
Análisis de la efectividad de una memoria cache ACDC en
el conjunto de programas de prueba SPEC CPU 2006

Antonio Gallego Pad́ın

Director: Dr. Rubén Gran Tejero
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Quiero aprovechar estas ĺıneas para agradecer a todas las personas que me han ayudado a lo

largo de estos años en la Universidad de Zaragoza.

En primer lugar agradezco a Rubén Grant, mi director del Proyecto, por todo el trabajo, apoyo

y dedicación que ha tenido conmigo a lo largo de estos meses de trabajo. Para mı́, lo más

importante, es todo lo que me ha enseñado y por eso le estoy muy agradecido.

También quiero agradecer a todos mis amigos y compañeros que he tenido estos años en la
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Análisis de la efectividad de una memoria ACDC en el

conjunto de programas de prueba SPEC CPU 2006

Resumen

Este Proyecto de Fin de Carrera es un Proyecto del Departamento de Informática e Ingenieŕıa

de Sistemas de la Universidad de Zaragoza. La idea de este Proyecto surgió a raiz de la creación

de una nueva memoria cache ACDC [1] por parte de los profesores del Departamento.

En este proyecto se ha evaluado esta memoria cache ACDC dentro de la jerarqúıa de memoria

de un procesador de altas prestaciones en SPEC CPU 2006 [2]. La memoria ACDC tiene una

poĺıtica de reemplazo basada en instrucciones, a diferencia de las memorias cache convencionales,

que se basan en el flujo de instrucciones del programa. Estas instrucciones se obtienen con un

profiling o análisis previo.

Esta memoria ACDC tendrá dos organizaciones distintas e independientes dentro de la jerar-

qúıa de memoria convencional. Por una parte, estará organizada de forma secuencial. En esta

organización la memoria ACDC será la que ocupe el primer nivel de la jerarqúıa de memoria

del procesador. Será a ella a quien el procesador le solicite los datos. La otra organización es de

forma paralela con el primer nivel de la jerarqúıa de memoria. En este caso el procesador solicita

los datos a las dos memorias, ACDC y L1, de forma paralela. La latencia de ejecución de esta

memoria ACDC es más pequeña que la de la memoria cache L1. Se intenta por tanto, disminuir

la latencia de ejecución de las instrucciones.

La finalidad de incluir esta memoria ACDC dentro de la jerarqúıa convencional de memoria de

un procesador de altas prestaciones es intentar que el rendimiento aumente y que el consumo

disminuya.
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Caṕıtulo 1

Introducción

El tiempo de ejecución de un programa suele estar limitado por las operaciones de acceso a me-

moria, tanto de instrucciones como de datos. Tecnológicamente, hay una diferencia muy grande

y creciente entre la capacidad de procesamiento de la CPU y el ancho de banda y latencia de

las memorias (figura 1.1). Esto se conoce como memory wall. La suma de todo esto nos lleva a

severas pérdidas de rendimiento ya que la CPU tiene que esperar a que la memoria le suministre

la información para avanzar la ejecución del programa. Una alternativa es introducir una jerar-

qúıa de memoria. En la figura 1.1 [4] se puede observar que en los últimos años, el rendimiento

de la CPU ha experimentado una mayor velocidad en el procesamiento de las instrucciones en

relación a la memoria. Por este motivo, la jerarqúıa de memoria es tan importante.

Figura 1.1: Diferencia de rendimiento entre la CPU y la memoria [4].

La jerarqúıa de memoria se organiza en varios niveles de memoria, que son distintos en cuanto a

capacidad, latencia y ancho de banda. Cuanto más cerca esté un nivel de memoria del procesador,

más pequeña es su capacidad y su latencia. En la figura 1.2 se observa que el nivel más cercano

al procesador es el nivel más bajo y se llama nivel 1 (L1). Le siguen el nivel 2 (L2), nivel 3 (L3)

y el último nivel de memoria, la memoria principal.

1



Caṕıtulo 1. Introducción 2

Figura 1.2: Jerarqúıa de memoria con tres niveles y memoria principal.

La intencionalidad de una jerarqúıa de memoria es que las peticiones por parte del procesador

sean servidas por el nivel 1 de la jerarqúıa de memoria y de esta forma los accesos a memoria

experimentan menor latencia que si fuesen servidos desde la memoria principal. Aśı pues, en

presencia de una jerarqúıa de memoria convencional, el procesador siempre solicita la dirección

a la que quiere acceder al nivel 1 de la jerarqúıa de memoria, con la esperanza que se encuentre

alĺı y aśı, sea servido con una baja latencia. Si la dirección no se encuentra en dicho nivel, se

buscará en el siguiente nivel, a un coste mayor de latencia. De este modo, lo que se busca con

esta jerarqúıa de memoria es que los contenidos más usados estén en los niveles más bajos de la

jerarqúıa para aśı ocultar el memory wall.

Las jerarqúıas de memoria funcionan bien ya que los programas presentan reuso, tanto a nivel

de instrucciones como de datos. Este reuso es generado, por ejemplo, por la presencia de bucles o

bien por el acceso reiterado a variables dentro de un programa. Por ejemplo, si hay un bucle de n

iteraciones dentro de un programa, se accede a las mismas instrucciones mientras se esté dentro

del bucle. Por tanto, existe reuso en las instrucciones del bucle. Por otra parte, por ejemplo,

hay reuso temporal, en la variable de control o iterador de dicho bucle. Lo que se busca es que,

aquellas instrucciones y variables que presentan más reuso, se encuentren en el nivel más bajo de

la jerarqúıa de memoria, intentando minimizar los accesos a los niveles más altos de la jerarqúıa

de memoria.

En los esquemas convencionales de jerarqúıa de memoria, el reuso se logra gracias al flujo de

referencias de las instrucciones de un programa. Ésta es la forma de gestionar el contenido de

los niveles de la jerarqúıa de memoria y por eso funciona bien.

Otra forma para gestionar el contenido de una jerarqúıa de memoria es a través de qué instrucción

genera la dirección a la variable que presenta reuso. Esta forma de gestión es la que se plantea

con la memoria ACDC y es la que utilizaremos en este trabajo.

