
Proyeto Fin de Carrera

Fast Data Transfer based on a
USB3.0 Super Speed Device

Autor:

Jesús Beńıtez Lorente

Directores:

Dipl.-Ing. (FH) Markus Wohlschlager
Prof. Isidro Urriza Parroqué

Universidad de Zaragoza/EINA
2015

RESUMEN

El objetivo de este proyecto es comprobar si el chip FX3 del microcontrolador FX3 Super
Speed Device puede realizar una transmisión de datos sin errores, para poder realizar el
depurado de las señales del monitor AVALON1. Estos datos serán generados a una tasa
constante de 16 Mbps.

Para comprobarlo se llevarán a cabo varios experimentos en los que se utilizará una FPGA
como generador de señales, el microcontrolador FX3 Super Speed Device como interfaz
entre la FPGA y el ordenador y un disco duro externo donde se guardarán los datos
enviados desde la FPGA.

En el primero de ellos se implementará un contador de 16 bits en la FPGA y se enviarán
los datos al ordenador a través de un USB 3.0 sin ningún tipo de control sobre el buffer del
DMA lo que producirá una gran perdida de datos debido a que el buffer será sobreescrito
antes de que dé tiempo a mandar los datos al bloque USB. Aunque con este primer exper-
imento no se consigan los objetivos propuestos servirá de base al experimento número dos
ya que se aprenderá a programar los diferentes módulos del FX3 Super Speed Device, se
comprobará que todos los bloques funcionan correctamente y se desarrollarán los scripts
de Matlab que servirán de punto de partida para el segundo experimento.

En el segundo experimento se enviará desde una FPGA al ordenador a través del FX3
Super Speed Device una señal en diente de sierra. Esta vez se inspeccionará el buffer del
DMA antes de escribir en él, esto se hará utilizando el flag DMA0 Ready que indicará si
el buffer está preparado para recibir información y el flag DMA0 Watermark que avisará
con la antelación que quiera el usuario de que el buffer se va a llenar, esto permitirá enviar
datos al ordenador sabiendo con certeza de que no se perderán datos en el camino debido
al desbordamiento del buffer DMA.

Por último analizando los datos se llegará a la conclusión de que el chip permite llevar a
cabo la transmisión con los requerimientos exigidos y se analizará la influencia de la tasa
de transmisión sobre la tasa de error recogiendo muestras durante media hora a diferentes
frecuencias de reloj.

1Monitor médico hacia el que se enfoca este proyecto fin de carrera.
http://www.healthcare.philips.com/main/products/patient monitoring/products/fetalmaternal monitors/index.wpd

I

Indice de contenidos

1 INTRODUCCIÓN 2
1.1 Koninklijke Philips N.V. 2
1.2 Philips Healthcare . 3
1.3 Philips Medizin Systeme Boeblingen GmbH 3
1.4 Motivación y objetivos del proyecto . 4
1.5 Esquema de la memoria . 4

2 USB (Universal Serial Bus) 8
2.1 Definición . 8
2.2 Historia . 8
2.3 Velocidad . 9
2.4 Conectores . 9
2.5 estándar USB 3.0 . 10
2.6 ¿Por qué USB 3.0? . 11

3 ELEMENTOS DEL PROYECTO (HARDWARE) 12
3.1 Esquema . 12
3.2 FPGA . 13
3.3 FX3 SuperSpeed Explorer Kit . 13

3.3.1 Diagrama de bloques . 14
3.3.2 CPU block . 15
3.3.3 GPIF II block . 16
3.3.4 Low speed peripheral block . 17
3.3.5 Distributed DMA Controller . 18
3.3.6 USB block . 18

3.4 Cable USB 3.0 . 19
3.5 Tarjeta PCI USB 3.0 . 19

4 PROGRAMAS UTILIZADOS (SOFTWARE) 20
4.1 Quartus II web edition . 20
4.2 ModelSim-Altera 10.1e . 21
4.3 EZ USB Suite(eclipse) IDE . 21
4.4 GPIF II designer . 21
4.5 USB Control Center . 21
4.6 Visual Studio 2013 . 21
4.7 Clear Terminal . 22
4.8 CollectData.exe . 22
4.9 MATLAB . 22

5 EXPERIMENTOS 24
5.1 Experimento 1 . 24

5.1.1 FPGA . 25
5.1.2 FX3 Super Speed device . 28
5.1.3 MATLAB . 34
5.1.4 Funcionamiento . 34
5.1.5 Conclusiones . 37

5.2 Experimento 2 . 39

III

5.2.1 FPGA . 40
5.2.2 FX3 Super Speed device . 44
5.2.3 Visual Studio 2013 . 51
5.2.4 MATLAB . 51
5.2.5 Funcionamiento . 52

6 CONCLUSIONES 58

IV

Lista de imágenes

1 Avalon FM30 con un transductor de ultrasonidos para fetos y un TOCO
MP con un conector rojo para medir el pulso materno 4

2 Conector USB tipo A macho y hembra . 9
3 Conector USB tipo B macho y hembra . 9
4 Conector USB tipo C macho . 10
5 Esquema que se utilizará durante los experimentos 12
6 Plataforma de desarrolo FX3 SuperSpeed Explorer Kit 14
7 Diagrama de bloques del FX3 SuperSpeed Explorer Kit 15
8 Diagrama del CPU block . 16
9 Diagrama del GPIF II block . 17
10 Diagrama del Low speed peripheral block 17
11 Diagrama USB block . 18
12 Patillaje cable USB 3.0 de tipo A y B . 19
13 Tarjeta PCI USB 3.0 . 19
14 Configuración del primer experimento . 25
15 Diagrama de bloques de la FPGA en el experimento 1 26
16 Máquina de estados del experimento 1 . 26
17 Simulación de la FPGA en el experimento 1 27
18 Asignación de pines en la FPGA . 27
19 Vista de la programación de los dispositivos de la familia FX3 28
20 Interacción del bloque GPIF II con el exterior 29
21 Diagrama de estados GPIF experimento 1 30
22 Apariencia del programa EZ USB Suite(eclipse) 30
23 Esquema de recolección de datos por parte del ejecutable CollectData.exe” 35
24 Apariencia del ejecutable CollectData cuando se realiza la transmisión a

80 MHz . 36
25 Resultados del analisis del contador a 80 MHz 37
26 Resultados analisis del contador a 4 MHz 37
27 Configuración del segundo experimento . 40
28 Diagrama de bloques de la FPGA en el experimento 2 40
29 Máquina de estados del experimento 2 . 41
30 Primera simulación experimento 2 . 43
31 Segunda simulación experimento 2 . 43
32 Asignación de pines en el experimento 2 44
33 Configuración de la matriz IO del GPIF II experimento 2 46
34 Diagrama de estados del GPIF II experimento 2 47
35 Apariencia del ejecutable CollectData.exe después de su modificación . . . 52
36 Señales del experimento 2 I . 53
37 Señales del experimento 2 II . 54
38 Señales del experimento 2 III . 54
39 Velocidad de transmisión a 1 MHz . 55
40 Estad́ısticas de la transmisión a 1 MHz . 55
41 Representación señal a 1 MHz . 55
42 Representación de la tasa de error respecto a la tasa de transmisión 56

V

1 INTRODUCCIÓN

En este primer caṕıtulo se hablará de la compañ́ıa en la cual, se ha realizado el proyecto,
Koninklijke Philips N.V., aśı como de los productos que se desarrollan en Boeblingen
(Stuttgart, Alemania). Además se hablará de la motivación y objetivos de este proyecto
y para terminar se explicará como se ha estructurado la memoria y se hará un pequeño
resumen de cada caṕıtulo.

1.1 Koninklijke Philips N.V.

Koninklijke Philips N.V., más conocida como Philips es una empresa de electrónica fun-
dada en el año 1981 en Eindhoven, Paises Bajos por Gerard Philips, su padre Benjamin
y su hermano Anton.

En la actualidad Philips tiene su sede en Amsterdam, Paises Bajos. Su director ejecutivo
es Frans Van Houten. Da trabajo a 115.000 personas aproximadamente, y reportó unas
ventas de 23.300 millones de euros en el año 2014, teniendo al final unos beneficios de 415
millones de euros.2

Además Philips es una empresa que cotiza en la bolsa de Nueva York (NYSE:PHG) y en
la Euronexst de Amsterdam (AEX:PHI).3 Su cotización actual en bolsa es de 25.02 euros
por acción(06.05.2015, 9:28 horas).4

Sus principales ĺıneas de negocio son:

• Electrónica para el hogar, se trata de una división que da trabajo a más de 16.000
personas y desarrolla productos como maquinillas de afeitar o planchas.

• Alumbrado, es la división más grande de Philips con unos 50.000 empleados y desa-
rrolla productos como bombillas o LEDs.

• Sistemas médicos, se trata de una de las divisiones más rentables y da trabajo a
más de 35.000 personas. Desarrolla productos como monitores médicos o aparatos
de resonancia magnética.
Será en esta división donde se desarrollará este proyecto fin de carrera.

Para los próximos años se espera una reestructuración de la empresa, en la cual se fu-
sionarán las divisiones de electrónica para el hogar y sistemas médicos pasando a llamarse
”HealthTech” y el negocio de iluminación seguirá siendo independiente bajo el nombre de
”Lighting Solutions”.5

2http://es.investing.com/equities/philips-kon-income-statement
3http://www.philips.es/about/company/companyprofile.page
4http://www.invertia.com/mercados/bolsa/empresas/philips/portada-rv024phillip
5http://www.newscenter.philips.com/main/standard/news/press/2014/20140923-philips-to-sharpen-strategic-focus-by-

establishing-two-market-leading-companies-in-lighting-solutions-and-in-healthtech.wpd

2

1.2 Philips Healthcare

Philips Healthcare6 es la división de productos médicos de Philips, tiene sedes a lo largo
de todo el mundo en más de 100 paises, ocupando a más de 37.000 empleados, con unos
ingresos anuales de 9.6 billones de euros.7

Desarrolla productos destinados a la prevención de enfermedades como aparatos de mamo-
graf́ıa, productos para el diagnóstico de enfermedades como sistemas de resonancia magné-
tica o tomagraf́ıa computerizada, aśı como máquinas para el tratamiento de enfermedades
como por ejemplo equipos de radiación oncológica y sistemas destinados a la monito-
rización de pacientes entre los que cabe destacar monitores para el seguimiento de las
constantes vitales o aparatos de ultrasonidos para la monitorización de los fetos.

Este proyecto fin de carrera se realizará en esta división, concretamente en la filial situada
en Boeblingen, Stuttgart, que se dedica al desarrollo y construcción de sistemas médicos
para la monitorización tanto de los fetos como de la madre basados en ultrasonidos.8

1.3 Philips Medizin Systeme Boeblingen GmbH

Es una filial de la división Philips Healtcare con sede en Boeblingen, localidad situada a
30 km de Stuttgart, Alemania, y da trabajo a unas 800 personas.

En la fábrica se desarrollan y construyen aparatos médicos, en concreto, monitores. En el
departamento OB and Special Measurements se desarrollan los dispositivos para la mo-
nitorización de mujeres en estado de gestación y fetos. Todo esto se hará con el monitor
AVALON9, el cual, a través de pulsos de ultrasonidos emitidos por tranductores situados
en el vientre materno es capaz de medir el ritmo cardiaco de hasta dos fetos al mismo
tiempo (gemelos/mellizos), aśı como el pulso materno y la presión intrauterina entre otros.
Estos parámetros serán visibles en un display táctil, teniendo cada uno un color diferente
para poder diferenciarlos con claridad, aśı por ejemplo el color naranja se utilizará para el
pulso de los fetos, el verde para mostrar la presión intrauterina y el azul claro mostrará el
pulso marterno, también existe la posibilidad de imprimir los resultados en papel a modo
de cardiograma.

