rutinas de ayuda como checkstatus().
e Application.h = Dispondra de las contantes utilizadas durante la programacién.

e cyfx_gcc_startup.S = Utilizado para el arranque del dispositivo y proporcionado
por Cypress.

e cyfxtx.c = Utilizado para el arranque del dispositivo y proporcionado por Cypress.

Lo primero que se hara es configurar los relojes por defecto a una frecuencia de 403 MHz
para que el bloque GPIF II pueda funcionar a una frecuencia maxima de 100 MHz, cuando
se halla configurado se iniciaran con la funcién CyU3PDevicelnit() , situado en el archivo
Startup.c.

Ahora se pasard a activar las memorias cache del dispositivo que serdn la Icache, para
instrucciones, la Dcache, para datos y la DMAcache, que guardard informacién sobre las
tuberias. Estas memorias se activaran con la funcién CyUSPDeviceCacheControl() situ-
ada también en el archivo StartUp.c.

El dltimo punto antes de iniciar el RTOS serd configurar la matriz de entrada y salida.
Esta matriz se configurara para enviar 16 bits de datos y para utilizar el periférico UART.
Para iniciar la matriz se utilizard la funcién CyUS3PDevice ConfigurelOMatriz() situada
en Startup.c.

31

Y ahora se iniciara el sistema operativo de tiempo real (RTOS) que servirda para ad-
ministrar las diferentes tareas del microcontrolador. Este sistema operativo se activara
mediante la funcién CyU3PKernelEntry(). A partir de aqui se entrard en un bucle infinito
en el cual estard corriendo el sistema operativo.

El siguiente punto serd inicializar la consola, esto se hara con la funcion InitializeDebug-
Console(). El procesador ird avisando al usuario a través de la consola cuando se van
iniciando los diferentes bloques del microcontrolador. Servira también para controlar el
FX3 Super Speed Device ya que a través de esta consola el usuario podra enviar comandos.
Estos comandos seran:

e pclk = Con el cual se permitira al usuario cambiar la frecuencia de reloj, esto sera
muy util para ver los diferentes efectos que produce en la adquisicion de datos el
cambio en la frecuencia de reloj.

e threads = Esta opcién permitird ver al usuario las diferentes threads que en ese
momento se encuentren activas.

e reset => Con el cual se resetearan todos los parametros de la CPU del dispositivo
FX3 Super Speed.

e fpga = Servira para cambiar el valor de la senal Reset que se enviard a la FPGA.

e gpif = Este comando devolvera en que estado del diagrama del GPIF II se encuen-
tra el programa.

Para configurar la consola y que se pueda comunicar con el procesador, lo primero que
se hard es activar el driver del periférico UART con la funcién CyUSPUartInit(), luego se
configurara la comunicacién UART con una tasa de 115.200 baudios, que es la recomen-
dada por el fabricante, y se activara tanto la recepcién como la transmisién de datos.
Toda esta configuracion del periférico se harda con la funcién CyUSPUartSetConfig().
Luego se conectaran los drivers del debugging del sistema al periférico para que todos
los mensajes de depuracién sean enviados a la consola, esto ultimo se hara con la funcion
CyU3PDebuglnit() y por ultimo se creard una tuberia que vaya desde el periférico UART
hasta el procesador pasando por el DMA con la funcién CyUSPDMAChannelCreate(). A
través de esta tuberia llegaran los comandos enviados por el usuario al procesador y este
enviara los mensajes de depuracion a la consola.

A continuacién se inicializard la FPGA llamando a la funcién InitializeFPGA(). En
esta funcion se configuraran los relojes de los pines GPIO y se iniciardn con la funcion
CyU3PGpiolnit(). También se activara el pin GPIO27 para que se pueda sobreescribir
con la funcién CyU3PDeviceGpioOverride(). Este pin corresponderd a la senial Reset y
se inicializara con el valor 1 para que cuando se inicie el dispositivo la FPGA esté en el
estado INICIO.

32

Ahora se procederd a arrancar la aplicacién pero antes habrd que asignarle una posicién
en memoria y un nombre. La aplicacién se llamard ApplicationThread y se encontrara en
el archivo RunApplication.c.

Lo préximo serd iniciar el USB, para ello se llamara a la funcién InitializeUSB() desde
el archivo RunApplication.c, pero la funcién se encontrard en USB_Handler.c. En esta
funcién se inicializard el driver del USB con la funcién CyU3PUsbStart(). Ademéds se
configuraran los diferentes callbacks con los que se encontrard el periférico durante su
funcionamiento. Estos callbacks describiran el funcionamiento del USB y seran:

e SetupCallback = La cual establecera el comportamiento de la conexiéon USB a
través del Class and Vendor que se reciba. Para este experimento se busca una
aplicacion tipo streaming por lo que el VendorID sera ”04B4h” el ProductID ”00F1h”
y la clase ”00h”.

e EventCallback = Se utilizara para notificar estados importantes en las transiciones
del USB, por ejemplo, cuando se inicia o se para la aplicacion.

e LPMRequestCallback = Para controlar la cantidad de energia que se le pasard al
modulo USB que vendré dado en funcion de la velocidad de transmision con la que
se quiere trabajar.

Una vez configurados los callbacks, se pasard a la configuracion de los descriptores del
USB, esto se hara con la funcién SetUSBDescriptors() que se llamard desde el archivo
USB_Handler pero se encontrara en el archivo USB_Descriptors.c. Una vez configurado
se conectaran los pines y se activard todo el bloque con la funcién CyU3PConnectState().

Una vez configurado el USB se pasard a la funcién StartApplication(). En esta funcién
lo primero que se hara es iniciar y configurar los relojes del bloque GPIF II, estos relojes
utilizaran una fuente interna de reloj y tendra una frecuencia que sera el doble de lo que
se envie a la FPGA. Estos relojes se inicializaran con la funcién CyU3PPibInit().

Ahora se configurara el endpoint que serd el consumidor de datos de la tuberia que ira
desde el bloque GPIF II hasta el Bloque USB 3.0 Device. Esta tuberia se creard con la
funciéon CyUSPDmaChannelCreate(). La tuberia se configurard para que el productor de
datos sea el bloque GPIF II, el consumidor el bloque USB 3.0 Device y para que esta sea
manejada en todo momento por el procesador configurandola en modo AUTO.

Por ultimo se inicializara el bloque GPIF II con la funcién StartGPIF() situada en el
cédigo StartStopApplication.c y se activard la variable gliApplicationactive que permitira
entrar en el bucle infinito en el cual estd la aplicacion desarrollada por el usuario. Esta
aplicacion estara esperando indefinidamente a que halla algun evento, en cuyo caso se
escribira por la consola.