1.1. Contexto del Proyecto

Este Proyecto de Fin de Carrera es un proyecto del Departamento de Informática e Ingenieŕıa de

Sistemas de la EINA de la Universidad de Zaragoza y es una continuación a estudios relacionados

con la incorporación de un nuevo nivel de memoria dentro de la jerarqúıa de memoria.
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1.2. Objetivos

El objetivo de este Proyecto Fin de Carrera es evaluar la memoria ACDC en un procesador de

propósito general de altas prestaciones, utilizándola como una cache de nivel 0, dentro de la

jerarqúıa de memoria, o bien utilizándola de forma paralela con el nivel L1 de la jerarqúıa de

memoria, en el conjunto de programas de prueba SPEC CPU 2006 [2].

1.3. Estado del arte y trabajos previos

En este Proyecto he extendido el trabajo presentado por Juan Segarra y otros [1] (profesores

de la Universidad de Zaragoza). Más concretamente, he evaluado el impacto en enerǵıa y rendi-

miento de la memoria ACDC en un procesador de altas prestaciones, esto es superescalar, con

lanzamiento de instrucciones fuera de orden y especulación de latencia de ejecución (ver B.1),

para la Benchmark Suite SPEC CPU 2006 [2].

Esta propuesta de memoria busca aprovechar el reuso existente en los algoritmos. La idea prin-

cipal es que son las instrucciones de acceso a memoria las que generan las referencias a memoria

correspondientes a los datos y por lo tanto, se podŕıa identificar aquellas instrucciones de memoria

que acceden a los contenidos con más reuso y que fuesen estas instrucciones las que determinasen

el contenido de la cache de datos.

El uso de caches de tamaño reducido y muy baja latencia en jerarqúıas de memoria ha sido

muy utilizada [6], [7], [8], [9], [10]. Algunas propuestas buscan reducir el tiempo de acceso y aśı

mejorar el tiempo de ejecución [6], [7]. Otras propuestas, buscan reducir el consumo energético

[7], [8], [9], [10]. En cualquier caso, ninguna de las propuestas se basa en controlar el reemplazo

de dicha cache de datos a través de las instrucciones que realizan el acceso a cache.

En cuanto a qué información se utiliza para gestionar el contenido de la cache de datos, la

gran mayoŕıa de los trabajos utilizan solo el flujo de direcciones generado por el programa para

seleccionar qué contenidos permanecen en cache y aśı aprovechar el reuso. Aquellos trabajos

[11] que utilizan la dirección de las instrucciones para gestionar el contenido de cache lo suelen

utilizar para predecir cuál va a ser el comportamiento de la cache y no para identificar aquellas

instrucciones que tienen reuso como śı lo hace la memoria ACDC [1].

1.4. Organización de la Memoria

Esta Memoria de este Proyecto de Fin de Carrera tiene la siguiente estructura:

En este capitulo 1 se presenta la problemática asociada al aumento de prestaciones del

procesador con respecto a la memoria. También se habla del estado del arte y trabajos

previos.

En el caṕıtulo 2 se describe cómo hemos organizado la memoria ACDC [1] dentro de la

jerarqúıa de memoria de un procesador de altas prestaciones.
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En el caṕıtulo 3 se presentan y analizan los resultados obtenidos con la ejecución de un

procesador de altas prestaciones y la carga de trabajo SPEC CPU 2006 [2].

Finalmente, en el caṕıtulo 4 se muestran las conclusiones de este proyecto y se proponen

ĺıneas de trabajo futuro.

Además de estos caṕıtulos, también se incluyen los siguientes apéndices:

Apéndice A. Carga y desarrollo del Proyecto. En esta parte, se explica la gestión del tiempo

del Proyecto, los trabajos realizados, esfuerzo invertido y situaciones problemáticas.

Apéndice B. Procesadores de altas prestaciones y SPEC CPU2006 [2]. Los procesadores

de altas prestaciones son explicados en este apéndice y la problemática de la ejecución

especulativa. También se indican las cargas de trabajo utilizadas en el Proyecto [2].

Apéndice C. Introducción a la memoria ACDC. En este apéndice se describe y explica la

memoria ACDC [1].

Apéndice D. Implementaciones realizadas. Aqúı se muestran los cambios hechos en el código

del simulador usado en el Proyecto [3] y algunos ficheros de automatización y obtención de

datos con el fin de agilizar los trabajos.

Apéndice E. Resultados, costes energéticos, métricas y análisis previo. En este apéndice

se muestran todos los resultados que hemos obtenido a lo largo del proyecto aśı como las

fórmulas necesarias para obtener algunos de ellos. También se describen las métricas usadas

y la fase previa de análisis o profiling.
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Memoria ACDC en procesadores

de altas prestaciones

Los procesadores de altas prestaciones deben hacer un uso extensivo de la especulación para

conseguir sus objetivos de rendimiento. Un ejemplo de especulación es la predicción de latencia

de ejecución de instrucciones de acceso a jerarqúıa de memoria. En este capitulo voy a presentar

mi trabajo de implementación de la memoria ACDC [1] en un procesador para altas prestaciones

y más concretamente como afecta esta especulación, evaluándolo sobre SPEC CPU 2006 [2]. Para

ello, en la primera parte del caṕıtulo haremos alusión a los procesadores de altas prestaciones

y el problema de la ejecución especulativa. Toda la información sobre esto se encuentra en el

apéndice B de este documento. Posteriormente presentaremos la idea de la memoria ACDC [1],

que se puede consultar en el apéndice C. Finalmente, explicaré cómo he adaptado esta memoria

ACDC dentro de la jerarqúıa de memoria convencional de un procesador de altas prestaciones.

2.1. Los procesadores de altas prestaciones

Los procesadores de altas prestaciones se caracterizan por ser altamente segmentados, superes-

calares y con ejecución fuera de orden de instrucciones. Además lanzan instrucciones de forma

especulativa ya que hay instrucciones cuya latencia de ejecución no es conocida en tiempo de

lanzamiento a ejecución. Las instrucciones de acceso a memoria son un ejemplo, ya que tienen

una latencia de ejecución que depende del nivel de la jerarqúıa de memoria en la que se encuentre

el dato al que se quiere acceder y este nivel solo es conocido durante el propio acceso a memoria.

Todas estas caracteŕısticas hacen que los procesadores de altas prestaciones puedan aumentar su

rendimiento ya que se mejora su capacidad para explotar el paralelismo a nivel de instrucciones

(ILP).

En la figura 2.1 se muestra el segmentando del procesador de altas prestaciones utilizado en este

proyecto.
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Figura 2.1: Segmentado del procesador utilizado en este proyecto.

Para saber más sobre la ejecución especulativa de instrucciones y las implicaciones que tiene sobre

los procesadores de altas prestaciones se puede consultar en el apéndice B de este documento.