Existen tambien versiones sin cables, como por ejemplo el AVALON CL,10 Este moni-
tor tienen la gran ventaja de permitir a la mujer una gran movilidad, reduciendo el estrés
preparto, mientras se toman constantes vitales tanto del feto/s como suyas propias (pulso
y contracciones). Además puede ser sumergido durante al menos 5 horas, lo que facilita la
vida al paciente que recibe una monitorización continuada. Este tipo de monitorización
se utiliza para mujeres que han tenido complicaciones durante el embarazo o que han
recibido la epidural, mientras esperan la hora del alumbramiento en el hospital.

6http://www.philips.es/healthcare
7http://www.philips.es/healthcare-about/philips
8http://www.philips.es/healthcare-solutions/mother-and-child-care/fetal-maternal-monitoring
9http://www.healthcare.philips.com/main/products/patient monitoring/products/fetalmaternal monitors/index.wpd

10http://www.healthcare.philips.com/main/products/patient monitoring/products/Avalon CL/

3

Imagen 1: Avalon FM30 con un transductor de ultrasonidos para fetos y un TOCO MP con un conector
rojo para medir el pulso materno

1.4 Motivación y objetivos del proyecto

Electronics fetal monitors o Cardio-toco-Graphs se definen como instrumentos para la
medida y visualización de más de un parámetro fisiológico, como por ejemplo, el ritmo
cardiaco o la actividad intrauterina.

Los párametros vitales tanto del feto como de la madre son recogidos por transductores
que se situarán en el vientre materno, estos parámetros serán procesados por los trans-
ductores y enviados al monitor que está equipado con un display táctil y una impresora
térmica para la representación de los mismos. Los datos serán enviados utilizando un
protocolo de comunicación CAN a través de un bus. Este CAN bus trabaja con una
velocidad de transmisión de 500KBit/s, lo que permite la transmisión de dos canales de
16 bits a una frecuencia de muestreo de 3 kHz por sensor.

Las nuevas mejoras planeadas para el futuro requieren un incremento drástico en la ca-
pacidad de transmisión de datos, siendo el mı́nimo requerido 1 mega sample con una
resolución de 16 bits por segundo, y eso está muy lejos de la capacidad que proporciona
el CAN bus.

Por tanto el objetivo de este proyecto es investigar si el chip FX3, desarrollado por ”Cy-
press Semiconductor” se adapta a los requerimientos establecidos. Estos requirimientos
consistirán en una comunicación continuada y sin errores a 16 Mbits/s durante varios
minutos.

1.5 Esquema de la memoria

En un primer momento se explicarán las diferentes tecnoloǵıas utilizadas para la comu-
nicación entre el ordenador y el FX3 Super Speed Device, luego se pasará a presentar
tanto el software como el hardware utilizados, y una vez introducidos todos los elementos
empleados se dará una descripción detallada de los experimentos realizados para terminar

4

sacando una serie de conclusiones.

A continuación se procederá a realizar un breve resumen de cada uno de los caṕıtulos:

En el caṕıtulo USB se hablará de la tecnoloǵıa de comunicación utilizada en este proyecto,
USB proporcionando una defición, y hablando tanto de su historia como de sus carac-
teŕısticas.

En el caṕıtulo ELEMENTOS DEL PROYECTO se presentará el hardware utilizado para
llevar a cabo este proyecto, estos elementos serán:

• FPGA.

• FX3 Super Speed Device.

• cable USB 3.0.

• Tarjeta PCI USB 3.0.

En el caṕıtulo PROGRAMAS UTILIZADOS se presentarán los diferentes programas
empleados tanto para la programación como para el análisis y la captura de los datos.
Estos programas son:

• Quartus II web Edition.

• ModelSim-Altera 10.1e.

• EZ USB Suite(eclipse) IDE.

• GPIF II designer.

• USB Control Center.

• Visual Studio 2013.

• Clear Terminal.

• MATLAB.

• CollectData.exe.

El caṕıtulo EXPERIMENTOS es el más importante de todos, ya que es en el cual se
explica lo que se ha llevado a cabo. En el primer experimento se implementará un contador
de 16 bits en la FPGA y se enviarán los datos al ordenador de forma continuada sin
ningún tipo de control. En el segundo experimento se implementará en la FPGA una
señal de diente de sierra, esta señal se enviará al ordenador, pero esta vez si que se
controlarán los buffers a través de una serie de flags para evitar el desbordamiento de
estos con su correspondiente pérdida de datos, además se analizará la influencia de la tasa
de transmisión sobre la tasa de error.

5

En el caṕıtulo CONCLUSIONES se sacarán las conclusiones oportunas a la vista de los
datos proporcionados por las diferentes simulaciones que se han llevado a cabo.

6

2 USB (Universal Serial Bus)

A continuación se presenta la tecnoloǵıa USB, la cual definiremos además de hablar de
su historia aśı como de sus caracteŕısticas técnicas poniendo especial énfasis en su último
estándar en el mercado, el USB 3.0.

2.1 Definición

El USB (Universal Serial Bus) es un bus estándar industrial que define los cables , conec-
tores y protocolos usados en un bus para conectar, comunicar y proveer de alimentación
eléctrica a ordenadores, periféricos y dispositivos electrónicos. Ha llegado a convertirse
en el estándar de conexión de periféricos como teclados, impresoras o móviles. 11

2.2 Historia

En el año 1996 un consorcio de empresas formado entre otras por Microsoft, IBM, Intel
o Apple, presentaron la primera especificación del USB, se trataba del USB 1.0. Esta
especificación no teńıa una gran velocidad, pero esto al principio no era importante ya
que se utilizaba con dispositivos HID(Human Interface Device), como el teclado o el ratón.

En 1998 apareció otro nuevo estándar el USB 1.1, que permit́ıa por ejemplo hacer una
copia de una peĺıcula de 4 Gbytes en tan sólo 45 minutos.

Los dispositivos se fueron desarrollando y el usuario demandaba cada vez más veloci-
dad y capacidad de transmisión, por tanto apareció en el año 2004 un nuevo estándar, el
USB 2.0, que permit́ıa tener un gran ancho de banda y además era retrocompatible con el
estándar USB 1.0. A dia de hoy el USB 2.0 sigue siendo el estándar más utilizado incluso
por delante del nuevo estándar el USB 3.0.

En el año 2008 apareció el estándar USB 3.0 que ofrece entre sus muchas novedades
una gran capacidad de transmisión y una mayor potencia de alimentación lo que hace que
los dispositivos se puedan recargar mucho más rápido.

En el año 2014 fue presentado el nuevo estándar el USB 3.1, aunque todav́ıa no ha
salido al mercado, promete una velocidad de transmisión de 10 Gbps y un nuevo tipo de
conector el tipo C, además presentará la ventaja de tener puertos reversibles.

11http://simson.net/clips/1999/99.Globe.05-20.USB deserves more support+.shtml

8

2.3 Velocidad

Las velocidad que tienen los diferentes estándares del USB es:

• USB 1.0 =⇒ 1.5 Mbits/seg

• USB 1.1 =⇒ 12 Mbits/seg

• USB 2.0 =⇒ 480 Mbits/seg

• USB 3.0 =⇒ 5 Gbits/seg

• USB 3.1 =⇒ 10 Gbits/seg

2.4 Conectores

Existe tres tipos de conectores USB:

• Tipo A =⇒ Es un conector USB estándar. Se trata de un conector plano que por lo
general se conecta al equipo.

Imagen 2: Conector USB tipo A macho y hembra

• Tipo B =⇒ Es un conector cuadrado en la parte inferior y ligeramente inclinado en
la parte superior. Se utiliza para grandes dispositivos como por ejemplo impresoras
o escáneres.

Imagen 3: Conector USB tipo B macho y hembra

9

• Tipo C =⇒ Aparecerá para el nuevo estándar el USB 3.1 y tendrá la gran ventaja
de ser reversible.

Imagen 4: Conector USB tipo C macho

2.5 estándar USB 3.0

El estándar USB 3.0 ha sido desarrollado por un conglomerado de empresas entre las que
destacan Intel, Microsoft o Texas Instrument, fue presentado en el año 2008 y destaca por
las siguientes caracteŕısticas:

• Permite la transmisión de datos a 5 Gbps, esto es 10 veces más rápido que el antiguo
estándar el USB 2.0.

• Proporciona una corriente de hasta 900 mA, en comparación con los 500 mA del
antiguo estándar, lo que hace que se pueda cargar los dispositivos mucho más rápido.

• Aunque aporta más enerǵıa no consume más, ya que utiliza un protocolo basado en
interrupciones a diferencia de su antecesor que consultaba los dispositivos periodica-
mente.

• Tiene compatibilidad con los estándares USB 2.0 y 1.1.

• Permite el tráfico bidireccional.

• Soporta la transmisión de imágenes y video en HD.

• Se suele distinguir de los otros estándares porque lleva una pestaña azul y muestra
el śımbolo SS.

• Tiene la desventaja de que al llevar más filamentos, el cable es más grueso y rigido,
como el cable Ethernet.

10

2.6 ¿Por qué USB 3.0?

El objetivo final de este proyecto es hacer una transmisión entre una FPGA y el ordenador
con el requerimiento de que se transmitan los datos a una tasa de 16 Mbps, utilizando en
este caso la tecnoloǵıa USB.

Dentro de la tecnoloǵıa USB hay varios estándares que se han presentado anteriormente,
pero entre todos ellos se ha elegido el último estándar, el USB 3.0, ya que además de
que el microcontrolador elegido para realizar la transferencia de datos entre la FPGA y
el ordenador incluye este estándar, el USB 3.0 puede alcanzar una velocidad de 5 Gbps
(625 MBps) en comparación con el estándar USB 2.0 que tiene una tasa de velocidad de
480 Mbps (60 MBps) y además el USB 3.0 incluye un nuevo protocolo basado en inter-
rupciones que permite consumir un 50% menos de enerǵıa.

Por tanto se elegirá el estándar USB 3.0 ya que además de que su ancho de banda es
mucho mayor y permite transmisiones a muchas más velocidad, los dispositivos que se
alimentan a través de esta tecnoloǵıa consumen mucha menos enerǵıa.

11

3 ELEMENTOS DEL PROYECTO (HARDWARE)

En este caṕıtulo se introducirá al lector en el proyecto fin de carrera presentando el ma-
terial utilizado durante su realización y su disposición durante los experimentos.

3.1 Esquema

Como se ha comentado anteriormente el objetivo del proyecto es investigar si el chip FX3,
desarrollado por ”Cypress Semiconductor” se adapta a los requerimientos establecidos
para la comunicación entre los sensores y el monitor, para poder capturar esos datos y
enviarlos al ordenador para su depuración. Para ello una señal será enviada desde una
FPGA hasta el ordenador a través del FX3 Super Speed Device, que estará controlado
por el usuario a través de una consola.

Para ello se dispondrá del siguiente esquema:

Imagen 5: Esquema que se utilizará durante los experimentos

En primer lugar se dispone de una FPGA(Field Programmable Gate Array), una FPGA es
un dispositivo semiconductor que posee bloques lógicos interconectados para que puedan
ser programados 12, se utilizará como un generador de datos, se creará una señal que
tenga una frecuencia de 1 MHz, esta señal se enviará a través de los pines de propósito
general(GPIO).

En segundo lugar se dispondrá del FX3 Super Speed Explorer Kit que tendrá el chip que
se quiere investigar. Este dispositivo recibirá las señales de la FPGA de forma paralela a
través de sus pines GPIO, que son pines de propósito general que pueden ser controlados
por el usuario en tiempo de ejecución13 y estos datos serán enviados al bloque USB 3.0
del que dispone la placa.

