W Universidad
i0i  Zaragoza

Proyecto Fin de Carrera

Analisis de la efectividad de una memoria cache ACDC en
el conjunto de programas de prueba SPEC CPU 2006

Antonio Gallego Padin

Director: Dr. Rubén Gran Tejero

Departamento de Informatica e Ingenieria de Sistemas
Escuela de Ingenieria y Arquitectura

Universidad de Zaragoza

Junio 2015






Dedicado a mi familia y amigos.






Agradecimientos

Quiero aprovechar estas lineas para agradecer a todas las personas que me han ayudado a lo

largo de estos anos en la Universidad de Zaragoza.

En primer lugar agradezco a Rubén Grant, mi director del Proyecto, por todo el trabajo, apoyo
y dedicaciéon que ha tenido conmigo a lo largo de estos meses de trabajo. Para mi, lo mas

importante, es todo lo que me ha ensefiado y por eso le estoy muy agradecido.

También quiero agradecer a todos mis amigos y companeros que he tenido estos anos en la
Universidad, que me han apoyado en los buenos y malos momentos y que gracias a ellos, hoy

puedo estar aqui.

Agradecer a todos los profesores en general de esta Universidad, que de una forma u otra me

han ayudado a lograr hacer este Proyecto.

No puedo olvidar mis agradecimientos para mi familia.

Muchas gracias para todos.






Andadlisis de la efectividad de una memoria ACDC en el

conjunto de programas de prueba SPEC CPU 2006

Resumen

Este Proyecto de Fin de Carrera es un Proyecto del Departamento de Informética e Ingenieria
de Sistemas de la Universidad de Zaragoza. La idea de este Proyecto surgié a raiz de la creacién

de una nueva memoria cache ACDC [I] por parte de los profesores del Departamento.

En este proyecto se ha evaluado esta memoria cache ACDC dentro de la jerarquia de memoria
de un procesador de altas prestaciones en SPEC CPU 2006 [2]. La memoria ACDC tiene una
politica de reemplazo basada en instrucciones, a diferencia de las memorias cache convencionales,
que se basan en el flujo de instrucciones del programa. Estas instrucciones se obtienen con un

profiling o andlisis previo.

Esta memoria ACDC tendra dos organizaciones distintas e independientes dentro de la jerar-
quia de memoria convencional. Por una parte, estard organizada de forma secuencial. En esta
organizacién la memoria ACDC serd la que ocupe el primer nivel de la jerarquia de memoria
del procesador. Serd a ella a quien el procesador le solicite los datos. La otra organizacién es de
forma paralela con el primer nivel de la jerarquia de memoria. En este caso el procesador solicita
los datos a las dos memorias, ACDC y L1, de forma paralela. La latencia de ejecucién de esta
memoria ACDC es més pequena que la de la memoria cache L1. Se intenta por tanto, disminuir

la latencia de ejecucién de las instrucciones.

La finalidad de incluir esta memoria ACDC dentro de la jerarquia convencional de memoria de
un procesador de altas prestaciones es intentar que el rendimiento aumente y que el consumo

disminuya.






Contenidos

[Agradecimientos|

[Resumen]

|[Lista de Figuras|

(Lista de Tablas|

I Tucaidnl

[1.1. Contexto del Proyecto| . . . . . . . . . . . . . .
1.2. Objetivos| . . . . . . o o e e e

|1.3. Estado del arte y trabajos previos|

|[1.4. Organizacion de la Memorial . . . . . . . . . . ... L o oL

[2. Memoria ACDC en procesadores de altas prestaciones|

[2.1. Los procesadores de altas prestaciones|

[2.3. Organizacion de la memoria ACDC dentro de la jerarquia de memorial . . . . . .

[2.3.1.  Organizacion secuencial.| . . . . . . . .. ... Lo oo

13.3.4. Comparativa ficheros analisis, 1 vs 100]. . . . . . . . . .. ... ... ...

13.3.5. Otras pruebas|. . . . . . . . . ..

|4. Conclusiones y trabajos futuros.|

4.2, 'Trabajos futuros.| . . . . . . . ...

X

VII

IX

XI

XIII

W W W N -

EN N oG, R

10
10
13
13

14
14
14
15
15
16
17
18
19

20
20
20



Contenidos X
|A. Carga y Desarrollo del Proyecto| 22
IA.L. Gestion del tiempo| . . . . . . . .o 22
[A2 Esfuerzoinvertidol . . . . . . . . .. .. 24
[A3 Problemas encontradosl . . . . . . . . .. .. 24
[B. Procesadores de altas prestaciones y SPEC CPU 2006| 26
IB.1. Los procesadores de altas prestaciones| . . . . . . . . .. ... ... 26
IB.1.1. Lanzamiento a ejecucion de instrucciones especulativamente. . . . . . . . 27

IB.1.2. Configuracion del procesador de altas prestaciones| . . . . . .. ... ... 28

IB.2. Cargas de trabajo| . . . . . . . . . . . . 29
|C. Descripcion y funcionamiento de la memoria ACDC| 30
|C.1. Descripcion y tuncionamiento de la memoria ACDC| . . ... ... ... ... .. 30
[D. Implementaciones| 33
[D-T. Modificaciones en simulador 3] . . . . . . . . .. 33
ID.2. Implementaciones|. . . . . . . . . . ... 35
D3 Métodos nuevosl . . . . . . . . 42
D4 Automatizaciones . . . . . . . . . ... 42
|E. Resultados, costes, métricas y analisis previo. 48
[E.1. Costes energeticos| . . . . . . . . . L e e e 48
E27ADAGSE - - o o o o o e 49
ESTMEETCAT . « o o o o o oo 51
|E.4. Graficas suite enteros y suite float| . . . . . . . ... ..o oo 51
[E5._Resultados suite enterod . . . . . . . . . ... 59
|[E.5.1. Resultados sin el uso de la memoria ACDC, suite enteros.| . . . . . . . .. 59

|[E.5.2. Resultados con la organizacion secuencial, suite enteros. . . . . . . . . .. 61

|[E.5.3. Resultados con la organizacion paralela, suite enteros.| . . . . . . . . . .. 64

[E.6. Resultados suite floafl. . . . . . . . . .. ... 67
|E.6.1. Resultados sin el uso de la memoria ACDC, suite float.| . . .. ... ... 67

|E.6.2. Resultados con la organizacion secuencial, suite float.| . . ... ... ... 69

|E.6.3. Resultados con la organizacion paralela, suite float.|. . . . . . ... .. .. 72

. 7. Resultados con 100 ficheros de analisis. Suite enteros). . . . . ... ... ... .. 75
|E.7.1. Paralelo, 100 tramos.|. . . . . . . . . ... o 75

|E.7.2. Secuencial, 100 tramos.| . . . . . . . . ... L oo 78

.8, Resultados con 100 ficheros de analisis. Suite float) . . . . . . ... ... ... .. 81
|E.8.1. Paralelo, 100 tramos.|. . . . . . . . . .. . o 81

IE.8.2. Secuencial, 100 tramos.| . . . . . . . .. .. 85

IE.8.3. Comparativas 1 vs 100 tramos| . . . . . . . . ... ... ... ....... 89

IE.8.4. Tablas con otros resultados| . . . . . . . .. . ... ... .. 90

92



Indice de figuras

|L1.1. Diferencia de rendimiento entre la CPU y la memoria |4 . . . .. ... ... .. 1
[1.2. Jerarquia de memoria con tres niveles y memoria principal| . . . . .. ... ... 2
[2.1. Segmentado del procesador utilizado en este proyecto.| . . . . . ... . ... ... 6
[2.2. Estructura hardware que implementa la ACDC.|. . . . . ... ... ... .. ... 6
[2.3. Organizacion secuencial de la memoria ACDC con la jerarquia convencional de |
MEMOTIAl - - v v v e e e e e e e e e e e e 7

[2.4. Cronogramas de la organizacion secuencial de la memoria ACDC con la jerarquia |
[ convencional de memorial . . . . . ... 9
[2.5. Funcionamiento paralelo de la memoria ACDC con la jerarquia convencional de |
memoria.l ... e e e e e e e 10

[2.6. Cronogramas de la organizacion paralelo de la memoria ACDC con la jerarquia |
[ convencional de memorial . . . . . . . .. 12
[2.7. Escritura de datos en memoria, tanto en DC comoen L1.| . . . . ... ... ... 13
13.1. Grafica que representa los valores de IPC obtenidos con la ejecucion del procesador |
con las distintas organizaciones de memoria, modo solo, modo paralelo y modo |
secuencial para la suite enteros.|. . . . . ..o Lo 16

13.2.  Grafica que muestra el consumo de total de energia en las simulaciones expresado |
en mJ, para los tres modos de funcionamiento en la suite enteros.|. . . . . . . .. 17

IA.1. Diagrama de Gantt del proyecto.| . . . . . . . . ... L oL 23
|A.2. Distribucion del tiempo invertido en la realizacion de este Proyecto de Fin de |
CarTera. . . . . . . o o e e e e e e e e 24

IB.1. Cronograma en el que se muestra el encadenamiento de instrucciones dependientes |
cuando hay acierto en la prediccion de la latencia de ejecucion.| . . . . . . . . .. 27

IB.2. Cronograma en el que se muestra el encadenamiento de instrucciones después de |
un fallo en la prediccion y relanzamiento.| . . . . . .. .. ..o 0000 28

|IC.1. Fragmento de codigo de un programa.| . . . . . . .. .. ... L oL 30
|IC.2. Codigo maquina de las instrucciones del bucle del ejemplo de la figura |C.1]| 31
|IC.3. Estructura que implementa la ACDC.| . . . ... .. ... ... ... ....... 31
ID.1. Esquema de las etapas del procesador simulado en este proyecto con las colas |
asociadas a las etapas.| . . . . . .. .. L L 33

ID.2. Ejecucion de las etapas del simulador que implementa el procesador usado en este |
Proyecto.| . . . . . o 34

ID.3. Segmentado del procesador usado en este Proyecto con todas las colas que he usado.| 35

[E.1. Formula que muestra como se obtiene el coste de energia dinamica en la organi-

zacion secuenciall . . . . .. L L L e 49
IE.2. Formula que muestra como se obtiene el coste de energia dinamica en la organi- |
zacion paralela. . . . . . .o Lo 49
|E.3. Valores de IPC para la suite enteros.| . . . . . . . . . ... ... ... ... .. 51

XI



Indice de Figuras XII

|E.4. Valores de IPC en porcentajes para la suite enteros.| . . . . . ... .. ... ... 52
|[E.5. Consumo estatico para la suite enteros expresadoennd.| . . . . .. .. ... ... 52
|E.6. Porcentaje de consumo estatico para la suite enteros.. . . . . . ... ... ... 52
IE.7. Consumo de energia dinamica expresado en nJ para la suite enteros.| . . . . . . . 53
|IE.8. Porcentaje de consumo dinamico para la suite enteros.| . . . . . .. ... ... .. 53
IE.9. Consumo total expresado en nJ para la suite enteros.|. . . . . . .. .. ... ... 53
|[E.10. Consumo total en porcentajes para la suite enteros.|. . . . . . . .. .. ... ... 54
|E.11.Indicador Energy_Delay del consumo de energia para la suite enteros.|. . . . . . . 54
|[E.12. Indicador del consumo Energy_Delay expresado en porcentajes de la suite enteros.| 54
|E.13. Valores de IPC para la suite float.| . . . .. .. ... ... ... ... 55
|[E.14. Valores de IPC en porcentajes para la suite float.| . . . . . .. ... .. ... ... 55
|[E.15.Consumo estatico para la suite float expresadoennd.| . . .. ... .. ... ... 55
|[E.16.Porcentaje de consumo estatico de la suite float. . . . . . .. ... ... ... 56
[E.17.Consumo de energia dinamica expresado en nJ para la suite float.|. . . . . . . .. 56
|E.18.Porcentaje de consumo dinamico para la suite float.| . . . .. ... .. ... ... 56
|[E2.19.Consumo total expresado en nJ para la suite float.| . . . . .. ... .. ... ... 57
|[E2.20. Consumo total en porcentajes de la suite float.| . . . . . ... ... ... ... .. 57
|E.21.Indicador Energy_Delay del consumo de energia para la suite float,| . . . . . . .. 57

|E.22.Indicador del consumo Energy_Delay expresado en porcentajes de la suite float.| . 58




Indice de tablas

13.1. Tabla con las configuraciones de la jerarquia de memoria del procesador a utilizar |

| en la ejecucion de las simulaciones.| . . . . ... ... 0000000 14
[3.2. Tabla que muestra la métrica Energy_Delay |5] de las simulaciones para los tres |
[ modos de funcionamiento en Ia suite enteros] . . . . . .. .. ... ... ... 17
13.3. Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos |
| en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.| . . . . . . .. 19
I _Resultados finales] . . . . . . . . ... L 20
IB.1. Configuracion del procesador de altas prestaciones utlizado en este Proyecto para |
[ lag stmulaciones.) . . . . . . e e e 28
IB.2. Benchmarks enteros usados en la ejecucion de las simulaciones.| . . . . . . . . .. 29
IB.3. Benchmarks floats usados en la ejecucion de las simulaciones.| . . . . . . .. ... 29
IE.1. Coste de energia estatica para las distintas memorias expresadoen nJ.| . . . . . . 49
[E.2. Coste de energia dinamica para las distintas memorias expresado en nJ.| . . . . . 49
|IE.3. Resultados para la suite Enteros sin memoria ACDC.|. . . .. ... .. ... ... 59
|E.4. Resultados para la suite Enteros con la organizacion Secuencial.. . . . . . . . .. 61
|[E.5. Resultados para la suite Enteros con la organizacion paralela.| . . . . . . .. . .. 64
IE.6. Resultados para la suite Float sin memoria ACDC.|. . . . ... .. ... ..... 67
|[E.7. Resultados para la suite float con la organizacion Secuencial.| . . . . . . ... .. 69
|[E.8. Resultados para la suite float con la organizacion Paralela.. . . . . .. ... ... 72
|[E.9. Tabla con resultados de la suite entera y con 100 ficheros de analisis previo.| . . . 75
|E.10. Tabla que muestra los resultados correspondientes a la suite float, en modo se- |
| cuencial y con 100 tramos de ficheros de analisis.| . . . . . . ... ... ... ... 78
|[E.11. Tabla que muestra los resultados de la suite float para el modo paralelo y con 100 |
[ tramos de fichero de analisis) . . . . . . .. ... .. ... o oL, 81
|E.12. Tabla que muestra los resultados de la suite float, en el modo secuencial y con 100 |
[ ficheros de analisis| . . . . . . . . . 85
|[E.13. Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos |
| en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.| . . . . . . .. 89
|E.14. Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos |
| en DC y consumo de 1 tramos vs 100 tramos para la suite float.|. . . . . . . . .. 89
|[E.15.Tabla que muestra los ciclos de ejecucion de la suite enteros en los tres modos de |
| funcionamiento y con 1 vs 100 ficheros de analisis| . . . ... ... ... .. ... 90
|E.16. Tabla que muestra los ciclos de ejecucion de la suite float en los tres modos de |
| funcionamiento y con 1 vs 100 ficheros de analisis] . . « « « v v v v v v v oo oL 90
|E.17. Tabla que muestra la diferencia de rendimiento para la suite enteros con una |
| entrada distinta para los tres modos de funcionamiento.| . . . . . . ... ... .. 90

|[E.18. Tabla que muestra la diferencia de rendimiento para la suite float con una entrada |
| distinta para los tres modos de funcionamiento.| . . . . . . . .. ... 0oL 90

XIII






Capitulo 1

Introduccion

El tiempo de ejecucion de un programa suele estar limitado por las operaciones de acceso a me-
moria, tanto de instrucciones como de datos. Tecnolégicamente, hay una diferencia muy grande
y crectente entre la capacidad de procesamiento de la CPU y el ancho de banda y latencia de
las memorias (figura [L.1)). Esto se conoce como memory wall. La suma de todo esto nos lleva a
severas pérdidas de rendimiento ya que la CPU tiene que esperar a que la memoria le suministre
la informacién para avanzar la ejecucién del programa. Una alternativa es introducir una jerar-
quia de memoria. En la figura [] se puede observar que en los tltimos anos, el rendimiento
de la CPU ha experimentado una mayor velocidad en el procesamiento de las instrucciones en

relacién a la memoria. Por este motivo, la jerarquia de memoria es tan importante.

1688 T T T T

188 g CPU Speed —
IRAN Spesd ——

18

Ferformance

@.1 1 1 1 1 1 1
1975 19868 1985 1998 1995 2806 26685 2618
Year

F1GURA 1.1: Diferencia de rendimiento entre la CPU y la memoria [4].

La jerarquia de memoria se organiza en varios niveles de memoria, que son distintos en cuanto a
capacidad, latencia y ancho de banda. Cuanto més cerca esté un nivel de memoria del procesador,
més pequena es su capacidad y su latencia. En la figura [1.2] se observa que el nivel mas cercano
al procesador es el nivel mds bajo y se llama nivel 1 (L1). Le siguen el nivel 2 (L2), nivel 3 (L3)

y el ultimo nivel de memoria, la memoria principal.



Capitulo 1. Introduccion 2

Jerarquia de memoria

Main Memory [« »| |3 q_.-

-
Mayor capacidad Menor capac dad
Mayor tiempo de acceso Menor tiempo de acceso

F1GURA 1.2: Jerarquia de memoria con tres niveles y memoria principal.

La intencionalidad de una jerarquia de memoria es que las peticiones por parte del procesador
sean servidas por el nivel 1 de la jerarquia de memoria y de esta forma los accesos a memoria
experimentan menor latencia que si fuesen servidos desde la memoria principal. Asi pues, en
presencia de una jerarquia de memoria convencional, el procesador siempre solicita la direccién
a la que quiere acceder al nivel 1 de la jerarquia de memoria, con la esperanza que se encuentre
alli y asi, sea servido con una baja latencia. Si la direccién no se encuentra en dicho nivel, se
buscara en el siguiente nivel, a un coste mayor de latencia. De este modo, lo que se busca con
esta jerarquia de memoria es que los contenidos mas usados estén en los niveles mas bajos de la

jerarquia para asi ocultar el memory wall.

Las jerarquias de memoria funcionan bien ya que los programas presentan reuso, tanto a nivel
de instrucciones como de datos. Este reuso es generado, por ejemplo, por la presencia de bucles o
bien por el acceso reiterado a variables dentro de un programa. Por ejemplo, si hay un bucle de n
iteraciones dentro de un programa, se accede a las mismas instrucciones mientras se esté dentro
del bucle. Por tanto, existe reuso en las instrucciones del bucle. Por otra parte, por ejemplo,
hay reuso temporal, en la variable de control o iterador de dicho bucle. Lo que se busca es que,
aquellas instrucciones y variables que presentan méas reuso, se encuentren en el nivel mas bajo de
la jerarquia de memoria, intentando minimizar los accesos a los niveles més altos de la jerarquia

de memoria.

En los esquemas convencionales de jerarquia de memoria, el reuso se logra gracias al flujo de
referencias de las instrucciones de un programa. Esta es la forma de gestionar el contenido de

los niveles de la jerarquia de memoria y por eso funciona bien.

Otra forma para gestionar el contenido de una jerarquia de memoria es a través de qué instruccién
genera la direccién a la variable que presenta reuso. Esta forma de gestién es la que se plantea

con la memoria ACDC y es la que utilizaremos en este trabajo.

1.1. Contexto del Proyecto

Este Proyecto de Fin de Carrera es un proyecto del Departamento de Informatica e Ingenieria de
Sistemas de la EINA de la Universidad de Zaragoza y es una continuacién a estudios relacionados

con la incorporacién de un nuevo nivel de memoria dentro de la jerarquia de memoria.



Capitulo 1. Introduccion 3

1.2. Objetivos

El objetivo de este Proyecto Fin de Carrera es evaluar la memoria ACDC en un procesador de
propésito general de altas prestaciones, utilizdndola como una cache de nivel 0, dentro de la
jerarquia de memoria, o bien utilizdndola de forma paralela con el nivel L1 de la jerarquia de

memoria, en el conjunto de programas de prueba SPEC CPU 2006 [2].

1.3. Estado del arte y trabajos previos

En este Proyecto he extendido el trabajo presentado por Juan Segarra y otros [I] (profesores
de la Universidad de Zaragoza). Mds concretamente, he evaluado el impacto en energfa y rendi-
miento de la memoria ACDC en un procesador de altas prestaciones, esto es superescalar, con
lanzamiento de instrucciones fuera de orden y especulacién de latencia de ejecucién (ver 7
para la Benchmark Suite SPEC CPU 2006 [2].

Esta propuesta de memoria busca aprovechar el reuso existente en los algoritmos. La idea prin-
cipal es que son las instrucciones de acceso a memoria las que generan las referencias a memoria
correspondientes a los datos y por lo tanto, se podria identificar aquellas instrucciones de memoria
que acceden a los contenidos con més reuso y que fuesen estas instrucciones las que determinasen

el contenido de la cache de datos.

El uso de caches de tamano reducido y muy baja latencia en jerarquias de memoria ha sido
muy utilizada [6], [7], [8], [9], [I0]. Algunas propuestas buscan reducir el tiempo de acceso y asi
mejorar el tiempo de ejecucién [6], [7]. Otras propuestas, buscan reducir el consumo energético
[, [8l, [9], [10]. En cualquier caso, ninguna de las propuestas se basa en controlar el reemplazo

de dicha cache de datos a través de las instrucciones que realizan el acceso a cache.

En cuanto a qué informacién se utiliza para gestionar el contenido de la cache de datos, la
gran mayoria de los trabajos utilizan solo el flujo de direcciones generado por el programa para
seleccionar qué contenidos permanecen en cache y asi aprovechar el reuso. Aquellos trabajos
[I1] que utilizan la direccién de las instrucciones para gestionar el contenido de cache lo suelen
utilizar para predecir cudl va a ser el comportamiento de la cache y no para identificar aquellas

instrucciones que tienen reuso como si lo hace la memoria ACDC [I].

1.4. Organizacién de la Memoria

Esta Memoria de este Proyecto de Fin de Carrera tiene la siguiente estructura:

= En este capitulo |1 se presenta la problemética asociada al aumento de prestaciones del
procesador con respecto a la memoria. También se habla del estado del arte y trabajos

previos.

» En el capitulo [2| se describe cémo hemos organizado la memoria ACDC [I] dentro de la

jerarquia de memoria de un procesador de altas prestaciones.



Capitulo 1. Introduccion 4

= En el capitulo [3| se presentan y analizan los resultados obtenidos con la ejecuciéon de un

procesador de altas prestaciones y la carga de trabajo SPEC CPU 2006 [2].

» Finalmente, en el capitulo [4] se muestran las conclusiones de este proyecto y se proponen

lineas de trabajo futuro.
Ademiés de estos capitulos, también se incluyen los siguientes apéndices:

» Apéndice[A] Carga y desarrollo del Proyecto. En esta parte, se explica la gestién del tiempo

del Proyecto, los trabajos realizados, esfuerzo invertido y situaciones problematicas.

» Apéndice [B| Procesadores de altas prestaciones y SPEC CPU2006 [2]. Los procesadores
de altas prestaciones son explicados en este apéndice y la problematica de la ejecucion

especulativa. También se indican las cargas de trabajo utilizadas en el Proyecto [2].

» Apéndice [C] Introduccién a la memoria ACDC. En este apéndice se describe y explica la
memoria ACDC [I].

» Apéndice[D] Implementaciones realizadas. Aqui se muestran los cambios hechos en el cddigo
del simulador usado en el Proyecto [3] y algunos ficheros de automatizacién y obtencién de

datos con el fin de agilizar los trabajos.

= Apéndice Resultados, costes energéticos, métricas y andlisis previo. En este apéndice
se muestran todos los resultados que hemos obtenido a lo largo del proyecto asi como las
férmulas necesarias para obtener algunos de ellos. También se describen las métricas usadas

y la fase previa de analisis o profiling.



Capitulo 2

Memoria ACDC en procesadores

de altas prestaciones

Los procesadores de altas prestaciones deben hacer un uso extensivo de la especulacion para
conseguir sus objetivos de rendimiento. Un ejemplo de especulacién es la prediccion de latencia
de ejecucién de instrucciones de acceso a jerarquia de memoria. En este capitulo voy a presentar
mi trabajo de implementacién de la memoria ACDC [I] en un procesador para altas prestaciones
y més concretamente como afecta esta especulacién, evaludndolo sobre SPEC CPU 2006 [2]. Para
ello, en la primera parte del capitulo haremos alusién a los procesadores de altas prestaciones
y el problema de la ejecucién especulativa. Toda la informacién sobre esto se encuentra en el
apéndice [B| de este documento. Posteriormente presentaremos la idea de la memoria ACDC [I],
que se puede consultar en el apéndice [C] Finalmente, explicaré cémo he adaptado esta memoria

ACDC dentro de la jerarquia de memoria convencional de un procesador de altas prestaciones.

2.1. Los procesadores de altas prestaciones

Los procesadores de altas prestaciones se caracterizan por ser altamente segmentados, superes-
calares y con ejecucién fuera de orden de instrucciones. Ademés lanzan instrucciones de forma
especulativa ya que hay instrucciones cuya latencia de ejecuciéon no es conocida en tiempo de
lanzamiento a ejecucion. Las instrucciones de acceso a memoria son un ejemplo, ya que tienen
una latencia de ejecucién que depende del nivel de la jerarquia de memoria en la que se encuentre
el dato al que se quiere acceder y este nivel solo es conocido durante el propio acceso a memoria.
Todas estas caracteristicas hacen que los procesadores de altas prestaciones puedan aumentar su
rendimiento ya que se mejora su capacidad para explotar el paralelismo a nivel de instrucciones
(ILP).

En la figura[2.1] se muestra el segmentando del procesador de altas prestaciones utilizado en este

proyecto.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 6

Busqueda |Decodificacion| Renombre| Emision | Lanzamiento| Payload | Lectura ops. | Ejecucion | Escritura |Consolidacion

(IF) (DE) (RE) | O | (Q) (P) (R) (ME) | (wB) | (CT)

FIGURA 2.1: Segmentado del procesador utilizado en este proyecto.

Para saber mas sobre la ejecucién especulativa de instrucciones y las implicaciones que tiene sobre

los procesadores de altas prestaciones se puede consultar en el apéndice [B| de este documento.

2.2. La memoria cache ACDC

La memoria cache ACDC [I] es una memoria que ha sido desarrollada por los profesores del
Departamento de Informética e Ingenieria de Sistemas de la Universidad de Zaragoza. Se carac-
teriza por que el contenido de la memoria es controlado por las instrucciones y no por el flujo de
direcciones de accesos generados por el programa. Una posible estructura hardware que puede
aprovechar el reuso de estas instrucciones es una memoria muy pequena y completamente aso-
ciativa (DC), con una politica de reemplazo basada en instrucciones que se encuentran en otra
memoria muy pequena (AC). Por ejemplo, en acierto (hit) en lecturas, se proporcionard el dato.
Para saber si hay hit en DC se comprueba si la addr del dato se encuentra en alguna linea de la
tag_data; en acierto en escritura, se actualizard el dato. En fallos, se comprobara si la instruccion
que accede al dato (PC) se encuentra en la AC. Si el PC estd en la memoria AC, tiene permiso
para reemplazar (DRP) en la DC el dato asociado al indice de la instruccién (DC.dx) de la AC.
Si no tiene DRP, no se reemplaza. Esta estructura se puede ver en la figura Su descripcién

y funcionamiento se pueden ver en el apéndice [C] de este documento.

PC addr
l AC DC
tag || DC tag Fullc}i/;t;\:soc
PC idx data
cache
>
1N

iDRP lhit

FIGURA 2.2: Estructura hardware que implementa la ACDC.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 7

2.3. Organizacion de la memoria ACDC dentro de la je-

rarquia de memoria

En mi trabajo, la memoria ACDC podré estar colocada en un nivel inferior a la L1, secuencial-
mente y después del procesador (a un nivel 0, ver figura [2.3) o podréd estar situada al mismo
nivel que la L1, de forma paralela (ver figura|2.5). Estos dos tipos de organizacién, secuencial y

paralelo, para las instrucciones de acceso a memoria, se detallan a continuacion.

2.3.1. Organizacion secuencial.

En esta organizacién de memoria, ver figura la memoria ACDC estd situada entre el proce-

sador y el primer nivel de memoria de la jerarquia convencional de memoria.

DRP, ACTUALIZAR DC Hit DC, dato
Buscar el dato a e T T
siguientes niveles yd “\ /
de lajerarquia de / N
memoria. — —_—
MISS L1 MISS DC, dato Pide dato
L1 < ACDC »———
Pide
\ dato y
pato_

FiGUurA 2.3: Organizacién secuencial de la memoria ACDC con la jerarquia convencional de
memoria.

Cuando la CPU solicita un dato lo hace a la ACDC. Si el dato se encuentra en la DC, tendremos
un acierto o hit y el dato es suministrado por la memoria DC al procesador. Si el dato no esta
en la DC, se tendrd un fallo o miss en DC, lo que significa que el dato hay que ir a buscarlo al
siguiente nivel de la jerarquia de memoria, el nivel 1. Esto trae consigo que haya una penalizaciéon
en latencia en comparacion a la organizacién sin el uso de la memoria ACDC, ya que hemos
accedido secuencialmente a la DC para buscar el dato y hemos fallado. Asi mismo, al causar
fallo en DC, preguntamos a la AC si tenemos DRP. Si el dato se encuentra en la L1, serd ella,
la L1, quien suministre el dato al procesador y si tenemos DRP, la DC se actualizard con el
correspondiente dato. Si el dato no estd en L1, hay que ir a buscarlo a los siguiente niveles de la

jerarquia de memoria con la penalizacién en latencia que ello supone.

Las situaciones que se pueden dar con este tipo de organizacion se pueden ver en los cronogramas

de la figura 2.4 y se explican a continuacion.

El cronograma representa el funcionamiento de una instruccién de acceso a la jerarquia
de memoria sin el uso de la memoria ACDC y hit en L1. En este caso se predijo que la latencia de
ejecucién para la instruccién de acceso a memoria es la latencia de la memoria L1 y al despertar
especulativamente las instrucciones dependientes en el ciclo 5, se ha acertado y hemos obtenido

el encadenamiento esperado.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 8

El cronograma representa el mismo caso que el anterior, pero hay fallo en L1 y el dato
hay que ir a buscarlo a los siguientes niveles de la jerarquia de memoria. Aqui, se ha predicho
que la latencia de ejecucion para el load era la latencia de la L1 y ha habido miss en L1. Por
lo tanto, las instrucciones dependientes del LD se anulan en el ciclo 5 y el LD se duerme a la
espera del dato. Una vez que el dato ya se encuentre en la L1, el LD se vuelve a lanzar y sus
instrucciones dependientes se lanzan en el ciclo 13, pero ya sin especular ya que se predice con

latencia de L1 ya que el dato estd en L1 y asi conseguir que haya encadenamiento.

El cronograma [2.4(c)| representa el caso en el que se accede a la DC y se tiene un hit. Las
instrucciones que se despertaron especulativamente en la etapa IQ del LD (ciclo 2) se ejecutan
haciendo el encadenamiento de instrucciones sin pérdida de rendimiento ya que la ejecucién
especulativa ha tenido éxito puesto que se predijo que la latencia de ejecucién del load seria la
de la memoria DC. En relacion al cronograma hemos ganado 3 ciclos en latencia.

En el cronograma de la figura se puede ver que tenemos miss en DC y hit en L1. En
este caso, las instrucciones dependientes que se despertaron especulativamente en la etapa 1Q
del LD, ya que hemos predicho que la latencia de ejecuciéon para el load, era la latencia de la
memoria DC, se anulan (ciclo 4) y se lanzan dos ciclos méds tarde (ciclo 6), ya que tenemos hit
en L1 y asf conseguir el encadenamiento de las instrucciones. Con respecto al cronograma|2.4(a))|

hemos perdido 1 ciclo en latencia.

Los cronogramas y muestran miss en DC y miss en L1. En estas situaciones, hay que
ir a buscar el dato a los siguientes niveles de la jerarquia de memoria. Se anulan las instrucciones
dependientes despertadas especulativamente en la etapa IQ del LD (ciclo 4), puesto que hemos
predicho al load con latencia de ejecucién de la memoria DC y el load se duerme a la espera
del dato. Una vez que el dato estd disponible en la L1, se relanza el LD y se pueden dar dos
situaciones. Si tenemos DRP, como se ve en el cronograma las instrucciones dependientes
se lanzan en la etapa IQ del LD (ciclo 11) para conseguir el encadenamiento de las instrucciones.

En este caso y con respecto al cronograma [2.4(b)| al tener DRP, hemos conseguido una mejora

de 2 ciclos en latencia. Si no tenemos DRP, se anulan las instrucciones dependientes lanzadas en
la IQ del LD (ciclo 13) para relanzarlas dos ciclos més tarde (ciclo 15), ya que se ha predicho
lanzamiento del load con latencia de la memoria DC (miss en DC) y el dato estd en L1. De
esta forma se logra el encadenamiento de instrucciones, tal y como se muestra en el cronograma
En este caso con respecto al cronograma de la ﬁgura tenemos una penalizacién de

2 ciclos en latencia.