Para el caso en el cual halla que parar la aplicacién, como por ejemplo cuando se cambie
la frecuencia de reloj existente, existe la funcién StopApplication() situada en el archivo

33

StartStopApplication.c. Esta funcién lo primero que haré es detener el bloque GPIF II con
la funcién CyU3SPGpifDiseable(), luego se destruiran las tuberias existentes en el bloque
Distributed DMA controller con la funcién Cyu3PDMAChannelDestroy(), se desactivaran
los puntos de acceso al USB con CyU3PSetEpConfig() y por dltimo se desactivard la vari-
able gliApplicationactive para que la funcién no se pueda ejecutar.

5.1.3 MATLAB

Unos vez realizada la transmision de datos estos se guardaran en un archivo .bin, situado
en un disco duro externo con conectividad USB 3.0. Lo que se hard con MATLAB es
coger ese archivo y analizarlo. Para ello se ha creado el script analisis_final_gpifl.

En este script lo primero que hara es buscar el principio de la secuencia, para ello se leera
una cadena de datos y se guardara en el vector num. Se sabe que mientras el dispositivo
estd en el estado INICIO manda sélo ceros, por tanto, se buscara el primer dato que no
sea cero, este primer dato tendra que ser el nimero uno, por tanto se comprobara y de
no ser asi se aumentara la variable error en una unidad.

Ahora se entrara en un bucle en el cual se terminaran de comprobar los datos que atun
quedan en el vector num, pero a partir de aqui se tendran que ir transformando los datos
que se tienen en el archivo .bin ya que al archivo llegaran los datos en formato hexadeci-
mal en 4 paquetes de 4 bits cada uno y lo que se hard es, transformar estos paquetes en
un nimero decimal de 16 bits, este nimero decimal serd comparado con un contador, si
estos dos nimeros no son iguales se aumentara en una unidad la variable error.

Al terminar este bicle se entrard en otro nuevo del cual sélo se saldra cuando se halla
llegado al final del fichero. En este nuevo bucle se irdn leyendo paquetes de 40.000 bits y
se comprobaran. Una vez que se ha llegado al final del fichero se comunicaran los datos
leidos, el nimero de errores y el porcentaje de error.

5.1.4 Funcionamiento

Una vez que se han programado todos los cdigos, se ha cargado el programa en la FPGA
y se ha conectado esta a la placa de desarrollo y el FX3 Super Speed Device al ordenador
se iniciara el experimento.

Lo primero que se tiene que hacer es abrir el programa ClearTerminal, con el cual la
consola se conectard con el procesador del FX3 Super Speed Device a través del puerto
serie.

Ahora se cargard el programa .img en el FX3 e iran apareciendo unos mensajes en el

34

ClearTerminal a modo de debugging comunicando cuando los bloques se han inicializado
correctamente y dira que estara funcionando para siempre. En este punto el programa se
quedara esperando a que se vayan introduciendo los comandos previamente establecidos:

e pclk
threads

e reset
e fpga
e opif

Una vez que el programa este inicializado y se halla comprobado que el programa funciona
correctamente, se procederd a la lectura de los datos desde el ordenador con el ejecutable
CollectData.exe proporcionado por Cypress.

El FX3 escribe tan
rapido como puede &

H - El pc escribe en los |
1 3 buffers tan rapido N-1
como puede

El pc escribe en el
disco tan rapido
como puede .

Imagen 23: Esquema de recolecciéon de datos por parte del ejecutable CollectData.exe”

35

Lo que hara el ejecutable es coger los datos que le ird proporcionando el microcontrolador
y guardalos tan rapido como le sea posible en los buffers. Cuando empiece a haber datos
en los buffers se irdn recogiendo y se escribiran tan rapido como sea posible en el disco
duro externo.

Se ha decidido guardar el archivo en un disco duro externo con conectividad USB 3.0 y no
en la memoria interna del ordenador, ya que los archivos que se van a tener que guardar
son tan grandes que la memoria del ordenador se saturaria y este dejaria de trabajar de
forma correcta.

Se llevaran a cabo varios experimentos en los que se ird variando la frecuencia inicial del
clock que serd de 80 MHz para ver el efecto que hay en la transmisién de datos al utilizar
diferentes frecuencias de reloj, cabe esperar que cuanto mayor sea la frecuencia mayor sea
el nimero de errores ya que los datos se enviardn a una mayor velocidad.

El primer experimento se realizard a la frecuencia inicial de 80 MHz, lo primero que se
tiene que hacer es llenar los buffers de llegada con ceros para que luego se pueda recono-
cer bien en el archivo el inicio de la secuencia, por tanto estando la FPGA en el estado
RESET se abrira el ejecutable CollectData.exe se elegira la opcion Receive and Discard
Data from the Device con la cual se llenaran los buffers del ordenador de ceros pero no
se guardaran los datos en el archivo .bin y se le dara al botén Start Data Transfer.

Ahora que ya se han inundado los buffers de recepcién de ceros se procedera a realizar la
transmisién de datos para ello en el ejecutable CollectData se elegird donde se guardara el
archivo (rojo) y el tiempo de transmisién de datos (azul) y el programa nos proporcionara
la velocidad de transmisién (negro)

r
J} Receive Data from Fx3 Device w

Devices Found |{[Jx[HB4 - 0x00F 1) Cypress FX3 USBE StreamerExample Devic vl

Chooze a data transfer procedure

() Receive and Discard Data from the Device

I File To Receive F:\PFC\gpif1_80.bin [I
I File Transfer Timeout 1p » Seconds I
I Current Data Transfer Rate 60544.00 KB/=ec I Start Data Transfer

Imagen 24: Apariencia del ejecutable CollectData cuando se realiza la transmisién a 80 MHz

36

Se cogera el archivo gpif 80.bin y se analizarda con MATLAB obteniendo los siguientes
resultados.

>» analisis final gpifl

inicio busqueda del principic de secuencia
principic secuencia encontrado

final de fichero

1495885

numera de errores = 14926

datos conprobados

porcentaje error = 99.513301 >>

Imagen 25: Resultados del analisis del contador a 80 MHz

Como se puede observar el porcentaje de error es grandisimo, haciendo un analisis mas
exaustivo de los datos de forma visual se puede observar que lo que pasa es que estan
llegando bloques del contador de forma desordenada, ademas dentro de esos bloques tam-
bien habra algunos bits de error lo que provocara un porcentaje de error ain mayor.

Ahora se llevard a cabo una nueva simulacién esta vez a una frecuencia de 1 MHz es-
perando mejorar el porcentaje de error.

>» analigis final gpifl

inicio busqueda del principio de secuencia
principio secuencia encontrado

final de fichero

datos comprobados = 24707

numero de errores = 24584

porcentaje error = 99.502165 >

Imagen 26: Resultados analisis del contador a 4 MHz

Como se puede volver a observar el porcentaje de error sigue siendo muy grande, inspec-
cionando de forma visual el archivo se puede observar que es debido esta vez a los saltos
que va pegando el contador, ya que los bloques de nimeros que van llegando lo hacen de
forma ordenada, por tanto los inicos no fallos se encontraran al principio de la secuencia.