12http://www.alegsa.com.ar/Dic/fpga.php
13http://es.wikipedia.org/wiki/GPIO

12

El microcontrolador estará controlado por el usuario a través de una consola. La con-
sola se comunicará con el microcontrolador a través del puerto serie UART, enviando
comandos al procesador del FX3 Super Speed Device, con los cuales se podrá iniciar la
transmisión o resetear la FPGA entre otros.

Por último estos datos serán recibidos en el ordenador a través de un interfaz que soporte
la tecnoloǵıa USB 3.0 y enviados a un disco duro externo con conexión USB 3.0 donde
serán guardados en un archivo con extensión .bin. Luego estos serán tratados, analizados
y representados con MATLAB para descartar la presencia de errores.

3.2 FPGA

Una FPGA (Field Programmable Gate Array), es un dispositivo semiconductor que posee
bloques lógicos interconectados para que puedan ser programados.14 La FPGA que se
utilizará durante los experimentos es la 10M08SAE144C8GES fabricada por Altera y
perteneciente a la famila MAX10.15

Esta FPGA se caracteriza porque:

• Se puede comprar por un precio unitario de 25,56 dolares, aunque se obtiene un
descuento al comprar paquetes de 25, 100 o 500 unidades.

• Dispone de 8.000 elementos lógicos.

• Tiene 144 pines.

• de los cuales 101 se consideran pines de proposito general (GPIO).

• El voltaje oscila entre los 2.85 V y los 3.465 V.

• El rango de temperatura de trabajo vaŕıa entre los 0 y los 85 grados cent́ıgrados.

• Contiene 500 LABs(Logic Array Block)/CLBs(Configuration Logic. Block).

La FPGA se programará utilizando los lenguajes de programación Verilog y VHDL con
ayuda del programa Quartus II proporcionado por el fabricante.

3.3 FX3 SuperSpeed Explorer Kit

El FX3 Super Speed Explorer Kit es una plataforma de desarrolo que permite controlar
periféricos añadiendo la funcionalidad del USB 3.0 a cualquier sistema.
Para su correcto uso y entendimiento existe un libro llamado SuperSpeed Device by
Example16 escrito por John Hyde, antiguo ingeniero de Intel, que irá guiando al lector a
través de todas las etapas del aprendizaje.

14http://www.alegsa.com.ar/Dic/fpga.php
15http://www.buyaltera.com/scripts/partsearch.dll?Detail&name=544-3037-ND
16http://www.cypress.com/?rID=99917

13

Los elementos más importantes de este microcontrolador serán:

1. El chip FX3 en el cual se basa todo este proyecto.

2. El puerto USB 3.0 a través del cual se mandarán datos a alta velocidad al ordenador.

3. Un puerto mini USB en el que se conectará un ordenador y servirá tanto para realizar
el depurado del programa como para enviar comandos desde el ordenador.

4. El GPIO a través del cual se recibirán los datos de la FPGA y serán controlados por
el bloque GPIF II.

5. Interruptor con el cual se podrá realizar un reboot del dispositivo.

6. Interruptor de uso general, que puede ser utilizado entre otras cosas para encender
el LED o para iniciar una nueva transmisión.

7. LED, durante este proyecto será utilizado para indicar cuando hay una transmisión
en curso.

Imagen 6: Plataforma de desarrolo FX3 SuperSpeed Explorer Kit

3.3.1 Diagrama de bloques

El corazón del FX3 se puede considerar la ”Distributed DMA Controller” que unirá a los
diferentes bloques a través de tubeŕıas (sockets) a una velocidad máxima de 800 MBps.

Los bloques más importantes de los que dispondrá el FX3 y que se explicarán en las
siguientes secciones son:

• CPU block.

• GPIF II block.

14

• Low speed peripherals block.

• USB block.

• Distributed DMA Controller.

Imagen 7: Diagrama de bloques del FX3 SuperSpeed Explorer Kit

3.3.2 CPU block

Se trata del bloque que contiene el procesador,17 dispondrá de un procesador ARM9 que
trabajará a una frecuencia de 200 MHz y dispondrá de 2 memorias cache de 8 KB cada
una, además la señal Clock la podrá recibir internamente a través de un cristal de cuarzo
que vibrará a una frecuencia de 19,2 MHz o a través de un reloj externo. También dispone
de un JTAG que servirá para la descargar y depuración de los programas y un contro-
lador de interrupciones estándar PL19218. Unido a este bloque se tendrán 3 memorias.
La primera será una memoria de 32 KB que dispondrá del código de arranque para el
dispositivo. Este código se podra descargar en la memoria a través de un USB o a través
de una memoria EEPROM conectada en serie. Para la realización del proyecto se cargará
el programa a través de un cable USB 3.0. Además dispondrá de una memoria de 16 kB
para instrucciones y otra de 8 kB para datos.

El procesador tendrá asignado un VID (Vendor ID) y un PID (Product ID) que serán
reconocidos por el driver CyUSB3.sys, y servirán para que el ordenador pueda reconocer
el dispositivo cuando se conecta.

17SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059
18http://infocenter.arm.com/help/topic/com.arm.doc.ddi0273a/DDI0273.pdf

15

Imagen 8: Diagrama del CPU block

Este bloque será donde se cargará el firmware ya que en él se ejecutará la aplicación. Será
el encargado entre otras cosas de configurar e iniciar el resto de los bloques y periféricos
además de interpretar los comandos que el usuario mandará desde la consola que llegarán a
través del periférico UART y de controlar la tubeŕıa que irá a través del DMA y conectará
el bloques GPIF II con el bloque USB 3.0 Device.

3.3.3 GPIF II block

Este bloque dispone de una memoria RAM de 8 KB donde se cargará el programa diseñado
con el software GPIF II Designer y que controlará el bloque. Este bloque consiste en una
serie de vectores de elementos lógicos que tienen que ser programados. Su frecuencia
máxima de funcionamiento es de 100 MHz que podrá recibir interna o externamente.

Dispone de 32 ĺıneas de datos y 14 ĺıneas de control además de 32 tubeŕıas(sockets) para
comunicarse con otros elementos de la plataforma de desarrollo, que podrán funcionar de
una manera independiente unas de otras.

Para programar este bloque se utilizará el programa GPIF II Designer, proporcionado
por Cypress. Este bloque usa la filosof́ıa de programación de una FPGA y admite hasta
256 estados lógicos diferentes.

El bloque será uno de los más importantes del FX3 Super Speed Device durante el ex-
perimento, ya que será el encargado de la comunicación entre el microcontrolador y la
FPGA, por tanto, habrá que prestarle especial atención.

16

El bloque GPIF (General Programmable Interface) tiene la siguiente forma:19

Imagen 9: Diagrama del GPIF II block

3.3.4 Low speed peripheral block

Este bloque contendrá los periféricos necesarios para las comunicaciones más lentas,
servirá para conectar dispositivos como una EEPROM o para ser utilizado como ”de-
bug console” (consola de depuración), su diagrama será:20

Imagen 10: Diagrama del Low speed peripheral block

De este bloque el periférico más importante será el puerto serie UART con el cual se
establecerá la comunicación entre el procesador y la consola para el env́ıo de comandos y
mensajes de depuración.

19SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059
20SuperSpeed Device by Example by John Hyde ISBN-10: 1500588059

17

3.3.5 Distributed DMA Controller

Este bloque se puede considerar como el corazón del dispositivo ya que a través de él
discurrirán todas las tubeŕıas(sockets) que unirán a los diferentes periféricos y que estos
utilizarán para enviar información de un punto a otro. En este proyecto se utilizarán dos
tubeŕıas una que irá desde el GPIF II block pasando por el Distributed DMA Controller
hasta el bloque USB y otra que comunicará el procesador con el periférico UART.

3.3.6 USB block

Este bloque se utilizará para el env́ıo de datos a gran velocidad desde la placa de desar-
rollo hasta el ordenador, aśı como de fuente de alimentación.

El bloque implementa 32 endpoints diferentes a los que se podrán conectar cada una de las
32 tubeŕıas disponibles, permitiendo la transmisión de datos de 32 conexiones diferentes
al mismo tiempo.

También incluye un bloque denominado EZ-Dtect, que está controlado por el procesador
y permite detectar la presencia de una carga a través del USB para alimentar a los
periféricos.

Su esquema es:

Imagen 11: Diagrama USB block

18

3.4 Cable USB 3.0

El USB que se conectará al ordenador será de tipo A y el que se conectara al dispositvo
será de tipo B, se puede observar el color azul t́ıpico del USB 3.0. Estos además se
caracterizarán por tener la siguiente forma y patillaje:

Imagen 12: Patillaje cable USB 3.0 de tipo A y B

Pin Nombre Color cable Descripción
1 VCC Rojo +5V
2 D- Blanco Data-
3 D+ Verde Data+
4 GND Negro Tierra

3.5 Tarjeta PCI USB 3.0

Se utilizará una tarjeta PCI USB 3.0 para recibir los datos enviados desde el FX3 Super
Speed Device en el ordenador. La tarjeta utilizada será la tarjeta PCI de NEC-Chipsatz,
la cual proporcionará 4 puertos externos USB 3.0.

Imagen 13: Tarjeta PCI USB 3.0

Una vez explicado el Hardware utilizado se pasará a introducir los programas (software)
empleados.

19

4 PROGRAMAS UTILIZADOS (SOFTWARE)

En esta sección se van a introducir los programas utilizados durante la realización de este
proyecto.

Para programar la FPGA se utilizarán los siguiente programas proporcionados por Al-
tera:21

• Quartus II web Edition =⇒ Para escribir el código de los programas en un lenguaje
de descripción de hardware como por ejemplo VHDL o Verilog.

• ModelSim-Altera 10.1e =⇒ Para simular el programa escrito anteriormente con un
lenguaje de descripción de hardware.

Para la programación y control de la placa de desarrollo FX3 Super Speed Device se
utilizarán los siguientes programas:

• EZ USB Suite Files =⇒ Para escribir los programas.

• GPIF II designer =⇒ Para programar el bloque GPIF II.

• USB control center =⇒ Para cargar los programas en el dispositivo.

Estos programas son proporcionados por el fabricante de la placa, Cypress. 22

Por último en el ordenador se utilizará:

• Visual Studio 2013 =⇒ Con el cual se escribirá un programa para recolectar los datos
que van llegando.

• Clear Terminal =⇒ Para mandar los comandos al dispositivo FX3 Super Speed.

• CollectData.exe =⇒ Con el que se guardarán los datos que nos van llegando en un
archivo .bin.

• MATLAB =⇒ Para analizar y representar los datos recibidos.

4.1 Quartus II web edition

Quartus II es un software de diseño de dispositivos lógicos programables producido por
Altera. Permite el diseño y análisis de circuitos lógicos y diseños en HDL (Hardware De-
scription Language). Quartus II incluye además una implementación de VHDL y Verilog
para la descripción de hardware, aśı como la edición de circuitos lógicos y un simulador
de formas de onda.

La versión web que será la utilizada es una versión gratuita proporcionada por Altera,
con ella, se puede trabajar con algunas familias de dispositivos como la familia Cyclone o
la familia MAX, cabe destacar la MAX 1023 que se utilizará durante los experimentos.

21https://www.altera.com/
22http://www.cypress.com/
23https://www.altera.com/products/fpga/max-series/max-10/overview.html

20

4.2 ModelSim-Altera 10.1e

Programa que sirve para la simulación de lenguajes de descripción de hardware como
por ejemplo VHDL o Verilog. Se puede utilizar de forma independiente o junto con el
programa Quartus II web Edition.

4.3 EZ USB Suite(eclipse) IDE

EZ USB Suite es un programa con el cual se pueden importar proyectos ya realizados,
editarlos y compilarlos, aśı como realizar proyectos propios. El Software trabaja bajo un
entorno de tiempo de ejecución de Java (JRE), el cual permite la ejecución de programas
en Java.