La implementacién de esta idea de organizacién secuencial dentro del simulador que hemos usado

[3], se pueden ver en el apéndice |§| de esta Memoria.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones

Hit L1

N

w[IQ] P [ R [MO}ML[M2][M3 |ayeass
Dependientes *|Q P R ,. E I
Ciclos 1 2 3 4 5 [ 7 8

((A)) Sin memoria ACDC. Acierto en L1.

Miss L1 Latencia en buscar el dato

N

w/IQ| PR [MOMLIM2|M3] .. [1IQ] P | R [MO}ML]|M2][M3 |aveass
Dependientes +|Q P|RJLE l
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13

((B)) Sin memoria ACDC. Fallo en L1.

Hit DC

w [1Q [tP | R [DC lyenss

Dependientes ‘JQ P R E ‘
Ciclos 1 2 3 4 5

((c)) Acierto en DC.

Miss DC  HitL1

LD‘|Q 'P | R |DC| MO ["M1 | M2 | M3

— BYPASS
Dependientes WP | TR CRC JQ | P R JE |
Ciclos 1 2 3 4 5 6 7 8 9

((p)) Fallo en DC, acierto en L1.

Miss DC Miss L1 Latencia en buscar el dato

14 15 16

DRP
o [1Q [P [ R [DC|[MO[ML[M2[M3]...[1Q [tP | R |DC |ayprss
Dependientes M : ~ ;R:: rlQ P R E |
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13 14
((E)) Fallo en DC, fallo en L1 y con DRP.
Miss DC Miss L1 Latencia en buscar el dato 'DRP
w [ 1Q[+P | R [DC[MO[ML[M2[M3[...[IQ [tP | R [DC|MO [M1|M2[M3 |aypass
Dependientes e | RT[ TR e RRS Q|P|RIE]
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

((r)) Fallo e DC, fallo el L1, y sin DRP.

FI1GURA 2.4: Cronogramas de la organizacién secuencial de la memoria ACDC con la jerarquia

convencional de memoria.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 10

2.3.1.1. Conclusién

El uso de la estrategia de ejecucion especulativa de instrucciones de acceso a memoria con una
organizacién secuencial de la memoria ACDC con la jerarquia convencional de memoria puede
conseguir un rendimiento superior del procesador si el nimero de aciertos es DC es grande ya
que asi disminuimos el nimero de accesos a L1, disminuyendo la latencia de ejecucion en los
accesos a memoria. Ademads, el consumo de energia se reduce ya que el gasto de acceder a la L1
es mayor que el de acceder a la DC. Si por el contrario, el nimero de aciertos en DC es pequefio,

la penalizacién en latencia es importante lo que conllevard a una disminucién del rendimiento.

2.3.2. Organizacion paralela.

En la figura se muestra la organizacién paralela de la memoria ACDC con la jerarquia

convencional de memoria.

PARALELO
HitDC, dato |
T \‘5\
‘ ACDC ¢ pjge | \
: dato i \
Buscar el dato a : 3 H |
siguientes niveles : : v

DRP,

de la jerarquia de ACTUALIZAR DC

memoria.

< ———» L2

Pide A
L1 dato /

MISSiL1

Miss DC,
Hit L1

Dato

FicUuraA 2.5: Funcionamiento paralelo de la memoria ACDC con la jerarquia convencional de
memoria.

Cuando la CPU solicita un dato, lo hace de forma paralela tanto a la ACDC como a la L1.
Si el dato se encuentra en la DC, tenemos hit en DC y es ésta quien suministra el dato al
procesador. De esta forma oculta parte de la latencia de acceso a memoria al ser la DC quien ha
proporcionado el dato. La latencia de DC es de 1 ciclo y la de L1 de 4 ciclos (ver tabla . Si
el dato no se encuentra en DC, tenemos un miss en DC y entonces si el dato estd en L1, es la
L1 quien suministra el dato al procesador. En este caso, miss en DC, se accede a AC para saber
si tenemos DRP. En caso afirmativo, el dato se actualiza en la DC. Si el dato no estd en la L1,

hay que ir a buscarlo a los siguientes niveles de la jerarquia de memoria.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 11

Las situaciones que se pueden dar con este tipo de organizacién se pueden ver en los cronogramas

de la figura [2.6] y se explican a continuacion.

El cronograma [2.6(a)|representa la ejecucién de un LD sin memoria ACDC dentro de la jerarquia
de memoria con un hit en L1. Las instrucciones dependientes se lanzan especulativamente en la
IQ del LD (ciclo 5) ya que se predice que la latencia de ejecucién del load es la latencia de L1

y asi conseguir el encadenamiento de instrucciones. Este cronograma es igual que el de la figura

2.4(a)| del apartado anterior ([2.3.1).

El cronograma de la figura nos muestra el caso en que hay miss en L1. Se anulan las
instrucciones dependientes (ciclo 5) ya que hemos predicho que la latencia de ejecucién del load
es la latencia de L1 y el LD se duerme a la espera del dato. Cuando el dato esté disponible en L1
se relanza el LD y sus instrucciones dependientes (ciclo 13) y asi conseguir encadenamiento de
instrucciones. Este cronograma es igual que el de la figura del apartado anterior .

En el cronograma se muestra que si un LD en la etapa de memoria, tiene hit en DC, las
instrucciones dependientes de ese LD que se despertaron especulativamente en la IQQ del LD (ciclo
2), consiguen hacer el encadenamiento de instrucciones, ya que la latencia de ejecucién se predijo
con la latencia de la memoria DC, como se muestra en la ﬁgura En este caso la ejecucion
especulativa de instrucciones ha tenido éxito y hemos conseguido aumentar el rendimiento debido
a que la latencia de DC es menor que la de L1 y oculta la de la L1. Con respecto al cronograma
de la figura hemos ganado 3 ciclos en latencia.

El cronograma muestra miss en DC y hit en L1. En este caso, anulamos las instrucciones
dependientes (ciclo 4) ya que la latencia de ejecucién del load se predijo con la latencia de DC,
para lanzarlas al ciclo siguiente (ciclo 5) y asi conseguir el encadenamiento de instrucciones.
En este caso, la ejecucién especulativa de instrucciones dependientes ha fallado, pero no hemos
tenido penalizacion en latencia con respecto al cronograma de la figura Sin embargo hay

més relanzamientos.

Finalmente, en los cronogramas y se muestran el caso en que hay miss en DC y
miss en L1. En este caso, el dato hay que ir a buscarlo a los siguientes niveles de la jerarquia de
memoria. Las instrucciones dependientes se anulan (ciclo 4) ya que la latencia de ejecucién del
load se predijo con la latencia de la memoria DC y el load se duerme a la espera del dato. Una vez
que el dato estd disponible en la L1, se relanza el LD y se pueden dar dos situaciones. Si tenemos
DRP (el dato estd en DC), las instrucciones dependientes se despiertan en la IQ del LD (ciclo 10)
para as{ conseguir encadenamiento de instrucciones. Se puede ver esto en el cronograma [2.6(e)|
Con respecto al cronograma de la figura hemos obtendido una ganancia en latencia de 3
ciclos. Pero si no tenemos DRP, las instrucciones dependientes se anulan (ciclo 12) y se lanzan al
ciclo siguiente (ciclo 13) ya que la latencia de ejecucién del load se predijo con la latencia de la
memoria DC y asi tener encadenamiento de instrucciones, como se ve en el cronograma [2.6(f)|

De esta manera no hemos obtenido ganancia en latencia en relacién al cronograma de la figura
2.6(b)| v ademds ha habido mds relanzamientos.

La implementacién de esta idea organizacién paralela dentro del simulador que hemos usado [3],

se pueden ver en el apéndice |D| de esta Memoria.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones

12

Hit L1

N
w|[IQ] P [ R [M0}ML[M2][M3|aveass
Dependientes +|Q P RJE |
Ciclos 1 2 3 4 5 6 7 8

((A)) Sin memoria ACDC. Acierto en L1.

Miss L1 Latj;ia en buscar el dato
w[IQ| P | R [MOML[M2[M3| .. [1IQ[ P | R [MO}ML]|M2]|M3 |syeass
Dependientes *|Q P R E ]
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

((B)) Sin memoria ACDC. Fallo en L1.

Hit DC

to [1Q |4P | R [DC |evpass
MO [M1]M2][M3]

Dependientes ‘ |Q | P R ¥ E
Ciclos 1 2 3 4 5

((c)) Acierto en DC.

MissDC  HitL1
/
w|1Q [ [ R [DC
MO [sM1 | M2 | M3
Dependientes EJ‘@:’[\,:P:: RO ,|Q P Ry E ‘
2

Ciclos 1 3 4 5 6 7 8

((p)) Fallo en DC, acierto en L1.

Latencia en buscar el dato

Miss DC Miss L1 DRP
A/ A/
w [IQ [ | R [DC IQ [+P | R |DC | Bvrass

MO [M1[M2][M3] .. MO [M1]|M2]|M3]
Dependientes L)@:\DR:\ \:Ri ‘ |Q | P R 4 E
Cicos 1 2 3 4 5 6 7 8 8 10 11 12 13
((E)) Fallo en DC, fallo en L1 y con DRP.
MissDC  MissL1 Latencia en buscar el dato | DRP HitL1
w10 [P | R DC/ S ToTP R Dc.‘/
MO [ML[M2[M3] ... MO [[M1 [ M2 | M3 [svpass
Dependientes IR TR TR I/i“@fl:ﬁpx/ RIIQ|P|R4JE |
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

((F)) Fallo e DC, fallo el L1, y sin DRP.

FI1GURA 2.6: Cronogramas de la organizacién paralelo de la memoria ACDC con la jerarquia
convencional de memoria.



Capitulo 2. Memoria ACDC' en procesadores de altas prestaciones 13

2.3.2.1. Conclusién

La organizacién paralela de la ACDC con la jerarquia convencional de memoria es una buena
opcion ya que el rendimiento no puede ser peor con respecto a la jerarquia convencional de
memoria, ya que trabajan ambas memorias a la vez (L1 y DC). Si hay hit en DC, la latencia
de ejecucién de la instruccién de acceso a memoria es menor que la latencia de L1 (ver tabla
y asi el rendimiento aumenta al ocultar la latencia del la L1. En caso contrario, no hay
penalizacién. Se puede decir que es el caso ideal. El inconveniente que tiene esta organizacion es
el aumento del gasto energético ya que estamos accediendo a dos memorias a la vez y el niimero

de instrucciones relanzadas.

2.3.3. Instrucciones de escritura en memoria

Las instrucciones de escritura en memoria son los stores (ST) y estos escriben en memoria en la
etapa commit (CT) del procesador (ver seccién , cuando las instrucciones se retiran dentro
del pipeline del procesador. Tanto si estamos en la organizacién paralela como en la organizacién
secuencial, el funcionamiento es el mismo para ambos casos. Primero preguntamos si el dato
estd en DC. Si hay hit en DC, lo escribimos. Si hay miss en DC, preguntamos en AC si tenemos
DRP. En caso afirmativo, escribimos el dato en DC. En caso contrario, no hacemos nada. Esto
se puede ver en la figura

- Hit DC, escribir
- Miss DC y DRP, escrihir

/ Escribiren L1
st[IQ[ P | R |DC

MOTM1 [M2 [ M3]
Ciclos 1 2 3 4 5 6 7

FiGuraA 2.7: Escritura de datos en memoria, tanto en DC como en L1.

Al mismo tiempo, el dato se escribe en la memoria L1. El contenido de la DC estd en la L1 ya
que es en la etapa de commit cuando se escribe tanto en la L1 como en DC, si ésta tiene DRP.

Por tanto la DC es inclusiva con la L1.



Capitulo 3

Resumen de resultados

3.1. Introduccion

En este capitulo se muestran y se analizan los resultados obtenidos con la ejecucién de un
procesador de altas prestaciones como el descrito en la secciéon y con nuestra propuesta,
en la carga de trabajo SPEC CPU 2006 [2] (ver seccién . Este capitulo estd organizado
de la siguiente manera. En la primera parte del capitulo se exponen las configuraciones de
las memorias que he utilizado en los experimentos para medir el comportamiento de nuestra
propuesta. También se hace mencién a la nomenclatura usada en el capitulos respecto a las
organizaciones de la memoria dentro de la jerarquia de memoria. Posteriormente, se mostraran
los resultados obtenidos con la ejecucién de la suite enteros, dividiendo las explicaciones en
rendimiento, gasto energético y tasa de aciertos en la memoria DC. Finalmente se hara una

comparativa de datos.

3.2. Configuracion de la jerarquia de memoria

La tabla nos muestra la configuracién de los médulos de memoria que hemos usado en el
procesador de altas prestaciones (ver seccién [B.1]) para hacer las pruebas, incluida la memoria
ACDC.

TABLA 3.1: Tabla con las configuraciones de la jerarquia de memoria del procesador a utilizar

Memoria L1

Tamafio

64KB

Asociatividad

4

Tamaiio bloque

32B

Latencia

4 ciclos

Memoria L2

Tamafio

256KB

Asociatividad

8 instrucciones

Tamaiio bloque

1288

Latencia

14 ciclos

Memoria L3

Tamafio

4MB

Asociatividad

4

Tamaiio bloque

1288

Latencia

19 ciclos

Memoria Principal

Latencia

200 ciclos

Memoria ACDC

Tamaiio

256B

Asociatividad

Completamente asociativa

Tamaiio bloque

16B

Latencia

1 ciclo

en la ejecucion de las simulaciones.

14




Capitulo 3. Resumen de resultados 15

Como se ha dicho en la seccién hemos incluido la memoria ACDC dentro de la jerarquia de
memoria del procesador de altas prestaciones de dos formas distintas: organizacién secuencial
(ver seccién y organizacién paralela (ver seccién [2.3.2). Para poder hacer las pruebas de
simulacién hemos empleado SimpleScalar [3], ya que nos permite simular el procesador de altas

prestaciones que hemos presentado anteriormente (ver seccién [B.1)).

La implementacién de estas organizaciones de la memoria ACDC las he realizado sobre el Sim-
pleScalar [3] y pueden verse en la seccién Estas implementaciones han consistido en ampliar
las funciones relativas a los accesos de memoria y lanzamiento de instrucciones asi como crear

otras funciones nuevas.

En este capitulo hemos evaluado tres modelos: A la ejecucién del procesador sin el uso de la
memoria ACDC, que llamamos “modo solo“ A la ejecucién del procesador con la organizaciéon
secuencial, que llamamos “modo secuencial“ y a la ejecucion del procesador con la organizacién

paralela que llamamos “modo paralelo “.

3.3. Resultados

En este apartado se muestran y analizan los resultados obtenidos con la ejecucién del procesador
descrito en la seccién y la carga de trabajo SPEC CPU 2006 [2] (seccién [B.2). Al analizar
los resultados hemos visto que tanto para la suite enteros como para la suite float, los resultados

siguen una misma linea o patrén. Para explicar los resultados hemos elegido la suite entera.

3.3.1. Rendimiento

La grafica de la figura muestra los valores obtenidos de IPC. Se puede observar que tanto
para el modo paralelo como para el modo secuencial, los valores obtenidos son mayores que en
el modo solo. Esto se debe al nimero de aciertos en la memoria DC (ver columnas “H“ y “J“ de
la tabla yva que al ser su latencia de ejecucion menor que la de la memoria L1, se mejora el

rendimiento.

Ademis se observa que, en el modo paralelo, el rendimiento es mayor que en el modo secuencial.
Esto es debido a que en el modo paralelo no hay penalizacién en ciclos por fallar en la memoria
DC (ver cronogramas de la figura y para el modo secuencial, si que hay penalizaciéon por
fallar en DC (ver cronogramas de la figura .

El valor medio de ganancia en el modo paralelo con respecto al modo solo, es del 9.55 %. Para el

modo secuencial, la ganancia experimentada es del 6.55 %, con respecto al modo solo.

Sabiendo que el ancho de instrucciones que se pueden lanzar es de 8 instrucciones y observando
la grafica[3.I] podemos pensar que cuanto més bajo sea el valor de IPC de un benchmark, més
ganancia en rendimiento se podra obtener. El benchmark “Bzip2“ tiene un valor de IPC en el

modo solo de 0.81, y es igual al modo secuencial y ligeramente inferior al modo paralelo (0.82).



Capitulo 3. Resumen de resultados 16

40 wsoo

W PARALELO
35 SECUENCIAL.
3.0
25
20
15
1.0
) I
l
< = -
& F § F
§
g
_ch
3

A
S"’b @ & rs o oé: < §°
& <

Ficura 3.1: Gréfica que representa los valores de IPC obtenidos con la ejecucién del procesador
con las distintas organizaciones de memoria, modo solo, modo paralelo y modo secuencial para
la suite enteros.

Este valor de IPC estd muy por debajo del ancho de banda de lanzamiento de instrucciones,
que es 8. Esto indica que “Bzip2“ tiene muy poco ILP. Vemos también que su tasa de aciertos
en la memoria DC es del 69.70 %, tanto para el modo paralelo y modo secuencial (ver la tabla
. A pesar de que nuestra propuesta acorta la latencia de los loads, no se obtiene mejora en
el rendimiento. Esto me lleva a pensar que la latencia del camino critico de “Bzip2“ no depende

de estas instrucciones load.

Estas mismas conclusiones son vélidas para el benchmark “Libquantum®, que le pasa lo mismo
que al “Bzip2“. Su valor de IPC es practicamente el mismo en los tres modos de funcionamiento,
0.38, 0.39 y 0.39 para el modo solo, modo paralelo y modo secuencial respectivamente y muy por

debajo del ancho de lanzamiento de instrucciones y con una tasa de aciertos en la DC es del

47.17% (ver tabla[3.3).

3.3.2. (Gasto energético de la jerarquia de memoria

Para obtener los costes de energia de las memorias usadas en este Proyecto hemos usado la
herramienta Cacti en su versién 6.5 [12]. Para ver estos costes, consultar la seccién de este

documento.

La figura muestra el consumo total de las simulaciones. Se puede ver que el mayor consumo
de energia para cada benchmark corresponde con la componente dindmica (ver seccién y

supone de media, las tres cuartas partes del consumo total.

Este consumo de la componente dindmica es mayor en el modo paralelo que en los modos solo y
secuencial. Esto se debe a que en el modo paralelo estamos accediendo a dos médulos de memoria

a la vez cuando el procesador solicita un dato (al médulo de memoria DC y al médulo de memoria
L1).

También podemos ver que el modo secuencial es el que menos consumo de energia tiene. Esto
se debe a que en este modo, cuando el procesador solicita un dato, se accede solamente a la

memoria DC. Unicamente cuando fallamos en DC, accedemos a la L1, aumentando el consumo



Capitulo 3. Resumen de resultados 17

45 .
= DINAMICO
40 ™ ESTATICI

35

30

25

20

15

: IIIIII
eqe‘?gogoeoes’ IR LN LN TN LN
§ 505 5908 99§ -‘i‘é’é’«‘f’go‘?ﬁ’é’wﬁ’gm T05 959 395 95095 99
$G°F§G°F§  F§° FG°FG°FE°FE°F§°Fi°FG°F¢
g & € & & & & &g & & &§ &9
o %] (%] oy “ %] (%] (5] w “ 2] 5]
perbench  Bzip2 Gee Mct Gobmk Hmmer Sjeng  Libquantum H264ref  Omnetpp  Astar Media

Ficura 3.2: Grafica que muestra el consumo de total de energia en las simulaciones expresado
en mJ, para los tres modos de funcionamiento en la suite enteros.

de energia. La tabla nos muestra la métrica Energy Delay [5], que relaciona el tiempo de
ejecucion del programa y su consumo energético. Segin esta tabla[3.2] el modo secuencial es el

mas eficiente de los tres modos de funcionamiento.

También se observa en la figura [3.2] que el modo solo tiene més consumo estético a pesar de que
tiene menos hardware. Esto es por que su rendimiento es peor que en los otros modos (paralelo
y secuencial). En la tabla se puede ver que su valor medio de Energy_Delay es el mayor de

los tres modos de funcionamiento, atendiendo a esta métrica.

MNombre |Perlbench| Bzip2 Gee Mcf Gobmk Hmmer Sjeng Libquantum| H264ref | Omnetpp | Astar Media
SOLo 4.41 49.84 3.23 1.87 3.69 3.83 277 82.68 2.02 157 13.88 15.44
PARA 3.38 49.54 2.54 134 3.05 3.23 2.25 79.88 2.02 1.12 11.40 14.52
SECU 311 46.21 2.25 1.07 2.87 2.96 2.06 79.69 151 1.03 10.21 13.91

TABLA 3.2: Tabla que muestra la métrica Energy_Delay [5] de las simulaciones para los tres
modos de funcionamiento en la suite enteros.

3.3.3. Tasa aciertos en DC

Cuanto mayor sea el nimero de aciertos en la memoria DC, el rendimiento se espera que sea
mejor, ya que la latencia de ejecucion de la memoria DC es menor que la latencia de ejecucion
de la memoria L1 (ver tabla [B.1).

En la columna “F* de la tabla [3.3] se muestra la tasa de aciertos esperados en la DC. Esta tasa
de aciertos esperados en la DC se obtiene del cociente entre los aciertos que se han obtenido en la

DC en la fase de andlisis previo (ver |[E.2)) y el nimero de instrucciones lanzadas. El valor medio



Capitulo 3. Resumen de resultados 18

es del 54.35% y supone una cota superior de aciertos en la DC. La tasa de aciertos obtenidos
para el modo paralelo es del 40.02 %, valor inferior. Esta tasa de aciertos obtenidos en la DC
es el resultado del cociente entre los aciertos obtenidos en la DC y los accesos totales a la DC.
El motivo de esta diferencia puede ser por lo siguiente. Hemos dicho anteriormente que en la
AC guardamos aquellas instrucciones que aprovechan més el reuso de los datos del programa
(ver seccién y seccién [I]). Si en una determinada parte del programa se accede a un dato
y ese dato deberia estar en la memoria DC y no estd por que la instrucciéon que tiene permiso
para reemplazar en la DC todavia no se ha lanzado. Entonces el dato todavia no esta en DC y

tenemos fallo.

Por otra parte , cuando tenemos DRP, el dato se escribe en la memoria DC. Si este dato no
esta disponible en este ciclo por que no se encuentra en L1, hay que esperar a que el dato esté
disponible. Durante esta espera, puede haber accesos a ese dato. Estos accesos causan fallo en

la memoria DC.

Estos motivos también son vélidos para el modo secuencial, cuya tasa de aciertos en la DC
es del 41.13% (ver [3.3.4), valor ligeramente superior al modo paralelo debido a que hay més

relanzamientos que en el modo paralelo.

Otro motivo por el cual la tasa de aciertos esperados en DC es baja (media del 54.35 %, ver tabla
3.3]), es debido a que en la fase de andlisis previo, se han tenido en cuenta aquellos PC’s que han
obtenido acierto en el dato y los aciertos de otras instrucciones que también acceden al mismo

dato. Es decir, se tomaron PC’s que tienen reuso de grupo que ya tienen aciertos [I].

3.3.4. Comparativa ficheros analisis, 1 vs 100

La fase previa de analisis la hacemos para estudiar qué instrucciones aprovechan mas el reuso
de los datos del programa. Hasta ahora, este analisis lo hemos hecho de un solo tramo, es decir,
con el total de las instrucciones del programa. Posteriormente, hemos hecho una divisién de este
analisis en 100 tramos de un millén de instrucciones. La finalidad de esta divisiéon en tramos més

pequenos es que el andlisis del reuso sea méas preciso.

La tabla muestra una comparativa de rendimiento, consumo y aciertos en la DC, con la

ejecucion de la simulacion con 1 fichero de andlisis y con 100 ficheros de analisis.

Las columnas “F¢“y “G*“ de la tabla[3.3|nos muestran la tasa de aciertos esperados en la memoria
DC y se ha calculado como el cociente entre los aciertos que se han obtenido en la DC en la fase
de anélisis previo (1 tramos y 100 tramos) y el ntimero de instrucciones lanzadas. Las columnas
“H “T¢) “J“y “K*“ muestran las tasa de aciertos obtenidos en la memoria DC, tanto en paralelo
como en secuencial, para 1 fichero de anélisis y 100 ficheros. Este valor se ha calculado como el

cociente de los aciertos que se han obtenido en la DC y los accesos totales a la DC.

Podemos ver en las columnas relativas al rendimiento que no hay diferencia entre 1 fichero y
100 ficheros de andlisis, a pesar de que la tasa de aciertos esperados en DC con 100 tramos es
mayor que con la de 1 tramo y que la tasa de aciertos obtenidos en DC es mayor. Esto es debido

a que estos aciertos en DC son sobre caminos distintos al camino critico y aunque en estos se



Capitulo 3. Resumen de resultados 19

NOMERE A B C D E F G H I J K L M N 0 P
Perlbench | 1.76 | 2.28 | 2.28 | 2.22 | 2.22 | 52.40% | 67.98% | 41.15% | 45.74% | 42.84% | 45.50% | 3.33 | 2.74 | 2.67 | 2.43 | 2.33
Bzip2 081 | 0.83 | 0.83 | 0.82 | 0.82 | 85.16% | 83.25% | 69.70% | 69.70% | 69.70% | 69.70% |44.76 | 4463 [ 27.31 | 41.21 | 23.77
Geco 179 | 225 | 2.25 | 220 | 2.20 | 46.48% | 67.13% | 41.99% | 44.46% | 43.87% | 45.89% | 220 | 189 | 235 [ 156 | 2.03
Mcf 243 | 334 | 3.34 | 3.23 | 3.22 | 61.99% | 94.94% | 54.81% | 60.57% | 57.51% | 59.85% | 1.31 | 104 | 1.29 [ 0.75 | 0.98
Gobmk 163 | 199 | 1.99 | 1.94 | 1.94 | 32.99% | 59.56% | 32.49% | 34.32% | 32.96% | 35.00% | 245 | 221 | 288 | 199 | 264
Hmmer 186 | 224 | 224 | 221 | 2.2]1 | 39.84% | 81.90% | 30.23% | 33.19% | 30.57% | 33.60% | 288 | 256 | 2.62 | 227 | 2.28
Sjeng 181 | 224 | 2.24 | 217 | 217 | 74.21% | 96.37% | 28.24% | 35.67% | 31.43% | 37.30% | 1.77 | 1.59 | 2.16 [ 1.35 | 1.89
Libquantum | 0.38 [ 0.39 | 0.40 [ 039 | 0.39 | 33.03% | 35.72% | 47.17% | 47.17% | 47.17% | 47.17% [ 59.62 | 58.19 | 48.61 | 57.43 [ 47.37
H264ref 3.49 | 3.80 | 3.80 | 3.76 | 3.76 | 52.04% | 89.61% | 25.34% | 65.40% | 25.38% | 65.60% | 1.v5 | 1.78 | 1.92 [ 1.27 | 1.325
Omnetpp | 251 | 3.44 | 3.44 | 3.37 | 3.37 | 27.69% | B1.B6% | 33.24% | 34.50% | 34.44% [ 35.72% | 104 | 0.84 | 1.05 | 0.74 | 0.95
Astar 091 | 110 | 1.10 | 1.09 | 1.09 | 92.07% | 264.45% | 35.86% | 47.73% | 36.51% | 49.18% | 991 | 864 | 747 | 7.40 | 583
Media 124 | 141 | 1.41 | 1.39 | 1.40 | 54.35% | 92.98% | 40.02% | 47.14% | 41.13% | 47.68% | 11.91 | 11.46 | 9.12 [ 10.76 ) 8.30

Az IPC en modo solo

B: IPC en modo paralelo con 1 tramo

C: IPC en modo paralelo con 100 tramos

Dr IPC en modo secuencial con 1 tramo

E: IPC en modo secuencial con 100 tramos

F: Tasa de aciertos esperados en DC con 1 tramo

G: Tasa de aciertos esperados en DC con 100 tramas

H: Tasa de aciertos obtenidos en DC en paralelo con 1 tramos
|: Tasa de aciertos obtenidos en DC en paralelo con 100 tramos
J: Tasa de aciertos obtenidos en DC en secuencial con 1 tramo
K: Tasa de aciertos obtenidos en DC en secuencial con 100 tramos
L: Indicador energy_delay solo

M: Indicador energy_delay en paralelo con 1 tramo

N: Indicador energy_delay en paralelo con 100 tramos

O: Indicador energy_delay en secuencial con 1 tramo

P: Indicador energy_delay en secuencial con 100 tramos

TABLA 3.3: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.

disminuye la latencia, en el camino critico no. El paralelismo a nivel de instruccién del programa

ya estd altamente explotado y resulta dificil conseguir mejoria en rendimiento.

Sin embargo, esta superior tasa de aciertos en la DC con 100 tramos (columnas “I“y “K* de
la tabla , supone un consumo de energia menor, con respecto al modo solo. Esta reduccién
experimenta una mejoria del 2.34 % en el modo paralelo con respecto al andlisis con 1 tramo y
de un 2.46 % en el modo secuencial, también con respecto al anélisis con 1 tramo. Esto es debido
a que los tiempos medios de ejecucién de los programas han disminuido con el incremento de
aciertos en la DC. En el modo paralelo se disminuye en un 0.36% y un 0.70% en el modo

secuencial con respecto a los mismos modos con un tramo de andlisis (ver tabla [E.15)).

Todos los resultados, tanto para la suite enteros como para la suite float, se pueden ver en la

seccién [E-4] de este documento.

3.3.5. Otras pruebas

En estas seccién hago referencia a otras pruebas que he hecho. Estas pruebas han consistido en
la ejecucién de las simulaciones en el modo solo, paralelo y secuencial con distintas entradas. He
usado una versién de las suites enteras y float que han sido modificadas con unos datos distintos.
Los resultados se pueden ver en la tabla Estos resultados son practicamente iguales a los
que hemos obtenido en las primeras simulaciones, lo que demuestra que la memoria ACDC es

capaz de aprovechar el reuso del programa.



Capitulo 4

Conclusiones y trabajos futuros.

4.1. Conclusiones

El uso de una nueva memoria como la ACDC, dentro de la jerarquia de memoria en un procesador
de altas prestaciones, segtin las pruebas hechas en este Proyecto, trae consigo una mejoria, tanto

en rendimiento como en consumo energético.

PARALELO SECUENCIAL
IPC ENERGIA DC IPC ENERGIA DC
ENTEROS 9.55% 10.63% 40.02% 6.57% 23.28% 41.13%
FLOAT 5.13% 22.57% 47.50% 5.42% 24.09% 47.62%

TABLA 4.1: Resultados finales.

La tabla muestra los resultados finales, en valores medios, que hemos obtenido al evaluar la
memoria ACDC en un procesador de altas prestaciones en SPEC CPU 2006. Se puede ver que
en ambas organizaciones de la memoria ACDC dentro de la jerarquia de memoria (secuencial y
paralela), el rendimiento ha aumentado y el consumo de energia se ha reducido a pesar de que
el nimero de aciertos en la DC no ha sido elevado. Con estos datos es aconsejable el uso de la

memoria ACDC en un procesador de altas prestaciones como el expuesto en este documento.

Para que el uso de la memoria ACDC tenga éxito, hay que hacer un anglisis previo y como se
ha visto, los resultados dependen de él. Este andlisis previo es el mayor inconveniente de esta

propuesta.

4.2. Trabajos futuros.

En este proyecto se ha introducido la memoria ACDC en la jerarquia de memoria de un procesa-
dor de altas prestaciones con la idea de mejorar el rendimiento y disminuir su consumo energético

en SPEC 2006.

20



Capitulo 4. Cconclusiones y trabajos futuros 21

Ya que en este Proyecto se ha conseguido alcanzar los objevos, para continuar con esta idea, y
como trabajo futuro, se podria introducir este tipo de memoria en un sistema multiprocesador,
con una memoria ACDC privada para cada procesador o bien con una més grande y comun a

todos los procesadores, en los que haya que tener en cuenta los protocolos de coherencia.

Otro posible trabajo futuro es el uso de esta memoria ACDC, pero sin hacer un profiling. Seria el
compilador quien detecte en fase de compilacién aquellas instrucciones que mas reuso aprovechan
del programa. También se podria hacer de forma adaptativa, mediante un hardware que vaya

aprendiendo cuales son esas instrucciones.

Un estudio futuro interesante es ver qué pasaria si, al hacer este estudio, en lugar de usar la
memoria ACDC se usa una memoria cache convencional del tamafio de la ACDC comparan-
do algunas de las propuestas en el capitulo [1| con nuestro trabajo y ver si hay diferencias en

rendimiento.



Apéndice A

Carga y Desarrollo del Proyecto

Este apéndice contiene detalles acerca de la gestion del tiempo y el esfuerzo invertido durante el

proyecto, asi como algunos problemas encontrados a lo largo de su desarrollo.

A.1. Gestion del tiempo

Comenzé este Proyecto de Fin de Carrera a principios del mes de mayo de 2014 y lo finalizé
en mayo de 2015, dedicdndome en exclusiva a su realizacién. En el diagrama de Gantt que se
muestra en la figura se puede observar cémo hemos repartido las tareas a lo largo de la

duracion del proyecto.

Cuando comenzamos el proyecto, programamos hacer reuniones todos los viernes a las 10:00
horas de la manana para seguir con la evolucion del proyecto. Esto lo cumplimos a la perfeccién
y la duracién de las reuniones han variado entre una hora y tres horas. Ademds de acudir a
tutorias cuando se presentaban dudas. La planificacién inicial fue dividir el proyecto en tres

partes:

= La primera parte consistiria en la instalaciéon y aprendizaje del simulador, ya que era una

herramienta completamente nueva para mi.