2.2. La memoria cache ACDC

La memoria cache ACDC [1] es una memoria que ha sido desarrollada por los profesores del

Departamento de Informática e Ingenieŕıa de Sistemas de la Universidad de Zaragoza. Se carac-

teriza por que el contenido de la memoria es controlado por las instrucciones y no por el flujo de

direcciones de accesos generados por el programa. Una posible estructura hardware que puede

aprovechar el reuso de estas instrucciones es una memoria muy pequeña y completamente aso-

ciativa (DC), con una poĺıtica de reemplazo basada en instrucciones que se encuentran en otra

memoria muy pequeña (AC). Por ejemplo, en acierto (hit) en lecturas, se proporcionará el dato.

Para saber si hay hit en DC se comprueba si la addr del dato se encuentra en alguna ĺınea de la

tag data; en acierto en escritura, se actualizará el dato. En fallos, se comprobará si la instrucción

que accede al dato (PC) se encuentra en la AC. Si el PC está en la memoria AC, tiene permiso

para reemplazar (DRP) en la DC el dato asociado al ı́ndice de la instrucción (DC idx) de la AC.

Si no tiene DRP, no se reemplaza. Esta estructura se puede ver en la figura 2.2. Su descripción

y funcionamiento se pueden ver en el apéndice C de este documento.

Figura 2.2: Estructura hardware que implementa la ACDC.
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2.3. Organización de la memoria ACDC dentro de la je-

rarqúıa de memoria

En mi trabajo, la memoria ACDC podrá estar colocada en un nivel inferior a la L1, secuencial-

mente y después del procesador (a un nivel 0, ver figura 2.3) o podrá estar situada al mismo

nivel que la L1, de forma paralela (ver figura 2.5). Estos dos tipos de organización, secuencial y

paralelo, para las instrucciones de acceso a memoria, se detallan a continuación.

2.3.1. Organización secuencial.

En esta organización de memoria, ver figura 2.3, la memoria ACDC está situada entre el proce-

sador y el primer nivel de memoria de la jerarqúıa convencional de memoria.

Figura 2.3: Organización secuencial de la memoria ACDC con la jerarqúıa convencional de
memoria.

Cuando la CPU solicita un dato lo hace a la ACDC. Si el dato se encuentra en la DC, tendremos

un acierto o hit y el dato es suministrado por la memoria DC al procesador. Si el dato no está

en la DC, se tendrá un fallo o miss en DC, lo que significa que el dato hay que ir a buscarlo al

siguiente nivel de la jerarqúıa de memoria, el nivel 1. Esto trae consigo que haya una penalización

en latencia en comparación a la organización sin el uso de la memoria ACDC, ya que hemos

accedido secuencialmente a la DC para buscar el dato y hemos fallado. Aśı mismo, al causar

fallo en DC, preguntamos a la AC si tenemos DRP. Si el dato se encuentra en la L1, será ella,

la L1, quien suministre el dato al procesador y si tenemos DRP, la DC se actualizará con el

correspondiente dato. Si el dato no está en L1, hay que ir a buscarlo a los siguiente niveles de la

jerarqúıa de memoria con la penalización en latencia que ello supone.

Las situaciones que se pueden dar con este tipo de organización se pueden ver en los cronogramas

de la figura 2.4 y se explican a continuación.

El cronograma 2.4(a), representa el funcionamiento de una instrucción de acceso a la jerarqúıa

de memoria sin el uso de la memoria ACDC y hit en L1. En este caso se predijo que la latencia de

ejecución para la instrucción de acceso a memoria es la latencia de la memoria L1 y al despertar

especulativamente las instrucciones dependientes en el ciclo 5, se ha acertado y hemos obtenido

el encadenamiento esperado.
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El cronograma 2.4(b), representa el mismo caso que el anterior, pero hay fallo en L1 y el dato

hay que ir a buscarlo a los siguientes niveles de la jerarqúıa de memoria. Aqúı, se ha predicho

que la latencia de ejecución para el load era la latencia de la L1 y ha habido miss en L1. Por

lo tanto, las instrucciones dependientes del LD se anulan en el ciclo 5 y el LD se duerme a la

espera del dato. Una vez que el dato ya se encuentre en la L1, el LD se vuelve a lanzar y sus

instrucciones dependientes se lanzan en el ciclo 13, pero ya sin especular ya que se predice con

latencia de L1 ya que el dato está en L1 y aśı conseguir que haya encadenamiento.

El cronograma 2.4(c) representa el caso en el que se accede a la DC y se tiene un hit. Las

instrucciones que se despertaron especulativamente en la etapa IQ del LD (ciclo 2) se ejecutan

haciendo el encadenamiento de instrucciones sin pérdida de rendimiento ya que la ejecución

especulativa ha tenido éxito puesto que se predijo que la latencia de ejecución del load seŕıa la

de la memoria DC. En relación al cronograma 2.4(a) hemos ganado 3 ciclos en latencia.

En el cronograma de la figura 2.4(d), se puede ver que tenemos miss en DC y hit en L1. En

este caso, las instrucciones dependientes que se despertaron especulativamente en la etapa IQ

del LD, ya que hemos predicho que la latencia de ejecución para el load, era la latencia de la

memoria DC, se anulan (ciclo 4) y se lanzan dos ciclos más tarde (ciclo 6), ya que tenemos hit

en L1 y aśı conseguir el encadenamiento de las instrucciones. Con respecto al cronograma 2.4(a)

hemos perdido 1 ciclo en latencia.

Los cronogramas 2.4(e) y 2.4(f) muestran miss en DC y miss en L1. En estas situaciones, hay que

ir a buscar el dato a los siguientes niveles de la jerarqúıa de memoria. Se anulan las instrucciones

dependientes despertadas especulativamente en la etapa IQ del LD (ciclo 4), puesto que hemos

predicho al load con latencia de ejecución de la memoria DC y el load se duerme a la espera

del dato. Una vez que el dato está disponible en la L1, se relanza el LD y se pueden dar dos

situaciones. Si tenemos DRP, como se ve en el cronograma 2.4(e), las instrucciones dependientes

se lanzan en la etapa IQ del LD (ciclo 11) para conseguir el encadenamiento de las instrucciones.

En este caso y con respecto al cronograma 2.4(b), al tener DRP, hemos conseguido una mejora

de 2 ciclos en latencia. Si no tenemos DRP, se anulan las instrucciones dependientes lanzadas en

la IQ del LD (ciclo 13) para relanzarlas dos ciclos más tarde (ciclo 15), ya que se ha predicho

lanzamiento del load con latencia de la memoria DC (miss en DC) y el dato está en L1. De

esta forma se logra el encadenamiento de instrucciones, tal y como se muestra en el cronograma

2.4(f). En este caso con respecto al cronograma de la figura 2.4(b), tenemos una penalización de

2 ciclos en latencia.