4.4 GPIF II designer

Se trata de un programa gráfico que permite la configuración de la interfaz GPIF II del
controlador EZ-USB FX3 USB 3.0.
El programa permite la creación de diferentes estados lógicos, la configuración de los
saltos entre estados aśı como la asignación de los pines del dispositivo. Además permite
la simulación del diagrama de estados diseñado especificando las diferentes transiciones y
tiempos.

4.5 USB Control Center

También es un programa administrado por Cypress que sirve entre otras cosas para:

• Cargar el programa ya compilado en la memoria RAM del dispositivo FX3 Super
Speed Explorer Kit.

• Ver la configuración del dispositivo, entre otras cosas se podrá saber los puntos de
acceso del USB o el tipo de comunicación (Stream, bulk...).

• Transferencia y recepción de datos.

4.6 Visual Studio 2013

Es un entorno de programación para sistemas operativos de Windows. Permite a los de-
sarroladores la creación de aplicaciones y sitios web. Soporta entre otros lenguajes C++,
C#, Visual Basic .NET, Java, Phyton, PHP...
Será utilizado para la modificación de ejecutables .exe que son proporcionados por Cy-
press.

21

4.7 Clear Terminal

Se trata de una aplicación gratuita desarrollada por ClearConnex24 que corre sobre Win-
dows y permite entre otras cosas una comunicación serie entre dispositivos(UART).
Será utilizado para la recepción de mensajes de depuración y para el env́ıo de comandos
al dispositivo.

4.8 CollectData.exe

Ejecutable proporcionado por Cypress con el que se irán guardando los datos que van
llegando al ordenador en un archivo .bin.

4.9 MATLAB

Matlab (MATrix LABoratory) es una herramienta de software matemático que ofrece un
entorno de desarrollo integrado con un lenguaje de programación propio.
Se caracteriza por la manipulación de matrices, la representación y el análisis de datos,
la implementación de algoritmos y la comunicación de programas en otro lenguaje de
programación.25

Será utilizado para la manipulación y el análisis de datos que serán recibidos en el orde-
nador a través del USB 3.0.

24http://www.clearconnex.com/
25http://de.wikipedia.org/wiki/Matlab

22

5 EXPERIMENTOS

En esta sección se explicarán los dos experimentos que se han llevado a cabo. El primero
será un contador de 16 bits en el cual se enviarán los datos desde la FPGA hasta el
ordenador a través del USB 3.0 y servirá para verificar que todos los elementos funcio-
nan correctamente y para analizar las dificultades que se nos pueden plantear durante la
transmisión. En el segundo experimento se enviará una señal en diente de sierra. Para
que no halla perdida de datos se llevará a cabo control de flujo a través de dos flags de
control que serán DMA0 Ready y DMA0 Watermark.

5.1 Experimento 1

Este primer experimento se usará para empezar a entender las diferentes partes de la
programación tanto del dispositivo FX3 Super Speed Device como de la FPGA, aśı como
para comprobar que todos los bloques del microcontrolador funcionan correctamente y
ver los posibles problemas con los que nos podremos encontar durante la transmisión.
Además se desarrollarán los scripts de MATLAB para el análisis de datos que servirán de
base para el próximo experimento.

El experimento consistirá en un contador de 16 bits que se implementará en la FPGA.
En este experimento la FPGA ejercerá el rol de master y el FX3 Super Speed Device
el de slave, por tanto, además de propocionar los datos, la FPGA enviará una señal de-
nominada WR que le indicará al dispositivo cuando estarán los datos preparados para su
lectura en los pines GPIO.

El bloque GPIF II (slave) del microcontrolador recibirá los datos y los enviará al bloque
USB 3.0 a través de una tubeŕıa que irá por el bloque ”Distributed DMA Controller”,
además también se encargará de enviarle a la FPGA una señal denominada Reset para
indicarle que tiene que reiniciar el contador, mientras esta señal este activa (Reset=1) el
contador no funcionará. Esta señal estará controlada por el usuario y para cambiar su
valor actual será necesario enviar el comando Reset a través de la consola al FX3 Super
Speed Device.

El bloque USB 3.0 enviará los datos al ordenador, donde tras poner en funcionamiento
el ejecutable CollectData.exe proporcionado por Cypress los datos serán recibidos en la
tarjeta PCI USB 3.0 y guardados en un archivo .bin en un disco duro externo con conexión
USB 3.0.

Este archivo .bin donde se encuentran los datos se analizará con MATLAB, que pro-
porcionará el número de datos léıdos, el número de errores y la proporción de estos con
respecto al número de datos léıdos.

24

Imagen 14: Configuración del primer experimento

Durante el experimento se programarán las siguientes partes:

• La FPGA para lo cual se utilizará:

– Quartus II web Edition para escribir el código.

– ModelSim-Altera 10.1e para simular el programa.

• El FX3 Super Speed Device para lo cual se utilizará:

– GPIF II designer para programar el bloque GPIF II.

– EZ USB Suite(eclipse) para escribir los programas que controlarán el chip FX3.

– USB Control Center para cargar los programas en la RAM del dispositivo.

• MATLAB para el análisis de datos.

5.1.1 FPGA

Lo primero que se hará es el diseño del contador de 16 bits que correrá en la FPGA
diferenciando las señales de entrada y salida que pertencerán al bloque de control y al
contador.

Se tendrán dos entradas, la pertenciente al reloj que hará que la FPGA funcione, esta
fuente de reloj será proporcionada por el FX3 Super Speed Device y una señal Reset que
indicará cuando se cuenta o cuando se tienen que reiniciar las variables.
Se dispondrá además de 3 salidas, WR con la cual indicaré al microcontrolador cuando se
pueden leer los datos que se env́ıan desde la FPGA, LED que servirá para que el usuario
sepa en todo momento en que estado del programa se encuentra la FPGA dependiendo
de los LEDs que se enciendan y DATOS[0:15] que contendrá al contador.

25

Imagen 15: Diagrama de bloques de la FPGA en el experimento 1

El bloque de control tendrá la siguiente máquina de estados que establecerá como va a
funcionar el programa:

Imagen 16: Máquina de estados del experimento 1

En un primer momento se estará en el estado de INICIO, en este estado el contador será
reseteado y a la FPGA se estarán enviando ceros que servirán para saturar los buffers del
ordenador por tanto la señal WR n=0 y LED[0:4]=”11111” por lo que todos los leds se
encenderán.

Cuando el usuario mande el comando Reset a través de la consola se pasará al estado
CONTADOR, en este estado la FPGA estará contando y enviando esos datos al micro-
controlador por tanto la señal WR n=0 y LED[0:4]=”10000” por lo que sólo se encenderá
el primer led que indicará al usuario que hay una transmisión el la cual se está enviando
el contador.

26

Una vez que se ha diseñado el contador habrá que programarlo, para ello se utilizará el
programa Quartus II web Edition. El lenguaje de programación de hardware elegido para
este experimento es Verilog.

Una vez escrito el programa, este deberá de ser compilado para comprobar que no se han
cometido errores en la sintaxis. Si la compilación no reporta ningún error el siguiente
paso en el proceso será el de simular el programa, ya que aunque no se halla cometido
ningun error de sintaxis es posible que el programa no haga exactamente lo que se busca.
Para simular el programa se utilizará el programa ModelSim y este es el resultado:

Imagen 17: Simulación de la FPGA en el experimento 1

Como se puede observar en un primer momento la señal reset esta activa por tanto, se
estará en el estado inicio y sólo se mandaran ceros por lo tanto WR n=0 y todos los leds
estarán encendidos, cuando se reciba la señal reset=0 se pasará al estado contador por lo
que la FPGA activará el contador,WR n=0 y sólo se encederá el primer led.

Escrito y simulado el código el siguiente paso es realizar la asignación de pines de la
FPGA, en la cual se tendrán 16 pines que se asignarán a la salida del contador, 1 pin
para la señal de reloj y 7 pines para el control del programa que corresponderán a la señal
WR n, al Reset y a los leds. Esta asignación se hará con la tool ”Pin-Planner”.

Imagen 18: Asignación de pines en la FPGA

27

Por último antes de cargar el programa en la FPGA, este se volverá a compilar y se creará
un archivo .sof que es el que se tendrá que cargar en la FPGA a través del USB-Blaster.

5.1.2 FX3 Super Speed device

A la hora de programar el dispositivo se tendrá que configurar y controlar todos los bloques
y periféricos de los cuales dispone este microcontrolador, para ello, el fabricante Cypress
proporciona un RTOS (Real Time Operating System), un RTOS es Sistema manejador
de recursos que permite una distribución controlada y ordenada del procesador, memoria,
E/S, entre los diversos programas que compiten por ellos.26 El RTOS que se utilizará
durante este proyecto fin de carrera es el Express Logic’s ThreadX27 (version 5.1).

A continuación se presenta una vista de los diferentes partes a programar en la plataforma
de la familia FX3.

Imagen 19: Vista de la programación de los dispositivos de la familia FX3

Como se puede observar se tendrán tres niveles diferentes, el primero es el nivel de usuario,
en el cual se podrán utilizar las libreŕıas estándar de C, en este nivel se programará el
GPIF y las diferentes funciones que el usuario quiera para su programa. Luego en el se-
gundo nivel se encontrará el sistema operativo de tiempo real (RTOS), en el cual a través
de las funciones API proporcionadas por Cypress se activarán los drivers que servirán
para controlar los bloques y periféricos situados en el bloque tres, el correspondiente al
Hardware.

En primer lugar se procederá a la programación del bloque GPIF II, este bloque será
el que se encargue de la comunicación entre el microcontrolador y la FPGA para ello se
utilizará el programa GPIF II Designer, que proporcionará una interfaz gráfica para la
programación de este bloque.

26http://www.ing.unlp.edu.ar/electrotecnia/procesos/transparencia/SOTR 1.pdf
27http://rtos.com/products/threadx/

28

Se configurará la relación del GPIF con la FPGA.

Imagen 20: Interacción del bloque GPIF II con el exterior

Se tendrá que seleccionar el tipo de rol que el dispositivo tomará durante la comunicación
con el exterior, en este caso, el FX3 Super Speed Device será el slave, tendrá una comuni-
cación śıncrona, la fuente del reloj será interna, se utilizará un flanco de reloj ascendente
y el número de bits de datos que serán enviados será 16. Además también habrá que
seleccionar el número de entradas y salidas de control, en este caso serán tres. Dos sali-
das pertencientes a las señales CLK (reloj) y RESET y una entrada WR. Por último se
tendrán que seleccionar los pines del GPIO a los cuales corresponderá cada señal.

señal Pin GPIO Descripción
CLK GPIO 16 Se corresponde con la señal clock que alimentará a la FPGA
WR GPIO 26 Señal que le dirá al GPIF cuando puede leer

RESET GPIO 27 Seńal que dirá a la FPGA cuando reiniciarse
Datos GPIO 0:15 Bits pertenecientes a los datos

Una vez configurado habrá que programar su relación con el exterior, esto se realizará a
través de un diagrama de estados.

Una vez que se inicie el programa se pasará del primer estado START al estado WAIT
de forma automática. En el estado WAIT se esperará hasta que llegué la señal WR=0,
en este momento se pasará al estado SAVE donde se leerán los datos que vayan llegando
desde la FPGA, esto es posible gracias a la operación IN DATA que permite la lectura de
datos de los pines GPIO. Se permanecerá en el estado SAVE mientras que la señal WR=0
cuando se reciba WR=1 se volverá al estado WAIT y se seguirá en este bucle mientras el
usuario lo desee.