5.1.5 Conclusiones

Después de llevar a cabo los experimentos se ha comprobado que se pueden enviar datos
desde la FPGA hasta el ordenador a través del FX3 Super Speed Device, por lo que todos
los bloques del dispositivo funcionan correctamente, pero a la hora de analizar los datos
se ha comprobrado que la tasa de error es muy alto y que cuanto mayor es la tasa de
transmision mayor es la tasa de error como cabia esperar.

Haciendo un anélisis en profundidad de los datos recibidos se llega a la conclusion de que la
tasa de error es tan alta ya que aunque los datos se envien sin errores estos sobreescriben el
buffer del DMA antes de que de tiempo a que este envie los datos por la tuberia al bloque
USB 3.0, por tanto, lo que hace falta es llevar a cabo algtin tipo de control de flujo para
no sobreescribir el buffer. Ese control de flujo se llevara a cabo con dos flags que serdan

37

proporcionados por el propio bloque. Esos flags seran DMAO_Ready y DMAO_Watermark
que avisaran respectivamente de cuando el buffer esta listo para recibir datos y cuando se
va a llenar.

38

5.2 Experimento 2

En este segundo experimento se realizara la transmision de una senal en diente de sierra
de 16 bits que sera implementado en una FPGA. Esta senal se enviard al ordenador a
través del periférico USB 3.0 que proporcionara el FX3 Super Speed Device.

Para que no se sobreescriba el buffer del DMA habra control de flujo, para ello se uti-
lizaran dos flags que seran proporcionados por el bloque Distributed DMA Controlled.
Esos flags seran DMAO_Ready que comunicara cuando el buffer esta listos para recibir
datos y el flag DMAO_Watermark que indicara cuando el buffer esta casi lleno.

El envio de la senal estara controlado por un interruptor que tendra que ser activado por
el usuario para iniciar la transmision de datos, ademas se mandara una senal de control al
FX3 Super Speed para encender un LED durante el envio. Estos datos seran recibidos por
el FX3 que en la comunicacion con la FPGA sera el slave, esto quiere decir que el bloque
GPIF 1II sélo leera los datos cuando reciba la senal WR, ademéas en este experimento se
utilizaran los flags DMA que permitiran escribir en el buffer del DMA sélo cuando este
tenga espacio libre con lo que se conseguira no perder datos, estos flags seran enviados a
la FPGA que los utilizara para cambiar de estado en funcién de si se puede escribir o no.

Cuando halla sitio en el buffer del DMA, el bloque GPIF II leerd y transferira los datos
al bloque USB 3.0 Device a través de una tuberia por el Distributed DMA Controller. El
bloque del USB sera el encargado de enviar la informacion al ordenador.

Esta informacion sera recolectada y guardada en un archivo .bin con la ayuda del eje-
cutable CollectData.exe, este ejectuable tendra que ser modificado para permitir la lectura
de datos durante horas. El fichero creado serd analizado con MATLAB proporcionando
el numero de datos leidos, el nimero de errores y su proporcion respecto a la cantidad de
datos y por tltimo a la vista de los datos proporcionados se extraeran las conclusiones.
Ademas se realizaran pruebas a varias frecuencias para ver la influencia que tiene la tasa
de transmision sobre la probabilidad de error.

Durante el experimento se tendran que programar las siguientes partes:
e La FPGA para lo cual se utilizara:

— Quartus II web Edition para escribir el cédigo.

— ModelSim-Altera 10.1e para simular el programa.
e El FX3 SuperSpeed device para lo cual se dispondra de:

— GPIF II designer para programar el bloque GPIF II.
— EZ USB Suite(eclipse) para escribir los programas que controlaran el chip FX3.
— USB Control Center para cargar los programas en la RAM del dispositivo.

39

e El ordenador donde se utilizaran los siguientes programas para la transmision:

— Visual Studio 2013 para modificar el ejecutable CollectData.exe.
— MATLAB para el analisis de datos.

— CollectData.exe para recolectar los datos.

LEDS
FPGA [}

LEDS

e PUSHBUTTON

FX3 SUPER SPEED DEVICE

RESET RESET
DMAQ_Ready DMAO_Ready
DMAO_Watermark DMAQ_Watermark

DATOS |3 DATOS paTOs =3 paTos

WR p—d wr
LastWRData [r—— Last\WRData
SALIDA_PUSHBUTTON é SALIDA_PUSHBUTTON

l_> DEPURACION CMDs

DISCO DURO
PC EXTERNO

DATOS e DATOS

CLK

L

DEPURACION ~ CMDs
CONSOLA

Imagen 27: Configuracion del segundo experimento

5.2.1 FPGA

En la FPGA se implementarad un programa que permitira el envio de una senal en diente
de sierra con 16 bits. Durante el envio habra control de flujo para no sobreescribir el
buffer del DMA. Se disenara el siguiente diagrama de bloques en la FPGA para hacer

posible el programa.

RESET e

DMAQ_Ready e
DMAO_Watermark =
PUSHBUTTON ==

CLK =

3 WR
2 LastWRData
CONTROL 3 SALIDA_PUSHBUTTON
2 |EDs
GENERADOR SENAL EN

DIENTE DE SIERRA

> DATOS

Imagen 28: Diagrama de bloques de la FPGA en el experimento 2

Se tendran cinco entradas:

1. DMAO_Ready = Avisara cuando el buffer del DMA esté listo para recibir datos.

2. DMAO_Watermark = Indicara cuando el buffer del DMA esté a punto de llenarse.

40

3.
4.
D.

CLK = Senal de reloj.
Pushbutton = Para iniciar o parar la transmisién de datos.

reset = Servird para reinicializar la FPGA

y cinco salidas:

1.

cro W

DQ[15:0] = Senal en diente de sierra

LastWRData = Indicara que se va a enviar el ultimo dato

salida_pushbutton = Controlaa los leds situados en el FX3 Super Speed Device.
WR = Controlara la lectura de datos en el microcontrolador.

LED = Servird para indicar al usuario en que estado se encuentra la FPGA.

Ahora se pasara a disenar el bloque de control que tendra la siguiente maquina de estados:

INICIO

' reset=0
IDLE .

Pushbutton= 1 >ToP

DMAO Ready=1
WAITADMA DRIVERS
PAUSE WRITES

I Pushbutton=0

DMAO Watermark=1

Imagen 29: MAaquina de estados del experimento 2

41

Al encender la FPGA el primer estado al cual se ira serd el estado INICIO, en este estado
no se enviaran datos, por tanto WR=0. Se pasard al siguiente estado el IDLE cuando
reciba la senal reset=0. Para que el usuario sepa que se encuentra en este estado se en-
cendan todos los LEDs.