La implementación de esta idea de organización secuencial dentro del simulador que hemos usado

[3], se pueden ver en el apéndice D de esta Memoria.
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((a)) Sin memoria ACDC. Acierto en L1.

((b)) Sin memoria ACDC. Fallo en L1.

((c)) Acierto en DC.

((d)) Fallo en DC, acierto en L1.

((e)) Fallo en DC, fallo en L1 y con DRP.

((f)) Fallo e DC, fallo el L1, y sin DRP.

Figura 2.4: Cronogramas de la organización secuencial de la memoria ACDC con la jerarqúıa
convencional de memoria.
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2.3.1.1. Conclusión

El uso de la estrategia de ejecución especulativa de instrucciones de acceso a memoria con una

organización secuencial de la memoria ACDC con la jerarqúıa convencional de memoria puede

conseguir un rendimiento superior del procesador si el número de aciertos es DC es grande ya

que aśı disminuimos el número de accesos a L1, disminuyendo la latencia de ejecución en los

accesos a memoria. Además, el consumo de enerǵıa se reduce ya que el gasto de acceder a la L1

es mayor que el de acceder a la DC. Si por el contrario, el número de aciertos en DC es pequeño,

la penalización en latencia es importante lo que conllevará a una disminución del rendimiento.

2.3.2. Organización paralela.

En la figura 2.5 se muestra la organización paralela de la memoria ACDC con la jerarqúıa

convencional de memoria.

Figura 2.5: Funcionamiento paralelo de la memoria ACDC con la jerarqúıa convencional de
memoria.

Cuando la CPU solicita un dato, lo hace de forma paralela tanto a la ACDC como a la L1.

Si el dato se encuentra en la DC, tenemos hit en DC y es ésta quien suministra el dato al

procesador. De esta forma oculta parte de la latencia de acceso a memoria al ser la DC quien ha

proporcionado el dato. La latencia de DC es de 1 ciclo y la de L1 de 4 ciclos (ver tabla 3.1). Si

el dato no se encuentra en DC, tenemos un miss en DC y entonces si el dato está en L1, es la

L1 quien suministra el dato al procesador. En este caso, miss en DC, se accede a AC para saber

si tenemos DRP. En caso afirmativo, el dato se actualiza en la DC. Si el dato no está en la L1,

hay que ir a buscarlo a los siguientes niveles de la jerarqúıa de memoria.
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Las situaciones que se pueden dar con este tipo de organización se pueden ver en los cronogramas

de la figura 2.6 y se explican a continuación.

El cronograma 2.6(a) representa la ejecución de un LD sin memoria ACDC dentro de la jerarqúıa

de memoria con un hit en L1. Las instrucciones dependientes se lanzan especulativamente en la

IQ del LD (ciclo 5) ya que se predice que la latencia de ejecución del load es la latencia de L1

y aśı conseguir el encadenamiento de instrucciones. Este cronograma es igual que el de la figura

2.4(a) del apartado anterior (2.3.1).

El cronograma de la figura 2.6(b) nos muestra el caso en que hay miss en L1. Se anulan las

instrucciones dependientes (ciclo 5) ya que hemos predicho que la latencia de ejecución del load

es la latencia de L1 y el LD se duerme a la espera del dato. Cuando el dato esté disponible en L1

se relanza el LD y sus instrucciones dependientes (ciclo 13) y aśı conseguir encadenamiento de

instrucciones. Este cronograma es igual que el de la figura 2.4(b) del apartado anterior (2.3.1).

En el cronograma 2.6(c) se muestra que si un LD en la etapa de memoria, tiene hit en DC, las

instrucciones dependientes de ese LD que se despertaron especulativamente en la IQ del LD (ciclo

2), consiguen hacer el encadenamiento de instrucciones, ya que la latencia de ejecución se predijo

con la latencia de la memoria DC, como se muestra en la figura 2.6(c). En este caso la ejecución

especulativa de instrucciones ha tenido éxito y hemos conseguido aumentar el rendimiento debido

a que la latencia de DC es menor que la de L1 y oculta la de la L1. Con respecto al cronograma

de la figura 2.6(a) hemos ganado 3 ciclos en latencia.

El cronograma 2.6(d) muestra miss en DC y hit en L1. En este caso, anulamos las instrucciones

dependientes (ciclo 4) ya que la latencia de ejecución del load se predijo con la latencia de DC,

para lanzarlas al ciclo siguiente (ciclo 5) y aśı conseguir el encadenamiento de instrucciones.

En este caso, la ejecución especulativa de instrucciones dependientes ha fallado, pero no hemos

tenido penalización en latencia con respecto al cronograma de la figura 2.6(a). Sin embargo hay

más relanzamientos.

Finalmente, en los cronogramas 2.6(e) y 2.6(f) se muestran el caso en que hay miss en DC y

miss en L1. En este caso, el dato hay que ir a buscarlo a los siguientes niveles de la jerarqúıa de

memoria. Las instrucciones dependientes se anulan (ciclo 4) ya que la latencia de ejecución del

load se predijo con la latencia de la memoria DC y el load se duerme a la espera del dato. Una vez

que el dato está disponible en la L1, se relanza el LD y se pueden dar dos situaciones. Si tenemos

DRP (el dato está en DC), las instrucciones dependientes se despiertan en la IQ del LD (ciclo 10)

para aśı conseguir encadenamiento de instrucciones. Se puede ver esto en el cronograma 2.6(e).

Con respecto al cronograma de la figura 2.6(b) hemos obtendido una ganancia en latencia de 3

ciclos. Pero si no tenemos DRP, las instrucciones dependientes se anulan (ciclo 12) y se lanzan al

ciclo siguiente (ciclo 13) ya que la latencia de ejecución del load se predijo con la latencia de la

memoria DC y aśı tener encadenamiento de instrucciones, como se ve en el cronograma 2.6(f).

De esta manera no hemos obtenido ganancia en latencia en relación al cronograma de la figura

2.6(b) y además ha habido más relanzamientos.

La implementación de esta idea organización paralela dentro del simulador que hemos usado [3],

se pueden ver en el apéndice D de esta Memoria.
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((a)) Sin memoria ACDC. Acierto en L1.

((b)) Sin memoria ACDC. Fallo en L1.