29

Imagen 21: Diagrama de estados GPIF experimento 1

Una vez que se halla programado todo habrá que compilar el programa para verificar que
no hay errores. Si no ha habido errores se creará un archivo .h(SupplyGpifData.h) que se
compilará más adelante con el resto de archivos del firmware.

Una vez programado el GPIF II se pasará a configurar y programar todos los periféricos del
dispositivo aśı como los diferentes bloques que aún quedan. Para esto se utilizarán tanto
las libreŕıas estándar de C como las funciones API y los drivers proporcionados Cypress,
aśı como el programa EZ USB Suite(eclipse), el cual tiene la siguiente apariencia:

Imagen 22: Apariencia del programa EZ USB Suite(eclipse)

30

Los scripts que se tendrán que programar serán:

• Startup.c =⇒ Donde se inicializarán los parámetros de la CPU y la matriz de entrada
y salidas.

• RunApplication.c =⇒ En el cual se mandará inicializar la consola, la FPGA y el
USB además se configurarán los threads y estará la aplicación que correrá sobre la
CPU.

• DebugConsole.c =⇒ Iniciará el periférico UART, creará la tubeŕıa entre el UART
y la CPU además de programar el funcionamiento de la consola con los comandos
incluidos.

• StartStopApplication.c =⇒ Configurará e iniciará el bloque GPIF II aśı como los
puntos de acceso a los bloques GPIF II y USB y las tubeŕıa necesaria para llevar
los datos desde el bloque GPIF II al bloque USB 3.0. También servirá para que
la aplicación destruya las tubeŕıas y los puntos de acceso aśı como para limpiar la
memoria.

• USB Handler.c =⇒ Script con el cual se iniciará y configurará el bloque USB.

• USB Descriptors.c =⇒ Donde se encontrarán los descriptores necesarios para la con-
figuración del bloque USB.

• SupplyGpifData.h =⇒ Este archivo contendrá la información necesaria para iniciar
el bloque GPIF II ya que es el archivo que proporciona el programa GPIF II Designer
después de la compilación.

• Support.c =⇒ Contendrá algunas rutinas de ayuda como checkstatus().

• Application.h =⇒ Dispondrá de las contantes utilizadas durante la programación.

• cyfx gcc startup.S =⇒ Utilizado para el arranque del dispositivo y proporcionado
por Cypress.

• cyfxtx.c =⇒ Utilizado para el arranque del dispositivo y proporcionado por Cypress.

Lo primero que se hará es configurar los relojes por defecto a una frecuencia de 403 MHz
para que el bloque GPIF II pueda funcionar a una frecuencia máxima de 100 MHz, cuando
se halla configurado se iniciarán con la función CyU3PDeviceInit() , situado en el archivo
Startup.c.

Ahora se pasará a activar las memorias cache del dispositivo que serán la Icache, para
instrucciones, la Dcache, para datos y la DMAcache, que guardará información sobre las
tubeŕıas. Estas memorias se activarán con la función CyU3PDeviceCacheControl() situ-
ada también en el archivo StartUp.c.

El último punto antes de iniciar el RTOS será configurar la matriz de entrada y salida.
Esta matriz se configurará para enviar 16 bits de datos y para utilizar el periférico UART.
Para iniciar la matriz se utilizará la función CyU3PDeviceConfigureIOMatrix() situada
en Startup.c.

31

Y ahora se iniciará el sistema operativo de tiempo real (RTOS) que servirá para ad-
ministrar las diferentes tareas del microcontrolador. Este sistema operativo se activará
mediante la función CyU3PKernelEntry(). A partir de aqúı se entrará en un bucle infinito
en el cual estará corriendo el sistema operativo.

El siguiente punto será inicializar la consola, esto se hará con la función InitializeDebug-
Console(). El procesador irá avisando al usuario a través de la consola cuando se van
iniciando los diferentes bloques del microcontrolador. Servirá también para controlar el
FX3 Super Speed Device ya que a través de esta consola el usuario podrá enviar comandos.
Estos comandos serán:

• pclk =⇒ Con el cual se permitirá al usuario cambiar la frecuencia de reloj, esto será
muy útil para ver los diferentes efectos que produce en la adquisición de datos el
cambio en la frecuencia de reloj.

• threads =⇒ Esta opción permitirá ver al usuario las diferentes threads que en ese
momento se encuentren activas.

• reset =⇒ Con el cual se resetearán todos los parámetros de la CPU del dispositivo
FX3 Super Speed.

• fpga =⇒ Servirá para cambiar el valor de la señal Reset que se enviará a la FPGA.

• gpif =⇒ Este comando devolverá en que estado del diagrama del GPIF II se encuen-
tra el programa.

Para configurar la consola y que se pueda comunicar con el procesador, lo primero que
se hará es activar el driver del periférico UART con la función CyU3PUartInit(), luego se
configurará la comunicación UART con una tasa de 115.200 baudios, que es la recomen-
dada por el fabricante, y se activará tanto la recepción como la transmisión de datos.
Toda esta configuración del periférico se hará con la función CyU3PUartSetConfig().
Luego se conectarán los drivers del debugging del sistema al periférico para que todos
los mensajes de depuración sean enviados a la consola, esto último se hará con la función
CyU3PDebugInit() y por último se creará una tubeŕıa que vaya desde el periférico UART
hasta el procesador pasando por el DMA con la función CyU3PDMAChannelCreate(). A
través de esta tubeŕıa llegaran los comandos enviados por el usuario al procesador y este
enviará los mensajes de depuración a la consola.

A continuación se inicializará la FPGA llamando a la función InitializeFPGA(). En
esta función se configurarán los relojes de los pines GPIO y se iniciarán con la función
CyU3PGpioInit(). También se activará el pin GPIO27 para que se pueda sobreescribir
con la función CyU3PDeviceGpioOverride(). Este pin corresponderá a la señal Reset y
se inicializará con el valor 1 para que cuando se inicie el dispositivo la FPGA esté en el
estado INICIO.

32

Ahora se procederá a arrancar la aplicación pero antes habrá que asignarle una posición
en memoria y un nombre. La aplicación se llamará ApplicationThread y se encontrará en
el archivo RunApplication.c.

Lo próximo será iniciar el USB, para ello se llamará a la función InitializeUSB() desde
el archivo RunApplication.c, pero la función se encontrará en USB Handler.c. En esta
función se inicializará el driver del USB con la función CyU3PUsbStart(). Además se
configurarán los diferentes callbacks con los que se encontrará el periférico durante su
funcionamiento. Estos callbacks describirán el funcionamiento del USB y serán:

• SetupCallback =⇒ La cual establecerá el comportamiento de la conexión USB a
través del Class and Vendor que se reciba. Para este experimento se busca una
aplicación tipo streaming por lo que el VendorID será ”04B4h” el ProductID ”00F1h”
y la clase ”00h”.

• EventCallback =⇒ Se utilizará para notificar estados importantes en las transiciones
del USB, por ejemplo, cuando se inicia o se para la aplicación.

• LPMRequestCallback =⇒ Para controlar la cantidad de enerǵıa que se le pasará al
módulo USB que vendrá dado en función de la velocidad de transmisión con la que
se quiere trabajar.

Una vez configurados los callbacks, se pasará a la configuración de los descriptores del
USB, esto se hará con la función SetUSBDescriptors() que se llamará desde el archivo
USB Handler pero se encontrará en el archivo USB Descriptors.c. Una vez configurado
se conectarán los pines y se activará todo el bloque con la función CyU3PConnectState().

Una vez configurado el USB se pasará a la función StartApplication(). En esta función
lo primero que se hará es iniciar y configurar los relojes del bloque GPIF II, estos relojes
utilizarán una fuente interna de reloj y tendrá una frecuencia que será el doble de lo que
se envie a la FPGA. Estos relojes se inicializarán con la función CyU3PPibInit().

Ahora se configurará el endpoint que será el consumidor de datos de la tubeŕıa que irá
desde el bloque GPIF II hasta el Bloque USB 3.0 Device. Esta tubeŕıa se creará con la
función CyU3PDmaChannelCreate(). La tubeŕıa se configurará para que el productor de
datos sea el bloque GPIF II, el consumidor el bloque USB 3.0 Device y para que esta sea
manejada en todo momento por el procesador configurándola en modo AUTO.

Por último se inicializará el bloque GPIF II con la función StartGPIF() situada en el
código StartStopApplication.c y se activará la variable gliApplicationactive que permitirá
entrar en el bucle infinito en el cual está la aplicación desarrollada por el usuario. Esta
aplicación estará esperando indefinidamente a que halla algun evento, en cuyo caso se
escribirá por la consola.

Para el caso en el cual halla que parar la aplicación, como por ejemplo cuando se cambie
la frecuencia de reloj existente, existe la función StopApplication() situada en el archivo

33

StartStopApplication.c. Esta función lo primero que hará es detener el bloque GPIF II con
la función CyU3PGpifDiseable(), luego se destruirán las tubeŕıas existentes en el bloque
Distributed DMA controller con la función Cyu3PDMAChannelDestroy(), se desactivarán
los puntos de acceso al USB con CyU3PSetEpConfig() y por último se desactivará la vari-
able gliApplicationactive para que la función no se pueda ejecutar.

5.1.3 MATLAB

Unos vez realizada la transmisión de datos estos se guardarán en un archivo .bin, situado
en un disco duro externo con conectividad USB 3.0. Lo que se hará con MATLAB es
coger ese archivo y analizarlo. Para ello se ha creado el script analisis final gpif1.

En este script lo primero que hará es buscar el principio de la secuencia, para ello se leerá
una cadena de datos y se guardará en el vector num. Se sabe que mientras el dispositivo
está en el estado INICIO manda sólo ceros, por tanto, se buscará el primer dato que no
sea cero, este primer dato tendrá que ser el número uno, por tanto se comprobará y de
no ser aśı se aumentará la variable error en una unidad.

Ahora se entrará en un bucle en el cual se terminarán de comprobar los datos que aún
quedan en el vector num, pero a partir de aqui se tendrán que ir transformando los datos
que se tienen en el archivo .bin ya que al archivo llegarán los datos en formato hexadeci-
mal en 4 paquetes de 4 bits cada uno y lo que se hará es, transformar estos paquetes en
un número decimal de 16 bits, este número decimal será comparado con un contador, si
estos dos números no son iguales se aumentará en una unidad la variable error.

Al terminar este búcle se entrará en otro nuevo del cual sólo se saldrá cuando se halla
llegado al final del fichero. En este nuevo bucle se irán leyendo paquetes de 40.000 bits y
se comprobarán. Una vez que se ha llegado al final del fichero se comunicarán los datos
léıdos, el número de errores y el porcentaje de error.

5.1.4 Funcionamiento

Una vez que se han programado todos los códigos, se ha cargado el programa en la FPGA
y se ha conectado esta a la placa de desarrollo y el FX3 Super Speed Device al ordenador
se iniciará el experimento.

Lo primero que se tiene que hacer es abrir el programa ClearTerminal, con el cual la
consola se conectará con el procesador del FX3 Super Speed Device a través del puerto
serie.

Ahora se cargará el programa .img en el FX3 e irán apareciendo unos mensajes en el

34

ClearTerminal a modo de debugging comunicando cuando los bloques se han inicializado
correctamente y dirá que estará funcionando para siempre. En este punto el programa se
quedará esperando a que se vayan introduciendo los comandos previamente establecidos:

• pclk

• threads

• reset

• fpga

• gpif

Una vez que el programa este inicializado y se halla comprobado que el programa funciona
correctamente, se procederá a la lectura de los datos desde el ordenador con el ejecutable
CollectData.exe proporcionado por Cypress.

Imagen 23: Esquema de recolección de datos por parte del ejecutable CollectData.exe”

35

Lo que hará el ejecutable es coger los datos que le irá proporcionando el microcontrolador
y guardalos tan rápido como le sea posible en los buffers. Cuando empiece a haber datos
en los buffers se irán recogiendo y se escribirán tan rápido como sea posible en el disco
duro externo.