» La segunda parte la dedicarfamos a implementar las dos organizaciones de la memoria

ACDC con la jerarquia de memoria de un procesador de altas prestaciones.

= La tercera parte la dedicariamos a la realizacién de la ejecucién de las simulaciones con
la herramienta de simulacién SimpleScalar [3]. De esta forma obtendriamos los resultados,

para sacar las conclusiones de este Proyecto.
La primera parte la hicimos segun la planificacién, pero las otras dos fueron encadenadas, esto

es, cada vez que haciamos unas modificaciones en el cédigo, haciamos las pruebas necesarios y

asi estudiar los resultados. Esta parte ha sido una constante a lo largo del proyecto. Durante

22



Apéndice A. Carga y Desarrollo del Proyecto 23

e e o 0 o & 0 0 @

>3 & S—7EET 2014 2015
AR . T " T | | I | | | | |
Narmne Begin dat End date May Jun ep Oct Now Dec Jan Feb Mar Apr May Jun
INSTALACION Y APREN... 5/12/14 6/11/14
FICHEROS AUTOMATIZ .. 5/26/14 6/27/14 ]
ESTUDIO 5/12/14 6/27/14 ]
IMPLEMENTACIONES ~ 9/3/14  4/14/15 [
PRUEBAS S/3/14 4/14/15 [
ANALISIS 9/EN4  #14/15
CONCLUSIONES 9/10/14  4/21/15
APRENDIZAJE 5/12/14 &/11/15

ELABORACION MEMORIA 6/1/14  6/11/15

Ficura A.1: Diagrama de Gantt del proyecto.

esta parte hemos usado algunas herramientas de ayuda como el depurador de C [I3], ya que el

simulador de SimpleScalar [3] estd escrito en lenguaje C.

A continuacion se muestra un resumen del trabajo que hemos realizado en cada tarea.

Instalacién y aprendizaje. En esta parte del proyecto lo que hicimos fue la instalacién
del simulador que usamos para las simulaciones [3] y estudiar cémo funciona y sus posibles

configuraciones.

Scripts de automatizacion. En este proyecto ibamos a realizar muchas pruebas, lo que
aconsejo que se automatizaran la mayor parte de ellas para minimizar los tiempos de
trabajo. En esta parte, lo que hice fueron los ficheros de automatizaciéon para lanzar el
simulador con cada benchmark (scripts en unix [I4]), ficheros para coger la informacién de
los ficheros resultados de la ejecucién de las simulaciones con Python [I5] y todos aquellos

que nos han hecho falta, segiin ibamos trabajando.

Aprendizaje gdb. Como se ha dicho anteriormente, las moficicaciones se realizaron en el
simulador SimpleScalar [3] que estd realizado en Lenguaje C. Para la busqueda de errores,
hemos usado la herramienta de depuracién de C [13], que ha sido muy importante para el

desarrollo del proyecto.

Implementaciones. Las implementaciones realizadas sobre el simulador [3] han durado

practicamente todo el Proyecto.

Pruebas. En la parte de pruebas lanzamos el simulador con la configuraciéon que queremos

y esperamos a que termine y nos lance los ficheros de resultados.

Analisis. En esta fase de anélisis, estudiamos los ficheros de resultados que hemos obtenido
en las pruebas.

Estas tres tareas anteriores estan ligadas entre si, puesto que se relacionan. Se hacen im-
plementaciones, pruebas y se observan resultados.

Conclusiones. En esta tarea se extraen las conclusiones finales de las tareas anteriores.

Elaboracién memoria Esta parte se corresponde con la redaccién de la memoria en
LaTex.



Apéndice A. Carga y Desarrollo del Proyecto 24

A.2. Esfuerzo invertido

La duracion inical del Proyecto era de seis meses. En el cémputo total de tiempo, he tardado
12 meses en realizarlo, aunque a este tiempo hay que descontarle los periodos de vacaciones,
que han sido aproximadamente 3 meses. Por lo tanto, el tiempo que he tardado en realizar este
Proyecto ha sido de 9 meses, con una media diaria de trabajo de 5 horas, siendo a partir del
mes de septiembre cuando el trabajo comenzé a ponerse serio. En total, unas 900 horas, que en
parte han sido por el desconocimiento de nuevas herramientas y sobre todo por iniciarse en el
campo de la investigacion. Mencionar que a lo largo de este Proyecto, he realizado mas de 800

simulaciones, con el tiempo que ello supone.

N Instalacion y aprendizaje
W Scripts
Aprendizaje gdb

W Implementaciones, pruebas, analisis y con-
clusiones

W Redaccion memoria

FiGurA A.2: Distribucién del tiempo invertido en la realizacién de este Proyecto de Fin de
Carrera.

En la grafica [AZ2] se presenta el porcentaje de horas dedicadas a cada tarea. En esta grafica se
observa que casi el 656% del tiempo se ha estado realizando implementaciones con pruebas y
analisis de resultados. El resto del tiempo se ha dedicado al aprendizaje, instalacién, realizacion
de scripts y realizacién de memoria. Una parte importante que no la puedo cuantificar es el

tiempo de aprendizaje propio, que ha durado todo el tiempo del proyecto.

A.3. Problemas encontrados

El primer gran problema que he encontrado ha sido el uso de implementaciones y trabajos hechas
por otras personas. Esto que puede parecer una ventaja, en general no lo es, ya que en muchas

ocasiones hay que estudiar qué hacen las cosas y por qué lo hacen.

Otro inconveniente ha sido el uso de herramientas nuevas, aunque solamente al principio del

proyecto ya que una vez aprendidas a usarlas, todo parece mas facil.

Atnque no es un problema como tal, pero estd relacionado con el campo de la investigacion, el
tiempo empleado en la realizacién de las pruebas es importante, ya que supone esperar a que

terminen para poder sacar conclusiones y a veces ralentiza las ganas de trabajar.



Apéndice A. Carga y Desarrollo del Proyecto 25

Finalmente, al ser mi primera vez que me acerco al campo de la investigacién, en general, al
principio se dan palos de ciego. Por ejemplo, cosas que son triviales, no las ves hasta que te

ensenan a verlas.



Apéndice B

Procesadores de altas
prestaciones y SPEC CPU 2006

B.1. Los procesadores de altas prestaciones

Como se dijo en la seccién los procesadores de altas prestaciones suelen tener las siguientes
caracteristicas: altamente segmentados, superescalares y con ejecucién fuera de orden de instruc-
ciones. Gracias a todo esto, se consigue aumentar su rendimiento ya que se mejora su capacidad

para explotar el paralelismo a nivel de instrucciones (ILP).

El procesador modelado en este proyecto tiene un segmentado de instruccién de 10 etapas en
el cual se distinguen una parte en la que se lanzan instrucciones en orden, front-end y esta
formada por las etapas de busqueda, decodificacién, renombre y emisién de la instruccién, y otra
parte, que corresponde al nticleo de ejecucién fuera de orden, back-end, conteniendo las etapas
de lanzamiento, lectura informacion relevante para la ejecucién, lectura de operandos, ejecucién,
escritura y finalizacion de la instruccién. Al conjunto de todas estas etapas se le llama pipeline
del procesador. Una breve descripcion de estas etapas es:

= Bisqueda (IF), se busca la instruccién en memoria y carga en el procesador.

s Decodificacién (DE), decodificacién de la instruccién.

» Rename (RE), renombre de registros.

s Emisién (DI), emisién de la instruccién lista para emitirse.

» Lanzamiento (IQ), lanzamiento fuera de orden de las instrucciones.

s Payload (P), lectura de informacién importante para ejecutar instrucciones.

s Lectura ops. (R), acceso a registros.

26



Apéndice B. Procesadores de altas prestaciones y SPEC CPU 2006 27

s Ejecucién (E o MO, ..., Mn), ejecucién de la instruccién o acceso a la jerarquia de
memoria, siendo n los ciclos de latencia.. Para el caso que sea un acceso a memoria, dentro

del primer ciclo de dicha etapa se calcula la direcciéon de acceso al dato.
» Escritura (WB), escribir en registros el resultado.

» Consolidacién (CT), consolidacién y retirada de la instruccién en orden.

B.1.1. Lanzamiento a ejecucion de instrucciones especulativamente.

Con objeto de maximizar la cantidad de paralelismo a nivel de instruccién, los procesadores de
altas prestaciones, deben encadenar la ejecucién de instrucciones dependientes (figura . Es
decir, que las etapas de ejecucion de dichas instucciones dependientes puedan tener lugar en ciclos
consecutivos. Dada la latencia existente entre la etapa de lanzamiento 1Q, y la etapa de ejecucién
E, es necesario que las instrucciones dependientes sean lanzadas a ejecucién antes de que sus
operandos estén calculados (ver cronograma figura para conseguir dicho encadenamiento o

back-to-back execution.

Hit L1

g

w|[IQ| P | R [MO0[M1]|M2]| M3 |aypass
Dependientes +|Q P R} E ‘
Ciclos 1 2 3 4 5 6 7 8

FicurA B.1: Cronograma en el que se muestra el encadenamiento de instrucciones dependien-
tes cuando hay acierto en la prediccién de la latencia de ejecucién.

En caso contrario, cuando las instrucciones dependientes no pueden ejecutarse encadenadamente,

las perdidas del rendimiento pueden ser de méas de 10 %, [16].

Para aquellas instrucciones cuya latencia de ejecucién es conocida en su etapa de lanzamiento,
es sencillo y seguro calcular cuando deben ser lanzadas sus instrucciones dependientes para que

haya encadenamiento.

Por otra parte, hay otras instrucciones, por ejemplo las instrucciones de acceso a memoria, cu-
ya latencia de ejecuciéon no se conoce ya que esta latencia varia dependiendo de en qué nivel
se encuentra el contenio accedido. En este escenario y para conseguir la ejecucién encadenada
de instrucciones, se requiere predecir una latencia de ejecucion para la instruccién de acceso a
memoria, tipicamente latencia de acierto en L1, y asi lanzar las instrucciones dependientes de
manera especulativa. En caso de acierto en la predicciéon, las instrucciones dependientes lanza-
das especulativamente tendran su operando fuente disponible a tiempo para la ejecucién (ver
figura . En caso de fallo de prediccién, aquellas instrucciones que fueron lanzadas especu-
lativamente, deben ser anuladas. Mas tarde, cuando el dato esté disponible en la L1, se debera
relanzar dichas instrucciones dependientes [17], como se muestra en la figura para conseguir

el encadenamiento.



Apéndice B. Procesadores de altas prestaciones y SPEC CPU 2006 28

Miss L1 Latencia en buscar el dato

w IQ| PR [MopMmi|M2|M3] .. [1IQ] P [ R [MOML|M2][M3 |aypass
Dependientes ﬂQ P R ) E
Ciclos 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F1GUurA B.2: Cronograma en el que se muestra el encadenamiento de instrucciones después de
un fallo en la prediccién y relanzamiento.

B.1.2. Configuracién del procesador de altas prestaciones

En la figura [B.I] se puede ver la configuracién del procesador de altas prestaciones simulado en

este Proyecto.

Fetch
Decode
Ancho de las etapas Rename 8 instrucciones
Issue
Commit
Tamarfio RUU 256 instrucciones
Tamafio LDST 128 instrucciones
Lanzamiento inst. int 64 instrucciones
Lanzamiento inst pf 32 instrucciones
Tamafio 64KB
. Asociatividad 4
Memoria L1 Tamafio bloque 32B
Latencia 4 ciclos
Tamaiio 256KB
Memoria L2 Asociatividad 8 instrucciones
Tamafio bloque 1288
Latencia 14 ciclos
Tamafio 4MB
. Asociatividad 4
Memoria L3 Tamafio bloque 128B
Latencia 19 ciclos
Memoria Principal Latencia 200 ciclos
Tamafio 2568
Memoria ACDC Asoclatlwdad Completamente asociativa
Tamafio bloque 16B
Latencia 1 ciclo
Puertos memoria 4
ALU's enteras 8
Multiplicadores/divisores 2
ALU's pf 4
Multiplicadores pf 4

TABLA B.1: Configuracion del procesador de altas prestaciones utlizado en este Proyecto para
las simulaciones.



Apéndice B. Procesadores de altas prestaciones y SPEC CPU 2006 29

B.2. Cargas de trabajo

La Standard Performance Evaluation Corporation (SPEC) [2] es una corporacién creada para
establecer, mantener y apoyar un conjunto standarizado de puntos de referencia relevantes que

se pueden aplicar a las nuevas generaciones de computadoras de alto rendimiento.

La CPU SPEC 2006 es un conjunto de pruebas intensivo que hace hincapié en el procesador y
la memoria del sistema. Estos programas se llaman benchmark y sirven para evaluar el rendi-
miento de un computador completo o de uno de sus subsistemas. Un conjunto de benchmarks
se denomina suite. Este SPEC CPU 2006 tiene dos suites, una para los enteros y otra para los
float.

Para la realizacién de nuestro proyecto hemos usado los benchmarks enteros que se muestran en
la tabla[B.2] y los benchmars float de la tabla Para saber mds sobre cada benchmark puede

leer las descripciones aqui [1§].

NOMBRE || AMBITO APLICACION
Perlbench Programming language
Bzip2 Compression
Gee C Language optimizing compiler
Mecf Combinatorial optimization / single-depot vehicle scheluding
Gobmk Artificial inteligence - game playing
Hmmer Search a gene sequence database
Sjeng Artificial inteligence
Libquantum Physics / Quantum Computing
H264ref Video compression
Omnetpp Descrete event simulation
Astar Computer games. Artificial inteligence. Path finding

TABLA B.2: Benchmarks enteros usados en la ejecucion de las simulaciones.

NOMBRE || AMBITO APLICACION
Bwaves Computacional fluid dynamics
Gamess Quantum chemical computations
Milc Physics / Quantum chromodynamics (QCD)
Zeusmp Physics / Magnetohydrodynamics
Gromacs Chemistry / Molecular dynamics
CactusADM Physics / General relativity
Leslie3d Computational fluid dynamics (CFD)
Namd Scientific structural biology
Dealll Solution of partial differentiall equations
Soplex Simplex linear program (LP) solver
Povray Computer visualization
Calculix Structural mechanics
GemsFDTD Computational electromagnetics (CEM)
Tonto Quantum crystallography
Lbm Computational fluid dynamics, lattice Boltzmann method
Wrf Weather forecasting
Sphin3 Speech recognition

TABLA B.3: Benchmarks floats usados en la ejecucién de las simulaciones.



Apéndice C

Descripcion y funcionamiento de
la memoria ACDC

C.1. Descripcion y funcionamiento de la memoria ACDC

Como ya comentamos en el capitulo |1} en la memoria ACDC [I], el contenido de la memoria
es controlado por las instrucciones y no por el flujo de direcciones de accesos generados por el
programa [I]. A continuacién mostramos un ejemplo para ver cémo algunas instrucciones pueden

marcar el reuso del programa.

En la figura se puede ver un fragmento de programa sobre el cual se va a explicar el reuso

1: inti, b, p1, p2;
2: for(i = 0; i < 100; i++)
{
3: b= p2 *5; // Reuso escalar temporal
4: ali] = a[i] + pl*b; {/ Reuso espacial stride 1
1

Ficura C.1: Fragmento de cédigo de un programa.

y cémo la memoria ACDC es capaz de aprovechar ese reuso. Este cédigo tiene un bucle con
100 iteraciones, el cual contiene varias instrucciones. La instruccién de la linea 3 de la figura
muestra reuso escalar temporal, puesto que estamos accediendo a la misma variable todas
las iteraciones del bucle. En la instruccién de la linea 4 de esa misma figura [C.1] tenemos reuso
espacial de stride 1 ya que accedemos a la misma posicién del vector para leer y escribir, con
salto 1. En la figura nos muestra estas instrucciones escritas en c6digo maquina. En la linea
4 de la figura el store estd accediendo a la misma variable “b* para escribir un dato, tantas
veces como iteraciones del bucle. Si solo los bloques accedidos por estas instrucciones fuesen
mantenidos en cache, se conseguiria aprovechar siempre todo el reuso que presenta el algoritmo.

Por otra parte en la linea 8 de la figura se lee un dato de un vector en una posicién, para

30



Apéndice C. Descripcion y funcionamiento de la memoria ACDC 31

después en la linea 10 de esa misma figura, almacenar en esa misma posicién un dato. En estos

dos ejemplos se muestra reuso de datos.

1: LD 51, p2

2: LD $2, #5

3 MUL  $3, 51,52
4; ST b, $3

5 LD 54, p1

6: MUL S5, 4, §3
7. LD 56, i

8 LD 57, a[$6]
9 ADD  $8, $7,55
10: ST al$6], $8

Figura C.2: Cédigo maquina de las instrucciones del bucle del ejemplo de la figura

Una posible estructura hardware que puede aprovechar la idea que acabamos de ver sobre este
reuso es una memoria muy pequena y completamente asociativa (DC), con una politica de
reemplazo basada en instrucciones. Por ejemplo, en aciertos de lectura, se proporcionaria el
dato; en aciertos de escrituras se actualizaria el dato. En fallo de memoria, se comprobara si
la instruccién de acceso al dato tiene permiso para reemplazar. Si lo tuviese, la linea asociada
de la memoria es reemplazada por el dato traido de memoria principal. En caso contrario no se

reemplaza y el dato es proporcionado por la memoria principal.

Esta idea puede ser implementada mediante una tabla que guarda los PC (direcciones de ins-
trucciones) de aquellas instrucciones que pueden reemplazar un linea de memoria y una linea
especifica que se quiere sustituir (DC icx). Esta tabla, por ejemplo AC, serd una memoria pe-
quenia y completamente asociativa donde se guardan dichos PC’s y un puntero o indice de la
linea de la DC que se quiere reemplazar (ﬁgura.

PC addr
l AC DC
tag || DC tag Fulgfe-‘?assoc
PC idx data
cache
.-
T

lDRP lh“

Ficura C.3: Estructura que implementa la ACDC.

El funcionamiento es el siguiente. Se accede a la DC con la direccién del dato (addr) para ver
si el dato requerido se encuentra ahi . En caso de fallo (miss), cuando el dato de memoria
principal esté disponible tenemos que saber si lo podemos guardar en una linea de la DC. Para
ello, con esta propuesta de memoria, se accede a la AC con la direccién de la instruccién y
comprobamos que se encuentra ahi. Si no se encuentra, el dato no sera reemplazado en la DC.
Si hay acierto en AC, el dato tiene permiso de reemplazo en la DC (DRP) y la linea de la DC a
reemplazar viene dada por el {ndice asociado a la linea de la AC (DC idx) en que se encuentre
el PC. Entonces el dato es reemplazado. En caso de acierto (hit) tanto de lecturas como de

escrituras, el proceso termina.

Con esta descripcién, en nuestro ejemplo de la figura[C.2] si en la AC tuviésemos el PC del load

que accede al vector (linea 8 de la figura|C.2)), la primera vez que se accediese al dato, tendremos



Apéndice C. Descripcion y funcionamiento de la memoria ACDC 32

miss en DC, pero al tener DRP, actualizaremos el contenido de la DC asociado al indice del
PCoad y en el siguiente acceso al dato en la DC (linea 10 de la figura|C.2)), tendremos un hit.

Hemos aprovechado el reuso espacial de stride 1 para aumentar el rendimiento.



Apéndice D

Implementaciones

En este apéndice se van a mostrar las modificaciones hechas en el simulador usado en este Proyec-
to [3] y las implementaciones de nuevos métodos usados, asi como los ficheros de automatizacién

del trabajo (para intentar disminuir el tiempo de trabajo).

D.1. Modificaciones en simulador [3]

En esta seccién se muestran los cambios hechos en el cédigo del simulador [3] para adaptarlo
a las distintas organizaciones de la memoria ACDC segun lo explicado en el capitulo [2| de este
documento. Para nuestro trabajo partimos del este simulador [3] modificado por Jesis Alastruey
(profesor de la Universidad de Zaragoza) cuyas modificaciones hacen que su funcionamiento se
parezca més a un procesador real. Se pueden leer estas modificaciones en su tesis doctoral [19].
Los cambios se realizan en el archivo “sim-outorder.base.c “ La figura [D.1] muestra las etapas del
simulador como el que se ha explicado en el apéndice [B|de este documento, en el cual se aprecian

las colas usadas en este Proyecto.

Bisqueda | Decodificacion| Renombre| Emision |Lanzamiento| Payload | Lectura ops. | Ejecucion | Escritura |Consolidacion
(IF) (DE) (RE) | (B) | (IQ) ) ] (MEE) | (WB)
DESPERTARSE
| Issue | ‘ Isq_refresh ‘ | DESPERTAR | |DESPERTARSE| | LECTURA_BR | |LECTURA_CACHE|

K Y

DESPERTAR

LECTURA_BR

LECTURA_CACHE

Ficura D.1: Esquema de las etapas del procesador simulado en este proyecto con las colas
asociadas a las etapas.

Los cambios introducidos en el cédigo del simulador afectan a la etapa de ejecucién, en concreto,

a los accesos a memoria (M) y a la etapa de lanzamiento (1Q).

33



Apéndice D. Implementaciones 34

Para entender mejor el simulador, el nticleo principal de funcionamiento se encuentra en la
funcién sim_main(). Aqui se comienza con una fase de inicializacién para posteriormente pasar a
un bucle infinito en el que cada iteracién corrersponde a un ciclo del procesador. En cada iteracién
se ejecutan las funciones que implementan las distintas etapas del procesador. Se observa que se
recorren al revés estas etapas del pipeline lo que permite que se puedan manejar correctamente
los registros de sincronizacién entre etapas con una sola pasada a lo largo de cada etapa. Para

terminar la ejecucién se hace una llamada al sistema con exit().

ruu_init();

for(; ) {
ruu_commit(); /I Modificado
ruu_release_fu();
ruu_writeback();
ruu_actualizar_acdc(); /l Nuevo
ruu_lectura_cache(); Il Modificado
ruu_missDC_hitL1(); /I Nuevo
ruu_lectura_br();
ruu_despertarse();
ruu_despertar();
Isq_refresh();
ruu_issue(); /I Modificado
ruu_dispatch();
ruu_rename();
ruu_decode();
ruu_fetch();

Ficura D.2: Ejecucién de las etapas del simulador que implementa el procesador usado en
este Proyecto.

La figura[D.2)se muestran las todas las etapas, sefialando las que he modificado en este Proyecto

o las nuevas que he creado.

Los cambios realizados explicados de una forma general, son los siguientes: En la etapa de
lanzamiento, ruu_issue(), he cambiado la prediccién de acertar en la cache de nivel 1 a que acierte
en la memoria DC. Es decir, lanzamos las instrucciones dependientes pensando que vamos a
acertar en la DC. Se observa en la ﬁgura que en etapa de lanzamiento (IQ), estd implementada
con dos funciones. Una es issue, que manda un evento a la cola DESPERTAR, que almacena
aquellas instrucciones que tiene que despertar dependientes. También envia un evento a la cola
LECTURA _BR, para aquellas instrucciones que tienen que hacer lectura de registros y finalmente
envia un evento a la cola LECTURA_CACHE, que son aquellas instrucciones que tienen que
acceder a memoria. Aqui, en lectura_cache, si el dato no se encuentra en la L1, se envia un
evento a la cola DESPERTARSE, que almacena los loads que esperan su dato de la jerarquia
de memoria. En cada ciclo de ejecuciéon se accede a estas colas y si procede, se van sacando
instrucciones de ellas. Y por otra parte estd Isq_refresh, que lo que hace es comprobar que las

instrucciones tiene las dependencias resueltas.

La funcién de acceso a memoria, ruu_lectura_cache, la he modificado para introducir las dos
organizaciones expuestas a lo largo de este documento (ver capitulo . Hay tres modos de
funcionamiento, el simulador sin ACDC (acdec == 0), con la organizacién paralela (acdc ==
1) y con la organizacién secuencial (acdc == 2), que son opciones que he anadido al fichero de

configuracién que se le pasa al simulador. Para el modo solo, no he realizado modificaciones. Para



Apéndice D. Implementaciones 35

el modo paralelo, he modificado el cédigo de acuerdo a la idea de organizacion paralela explicada
en el capitulo Es importante recalcar aqui, que se accede a la vez a ambas memoria (L1
y DC). Y para el modo secuencial, las modificaciones estdn hechas de acuerdo al capitulo

matizando que solo accedemos a la cache L1 cuando fallamos en DC.

Ademads he realizado dos nuevas funciones, ruu_missDC_hitL1() y ruu_actualizar_acdc(), con
el uso de otras dos nuevas colas. La cola FALLODC_ACIERTOLI1, en la que meto aquellas
instrucciones que fallan en DC y aciertan en L1, para despertarlas cuando corresponda. La
funcién ruu_missDC_hitL1(void), vacia esta cola. Y la cola ACTUALIZAR_ACDC, donde meto
aquellas instrucciones que tienen que actualizar la DC, y que la funcién ruu_actualizar_acdc(void)

vacia esta cola. En la figura [D.3] se pueden ver todas las colas que he usado para este Proyecto.

|ACTUALIZAR_ACDC | IFALLODC_ACIERTOL1|

Y

ACTUALIZAR_ACDC
FALLODC_ACIERTOL1

Basqueda |Decodificacion | Renombre | Emision | Lanzamiento | Payload | Lectura ops. | Ejecucion | Escritura | Consolidacion

(IF) (DE) (RE) | (DD (1Q) (P) (R) (MIE) | (WB) (cT)

DESPERTARSE

A
| Issue | | Isq_refresh | | DESPERTAR | |DESPERTARSE| | LECTURA_BR | |LECTURA_CACHE
K

DESPERTAR

LECTURA_BR

LECTURA_CACHE

Ficura D.3: Segmentado del procesador usado en este Proyecto con todas las colas que he
usado.

También he realizado cambios en algunas funciones para obtener los resultados que necesitaba y
estadisticas, asi como en los ficheros .h. Para saber més sobre SimpleScalar, puede leer el tutorial

aqui [20].

D.2. Implementaciones

En esta seccién se muestra el cédigo de las implementaciones realizadas.

void sim_reg_options(struct opt-odb_t =xodb) {

opt-reg-int (odb, ”"—uso_-acdc”, "0 = jerarquia convencional; 1 = paralelo; 2 = secuencial”,
&acdc , /* default /0, /* print */TRUE, /% format */NULL);

opt_reg_int (odb, "—tramos”, ”"Son los tramo para sacar los pc’s”, &tramos, 0, TRUE, NULL);

opt-reg-int (odb, "—crearficheros”, ”Son los tramos para sacar los pc’s”, &crearficheros ,
0, TRUE, NULL);

opt-reg.string (odb, ”"—cache:acdc”, ”"bloque:vias”, &cache_acdc-opt, ”acdc:4:4”, TRUE, NULL);

opt-reg-int (odb, ”"—cache:acdcHitLatency”, "latencia de la memoria acdc en aciertos”,
&cache_acdc_hit_latency , /% default =/ 1, /x print %/TRUE, /% format x/NULL);

opt-reg-int (odb, ”"—cache:acdcMissLatency”, ”"latencia de la memoria acdc en fallos”,
&cache_acdc-miss_-latency , /* default =/ 1, /+ print */TRUE, /* format */NULL);




Apéndice D. Implementaciones 36

void sim_check_options (struct opt_odb_t *xodb, int argc, char xxargv)
{
if (acdec < 0 || acdc > 2)
fatal (”El valor de ACDC no debe ser mayor de 2 y ha puesto: %", acdc);
/+ Creamos la memoria cache.ACDC x/
if (!mystricmp (cache_acdc_.opt, “none”))

cache_acdc = NULL;
else
{
if (sscanf(cache_acdc_.opt, ” %[ :]:%d:%d” ,name,&bloque , &via) != 3)
fatal (”Los parametros no estan bien. Son: <name>:<bloque>:<via>");

cache_acdc = newACDC(bloque , via);

if (cache_acdc_hit_latency < 1)
fatal ("ACDC _hit_latency debe ser mayor que cero”);
if (cache_acdc_-miss_-latency < 1)

fatal (" ACDC_miss_latency debe ser mayor que cero”);

void sim-reg-stats(struct stat-sdb_t ssdb)

{
stat-reg-counter (sdb, ”"sim-_total_issued-loads \t” ,”numero de load isuados”,
&sim_total_-issued-loads ,
sim_total_issued_loads ,NULL) ;
stat_reg_counter (sdb, "sim_total_issued_-stores\t” ,”numero de store isuados”,
&sim_total_issued_stores ,
sim_total_issued_stores , NULL) ;
stat-reg_counter (sdb, "sim_total_-commited_-loads” ,
”»numero de load jubilados”,
&sim_total_commited-loads ,
sim_-total_-commited-loads , NULL) ;
stat_reg_counter (sdb, ”"sim_total_commited_stores”,
"numero de store jubilados”,
&sim_total_commited_stores ,
sim_total.commited_-stores , NULL) ;
}

void sim_aux.-stats (FILE xstream)

{
fprintf(stream, "ESTADISTICAS ACDC\n”) ;
if (acdc != 0)
{
fprintf(stream, ”aciertosdc %10d # aciertos_-dc”, aciertos_dc);
fprintf(stream, ”fallosdec %10d # fallos_dc”, fallos_dc);
fprintf (stream, ”total_accesos-.dc %10d # total_accesos_dc” ,aciertos_dc+fallos_.dc);
fprintf(stream, ”aciertosac %10d # aciertos_ac” ,aciertos_ac);
fprintf(stream, ”fallosac %10d # fallos.ac” ,6 fallos_ac);
fprintf(stream, ”total_accesos_-ac %10d # total_accesos.ac” ,aciertos_ac+fallos_ac);
fprintf(stream, ”aciertos.dc_.loads %10d # aciertos_dc_loads” ,aciertos_dc_loads);
fprintf(stream, ”fallos_-dc-loads %10d # fallos_-dc-loads” ,fallos_-dc-loads);
fprintf (stream, ”total_-dc-loads %10d # accesos totales a dc en loads,aciertos+fallos”,
aciertos_dc_-loads+fallos_dc-loads);
fprintf (stream, ”aciertos_-ac-loads %10d # aciertos_ac_-loads\n”, aciertos_ac-loads);
fprintf(stream, ”fallos_ac_loads %10d # fallos_ac_loads\n”, fallos_ac_loads);
fprintf(stream, ”"total_ac-loads %10d # accesos totales a ac en loads, aciertos +
fallos” ,aciertos_ac-loads 4 fallos_ac_-loads);
fprintf(stream, ”aciertos_dc_stores %I10d # aciertos_dc_stores\n”, aciertos_dc_stores);
fprintf(stream, ”fallos_-dc-stores %10d # fallos_-dc-stores\n”, fallos_-dc-stores);
fprintf(stream, ”total_.dc_-stores %10d # accesos totales a dc en stores, aciertos -+
fallos\n”, aciertos_dc_stores + fallos_dc_.stores);
fprintf (stream, ”aciertos_ac_-stores %10d # aciertos_ac_.stores\n”, aciertos_ac_-stores);
fprintf(stream, ”fallos_ac_stores %10d # fallos_ac_stores\n”, fallos_ac_stores);
fprintf(stream, ”"total_ac_-stores %10d # accesos totales a ac en stores, aciertos -+
fallos\n”, aciertos_ac_-stores 4 fallos_ac_stores);
}
fprintf(stream, ”"FIN ESTADISTICAS ACDC\n”) ;
}

// Creacién de estructuras y colas
static struct RS_link =xfalloDC_aciertoL1l; // Para meter en las instrucciones
// que fallan en DC y aciertan en L1
static struct RS_link sactualizar_acdc; // Para actualizar la ACDC

#define FALLODC_ACIERTOL1 4 // Cola para meter los loads que fallan en DC y aciertan en L1
#define ACTUALIZAR_ACDC 5 // Cola para meter los loads que tienen DRP




Apéndice D. Implementaciones

37

static void cola_init ()

{

falloDC_.aciertoL1l = NULL;
actualizar-_acdc = NULL;

static void cola_queue (int tipo, struct RUU._station x*rs,

{

case FALLODC_ACIERTOL1:
ev = falloDC_aciertoL1 ;
break;

case ACTUALIZAR_ACDC:
ev = actualizar_acdc;
break;

case FALLODC_ACIERTOL1:
new-ev—>next = falloDC_aciertoL1;
falloDC_aciertoLl = new-ev;
break ;

case ACTUALIZAR-ACDC:
new-ev—>next = actualizar_acdc;
actualizar_acdc = new_ev:
break;

tick-t

when)

static struct RUU._station* cola-next(int tipo)

{

case FALLODC-ACIERTOL1:
ev = falloDC_aciertoLl ;
break;

case ACTUALIZAR-ACDC:
ev = actualizar_acdc
break;

case FALLODC_ACIERTOLL1:

falloDC_aciertoLl = falloDC_aciertoLl —>next;
break;

case ACTUALIZAR-ACDC:
actualizar_acdc = actualizar_acdc —>next;

static void lectura_cache (struct RUU_station *rs)

{

if (acdc == 1) /x Paralelo =/
{
if (rs—>falloL1D == TRUE) /x Relanzamientos x/
{
if (rs—>drp != —1)
{
load_lat = cache_acdc_miss_latency ;
}
else
{
load-lat = cache-dll_lat;
}
}
else
{

int valid-addr = MD-VALID_-ADDR(rs—>addr) ;
if (!spec_mode && !valid_addr)
{
sim-invalid_-addrs++;