((c)) Acierto en DC.

((d)) Fallo en DC, acierto en L1.

((e)) Fallo en DC, fallo en L1 y con DRP.

((f)) Fallo e DC, fallo el L1, y sin DRP.

Figura 2.6: Cronogramas de la organización paralelo de la memoria ACDC con la jerarqúıa
convencional de memoria.
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2.3.2.1. Conclusión

La organización paralela de la ACDC con la jerarqúıa convencional de memoria es una buena

opción ya que el rendimiento no puede ser peor con respecto a la jerarqúıa convencional de

memoria, ya que trabajan ambas memorias a la vez (L1 y DC). Si hay hit en DC, la latencia

de ejecución de la instrucción de acceso a memoria es menor que la latencia de L1 (ver tabla

3.1) y aśı el rendimiento aumenta al ocultar la latencia del la L1. En caso contrario, no hay

penalización. Se puede decir que es el caso ideal. El inconveniente que tiene esta organización es

el aumento del gasto energético ya que estamos accediendo a dos memorias a la vez y el número

de instrucciones relanzadas.

2.3.3. Instrucciones de escritura en memoria

Las instrucciones de escritura en memoria son los stores (ST) y estos escriben en memoria en la

etapa commit (CT) del procesador (ver sección B.1) , cuando las instrucciones se retiran dentro

del pipeline del procesador. Tanto si estamos en la organización paralela como en la organización

secuencial, el funcionamiento es el mismo para ambos casos. Primero preguntamos si el dato

está en DC. Si hay hit en DC, lo escribimos. Si hay miss en DC, preguntamos en AC si tenemos

DRP. En caso afirmativo, escribimos el dato en DC. En caso contrario, no hacemos nada. Esto

se puede ver en la figura 2.7.

Figura 2.7: Escritura de datos en memoria, tanto en DC como en L1.

Al mismo tiempo, el dato se escribe en la memoria L1. El contenido de la DC está en la L1 ya

que es en la etapa de commit cuando se escribe tanto en la L1 como en DC, si ésta tiene DRP.

Por tanto la DC es inclusiva con la L1.
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Resumen de resultados

3.1. Introducción

En este caṕıtulo se muestran y se analizan los resultados obtenidos con la ejecución de un

procesador de altas prestaciones como el descrito en la sección B.1 y con nuestra propuesta,

en la carga de trabajo SPEC CPU 2006 [2] (ver sección B.2). Este caṕıtulo está organizado

de la siguiente manera. En la primera parte del caṕıtulo se exponen las configuraciones de

las memorias que he utilizado en los experimentos para medir el comportamiento de nuestra

propuesta. También se hace mención a la nomenclatura usada en el capitulos respecto a las

organizaciones de la memoria dentro de la jerarqúıa de memoria. Posteriormente, se mostrarán

los resultados obtenidos con la ejecución de la suite enteros, dividiendo las explicaciones en

rendimiento, gasto energético y tasa de aciertos en la memoria DC. Finalmente se hará una

comparativa de datos.

3.2. Configuración de la jerarqúıa de memoria

La tabla 3.1 nos muestra la configuración de los módulos de memoria que hemos usado en el

procesador de altas prestaciones (ver sección B.1) para hacer las pruebas, incluida la memoria

ACDC.

Tabla 3.1: Tabla con las configuraciones de la jerarqúıa de memoria del procesador a utilizar
en la ejecución de las simulaciones.
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Como se ha dicho en la sección 2.3, hemos incluido la memoria ACDC dentro de la jerarqúıa de

memoria del procesador de altas prestaciones de dos formas distintas: organización secuencial

(ver sección 2.3.1) y organización paralela (ver sección 2.3.2). Para poder hacer las pruebas de

simulación hemos empleado SimpleScalar [3], ya que nos permite simular el procesador de altas

prestaciones que hemos presentado anteriormente (ver sección B.1).

La implementación de estas organizaciones de la memoria ACDC las he realizado sobre el Sim-

pleScalar [3] y pueden verse en la sección D.1. Estas implementaciones han consistido en ampliar

las funciones relativas a los accesos de memoria y lanzamiento de instrucciones aśı como crear

otras funciones nuevas.

En este caṕıtulo hemos evaluado tres modelos: A la ejecución del procesador sin el uso de la

memoria ACDC, que llamamos “modo solo“. A la ejecución del procesador con la organización

secuencial, que llamamos “modo secuencial“ y a la ejecución del procesador con la organización

paralela que llamamos “modo paralelo“.

3.3. Resultados

En este apartado se muestran y analizan los resultados obtenidos con la ejecución del procesador

descrito en la sección B.1 y la carga de trabajo SPEC CPU 2006 [2] (sección B.2). Al analizar

los resultados hemos visto que tanto para la suite enteros como para la suite float, los resultados

siguen una misma ĺınea o patrón. Para explicar los resultados hemos elegido la suite entera.

3.3.1. Rendimiento

La gráfica de la figura 3.1 muestra los valores obtenidos de IPC. Se puede observar que tanto

para el modo paralelo como para el modo secuencial, los valores obtenidos son mayores que en

el modo solo. Esto se debe al número de aciertos en la memoria DC (ver columnas “H“ y “J“ de

la tabla 3.3) ya que al ser su latencia de ejecución menor que la de la memoria L1, se mejora el

rendimiento.

Además se observa que, en el modo paralelo, el rendimiento es mayor que en el modo secuencial.

Esto es debido a que en el modo paralelo no hay penalización en ciclos por fallar en la memoria

DC (ver cronogramas de la figura 2.6) y para el modo secuencial, śı que hay penalización por

fallar en DC (ver cronogramas de la figura 2.4).

El valor medio de ganancia en el modo paralelo con respecto al modo solo, es del 9.55 %. Para el

modo secuencial, la ganancia experimentada es del 6.55 %, con respecto al modo solo.

Sabiendo que el ancho de instrucciones que se pueden lanzar es de 8 instrucciones y observando

la gráfica 3.1, podemos pensar que cuanto más bajo sea el valor de IPC de un benchmark, más

ganancia en rendimiento se podrá obtener. El benchmark “Bzip2“ tiene un valor de IPC en el

modo solo de 0.81, y es igual al modo secuencial y ligeramente inferior al modo paralelo (0.82).
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Figura 3.1: Gráfica que representa los valores de IPC obtenidos con la ejecución del procesador
con las distintas organizaciones de memoria, modo solo, modo paralelo y modo secuencial para

la suite enteros.