Se ha decidido guardar el archivo en un disco duro externo con conectividad USB 3.0 y no
en la memoria interna del ordenador, ya que los archivos que se van a tener que guardar
son tan grandes que la memoria del ordenador se saturaŕıa y este dejaŕıa de trabajar de
forma correcta.

Se llevarán a cabo varios experimentos en los que se irá variando la frecuencia inicial del
clock que será de 80 MHz para ver el efecto que hay en la transmisión de datos al utilizar
diferentes frecuencias de reloj, cabe esperar que cuanto mayor sea la frecuencia mayor sea
el número de errores ya que los datos se enviarán a una mayor velocidad.

El primer experimento se realizará a la frecuencia inicial de 80 MHz, lo primero que se
tiene que hacer es llenar los buffers de llegada con ceros para que luego se pueda recono-
cer bien en el archivo el inicio de la secuencia, por tanto estando la FPGA en el estado
RESET se abrirá el ejecutable CollectData.exe se elegirá la opción Receive and Discard
Data from the Device con la cual se llenarán los buffers del ordenador de ceros pero no
se guardarán los datos en el archivo .bin y se le dará al botón Start Data Transfer.

Ahora que ya se han inundado los buffers de recepción de ceros se procederá a realizar la
transmisión de datos para ello en el ejecutable CollectData se elegirá donde se guardará el
archivo (rojo) y el tiempo de transmisión de datos (azul) y el programa nos proporcionará
la velocidad de transmisión (negro)

Imagen 24: Apariencia del ejecutable CollectData cuando se realiza la transmisión a 80 MHz

36

Se cogerá el archivo gpif 80.bin y se analizará con MATLAB obteniendo los siguientes
resultados.

Imagen 25: Resultados del analisis del contador a 80 MHz

Como se puede observar el porcentaje de error es grand́ısimo, haciendo un análisis más
exaustivo de los datos de forma visual se puede observar que lo que pasa es que están
llegando bloques del contador de forma desordenada, además dentro de esos bloques tam-
bien habrá algunos bits de error lo que provocará un porcentaje de error aún mayor.

Ahora se llevará a cabo una nueva simulación esta vez a una frecuencia de 1 MHz es-
perando mejorar el porcentaje de error.

Imagen 26: Resultados analisis del contador a 4 MHz

Como se puede volver a observar el porcentaje de error sigue siendo muy grande, inspec-
cionando de forma visual el archivo se puede observar que es debido esta vez a los saltos
que va pegando el contador, ya que los bloques de números que van llegando lo hacen de
forma ordenada, por tanto los únicos no fallos se encontrarán al principio de la secuencia.

5.1.5 Conclusiones

Después de llevar a cabo los experimentos se ha comprobado que se pueden enviar datos
desde la FPGA hasta el ordenador a través del FX3 Super Speed Device, por lo que todos
los bloques del dispositivo funcionan correctamente, pero a la hora de analizar los datos
se ha comprobrado que la tasa de error es muy alto y que cuanto mayor es la tasa de
transmisión mayor es la tasa de error como cab́ıa esperar.

Haciendo un análisis en profundidad de los datos recibidos se llega a la conclusión de que la
tasa de error es tan alta ya que aunque los datos se env́ıen sin errores estos sobreescriben el
buffer del DMA antes de que de tiempo a que este envie los datos por la tubeŕıa al bloque
USB 3.0, por tanto, lo que hace falta es llevar a cabo algún tipo de control de flujo para
no sobreescribir el buffer. Ese control de flujo se llevará a cabo con dos flags que serán

37

proporcionados por el propio bloque. Esos flags serán DMA0 Ready y DMA0 Watermark
que avisarán respectivamente de cuando el buffer está listo para recibir datos y cuando se
va a llenar.

38

5.2 Experimento 2

En este segundo experimento se realizará la transmisión de una señal en diente de sierra
de 16 bits que será implementado en una FPGA. Esta señal se enviará al ordenador a
través del periférico USB 3.0 que proporcionará el FX3 Super Speed Device.

Para que no se sobreescriba el buffer del DMA habrá control de flujo, para ello se uti-
lizarán dos flags que serán proporcionados por el bloque Distributed DMA Controlled.
Esos flags serán DMA0 Ready que comunicará cuando el buffer está listos para recibir
datos y el flag DMA0 Watermark que indicará cuando el buffer está casi lleno.

El env́ıo de la señal estará controlado por un interruptor que tendrá que ser activado por
el usuario para iniciar la transmisión de datos, además se mandará una señal de control al
FX3 Super Speed para encender un LED durante el env́ıo. Estos datos serán recibidos por
el FX3 que en la comunicación con la FPGA será el slave, esto quiere decir que el bloque
GPIF II sólo leerá los datos cuando reciba la señal WR, además en este experimento se
utilizarán los flags DMA que permitirán escribir en el buffer del DMA sólo cuando este
tenga espacio libre con lo que se conseguirá no perder datos, estos flags serán enviados a
la FPGA que los utilizará para cambiar de estado en función de si se puede escribir o no.

Cuando halla sitio en el buffer del DMA, el bloque GPIF II leerá y transferirá los datos
al bloque USB 3.0 Device a través de una tubeŕıa por el Distributed DMA Controller. El
bloque del USB será el encargado de enviar la información al ordenador.

Esta información será recolectada y guardada en un archivo .bin con la ayuda del eje-
cutable CollectData.exe, este ejectuable tendrá que ser modificado para permitir la lectura
de datos durante horas. El fichero creado será analizado con MATLAB proporcionando
el número de datos léıdos, el número de errores y su proporción respecto a la cantidad de
datos y por último a la vista de los datos proporcionados se extraerán las conclusiones.
Además se realizarán pruebas a varias frecuencias para ver la influencia que tiene la tasa
de transmisión sobre la probabilidad de error.

Durante el experimento se tendrán que programar las siguientes partes:

• La FPGA para lo cual se utilizará:

– Quartus II web Edition para escribir el código.

– ModelSim-Altera 10.1e para simular el programa.

• El FX3 SuperSpeed device para lo cual se dispondrá de:

– GPIF II designer para programar el bloque GPIF II.

– EZ USB Suite(eclipse) para escribir los programas que controlarán el chip FX3.

– USB Control Center para cargar los programas en la RAM del dispositivo.

39

• El ordenador donde se utilizarán los siguientes programas para la transmisión:

– Visual Studio 2013 para modificar el ejecutable CollectData.exe.

– MATLAB para el análisis de datos.

– CollectData.exe para recolectar los datos.

Imagen 27: Configuración del segundo experimento

5.2.1 FPGA

En la FPGA se implementará un programa que permitirá el envio de una señal en diente
de sierra con 16 bits. Durante el envio habrá control de flujo para no sobreescribir el
buffer del DMA. Se diseñará el siguiente diagrama de bloques en la FPGA para hacer
posible el programa.

Imagen 28: Diagrama de bloques de la FPGA en el experimento 2

Se tendrán cinco entradas:

1. DMA0 Ready =⇒ Avisará cuando el buffer del DMA esté listo para recibir datos.

2. DMA0 Watermark =⇒ Indicará cuando el buffer del DMA esté a punto de llenarse.

40

3. CLK =⇒ Señal de reloj.

4. Pushbutton =⇒ Para iniciar o parar la transmisión de datos.

5. reset =⇒ Servirá para reinicializar la FPGA

y cinco salidas:

1. DQ[15:0] =⇒ Señal en diente de sierra

2. LastWRData =⇒ Indicará que se va a enviar el último dato

3. salida pushbutton =⇒ Controlaá los leds situados en el FX3 Super Speed Device.

4. WR =⇒ Controlará la lectura de datos en el microcontrolador.

5. LED =⇒ Servirá para indicar al usuario en que estado se encuentra la FPGA.

Ahora se pasará a diseñar el bloque de control que tendrá la siguiente máquina de estados:

Imagen 29: Máquina de estados del experimento 2

41

Al encender la FPGA el primer estado al cual se irá será el estado INICIO, en este estado
no se enviarán datos, por tanto WR=0. Se pasará al siguiente estado el IDLE cuando
reciba la señal reset=0. Para que el usuario sepa que se encuentra en este estado se en-
cendán todos los LEDs.

Al estado IDLE se pasará desde INICIO cuando llegue la señal reset=0. En este estado ya
si que se escribirá por tanto WR=1, esto inundará los buffers del ordenador inicialmente
de ceros lo que facilitará posteriormente en el análisis de datos pudiendo encontrar con
más facilidad el inicio de la frecuencia. Además este estado se utilizará también para
reiniciar todas la variables. Para pasar al siguiente estado se tienen que cumplir dos
condiciones, la primera es que el usuario encienda el interruptor para que se pueda iniciar
la transmisión de datos Pushbutton=1, y la segunda es que DMA0 ready=1, este flag
cuando esta activo indicará que hay sitio en el buffer del DMA y por lo tanto se puede
escribir. Para saber que nos encontramos es este estado se encenderá el primer LED.

Al estado DRIVERS se podrá llegar desde el estado IDLE o WAIT4DMA, en este estado
se permanecerá un ciclo antes de pasar al estado WRITES y servirá para activar la es-
critura WR=1. En este estado se encenderá el LED número dos.

El estado WRITES será el más importante en este diagrama ya que será en donde se
creará la señal en diente de sierra, además se enviará la señal al FX3 Super Speed Device
por lo que WR=1, pero no se puede escribir indefinidamente porque sino se sobreescribiŕıa
el buffer del DMA, por tanto se utilizará la señal DMA0 Watermark que indicará cuando
el buffer está a punto de llenarse, entonces cuando esta señal sea uno se irá al estado
PAUSE. También existe la posibilidad de que sea el usuario el que quiera dejar de man-
dar la señal apagando el interruptor, en este caso se irá al estado STOP. En este estado
se encenderá el LED número tres.

En el estado PAUSE se esperarán 3 ciclos de reloj que es lo que le costará al flag
DMA0 Ready reaccionar y cambiar su valor para indicar que el buffer no se encuentra
en ese momento preparado para recibir datos, después de esos ciclos se pasará al estado
WAIT4DMA.

En WAIT4DMA se esperará a que el buffer se vacie y se pueda volver a escribir, cuando
el buffer este listos el flag DMA0 Ready se activará, pero para estar seguros de que se
puede acceder al buffer con seguridad y sin perder datos, se esperarán 27 ciclos y luego
se pasará al estado DRIVERS. Ese número de ciclos se han sacado de las observaciones
de las señales con el osciloscopio durante los experimentos.

Al estado STOP se llegará desde el estado WRITES cuando se desactive el interruptor, en
este estado se escribirá un último dato y posteriormente se desactivará la escritura antes
de pasar al estado IDLE donde se esperará a que el usuario vuelva a activar el interruptor
para iniciar la transmisión.

42

Una vez que se ha escrito el código con el programa Quartus II web Edition, este se tiene
que depurar para verificar que no se han cometido errores en la sintaxis del programa y
habra que simularlo para comprobar que el programa escrito en VHDL se comporta ex-
actamente como se ha diseñado. Para llevar a cabo la simulación se utilizará el programa
ModelSim.

La primera simulación que se llevará a cabo es un proceso normal de escritura, se seguirá
la siguiente secuencia de estados: RESET-IDLE-DRIVERS-WRITES-PAUSE.

Imagen 30: Primera simulación experimento 2

En la siguiente simulación se podra observar que pasa al desconectar el interruptor.
Se seguirá la siguiente secuencia de estados: RESET-IDLE-DRIVERS-WRITES-STOP-
IDLE.