}
if (cache_dll && cache_acdc && valid-addr)
{
latl = cache_access (cache_dll , Read,
(rs—>addr & 73),
NULL, 4,

sim-cycle + sim_cycle-base ,

NULL, NULL) ;
rs—>hit = isHit (cache_acdc, rs—>addr);
if (rs—>hit != —1) /« Acierto en DC */




Apéndice D. Implementaciones

38

{
aciertos_dc_loads++;
aciertos_-dc++;
lat2 = cache-acdc-hit-latency;
load_lat = MIN(latl, lat2);
}
else /+ Fallo en DC x/
{
fallos_-dc-loads++;
fallos_dc++;
lat2 = cache.acdc.miss-latency ;
rs—>drp = hasDRP(cache_acdc, rs—>PC);
if (rs—>drp != —1) // Tengo DRP
{
aciertos_ac_loads++;
aciertos_ac-+-+;
cola_.queue (ACTUALIZAR-ACDC, rs, sim-_cycle+latl);
}
else /x No tengo DRP %/
{
fallos_ac_loads++;
fallos_-ac++;
}
load_-lat = latl;
}
if (load-lat > cache-dll_lat)
{
events |= PEV_.CACHEMISS;
}
}
else
{
load-lat = rs—>latencia-exe;
}
}
Y} /* fin if(acdc == 1) %/
if (acdc == 2) /x Secuencial x/
{
if (rs—>falloL1D == TRUE ) /% Relanzamientos de loads que han fallado en L1
{
if (rs—>drp != —1)
{
load-lat = cache_acdc-miss_latency ;
}
else
{
load-lat = cache_dll_lat4+cache_acdc-miss_-latency ;
}
}
else
{
rs—>hit = isHit (cache_acdc, rs—>addr);
if (rs—>hit != —1) // Acierto en DC
{

aciertos-dc-loads++;
aciertos-dc+4+;

load_lat = cache_acdc_hit_latency ;
}
else // Fallo en DC
{

int valid-addr = MD.VALID-ADDR(rs—>addr) ;
if (!spec_mode && !valid_addr)

{
sim-invalid-addrs++;
}
if (cache_dll && valid_addr)
{
latl = cache_access(cache_dll , Read,
(rs—>addr & 73),
NULL, 4,
sim_cycle + sim-cycle_base ,
NULL, NULL) ;
load_lat = latl
if (load-lat > cache-dll-lat)
{
events |= PEV_.CACHEMISS;
}
}
else
{
load_lat = rs—>latencia_exe;
}

fallos_dc_loads++;

fallos_dc++;

rs —>drp = hasDRP(cache_acdc, rs—>PC);
if (rs—>drp != —1) // Tengo DRP

*/




Apéndice D. Implementaciones

39

{
aciertos_ac_loads++;
aciertos-ac+4+;
cola_queue (ACTUALIZAR-ACDC, rs, sim-cycletlatl);
}
else // No tengo DRP
{
fallos_ac_-loads++;
fallos_-ac++4;
}

}
Y // finif(acde == 2)

else // if (acdc == 0)

{
if (rs—>falloL1D == TRUE) /% Relanzamientos de loads que han fallado en L1 x/
{
if (rs—>drp != -—1)
{
eventq_queue_event (rs, sim_cycletcache_acdc_hit_latency);
if (rs—>ofisicos [0] != NULO)
ciclo_wb [rs—>ofisicos [0]]=sim_cyclet+cache_acdc_hit_latency ;

IQint_saca(rs);
ptrace.newstage (rs—>ptrace_seq ,PST_.EXECUTE, ((rs—>ea_comp ? PEV.AGEN : 0)|events));

}
else
{
if (acdec == 1) /x Paralelo =/
{
cola_queue (FALLODC.ACIERTOL1, rs, sim-_cycle+1); /* Miss en DC, despierto sin
especular */
anula_dependientes (rs);
eventq-queue-event (rs, sim-cycledcache_-dll_lat);
if (rs—>ofisicos [0] != NULO)
ciclo-wb [rs—>ofisicos [0]] = sim_-cycledcache_dll_lat;
IQint_saca (rs);
ptrace_newstage (rs—>ptrace.seq ,PST.EXECUTE, ((rs—>ea_comp ? PEV_AGEN : 0)|events));
}
if (acdc == 2) // Secuencial
{
cola_queue (FALLODC-ACIERTOL1, rs, sim-cycle42); /% Miss en DC, despierto sin
especular */
anula_dependientes (rs);
eventq_queue_event (rs, sim_cycledcache_dll_lat+cache_acdc_miss_latency);
if (rs—>ofisicos [0] != NULO)
ciclo-wb [rs—>ofisicos [0]] = sim_-cycledcache_dll_-lat+cache_-acdc-miss_-latency ;
IQint_saca(rs);
ptrace-newstage (rs—>ptrace.seq ,PST_.EXECUTE, ((rs—>ea_.comp 7 PEV_AGEN : 0)|events));
}
}
}
if (dtlb && MD_VALID_ADDR(rs—>addr) && (rs—>falloACDC == FALSE) && (rs—>falloL1D == FALSE))
{
tlb-lat = cache-access (dtlb, Read,
(rs—>addr & ~3), NULL, 4,
sim-cycle + sim-_cycle_-base ,
NULL, NULL) ;
if (tlb_lat > 1)
{
events |= PEV_TLBMISS;
}
load-lat = MAX(tlb_-lat , load-lat);
}
if (rs—>hit != —1)
{
eventq_queue_event (rs, sim-_cycletcache_acdc_hit_latency);
if (rs—>ofisicos [0] != NULO)
ciclo_wb [rs—>ofisicos [0]] = sim_cycletcache_acdc_hit_latency ;
IQint_saca(rs);
ptrace_newstage (rs—>ptrace-seq ,PST.EXECUTE, ((rs—>ea_-comp 7 PEV_.AGEN : 0)]|events));
}
else // Fallo en DC
{
if ((load_-lat > cache_dll_lat) && (rs—>falloL1D == FALSE)) // Fallo en L1. Relanzo.
{

rs—>tag++; // Para que el evento de esa cola (DESPERTAR) lo tome como no vdlido.
rs—>issued = FALSE; // Para que la instruccion se vuelva a lanzar
rs—>falloL1D = TRUE;
rs—>falloACDC = TRUE;
rs —>dormida = TRUE;
cola_queue (DESPERTARSE, rs, sim_cycledload_lat —3); // Programo el despertar de load dormido
anula_dependientes (rs);
}

else // Acierto en 1




Apéndice D. Implementaciones

40

ptrace_.newstage (rs—>ptrace.seq ,PST.EXECUTE, ((rs—>ea_.comp 7?7 PEV_AGEN

rs ,

sim_cycle41);
+ cache_dll_lat);

sim._cyclet+cache_dll_lat ;

sim_cycle+2);

+ cache_dll_lat+cache_acdc-miss_latency);

=sim.cyclet+cache._.dll_lat4cache_acdc_-miss_-latency ;

0)|events));

{
rs —>falloACDC = TRUE;
if (rs—>falloL1D == FALSE) // Para que no entre cuando relanzo.
{
if (acdc == 1) // Paralelo
{
anula_-dependientes (rs);
cola_queue (FALLODC_.ACIERTOL1, rs ,
eventq-queue_event (rs, sim_cycle
if (rs—>ofisicos [0] != NULO)
ciclo.wb [rs—>ofisicos [0]] =
}
else // Secuencial
{
cola_queue (FALLODC_ACIERTOLI1,
anula_dependientes (rs);
eventq-queue_event (rs, sim_cycle
if (rs—>ofisicos [0] != NULO)
ciclo.wb [rs—>ofisicos [0]]
}
IQint_saca(rs);
}
}
}
}
} % fin de lectura_cache
}

static void ruu_commit (void)

rs—>addr;

{
else /+ if (acdec == 0) =/
{
if (cache_acdc)
{
a = isHit (cache_acdc, rs—>addr);
if (a != —1) /* Acierto en DC x/
{
cache.acdc—>Lineas[a].datatag = rs—>addr;
aciertos_dc-stores—+-+;
aciertos_dc++;
}
else
{
fallos_-dc-stores+4+;
fallos_dc++;
b = hasDRP(cache-acdc ,LSQ[LSQ-head].PC);
if(b != —1) /x Tengo DRP x/
{
cache_acdc—>Lineas [b]. datatag =
aciertos_ac_stores4+;
aciertos-ac+4+;
}
else
{
fallos_ac-stores++;
fallos-ac-++;
}
}
}
}
}

static void ruu-issue (void)

{
sim_total_issued_loads++;
else /+ if (acde == 0) =/
{
issue_load_data_1(rs);
}
}

static void

{

ruu-decode (void)

if (contador

{

fichero)

nombre sim_-eio-fname;

1)

if (crearficheros




Apéndice D. Implementaciones

41

{
strcat (nombrefinal , nombre);
strcat (nombrefinal , 7.");
char aux[15];
sprintf(aux,” %” ,tramos) ;
strcat (nombrefinal ,aux);
strcat (nombrefinal , ”.7);
char aux2[99];
sprintf(aux2, ” %”, numerofichero);
sprintf(aux2, ” %”, fichero);
if (fichero == 0)
else
{
strcat (nombrefinal , aux2);
char xdefinitivo = strcat(nombrefinal, 7 .def”);
prueba = fopen(definitivo ,”w”);
perfprintPCCachePFC (prueba, perfdatatrace);
printf(” Fichero: % creado con exito\n”, definitivo);
fclose (prueba) ;
}
*nombrefinal = 0;
perfdatatrace = NULL;
contador-++;
numerofichero-++4;
cambio = 0;
}
else // No creamos fichero de andlisis
{
contador-++;
numerofichero++;
cambio = 0;
}
}
else
{
if (crearficheros == 1) // Creamos ficheros de andlisis
{
if (MD_.OP_FLAGS(lsq—>op) & F.MEM)
{
if ((MD.OP.FLAGS(lsq—>o0p) & (F.MEM|F_.LOAD)) == (FMEM|F_.LOAD))
{
perfdatatrace = perfaccessPCCache(perfdatatrace , lsq—>PC, 0,
(1sq—>addr & ~15), sim_num_refs);
}
if ((MD_-OP.FLAGS(lsq—>op) & (F.MEM|F_STORE)) == (FMEM|F_STORE) )
{
perfdatatrace = perfaccessPCCache (perfdatatrace , lsq—>PC, 1,
(1sq—>addr & ~15), sim_num_refs);
}
}
}
}

void sim_main (void)

{
if (acdc > 0)
{
if ( (tramos % numerofichero > sim_num_commit) && (cambio == 0) )
{
strcat (ficherocarga , sim_eio_fname);
strcat (ficherocarga , ”.”);

char auxl[15];

sprintf (auxl, %1” , tramos) ;

strcat (ficherocarga , auxl);

strcat (ficherocarga , ”.”);

char aux2[99];

sprintf(aux2, ” %”, numerofichero);
strcat (ficherocarga , aux2);

strcat (ficherocarga , ”.”7);

strcat (ficherocarga , ”"ana”);

puts (ficherocarga);

file = fopen (ficherocarga , "r”);
for (i = 0; i < cache_acdc—>dcways; i++)
{
fscanf (file , ” %” , &pc);
fscanf(file , ” %”, &repes);
fscanf (file , ” %7, ldst);
cache_acdc—>Lineas[i].pcs.pc = pc;
}

fclose (file);
xficherocarga = 0;




Apéndice D. Implementaciones 42

cambio = 1;

ruu_actualizar_acdc () ;

ruu-missDC_hitL1 () ;

D.3. Meétodos nuevos

En esta seccién se muestran los métodos nuevos que he implementado dentro de “sim-outorder.base.c “.

static void actualizar ACDC (struct RUU_station x*rs)

{

updateMiss (cache_acdc ,rs—>drp, rs—>PC, rs—>addr, sim_cycle);

}

static void ruu_actualizar_acdc (void)

¢ struct RUU_station =*rs;
while (rs = cola_-next (ACTUALIZAR.ACDC) )
{
actualizarACDC (rs) ;
}
}

static void ruu-missDC_hitL1l (void)

{
struct RUU_station x*rs;
while (rs = cola-next (FALLODC_ACIERTOL1))
{
despierta_dep(rs, 0);
despierta-dep (rs, 1);
¥
}

static void issue_-load_data_1(struct RUU_station xrs)

{
if (cache_acdc)
{
cola_.queue (DESPERTAR, rs, sim._cycle + cache_acdc_-hit_latency);
}
else
cola_.queue (DESPERTAR, rs, sim_cycle + rs—>latencia-exe);
cola_queue (LECTURA_CACHE, rs, sim_cycle);
}

D.4. Automatizaciones

En esta seccion se muestran algunos scripts de automatizacion realizados. Estos scripts se han
hecho para agilizar todo el proceso de ejecucion de las simulaciones. Son ficheros .sh y se lanzan
desde la linea de comandos del shell. También se muestran scripts en Phython [I5] para la
busqueda de informacién que nos interesa de los ficheros resultado de la ejecucién del simulador.
Son los archivos .py. También se muestra los cambios hechos en el archivo que se le pasa como

entrada al simulador (antonio.conf).

automatizartrazasenteros.sh
./sim—outorder .base —config antonio.conf trazas /400.perlbench—ref.eio 2>400.perlbench—ref.ecio.resul
./sim—outorder.base —config antonio.conf trazas/401.bzip2—ref.eio 2>401.bzip2—ref.eio.resul

./sim—outorder.base —config antonio.conf trazas/403.gcc—ref.eio 2>403.gcc—ref.eio.resul



Apéndice D. Implementaciones

43

./sim—outorder.base —config antonio.conf trazas/429.mcf—ref.eio 2>429.mcf—ref.eio.resul
./sim—outorder.base —config antonio.conf trazas/445.gobmk—ref.eio 2>445.gobmk—ref.ecio.resul
./sim—outorder.base —config antonio.conf trazas/456.hmmer—ref.eio 2>456.hmmer—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/458.sjeng—ref.eio 2>458.sjeng—ref.eio.resul
./sim—outorder.base —config antonio.conf trazas /462.libquantum—ref.eio 2>462.libquantum—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/464.h264ref—ref.eio 2>464.h264ref—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/471.omnetpp—ref.eio 2>471.omnetpp—ref.ecio.resul
./sim—outorder .base —config antonio.conf trazas/473.astar—ref.eio 2>473.astar—ref.eio.resul
automatizartrazasfloat .sh

./sim—outorder .base —config antonio.conf trazas/410.bwaves—ref.eio 2>410.bwaves—ref.eio.resul
./sim—outorder.base —config antonio.conf trazas/416.gamess—ref.eio 2>416.gamess—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/433.milc—ref.ecio 2>433. milc—ref.eio.resul
./sim—outorder.base —config antonio.conf trazas/434.zeusmp—ref.eio 2>434.zeusmp—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/435.gromacs—ref.eio 2>435.gromacs—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas /436.cactusADM—ref.ecio 2>436.cactusADM—ref.cio.resul
./sim—outorder.base —config antonio.conf trazas/437.leslie3d —ref.eio 2>437.leslie3d —ref . eio.resul
./sim—outorder .base —config antonio.conf trazas/444.namd—ref.eio 2>444.namd—ref.eio.resul
./sim—outorder.base —config antonio.conf trazas /447.dealll—ref.ecio 2>447.dealll —ref.eio.resul
./sim—outorder.base —config antonio.conf trazas/450.soplex—ref.eio 2>450.soplex—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas /453.povray—ref.eio 2>453.povray—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/454.calculix—ref.eio 2>454.calculix —ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/459.GemsFDTD—ref.eio 2>459.GemsFDTD—ref . eio.resul
./sim—outorder.base —config antonio.conf trazas/465.tonto—ref.ecio 2>465.tonto—ref.cio.resul
./sim—outorder.base —config antonio.conf trazas/470.lbm—ref.eio 2>470.lbm—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/481.wrf—ref.eio 2>481.wrf—ref.eio.resul
./sim—outorder .base —config antonio.conf trazas/482.sphinx3—ref.ecio 2>482.sphin3—ref.eio.resul

antonio.conf

// Archivo de configuracion que se le pasa al simulador con la configuracion deseada

# cache acdc

—uso-acdc 1 # 0 sin acdc, 1 paralelo, 2
—crearficheros 0 # 1 creamos ficheros de analisis
—tramos 100.000.000 # num. instrucciones
—cache:acdc ACDC:4:4 # nombre, bloques, vias

# latencia de la acdc

—cache:acdcHitLatency 1 # latencia en caso de acierto
—cache:acdcMissLatency 1 # latencia en caso de fallo

secuencial

0 no

los creamos

leerarchivos .py

# Con este archivo tomamos los ficheros que hemos creado con la extension resul resultantes de la ejecucion de la simulacion.

#!/usr/bin/python

def leerarchivos ():
import os
camino = 7 ./”

directorios = os.listdir (camino)

# Me creo una lista para guardar todos los archivos que me interesen.

lista = []

# Hacemos un listado con listdir()

directorios = os.listdir (camino)

# Elegimos que extension vamos a elegir de archivo.

»

palabra = ”.resul”

for i in directorios:
if palabra in i:
lista .append (i)

return lista # Devuelvo la lista

leerarchivos ()

leerficheroenteros .py

# Con este archivo, cogemos de cada fichero de resultados la informacién que necesitamos (ipc,...).
# En este caso es para los resultados de la suite enteros.

# Andlogo a este fichero he hecho otro para recoger los resultados de la suite float.

# Los cambios afectan solamente al fichero donde se guardan los datos (datosFLOAT.txt) y al nombre de fichero (leerficherofloat.py).

# No se incluye el fichero ”leerficherofloat.py.en este documento.

#!/usr/bin/python

# Importamos lo que nos hace falta.

from leerarchivos import leerarchivos

# Le paso como argumento la lista obtenida en leerarchivos.py

def leerFicheroEnteros (lista):




Apéndice D. Implementaciones

44

# Aqui guardamos los datos que nos interesan.

+

+

»

+

datos = open(”./datosENTEROS. txt” ,”a”)

datos.write (” \nNOMBRE,” 4 ”Modo,” 4 ”tramos,” 4+ ”bloque—vias ,” + "sim_total_issued-loads ,”
sim_total_issued_stores ,” 4+ ”sim_total_.commited_loads ,” 4+ ”"sim_total_commited_stores ,” + 7
sim_num.refs ,” 4+ ”sim_-num-loads ,” 4+ ”sim_-num_stores ,” 4 ”"sim_.elapsed-time ,” 4+ ”"sim_total_refs ,
"sim-total_-loads ,” + "sim_-total_-stores ,” 4+ "sim.cycle ,”+ 7sim_IPC,” +47dll.accesses ,” + 7dll. hits
,” 4+ 7dll.misses,” + ”dll.replacements,” 4+ ”dll.writebacks,” + ”ul2.accesses ,” + ”ul2.hits ,” +
ul2 . misses ,” + "ul2.replacements ,” 4+ ”"ul2.writebacks ,” 4+ ”ul3.accesses ,” + “ul3.hits ,” 4+ 7ul3.
misses ,” + ”ul3.replacements ,” + ”"ul3.writebacks ,” + ”dtlb.accesses ,” + ”dtlb.hits,” 4+ ”dtlb.
misses ,” 4+ 7 dtlb.replacements,” 4 ”aciertos_-dc ,” 4+ ”fallos_-dc ,” 4+ "total_accesos_-dc ,” + 7
aciertos-ac ,” + ”fallos_-ac ,” + "total_accesos-ac ,” 4+ "aciertos_-dc-loads ,” + ”fallos_-dc-loads ,”
"total_dc_loads ,” + ”aciertos_ac_loads ,” + ”fallos_ac_loads ,” + ”"total_ac_loads ,” + ”
aciertos_-dc-stores ,” 4+ ”"fallos_dc_-stores ,” + "total_-dc_-stores ,” 4" aciertos_ac_-stores ,” + 7
fallos_ac_stores ,” 4+ ”"total_ac_stores ,\n”)

# Recorro la lista pasada como argumento.

for archivo in lista:

# Le damos el camino (path) + el nombre para abrir el archivo.
camino = ”./”

nombre = camino + ”/” 4 archivo

# Abrimos el archivo

fh = open(nombre)

# Leemos linea a linea
linea = fh.readlines ()

# Recorremos cada linea y buscamos lo que nos interese
for 1 in linea:
if "loading” in 1: # Para cargar el nombre del fichero de prueba
x = archivo [:23]# Tomo los 23 primeros caracteres del nombre del archivo
datos.write (”\n” + x)
if 7"uso-acdc” in 1:
x = 1[1.find (”uso-acdc”)+16:]

w = x[:x.find ("#")] # Eliminamos los comentarios
w = w.lstrip () # Con Istrip(), alineamos a la izquierda.
datos.write (”,” 4+ w )
if ”tramos” in 1:
x = 1[1.find (”tramos”) +6:]
w = x[:x.find ("#")] # Eliminamos los comentarios
w = w.lstrip () # Con lstrip(), alineamos a la izquierda.
datos.write (7 ,” + w )

if "ACDC:” in 1:
x = 1[1.find (?"ACDC:”) +5:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write (7 ,” + w )

if "sim_cycle” in 1:
x = 1[1.find (”sim_cycle”) +9:]
w = x[:x.find ("#")]

w = w.lstrip ()

datos . write (7 ,” + w )
if "sim_elapsed_time” in 1:
x = 1[1.find(”sim_elapsed_time”)+16:]

w = x[:x.find ("#")]
w = w.lstrip ()
datos.write (7,7 + w)

if 7sim_IPC” in 1:
x = 1[1.find ("sim_IPC” ) +7:]
w = x[:x.find ("#")]

w = w.lstrip ()

datos . write(”,” 4+ w )
if "sim-num-loads” in 1:
x = 1[1.find (”sim_num_loads”)+13:]

w = x[:x.find ("#")]

w = w.lstrip ()

datos . write(”,” 4+ w )
if "sim_-num-_stores” in 1:
x = 1[1.find (”sim_num_stores” ) +14:]

w = x[:x.find (”.7)]
w = w.lstrip ()
datos . write(”,” 4+ w )
if "sim_-num-refs” in 1:
x = 1[1.find (”sim_num_refs”) +12:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write(”,” 4+ w )
if "sim_total_-loads” in 1:
x = 1[1.find(”"sim-total-loads”)+15:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (”,” 4+ w )
if ?sim_total_stores” in 1:
x = 1[1.find(”sim_-total_stores”)+416:]
w = x[:x.find ("#7)]




Apéndice D. Implementaciones

45

w = w.lstrip ()
datos.write (”,” 4+ w )
if ?sim_total_refs” in 1:
x = 1[1l.find(”"sim_total_refs”)+4+14:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write (7 ,” + w )
if 7dll.accesses” in 1:
x = 1[1.find (7dll.accesses”)+12:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7 ,” + w )
if 7dll.hits” in 1:
x = 1[1.find (7dll.hits”)+8:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7,7 + w )
if 7dll.misses” in 1:
x = 1[1.find (”dl1l.misses”)+10:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7 ,”+ w)
if 7dll.replacements” in 1:
x = 1[1.find (7dll.replacements”) +16:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7,74 w)
if 7dll.writebacks” in 1:
x = 1[1.find (”dl1l.writebacks”)4+14:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7,74 w)
if "ul2.accesses” in 1:
x = 1[1.find (" ul2.accesses”)+12:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write(”,” + w )
if 7ul2. hits” in 1:
x = 1[1.find (”ul2.hits”)+8:]
w = x[:x.find ("#")]
#w = w.lstrip()
datos.write (”,” + w)
if 7ul2.misses” in 1:
x = 1[1.find (”ul2.misses”)+10:]
w = x[:x.find ("#")]
w = w.rstrip ()
datos.write (”,” + w)
if ”ul2.replacements” in 1:
x = 1[1.find (”ul2.replacements”) 4+16:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos . write(” ,”4+ w)
if ”ul2.writebacks” in 1:
x = 1[1.find ("ul2.writebacks”)414:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7 ,"+ w)
if "ul3.accesses” in 1:
x = 1[1.find(”ul3.accesses”)+12:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7,7 + w )
if “ul3.hits” in 1:
x = 1[1.find (" ul3.hits”)+8:]
w = x[:x.find ("#7)]
#w = w.lstrip()
datos.write (7,7 + w)
if “ul3.misses” in 1:
x = 1[1.find (”ul3.misses”)+10:]
w = x[:x.find ("#7)]
w = w.rstrip ()
datos.write (7 ,” 4+ w)
if 7ul3.replacements” in 1:
x = 1[1.find (" ul3.replacements”) +16:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7,74 w)
if "ul3.writebacks” in 1:
x = 1[1.find (”ul3.writebacks”)+14:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos. write (7 ,"+ w)
if 7dtlb.accesses” in 1:
x = 1[1.find (”dtlb.accesses”)+13:]
w = x[:x.find ("#")]
w = w.lstrip ()

datos.write (”,” 4+ w )




Apéndice D. Implementaciones

46

if 7dtlb. hits” in 1:
x = 1[1.find (7 dtlb.hits”)+9:]
w = x[:x.find ("#")]
#w = w.lstrip()
datos.write (”,” + w)
if 7dtlb.misses” in 1:
x = 1[1.find (”dtlb.misses” ) +11:]
w = x[:x.find ("#")]
w = w.rstrip ()
datos.write (”,” + w)
if 7dtlb.replacements” in 1:
x = 1[1.find (”dtlb.replacements”)4+17:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos . write(” ,”4+ w)
if ”aciertosdc” in 1:
x = 1[1.find (”aciertosdc”)+10:]
w = x[:x.find ("#7)]
w = w.rstrip ()
datos . write (7 ,” + w)
if ”fallosdc” in 1:
x = 1[1.find (” fallosdc”) +8:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7,7 + w)
if "total_accesos_dc” in 1:
x = 1[1.find (”total_accesos_dc”)+16:]
w = x[:x.find ("#7)]
w = w.lstrip ()

datos.write (7,7 + w)

if "aciertosac” in 1:
x = 1[1.find (" aciertosac”) +10:]
w = x[:x.find ("#")]
w = w.rstrip ()

datos.write(”,” + w)

if ”fallosac” in 1:
x = 1[1.find (” fallosac”) +8:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write(”,” + w)

if "total-accesos-ac” in 1:
x = 1[1.find ("total_accesos_-ac”)+16:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write(”,” + w)

if "aciertos-dc-loads” in 1:

x = 1[1.find (" aciertos_dc_loads”)+17:]
w = x[:x.find ("#")]
w = w.rstrip ()

datos.write (”,” + w)
if ”fallos-dc-loads” in 1:
x = 1[1.find(” fallos_dc_loads”)+15:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write (”,” + w)
if "total_dc-loads” in 1:
x = 1[1.find ("total_-dc-loads”)+14:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos. write (7,7 + w)
if ”aciertos-ac_-loads” in 1:
x = 1[1.find(”aciertos_ac-loads”)+4+17:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos . write (7 ,” + w)
if ”fallos_ac_loads” in 1:
x = 1[1.find (” fallos-.ac_-loads”)+4+15:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7,7 + w)
if "total_ac_loads” in 1:
x = 1[1.find ("total_ac_loads”)+14:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7,7 + w)
if “aciertos_dc_stores” in 1:
x = 1[1.find (" aciertos_dc_stores”)+18:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos.write (7 ,” 4+ w)
if ”fallos-dc-stores” in 1:
x = 1[1.find (” fallos_dc_stores”)+16:]
w = x[:x.find ("#7)]
w = w.lstrip ()
datos . write (7 ,” + w)
if "total-dc-stores” in 1:
x = 1[1.find (”total_dc_stores”) +15:]




Apéndice D. Implementaciones

w = x[:x.find ("#")]

w = w.lstrip ()

datos.write(”,” + w)
if "aciertos_ac-stores” in 1:
x = 1[1.find (" aciertos_ac_stores”)+18:]

w = x[:x.find ("#")]
w = w.lstrip ()

datos.write (”,” + w)
if "fallos_ac-stores” in 1:
x = 1[1.find (” fallos_ac_stores”) +16:]

w = x[:x.find ("#")]
w = w.lstrip ()
datos . write (7 ,” + w)
if "total_ac-stores” in 1:
x = 1[1l.find(”"total_ac_stores”)4+15:]
w = x[:x.find ("#")]
w = w.lstrip ()

datos . write (7 ,” + w)
if "sim-total_issued_-loads” in 1:
x = 1[1.find (”sim_-total_issued-loads”)422:]

w = x[:x.find ("#")]
w = w.lstrip ()

datos. write (7,7 + w)
if "sim_total_.issued_-stores” in 1:
x = 1[1l.find(”sim_-total_issued_-stores”)+23:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos.write (7 ,” + w)
if ?sim_total_.commited_loads” in 1:
x = 1[1.find(”sim_-total_commited_loads” ) 424:]
w = x[:x.find ("#")]
w = w.lstrip ()
datos . write (7,7 + w)
if "sim_total_.commited_.stores” in 1:
x = 1[1.find(”sim-total_commited-stores”)+25:]

w = x[:x.find ("#")]
w = w.lstrip ()
datos . write (7,7 + w)
fh.close ()
# Fin def leerFicheroEnteros(lista)

# Comienzo

lista = leerarchivos ()
leerFicheroEnteros (lista)
# Fin




Apéndice E

Resultados, costes, métricas y

analisis previo.

Este apéndice esta dedicado a mostrar los costes de energia relacionados con el Proyecto. También
se explica la fase de andlisis previo o profiling que es indispensable para este Proyecto (ver seccion
. Se muestran también las métricas que hemos utilizado para valorar los resultados obtenidos
y finalmente se muestran los resultados mediante las tablas que hemos obtenidos asi como sus

graficas.

E.1. Costes energéticos

Para obtener los costes de energia que hemos usado en este Proyecto, hemos usado la herramiente
Cacti en su versién 6.5 [12]. Esta herramienta sirve para modelar memorias caches. Tiene varias
versiones y la elegida para mi trabajo ha sido la dltima versiéon que se usa mediante compilacién

y ejecucion en la linea de comandos del shell.

El gasto de energia que experimenta un procesador de altas prestaciones estd ligado al uso de
la jerarquia de memoria. Por una parte estd el consumo estatico que es aquel que tienen los
transistores que forman los médulos de la memoria cuando no hay transiciones, es decir, cuando
su salida no cambia (consumo estético de energia). Cuando hay transiciones en estos transistores,

hay consumo de energia y se conoce como consumo dindmico de energia.

La tabla[E.T]nos muestra los costes estéticos, que son aquellos que estén relacionados con la falta
de transicion en los transistores que forman los mdédulos de la jerarquia de memoria. En la tabla
[E:2]se muestran los valores de los costes de energfa dindmicos, que son los que estdn relacionados
con los cambios de estado de los transistores, es decir, cuando hay transiciones hay consumo de

energia dindmica.

Para la realizacién de algunos cédlculos hemos supuesto que la frecuencia del procesador es de
2.5GHz.

48



Apéndice E. Resultados, costes, métricas y andlisis previo. 49

Coste
Memoria L1 0.047432
Memoria L2 0.150232
Memoria L3 2.457176
Memoria principal | 0.866304
Memoria ACDC 0.004

TABLA E.1: Coste de energia estdtica para las distintas memorias expresado en nJ.

Coste leer Coste escribir
Memoria L1 0.0892139 0.0678675
Memoria L2 0.226472 0.21833
Memoria L3 0.916666 0.964853
Memoria Principal 0.672907 0.693852
Memoria AC 0.0098815628 0.0098815628
Memoria DC 0.0098815628 0.0098815628

TABLA E.2: Coste de energia dindmica para las distintas memorias expresado en nJ.

Coste energético =
total stores * coste escribir 11
reemplazos 11 * coste escribir 11
reemplazos I2 * coste leer 12
escrituras |2 * coste escribir 12
reemplazos 12 * coste escribir 12
reemplazos I3 * coste leer I3
escrituras I3 * coste escribir 13
reemplazos I3 * coste escribir I3
reemplazos MM * coste leer MM
escrituras MM * costes escribir MM
total accesos DC * coste leer DC
total accesos AC * coste leer AC
aciertos AC * coste escribir AC
fallos DC * coste leer |1

R e AR A s

Ficura E.1: Férmula que muestra como se obtiene el coste de energia dindmica en la organi-
zacién secuencial.

Coste energético =
total load * coste leer 11
total stores * coste escribir 11
reemplazos I1 * coste escribir |1
reemplazos I2 * coste leer 12
escrituras 12 * coste escribir 12
reemplazos 12 * coste escribir 12
reemplazos I3 * coste leer I3
escrituras I3 * coste escribir 13
reemplazos I3 * coste escribir I3
reemplazos MM * coste leer MM
escrituras MM * costes escribir MM
total accesos DC * coste leer DC
total accesos AC * coste leer AC
aciertos AC * coste escribir AC

Rt S s

Ficura E.2: Férmula que muestra como se obtiene el coste de energia dindmica en la organi-
zacion paralela.

Para la obtencién de los consumos de energia dindmica para el caso de la organizacién secuencial,
se ha aplicado la férmula de la figura [E-I] Para obtener el coste energético de la organizacién
paralela, se ha aplicado la férmula de la figura La diferencia entre ambas radica en que
en el coste de energia en la organizacion secuencial, los accesos al médulo de memoria L1 de la

jerarquia de memoria son los fallos en la DC.