Al estado IDLE se pasara desde INICIO cuando llegue la senal reset=0. En este estado ya
si que se escribira por tanto WR=1, esto inundara los buffers del ordenador inicialmente
de ceros lo que facilitara posteriormente en el analisis de datos pudiendo encontrar con
mas facilidad el inicio de la frecuencia. Ademas este estado se utilizard también para
reiniciar todas la variables. Para pasar al siguiente estado se tienen que cumplir dos
condiciones, la primera es que el usuario encienda el interruptor para que se pueda iniciar
la transmisién de datos Pushbutton=1, y la segunda es que DMAO_ready=1, este flag
cuando esta activo indicara que hay sitio en el buffer del DMA y por lo tanto se puede
escribir. Para saber que nos encontramos es este estado se encendera el primer LED.

Al estado DRIVERS se podra llegar desde el estado IDLE o WAIT4DMA, en este estado
se permanecera un ciclo antes de pasar al estado WRITES y servird para activar la es-
critura WR=1. En este estado se encendera el LED ntimero dos.

El estado WRITES sera el méas importante en este diagrama ya que sera en donde se
creard la senal en diente de sierra, ademas se enviara la senal al FX3 Super Speed Device
por lo que WR=1, pero no se puede escribir indefinidamente porque sino se sobreescribiria
el buffer del DMA, por tanto se utilizara la senal DMAO_Watermark que indicard cuando
el buffer esta a punto de llenarse, entonces cuando esta senal sea uno se ira al estado
PAUSE. También existe la posibilidad de que sea el usuario el que quiera dejar de man-
dar la senal apagando el interruptor, en este caso se ird al estado STOP. En este estado
se encenderd el LED ntimero tres.

En el estado PAUSE se esperaran 3 ciclos de reloj que es lo que le costarda al flag
DMAO_Ready reaccionar y cambiar su valor para indicar que el buffer no se encuentra
en ese momento preparado para recibir datos, después de esos ciclos se pasard al estado

WAIT4DMA.

En WAIT4DMA se esperara a que el buffer se vacie y se pueda volver a escribir, cuando
el buffer este listos el flag DMAO_Ready se activara, pero para estar seguros de que se
puede acceder al buffer con seguridad y sin perder datos, se esperaran 27 ciclos y luego
se pasard al estado DRIVERS. Ese numero de ciclos se han sacado de las observaciones
de las senales con el osciloscopio durante los experimentos.

Al estado STOP se llegara desde el estado WRITES cuando se desactive el interruptor, en
este estado se escribird un ultimo dato y posteriormente se desactivara la escritura antes
de pasar al estado IDLE donde se esperara a que el usuario vuelva a activar el interruptor
para iniciar la transmision.

42

Una vez que se ha escrito el codigo con el programa Quartus II web Edition, este se tiene
que depurar para verificar que no se han cometido errores en la sintaxis del programa y
habra que simularlo para comprobar que el programa escrito en VHDL se comporta ex-
actamente como se ha disenado. Para llevar a cabo la simulaciéon se utilizara el programa
ModelSim.

La primera simulacién que se llevara a cabo es un proceso normal de escritura, se seguira

la siguiente secuencia de estados: RESET-IDLE-DRIVERS-WRITES-PAUSE.

fus_fx3_max10/PCLK
fus_fx3_max10/RESET
fus_fx3_max10/PushButton
fus_fx3_max10/DMAD_Ready
Jus_f3_max10/OMAD_Watermark
o fus_fx3_max10,/WR
“ . fus_fx3_max10/salida_pushbutton
fus_fi3_max10/LastWRData
B fus_fx3 maxi0fleds
B fus_fx3_max10/0Q

Jus_fi3_max 10/PCLK
Jus_fi3_max10/RESET
Jus_fx3_max 10/PushButton
Jus_fx3_max 10/DMAD_Ready
Jus_fx3_max 10/DMAD_Watermark
“ . fus_fi3_max 10/ WR
“a Jus_fx3_max10/salida_pushbutton
fus_fx3_max 10/LastWRData
. fus_fx3_max10/leds
. Jus_fx3_max10/DQ

Imagen 30: Primera simulacién experimento 2

En la siguiente simulacién se podra observar que pasa al desconectar el interruptor.
Se seguird la siguiente secuencia de estados: RESET-IDLE-DRIVERS-WRITES-STOP-
IDLE.

=
Jus_fx3_max10/PCLK
fus_fx3_max10/RESET
fus_fx3_max 10/PushButton
Jfus_fx3_max 10/DMAD_Ready
Jfus_fx3_max 10/DMAD_Watermark
o fus_fx3_maxi0/WR
“a Jus_fx3_max10/salida_pushbutton
. Jus_fx3_max10/LastWRData
. Jus_fx3_max10/Leds
B Jus_fx3 max10/DQ

Jus_fx3_max10/PCLK
Jus_fx3_max10/RESET
fus_fx3_max 10/PushButton
fus_fx3_max 10/DMAD_Ready
fus_fx3_max 10/DMAD_Watermark
w fus_fx3_max10/WR
“a fus_fx3 max10/salida_pushbutton
“a Jus_fx3_max10/LastWRData
. Jus_fx3_max10fleds
B Jus_fx3_max10/DQ

Imagen 31: Segunda simulacién experimento 2

43

Una vez que se ha simulado y escrito el codigo habra que realizar la asignacion de pines:

Mode Mame Direction Location 10 Bank VREF Group Fitter Location 10 standard
in_ pMAD_Ready Tnput PIN_50 A B3_NO PIN_50 2.5V (default)
in_ pMAD_Watermark Tnput PIN_54 A B3_NO PIN_54 2.5V (default)
20 po[15] Output PIN_52 A B3_NO PIN_52 2.5V (default)
2 po[14] Output PIN_48 A B3_NO PIN_48 2.5V (default)
2 po[13] Output PIN_47 A B3_NO PIN_47 2.5V (default)
2 po[17] Output PIN_46 A B3_NO PIN_46 2.5V (default)
2 B[] Output PIN_44 A B3_NO PIN_44 2.5V (default)
2 po[10] Output PIN_43 A B3_NO PIN_43 2.5V (default)
LU T) Output PIN_41 A B3_NO PIN_41 2.5V (default)
2 po[E] Output PIN_39 A B3_NO PIN_33 2.5V (default)
2 po[7] Output PIN_70 4 B4 _NO PIN_70 2.5V (default)
LU o] 3 Output PIN_ &3 4 B4 _NO PIN_&3 2.5V (default)
2 po[s] Output PIN_65 4 B4 _NO PIN_&5 2.5V (default)
2 po[4] Output PIN 62 4 B4 _NO PIN_52 2.5V (default)
LU T) Output PIN &1 4 B4 _NO PIN_&1 2.5V (default)
LS T) Output PIN_&0 A B3_NO PIN_&0 2.5V (default)
2 B[] Output PIN_57 A B3_NO PIN_57 2.5V (default)
LU o] 3] Output PIN_55 A B3_NO PIN_55 2.5V (default)
U | 2cHVRData Output PIN_58 A B3_NO PIN_58 2.5V (default)
U | eds[4] Output PIN_14 1A B1 MO PIN_14 2.5V (default)
2 | eds[3] Output PIN_13 1A B1 NO PIN_13 2.5V (default)
2 | eds[2] Output PIN_12 1A B1 NO PIN_12 2.5V (default)
U | eds[1] Output PIN_11 1A B1 NO PIN_11 2.5V (default)
2 | eds[i] Output PIN_10 1A B1 NO PIN_10 2.5V (default)
in_ poLk Tnput PIN_38 a B3_NO PIN_38 2.5V (default)
N pushButton Tnput PIN_84 5 BS5_NO PIN_84 2.5V (default)
in_ RESET Tnput PIN_ 66 4 B4 _NO PIN_ 66 2.5V (default)
24 ealida_pushbutton Output PIN_&4 4 B4 MO PIN_64 2.5V (default)
2 wR Output PIN_45 a B3_NO PIN_45 2.5V (default)