Imagen 31: Segunda simulación experimento 2

43

Una vez que se ha simulado y escrito el código habra que realizar la asignacion de pines:

Imagen 32: Asignación de pines en el experimento 2

Por último el programa se volverá a compilar y se creará un archivo .sof que contendrá el
programa que se cargará en la FPGA.

5.2.2 FX3 Super Speed device

En esta sección se procederá a la programación y configuración de todos los periféricos
del FX3 Super Speed Device. Recordemos que para la configuración y programación se
utilizarán dos programas diferentes, para la programación del bloque GPIF II que se en-
cargará de la comunicación con la FPGA se utilizará el programa GPIF II Designer y
para la programación y compilación del firmware se utilizará el programa Cypress EZ
USB Suite ambos proporcionados por Cypress. Además una vez que se tenga el programa
compilado y listo en un archivo .img este se cargará en el microcontrolador con la ayuda
del programa USB Control Center.

Lo primero que se programará será el bloque GPIF II del FX3 Super Speed Device, este
bloque como ya se ha comentado se encarga de la relación entre el dispositivo y la FPGA.

44

Se configurará el interface con las siguientes caracteŕısticas:

• Tipo de interface =⇒ Slave.

• Tipo de comunicación =⇒ Sincrona.

• Fuente del Reloj =⇒ Interna.

• Flanco de Reloj =⇒ Ascendente.

• Codificación =⇒ Little endian.

• Anchura del bus de datos =⇒ 16 Bits.

Una vez que se han configurado los ajustes de la interfaz se tendrá que indicar el número
de entradas, salidas y flags que se utilizarán durante la transmisión.

• Entradas

– WR =⇒ Esta señal indicará al bloque GPIF II cuando tiene permiso de escritura.
Será enviada desde la FPGA.

– LastWRData =⇒ La señal será enviada desde la FPGA para indicar que sólo
queda un dato por escribir. Esta señal será enviada desde el estado WRITES
por la FPGA antes de pasar al estado STOP.

– Datos =⇒ Se tratará de una señal de 16 bits, estos bits se enviarán de forma
paralela y contendrán la información de la señal en diente de sierra que se manda.

• Salidas

– CLK =⇒ Señal de reloj que alimentará a la FPGA.

– Reset =⇒ Se trata de una señal que se enviará a la FPGA cuando se quiere
reinicializar todas la variables.

• Flags DMA

– DMA0 Ready =⇒ Flag que será enviado a la FPGA e indicará si esta activo que
el buffer del DMA está para recibir datos.

– DMA0 Watermark =⇒ Flag que indicará a la FPGA que el buffer del DMA está
a punto de llenarse para que cambie de estado y vaya a PAUSE.

Por último se tendrá que asignar a cada señal un pin de propósito general (GPIO):

señal Pin GPIO Descripción
DataBus GPIO[0:15] Datos que contendrán la información de la señal

en diente de sierra
CLK GPIO 16 Señal de reloj que alimentará a la FPGA
WR GPIO 17 Señal que indicará cuando se puede escribir

LastWRData GPIO 19 Indicará cuando se esta llegando al final de la
secuencia

DMA0 Ready GPIO 21 Dirá a la FPGA cuando se puede escribir en
el buffer del DMA

DMA0 Watermark GPIO 22 Indicará a la FPGA que el buffer del DMA
está a punto de llenarse

45

Imagen 33: Configuración de la matriz IO del GPIF II experimento 2

Una vez que se ha configurado el bloque se pasará a su programación a través de un
diagrama de estados. Cabe recordar que este bloque interactúa con la FPGA por lo que
será un espejo de lo que pasa alĺı.

Inicialmente se estará en el estado START ya que se trata del estado de inicio del pro-
grama que es requerido siempre por el bloque GPIF II, acto seguido se pasará al estado
WAIT4WR ya que la señal LOGIC ONE indica que se pase de forma incondicional de un
estado a otro.

En el estado WAIT4DMA se esperará indefinidamente hasta que la FPGA envie la señal
de WR, esto significará que ya se puede empezar a leer los datos que están llegando a los
pines GPIO del dispositivo, por tanto se pasará al estado READ.

En el estado READ se leerán los datos que van llegando y se enviarán los flags DMA0 Ready
y DMA0 Watermark a la FPGA, el flag DMA0 Ready se enviará activo a la FPGA cuando
halla sitio para escribir en el buffer del DMA y el flag DMA0 Watermark se enviará unas
ciclos antes de que el buffer del DMA se llene, ese número de ciclos será elegido por el
usuario. Todo esto será posible gracias a la acción IN DATA.

46

La señal WR enviada desde la FPGA se encargará de controlar la lectura de los datos por
parte del dispositivo, por tanto cuando llegue la señal WR=0 habrá que dejar de leer para
esto se pasará a un estado de pausa denominado WAIT2 o si llega la señal LastWRData
indicando que se va a terminar la escritura se pasará al estado DONE.

En el estado WAIT2 se esperará bien a que vuelva a llegar la señal WR activa indicando
que se puede volver a leer por lo que se irá otra vez al estado READ o a que llegue la
señal LastWRData indicando que se está al final de la transmisión y que hay que dejar
de leer por lo que se pasará al estado DONE.

En el estado DONE se utilizará la acción COMMIT esta acción servirá para enviar toda
la información que se tenga almacenada en los buffers del bloque GPIF II al bloque USB
3.0, ya con los buffers liberados se pasará al estado WAIT4DMA donde se esperará hasta
que empiece una nueva comunicación.

Imagen 34: Diagrama de estados del GPIF II experimento 2

47

Una vez diseñado el programa, éste se compilará y si no ha habido ningún error en com-
pilación se creará un archivo .h (gpif4.h) que tendrá la configuración y programación del
bloque GPIF II que se tendrá que volver a compilar más tarde con todos los archivos del
firmware.

Una vez configurado y programado el bloque GPIF II, es decir, la relación entre el FX3
Super Speed Device y la FPGA, se pasará a la configuración de los demás bloques y a
la programación del firmware para lo cual se utilizarán tanto las funciones API propor-
cionadas por Cypress como las libreŕıas estándar de C y el programa EZ USB Suite(eclipse)
IDE.

Los scripts que se tendrán que programar son:

• Startup.c =⇒ Donde se inicializarán los parámetros de la CPU y la matriz de entrada
y salida.

• RunApplication.c =⇒ En la cual se mandará inicializar la consola, la FPGA y el
USB además se configurarán los threads y estará la aplicación que correrá sobre la
CPU.

• DebugConsole.c =⇒ Iniciará el periférico UART, creará la tubeŕıa entre el UART
y la CPU además de programar el funcionamiento de la consola con los comandos
incluidos.

• StartStopApplication.c =⇒ Configurará e iniciará el bloque GPIF II aśı como los
puntos de acceso a los bloques GPIF II y USB y las tubeŕıas necesarias para llevar
los datos de un bloque a otro. También servirá para que la aplicación elimine las
tubeŕıas y los puntos de acceso aśı como para limpiar la memoria.

• USB Handler.c =⇒ Script con el cual se iniciará y configurará el bloque USB.

• USB Descriptors.c =⇒ Donde se encontrarán los descriptores necesarios para la con-
figuración del bloque USB.

• gpif4.h =⇒ Este archivo contendrá la información necesaria para iniciar el bloque
GPIF II ya que es el archivo que proporciona el programa GPIF II Designer después
de la compilación.

• Support.c =⇒ Contendrá algunas rutinas de ayuda como checkstatus().

• Application.h =⇒ Dispondrá de las constantes utilizadas durante la programación.

• cyfx gcc startup.S =⇒ Utilizado para el arranque del dispositivo y proporcionado
por Cypress.

• cyfxtx.c =⇒ Utilizado para el arranque del dispositivo y proporcionado por el Cy-
press.

48

Lo primero que se hará es configurar los parámetros de la CPU en el archivo Startup.c.
Se configurará el reloj para utilizar una fuente interna y una frecuencia de 400 MHz que
permitirá utilizar el bloque GPIF II a una frecuencia máxima de 100 MHz. El reloj se
iniciará con la función CyU3PDeviceInit().

una vez configurado el reloj se iniciarán la memoria cache del dispositivo, estas memorias
son Icache para instrucciones, Dcache para datos y DMAcache para guardar información
sobre el bloque Distributed DMA controller. Estas memorias cache se iniciarán con la
función CyU3PDeviceCacheControl().

A continuación se configurará la matrix de entrada y salida para enviar datos de 16 bits in-
dicando que se va a utilizar el periférico UART, se configurará el pin GPIO26 perteneciente
al reset y el pin GPIO45 que se corresponderá con el interruptor conectado a la FPGA, esta
matriz se configurará con la instrucción CyU3PDeviceConfigureIOMatrix(). Por último se
iniciará el sistema operativo de tiempo real con la función CyU3PKernelEntry() situada
en el archivo Startup.c.

El siguiente punto será inicializar la consola, esto se hará con la función InitializeDebug-
Console(). El procesador irá avisando al usuario a través de la consola cuando se van
iniciando los diferentes bloques del microcontrolador. Servirá también para controlar el
FX3 Super Speed Device ya que a través de esta consola el usuario podrá enviar comandos.
Estos comandos serán:

• pclk =⇒ Con el cual se permitirá al usuario cambiar la frecuencia de reloj, esto será
muy útil para ver los diferentes efectos que produce en la adquisición de datos el
cambio en la frecuencia de reloj.

• threads =⇒ Esta opción permitirá ver al usuario las diferentes threads que en ese
momento se encuentren activas.

• reset =⇒ Con el cual se resetearán todos los parámetros de la CPU del dispositivo
FX3 Super Speed.

• fpga =⇒ Servirá para cambiar el valor de la señal Reset que se enviará a la FPGA.

• gpif =⇒ Este comando devolverá en que estado del diagrama del GPIF II se encuen-
tra el programa.

Para configurar la consola y que se pueda comunicar con el procesador, lo primero que
se hará es activar el driver del periférico UART con la función CyU3PUartInit(), luego se
configurará la comunicación UART con una tasa de 115.200 baudios, que es la recomen-
dada por el fabricante, y se activará tanto la recepción como la transmisión de datos.
Toda esta configuración del periférico se hará con la función CyU3PUartSetConfig().

Luego se conectarán los drivers del debugging del sistema al periférico para que todos
los mensajes de depuración sean enviados a la consola, esto último se hará con la función
CyU3PDebugInit() y por último se creará una tubeŕıa que vaya desde el periférico UART

49

hasta el procesador pasando por el DMA con la función CyU3PDMAChannelCreate(). A
través de esta tubeŕıa llegaran los comandos enviados por el usuario al procesador y este
enviará los mensajes de depuración a la consola.

Lo siguiente será inicializar los pines que tendrán comunicación directa con la FPGA y
que no estarán controlados por el bloque GPIF II sino que serán léıdos y escritos desde
el procesador, para ello se ejecutará la función InitializeFPGA() del archivo Runapplica-
tion.c. Lo primero que se hará en la función es inicializar los relojes del GPIO, se utilizará
una fuente de reloj interna y se inicializará con la función CyU3PGpioInit().

Ahora se configurarán los pines. El primer pin en ser configurado será el pin GPIO27
perteneciente al reset y el GPIO54 perteneciente al LED, para que los pines se puedan
sobreescribir se utilizará la función CyU3PDeviceGpioOverride() y se le dará el valor 1
al reset para que la FPGA se inicie en el estado RESET, esto se hará con la función
CyU3PGpioSetSimpleConfig() y luego se configurará el pin GPIO26 para que pueda leer
los datos que le llegan con la función CyU3PIOSetSimpleConfig() .

Por último antes de entrar en el bucle infinito perteneciente a la aplicación habrá que
configurar ésta asignándole un nombre, una posición en memoria e indicando al sistema
operativo que se quiere que la aplicación se inicie de forma inmediata.