Este valor de IPC está muy por debajo del ancho de banda de lanzamiento de instrucciones,

que es 8. Esto indica que “Bzip2“ tiene muy poco ILP. Vemos también que su tasa de aciertos

en la memoria DC es del 69.70 %, tanto para el modo paralelo y modo secuencial (ver la tabla

3.3). A pesar de que nuestra propuesta acorta la latencia de los loads, no se obtiene mejora en

el rendimiento. Esto me lleva a pensar que la latencia del camino cŕıtico de “Bzip2“ no depende

de estas instrucciones load.

Estas mismas conclusiones son válidas para el benchmark “Libquantum“, que le pasa lo mismo

que al “Bzip2“. Su valor de IPC es prácticamente el mismo en los tres modos de funcionamiento,

0.38, 0.39 y 0.39 para el modo solo, modo paralelo y modo secuencial respectivamente y muy por

debajo del ancho de lanzamiento de instrucciones y con una tasa de aciertos en la DC es del

47.17 % (ver tabla 3.3).

3.3.2. Gasto energético de la jerarqúıa de memoria

Para obtener los costes de enerǵıa de las memorias usadas en este Proyecto hemos usado la

herramienta Cacti en su versión 6.5 [12]. Para ver estos costes, consultar la sección E.1 de este

documento.

La figura 3.2 muestra el consumo total de las simulaciones. Se puede ver que el mayor consumo

de enerǵıa para cada benchmark corresponde con la componente dinámica (ver sección E.1) y

supone de media, las tres cuartas partes del consumo total.

Este consumo de la componente dinámica es mayor en el modo paralelo que en los modos solo y

secuencial. Esto se debe a que en el modo paralelo estamos accediendo a dos módulos de memoria

a la vez cuando el procesador solicita un dato (al módulo de memoria DC y al módulo de memoria

L1).

También podemos ver que el modo secuencial es el que menos consumo de enerǵıa tiene. Esto

se debe a que en este modo, cuando el procesador solicita un dato, se accede solamente a la

memoria DC. Unicamente cuando fallamos en DC, accedemos a la L1, aumentando el consumo
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Figura 3.2: Gráfica que muestra el consumo de total de enerǵıa en las simulaciones expresado
en mJ, para los tres modos de funcionamiento en la suite enteros.

de enerǵıa. La tabla 3.2 nos muestra la métrica Energy Delay [5], que relaciona el tiempo de

ejecución del programa y su consumo energético. Según esta tabla 3.2, el modo secuencial es el

más eficiente de los tres modos de funcionamiento.

También se observa en la figura 3.2 que el modo solo tiene más consumo estático a pesar de que

tiene menos hardware. Esto es por que su rendimiento es peor que en los otros modos (paralelo

y secuencial). En la tabla 3.2 se puede ver que su valor medio de Energy Delay es el mayor de

los tres modos de funcionamiento, atendiendo a esta métrica.

Tabla 3.2: Tabla que muestra la métrica Energy Delay [5] de las simulaciones para los tres
modos de funcionamiento en la suite enteros.

3.3.3. Tasa aciertos en DC

Cuanto mayor sea el número de aciertos en la memoria DC, el rendimiento se espera que sea

mejor, ya que la latencia de ejecución de la memoria DC es menor que la latencia de ejecución

de la memoria L1 (ver tabla B.1).

En la columna “F“ de la tabla 3.3 se muestra la tasa de aciertos esperados en la DC. Esta tasa

de aciertos esperados en la DC se obtiene del cociente entre los aciertos que se han obtenido en la

DC en la fase de análisis previo (ver E.2) y el número de instrucciones lanzadas. El valor medio
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es del 54.35 % y supone una cota superior de aciertos en la DC. La tasa de aciertos obtenidos

para el modo paralelo es del 40.02 %, valor inferior. Esta tasa de aciertos obtenidos en la DC

es el resultado del cociente entre los aciertos obtenidos en la DC y los accesos totales a la DC.

El motivo de esta diferencia puede ser por lo siguiente. Hemos dicho anteriormente que en la

AC guardamos aquellas instrucciones que aprovechan más el reuso de los datos del programa

(ver sección E.2 y sección [1]). Si en una determinada parte del programa se accede a un dato

y ese dato debeŕıa estar en la memoria DC y no está por que la instrucción que tiene permiso

para reemplazar en la DC todav́ıa no se ha lanzado. Entonces el dato todav́ıa no está en DC y

tenemos fallo.

Por otra parte , cuando tenemos DRP, el dato se escribe en la memoria DC. Si este dato no

está disponible en este ciclo por que no se encuentra en L1, hay que esperar a que el dato esté

disponible. Durante esta espera, puede haber accesos a ese dato. Estos accesos causan fallo en

la memoria DC.

Estos motivos también son válidos para el modo secuencial, cuya tasa de aciertos en la DC

es del 41.13 % (ver 3.3.4), valor ligeramente superior al modo paralelo debido a que hay más

relanzamientos que en el modo paralelo.

Otro motivo por el cual la tasa de aciertos esperados en DC es baja (media del 54.35 %, ver tabla

3.3), es debido a que en la fase de análisis previo, se han tenido en cuenta aquellos PC’s que han

obtenido acierto en el dato y los aciertos de otras instrucciones que también acceden al mismo

dato. Es decir, se tomaron PC’s que tienen reuso de grupo que ya tienen aciertos [1].

3.3.4. Comparativa ficheros análisis, 1 vs 100

La fase previa de análisis la hacemos para estudiar qué instrucciones aprovechan más el reuso

de los datos del programa. Hasta ahora, este análisis lo hemos hecho de un solo tramo, es decir,

con el total de las instrucciones del programa. Posteriormente, hemos hecho una división de este

análisis en 100 tramos de un millón de instrucciones. La finalidad de esta división en tramos más

pequeños es que el análisis del reuso sea más preciso.

La tabla 3.3 muestra una comparativa de rendimiento, consumo y aciertos en la DC, con la

ejecución de la simulación con 1 fichero de análisis y con 100 ficheros de análisis.

Las columnas “F“ y “G“ de la tabla 3.3 nos muestran la tasa de aciertos esperados en la memoria

DC y se ha calculado como el cociente entre los aciertos que se han obtenido en la DC en la fase

de análisis previo (1 tramos y 100 tramos) y el número de instrucciones lanzadas. Las columnas

“H“, “I“, “J“ y “K“ muestran las tasa de aciertos obtenidos en la memoria DC, tanto en paralelo

como en secuencial, para 1 fichero de análisis y 100 ficheros. Este valor se ha calculado como el

cociente de los aciertos que se han obtenido en la DC y los accesos totales a la DC.