Imagen 32: Asignacién de pines en el experimento 2

Por ultimo el programa se volvera a compilar y se creard un archivo .sof que contendra el
programa que se cargara en la FPGA.

5.2.2 FX3 Super Speed device

En esta seccién se procedera a la programacion y configuracion de todos los periféricos
del FX3 Super Speed Device. Recordemos que para la configuraciéon y programacién se
utilizaran dos programas diferentes, para la programacién del bloque GPIF II que se en-
cargara de la comunicacién con la FPGA se utilizara el programa GPIF II Designer y
para la programacién y compilacion del firmware se utilizard el programa Cypress EZ
USB Suite ambos proporcionados por Cypress. Ademas una vez que se tenga el programa
compilado y listo en un archivo .img este se cargara en el microcontrolador con la ayuda
del programa USB Control Center.

Lo primero que se programara sera el bloque GPIF II del FX3 Super Speed Device, este
bloque como ya se ha comentado se encarga de la relacién entre el dispositivo y la FPGA.

44

Se configurara el interface con las siguientes caracteristicas:
e Tipo de interface = Slave.

e Tipo de comunicacién = Sincrona.

e Fuente del Reloj = Interna.

e Flanco de Reloj = Ascendente.

e Codificacion = Little endian.

e Anchura del bus de datos = 16 Bits.

Una vez que se han configurado los ajustes de la interfaz se tendra que indicar el niimero
de entradas, salidas y flags que se utilizaran durante la transmision.

e Entradas
— WR = Esta senal indicara al bloque GPIF II cuando tiene permiso de escritura.
Sera enviada desde la FPGA.

— LastWRData = La senal serd enviada desde la FPGA para indicar que sélo
queda un dato por escribir. Esta senal serd enviada desde el estado WRITES
por la FPGA antes de pasar al estado STOP.

— Datos = Se tratara de una senal de 16 bits, estos bits se enviaran de forma
paralela y contendran la informacién de la senal en diente de sierra que se manda.

e Salidas

— CLK = Senal de reloj que alimentard a la FPGA.
— Reset = Se trata de una senal que se enviara a la FPGA cuando se quiere
reinicializar todas la variables.

e Flags DMA

— DMAO_Ready = Flag que serd enviado a la FPGA e indicara si esta activo que
el buffer del DMA estd para recibir datos.

— DMAO_Watermark = Flag que indicara a la FPGA que el buffer del DMA esté
a punto de llenarse para que cambie de estado y vaya a PAUSE.

Por ultimo se tendra que asignar a cada senial un pin de propédsito general (GPIO):

senal Pin GPIO Descripcion
DataBus GPIO[0:15] | Datos que contendran la informacién de la senal
en diente de sierra
CLK GPIO 16 Senal de reloj que alimentara a la FPGA
WR GPIO 17 Senial que indicard cuando se puede escribir
LastWRData GPIO 19 Indicara cuando se esta llegando al final de la
secuencia

DMAO_Ready GPIO 21 Dira a la FPGA cuando se puede escribir en
el buffer del DMA

DMAO_Watermark | GPIO 22 Indicara a la FPGA que el buffer del DMA
esta a punto de llenarse

45

EZ-USB® FX3™ Application Processor

Imagen 33: Configuracién de la matriz 10 del GPIF II experimento 2

Una vez que se ha configurado el bloque se pasard a su programacion a través de un
diagrama de estados. Cabe recordar que este bloque interactia con la FPGA por lo que
sera un espejo de lo que pasa alli.

Inicialmente se estara en el estado START ya que se trata del estado de inicio del pro-
grama que es requerido siempre por el bloque GPIF II, acto seguido se pasard al estado
WAIT4WR ya que la senal LOGIC_ONE indica que se pase de forma incondicional de un
estado a otro.

En el estado WAIT4DMA se esperara indefinidamente hasta que la FPGA envie la senal
de WR, esto significard que ya se puede empezar a leer los datos que estan llegando a los
pines GPIO del dispositivo, por tanto se pasara al estado READ.

En el estado READ se leeran los datos que van llegando y se enviaran los flags DMAO_Ready
y DMAO_Watermark a la FPGA, el flag DMA(O_Ready se enviard activo a la FPGA cuando
halla sitio para escribir en el buffer del DMA y el lag DMAO_Watermark se enviara unas
ciclos antes de que el buffer del DMA se llene, ese nimero de ciclos sera elegido por el
usuario. Todo esto serd posible gracias a la accion IN_DATA.

46

La senal WR enviada desde la FPGA se encargaréd de controlar la lectura de los datos por
parte del dispositivo, por tanto cuando llegue la senal WR=0 habréa que dejar de leer para
esto se pasard a un estado de pausa denominado WAIT2 o si llega la senal LastWRData
indicando que se va a terminar la escritura se pasard al estado DONE.

En el estado WAIT2 se esperard bien a que vuelva a llegar la senal WR activa indicando
que se puede volver a leer por lo que se ira otra vez al estado READ o a que llegue la
senal LastWRData indicando que se esta al final de la transmisién y que hay que dejar
de leer por lo que se pasara al estado DONE.

En el estado DONE se utilizara la accion COMMIT esta accién servira para enviar toda
la informacion que se tenga almacenada en los buffers del bloque GPIF II al bloque USB
3.0, ya con los buffers liberados se pasara al estado WAIT4DMA donde se esperara hasta
que empiece una nueva comunicacion.

START
|
I
T. . -
WAITAWR DOME
COMMET
—_—
LOGIC_ONE
P
| I |
[/- [
7 [
| //’ |
| - A
* F O VY RLAoLla
R S Tasw
| i
&
i
| 4
| f/ |
a |
II Fy |
READ WaAITZ
IN_DATA pps—— ™ S

Imagen 34: Diagrama de estados del GPIF II experimento 2

47

Una vez disenado el programa, éste se compilard y si no ha habido ningin error en com-
pilacién se creard un archivo .h (gpif4.h) que tendra la configuracién y programacion del
bloque GPIF II que se tendra que volver a compilar mas tarde con todos los archivos del
firmware.