E.2. Analisis

En esta seccion se explica cémo se han obtenido las instrucciones que se cargan en la AC.
Este proceso es el que hemos llamado “la fase de anélisis previo“ o profiling y consiste en buscar
aquellas instrucciones que aprovechan més el reuso de los datos dentro del programa (SPEC CPU

2006 [2]). Estas instrucciones son las que més veces acceden a los datos, tanto ellas, como amigas,



Apéndice E. Resultados, costes, métricas y andlisis previo. 50

entendiendo amigas como aquellas instrucciones que acceden al mismo dato (ver ejemplo y
[1]). Una vez que hemos obtenidos las instrucciones que mas aprovechan el reuso, las ordenamos
por el nimero de aciertos al dato al que acceden y asi se podran cargar en la AC cuando se
lance la ejecucién de la simulacién usando la ACDC. La AC tendra 16 lineas, que cada linea

corresponde con un PC.

Los programas de prueba [2] estan preparados para simulaciones con 100.000.000 de instrucciones
de fastfwd, es decir, para el calentamiento de las caches y 100.000.000 de instrucciones para la

simulacién en si.

Inicialmente, este andlisis previo se ha hecho sobre el total de las instrucciones, obteniendo un
solo fichero con los PC’s que més reuso aprovechan. Posteriormente y para hacer otras pruebas,
hicimos un anélisis de 100 ficheros con 1.000.000 de instrucciones cada uno, para intentar buscar
con mas profundidad el reuso. Es decir, dividimos el programa en tramos mas pequenos y asi

intentar localizar las partes del programa donde més reuso hay.

Los resultados del andlisis de la suite enteros y de la suite float se pueden ver, tanto para 1
fichero como para 100 en la seccién [E-8:3]



Apéndice E. Resultados, costes, métricas y andlisis previo. 51

E.3. Meétricas

Las métricas que se han usado para valorar la memoria ACDC [I] en SPEC CPU 2006 [2] son

las siguientes:

» IPC, instrucciones por ciclo (rendimiento).

= Energy_Delay. Este indicador tiene en cuenta el tiempo de ejecucién y el gasto de energia.

Con ello tenemos una métrica mas real del ratio rendimiento-consumo.

= Aciertos obtenidos y aciertos esperados en DC. Los aciertos obtenidos son aquellos que
han acertado en la memoria DC cuando estamos usando o la organizacién secuencial (ver
seccion o la organizacién paralela (ver seccién v los aciertos esperados son los
que se han obtenido de la fase de andlisis previo (ver seccién .

E.4. Graficas suite enteros y suite float

En esta seccién se muestran las graficas y las tablas que hemos obtenido con la ejecucién de
las simulaciones en este Proyecto. En primer lugar se mostraran las graficas tanto para la suite
enteros como para la suite float. Se comienza por las graficas de rendimiento y posteriormente
siguen las graficas del consumo (estdtico, dindmico, total y con la métrica Energy_Delay). Primero

se muestran las gréaficas con sus valores y luego en porcentajes.

Después de las graficas se muestran las tablas correspondientes a los datos extraidos de las
simulaciones. En primer lugar se muestran los datos correspondientes a la suite enteros en el modo
solo. Le siguen el modo secuencial y el modo paralelo. Los datos que se muestran hacen referencia
al nombre de benchmark, al modo de ejecucién (solo, paralelo o secuencial), las instrucciones que
se han lanzado (IQ), las instrucciones que han hecho el commit (CT), el tiempo en ciclos de la
simulacién (sim_cycle), IPC, accesos a los distintos médulos de memoria (contando los aciertos

y los fallos) y accesos a la DC y AC (con fallos y aciertos).

40 wsoo

W PARALELO
3.5 SECUENCIAL
30
20
15
10
05
i
$
&
&
$
N

& o

Gy, 6'774.

A N
& &
T &

&
&
$
&

Q

Ficura E.3: Valores de IPC para la suite enteros.



Apéndice E. Resultados, costes, métricas y andlisis previo. 52

40% W PARALEO
m SECUENCIAL
35%
30%
25%
20%
15%
10%
) .
0%
< & + s o 5 Q s
& & & & & & £ & & ¢
o) & S5 & < T
N @ G @ § & & &
& & <

FIGURA E.4: Valores de IPC en porcentajes para la suite enteros.

10,000,000
®SOLO

9,000,000 - = PARALELO
SECUENCIAL

8,000,000
7,000,000
6,000,000
5,000,000
4,000,000
3,000,000

2,000,000

R . I . . . . . . .
0
E:D'@

o &
&
& °

ol
& ‘b 3 ,\,\&Q & &€

&
<~‘ 6\ 3
< s}‘} Y fe) W&

? F

Ficura E.5: Consumo estatico para la suite enteros expresado en nJ.

0%
5%
-10%
-15%
-20%

-25%
M PARALELO

)
%,
s

S R §
& ”} < o” '3‘ iQ 6&/
(? SN

&

FIGURA E.6: Porcentaje de consumo estatico para la suite enteros.

)
%,

™ SEGUENGIAL
-30%



Apéndice E. Resultados, costes, métricas y andlisis previo.

40,000,000 5oL

H PARALELO

35,000,000 SECUENCIAL

30,000,000
25,000,000
20,000,000
15,000,000

10,000,000

5,000,000 I
: B m
&
g

FiGurA E.7: Consumo de energia dindmica expresado en nJ para la suite enteros.

& N
S
&

& 3
Q‘z\\ Q;DQ
15%

W PARALELO
10%

$T311th~1l15

@
B

2

-15%
-20%
-25%

-30%

FicUura E.8: Porcentaje de consumo dindmico para la suite enteros.

45,000,000
= SOLO

40,000,000 MPARALELO
SECUENCIAL

35,000,000

30,000,000

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000 I I l
. 1]
&
£ &
&

&
&

& s
& g
~Z§ <

Q
&
&
S

o
Q&
k:
&
&

Ay
%E”Ca

&
§
T
g
§
3

Ficura E.9: Consumo total expresado en nJ para la suite enteros.



Apéndice E. Resultados, costes, métricas y andlisis previo. 54

&
s S @
& -~ R &)
5 & & & & Q S
) @ & &
F & 5 & F & £ &£ § £ £ £
¢ & & & & kS & F kS § & <

15%
10%

5%

0% - —
SRRERE

10%

15%

-20%

2504 | mPARALELO

m SECUENGIAL
-30%

FicuraA E.10: Consumo total en porcentajes para la suite enteros.

90
®S0LO

80 = PARALELO
SECUENCIAL

70

60

50

40

30

20

. . .
0 = | " r—— N -_—
& & & & & N & & & & @ &
& A4S (<) & S & & N o & G &
& & > & s
Qé\o R4 o B < & W & &

FicUura E.11: Indicador Energy_Delay del consumo de energia para la suite enteros.

§
§ g
§ o &
L
& & s?

ES

0%
5%
-10%
-15%
-20%
-25%

?tbe

-3 g

& > & o) &

¢ & & s & & £
& & kS S < <

¢
=

-30%
-35%
-400p -8 PARALELO

® SECUENGIAL
-45%

Ficura E.12: Indicador del consumo Energy_Delay expresado en porcentajes de la suite en-
teros.



Apéndice E. Resultados, costes, métricas y andlisis previo.

55

4.0 W SIN_ACDC
W ACDC_PARA
35 ACDC_SECU

30

25

20

15

10

05

0.0 I
‘ 3

595'

iy —

<o,

F S § 5 & & g F L~ g 8
@ & N F & e T g g S
§ & <
(@] (o)
FiGUurA E.13: Valores de IPC para la suite float.
50% g ACDC_PARA
W ACDC_SECU
45%
40%
35%
30%
25%
20%
15%
10%
o mm W B 0 N .
$ &S FET P EFTF LTSS
& £ § & FFF I F e FE LT & &
& NS §F o & <
& &

FiGURA E.14: Valores de IPC en porcentajes para la suite float.

7,000,000
W SIN_ACDC
W ACDC_PARA

6,000,000 ACDC_SECU

5,000,000

4,000,000

3,000,000

2,000,000

1,000,000 . . . I
0
o ) < > > > e & o o N
& F LTI § Ly LpESIEY
g £ F &5 F T FH e F L £ g
& & I S & 4 y

¢ & <

FIGUurA E.15: Consumo estatico para la suite float expresado en nJ.



56

Apéndice E. Resultados, costes, métricas y andlisis previo.

g E o
PR Q & k-] x 2 I
§ £ & 557 2 s 5 8 5 5 » 2 f
fF 5§ & 8 & 8 F 5 3 5 55 5 5 5 5 F 5
g &§ § & 6 § & £ & & & & & £ 3 F <
0% —
-5%
-10%
-15%
-20%
-25%
-30%
W ACDC_PARA

® ACDC_SECU

-35%
F1GURA E.16: Porcentaje de consumo estatico de la suite float.

18,000,000
m SIN_ACDC

W ACDC_PARA
16,000,000 | scpc secu
14,000,000
12,000,000
10,000,000
8,000,000
6,000,000
4,000,000
2,000,000 l I I I I
0
¢ 7z & = S 8 B S 5 & & P & E g £
£ fEF iS5 FEF AP EE
5 £ 2§55 5858 88 % i
g & Nos o§ 5 ° 5 d
T f *
& 9]

FicUura E.17: Consumo de energia dindmica expresado en nJ para la suite float.

= Q
o B a 4 § b=l x & g
g g § &£ § f g s & 2 § F ¢ £ Z
S 5 % F £ 5 5 £ F 5 s F e & 5 5 & 5
s § § § ¢ § & £ & & & & & £ 3 5 <
15% W ACDC_PARA
W ACDC_SECU
10%
5% I
: . L
5%
10%
-15%
20%
-25%
-30%

-35%
F1GURrRA E.18: Porcentaje de consumo dindmico para la suite float



Apéndice E. Resultados, costes, métricas y andlisis previo.

25,000,000

W SIN_ACDC
W ACDC_PARA
ACDC_SECU
20,000,000
15,000,000
10,000,000
5,000,000 I I
0 I I I I I I I
g 2 & & & S P S F o H T Q0 & £ > &
s & oy §F 8 @ ¢ 7 g o $
& < A

Ficura E.19: Consumo total expresado en nJ para la suite float.

5 £ .
¢ 8 s ¢ F 3 X s & £ o 8
§5§"§E§§§E§§§"§§§E £ F
§ § § &4 58 & & £ 8 5§ &5 & & 5 5§ F F
10%
5%
u%ll 1 o .
o 11
-10%
-15%
-20%
-25%
W ACDC_PARA
®ACDC_SECU
-30%%
FiGura E.20: Consumo total en porcentajes de la suite float.
50

W SIN_ACDC
W ACDC_PARA

45 ACDG_SECU

40

35

30

25

20

15

10

‘BBl
& & 5 8
& F F 5
V5 g8

o m- = In | | B ST [ |
> -
& g & & F g e F L s S e
g ¢ KRN B A g &
s & g <« X & o §
& & N

FicurA E.21: Indicador Energy_Delay del consumo de energia para la suite float.



58

Apéndice E. Resultados, costes, métricas y andlisis previo.

“ & 5 k=] l’? i
& g 7 5 ¢ s & ¢ 5 F ¢ 2 F
s f e d 58 F5FF 555 8 s 5 £
i § § 4 5 & & £ 8§ § & 35 8§ & 5 5 F F
10%
10% 1 " ]
-20%
-30%

-40%
W ACDC_PARA

mACDC_SECU

-50%
Ficura E.22: Indicador del consumo Energy_Delay expresado en porcentajes de la suite float.



Apéndice E. Resultados, costes, métricas y andlisis previo.

E.5. Resultados suite enteros

E.5.1. Resultados sin el uso de la memoria ACDC, suite enteros.

TaBLA E.3: Resultados para la suite Enteros sin memoria ACDC.

Nombre total_issued_1d | total_issued_st | total_.commited_ld
Perlbench 36,533,844 14,727,176 32,075,587
Bzip2 58,695,597 17,391,281 54,347,500
Gcee 33,181,516 10,982,480 28,515,273
Mecf 27,222,739 9,539,306 25,780,211
Gobmk 33,864,570 11,957,115 27,076,634
Hmmer 39,993,654 9,008,185 32,198,719
Sjeng 30,046,310 6,864,883 24,750,238
Libquantum 29,278,586 6,977,940 18,570,642
H264ref 49,365,710 16,326,366 48,203,947
Omnetpp 24,200,813 6,734,346 21,880,320
Astar 16,148,122 7,263,300 23,853,370

Nombre total_commited_st sim_num_refs sim_num_ld sim_num_st
Perlbench 12,600,176 44,675,773 32,075,593 12,600,180
Bzip2 17,391,239 71,738,830 54,347,567 17,391,263
Gee 9,681,488 38,196,768 28,515,279 9,681,489
Mecf 9,083,897 34,864,123 25,780,220 9,083,903
Gobmk 10,450,938 37,527,589 27,076,645 10,450,944
Hmmer 7,310,067 39,508,799 32,198,731 7,310,068
Sjeng 6,208,686 30,958,932 24,750,246 6,208,686
Libquantum 6,977,899 25,548,548 18,570,646 6,977,902
H264ref 16,097,809 64,301,844 48,204,012 16,097,832
Omnetpp 6,468,517 28,348,853 21,880,328 6,468,525
Astar 3,518,020 27,371,393 23,853,373 3,518,020

Nombre elapsed_time | total_refs total_ld total_st simcycle
Perlbench 246 | 58,436,869 | 42,079,106 16,357,763 56,977,368
Bzip2 510 | 71,739,160 | 54,347,830 17,391,330 123,915,380
Gee 232 | 49,511,424 | 36,890,640 | 12,620,784 55,773,094
Mecf 200 | 37,732,986 | 28,014,650 9,718,336 41,129,611
Gobmk 252 | 55,522,511 | 41,036,898 14,485,613 61,219,900
Hmmer 238 | 57,978,208 | 46,057,066 11,921,142 53,757,656
Sjeng 227 | 43,374,779 | 35,552,229 7,822,550 55,118,350
Libquantum 612 | 25,548,812 18,570,829 6,977,983 | 263,817,483
H264ref 202 | 68,216,509 | 51,175,055 17,041,454 28,678,481
Omnetpp 182 | 33,686,705 | 26,522,056 7,164,649 39,851,402
Astar 400 | 70,226,593 | 61,002,063 9,224,530 | 109,455,503

Nombre IPC dll.accesses dll1.hits dll.misses | dll.replace
Perlbench 1.755083 44,913,372 | 44,330,831 582,541 582,541

Bzip2 0.807002 71,738,806 | 63,043,175 8,695,631 8,695,631

Gee 1.792950 38,051,871 | 37,895,190 156,681 156,681

Mecf 2.431338 33,810,379 | 33,768,043 42,336 42,336

Gobmk 1.633456 40,496,916 | 40,388,830 108,086 108,086

Hmmer 1.860200 39,965,790 | 39,459,110 506,680 506,680

Sjeng 1.814278 33,509,077 | 33,450,437 58,640 58,640

Libquantum | 0.379050 25,548,565 | 20,033,655 5,514,910 5,514,910
H264ref 3.486935 64,479,040 | 64,369,908 109,132 109,033
Omnetpp 2.509322 26,210,984 26,128,443 82,541 82,541
Astar 0.913613 44,269,220 | 42,697,704 1,571,516 1,571,516




Apéndice E. Resultados, costes, métricas y andlisis previo.

Nombre dll.writebacks ul2.accesses ul2.hits ul2.misses
Perlbench 127,159 948,537 874,675 73,862
Bzip2 4,347,812 13,043,447 | 10,869,513 2,173,934
Gece 119,556 668,634 618,176 50,458
Mecf 42,335 84,674 66,827 17,847
Gobmk 74,553 380,402 339,289 41,113
Hmmer 443,477 950,172 838,567 111,605
Sjeng 40,998 109,565 79,900 29,665
Libquantum 4,878,548 10,393,631 9,014,799 1,378,832
H264ref 65,451 186,374 185,078 1,296
Omnetpp 45,358 161,642 126,296 35,346
Astar 631,882 2,203,399 2,005,132 198,267

Nombre ul2.replacements ul2.writebacks ul3.accesses ul3.hits
Perlbench 582,541 16,396 90,258 83,769
Bzip2 8,695,631 1,087,032 3,260,966 | 1,087,032
Gcee 156,681 26,154 76,612 52,178
Mecf 42,336 15,895 33,742 23,758
obmk 108,086 21,535 62,648 46,459
Hmmer 506,680 105,464 217,069 216,339
Sjeng 58,640 17,241 46,906 26,110
Libquantum 5,514,910 1,218,118 2,596,950 | 1,218,118
H264ref 109,033 248 1,544 1,236
Omnetpp 82,541 13,222 48,568 38,161
Astar 1,571,516 110,218 308,485 308,424

Nombre ul3.misses ul3.replacements ul3.writebacks
Perlbench 6,489 582,541 4,805
Bzip2 2,173,934 8,695,631 1,086,589
Gee 24,434 156,681 20,668
Mecf 9,984 42,336 8,982
Gobmk 16,189 108,086 15,454
Hmmer 730 506,680 0
Sjeng 20,796 58,640 13,974
Libquantum 1,378,832 5,514,910 1,203,782
H264ref 308 109,033 0
Omnetpp 10,407 82,541 5,062
Astar 61 1,571,516 0




Apéndice E. Resultados, costes, métricas y andlisis previo.

E.5.2. Resultados con la organizacion secuencial, suite enteros.

TABLA E.4: Resultados para la suite Enteros con la organizacién Secuencial.

Nombre Modo total_issued_ld total_issued_st
Perlbench Secuencial 36,063,440 14,621,797
Bzip2 Secuencial 58,695,561 17,391,281
Gecee Secuencial 32,166,608 10,761,066
Mecf | Secuencial 26,795,751 9,475,726
Gobmk | Secuencial 32,944,010 11,772,486
Hmmer Secuencial 39,464,351 9,306,874
Sjeng | Secuencial 29,085,729 6,745,863
Libquantum Secuencial 29,278,543 6,977,939
H264ref | Secuencial 49,339,898 16,392,440
Omnetpp Secuencial 23,957,653 6,730,453
Astar | Secuencial 43,981,094 7,099,406
Nombre total_commited_ld total_commited_st num _refs
Perlbench 32,075,588 12,600,176 | 44,675,773
Bzip2 54,347,500 17,391,239 71,738,830
Gee 28,515,273 9,681,488 | 38,196,768
Mecf 25,780,211 9,083,897 | 34,864,123
Gobmk 27,076,634 10,450,938 | 37,527,589
Hmmer 32,198,719 7,310,067 | 39,508,799
Sjeng 24,750,238 6,208,686 | 30,958,933
Libquantum 18,570,642 6,977,899 25,548,547
H264ref 48,203,947 16,097,809 | 64,301,844
Omnetpp 21,880,320 6,468,517 | 28,348,853
Astar 23,853,369 3,518,019 | 27,371,393
Nombre num_ld num_st elapsed_time
Perlbench | 32,075,593 12,600,180 253
Bzip2 54,347,567 17,391,263 586
Gee | 28,515,279 9,681,489 236
Mecf | 25,780,220 9,083,903 204
Gobmk | 27,076,645 10,450,944 243
Hmmer | 32,198,731 7,310,068 230
Sjeng 24,750,246 6,208,687 217
Libquantum 18,570,646 6,977,901 622
H264ref | 48,204,012 16,097,832 216
Omnetpp | 21,880,328 6,468,525 171
Astar | 23,853,373 3,518,020 372
Nombre total_refs total_ld total_st simcycle
Perlbench | 57,423,642 | 41,380,671 16,042,971 44,962,448
Bzip2 | 71,739,022 | 54,347,714 17,391,308 122,284,866
Gee | 48,823,287 | 36,364,761 12,458,526 45,486,503
Mecf | 37,554,117 | 27,813,132 9,740,985 30,982,167
Gobmk | 54,804,257 | 40,495,075 14,309,182 51,455,987
Hmmer | 58,555,881 | 46,615,487 11,940,394 45,334,142
Sjeng 43,042,547 35,258,506 7,784,041 46,151,444
Libquantum | 25,548,806 18,570,827 6,977,979 | 258,063,091
H264ref | 68,342,710 | 51,252,008 17,090,702 26,563,269
Omnetpp | 33,467,038 | 26,342,515 7,124,523 29,632,289
Astar | 69,054,880 | 59,943,456 9,111,424 91,578,623




Apéndice E. Resultados, costes, métricas y andlisis previo.

62

Nombre IPC dll.access dl1.hits dl1l.misses dll.replaces
Perlbench | 2.224078 | 37,774,068 | 37,189,952 584,116 584,116
Bzip2 | 0.817763 39,130,447 | 30,434,813 8,695,634 8,695,634
Gee | 2.198454 30,437,556 | 30,279,922 157,634 157,634
Mecf | 3.227663 23,184,320 | 23,141,998 42,322 42,322
Gobmk | 1.943408 37,497,456 | 37,389,143 108,313 108,313
Hmmer | 2.205843 34,866,467 | 34,359,770 506,697 506,697
Sjeng | 2.166780 29,136,566 | 29,077,430 59,136 59,136
Libquantum | 0.387502 20,474,671 14,959,760 5,514,911 5,514,911
H264ref | 3.764597 | 64,364,605 | 64,253,885 110,720 110,621
Omnetpp | 3.374697 23,738,468 | 23,655,316 83,152 83,152
Astar | 1.091958 31,588,356 | 30,016,978 1,571,378 1,571,378
Nombre dll.wb ul2.access ul2.hits ul2.misses ul2.replaces
Perlbench 127,698 944,531 871,195 73,336 584,116
Bzip2 | 4,347,813 13,043,451 10,869,517 2,173,934 8,695,634
Gece 119,630 670,148 619,588 50,560 157,634
Mecf 42,315 84,639 66,773 17,866 42,322
Gobmk 74,567 378,235 337,540 40,695 108,313
Hmmer 443,501 950,211 838,580 111,631 506,697
Sjeng 41,259 110,257 80,590 29,667 59,136
Libquantum | 4,878,547 10,393,629 9,014,799 1,378,830 5,514,911
H264ref 66,185 188,690 187,368 1,322 110,621
Omnetpp 45,466 161,856 126,468 35,388 83,152
Astar 631,815 2,203,194 2,004,912 198,282 1,571,378
Nombre ul2.wb ul3.access ul3.hits ul3.misses ul3.replaces
Perlbench 16,279 89,615 83,898 5,717 584,116
Bzip2 | 1,087,032 3,260,966 | 1,087,032 2,173,934 8,695,634
Gee 26,161 76,721 52,867 23,854 157,634
Mecft 15,895 33,761 24,707 9,054 42,322
Gobmk 21,466 62,161 48,398 13,763 108,313
Hmmer 105,469 217,100 216,369 731 506,697
Sjeng 17,247 46,914 26,760 20,154 59,136
Libquantum 1,218,117 2,596,947 | 1,218,117 1,378,830 5,514,911
H264ref 248 1,570 1,255 315 110,621
Omnetpp 13,241 48,629 38,299 10,330 83,152
Astar 110,237 308,519 308,458 61 1,571,378
Nombre ul3.wb dtlb.access dtlb.hits dtlb.misses hitsDC
Perlbench 5,629 12,600,554 12,599,467 1,087 | 18,876,151
Bzip2 1,086,589 17,391,703 17,374,713 16,990 | 49,999,619
Gee 22,301 9,681,790 9,681,402 388 16,275,515
Mecf 105 9,084,408 9,079,116 5,292 19,084,513
Gobmk 13,698 10,451,222 10,444,460 6,762 | 13,301,315
Hmmer 0 7,310,453 7,310,443 10 | 12,132,845
Sjeng 6,724 6,208,972 6,194,034 14,938 | 10,510,199
Libquantum | 1,187,397 6,978,400 6,959,319 19,081 12,051,828
H264ref 0 16,098,081 16,098,079 2 | 16,420,582
Omnetpp 0 6,468,856 6,468,671 185 9,073,932
Astar 0 3,518,400 | 3,518,392 8 | 16,143,500
Nombre missDC totAccesosDC hitsAC missAC tot AccesosAC
Perlbench | 25,182,954 44,059,105 11,939 | 25,171,015 25,182,954
Bzip2 | 21,739,208 71,738,827 8,695,565 13,043,643 21,739,208
Gcee | 20,820,881 37,096,396 76,639 | 20,744,242 20,820,881
Mecf 14,100,423 33,184,936 14 14,100,409 14,100,423
Gobmk | 27,055,545 40,356,860 107,766 | 26,947,779 27,055,545
Hmmer | 27,556,412 39,689,257 | 13,324,869 | 14,231,543 27,556,412
Sjeng | 22,927,979 33,438,178 11,334 | 22,916,645 22,927,979
Libquantum 13,496,775 25,548,603 3,365,643 10,131,132 13,496,775
H264ref | 48,267,621 64,688,203 4,864,193 | 43,403,428 48,267,621
Omnetpp | 17,271,352 26,345,284 1,272,405 15,998,947 17,271,352
Astar | 28,070,337 44,213,837 8,084,037 | 19,986,300 28,070,337
Nombre hitsDC_1d missDC_Id totDC_Id hitsAC_ld missAC_1d
Perlbench 6,275,975 25,182,954 | 31,458,929 11,939 25,171,015
Bzip2 32,608,380 21,739,208 | 54,347,588 8,695,565 13,043,643
Gee 6,594,027 20,820,881 | 27,414,908 76,639 20,744,242
Mecf 10,000,616 14,100,423 | 24,101,039 14 14,100,409
Gobmk 2,850,377 27,055,545 | 29,905,922 107,766 26,947,779
Hmmer 4,822,778 27,556,412 | 32,379,190 13,324,869 14,231,543
Sjeng 4,301,513 22,927,979 | 27,229,492 11,334 22,916,645
Libquantum 5,073,929 13,496,775 18,570,704 3,365,643 10,131,132
H264ref 322,773 48,267,621 | 48,590,394 4,864,193 43,403,428
Omnetpp 2,605,415 17,271,352 | 19,876,767 1,272,405 15,998,947
Astar 12,625,481 28,070,337 | 40,695,818 8,084,037 19,986,300




Apéndice E. Resultados, costes, métricas y andlisis previo.

63

Nombre totAC_1d hitsDC_st missDC_st totDC_st
Perlbench | 25,182,954 12,600,176 0 | 12,600,176
Bzip2 | 21,739,208 17,391,239 0 | 17,391,239
Gcee | 20,820,881 9,681,488 0 9,681,488

Mecf | 14,100,423 9,083,897 0 9,083,897
Gobmk | 27,055,545 10,450,938 0 | 10,450,938
Hmmer | 27,556,412 7,310,067 0 7,310,067
Sjeng | 22,927,979 6,208,686 0 6,208,686
Libquantum | 13,496,775 6,977,899 0 6,977,899
H264ref | 48,267,621 16,097,809 0 | 16,097,809
Omnetpp | 17,271,352 6,468,517 0 6,468,517
Astar | 28,070,337 3,518,019 0 3,518,019




Apéndice E. Resultados, costes, métricas y andlisis previo.

E.5.3. Resultados con la organizacion paralela, suite enteros.

TABLA E.5: Resultados para la suite Enteros con la organizacién paralela.

Nombre Organizacion | total_issued_ld | total_issued_st
Perlbench Paralela 36,138,911 14,649,682
Bzip2 Paralela 58,695,571 17,391,278
Gee Paralela 32,362,570 10,688,680
Mecf Paralela 26,880,949 9,474,315
Gobmk Paralela 33,091,062 11,836,970
Hmmer Paralela 39,002,977 9,201,474
Sjeng Paralela 29,268,328 6,760,013
Libquantum Paralela 29,278,541 6,977,941
H264ref Paralela 49,406,362 16,396,949
Omnetpp Paralela 24,055,791 6,741,887
Astar Paralela 44,406,262 7,148,681
Nombre total_commited_ld total_commited_st num _refs
Perlbench 32,075,588 12,600,176 | 44,675,773
Bzip2 54,347,500 17,391,239 71,738,830
Gee 28,515,273 9,681,488 | 38,196,768
Mecf 25,780,211 9,083,896 | 34,864,125
Gobmk 27,076,634 10,450,937 | 37,527,588
Hmmer 32,198,719 7,310,067 | 39,508,800
Sjeng 24,750,238 6,208,686 | 30,958,933
Libquantum 18,570,642 6,977,899 | 25,548,548
H264ref 48,203,947 16,097,809 | 64,301,844
Omnetpp 21,880,320 6,468,517 | 28,348,853
Astar 23,853,369 3,518,019 | 27,371,393
Nombre num_ld num_st elapsed_time
Perlbench | 32,075,593 12,600,180 235
Bzip2 54,347,567 17,391,263 501
Gee | 28,515,279 9,681,489 208
Mecf | 25,780,222 9,083,903 170
Gobmk | 27,076,644 10,450,944 230
Hmmer | 32,198,731 7,310,069 218
Sjeng | 24,750,246 6,208,687 204
Libquantum 18,570,646 6,977,902 596
H264ref | 48,204,012 16,097,832 207
Omnetpp | 21,880,328 6,468,525 162
Astar | 23,853,373 3,518,020 358
Nombre total_refs total_ld total_st simcycle

Perlbench | 58,162,860 | 41,928,160 | 16,234,700 | 43,836,085
Bzip2 | 71,739,050 | 54,347,732 | 17,391,318 | 121,197,901

Gee | 49,120,300 | 36,585,172 | 12,535,128 | 44,424,141

Mcf | 37,504,200 | 27,866,760 | 9,727,431 | 29,969,716

Gobmk | 55,344,803 | 40,007,674 | 14,437,120 | 50,258,443
Hmmer | 59,060,006 | 47,091,880 | 11,969,026 | 44,676,855
Sjeng | 43,517,279 | 35,675,719 | 7,841,560 | 44,637,907
Libquantum | 25,548,810 | 18,570,827 | 6,977,083 | 254,755,438
H264ref | 68,606,115 | 51,474,836 | 17,131,279 | 26,340,662
Omnetpp | 33,682,897 | 26,514,237 | 7,168,660 | 29,041,978
Astar | 69,014,134 | 60,713,140 | 9,200,004 | 90,815,335




Apéndice E. Resultados,

costes, métricas y andlisis previo.

65

Nombre IPC dll.access dl1.hits dl1l.misses dll.replaces
Perlbench | 2.281226 | 44,346,800 | 43,763,511 583,289 583,289
Bzip2 | 0.825097 71,738,831 63,043,198 8,695,633 8,695,633
Gee | 2.251028 37,206,785 | 37,049,698 157,087 157,087
Mecf | 3.336702 33,330,471 33,288,137 42,334 42,334
Gobmk | 1.989715 40,505,627 | 40,397,212 108,415 108,415
Hmmer | 2.238295 39,919,064 | 39,412,388 506,676 506,676
Sjeng | 2.240248 33,690,541 | 33,631,048 59,493 59,493
Libquantum | 0.392533 25,548,601 | 20,033,690 5,514,911 5,514,911
H264ref | 3.796412 64,732,808 | 64,621,972 110,836 110,737
Omnetpp | 3.443292 26,366,227 | 26,283,568 82,659 82,659
Astar | 1.101136 44,480,868 | 42,908,523 1,572,345 1,572,345
Nombre dll.wb ul2.access ul2.hits ul2.misses ul2.replaces
Perlbench 127,446 945,832 872,402 73,430 583,289
Bzip2 | 4,347,812 13,043,449 10,869,515 2,173,934 8,695,633
Gece 119,611 667,031 616,545 50,486 157,087
Mecf 42,333 84,669 66,822 17,847 42,334
Gobmk 74,602 379,073 338,294 40,779 108,415
Hmmer 443,480 950,169 838,527 111,642 506,676
Sjeng 41,481 110,789 81,123 29,666 59,493
Libquantum | 4,878,548 10,393,630 9,014,799 1,378,831 5,514,911
H264ref 66,281 188,908 187,592 1,316 110,737
Omnetpp 45,374 161,547 126,260 35,287 82,659
Astar 631,940 2,204,286 2,006,060 198,226 1,572,345
Nombre ul2.wb ul3.access ul3.hits ul3.misses ul3.replaces
Perlbench 16,359 89,789 84,069 5,720 583,289
Bzip2 | 1,087,032 3,260,966 | 1,087,032 2,173,934 8,695,633
Gee 26,145 76,631 52,773 23,858 157,087
Mecft 15,892 33,739 24,685 9,054 42,334
Gobmk 21,467 62,246 48,404 13,842 108,415
Hmmer 105,474 217,116 216,386 730 506,676
Sjeng 17,251 46,917 26,763 20,154 59,493
Libquantum 1,218,118 2,596,949 | 1,218,118 1,378,831 5,514,911
H264ref 248 1,564 1,250 314 110,737
Omnetpp 13,225 48,512 38,180 10,332 82,659
Astar 110,202 308,428 308,367 61 1,572,345
Nombre ul3.wb dtlb.access dtlb.hits dtlb.misses | aciertosDC
Perlbench 5,632 12,600,551 12,599,464 1,087 18,247,964
Bzip2 1,086,589 17,391,703 17,374,713 16,990 49,999,619
Gcee 22,304 9,681,788 9,681,400 388 15,623,194
Mecf 105 9,084,362 9,079,070 5,292 18,270,092
Gobmk 13,779 10,451,218 10,444,456 6,762 13,158,271
Hmmer 0 7,310,453 7,310,443 10 12,069,335
Sjeng 6,724 6,208,964 6,194,026 14,938 9,512,894
Libquantum | 1,187,398 6,978,400 6,959,319 19,081 12,051,828
H264ref 0 16,098,081 16,098,079 2 16,405,225
Omnetpp 0 6,468,857 6,468,672 185 8,764,830
Astar 0 3,518,403 3,518,395 S 15,949,764
Nombre missDC totAccesosDC hitsAC missAC totAccesosAC
Perlbench | 26,098,836 44,346,800 18,290 | 26,080,546 26,098,836
Bzip2 | 21,739,212 71,738,831 8,695,565 13,043,647 21,739,212
Gcee | 21,583,591 37,206,785 64,564 | 21,519,027 21,583,591
Mecf | 15,060,379 33,330,471 50,525 15,009,854 15,060,379
Gobmk | 27,347,356 40,505,627 128,218 | 27,219,138 27,347,356
Hmmer | 27,849,729 39,919,064 | 13,218,866 14,630,863 27,849,729
Sjeng | 24,177,647 33,690,541 14,112 | 24,163,535 24,177,647
Libquantum 13,496,773 25,548,601 3,365,643 10,131,130 13,496,773
H264ref | 48,327,583 64,732,808 4,867,141 | 43,460,442 48,327,583
Omnetpp | 17,601,397 26,366,227 1,309,733 16,291,664 17,601,397
Astar | 28,531,104 44,480,868 8,317,713 | 20,213,391 28,531,104
Nombre hitsDC_1d missDC_Id totDC_1d hitsAC_ld missAC_1d
Perlbench 5,647,788 26,098,836 | 31,746,624 18,290 26,080,546
Bzip2 32,608,380 21,739,212 | 54,347,592 8,695,565 13,043,647
Gee 5,941,706 21,583,591 | 27,525,297 64,564 21,519,027
Mecf 9,186,196 15,060,379 | 24,246,575 50,525 15,009,854
Gobmk 2,707,334 27,347,356 | 30,054,690 128,218 27,219,138
Hmmer 4,759,268 27,849,729 | 32,608,997 13,218,866 14,630,863
Sjeng 3,304,208 24,177,647 | 27,481,855 14,112 24,163,535
Libquantum 5,073,929 13,496,773 18,570,702 3,365,643 10,131,130
H264ref 307,416 48,327,583 | 48,634,999 4,867,141 43,460,442
Omnetpp 2,296,313 17,601,397 | 19,897,710 1,309,733 16,291,664
Astar 12,431,745 28,531,104 | 40,962,849 8,317,713 20,213,391




Apéndice E. Resultados, costes, métricas y andlisis previo.