Ahora se pasará a la aplicación que estará en la función ApplicationThread() en el archivo
RunApplication.c. Lo primero que se hará es inicializar el USB invocando a la función
InitializeUSB(), esta función se encontrará en el archivo USB Handler.c. Lo primero que
se hará es inicializar el driver del módulo USB, esto se hará con la función CyUSBStart().
Una vez iniciado se configurarán los callbacks con las funciones CyU3PUsbRegisterSetUpCallback(),
CyU3PUsbRegisterEventCallback() y CyU3PUsbRegisterLPMRequestCallback(). Los call-
backs serán:

• SetupCallback =⇒ La cual establecerá el comportamiento de la conexión USB a
través del Class and Vendor que se reciba. Para este experimento se busca una
aplicación tipo streaming por lo que el VendorID será ”04B4h” el ProductID ”00F1h”
y la clase ”00h”.

• EventCallback =⇒ Se utilizará para notificar estados importantes en las transiciones
del USB, por ejemplo, cuando se inicia o se para la aplicación.

• LPMRequestCallback =⇒ Para controlar la cantidad de enerǵıa que se le pasará al
módulo USB que vendrá dado en función de la velocidad de transmisión con la que
se quiere trabajar.

A continuación se configurará el USB con sus descriptores con la función SetUSBDescrip-
tors() invocada desde el archivo USB Handler.c y contenida en USB Descriptors.c. Por
último se activará la conexión USB con la función CyU3PConnectState() y se irá a la
función StartApplication().

50

La función StartApplication estará en el archivo StartStopApplication.c. En esta función
lo primero que se hará es preguntar por la velocidad del USB con CyU3PGetSpeed(), con
esto se sabrá con que tipo de USB se va a transmitir, en este caso será un USB 3.0. Luego
se pasará a iniciar los relojes del GPIF II, que irán al doble de frecuencia que la FPGA.
Estos se iniciarán con la función CyU3PPibInit(). A continuación se configurarán los
endpoints con CyU3PSetEpConfig() y la tubeŕıa que irá desde el bloque GPIF II hasta
el USB a través del Distributed DMA Controller con CyU3PDMAChannelCreate(). La
tubeŕıa se configurará para que el productor sea el bloque GPIF II, el consumidor el
bloque USB y quien la controle sea el procesador, por tanto estará en modo AUTO. Por
último se ejecutará la función StartGPIF() donde se cargará el programa de este bloque
con CyU3PGpifLoad() y se configurará el flag DMA0 Watermark para que se active dos
ciclos antes de que el buffer se llene con CyU3PGpifSocketConfigure() y se activará la
variable glIsApplicationActive para que se puede ejecutar la aplicación del usuario.

En esta aplicación situada en RunApplication.c se comprobará en todo momento el estado
del GPIO45 y se encederá o apagará el LED en función de su estado. Cuando se encienda
el LED significará que hay una transmisión en marcha.

Una vez que se han escrito todos los códigos estos se compilarán y se creará un archivo
.img que se cargará en el FX3 Super Speed Device a través del USB 3.0 con el programa
USB Control Center.

5.2.3 Visual Studio 2013

Para recolectar los datos que van llegando al ordenador se utilizará el ejecutable Col-
lectData.exe, este ejecutable es proporcionado por Cypress pero tiene una limitación en
tiempo de 50 segundos y lo que se busca es una transmisión de datos a alta velocidad y
durante mucho tiempo, por ello se utilizará este programa para modificar el ejecutable e
introducir los siguientes tiempos 60, 120, 180, 240, 300, 600, 900, 1.800, 2.700, 3.600 y
432.000 segundos.

5.2.4 MATLAB

Una vez que se halla finalizado la transmisión de datos se dispondrá de un archivo .bin
en el cual se tendrán todos los datos que se han enviado, pero no se sabe si la transmisión
ha estado libre de errores y para ello se utilizará MATLAB, se dispondrá de dos scripts
uno llamado analisis final gpif2.m y otro llamado representar datos.m

El primer script analisis final gpif2.m servirá para analizar los datos y ver si se tienen
errores, para ello nos ayudaremos de una máscara que se irá comparando con la datos que
se han recibido para ver si ha habido errores en la transmisión.

Lo primero que se hará es abrir el archivo donde se encontrarán los datos y se bus-
cará el principio de la secuencia, para ello se irán leyendo y guardando los datos en un

51

Imagen 35: Apariencia del ejecutable CollectData.exe después de su modificación

vector de 10.000 posiciones, por tanto una vez encontrado el principio de la secuencia se
pasará a otro bucle en el cual se terminará de comprobar el conjunto de datos ya léıdos,
en el caso de que se detecte un error la variable error se incrementará en una unidad.

Luego se entrará en un bucle infinito del cual sólo se saldrá con la sentencia break en
el caso que se halla llegado al final de fichero, esto se indicará con la variable final fichero.
En este bucle lo que se hará es rellenar el vector de 10.000 posiciones y compararlo con
la máscara de la que se dispone, en el caso de que halla un error se sumará una unidad a
la variable error.

Por último una vez que se halla salido del búcle el programa devolverá los siguientes
parámetros: número de datos que se han leido, número de errores y relación errores/número
de datos léıdos.

En el segundo script representar datos.m se representarán los datos de forma gráfica. En
este script lo que se hará es abrir el archivo, luego se encontrará el principio de la secuencia
y se irán leyendo bloques de datos que se guardarán en un vector de 1000 posiciones que
serán transformados a un entero primero a través de la función lectura 2bytes y represen-
tados seguidamente a través de la instrucción plot.

5.2.5 Funcionamiento

Una vez que se tienen todos los códigos programados y compilados además de todas las
partes del experimento en funcionamiento, se comprobará en primer lugar que la trans-
misión se hace de manera correcta para ello se analizarán las señales en el osciloscopio
para luego pasar a realizar diferentes pruebas, estas pruebas consistirán en primer lugar

52

en una transmisión de datos a una frecuencia de 1 MHz, velocidad de transmisión en torno
a 2 MBps, para ver que a esa frecuencia se puede establecer una comunicación sin errores
y por tanto se cumplirán los requerimientos exigidos para el proyecto, una vez hecho se
hará un análisis de la relación entre la tasa de transmisión y la tasa de error.

Se empezará por el análisis de la señales en el osciloscopio para ello primero se recordará
como funciona el programa. En un primer momento se estará en un estado de stand by
en el cual lo único que se hará es escribir ceros para llenar los buffers del ordenador, esto
se hace para facilitar el encontrar el principio de la secuencia, y se estará aśı hasta que el
usuario encienda el interruptor (pushbutton=1), en este momento se iniciará la escritura
cuando el buffer del DMA esté listo (DMA0 Ready=1). Se estará escribiendo hasta que
se reciba el flag DMA0 Watermark. Mientras se realiza la escritura la señal WR=1, el
flag DMA0 Ready=1 y el otro flag el DMA0 Watermark=0.

Dos ciclos antes de que el buffer del DMA se halla llenado y no acepte más datos el
flag DMA0 Watermark se activará, en ese momento se dejará de escribir (WR=0) y se
iniciará un contador para dejar tiempo a que se vaćıen el buffer del DMA, al terminar el
contador si el flag DMA0 Ready=1 se volverá a escribir hasta que casi se vuelvan a llenar
los buffers y se vuelva a recibir el flag DMA0 Watermark y aśı se seguirá hasta que se
apague el interruptor y se reciba la señal pushbutton=0.

Durante la transmisión se tendrán las siguientes señales en el osciloscopio en la relación
FPGA-GPIF II:

Imagen 36: Señales del experimento 2 I

Haciendo un zoom se pueden observar mejor las transiciones:

53

Como se puede observar mientras se está realiza la escritura el flag DMA0 Watermark se
activará indicando que el buffer se llenará en dos ciclos de reloj, en eso momento se dejará
de escribir, el flag DMA0 Ready permanecerá 4 ciclos más activo, que se corresponderán
con dos ciclos que aún falta para que se llenen el buffer más los ciclos que le cueste
reaccionar que serán dos de espera reaccionando al tercero.

Imagen 37: Señales del experimento 2 II

En el caso contrario que és en el que se está esperando a que se vaćıe el buffer del DMA
para poder escribir, se esperará hasta el final del contador, en ese momento se verificarán
los flags DMA0 Ready y DMA0 Watermark y si DMA0 Ready=1 y DMA0 Watermark=0
se volverá a escribir por lo que WR=1 y se estarán escribiendo datos hasta que se vuelva
a recibir otra vez el flag DMA0 Watermark activo.

Imagen 38: Señales del experimento 2 III

54

Una vez se han analizado las señales en el osciloscopio se pasará a un analisis dependiente
de la frecuencia en la cual se proporcionará la velocidad de transmisión, el número de
datos léıdos, el número de errores y la proporción número de errores/número de datos
léıdos.

- Frecuencia = 1 MHz

A esta frecuencia se tendrá una velocidad de transmisión que será proporcionada por
el ejecutable CollectData.exe de:

Imagen 39: Velocidad de transmisión a 1 MHz

Al analizar los datos que han sido enviados durante una hora entre el dispositivo FX3
Super Speed y el ordenador con MATLAB se tendrán los siguientes resultados:

Imagen 40: Estad́ısticas de la transmisión a 1 MHz

Si se representara la señal esta tendŕıa la siguiente forma:

Imagen 41: Representación señal a 1 MHz

55

Como se puede observar a vista de los resultados se ha llevado a cabo la transmisión
sin errores cumpliendo con los requerimientos establecidos para este proyecto, lo que se
hará ahora es ver cual es la influencia de la tasa de transmisión sobre la tasa de error
analizando archivos de datos que han sido enviados durante 30 minutos.

Tasa de Transmisión (Mbps) Probabilidad de error (%)
16 0
32 0.001775
64 0.005507
96 0.008015
128 0.008176

Imagen 42: Representación de la tasa de error respecto a la tasa de transmisión

En el gráfico se puede ver que cuanto mayor sea la tasa de transmisión y en consecuen-
cia la frecuencia de reloj mayor será la probabilidad de error, además cabe destacar los
porcentajes de error tán pequeños que se tiene pero intolerables para la aplicación que se
busca.

56

6 CONCLUSIONES

Cuando se inició este proyecto se persegúıa el objetivo de transferir las senãles que llegan
al monitor AVALON a una tasa de 16 Mbps al ordenador a través del FX3 Super Speed
Device y de analizar estas señales para demostrar que la transferencia se produce sin er-
rores.

El objetivo se ha cumplido sin problemas ya que con una frecuencia de 1MHz se ha lo-
grado llevar a cabo una transmisión de datos durante 1 hora transmitiendo 4.437.335.989
Bytes sin errores. Esto ha sido posible gracias a la utilización de los flags DMA0 Ready
y DMA0 Watermark que han ido señalando cuando el buffer del DMA estaba disponible
para recibir datos y cuando éste se iba a llenar.

Una vez comprobados los dos objetivos principales del proyecto se han llevado a cabo
una serie de simulaciones para ver como afecta la tasa de transmisión a la tasa de error
y se ha llegado a la conclusión de que cuanto mayor es la tasa de transmisión mayor es
el número de datos que se env́ıan en un mismo periodo temporal y a su vez es también
mayor la tasa de error.

Se llega a la conclusión, de que el chip FX3 incoporado en el FX3 Super
Speed Device es capaz de transportar datos entre una FPGA y el ordenador
a través de un USB 3.0 sin errores, por tanto podrá ser utilizado para realizar
el depurado de las señales del monitor AVALON en el ordenador, siempre y
cuando se utilicen una serie de buffers entre el monitor y el ordenador debido
al cuello de botella que se genera en el buffer del DMA.

58