Una vez configurado y programado el bloque GPIF II, es decir, la relacién entre el FX3
Super Speed Device y la FPGA, se pasard a la configuracién de los demés bloques y a
la programacion del firmware para lo cual se utilizaran tanto las funciones API propor-
cionadas por Cypress como las librerfas estdandar de C y el programa EZ USB Suite(eclipse)
IDE.

Los scripts que se tendran que programar son:

e Startup.c = Donde se inicializarén los parametros de la CPU y la matriz de entrada
y salida.

e RunApplication.c = En la cual se mandard inicializar la consola, la FPGA y el
USB ademas se configuraran los threads y estara la aplicacién que correra sobre la
CPU.

e DebugConsole.c = Iniciara el periférico UART, creard la tuberia entre el UART
y la CPU ademas de programar el funcionamiento de la consola con los comandos
incluidos.

e StartStopApplication.c = Configurara e iniciara el bloque GPIF II asi como los
puntos de acceso a los bloques GPIF II y USB y las tuberias necesarias para llevar
los datos de un bloque a otro. También servira para que la aplicacion elimine las
tuberias y los puntos de acceso asi como para limpiar la memoria.

e USB_Handler.c = Script con el cual se iniciard y configurara el bloque USB.

e USB _Descriptors.c = Donde se encontraran los descriptores necesarios para la con-
figuracion del bloque USB.

e gpifd.h = Este archivo contendra la informacion necesaria para iniciar el bloque
GPIF II ya que es el archivo que proporciona el programa GPIF 1I Designer después
de la compilacion.

e Support.c = Contendré algunas rutinas de ayuda como checkstatus().
e Application.h = Dispondra de las constantes utilizadas durante la programacion.

e cyfx_gcc startup.S = Utilizado para el arranque del dispositivo y proporcionado
por Cypress.

e cyfxtx.c = Utilizado para el arranque del dispositivo y proporcionado por el Cy-
press.

48

Lo primero que se hara es configurar los parametros de la CPU en el archivo Startup.c.
Se configurara el reloj para utilizar una fuente interna y una frecuencia de 400 MHz que
permitira utilizar el bloque GPIF II a una frecuencia maxima de 100 MHz. El reloj se
iniciard con la funcién CyUSPDevicelnit().

una vez configurado el reloj se iniciaran la memoria cache del dispositivo, estas memorias
son Icache para instrucciones, Dcache para datos y DMAcache para guardar informacion
sobre el bloque Distributed DMA controller. Estas memorias cache se iniciaran con la
funcion CyU3PDeviceCacheControl().

A continuacién se configurard la matrix de entrada y salida para enviar datos de 16 bits in-
dicando que se va a utilizar el periférico UART, se configurara el pin GPIO26 perteneciente
al reset y el pin GPIO45 que se correspondera con el interruptor conectado a la FPGA,| esta
matriz se configurara con la instruccion CyU3PDevice ConfigurelOMatriz(). Por ultimo se
iniciard el sistema operativo de tiempo real con la funcién CyUSPKernelEntry() situada
en el archivo Startup.c.

El siguiente punto serd inicializar la consola, esto se hara con la funcion InitializeDebug-
Console(). El procesador ird avisando al usuario a través de la consola cuando se van
iniciando los diferentes bloques del microcontrolador. Servira también para controlar el
FX3 Super Speed Device ya que a través de esta consola el usuario podra enviar comandos.
Estos comandos seréan:

e pclk = Con el cual se permitird al usuario cambiar la frecuencia de reloj, esto sera
muy util para ver los diferentes efectos que produce en la adquisicién de datos el
cambio en la frecuencia de reloj.

e threads = Esta opcion permitira ver al usuario las diferentes threads que en ese
momento se encuentren activas.

e reset = Con el cual se resetearan todos los parametros de la CPU del dispositivo
FX3 Super Speed.

e fpga = Servira para cambiar el valor de la senal Reset que se enviard a la FPGA.

e gpif = Este comando devolvera en que estado del diagrama del GPIF II se encuen-
tra el programa.

Para configurar la consola y que se pueda comunicar con el procesador, lo primero que
se hard es activar el driver del periférico UART con la funciéon CyU3PUartInit(), luego se
configurard la comunicacién UART con una tasa de 115.200 baudios, que es la recomen-
dada por el fabricante, y se activara tanto la recepcién como la transmisién de datos.
Toda esta configuracién del periférico se hara con la funcion CyUSPUartSetConfig().

Luego se conectaran los drivers del debugging del sistema al periférico para que todos
los mensajes de depuracién sean enviados a la consola, esto 1ltimo se hara con la funcion
CyU3PDebuglnit() y por ultimo se creara una tuberia que vaya desde el periférico UART

49

hasta el procesador pasando por el DMA con la funciéon CyU3PDMAChannelCreate(). A
través de esta tuberia llegaran los comandos enviados por el usuario al procesador y este
enviara los mensajes de depuracion a la consola.

Lo siguiente sera inicializar los pines que tendran comunicacion directa con la FPGA y
que no estaran controlados por el bloque GPIF II sino que seran leidos y escritos desde
el procesador, para ello se ejecutara la funcién InitializeFPGA() del archivo Runapplica-
tion.c. Lo primero que se hard en la funcion es inicializar los relojes del GPIO, se utilizara
una fuente de reloj interna y se inicializard con la funcién CyU3PGpiolnit().

Ahora se configuraran los pines. El primer pin en ser configurado sera el pin GPIO27
perteneciente al reset y el GPIO54 perteneciente al LED, para que los pines se puedan
sobreescribir se utilizara la funcién CyU3PDeviceGpioQuerride() y se le dara el valor 1
al reset para que la FPGA se inicie en el estado RESET, esto se hard con la funcion
CyU3PGpioSetSimpleConfig() y luego se configurara el pin GPIO26 para que pueda leer
los datos que le llegan con la funcién CyU3SPIOSetSimpleConfig() .

Por ultimo antes de entrar en el bucle infinito perteneciente a la aplicacion habra que
configurar ésta asignandole un nombre, una posicién en memoria e indicando al sistema
operativo que se quiere que la aplicacion se inicie de forma inmediata.

Ahora se pasard a la aplicacién que estard en la funcién ApplicationThread() en el archivo
RunApplication.c. Lo primero que se hard es inicializar el USB invocando a la funcién
Initialize USB(), esta funcién se encontrara en el archivo USB_Handler.c. Lo primero que

se hard es inicializar el driver del médulo USB, esto se hard con la funcién CyUSBStart().