Podemos ver en las columnas relativas al rendimiento que no hay diferencia entre 1 fichero y

100 ficheros de análisis, a pesar de que la tasa de aciertos esperados en DC con 100 tramos es

mayor que con la de 1 tramo y que la tasa de aciertos obtenidos en DC es mayor. Esto es debido

a que estos aciertos en DC son sobre caminos distintos al camino cŕıtico y aunque en estos se
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Tabla 3.3: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.

disminuye la latencia, en el camino cŕıtico no. El paralelismo a nivel de instrucción del programa

ya está altamente explotado y resulta dificil conseguir mejoŕıa en rendimiento.

Sin embargo, esta superior tasa de aciertos en la DC con 100 tramos (columnas “I“ y “K“ de

la tabla 3.3), supone un consumo de enerǵıa menor, con respecto al modo solo. Esta reducción

experimenta una mejoria del 2.34 % en el modo paralelo con respecto al análisis con 1 tramo y

de un 2.46 % en el modo secuencial, también con respecto al análisis con 1 tramo. Esto es debido

a que los tiempos medios de ejecución de los programas han disminuido con el incremento de

aciertos en la DC. En el modo paralelo se disminuye en un 0.36 % y un 0.70 % en el modo

secuencial con respecto a los mismos modos con un tramo de análisis (ver tabla E.15).

Todos los resultados, tanto para la suite enteros como para la suite float, se pueden ver en la

sección E.4 de este documento.

3.3.5. Otras pruebas

En estas sección hago referencia a otras pruebas que he hecho. Estas pruebas han consistido en

la ejecución de las simulaciones en el modo solo, paralelo y secuencial con distintas entradas. He

usado una versión de las suites enteras y float que han sido modificadas con unos datos distintos.

Los resultados se pueden ver en la tabla E.17. Estos resultados son prácticamente iguales a los

que hemos obtenido en las primeras simulaciones, lo que demuestra que la memoria ACDC es

capaz de aprovechar el reuso del programa.



Caṕıtulo 4

Conclusiones y trabajos futuros.

4.1. Conclusiones

El uso de una nueva memoria como la ACDC, dentro de la jerarqúıa de memoria en un procesador

de altas prestaciones, según las pruebas hechas en este Proyecto, trae consigo una mejoŕıa, tanto

en rendimiento como en consumo energético.

Tabla 4.1: Resultados finales.

La tabla 4.1 muestra los resultados finales, en valores medios, que hemos obtenido al evaluar la

memoria ACDC en un procesador de altas prestaciones en SPEC CPU 2006. Se puede ver que

en ambas organizaciones de la memoria ACDC dentro de la jerarqúıa de memoria (secuencial y

paralela), el rendimiento ha aumentado y el consumo de enerǵıa se ha reducido a pesar de que

el número de aciertos en la DC no ha sido elevado. Con estos datos es aconsejable el uso de la

memoria ACDC en un procesador de altas prestaciones como el expuesto en este documento.

Para que el uso de la memoria ACDC tenga éxito, hay que hacer un análisis previo y como se

ha visto, los resultados dependen de él. Este análisis previo es el mayor inconveniente de esta

propuesta.

4.2. Trabajos futuros.

En este proyecto se ha introducido la memoria ACDC en la jerarqúıa de memoria de un procesa-

dor de altas prestaciones con la idea de mejorar el rendimiento y disminuir su consumo energético

en SPEC 2006.
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Ya que en este Proyecto se ha conseguido alcanzar los objevos, para continuar con esta idea, y

como trabajo futuro, se podŕıa introducir este tipo de memoria en un sistema multiprocesador,

con una memoria ACDC privada para cada procesador o bien con una más grande y común a

todos los procesadores, en los que haya que tener en cuenta los protocolos de coherencia.

Otro posible trabajo futuro es el uso de esta memoria ACDC, pero sin hacer un profiling. Seŕıa el

compilador quien detecte en fase de compilación aquellas instrucciones que más reuso aprovechan

del programa. También se podŕıa hacer de forma adaptativa, mediante un hardware que vaya

aprendiendo cuales son esas instrucciones.

Un estudio futuro interesante es ver qué pasaŕıa si, al hacer este estudio, en lugar de usar la

memoria ACDC se usa una memoria cache convencional del tamaño de la ACDC comparan-

do algunas de las propuestas en el capitulo 1 con nuestro trabajo y ver si hay diferencias en

rendimiento.



Apéndice A

Carga y Desarrollo del Proyecto

Este apéndice contiene detalles acerca de la gestión del tiempo y el esfuerzo invertido durante el

proyecto, aśı como algunos problemas encontrados a lo largo de su desarrollo.

A.1. Gestión del tiempo

Comenzé este Proyecto de Fin de Carrera a principios del mes de mayo de 2014 y lo finalizé

en mayo de 2015, dedicándome en exclusiva a su realización. En el diagrama de Gantt que se

muestra en la figura A.1 se puede observar cómo hemos repartido las tareas a lo largo de la

duración del proyecto.

Cuando comenzamos el proyecto, programamos hacer reuniones todos los viernes a las 10:00

horas de la mañana para seguir con la evolución del proyecto. Esto lo cumplimos a la perfección

y la duración de las reuniones han variado entre una hora y tres horas. Además de acudir a

tutoŕıas cuando se presentaban dudas. La planificación inicial fue dividir el proyecto en tres

partes:

La primera parte consistiŕıa en la instalación y aprendizaje del simulador, ya que era una

herramienta completamente nueva para mı́.

La segunda parte la dedicaŕıamos a implementar las dos organizaciones de la memoria

ACDC con la jerarqúıa de memoria de un procesador de altas prestaciones.

La tercera parte la dedicaŕıamos a la realización de la ejecución de las simulaciones con

la herramienta de simulación SimpleScalar [3]. De esta forma obtendŕıamos los resultados,

para sacar las conclusiones de este Proyecto.

La primera parte la hicimos según la planificación, pero las otras dos fueron encadenadas, esto

es, cada vez que haćıamos unas modificaciones en el código, haćıamos las pruebas necesarios y

aśı estudiar los resultados. Esta parte ha sido una constante a lo largo del proyecto. Durante
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Figura A.1: Diagrama de Gantt del proyecto.

esta parte hemos usado algunas herramientas de ayuda como el depurador de C [13], ya que el

simulador de SimpleScalar [3] está escrito en lenguaje C.