66

Nombre totAC_1d hitsDC_st missDC_st totDC_st
Perlbench | 26,098,836 12,600,176 0 | 12,600,176
Bzip2 | 21,739,212 | 17,391,239 0 | 17,391,239
Gee | 21,583,591 9,681,488 0 9,681,488

Mcf | 15,060,379 9,083,896 0 9,083,896
Gobmk | 27,347,356 10,450,937 0 | 10,450,937
Hmmer | 27,849,729 7,310,067 0 7,310,067
Sjeng | 24,177,647 6,208,686 0 6,208,686
Libquantum | 13,496,773 6,977,899 0 6,977,899
H264ref | 48,327,583 16,097,809 0 | 16,097,809
Omnetpp | 17,601,397 6,468,517 0 6,468,517
Astar | 28,531,104 3,518,019 0 3,518,019




Apéndice E. Resultados, costes, métricas y andlisis previo.

E.6. Resultados suite float

E.6.1. Resultados sin el uso de la memoria ACDC, suite float.

TABLA E.6G: Resultados para la suite Float sin memoria ACDC.

Nombre total_issued_1d total_issued_st | total_commited_1d
Bwaves 30,944,798 6,965,494 29,923,965
Gamess 25,319,343 13,063,955 24,345,014

Milc 35,923,940 18,754,328 35,913,822
Zeusmp 29,631,475 11,763,219 28,070,343
Gromacs 44,835,144 9,037,666 36,938,169
CactusADM 38,314,366 7,744,184 36,129,566
Leslie3d 27,216,538 2,603,275 26,234,970
Namd 29,060,723 9,438,455 27,218,280
Dealll 18,166,447 2,993,322 16,337,412
Soplex 19,597,625 105,525 15,800,342
Povray 39,063,949 11,617,954 35,534,327
Calculix 26,053,320 14,887,899 24,496,664
GemsFDTD 22,975,413 11,570,977 22,330,291
Tonto 21,760,633 8,676,269 21,063,627
Lbm 34,188,518 5,375,783 28,757,967
Wrf 27,283,832 10,634,638 26,309,667
Sphin3 28,623,333 10,572,972 26,846,836
Nombre | total_commited_st num_refs num_ld num_st
Bwaves 6,965,171 | 36,889,164 | 29,923,990 6,965,174
Gamess 12,332,225 | 36,677,263 | 24,345,030 | 12,332,233
Milc 18,754,080 | 54,668,036 | 35,913,909 | 18,754,127
Zeusmp 11,760,980 | 39,831,329 | 28,070,347 | 11,760,982
Gromacs 8,654,623 | 45,592,814 | 36,938,183 8,654,631
CactusADM 7,738,762 | 43,868,356 | 36,129,588 7,738,768
Leslie3d 2,603,273 | 28,838,274 | 26,234,997 2,603,277
Namd 8,884,583 | 36,102,879 | 27,218,289 8,884,590
Dealll 2,955,000 | 19,292,420 | 16,337,420 2,955,000
Soplex 102,375 | 15,902,720 | 15,800,345 102,375
Povray 10,392,424 | 45,926,784 | 35,534,350 | 10,392,434
Calculix 13,723,752 | 38,220,426 | 24,496,668 | 13,723,758
GemsFDTD 11,197,269 | 33,527,566 | 22,330,297 | 11,197,269
Tonto 8,463,067 | 29,526,701 | 21,063,634 8,463,067
Lbm 5,375,259 | 34,133,239 | 28,757,980 5,375,259
Wrfo 10,299,486 | 36,609,173 | 26,309,677 | 10,299,496
Sphin3 9,871,312 | 36,718,173 | 26,846,842 9,871,331
Nombre elapsed_time total_refs total_1d total_st simcycle
Bwaves 305 | 36,948,622 | 29,963,130 6,985,492 88,428,627
Gamess 190 | 40,561,116 | 26,707,916 | 13,853,200 38,173,252
Milc 246 | 54,703,362 | 35,948,457 | 18,754,905 47,495,539
Zeusmp 300 | 39,940,363 | 28,174,538 | 11,765,825 99,618,466
Gromacs 281 | 57,149,815 | 47,580,305 9,569,510 69,881,323
CactusADM 603 | 44,020,043 | 36,248,761 7,771,282 | 196,892,878
Leslie3d 279 | 29,018,573 | 26,414,922 2,603,651 92,778,148
Namd 292 | 39,539,354 | 29,942,586 9,596,768 41,879,602
Dealll 413 | 21,294,196 | 18,104,436 3,189,760 60,188,848
Soplex 373 | 17,980,799 | 17,871,755 109,044 | 130,643,708
Povray 257 | 56,934,714 | 44,011,139 | 12,923,575 50,874,121
Calculix 210 | 44,253,239 | 28,160,014 | 16,093,225 40,515,597
GemsFDTD 192 | 35,821,408 | 23,785,254 | 12,036,154 35,528,758
Tonto 185 | 32,107,487 | 22,814,509 9,292,978 34,312,635
Lbm 605 | 34,208,632 | 28,832,157 5,376,475 99,906,761
Wrf 220 | 38,323,768 | 27,385,293 | 10,938,475 50,275,529
Sphin3 202 | 40,925,588 | 29,822,959 | 11,102,629 40,313,223




Apéndice E. Resultados, costes, métricas y andlisis previo. 68
Nombre IPC dll.access dll1.hits dll.misses | dll.replaces
Bwaves | 1.130856 33,568,079 | 32,886,160 681,919 681,919
Gamess | 2.619635 31,707,172 | 31,707,111 61 60
Milc | 2.105461 | 54,667,514 | 50,022,901 4,644,613 4,644,613
Zeusmp | 1.003830 39,829,079 | 38,218,213 1,610,866 1,610,866
Gromacs | 1.430998 48,276,234 | 47,220,559 1,055,675 1,055,675
CactusADM | 0.507890 30,363,738 | 27,731,075 2,632,663 2,632,663
Lesliead | 1.077840 | 28,839,002 | 27,417,962 1,421,130 1,421,130
Namd 2.387797 35,108,249 35,094,118 14,131 14,131
Dealll | 1.661437 18,810,793 | 17,479,584 1,331,209 1,331,209
Soplex | 0.765441 16,018,216 | 13,481,640 2,536,576 2,536,573
Povray | 1.965636 44,524,283 | 44,411,366 112,917 112,731
Calculix | 2.468185 36,193,512 | 36,193,151 361 358
GemsFDTD | 2.814621 31,462,245 | 31,462,237 8 0
Tonto | 2.914378 28,208,488 | 28,207,672 816 816
Lbm | 1.000933 34,195,983 | 28,818,481 5,377,502 5,377,502
Wrf | 1.989039 32,266,333 | 31,060,748 1,205,585 1,205,585
Sphin3 | 2.480576 35,843,363 | 35,821,428 21,935 21,935
Nombre dll.wb ul2.access ul2.hits ul2.misses
Bwaves 323,065 1,005,161 834,657 170,504
Gamess 40 177 151 26
Milc | 4,644,299 9,288,972 | 8,127,582 1,161,390
Zeusmp 87,787 1,700,020 | 1,306,245 393,775
Gromacs 210,221 1,266,173 | 1,178,010 88,163
CactusADM | 2,579,534 5,212,197 | 2,344,075 2,868,122
Leslie3d 560,534 1,981,714 | 1,621,680 360,034
Namd 14,131 28,272 24,731 3,541
Dealll 37,045 1,368,254 | 1,359,246 9,008
Soplex 10,670 2,547,248 238,860 2,308,388
Povray 18,492 137,597 137,544 53
Calculix 152 611 573 38
GemsFDTD 0 46,140 46,131 9
Tonto 267 30,565 30,542 23
Lbm | 3,962,904 9,340,406 | 7,925,807 1,414,599
Wrf | 1,143,473 2,351,042 | 1,859,007 492,035
Sphin3 10,462 32,429 26,946 5,483
Nombre ul2.replaces ul2.wb ul3.access ul3.hits ul3.misses
Bwaves 170,504 79,298 249,802 79,346 170,456
Gamess 8 1 27 1 26
Milc 1,161,390 | 1,161,177 2,322,567 | 1,161,515 1,161,052
Zeusmp 393,775 22,798 416,573 102,857 313,716
Gromacs 88,163 29,715 117,878 95,316 22,562
CactusADM 2,868,122 | 2,579,492 5,447,614 | 2,864,858 2,582,756
Leslie3d 360,034 143,126 503,160 143,194 359,966
Namd 3,541 3,532 7,073 3,537 3,536
Dealll 9,008 7,803 16,811 16,811 0
Soplex 2,308,388 5,471 2,313,859 | 2,313,649 1,930
Povray 0 0 53 0 53
Calculix 9 0 38 0 38
GemsFDTD 0 0 9 0 9
Tonto 16 5 28 11 17
Lbm 1,414,599 | 1,060,908 2,475,507 | 1,060,908 1,414,599
Wrf 492,035 392,715 884,750 534,116 350,634
Sphin3 5,483 2,722 8,205 2,827 5,378
Nombre ul3.replaces ul3.wb dtlb.access dtlb.hits dtlb.misses
Bwaves 170,456 78,978 36,889,780 | 36,887,113 2,667
Gamess 0 0 37,319,028 | 37,319,028 0
Milc 1,161,052 | 1,161,002 54,676,682 | 54,621,010 55,672
Zeusmp 313,716 26,230 39,836,380 | 39,831,209 5,171
Gromacs 13,352 6,556 50,526,649 | 50,524,435 2,214
CactusADM 2,582,756 | 2,579,481 43,911,648 | 41,485,058 2,426,590
Leslie3d 359,966 147,844 28,839,110 | 28,833,283 5,827
Namd 0 0 37,459,227 | 37,459,172 55
Dealll 0 0 19,383,732 | 19,383,730 2
Soplex 1,765 51 16,046,657 | 16,019,275 27,382
Povray 0 0 48,629,824 | 48,629,821 3
Calculix 0 0 39,151,970 | 39,151,970 0
GemsFDTD 0 0 33,819,623 | 33,819,623 0
Tonto 0 0 29,824,402 | 29,824,402 0
Lbm 1,414,599 | 1,060,907 34,195,983 | 34,173,882 22,101
Wrf 350,634 338,295 37,260,887 | 37,252,688 8,199
Sphin3 8 0 38,010,782 | 38,010,697 85




Apéndice E. Resultados, costes, métricas y andlisis previo.

69

E.6.2.

. . s . .
Resultados con la organizacién secuencial, suite float.
TABLA E.7: Resultados para la suite float con la organizacién Secuencial.
NOMBRE Modo total_issued_l1d total_issued_st total_commited_ld
Bwaves Secuencial 30,944,332 6,965,314 29,923,965
Gamess Secuencial 25,204,354 12,938,941 24,345,014
Milc | Secuencial 35,923,578 18,754,345 35,913,822
Zeusmp | Secuencial 29,627,113 11,762,794 28,070,343
Gromacs Secuencial 44,557,242 9,080,031 36,938,169
CactusADM Secuencial 38,266,599 7,744,186 36,129,566
Leslie3d Secuencial 27,216,449 2,603,279 26,234,970
Namd Secuencial 28,518,241 9,302,840 27,218,279
Dealll | Secuencial 18,131,708 2,998,183 16,337,412
Soplex Secuencial 19,588,781 105,225 15,800,342
Povray | Secuencial 38,439,834 11,488,788 35,534,327
Calculix | Secuencial 25,606,071 14,504,747 24,496,664
GemsFDTD Secuencial 22,979,116 11,531,290 22,330,291
Tonto Secuencial 21,678,396 8,651,850 21,063,627
Lbm Secuencial 34,188,852 5,375,918 28,757,967
Wrf | Secuencial 27,283,914 10,637,762 26,309,667
Sphin3 | Secuencial 28,636,127 10,553,354 26,846,836
NOMBRE | total_commited_st num_refs num_ld num_st elapsed_time
Bwaves 6,965,171 | 36,889,164 | 29,923,990 6,965,174 312
Gamess 12,332,225 | 36,677,263 | 24,345,030 | 12,332,233 173
Milc 18,754,080 | 54,668,036 | 35,913,909 18,754,127 263
Zeusmp 11,760,980 | 39,831,329 | 28,070,347 | 11,760,982 306
Gromacs 8,654,623 | 45,592,814 | 36,938,183 8,654,631 272
CactusADM 7,738,762 | 43,868,356 | 36,129,588 7,738,768 584
Leslie3d 2,603,273 | 28,838,274 | 26,234,997 2,603,277 269
Namd 8,884,581 | 36,102,879 | 27,218,289 8,884,590 179
Dealll 2,955,000 19,292,420 16,337,420 2,955,000 201
Soplex 102,375 15,902,720 15,800,345 102,375 357
Povray 10,392,424 | 45,926,784 | 35,534,350 10,392,434 239
Calculix 13,723,752 | 38,220,426 | 24,496,668 13,723,758 188
GemsFDTD 11,197,269 | 33,527,566 | 22,330,297 | 11,197,269 177
Tonto 8,463,067 | 29,526,701 | 21,063,634 8,463,067 171
Lbm 5,375,259 | 34,133,239 | 28,757,980 5,375,259 327
Wrf 10,299,486 | 36,609,171 | 26,309,676 10,299,495 215
Sphin3 9,871,314 36,718,177 26,846,845 9,871,332 186
NOMBRE total_refs total_ld total_st simcycle IPC
Bwaves | 36,947,825 | 29,963,134 6,984,691 86,719,993 1.153137
Gamess | 40,464,290 | 26,555,967 | 13,908,323 27,487,470 | 3.638021
Milc 54,703,306 35,948,417 18,754,889 47,001,904 2.127574
Zeusmp | 39,938,892 | 28,173,474 11,765,418 96,572,388 1.035493
Gromacs | 56,464,617 | 46,926,614 9,538,003 62,145,903 1.609117
CactusADM | 43,993,173 | 36,227,265 7,765,908 | 187,794,222 | 0.532498
Leslie3d | 29,021,628 | 26,417,731 2,603,897 85,915,223 1.163938
Namd | 39,516,675 | 29,919,896 9,596,779 31,130,367 | 3.212298
Dealll | 20,915,512 17,767,114 3,148,398 51,648,405 1.936168
Soplex | 17,941,832 17,833,195 108,637 | 120,048,707 | 0.832995
Povray | 55,200,236 | 42,415,088 | 12,784,248 | 43,193,685 | 2.315153
Calculix | 43,725,270 | 27,814,836 15,910,434 30,140,362 | 3.317810
GemsFDTD | 35,842,123 | 23,795,172 12,046,951 28,717,489 | 3.482199
Tonto | 32,065,279 | 22,808,158 9,257,121 27,898,224 | 3.584458
Lbm | 34,208,755 | 28,832,242 5,376,513 97,969,987 | 1.020721
Wrf | 38,108,783 | 27,277,995 10,830,788 47,652,360 | 2.098532
Sphin3 | 41,600,410 | 30,452,005 | 11,147,514 | 31,634,418 | 3.161114




Apéndice E. Resultados, costes, métricas y andlisis previo.

70

NOMBRE dll.access dll1.hits dl1l.miss dll.replaces dll.wb
Bwaves 29,571,285 | 28,889,365 681,920 681,920 323,065
Gamess 28,197,306 | 28,197,243 63 62 42

Milc | 23,358,801 | 18,714,169 | 4,644,632 1,644,632 | 4,644,315
Zeusmp 37,546,317 | 35,935,669 | 1,610,648 1,610,648 87,787
Gromacs 41,849,924 | 40,748,825 1,101,099 1,101,099 211,403

CactusADM 22,565,292 19,932,790 | 2,632,502 2,632,502 | 2,579,533

Losliead | 12,240,087 | 10,818,059 | 1,421,128 1,421,128 560,532
Namd 22,934,945 22,920,814 14,131 14,131 14,128
Dealll 17,523,726 16,192,514 1,331,212 1,331,212 37,046
Soplex 10,252,824 7,704,820 2,548,004 2,548,004 10,971
Povray 38,964,479 | 38,851,561 112,918 112,733 18,493

Calculix 25,919,460 | 25,919,100 360 358 152

GemsFDTD 24,060,756 | 24,060,748 8 0 0

Tonto 26,036,575 | 26,035,755 820 820 269

Lbm 15,970,948 | 10,595,685 | 5,375,263 5,375,263 | 3,960,719

Wrf 29,368,049 | 28,162,298 1,205,751 1,205,751 1,143,473
Sphin3 31,477,891 31,455,978 21,913 21,913 10,459

NOMBRE ul2.access ul2.hits ul2.miss ul2.replaces ul2.wb

Bwaves 1,005,162 834,658 170,504 170,504 79,298
Gamess 169 145 24 8 2
Milc 9,289,006 | 8,127,616 1,161,390 1,161,390 | 1,161,177
Zeusmp 1,699,796 | 1,306,020 393,776 393,776 22,798

Gromacs 1,312,778 | 1,218,547 94,231 94,231 29,985

CactusADM 5,212,035 | 2,342,723 | 2,869,312 2,869,312 | 2,579,491

Leslie3d 1,981,710 | 1,621,677 360,033 360,033 143,126
Namd 28,268 24,728 3,540 3,540 3,532
Dealll 1,368,258 | 1,359,249 9,009 9,009 7,800
Soplex 2,558,977 248,136 | 2,310,841 2,310,841 5,330

Povray 137,600 137,546 54 0 0

Calculix 603 567 36 8 0

GemsFDTD 46,136 46,128 8 0 0

Tonto 30,050 30,034 16 12 3

Lbm 9,335,982 | 7,921,439 1,414,543 1,414,543 | 1,060,907

Wrf 2,351,200 | 1,859,052 492,148 492,148 392,760

Sphin3 32,400 26,917 5,483 5,483 2,724
NOMBRE ul3.access ul3.hits ul3.miss ul3.replaces ul3.wb
Bwaves 249,802 79,563 170,239 170,239 80,510
Gamess 26 2 24 0 0
Milc 2,322,567 1,161,516 1,161,051 1,161,051 1,161,002

Zeusmp 416,574 103,260 313,314 313,314 30,635

Gromacs 124,216 106,473 17,743 4 4

CactusADM 5,448,803 | 2,866,399 | 2,582,404 2,582,404 | 2,579,481

Leslie3d 503,159 143,226 359,933 359,933 153,496
Namd 7,072 3,536 3,536 0 0
Dealll 16,809 16,809 0 0 0
Soplex 2,316,171 2,315,830 341 0 0
Povray 54 0 54 0 0

Calculix 36 0 36 0 0

GemsFDTD 8 0 8 0 0

Tonto 19 10 9 0 0
Lbm 2,475,450 | 1,060,907 | 1,414,543 1,414,543 | 1,060,907
Wrf 884,908 534,559 350,349 350,349 338,174
Sphin3 8,207 2,831 5,376 0 0

NOMBRE | dtlb.access dtlb.hits dtlb.miss hitDC missDC
Bwaves 6,965,530 6,964,260 1,270 | 10,650,914 | 22,606,114
Gamess 12,332,542 | 12,332,542 0 | 15,737,229 | 15,865,095

Milc 34,651,009 | 34,595,356 55,653 | 50,062,861 4,604,722
Zeusmp 11,761,252 11,760,876 376 | 14,034,911 25,785,402
Gromacs 8,654,901 8,654,590 311 15,003,076 | 33,195,311
CactusADM 7,751,449 5,371,331 2,380,118 | 16,176,765 14,826,530
Leslie3d 2,606,792 2,604,489 2,303 | 19,203,339 9,636,814
Namd 8,885,095 8,885,040 55 | 20,549,272 14,050,364
Dealll 2,955,375 2,955,373 2 4,498,737 | 14,568,798
Soplex 102,746 102,720 26 5,939,540 | 10,150,512
Povray 10,392,785 | 10,392,784 1 15,039,162 | 28,653,612
Calculix 13,724,117 | 13,724,117 0 | 23,771,689 | 12,195,718
GemsFDTD 11,197,631 11,197,631 0 | 18,865,581 12,868,612
Tonto 8,463,420 8,463,420 0 | 10,691,152 | 17,573,569

Lbm 5,375,735 5,359,159 16,576 | 18,226,247 | 15,969,788

Wrf 10,300,063 | 10,292,424 7,639 | 12,713,966 | 19,068,580

Sphin3 9,871,674 9,871,633 41 14,421,731 21,612,600




Apéndice E. Resultados, costes, métricas y andlisis previo. 71

NOMBRE totAcceDC hitAC missAC totAccAC hitDC_1d
Bwaves 33,257,028 17 | 22,606,097 | 22,606,114 | 3,685,743
Gamess 31,602,324 58,370 | 15,806,725 | 15,865,095 | 3,405,004
Milc 54,667,583 32 | 4,604,690 4,604,722 | 31,308,781
Zeusmp 39,820,313 57 | 25,785,345 | 25,785,402 | 2,273,031
Gromacs 48,198,387 12 | 33,195,209 | 33,195,311 | 6,348,453
CactusADM 31,003,295 622,718 | 14,203,812 | 14,826,530 | 8,438,003
Lesliead 28,840,153 | 1,599,051 | 8,037,763 9,636,814 | 16,600,066
Namd 34,599,636 12 | 14,050,352 | 14,050,364 | 11,664,691
Dealll 19,067,535 9 | 14,568,789 | 14,568,798 | 1,543,737
Soplex 16,090,052 551,644 | 9,598,868 | 10,150,512 | 5,837,165
Povray 13,692,774 58,549 | 28,595,063 | 28,653,612 | 4,646,738
Calculix 35,967,407 81,000 | 12,113,719 | 12,195,718 | 10,047,937
GemsFDTD 31,734,193 25,625 | 12,842,087 | 12,868,612 | 7,668,312
Tonto 28,264,721 18,932 | 17,554,637 | 17,573,569 | 2,228,085
Lbm 34,196,035 | 3,317,181 | 12,652,607 | 15,969,788 | 18,225,087
Wit 31,782,546 6 | 19,068,574 | 19,068,580 | 2,414,480
Sphin3 36,034,331 23,998 | 21,588,602 | 21,612,600 | 4,550,417
NOMBRE | missDC_Id | totDC_Id | hitAC_Id | missAC_Id | totAC_ld
Bwaves | 22,606,114 | 26,291,857 17 | 22,606,007 | 22,606,114
Gamess 15,865,095 | 19,270,099 58,370 | 15,806,725 | 15,865,095
Milc 4,604,722 | 35,913,503 32 4,604,690 | 4,604,722
Zeusmp | 25,785,402 | 28,059,333 57 | 25,785,345 | 25,785,402
Gromacs | 33,195,311 | 39,543,764 12 | 33,195,200 | 33,195,311
CactusADM 14,826,530 | 23,264,533 622,718 | 14,203,812 | 14,826,530
Leslie3d 9,636,814 | 26,236,880 | 1,599,051 8,037,763 | 9,636,814
Namd 14,050,364 | 25,715,055 12 | 14,050,352 | 14,050,364
Dealll 14,568,798 | 16,112,535 9 | 14,568,789 | 14,568,798
Soplex 10,150,512 | 15,987,677 551,644 9,598,868 | 10,150,512
Povray | 28,653,612 | 33,300,350 58,549 | 28,595,063 | 28,653,612
Calculix 12,105,718 | 22,243,655 81,000 | 12,113,719 | 12,195,718
GemsFDTD 12,868,612 | 20,536,024 25,625 | 12,842,087 | 12,868,612
Tonto 17,573,569 | 19,801,654 18,932 | 17,554,637 | 17,573,569
Lbm 10,595,689 | 28,820,776 | 3,317,181 7,278,508 | 10,595,689
Wif | 19,068,580 | 21,483,060 6 | 19,068,574 | 19,068,580
Sphin3 | 21,612,600 | 26,163,017 23,008 | 21,588,602 | 21,612,600

NOMBRE hitDC_st missDC_st totDC_st

Bwaves | 6,065,171 0 | 6,965,171

Gamess | 12,332,225 0 | 12,332,225

Milc | 18,754,080 0 | 18,754,080

Zeusmp | 11,760,980 0 | 11,760,080

Gromacs 8,654,623 0 8,654,623

CactusADM | 7,738,762 0 | 7,738,762

Lesliead | 2,603,273 0 | 2,603,273

Namd | 8,884,581 0 | 8,884,581

Dealll | 2,955,000 0 | 2,955,000

Soplex 102,375 0 102,375

Povray | 10,392,424 0 | 10,392,424

Calculix | 13,723,752 0 | 13,723,752

GemsFDTD | 11,197,269 0 | 11,197,269

Tonto | 8,463,067 0 | 8,463,067

Lbm 1,160 5,374,099 | 5,375,259

Wrf | 10,299,486 0 | 10,299,486

Sphin3 | 9,871,314 0 | 9,871,314




Apéndice E. Resultados, costes, métricas y andlisis previo.

72

E.6.3.

Resultados con la organizacién paralela, suite float.
TABLA E.8: Resultados para la suite float con la organizacién Paralela.
NOMBRE Modo total_issued_l1d total_issued_st total_commited_ld
Bwaves Paralelo 30,944,343 6,965,314 29,923,965
Gamess Paralelo 25,233,153 12,996,461 24,345,014
Milc | Paralelo 35,923,468 18,754,314 35,913,820
Zeusmp | Paralelo 29,627,222 11,762,865 28,070,343
Gromacs Paralelo 44,686,974 9,087,555 36,938,169
CactusADM Paralelo 38,267,133 7,744,186 36,129,566
Leslie3d | Paralelo 27,216,449 2,603,279 26,234,970
Namd | Paralelo 28,642,538 9,314,123 27,218,280
Dealll | Paralelo 18,107,651 2,998,062 16,337,412
Soplex | Paralelo 19,599,241 105,525 15,800,342
Povray | Paralelo 38,481,386 11,503,461 35,534,327
Calculix | Paralelo 25,704,151 14,513,601 24,496,664
GemsFDTD Paralelo 22,968,295 11,525,310 22,330,291
Tonto Paralelo 21,736,011 8,670,452 21,063,627
Lbm | Paralelo 34,188,638 5,375,895 28,757,967
Wrf | Paralelo 27,290,106 10,637,724 26,309,667
Sphin3 | Paralelo 28,698,196 10,657,819 26,846,836
NOMBRE | total_commited_st num_refs num_ld num_st elapsed_time
Bwaves 6,965,171 | 36,889,164 | 29,923,990 6,965,174 298
Gamess 12,332,225 | 36,677,262 | 24,345,029 | 12,332,233 162
Milc 18,754,079 | 54,668,038 | 35,913,910 | 18,754,128 253
Zeusmp 11,760,980 | 39,831,329 | 28,070,347 | 11,760,982 289
Gromacs 8,654,623 | 45,592,814 | 36,938,183 8,654,631 259
CactusADM 7,738,762 | 43,868,356 | 36,129,588 7,738,768 557
Leslie3d 2,603,273 | 28,838,274 | 26,234,997 2,603,277 257
Namd 8,884,583 | 36,102,879 | 27,218,289 8,884,590 168
Dealll 2,955,000 | 19,292,420 | 16,337,420 2,955,000 194
Soplex 102,375 | 15,902,720 | 15,800,345 102,375 337
Povray 10,392,424 | 45,926,784 | 35,534,350 | 10,392,434 224
Calculix 13,723,752 | 38,220,426 | 24,496,668 | 13,723,758 177
GemsFDTD 11,197,269 | 33,527,566 | 22,330,297 | 11,197,269 167
Tonto 8,463,067 | 29,526,700 | 21,063,633 8,463,067 163
Lbm 5,375,259 | 34,133,239 | 28,757,980 5,375,259 312
Wrf 10,299,486 | 36,609,171 | 26,309,676 | 10,299,495 206
Sphin3 9,871,312 36,718,169 26,846,839 9,871,330 175
NOMBRE total_refs total_ld total_st simcycle IPC
Bwaves | 36,947,827 | 29,963,136 6,984,691 86,700,811 1.153392
Gamess | 40,444,103 | 26,537,879 | 13,906,224 26,291,278 | 3.803543
Milc | 54,703,457 | 35,948,503 | 18,754,954 47,001,590 | 2.127588
Zeusmp | 39,938,876 | 28,173,424 | 11,765,452 95,980,739 | 1.041876
Gromacs | 57,176,272 | 47,614,409 9,561,863 61,439,855 | 1.627608
CactusADM | 43,993,173 | 36,227,265 7,765,908 | 187,793,984 | 0.532498
Leslie3d | 29,021,438 | 26,417,910 2,603,528 85,877,021 1.164456
Namd | 39,471,411 | 29,863,373 9,608,038 30,327,680 | 3.297318
Dealll | 20,860,588 | 17,725,531 3,135,057 51,558,609 | 1.939540
Soplex | 17,982,147 | 17,872,795 109,352 | 118,454,035 | 0.844209
Povray | 55,452,046 | 42,575,670 | 12,877,276 | 42,969,733 | 2.327220
Calculix | 43,709,981 | 27,816,223 | 15,893,758 29,312,176 | 3.411552
GemsFDTD | 35,707,168 | 23,712,389 | 11,994,779 27,873,035 | 3.587697
Tonto | 32,227,028 | 22,914,567 9,312,461 26,839,654 | 3.725830
Lbm | 34,208,652 | 28,832,177 5,376,475 97,967,439 | 1.020747
Wrf | 38,308,328 | 27,377,769 | 10,930,559 46,477,229 | 2.151591
Sphin3 | 42,158,087 | 30,656,549 | 11,501,538 30,884,736 | 3.237845




Apéndice E. Resultados, costes, métricas y andlisis previo.