Una vez iniciado se configuraran los callbacks con las funciones CyU3PUsbRegisterSet UpCallback(),
CyU3PUsbRegisterEventCallback() y CyU3PUsbRegisterLPMRequestCallback(). Los call-

backs seran:

e SetupCallback = La cual establecera el comportamiento de la conexién USB a
través del Class and Vendor que se reciba. Para este experimento se busca una
aplicacion tipo streaming por lo que el VendorID sera ”04B4h” el ProductID ”00F1h”
y la clase 700h”.

e EventCallback = Se utilizara para notificar estados importantes en las transiciones
del USB, por ejemplo, cuando se inicia o se para la aplicacion.

e LPMRequestCallback = Para controlar la cantidad de energia que se le pasara al
moédulo USB que vendra dado en funcién de la velocidad de transmisién con la que
se quiere trabajar.

A continuacion se configurard el USB con sus descriptores con la funcién SetUSBDescrip-
tors() invocada desde el archivo USB_Handler.c y contenida en USB _Descriptors.c. Por
ultimo se activard la conexién USB con la funcién CyUSPConnectState() y se ird a la
funcion StartApplication().

50

La funcién Start Application estara en el archivo StartStopApplication.c. En esta funcién
lo primero que se hard es preguntar por la velocidad del USB con CyU3PGetSpeed(), con
esto se sabra con que tipo de USB se va a transmitir, en este caso sera un USB 3.0. Luego
se pasara a iniciar los relojes del GPIF II, que iran al doble de frecuencia que la FPGA.
Estos se iniciardn con la funciéon CyU3PPibInit(). A continuacién se configuraran los
endpoints con CyU3PSetEpConfig() y la tuberia que ird desde el bloque GPIF II hasta
el USB a través del Distributed DMA Controller con CyU3PDMAChannelCreate(). La
tuberia se configurard para que el productor sea el bloque GPIF II, el consumidor el
bloque USB y quien la controle sea el procesador, por tanto estard en modo AUTO. Por
ultimo se ejecutard la funciéon StartGPIF() donde se cargara el programa de este bloque
con CyU3PGpifLoad() y se configurard el flag DMAO_Watermark para que se active dos
ciclos antes de que el buffer se llene con CyU3PGpifSocketConfigure() y se activara la
variable gllsApplicationActive para que se puede ejecutar la aplicacion del usuario.

En esta aplicacion situada en RunApplication.c se comprobara en todo momento el estado
del GPIO45 y se encedera o apagara el LED en funcién de su estado. Cuando se encienda
el LED significard que hay una transmision en marcha.

Una vez que se han escrito todos los cédigos estos se compilaran y se creard un archivo
img que se cargara en el FX3 Super Speed Device a través del USB 3.0 con el programa
USB Control Center.

5.2.3 Visual Studio 2013

Para recolectar los datos que van llegando al ordenador se utilizara el ejecutable Col-
lectData.exe, este ejecutable es proporcionado por Cypress pero tiene una limitacién en
tiempo de 50 segundos y lo que se busca es una transmisién de datos a alta velocidad y
durante mucho tiempo, por ello se utilizara este programa para modificar el ejecutable e
introducir los siguientes tiempos 60, 120, 180, 240, 300, 600, 900, 1.800, 2.700, 3.600 y
432.000 segundos.

5.2.4 MATLAB

Una vez que se halla finalizado la transmisién de datos se dispondra de un archivo .bin
en el cual se tendran todos los datos que se han enviado, pero no se sabe si la transmision
ha estado libre de errores y para ello se utilizara MATLAB, se dispondra de dos scripts
uno llamado analisis_final gpif2.m y otro llamado representar_datos.m

El primer script analisis_final gpif2.m servira para analizar los datos y ver si se tienen
errores, para ello nos ayudaremos de una mascara que se ird comparando con la datos que
se han recibido para ver si ha habido errores en la transmisién.

Lo primero que se hard es abrir el archivo donde se encontraran los datos y se bus-
card el principio de la secuencia, para ello se iran leyendo y guardando los datos en un

51

44 Receive Data from Fx3 Devic

Devices Found [-

Choose a data transfer procedure
(”) Receive and Discard Data from the Device

File To Receive F:\PFCYCollectData. bin B

File Transfer Timeout | EGR

&0

120

180
Current Data Transfer Rate 240

Seconds

Start Data Transfer

Imagen 35: Apariencia del ejecutable CollectData.exe después de su modificacion

vector de 10.000 posiciones, por tanto una vez encontrado el principio de la secuencia se
pasard a otro bucle en el cual se terminara de comprobar el conjunto de datos ya leidos,
en el caso de que se detecte un error la variable error se incrementara en una unidad.

Luego se entrarda en un bucle infinito del cual sélo se saldra con la sentencia break en
el caso que se halla llegado al final de fichero, esto se indicara con la variable final fichero.
En este bucle lo que se hard es rellenar el vector de 10.000 posiciones y compararlo con
la mascara de la que se dispone, en el caso de que halla un error se sumard una unidad a
la variable error.

Por ltimo una vez que se halla salido del btcle el programa devolvera los siguientes
parametros: numero de datos que se han leido, nimero de errores y relacién errores/nimero
de datos leidos.

En el segundo script representar_datos.m se representaran los datos de forma grafica. En
este script lo que se hara es abrir el archivo, luego se encontrara el principio de la secuencia
y se iran leyendo bloques de datos que se guardaran en un vector de 1000 posiciones que
seran transformados a un entero primero a través de la funcion lectura_2bytes y represen-
tados seguidamente a través de la instruccion plot.

5.2.5 Funcionamiento

Una vez que se tienen todos los cédigos programados y compilados ademds de todas las
partes del experimento en funcionamiento, se comprobard en primer lugar que la trans-
mision se hace de manera correcta para ello se analizaran las seniales en el osciloscopio
para luego pasar a realizar diferentes pruebas, estas pruebas consistiran en primer lugar

52

en una transmision de datos a una frecuencia de 1 MHz, velocidad de transmisién en torno
a 2 MBps, para ver que a esa frecuencia se puede establecer una comunicacion sin errores
y por tanto se cumpliran los requerimientos exigidos para el proyecto, una vez hecho se
hara un analisis de la relacion entre la tasa de transmision y la tasa de error.

Se empezara por el analisis de la senales en el osciloscopio para ello primero se recordard
como funciona el programa. En un primer momento se estarad en un estado de stand by
en el cual lo tinico que se hard es escribir ceros para llenar los buffers del ordenador, esto
se hace para facilitar el encontrar el principio de la secuencia, y se estara asi hasta que el
usuario encienda el interruptor (pushbutton=1), en este momento se iniciara la escritura
cuando el buffer del DMA esté listo (DMAO_Ready=1). Se estara escribiendo hasta que
se reciba el flag DMAO_Watermark. Mientras se realiza la escritura la senal WR=1, el
flag DMAO_Ready=1 y el otro flag el DMAO_Watermark=0.