NOMBRE dll.access dll1.hits dl1l.miss dll.replaces dll.wb
Bwaves 33,257,045 | 32,575,126 681,919 681,919 323,065
Gamess 31,681,780 31,681,717 63 62 41

Milc | 54,667,558 | 50,022,943 | 4,644,615 1,644,615 | 4,644,298
Zeusmp 39,820,700 | 38,209,976 | 1,610,724 1,610,724 87,787
Gromacs 48,307,926 | 47,204,046 | 1,103,880 1,103,880 211,463

CactusADM 31,003,295 | 28,370,615 | 2,632,680 2,632,680 | 2,579,534

Leslie3d 28,840,153 | 27,419,023 | 1,421,130 1,421,130 560,534
Namd 34,825,726 34,811,595 14,131 14,131 14,131
Dealll 18,965,798 | 17,634,577 | 1,331,221 1,331,221 37,045
Soplex 16,089,083 | 13,541,463 | 2,547,620 2,547,620 10,678
Povray 43,805,709 | 43,692,791 112,918 112,733 18,493

Calculix 36,187,638 | 36,187,277 361 358 152

GemsFDTD 31,495,966 | 31,495,956 10 0 0

Tonto 28,301,334 | 28,300,514 820 820 269
Lbm 34,195,868 | 28,818,366 | 5,377,502 5,377,502 | 3,962,904
Wrf 31,782,461 | 30,576,711 1,205,750 1,205,750 | 1,143,473
Sphin3 36,071,633 | 36,049,698 21,935 21,935 10,462

NOMBRE ul2.access ul2.hits ul2.miss ul2.replaces ul2.wb ul3.access
Bwaves 1,005,161 834,657 170,504 170,504 79,298 249,802
Gamess 169 145 24 8 2 26

Milc 9,288,972 8,127,581 1,161,391 1,161,391 1,161,177 2,322,568
Zeusmp 1,699,867 | 1,306,001 393,776 393,776 22,798 416,574
Gromacs 1,315,619 1,222,033 93,586 93,586 29,974 123,560

CactusADM 5,212,214 | 2,344,085 | 2,868,129 2,868,129 | 2,579,492 5,447,621

Leslie3d 1,981,714 1,621,680 360,034 360,034 143,126 503,160
Namd 28,271 24,731 3,540 3,540 3,532 7,072
Dealll 1,368,266 1,359,245 9,021 9,021 7,808 16,829
Soplex 2,558,301 247,336 | 2,310,965 2,310,965 5,470 2,316,435
Povray 137,599 137,545 54 0 0 54

Calculix 604 567 37 8 0 37

GemsFDTD 46,140 46,131 9 0 0 9

Tonto 30,671 30,647 24 18 5 29
Lbm 9,340,406 | 7,925,807 | 1,414,599 1,414,599 | 1,060,908 2,475,507
Wrf 2,351,198 1,859,051 492,147 492,147 392,760 884,907
Sphin3 32,425 26,942 5,483 5,483 2,722 8,205

NOMBRE ul3.hits ul3.miss ul3.replaces ul3.wb dtlb.access dtlb.hits
Bwaves 79,563 170,239 170,239 80,510 6,965,530 6,964,260
Gamess 2 24 0 0 12,332,531 | 12,332,531

Mile | 1,161,517 | 1,161,051 1,161,051 1,161,002 34,654,318 | 34,598,665
Zeusmp 103,260 313,314 313,314 30,635 11,761,252 | 11,760,876
Gromacs 105,819 17,741 1 4 8,654,900 8,654,589

CactusADM | 2,865,218 | 2,582,403 2,582,403 | 2,579,482 7,751,449 5,371,331

Leslie3d 143,226 359,934 359,934 153,496 2,606,223 2,603,920

Namd 3,536 3,536 0 0 8,884,944 8,884,889

Dealll 16,829 0 0 0 2,955,378 2,955,376

Soplex | 2,316,094 341 0 0 102,746 102,720

Povray 0 54 0 0 10,392,776 | 10,392,775

Calculix 0 37 0 0 13,724,086 | 13,724,086

GemsFDTD 0 9 0 0 11,197,621 | 11,197,621

Tonto 11 18 0 0 8,463,357 8,463,357

Lbm | 1,060,909 | 1,414,598 1,414,598 | 1,060,907 5,375,735 5,359,159

Wrf 534,559 350,348 350,348 338,174 10,300,059 | 10,292,420

Sphin3 2,826 5,379 0 0 9,871,639 9,871,598
NOMBRE dtlb.miss hitsDC missDC tot AccesosDC hitsAC missAC
Bwaves 1,270 | 10,650,914 | 22,606,131 33,257,045 17 | 22,606,114
Gamess 0 | 15,739,807 | 15,941,973 31,681,780 70,077 | 15,871,896
Mile 55,653 | 50,054,800 4,612,758 54,667,558 34 4,612,724
Zeusmp 376 | 13,123,247 | 26,697,453 39,820,700 53 | 26,697,400
Gromacs 311 15,027,392 | 33,280,534 48,307,926 81 | 33,280,453
CactusADM 2,380,118 | 16,176,765 | 14,826,530 31,003,295 622,718 | 14,203,812
Leslie3d 2,303 | 17,635,760 | 11,204,393 28,840,153 | 2,537,499 8,666,894
Namd 55 | 19,441,486 | 15,384,240 34,825,726 203,474 | 15,180,766
Dealll 2 4,490,948 | 14,474,850 18,965,798 11 14,474,839
Soplex 26 7,987,094 8,101,989 16,089,083 552,379 7,549,610
Povray 1 14,117,946 | 29,687,763 43,805,709 85,097 | 29,602,666
Calculix 0 | 23,583,937 | 12,603,701 36,187,638 86,184 | 12,517,517
GemsFDTD 0 | 19,214,286 | 12,281,680 31,495,966 58,068 | 12,223,612
Tonto 0 | 10,228,690 | 18,072,644 28,301,334 20,647 | 18,051,997
Lbm 16,576 | 18,227,861 15,968,007 34,195,868 | 3,317,176 | 12,650,831
Wrf 7,639 | 12,713,962 | 19,068,499 31,782,461 7 | 19,068,492
Sphin3 41 14,400,650 | 21,670,983 36,071,633 24,707 | 21,646,276




Apéndice E. Resultados, costes, métricas y andlisis previo.

NOMBRE | totAccAC hitDC_1d missDC_1d totDC_1d hitAC_ld missAC_ld
Bwaves 22,606,131 3,685,743 22,606,131 26,291,874 17 22,606,114
Gamess 15,941,973 3,407,582 15,941,973 | 19,349,555 70,077 15,871,896

Mile 4,612,758 | 31,300,721 4,612,758 | 35,913,479 34 4,612,724
Zeusmp 26,697,453 1,362,267 26,697,453 | 28,059,720 53 26,697,400
Gromacs 33,280,534 6,372,769 33,280,534 | 39,653,303 81 33,280,453

CactusADM 14,826,530 8,438,003 14,826,530 | 23,264,533 622,718 14,203,812

Leslie3d 11,204,393 15,032,487 11,204,393 | 26,236,880 2,537,499 8,666,894
Namd 15,384,240 10,556,903 15,384,240 | 25,941,143 203,474 15,180,766
Dealll 14,474,850 1,535,948 14,474,850 16,010,798 11 14,474,839
Soplex 8,101,989 7,884,719 8,101,989 | 15,986,708 552,379 7,549,610
Povray 29,687,763 3,725,522 29,687,763 | 33,413,285 85,097 29,602,666

Calculix 12,603,701 9,860,185 12,603,701 | 22,463,886 86,184 12,517,517

GemsFDTD 12,281,680 8,017,017 12,281,680 | 20,298,697 58,068 12,223,612

Tonto 18,072,644 1,765,623 18,072,644 19,838,267 20,647 18,051,997
Lbm 15,968,007 18,224,814 10,595,795 28,820,609 3,317,176 7,278,619
Wrf 19,068,499 2,414,476 19,068,499 | 21,482,975 7 19,068,492
Sphin3 21,670,983 4,529,338 21,670,983 | 26,200,321 24,707 21,646,276

NOMBRE totAC_ld hitDC_st missDC_st totDC_st

Bwaves 22,606,131 6,965,171 0 6,965,171

Gamess | 15,941,973 | 12,332,225 0 | 12,332,225

Milc 4,612,758 18,754,079 0 18,754,079

Zeusmp | 26,697,453 11,760,980 0 11,760,980

Gromacs | 33,280,534 8,654,623 0 8,654,623

CactusADM 14,826,530 7,738,762 0 7,738,762

Leslie3d 11,204,393 2,603,273 0 2,603,273

Namd 15,384,240 8,884,583 0 8,884,583

Dealll 14,474,850 2,955,000 0 2,955,000

Soplex 8,101,989 102,375 0 102,375

Povray | 29,687,763 10,392,424 0 10,392,424

Calculix | 12,603,701 13,723,752 0 13,723,752

GemsFDTD | 12,281,680 | 11,197,269 0 | 11,197,269

Tonto | 18,072,644 8,463,067 0 8,463,067

Lbm | 10,595,795 3,047 5,372,212 5,375,259

Wrf | 19,068,499 10,299,486 0 10,299,486

Sphin3 21,670,983 9,871,312 0 9,871,312




Apéndice E. Resultados, costes, métricas y andlisis previo. 75

E.7. Resultados con 100 ficheros de analisis. Suite enteros.

En esta seccién se muestran los resultados obtenidos de las simulaciones con 100 ficheros de
analisis previo. En primer lugar se muestran la suite enteros en los modos paralelo y secuencial.

Después se muestran la suite float, también en los dos modos paralelo y secuencial.

E.7.1. Paralelo, 100 tramos.

TABLA E.9: Tabla con resultados de la suite entera y con 100 ficheros de andlisis previo.

NOMBRE Modo | sim_total_issued_loads | sim_total_issued_stores
Perlbench Paralelo 36,139,529 14,650,152
Bzip2 Paralelo 58,695,571 17,391,278
Gee Paralelo 32,363,095 10,690,593
Mecf Paralelo 26,881,008 9,523,322
Gobmk Paralelo 33,094,987 11,837,007
Hmmer Paralelo 39,002,937 9,201,961
Sjeng Paralelo 29,269,515 6,760,976
Libquantum | Paralelo 29,278,525 6,977,941
H264ref Paralelo 49,411,963 16,396,711
Omnetpp Paralelo 24,055,618 6,741,925
Astar Paralelo 44,431,447 7,152,459
NOMBRE | sim_total_commited_loads | sim_total_commited_stores | sim_num_refs
Perlbench 32,075,588 12,600,176 44,675,773
Bzip2 54,347,500 17,391,239 71,738,830
Gee 28,515,273 9,681,488 38,196,768
Mecf 25,780,211 9,083,896 34,864,125
Gobmk 27,076,634 10,450,937 37,527,588
Hmmer 32,198,719 7,310,067 39,508,800
Sjeng 24,750,238 6,208,686 30,958,933
Libquantum 18,570,642 6,977,899 25,548,548
H264ref 48,203,947 16,097,809 64,301,844
Omnetpp 21,880,320 6,468,517 28,348,853
Astar 23,853,369 3,518,019 27,371,393
NOMBRE | sim_num_loads | sim_num_stores | sim_elapsed_time
Perlbench 32,075,593 12,600,180 212
Bzip2 54,347,567 17,391,263 482
Gcece 28,515,279 9,681,489 199
Mcf 25,780,222 9,083,903 164
Gobmk 27,076,644 10,450,944 220
Hmmer 32,198,731 7,310,069 213
Sjeng 24,750,246 6,208,687 196
Libquantum 18,570,646 6,977,902 571
H264ref 48,204,012 16,097,832 200
Omnetpp 21,880,328 6,468,525 158
Astar 23,853,373 3,518,020 343




Apéndice E. Resultados, costes, métricas y andlisis previo.

76

NOMBRE | sim_total refs | sim_total loads | sim_total_stores sim_cycle
Perlbench 58,163,179 41,928,628 16,234,551 43,836,458
Bzip2 71,739,050 54,347,732 17,391,318 121,197,896
Gcee 49,123,074 36,587,633 12,535,441 44,423,434
Mcf 37,594,199 27,866,768 9,727,431 29,969,724
Gobmk 55,352,406 40,913,037 14,439,369 50,260,912
Hmmer 59,062,329 47,092,940 11,969,389 44,672,560
Sjeng 43,516,036 35,672,167 7,843,869 44,635,374
Libquantum 25,548,810 18,570,827 6,977,983 252,352,879
H264ref 68,617,689 51,478,655 17,139,034 26,310,865
Omnetpp 33,682,931 26,514,540 7,168,391 29,040,286
Astar 69,972,835 60,763,530 9,209,305 90,799,135
NOMBRE | sim IPC | dll.accesses dl1.hits dll.misses | dll.replacements
Perlbench | 2.281206 | 44,347,833 | 43,764,537 | 583,296 583,296
Bzip2 0.825097 | 71,738,831 | 63,043,198 | 8,695,633 8,695,633
Gee 2.251064 | 37,218,007 | 37,060,919 | 157,088 157,088
Mecf 3.336701 | 33,330,472 | 33,288,138 42334 42 334
Gobmk 1.989618 | 40,507,523 | 40,399,099 | 108,424 108,424
Hmmer 2.238511 | 39,919,052 | 39,412,376 | 506,676 506,676
Sjeng 2.240376 | 33,692,200 | 33,632,730 59,470 59,470
Libquantum | 0.39627 | 25,548,603 | 20,033,691 | 5,514,912 5,514,912
H264ref 3.800711 | 64,734,562 | 64,623,708 | 110,854 110,755
Omnetpp 3.443492 | 26,366,276 | 26,283,617 82,659 82,659
Astar 1.101332 | 44,523,105 | 42,950,790 | 1,572,315 1,572,315
NOMBRE | dll.writebacks | ul2.accesses ul2.hits ul2.misses | ul2.replacements
Perlbench 127,446 945,826 872,389 73,437 73,437
Bzip2 4,347,812 13,043,449 | 10,869,515 | 2,173,934 2,173,934
Gcee 119,611 667,044 616,542 50,502 50,502
Mcf 42333 84,669 66,822 17,847 17,847
Gobmk 74,607 378,984 338,209 40,775 40,775
Hmmer 443,480 950,169 838,527 111,642 111,642
Sjeng 41,473 110,758 81,101 29,657 29,657
Libquantum 4,878,549 10,393,632 | 9,014,801 | 1,378,831 1,378,831
H264ref 66,285 188,921 187,603 1,318 1,155
Omnetpp 45,374 161,546 126,257 35,289 35,289
Astar 631,928 2,204,244 2,006,038 198,206 198,206
NOMBRE | ul2.writebacks | ul3.accesses | ul3.hits | ul3.misses | ul3.replacements
Perlbench 16,358 89,795 84,075 5,720 5,715
Bzip2 1,087,032 3,260,966 | 1,087,032 | 2,173,934 2,173,934
Gee 26,148 76,650 52,792 23,858 23,858
Mecf 15,892 33,739 24,685 9,054 121
Gobmk 21,465 62,240 48,401 13,839 13,839
Hmmer 105,474 217,116 216,386 730 0
Sjeng 17,251 46,908 26,754 20,154 11,028
Libquantum 1,218,118 2,596,949 | 1,218,118 | 1,378,831 1,378,831
H264ref 249 1,567 1,253 314 0
Omnetpp 13,225 48,514 38,182 10,332 0
Astar 110,189 308,395 308,332 63 0




Apéndice E. Resultados, costes, métricas y andlisis previo.

NOMBRE | ul3.writebacks | aciertos_dc fallos_dc total_accesos_dc

Perlbench 5,632 20,285,884 | 24,061,949 44,347,833

Bzip2 1,086,589 49,999,619 | 21,739,212 71,738,831

Gee 22,304 16,548,143 | 20,669,864 37,218,007

Mecf 105 20,187,231 | 13,143,241 33,330,472

Gobmk 13,776 13,902,534 | 26,604,989 40,507,523

Hmmer 0 13,249,594 | 26,669,458 39,919,052

Sjeng 6,724 12,016,603 | 21,675,597 33,692,200

Libquantum 1,187,398 12,051,843 | 13,496,760 25,548,603

H264ref 0 42,337,923 | 22,396,639 64,734,562

Omnetpp 0 9,120,981 | 17,245,295 26,366,276

Astar 0 21,252,655 | 23,270,450 44,523,105
NOMBRE | aciertos_ac fallos_ac | total_accesos_ac
Perlbench 22,556 24,039,393 24,061,949
Bzip2 8,695,565 | 13,043,647 21,739,212
Gcece 106,681 20,563,183 20,669,864
Mecf 22,136 13,121,105 13,143,241
Gobmk 587,285 26,017,704 26,604,989
Hmmer 15,633,966 | 11,035,492 26,669,458
Sjeng 37,138 21,638,459 21,675,597
Libquantum | 10,267,726 | 3,229,034 13,496,760
H264ref 6,216,449 | 16,180,190 22,396,639
Omnetpp 1,847,476 | 15,397,819 17,245,295
Astar 10,761,183 | 12,509,267 23,270,450




Apéndice E. Resultados, costes, métricas y andlisis previo.

E.7.2. Secuencial, 100 tramos.

TABLA E.10: Tabla que muestra los resultados correspondientes a la suite float, en modo
secuencial y con 100 tramos de ficheros de anélisis.

NOMBRE Modo sim_total_issued_loads | sim_total_issued_stores
Perlbench Secuencial 36,062,348 14,620,282
Bzip2 Secuencial 58,695,561 17,391,281
Gee Secuencial 32,133,691 10,736,938
Mecf Secuencial 26,809,435 9,489,531
Gobmk Secuencial 32,944,660 11,773,585
Hmmer Secuencial 39,469,486 9,310,333
Sjeng Secuencial 29,081,646 6,745,081
Libquantum | Secuencial 29,278,530 6,977,941
H264ref Secuencial 49,339,691 16,390,765
Omnetpp Secuencial 23,954,618 6,727,273
Astar Secuencial 44,158,152 7,126,296
NOMBRE | sim_total_commited_loads | sim_total_commited_stores | sim_num_refs
Perlbench 32,075,588 12,600,176 44,675,773
Bzip2 54,347,500 17,391,239 71,738,830
Gcee 28,515,273 9,681,488 38,196,768
Mecf 25,780,211 9,083,897 34,864,123
Gobmk 27,076,634 10,450,938 37,527,589
Hmmer 32,198,719 7,310,067 39,508,799
Sjeng 24,750,238 6,208,686 30,958,933
Libquantum 18,570,642 6,977,899 25,548,548
H264ref 48,203,947 16,097,809 64,301,844
Omnetpp 21,880,320 6,468,517 28,348,853
Astar 23,853,369 3,518,019 27,371,393
NOMBRE | sim_num_loads | sim_num_stores | sim_elapsed_time
Perlbench 32,075,593 12,600,180 214
Bzip2 54,347,567 17,391,263 485
Gcece 28,515,279 9,681,489 200
Mecf 25,780,220 9,083,903 165
Gobmk 27,076,645 10,450,944 221
Hmmer 32,198,731 7,310,068 212
Sjeng 24,750,246 6,208,687 198
Libquantum 18,570,646 6,977,902 565
H264ref 48,204,012 16,097,832 198
Omnetpp 21,880,328 6,468,525 155
Astar 23,853,373 3,518,020 339




Apéndice E. Resultados, costes, métricas y andlisis previo.

79

NOMBRE | sim_total refs | sim_total loads | sim_total_stores sim_cycle
Perlbench 57,466,108 41,412,883 16,053,225 44,975,271
Bzip2 71,739,022 54,347,714 17,391,308 122,284,861
Gcee 48,744,701 36,347,802 12,396,899 45,490,895
Mcf 37,561,769 27,817,245 9,744,524 31,017,969
Gobmk 54,813,865 40,500,741 14,313,124 51,450,303
Hmmer 58,551,670 46,631,132 11,920,538 45,309,241
Sjeng 43,043,544 35,259,346 7,784,198 46,123,141
Libquantum 25,548,807 18,570,827 6,977,980 253,258,110
H264ref 68,356,147 51,262,177 17,093,970 26,564,298
Omnetpp 33,472,135 26,347,039 7,125,096 29,642,386
Astar 69,152,811 60,029,822 9,122,989 91,444,168
NOMBRE | sim IPC | dll.accesses dl1.hits dll.misses | dll.replacements
Perlbench 2.22344 | 36,614,152 | 36,029,887 | 584,265 584,265
Bzip2 0.81776 | 39,130,447 | 30,434,813 | 8,695,634 8,695,634
Gece 2.19824 | 29,690,547 | 29,532,952 157,595 157,595
Mcf 3.22394 | 21,683,454 | 21,641,130 42324 42324
Gobmk 1.94362 | 36,113,838 | 36,005,531 108,307 108,307
Hmmer 2.20706 | 33,316,629 | 32,809,939 | 506,690 506,690
Sjeng 2.16811 | 27,172,522 | 27,113,454 59,068 59,068
Libquantum | 0.39485 | 20,474,660 | 14,959,747 | 5,514,913 5,514,913
H264ref 3.76445 | 38,340,746 | 38,230,830 | 109,916 109,817
Omnetpp 3.37355 | 23,403,569 | 23,320,400 83,169 83,169
Astar 1.09356 | 26,046,093 | 24,474,546 | 1,571,547 1,571,547
NOMBRE | dll.writebacks | ul2.accesses ul2.hits ul2.misses | ul2.replacements
Perlbench 127,712 944,631 871,276 73,355 73,355
Bzip2 4,347,813 13,043,451 | 10,869,517 | 2,173,934 2,173,934
Gece 119,630 670,331 619,764 50,567 50,567
Mcf 42 316 84,642 66,770 17,872 17,872
Gobmk 74,578 378,386 337,717 40,669 40,669
Hmmer 443,502 950,205 838,566 111,639 111,639
Sjeng 41,228 110,172 80,517 29,655 29,655
Libquantum 4,878,549 10,393,633 | 9,014,802 | 1,378,831 1,378,831
H264ref 65,399 187,101 185,780 1,321 1,158
Omnetpp 45,472 161,890 126,485 35,405 35,405
Astar 631,745 2,203,293 2,004,902 198,391 198,391
NOMBRE | ul2.writebacks | ul3.accesses | ul3.hits | ul3.misses | ul3.replacements
Perlbench 16,276 89,631 83,914 5,717 5,712
Bzip2 1,087,032 3,260,966 | 1,087,032 | 2,173,934 2,173,934
Gee 26,169 76,736 52,882 23,854 23,854
Mecf 15,896 33,768 24,714 9,054 121
Gobmk 21,467 62,136 48,377 13,759 13,759
Hmmer 105,469 217,108 216,377 731 0
Sjeng 17,242 46,897 26,744 20,153 11,028
Libquantum 1,218,118 2,596,949 | 1,218,118 | 1,378,831 1,378,831
H264ref 249 1,570 1,256 314 0
Omnetpp 13,249 48,654 38,324 10,330 0
Astar 110,243 308,634 308,573 61 0




Apéndice E. Resultados, costes, métricas y andlisis previo.

NOMBRE | ul3.writebacks | aciertos_dc fallos_dc total_accesos_dc
Perlbench 5,629 20,055,129 | 24,026,402 44,081,531
Bzip2 1,086,589 49,999,619 | 21,739,208 71,738,827
Gee 22,301 17,028,352 | 20,075,056 37,103,408
Mecf 105 19,869,771 | 13,326,886 33,196,657
Gobmk 13,694 14,121,953 | 26,229,613 40,351,566
Hmmer 0 13,337,123 | 26,355,590 39,692,713
Sjeng 6,723 12,471,200 | 20,967,085 33,438,285
Libquantum 1,187,398 12,051,842 | 13,496,764 25,548,606
H264ref 0 42,434,714 | 22,256,488 64,691,202
Omnetpp 0 9,410,268 | 16,937,451 26,347,719
Astar 0 21,839,837 | 22,564,396 44,404,233

NOMBRE | aciertos_ac fallos_ac total_accesos_ac

Perlbench 22,372 | 24,004,030 24,026,402

Bzip2 8,695,565 | 13,043,643 21,739,208

Gcece 107,412 19,967,644 20,075,056

Mecf 295 13,326,591 13,326,386

Gobmk 555,602 25,674,011 26,229,613

Hmmer 15,743,068 | 10,612,522 26,355,590

Sjeng 30,652 20,936,433 20,967,085

Libquantum | 10,267,727 | 3,229,037 13,496,764

H264ref 6,211,764 | 16,044,724 22,256,488

Omnetpp 1,827,344 | 15,110,107 16,937,451

Astar 10,412,392 | 12,152,004 22,564,396




Apéndice E. Resultados, costes, métricas y andlisis previo.

E.8. Resultados con 100 ficheros de analisis. Suite float.

E.8.1. Paralelo, 100 tramos.

TaBLA E.11: Tabla que muestra los resultados de la suite float para el modo paralelo y con
100 tramos de fichero de anélisis.

Nombre Modo total_issued_loads | total_issued_stores | total_commited_loads
Bwaves Paralelo 30,944,343 6,965,314 29,923,965
Gamess Paralelo 25,233,153 12,996,461 24,345,014
Milc Paralelo 35,923,441 18,754,312 35,913,822
Zeusmp Paralelo 29,627,444 11,762,865 28,070,343
Gromacs Paralelo 44,689,403 9,087,487 36,938,169
CactusADM | Paralelo 38,266,936 7,744,186 36,129,566
Leslie3d Paralelo 27,216,449 2,603,279 26,234,970
Namd Paralelo 28,642,538 9,379,226 27,218,280
Dealll Paralelo 18,107,665 2,998,063 16,337,412
Soplex Paralelo 19,599,529 105,524 15,800,342
Povray Paralelo 38,481,383 11,503,461 35,534,327
Calculix Paralelo 25,710,696 14,513,593 24,496,664
GemsFDTD | Paralelo 22,969,694 11,525,313 22,330,291
Tonto Paralelo 21,737,353 8,671,290 21,063,627
Lbm Paralelo 34,188,448 5,375,895 28,757,967
Wrf Paralelo 27,290,071 10,637,614 26,309,667
Sphin3 Paralelo 28,698,221 10,657,829 26,846,836
Nombre total_commited_stores | num_refs | num_loads | num_stores
Bwaves 6,965,171 36,889,164 | 29,923,990 | 6,965,174
Gamess 12,332,225 36,677,262 | 24,345,029 | 12,332,233
Milc 18,754,080 54,668,038 | 35,913,910 | 18,754,128
Zeusmp 11,760,980 39,831,329 | 28,070,347 | 11,760,982
Gromacs 8,654,623 45,592,814 | 36,938,183 | 8,654,631
CactusADM 7,738,762 43,868,356 | 36,129,588 | 7,738,768
Leslie3d 2,603,273 28,838,274 | 26,234,997 | 2,603,277
Namd 8,884,583 36,102,879 | 27,218,289 | 8,884,590
Dealll 2,955,000 19,292,420 | 16,337,420 | 2,955,000
Soplex 102,375 15,902,720 | 15,800,345 102,375
Povray 10,392,424 45,926,784 | 35,534,350 | 10,392,434
Calculix 13,723,752 38,220,425 | 24,496,667 | 13,723,758
GemsFDTD 11,197,269 33,527,566 | 22,330,297 | 11,197,269
Tonto 8,463,067 29,526,700 | 21,063,633 | 8,463,067
Lbm 5,375,259 34,133,239 | 28,757,980 | 5,375,259
Wrf 10,299,486 36,609,171 | 26,309,676 | 10,299,495
Sphin3 9,871,312 36,718,169 | 26,846,839 | 9,871,330




Apéndice E.

Resultados, costes, métricas y andlisis previo.

Nombre elapsed_time | totalrefs | totalloads | total_stores
Bwaves 284 36,947,826 | 29,963,135 | 6,984,691
Gamess 154 40,444,103 | 26,537,881 | 13,906,222
Milc 242 54,703,421 | 35,948,480 | 18,754,941
Zeusmp 276 39,938,876 | 28,173,424 | 11,765,452
Gromacs 246 57,176,311 | 47,612,380 | 9,563,931
CactusADM 530 43,993,173 | 36,227,265 | 7,765,908
Leslie3d 247 29,022,536 | 26,419,008 | 2,603,528
Namd 161 39,471,411 | 29,863,373 | 9,608,038
Dealll 182 20,860,617 | 17,725,548 | 3,135,069
Soplex 318 17,990,332 | 17,880,976 109,356
Povray 213 55,452,934 | 42,575,661 | 12,877,273
Calculix 170 43,707,487 | 27,814,023 | 15,893,464
GemsFDTD 160 35,707,177 | 23,712,402 | 11,994,775
Tonto 154 32,223,172 | 22,911,521 | 9,311,651
Lbm 309 34,208,652 | 28,832,177 | 5,376,475
Wrf 193 38,309,755 | 27,376,857 | 10,932,898
Sphin3 167 42,158,111 | 30,656,574 | 11,501,537
Nombre sim_cycle IPC | dll.accesses dl1.hits
Bwaves 86,700,811 | 1.1534 | 33,257,046 | 32,575,127
Gamess 26,291,309 | 3.8035 | 31,681,780 | 31,681,717
Milc 46,985,707 | 2.1283 | 54,667,547 | 50,022,930
Zeusmp 95,979,498 | 1.0419 | 39,820,610 | 38,209,886
Gromacs 61,396,757 | 1.6288 | 48,290,231 | 47,191,353
CactusADM | 187,793,984 | 0.5325 | 31,003,295 | 28,370,615
Leslie3d 85,877,158 | 1.1645 | 28,840,153 | 27,419,023
Namd 30,327,688 | 3.2973 | 34,825,725 | 34,811,594
Dealll 51,538,480 | 1.9403 | 18,965,810 | 17,634,589
Soplex 117,730,671 | 0.8494 | 16,089,207 | 13,541,579
Povray 42,969,735 | 2.3272 | 43,805,716 | 43,692,798
Calculix 29,327,984 | 3.4097 | 36,187,919 | 36,187,558
GemsFDTD | 27,873,050 | 3.5877 | 31,495,808 | 31,495,798
Tonto 26,841,677 | 3.7256 | 28,300,503 | 28,299,683
Lbm 97,970,594 | 1.0207 | 34,195,868 | 28,818,366
Wrf 46,461,733 | 2.1523 | 31,780,708 | 30,574,947
Sphin3 30,884,764 | 3.2378 | 36,071,649 | 36,049,714




Apéndice E. Resultados, costes, métricas y andlisis previo.

83

Nombre dll.misses | dll.replacements | dll.writebacks | ul2.accesses
Bwaves 681,919 681,919 323,065 1,005,161
Gamess 63 62 41 169
Milc 4,644,617 4,644,617 4,644,299 9,288,975
Zeusmp 1,610,724 1,610,724 87,787 1,699,867
Gromacs 1,098,878 1,098,878 211,319 1,310,473
CactusADM | 2,632,680 2,632,680 2,579,534 5,212,214
Leslie3d 1,421,130 1,421,130 560,534 1,981,714
Namd 14,131 14,131 14,131 28,271
Dealll 1,331,221 1,331,221 37,045 1,368,266
Soplex 2,547,628 2,547,628 10,678 2,558,309
Povray 112,918 112,733 18,493 137,599
Calculix 361 358 152 604
GemsFDTD 10 0 0 46,140
Tonto 820 820 269 30,669
Lbm 5,377,502 5,377,502 3,962,904 9,340,406
Wrf 1,205,761 1,205,761 1,143,473 2,351,209
Sphin3 21,935 21,935 10,462 32,425
Nombre ul2.hits | ul2.misses | ul2.replacements | ul2.writebacks
Bwaves 834,657 170,504 170,504 79,298
Gamess 145 24 8 2
Milc 8,127,584 | 1,161,391 1,161,391 1,161,177
Zeusmp 1,306,091 | 393,776 393,776 22,798
Gromacs 1,217,345 93,128 93,128 29,969
CactusADM | 2,344,085 | 2,868,129 2,868,129 2,579,492
Leslie3d 1,621,680 | 360,034 360,034 143,126
Namd 24,731 3,540 3,540 3,532
Dealll 1,359,245 9,021 9,021 7,808
Soplex 247,342 | 2,310,967 2,310,967 5,470
Povray 137,545 54 0 0
Calculix 567 37 8 0
GemsFDTD 46,131 9 0 0
Tonto 30,645 24 18 5
Lbm 7,925,807 | 1,414,599 1,414,599 1,060,908
Wrf 1,859,024 | 492,185 492,185 392,735
Sphin3 26,942 5,483 5,483 2,722




Apéndice E. Resultados, costes, métricas y andlisis previo.

84

Nombre ul3.accesses | ul3.hits | ul3.misses | ul3.replacements | ul3.writebacks
Bwaves 249,802 79,563 170,239 170,239 80,510
Gamess 26 2 24 0 0
Mile 2,322,568 1,161,517 | 1,161,051 1,161,051 1,161,002
Zeusmp 416,574 103,260 313,314 313,314 30,635
Gromacs 123,097 105,354 17,743 4 4
CactusADM 5,447,621 2,865,218 | 2,582,403 2,582,403 2,579,482
Leslie3d 503,160 143,226 359,934 359,934 153,496
Namd 7,072 3,536 3,536 0 0
Dealll 16,829 16,829 0 0 0
Soplex 2,316,437 2,316,096 341 0 0
Povray 54 0 54 0 0
Calculix 37 0 37 0 0
GemsFDTD 9 0 9 0 0
Tonto 29 11 18 0 0
Lbm 2,475,507 1,060,909 | 1,414,598 1,414,598 1,060,907
Wrf 884,920 534,574 350,346 350,346 338,174
Sphin3 8,205 2,826 5,379 0 0
Nombre aciertos_dc fallos_dc total_accesos_dc aciertos_ac fallos_ac total_accesos_ac
Bwaves 19,377,480 | 13,879,557 33,257,046 198 13,879,359 13,879,557
Gamess 22,854,454 | 8,827,326 31,681,780 569,534 8,257,792 8,827,326
Milc 52,933,879 | 1,733,668 54,667,547 315,445 1,418,223 1,733,668
Zeusmp 16,922,239 | 22,898,371 39,820,610 1,680,859 | 21,217,512 22,898,371
Gromacs 20,638,535 | 27,651,696 48,290,231 863,346 26,788,350 27,651,696
CactusADM | 18,067,756 | 12,935,539 31,003,295 852,349 12,083,190 12,935,539
Leslie3d 20,316,646 | 8,523,507 28,840,153 4,049,278 4,474,229 8,523,507
Namd 22,208,303 | 12,617,422 34,825,725 53,420 12,564,002 12,617,422
Dealll 4,767,859 | 14,197,951 18,965,810 5,044,640 9,153,311 14,197,951
Soplex 8,617,641 7,471,566 16,089,207 1,384,385 6,087,181 7,471,566
Povray 14,511,437 | 29,294,279 13,805,716 68,603 29,225,676 29,294,279
Calculix 23,684,050 | 12,503,869 36,187,919 230,774 12,273,095 12,503,869
GemsFDTD | 19,197,651 | 12,298,157 31,495,808 28,337 12,269,820 12,298,157
Tonto 12,781,726 | 15,518,777 28,300,503 76,800 15,441,977 15,518,777
Lbm 18,040,772 | 16,155,096 34,195,868 3,877,742 | 12,277,354 16,155,096
Wit 25,119,321 | 6,661,387 31,780,708 466,353 6,195,034 6,661,387
Sphin3 14,413,742 | 21,657,907 36,071,649 13,962 21,643,945 21,657,907




Apéndice E. Resultados, costes, métricas y andlisis previo. 85
E.8.2. Secuencial, 100 tramos.
TABLA E.12: Tabla que muestra los resultados de la suite float, en el modo secuencial y con
100 ficheros de anélisis.
Nombre Modo total_issued_loads | total_issued_stores | total_commited_loads
Bwaves Secuencial 30,944,355 6,965,314 29,923,965
Gamess Secuencial 25,210,880 12,962,599 24,345,014
Mile Secuencial 35,923,530 18,754,325 35,913,822
Zeusmp Secuencial 29,627,375 11,762,792 28,070,343
Gromacs Secuencial 44,602,956 9,080,001 36,938,169
CactusADM | Secuencial 38,266,404 7,744,186 36,129,566
Leslie3d Secuencial 27,216,697 2,603,279 26,234,970
Namd Secuencial 28,529,301 9,310,977 27,218,279
Dealll Secuencial 18,136,468 2,998,291 16,337,412
Soplex Secuencial 19,593,722 105,219 15,800,342
Povray Secuencial 38,439,829 11,488,788 35,534,327
Calculix Secuencial 25,606,492 14,504,350 24,496,664
GemsFDTD | Secuencial 22,976,186 11,515,180 22,330,291
Tonto Secuencial 21,682,693 8,653,675 21,063,627
Lbm Secuencial 34,188,773 5,375,918 28,757,967
Wrf Secuencial 27,283,718 10,637,598 26,309,667
Sphin3 Secuencial 28,650,021 10,553,476 26,846,836
Nombre total_commited_stores | num_refs | num_loads | num_stores
Bwaves 6,965,171 36,889,164 | 29,923,990 | 6,965,174
Gamess 12,332,225 36,677,260 | 24,345,027 | 12,332,233
Milc 18,754,080 54,668,038 | 35,913,910 | 18,754,128
Zeusmp 11,760,980 39,831,329 | 28,070,347 | 11,760,982
Gromacs 8,654,623 45,592,814 | 36,938,183 | 8,654,631
CactusADM 7,738,762 43,868,356 | 36,129,588 | 7,738,768
Leslie3d 2,603,273 28,838,274 | 26,234,997 | 2,603,277
Namd 8,884,581 36,102,879 | 27,218,289 | 8,884,590
Dealll 2,955,000 19,292,420 | 16,337,420 | 2,955,000
Soplex 102,375 15,902,720 | 15,800,345 102,375
Povray 10,392,424 45,926,784 | 35,534,350 | 10,392,434
Calculix 13,723,752 38,220,425 | 24,496,667 | 13,723,758
GemsFDTD 11,197,269 33,527,566 | 22,330,297 | 11,197,269
Tonto 8,463,067 29,526,701 | 21,063,634 | 8,463,067
Lbm 5,375,259 34,133,239 | 28,757,980 | 5,375,259
Wrf 10,299,486 36,609,171 | 26,309,676 | 10,299,495
Sphin3 9,871,314 36,718,177 | 26,846,845 | 9,871,332




Apéndice E.

Resultados, costes, métricas y andlisis previo.

Nombre elapsed_time | totalrefs | totalloads | total_stores
Bwaves 286 36,947,824 | 29,963,133 | 6,984,691
Gamess 154 40,483,366 | 26,574,886 | 13,908,480
Milc 241 54,703,328 | 35,948,427 | 18,754,901
Zeusmp 277 39,938,935 | 28,173,474 | 11,765,461
Gromacs 246 56,648,481 | 47,108,585 | 9,539,896
CactusADM 531 43,993,173 | 36,227,265 | 7,765,908
Leslie3d 246 29,023,782 | 26,419,885 | 2,603,897
Namd 162 39,516,660 | 29,919,886 | 9,596,774
Dealll 185 20,924,570 | 17,774,713 | 3,149,857
Soplex 319 17,967,578 | 17,858,944 108,634
Povray 215 55,208,374 | 42,422,494 | 12,785,880
Calculix 171 43,741,079 | 27,830,655 | 15,910,424
GemsFDTD 162 35,819,405 | 23,778,747 | 12,040,658
Tonto 156 32,051,683 | 22,799,337 | 9,252,346
Lbm 310 34,208,755 | 28,832,242 | 5,376,513
Wrf 193 38,281,643 | 27,362,067 | 10,919,576
Sphin3 169 41,600,431 | 30,452,917 | 11,147,514
Nombre sim_cycle IPC | dll.accesses dl1.hits
Bwaves 86,720,409 | 1.1531 | 20,844,721 | 20,162,787
Gamess 26,676,515 | 3.7486 | 20,291,705 | 20,291,642
Milc 46,983,743 | 2.1284 | 20,349,087 | 15,704,454
Zeusmp 96,550,087 | 1.0357 | 32,378,202 | 30,767,471
Gromacs 62,015,431 | 1.6125 | 35,983,743 | 34,884,973
CactusADM | 187,794,374 | 0.5325 | 19,560,954 | 16,928,450
Leslie3d 85,917,194 | 1.1639 | 9,707,311 8,285,966
Namd 31,119,527 | 3.2134 | 21,116,430 | 21,102,299
Dealll 51,591,120 | 1.9383 | 17,246,424 | 15,914,887
Soplex 118,513,587 | 0.8438 | 7,677,338 5,129,138
Povray 43,190,432 | 2.3153 | 38,633,214 | 38,520,296
Calculix 30,178,943 | 3.3136 | 26,170,122 | 26,169,762
GemsFDTD | 28,705,879 | 3.4836 | 22,308,246 | 22,308,238
Tonto 27,706,756 | 3.6092 | 22,858,636 | 22,857,816
Lbm 97,973,478 | 1.0207 | 16,158,090 | 10,782,014
Wrf 46,615,073 | 2.1452 | 16,912,836 | 15,707,086
Sphin3 31,610,970 | 3.1635 | 31,465,724 | 31,443,811




Apéndice E. Resultados, costes, métricas y andlisis previo.

Nombre dll.misses | dll.replacements | dll.writebacks | ul2.accesses
Bwaves 681,934 323,065 1,005,176 834,662
Gamess 63 42 171 146
Milc 4,644,633 4,644,315 9,289,007 8,127,616
Zeusmp 1,610,731 87,793 1,699,885 1,306,102
Gromacs 1,098,770 211,474 1,310,520 1,216,476
CactusADM | 2,632,504 2,579,532 5,212,036 2,342,049
Leslie3d 1,421,345 560,553 1,981,948 1,621,767
Namd 14,131 14,128 28,268 24,728
Dealll 1,331,537 37,047 1,368,584 1,359,570
Soplex 2,548,200 10,954 2,559,156 248,290
Povray 112,918 18,493 137,600 137,546
Calculix 360 152 603 567
GemsFDTD 8 0 46,136 46,128
Tonto 820 269 30,050 30,034
Lbm 5,376,076 3,961,484 9,337,560 7,922,968
Wrf 1,205,750 1,143,483 2,351,209 1,859,026
Sphin3 21,913 10,459 32,400 26,917
Nombre ul2.hits | ul2.misses | ul2.replacements | ul2.writebacks
Bwaves 834,657 170,514 79,298 249,812
Gamess 145 8 2 27
Milc 8,127,584 | 1,161,391 1,161,178 2,322,569
Zeusmp 1,306,091 393,783 22,805 416,588
Gromacs 1,217,345 94,044 29,988 124,032
CactusADM | 2,344,085 | 2,869,987 2,579,493 5,449,480
Leslie3d 1,621,680 | 360,181 143,145 503,326
Namd 24,731 3,540 3,532 7,072
Dealll 1,359,245 9,014 7,802 16,816
Soplex 247,342 | 2,310,866 5,324 2,316,190
Povray 137,545 0 0 54
Calculix 567 8 0 36
GemsFDTD 46,131 0 0 8
Tonto 30,645 12 3 19
Lbm 7,925,807 | 1,414,592 1,060,908 2,475,500
Wrf 1,859,024 | 492,183 392,743 884,926
Sphin3 26,942 5,483 2,724 8,207




Apéndice E. Resultados, costes, métricas y andlisis previo.

Nombre ul3.accesses | ul3.hits | ul3.misses | ul3.replacements
Bwaves 79,571 170,241 170,241 80,510
Gamess 2 25 0 0
Mile 1,161,518 1,161,051 | 1,161,051 1,161,002
Zeusmp 103,274 313,314 313,314 30,635
Gromacs 106,288 17,744 4 4
CactusADM 2,867,074 2,582,406 | 2,582,406 2,579,486
Leslie3d 143,387 359,939 359,939 153,496
Namd 3,536 3,536 0 0
Dealll 16,816 0 0 0
Soplex 2,315,849 341 0 0
Povray 0 54 0 0
Calculix 0 36 0 0
GemsFDTD 0 8 0 0
Tonto 10 9 0 0
Lbm 1,060,938 1,414,562 | 1,414,562 1,060,907
Wrf 534,579 350,347 350,347 338,174
Sphin3 2,831 5,376 0 0
Nombre aciertos_dc fallos_dc total_accesos_dc aciertos_ac fallos_ac total_accesos_ac
Bwaves 19,377,478 | 13,879,550 33,257,028 207 13,879,343 13,879,550
Gamess 23,649,721 | 7,959,494 31,609,215 112,198 7,847,296 7,059,494
Milc 53,072,565 | 1,595,008 54,667,573 87 1,594,921 1,595,008
Zeusmp 16,927,156 | 22,893,322 39,820,478 1,680,833 | 21,212,489 22,893,322
Gromacs 20,716,230 | 27,474,584 48,190,814 852,552 26,622,032 27,474,584
CactusADM | 19,181,103 | 11,822,192 31,003,295 620,320 11,201,872 11,822,192
Leslie3d 21,671,604 | 7,168,550 28,840,154 3,433,498 3,735,052 7,168,550
Namd 21,424,384 | 13,298,451 34,722,835 299 13,298,152 13,298,451
Dealll 4,779,963 | 14,291,498 19,071,461 5,044,028 9,247,470 14,291,498
Soplex 8,515,507 7,575,025 16,090,622 1,384,585 6,190,440 7,575,025
Povray 15,370,434 | 28,322,347 13,692,781 19,677 28,272,670 28,322,347
Calculix 23,523,844 | 12,447,542 35,971,386 223,374 12,224,168 12,447,542
GemsFDTD | 20,544,971 | 11,116,102 31,661,073 16,649 11,099,453 11,116,102
Tonto 13,871,652 | 14,395,646 28,267,298 9,493 14,386,153 14,395,646
Lbm 18,039,105 | 16,156,930 34,196,035 3,877,735 | 12,279,195 16,156,930
Wit 25,167,281 | 6,613,369 31,780,650 122,371 6,190,998 6,613,369
Sphin3 14,434,580 | 21,600,433 36,035,022 13,249 21,587,184 21,600,433




Apéndice E. Resultados, costes, métricas y andlisis previo. 89

E.8.3. Comparativas 1 vs 100 tramos

En esta seccién se muestran las tablas comparativas con las simulaciones hechas con 1 tramo vs
100 tramos de andlisis. También se muestran las comparacién de los ciclos de ejecuciéon de cada

benchmark.

NOMBRE A B Cc D E F G H I J K L M N 9] P
Peribench | 1.76 | 2.28 | 2.28 | 222 | 2.22 | 52.40% | 67.98% | 41.15% | 45.74% | 42.84% | 45.50% | 333 | 274 | 267 | 243 | 2.33
Bzip2 081 | 0.83 | 0.83 | 0.82 | 0.82 | 85.16% | 83.25% | 69.70% | 69.70% | 69.70% | 69.70% |44.76 | 4463 [ 27.31 [ 41.21 | 23.77
Goo 179 | 225 | 2.25 | 220 | 2.20 | 46.48% | 67.13% | 41.99% | 44.46% | 43.87% | 45.89% | 220 | 189 | 235 [ 156 | 2.03
Mct 243 | 334 | 3.34 | 3.23 | 3.22 | 61.99% | 94.94% | 54.81% | 60.57% | 57.51% | 59.85% | 1.31 | 104 | 1.29 [ 0.75 | 0.98
Gobmk 163 | 199 | 1.99 | 1.94 | 1.94 | 32.99% | 59.56% | 32.49% | 34.32% | 32.96% | 35.00% | 245 | 221 | 288 | 199 | 264
Hmmer 186 | 224 | 224 | 221 | 2.2]1 | 39.84% | 81.90% | 30.23% | 33.19% | 30.57% | 33.60% | 288 | 256 | 2.62 | 227 | 2.28
Sjeng 181 | 224 | 224 | 217 | 217 | 74.21% | 96.37% | 28.24% | 35.67% | 31.43% | 37.30% | 1.77 | 159 | 2.16 [ 1.35 | 1.89
Libguantum | 0.38 | 0.39 | 0.40 [ 039 | 0.39 | 33.03% | 35.72% | 47.17% | 47.17% | 47.17% | 47.17% [ 59.62 | 58.19 | 48.61 | 57.43 | 47.37
H264ret 349 | 380 | 3.80 | 3.76 | 3.76 | 52.04% | 89.61% | 25.34% | 65.40% | 25.38% | 65.60% | 1.75 | 1.78 | 192 [ 1.27 | 1.25
Omnetpp | 251 | 3.44 | 3.44 | 337 | 3.37 | 27.69% | B1.B6% | 33.24% | 34.59% | 34.44% | 35.72% | 104 | 084 | 105 | 0.74 | 0.95
Astar 091 | 110 | 1.10 | 1.09 | 1.09 | 92.07% |264.45% | 35.86% | 47.73% | 36.51% | 49.18% | 991 | 864 | 747 | 7.40 | 583
Media 124 | 141 | 1.4]1 | 1.39 | 1.40 | 54.35% | 92.98% | 40.02% | 47.14% | 41.13% | 47.68% | 11.91 | 11.46 | 9.12 [ 10.76 ) 8.30

TABLA E.13: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.

NOMBRE A B c D E F G H I J K L M N o P

Bwaves 113 [ 135 | 1.15 | 1.15 | 1.15 | 62.17% [ 97.99% | 32.03% 58.27% 32.03% | 58.27% | 6.03 | 6.15 | 567 | 2.69 | 2.69

Gamess 262 | 3.80 | 3.80 | 3.64 | 3.75 | 88.89% | 98.48% | 49.68% 72.14% 49.80% | 74.82% | 156 | 1.06 | 0.99 | 0.25 | 0.26

Milc 211 [ 2313 | 213 | 213 | 2.13 | 81.36% [ 90.65% | 91.56% 96.83% 91.58% | 97.08% | 679 | 6.97 | 564 | 0.84 | 0.84

Zeusmp 100 [ 104 | 1.04 | 1.04 | 1.04 | 72.92% | 99.54% | 32.96% 42.50% 35.25% | 4251% | 832 | 831 | 7.94 | 330 | 3.34

Gromacs 143 [ 163 | 163 | 1.61 | 1.61 | 38.09% [ 79.30% | 31.11% 42.74% 31.13% | 42.99% | 500 | 452 | 403 | 136 | 1.39

CactusADM [ 051 | 053 | 0.53 | 0.53 | 0.53 | 88.25% | 93.53% | 52.18% 58.28% 52.18% | 61.87% |44.32|42.49 |40.80 [12.76 | 12.76

Leslie3d 108 [ 116 | 1.16 | 1.16 | 1.16 | 72.98% [ 94.85% | 61.15% 70.45% 66.59% | 75.14% | 692 | 6.48 | 513 | 264 | 2.64

Namd 239 [ 330 | 330 | 3.21 | 3.21 | 68.61% [ 99.89% | 55.83% 63.77% 59.39% | 61.70% | 1.90 [ 1.36 | 1.03 | 0.33 | 0.35
Dealll 166 | 194 | 1.94 | 1.94 | 1.94 | 36.10% | 78.53% | 23.68% 25.14% 23.59% | 25.06% | 246 | 2.07 | 1.94 | 095 | 0.95
Soplex 077 | 084 | 0.85 | 0.83 | 0.84 | 95.77% | 90.49% | 49.64% 53.56% 36.91% | 52.92% [11.93(10.58 | 10.04 [ 495 | 5.01
Povray 197 | 233 | 233 | 232 | 2.32 | 68.54% | 92.42% | 32.23% 33.13% 34.42% | 35.18% | 290 [ 250 | 221 | 0.67 | 0.68

Calculix 247 | 341 | 341 | 3.32 | 3.31 | 49.22% | 96.44% | 65.17% 65.45% 66.09% | 6540% | 185 [ 1.34 | 1.07 | 031 | 0.33

GemsFDTD | 281 | 3.59 | 3.59 | 348 | 3.48 | 78.19% | 88.03% | 61.01% 60.95% 59.45% | 64.89% | 142 | 1.13 | 0.95 | 0.28 | 0.30

Tonto 291 [ 373 | 3.73 | 3.58 | 3.61 | 61.06% | 97.84% | 36.14% 45.16% 37.83% | 49.07%% | 125 | 099 | 0.94 | 0.26 | 0.28

Lbm 100 [ 102 | 1.02 | 1.02 | 1.02 | 77.43% | 96.99% | 53.30% 52.76% 53.30% | 52.75% |14.75(14.76 |13.01 [ 3.50 | 3.50
W 199 [ 215 | 215 | 210 | 2.15 | 51.84% | 3.91% | 40.00% 79.04% 40.00% | 79.19% [ 351 | 3.31 | 3.22 | 0.79 | 0.79
Sphin3 248 | 324 | 3.24 | 3.16 | 3.16 | 57.56% [ 85.05% | 39.92% 39.96% 40.02% | 40.06% | 1.83 | 1.43 | 1.27 | 035 | 0.36
Media 140 [ 155 | 1.56 | 1.54 | 1.55 | 67.59% [ 87.20% | 47.50% 56.48% 47.62% | 57.58% | 7.22 | 6.79 | 6.23 | 213 | 215

TAaBLA E.14: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite float.

Az IPC en modo solo

B: IPC en modo paralelo con 1 tramo

C: IPC en modo paralelo con 100 tramos

D: IPC en modo secuencial con 1 tramo

E: IPC en modo secuencial con 100 tramos

F: Tasa de aciertos esperados en DC con 1 tramo

G: Tasa de aciertos esperados en DC con 100 tramos

H: Tasa de aciertos obtenidos en DC en paralelo con 1 tramos
|: Tasa de aciertos obtenidos en DC en paralelo con 100 tramos
J: Tasa de aciertos obtenidos en DC en secuencial con 1 tramo
K: Tasa de aciertos obtenidos en DC en secuencial con 100 tramos
L: Indicador energy_delay solo

M: Indicador energy_delay en paralelo con 1 tramo

N: Indicador energy_delay en paralelo con 100 tramos

O: Indicador energy_delay en secuencial con 1 tramo

P: Indicador energy_delay en secuencial con 100 tramos

Las columnas “F“y “G“ de estas tablas muestran las tasas de aciertos esperados en la memoria
DC. Estas tasa son el resultado del cociente entre los aciertos esperados en la DC obtenidos
de la fase de andlisis previo y el ndmero de instrucciones lanzadas (para 1 tramo y para 100
tramos). Las columnas “H*, “I“ “J“y “K“ muestran las tasas de aciertos que hemos obtenido
en la memoria DC tanto en el modo secuencial como en el modo paralelo y para 1 fichero de
andalisis y 100 ficheros. Este valor es el cociente entre los aciertos obtenidos en la DC y el nimero

de accesos a la memoria DC.



Apéndice E. Resultados, costes, métricas y andlisis previo. 90

NOMBRE SOLO PARALELO | PARALELO100 | SECUENCIAL | SECUENCIAL100
Perlbench 56.977.368 | 43,836,085 43,836,458 44,962,448 44,975,271
Bzip2 123,915,380 | 121,197,901 121,197,896 122,284,866 122,284,861
Gee 55.773.994 | 44,424,141 44,423,434 45,486,503 45,490,895
Mcf 41,129,611 | 29.969.716 29,969,724 30,982,167 31,017,969
Gobmk 61,219,900 | 50,258,443 50,260,912 51,455,987 51,450,303
Hmmer 53.757.656 | 44,676,855 44, 672,560 45,334,142 45,309,241
Sjeng 55,118,350 | 44,637,907 44,635,374 46,151,444 46,123,141
Libquantum | 263,817,483 | 254,755,438 252,352,879 258,063,091 253,258,110
H264ref 28.678.481 | 26,340,662 26,310,865 26,563,269 26,564,298
Omnetpp 39.851.402 | 29,041,978 29,040,286 29,632,289 29,642,386
Astar 109,455,503 | 90,815,335 90,799,135 91,578,623 91,444,168
Media 80.881.375 | 70,904,951 70,681,775 72,044,984 71,596,422
Mejora 14.07% 14.43% 12.27% 12.97%
Diferencia 0.36% 0.70%

TaBLA E.15: Tabla que muestra los ciclos de ejecucién de la suite enteros en los tres modos
de funcionamiento y con 1 vs 100 ficheros de anélisis.

NOMBRE S0LO PARALELO | PARALELO100 SECUENCIAL SECUENCIAL100
Bwaves 88,428,627 | 86,700.811 86,700,811 86,719,993 86,720,409
Gamess 38,173,252 | 26,291,278 26,291,309 27,487,470 26,676,515

Milc 47,495,539 | 47,001,590 46,985,707 47,001,904 46,983,743
Zeusmp 99,618,466 | 95,980.739 95,979,498 96,572,388 96,550,087
Gromacs 69,881,323 | 61,439,855 61,396,757 62,145,903 62,015,431
CactusADM | 196,892,878 | 187.793.984 187,793,984 187,794,222 187,794,374
Leslie3d 92,778,148 | 85,877.021 85,877,158 85,915,223 85,917,194
Namd 41,879,602 | 30,327,680 30,327,688 31,130,367 31,119,527
Dealll 60,188,848 | 51,558,609 51,538,480 51,648,405 51,591,120
Soplex 130,643,708 | 118,454,035 117,730,671 120,048,707 118,513,587
Pavray 50,874,121 | 42,969.733 42,969,735 43,193,685 43,190,432
Calculix 40,515,597 | 29,312,176 29,327,984 30,140,362 30,178,943
GemsFDTD | 35.528,758 | 27,873,035 27,873,050 28,717,489 28.705.879
Tonto 34,312,635 | 26,839.654 26,841,677 27,898,224 27,706,756
Lbm 99,906,761 | 97,967.439 97,970,594 97,969,987 97.973.478
Wit 50,275,529 | 46,477.229 46,461,733 47,652,360 46,615,073
Sphin3 40,313,223 | 30,884,736 30.884.764 31,634,418 31.610.970
Media 71.629.824 | 64,338.212 64,291,271 64,921,830 64,697,854
Mejora 11.33% 11.41% 10.33% 10.71%
Diferencia 0.08% 0.38%

TABLA E.16: Tabla que muestra los ciclos de ejecucién de la suite float en los tres modos de
funcionamiento y con 1 vs 100 ficheros de andlisis.

E.8.4. Tablas con otros resultados

En esta seccion se muestran las tablas con los resultados obtenidos de las simulaciones con otras

entradas (benchmarks modificados).

NOMBRE SOLO S0L0 M DIFERENCIA | PARALELO PARALELO M DIFERENCIA | SECUENCIAL | SECUENCIAL M [ DIFERENCIA
Sjeng 1.81 1.82 0.13% 2.24 2.22 -L.11% 217 217 0.00%
Perlbench 1.76 1.75 -0.56% 2.28 2.27 -0.64% 2.22 2.22 0.00%
H264ref 3.49 3.49 -0.01% 3.80 3.79 0.27% 3.76 3.76 -0.01%
Libquantum 0.38 0.38 0.00% 0.39 0.39 -0.64% 0.39 0.39 0.00%
Mcf 2.43 2.44 0.34% 3.34 3.30 -1.04% 3.23 3.23 0.00%
Gobmk 1.63 1.64 0.41% 1.99 1.97 -0.78% 1.94 1.94 0.00%
Gee 1.79 1.79 -0.10% 2.25 2.24 -0.57% 2.20 2.20 0.00%
Bzip2 0.81 0.81 0.00% 0.83 0.82 -0.45% 0.82 0.82 0.00%
Omnetpp 2.51 2.51 -0.15% 3.44 3.43 -0.26% 3.37 3.37 0.00%

TABLA E.17: Tabla que muestra la diferencia de rendimiento para la suite enteros con una
entrada distinta para los tres modos de funcionamiento.

NOMBRE SOLO | SOLO M DIFERENCIA PARALELO |PARALELO_M| DIFERENCIA SECUENCIAL SECUENCIAL_M | DIFERENCIA
Bwaves 1.13 113 0.04% 115 115 -0.01% 115 115 0.00%
Gamess 2.62 2.62 0.00% 3.80 3.79 -0.24% 3.64 3.64 0.00%
Zeusmp 1.00 1.00 0.04% 1.04 1.04 -0.30% 1.04 1.04 0.00%
Gromacs 143 144 0.39% 1.63 1.62 -0.41% 1.61 161 0.00%
Namd 2.39 2.39 0.00% 3.30 3.28 -0.67% 3.21 3.21 0.00%
Dealll 1.66 1.66 -0.01% 1.94 1.94 -0.07% 1.94 1.94 0.00%
Povray 1.97 1.97 0.00% 2.33 2.32 -0.18% 2.32 232 0.00%
Calculix 2.47 2.47 0.00% 3.41 3.39 -0.57% 3.32 3.32 0.00%
GemsFDTD | 2.81 2.81 0.00% 3.59 3.57 -0.60% 3.48 3.48 0.00%
Tonto 291 2.91 0.00% 3.73 3.73 0.02% 3.58 3.58 0.00%
Lbm 1.00 1.00 0.00% 1.02 102 0.00% 1.02 102 0.00%
Wit 1.99 1.99 0.03% 2.15 2.14 -0.46% 2.10 2.10 0.00%
Sphin3 2.48 2.48 0.00% 3.24 3.25 0.32% 3.16 3.16 0.00%

TABLA E.18: Tabla que muestra la diferencia de rendimiento para la suite float con una entrada
distinta para los tres modos de funcionamiento.



Apéndice E. Resultados, costes, métricas y andlisis previo. 91

Las columnas de las tablas y que terminan en _M muestra los valores que hemos

obtenido en las simulaciones con distinta entrada.



Bibliografia

[1]

[12]

J. Segarra, C. Rodriguez, R. Gran, L.C. Aparicio, and V. Vinals. A small and effective
data cache for real-time multitasking systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2012 IEEE 18th, pages 45-54, April 2012.

SPEC  CPU2006. Standard  performance evaluation corporation,  2006.
https://www.spec.org/cpu2006/ .

Todd Austin. Simplescalar llc, Junio 1997. http://www.simplescalar.com.

Stream:  Sustainable memory bandwidth in  high performance computers.

https://www.cs.virginia.edu/stream/.

R. Gonzalez and M. Horowitz. Energy dissipation in general purpose processors. In Low
Power Electronics, 1995., IEEE Symposium on, 1995.

J. Lee and S. Kim. Filter data cache: An energy-efficient small 10 data cache architecture

driven by miss cost reduction. Computers, IEEE Transactions on, PP(99):1-1, 2014.

Ju Hee Choi, Jong Wook Kwak, Seong Tae Jhang, and Chu Shik Jhon. Data filter cache
with word selection cache for low power embedded processor. In Proceedings of the 2013
Research in Adaptive and Convergent Systems, RACS 13, pages 422-427, New York, NY,
USA, 2013. ACM.

Young Jin Park, Hong Jun Choi, Cheol Hong Kim, and Jong-Myon Kim. Energy-aware filter
cache architecture for multicore processors. In Flectronic Design, Test and Application,
2010. DELTA ’10. Fifth IEEE International Symposium on, pages 58—62, Jan 2010.

S. Hines, D. Whalley, and G. Tyson. Guaranteeing hits to improve the efficiency of a
small instruction cache. In Microarchitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM
International Symposium on, pages 433-444, Dec 2007.

J. Kin, M. Gupta, and W.H. Mangione-Smith. Filtering memory references to increase

energy efficiency. Computers, IEEE Transactions on, 49(1):1-15, Jan 2000.

Mitchell Hayenga, Andrew Nere, and Mikko Lipasti. MadCache: A PC-aware Cache Inser-
tion Policy. In Joel Emer, editor, JWAC 2010 - 1st JILP Worshop on Computer Architecture

Competitions: cache replacement Championship, Saint Malo, France, June 2010.

Cacti, an integrated cache and memory access time, cycle time, area, leakage, and dynamic

power model. http://www.hpl.hp.com/research/cacti/.

92



Bibliografia 93

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Gdb: The gnu project debugger. http://www.gnu.org/software/gdb/.
The unix®) system. http://www.unix.org/.
Python’s standard documentation. https://www.python.org/.

Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free instruction scheduling logic. In
Proceedings of the 34th Annual ACM/IEEE International Symposium on Microarchitecture,
MICRO 34, pages 204-213, Washington, DC, USA, 2001. IEEE Computer Society.

I. Kim and M.H. Lipasti. Understanding scheduling replay schemes. In Software, IEE
Proceedings-, pages 198-209, Feb 2004.

John L. Henning. Spec cpu2006 benchmark descriptions. volume 34, pages 1-17, New York,
NY, USA, September 2006. ACM.

Jesus Alastruey Benedé. Renombre de registros especulativo, Octubre 2009.
http://webdiis.unizar.es/gaz/biblio/pdfs/2009-tesis-alastruey.pdf.

http://www.simplescalar.com/docs/simple,utorial,2.pdf.



	Agradecimientos
	Resumen
	Contenidos
	Lista de Figuras
	Lista de Tablas
	1 Introducción
	1.1 Contexto del Proyecto
	1.2 Objetivos
	1.3 Estado del arte y trabajos previos
	1.4 Organización de la Memoria

	2 Memoria ACDC en procesadores de altas prestaciones
	2.1 Los procesadores de altas prestaciones
	2.2 La memoria cache ACDC
	2.3 Organización de la memoria ACDC dentro de la jerarquía de memoria
	2.3.1 Organización secuencial.
	2.3.1.1 Conclusión

	2.3.2 Organización paralela.
	2.3.2.1 Conclusión

	2.3.3 Instrucciones de escritura en memoria


	3 Resumen de resultados
	3.1 Introducción
	3.2 Configuración de la jerarquía de memoria
	3.3 Resultados
	3.3.1 Rendimiento
	3.3.2 Gasto energético de la jerarquía de memoria
	3.3.3 Tasa aciertos en DC
	3.3.4 Comparativa ficheros análisis, 1 vs 100
	3.3.5 Otras pruebas


	4 Conclusiones y trabajos futuros.
	4.1 Conclusiones
	4.2 Trabajos futuros.

	A Carga y Desarrollo del Proyecto
	A.1 Gestión del tiempo
	A.2 Esfuerzo invertido
	A.3 Problemas encontrados

	B Procesadores de altas prestaciones y SPEC CPU 2006
	B.1 Los procesadores de altas prestaciones
	B.1.1 Lanzamiento a ejecución de instrucciones especulativamente.
	B.1.2 Configuración del procesador de altas prestaciones

	B.2 Cargas de trabajo

	C Descripción y funcionamiento de la memoria ACDC
	C.1 Descripción y funcionamiento de la memoria ACDC

	D Implementaciones
	D.1 Modificaciones en simulador SimpleScalar
	D.2 Implementaciones
	D.3 Métodos nuevos
	D.4 Automatizaciones

	E Resultados, costes, métricas y análisis previo.
	E.1 Costes energéticos
	E.2 Análisis
	E.3 Métricas
	E.4 Graficas suite enteros y suite float
	E.5 Resultados suite enteros
	E.5.1 Resultados sin el uso de la memoria ACDC, suite enteros.
	E.5.2 Resultados con la organización secuencial, suite enteros.
	E.5.3 Resultados con la organización paralela, suite enteros.

	E.6 Resultados suite float
	E.6.1 Resultados sin el uso de la memoria ACDC, suite float.
	E.6.2 Resultados con la organización secuencial, suite float.
	E.6.3 Resultados con la organización paralela, suite float.

	E.7 Resultados con 100 ficheros de análisis. Suite enteros.
	E.7.1 Paralelo, 100 tramos.
	E.7.2 Secuencial, 100 tramos.

	E.8 Resultados con 100 ficheros de análisis. Suite float.
	E.8.1 Paralelo, 100 tramos.
	E.8.2 Secuencial, 100 tramos.
	E.8.3 Comparativas 1 vs 100 tramos
	E.8.4 Tablas con otros resultados


	Bibliografía