Dos ciclos antes de que el buffer del DMA se halla llenado y no acepte mas datos el
flag DMAO_Watermark se activard, en ese momento se dejarda de escribir (WR=0) y se
iniciara un contador para dejar tiempo a que se vacien el buffer del DMA, al terminar el
contador si el flag DMAQO_Ready=1 se volverd a escribir hasta que casi se vuelvan a llenar
los buffers y se vuelva a recibir el lag DMAO_Watermark y asi se seguira hasta que se
apague el interruptor y se reciba la senal pushbutton=0.

Durante la transmision se tendran las siguientes senales en el osciloscopio en la relacién

FPGA-GPIF II:

Agilent Technologies FRI MAY 08 10:43:56 2015

] [} i 12.006 50008 Stop £ @@ TIL
CLK
RESET
WR
PUSHBUTTON
DMAO_READY

DMAO_WATERMARK

LASTDATA

DQ8

o
EESRESS
1 T 1 1

Autoscale Menu

Undo 43 Channels Acg Mode
Autoscale Displayed] Normal] .

Imagen 36: Senales del experimento 2 1

Haciendo un zoom se pueden observar mejor las transiciones:

93

Como se puede observar mientras se esta realiza la escritura el flag DMAO_Watermark se
activara indicando que el buffer se llenara en dos ciclos de reloj, en eso momento se dejara
de escribir, el flag DMAO_Ready permanecera 4 ciclos mas activo, que se corresponderan
con dos ciclos que aun falta para que se llenen el buffer mas los ciclos que le cueste
reaccionar que seran dos de espera reaccionando al tercero.

CLK
RESET
WR

PUSHBUTTON

DMAO_READY

DMAO_WATERMARK

LASTDATA

DQs8

FRI MAY 08 10:45:09 2015
Stop £ M TIL

Agilent Technologies

] 51.31%

500.08/

.
INIEEIENEININENENEN

i)
Autoscale Menu

Undo

43 Channels
Autoscale

Acq Mode
Displayed

Normal

o~

Imagen 37: Senales del experimento 2 II

En el caso contrario que és en el que se estd esperando a que se vacie el buffer del DMA
para poder escribir, se esperara hasta el final del contador, en ese momento se verificaran
los flags DMAO_Ready y DMAO_Watermark y si DMAO_Ready=1 y DMAO_Watermark=0
se volverda a escribir por lo que WR=1 y se estaran escribiendo datos hasta que se vuelva
a recibir otra vez el flag DMAO_Watermark activo.

CLK
RESET

WR

PUSHBUTTON

DMAO_READY

DMAO_WATERMARK

LASTDATA

DQ8

FRI MAY 08 10:55:11 2015
| m T

: ' Agilent Technologies

-178.28 1.0005/ Stop

.
Autoscale Menu

Acq Mode
Normal

Undo
Autoscale

4+ Channels
Displayed

o~

Imagen 38: Senales del experimento 2 III

o4

Una vez se han analizado las senales en el osciloscopio se pasard a un analisis dependiente
de la frecuencia en la cual se proporcionara la velocidad de transmision, el nimero de
datos leidos, el nimero de errores y la proporcién nimero de errores/ntimero de datos
leidos.

- Frecuencia = 1 MHz

A esta frecuencia se tendra una velocidad de transmisién que sera proporcionada por
el ejecutable CollectData.exe de:

Current Data Transfer Rate 2475.00 KB/sec Stop Data Transfer

Imagen 39: Velocidad de transmisién a 1 MHz

Al analizar los datos que han sido enviados durante una hora entre el dispositivo FX3
Super Speed y el ordenador con MATLAB se tendran los siguientes resultados:

>»> analisisz fipal gpif2

inicio busgueda del principio de secuencia
principio secuencia encontrado

datos comprobados = 4437335989

numerao de errores = 0

porcentaje error = 0.000000 >

Imagen 40: Estadisticas de la transmisiéon a 1 MHz

Si se representara la senal esta tendria la siguiente forma:

File Edit View Tnsert Tools Desktop Window Help ~
DEEHS | RGN EA- 2| 0H =D

on de datos

1200

1000

amplitud

0 i i i L s i i
850 900 950 1000 1050 1100 1150 1200
muestras

Imagen 41: Representacién senal a 1 MHz

55

Como se puede observar a vista de los resultados se ha llevado a cabo la transmisién
sin errores cumpliendo con los requerimientos establecidos para este proyecto, lo que se
hara ahora es ver cual es la influencia de la tasa de transmision sobre la tasa de error
analizando archivos de datos que han sido enviados durante 30 minutos.

Tasa de Transmisién (Mbps) | Probabilidad de error (%)
16 0
32 0.001775
64 0.005507
96 0.008015
128 0.008176
..I-
Tasa de error
0,009
0,008 /— —_—
£ 0,007
£ 0005 ~
: Y
£ 0,005 /
2. 0,004

16 32

a4

96 128

Tasa de transmision (Mbps)

Imagen 42: Representacién de la tasa de error respecto a la tasa de transmision

En el grafico se puede ver que cuanto mayor sea la tasa de transmisién y en consecuen-
cia la frecuencia de reloj mayor sera la probabilidad de error, ademas cabe destacar los
porcentajes de error tan pequenos que se tiene pero intolerables para la aplicacion que se

busca.

56

6 CONCLUSIONES

Cuando se inici6 este proyecto se perseguia el objetivo de transferir las senales que llegan
al monitor AVALON a una tasa de 16 Mbps al ordenador a través del FX3 Super Speed
Device y de analizar estas senales para demostrar que la transferencia se produce sin er-
rores.

El objetivo se ha cumplido sin problemas ya que con una frecuencia de 1MHz se ha lo-
grado llevar a cabo una transmision de datos durante 1 hora transmitiendo 4.437.335.989
Bytes sin errores. Esto ha sido posible gracias a la utilizacion de los flags DMAO_Ready
y DMAO_Watermark que han ido senalando cuando el buffer del DMA estaba disponible
para recibir datos y cuando éste se iba a llenar.

Una vez comprobados los dos objetivos principales del proyecto se han llevado a cabo
una serie de simulaciones para ver como afecta la tasa de transmision a la tasa de error
y se ha llegado a la conclusién de que cuanto mayor es la tasa de transmision mayor es
el nimero de datos que se envian en un mismo periodo temporal y a su vez es también
mayor la tasa de error.

Se llega a la conclusion, de que el chip FX3 incoporado en el FX3 Super
Speed Device es capaz de transportar datos entre una FPGA y el ordenador
a través de un USB 3.0 sin errores, por tanto podra ser utilizado para realizar
el depurado de las senales del monitor AVALON en el ordenador, siempre y
cuando se utilicen una serie de buffers entre el monitor y el ordenador debido
al cuello de botella que se genera en el buffer del DMA.

58