A continuación se muestra un resumen del trabajo que hemos realizado en cada tarea.

Instalación y aprendizaje. En esta parte del proyecto lo que hicimos fue la instalación

del simulador que usamos para las simulaciones [3] y estudiar cómo funciona y sus posibles

configuraciones.

Scripts de automatización. En este proyecto ı́bamos a realizar muchas pruebas, lo que

aconsejó que se automatizaran la mayor parte de ellas para minimizar los tiempos de

trabajo. En esta parte, lo que hice fueron los ficheros de automatización para lanzar el

simulador con cada benchmark (scripts en unix [14]), ficheros para coger la información de

los ficheros resultados de la ejecución de las simulaciones con Python [15] y todos aquellos

que nos han hecho falta, según ı́bamos trabajando.

Aprendizaje gdb. Como se ha dicho anteriormente, las moficicaciones se realizaron en el

simulador SimpleScalar [3] que está realizado en Lenguaje C. Para la búsqueda de errores,

hemos usado la herramienta de depuración de C [13], que ha sido muy importante para el

desarrollo del proyecto.

Implementaciones. Las implementaciones realizadas sobre el simulador [3] han durado

prácticamente todo el Proyecto.

Pruebas. En la parte de pruebas lanzamos el simulador con la configuración que queremos

y esperamos a que termine y nos lance los ficheros de resultados.

Análisis. En esta fase de análisis, estudiamos los ficheros de resultados que hemos obtenido

en las pruebas.

Estas tres tareas anteriores están ligadas entre śı, puesto que se relacionan. Se hacen im-

plementaciones, pruebas y se observan resultados.

Conclusiones. En esta tarea se extraen las conclusiones finales de las tareas anteriores.

Elaboración memoria Esta parte se corresponde con la redacción de la memoria en

LaTex.
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A.2. Esfuerzo invertido

La duración inical del Proyecto era de seis meses. En el cómputo total de tiempo, he tardado

12 meses en realizarlo, aunque a este tiempo hay que descontarle los periodos de vacaciones,

que han sido aproximadamente 3 meses. Por lo tanto, el tiempo que he tardado en realizar este

Proyecto ha sido de 9 meses, con una media diaria de trabajo de 5 horas, siendo a partir del

mes de septiembre cuando el trabajo comenzó a ponerse serio. En total, unas 900 horas, que en

parte han sido por el desconocimiento de nuevas herramientas y sobre todo por iniciarse en el

campo de la investigación. Mencionar que a lo largo de este Proyecto, he realizado más de 800

simulaciones, con el tiempo que ello supone.

Figura A.2: Distribución del tiempo invertido en la realización de este Proyecto de Fin de
Carrera.

En la gráfica A.2 se presenta el porcentaje de horas dedicadas a cada tarea. En esta gráfica se

observa que casi el 65 % del tiempo se ha estado realizando implementaciones con pruebas y

análisis de resultados. El resto del tiempo se ha dedicado al aprendizaje, instalación, realización

de scripts y realización de memoria. Una parte importante que no la puedo cuantificar es el

tiempo de aprendizaje propio, que ha durado todo el tiempo del proyecto.

A.3. Problemas encontrados

El primer gran problema que he encontrado ha sido el uso de implementaciones y trabajos hechas

por otras personas. Esto que puede parecer una ventaja, en general no lo es, ya que en muchas

ocasiones hay que estudiar qué hacen las cosas y por qué lo hacen.

Otro inconveniente ha sido el uso de herramientas nuevas, aunque solamente al principio del

proyecto ya que una vez aprendidas a usarlas, todo parece más fácil.

Aúnque no es un problema como tal, pero está relacionado con el campo de la investigación, el

tiempo empleado en la realización de las pruebas es importante, ya que supone esperar a que

terminen para poder sacar conclusiones y a veces ralentiza las ganas de trabajar.
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Finalmente, al ser mi primera vez que me acerco al campo de la investigación, en general, al

principio se dan palos de ciego. Por ejemplo, cosas que son triviales, no las ves hasta que te

enseñan a verlas.



Apéndice B

Procesadores de altas

prestaciones y SPEC CPU 2006

B.1. Los procesadores de altas prestaciones

Como se dijo en la sección 2.1, los procesadores de altas prestaciones suelen tener las siguientes

caracteŕısticas: altamente segmentados, superescalares y con ejecución fuera de orden de instruc-

ciones. Gracias a todo esto, se consigue aumentar su rendimiento ya que se mejora su capacidad

para explotar el paralelismo a nivel de instrucciones (ILP).

El procesador modelado en este proyecto tiene un segmentado de instrucción de 10 etapas en

el cual se distinguen una parte en la que se lanzan instrucciones en orden, front-end y está

formada por las etapas de búsqueda, decodificación, renombre y emisión de la instrucción, y otra

parte, que corresponde al núcleo de ejecución fuera de orden, back-end, conteniendo las etapas

de lanzamiento, lectura información relevante para la ejecución, lectura de operandos, ejecución,

escritura y finalización de la instrucción. Al conjunto de todas estas etapas se le llama pipeline

del procesador. Una breve descripción de estas etapas es:

Búsqueda (IF), se busca la instrucción en memoria y carga en el procesador.

Decodificación (DE), decodificación de la instrucción.

Rename (RE), renombre de registros.

Emisión (DI), emisión de la instrucción lista para emitirse.

Lanzamiento (IQ), lanzamiento fuera de orden de las instrucciones.

Payload (P), lectura de información importante para ejecutar instrucciones.

Lectura ops. (R), acceso a registros.
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Ejecución (E o M0, ..., Mn), ejecución de la instrucción o acceso a la jerarqúıa de

memoria, siendo n los ciclos de latencia.. Para el caso que sea un acceso a memoria, dentro

del primer ciclo de dicha etapa se calcula la dirección de acceso al dato.

Escritura (WB), escribir en registros el resultado.

Consolidación (CT), consolidación y retirada de la instrucción en orden.

B.1.1. Lanzamiento a ejecución de instrucciones especulativamente.

Con objeto de maximizar la cantidad de paralelismo a nivel de instrucción, los procesadores de

altas prestaciones, deben encadenar la ejecución de instrucciones dependientes (figura B.1). Es

decir, que las etapas de ejecución de dichas instucciones dependientes puedan tener lugar en ciclos

consecutivos. Dada la latencia existente entre la etapa de lanzamiento IQ, y la etapa de ejecución

E, es necesario que las instrucciones dependientes sean lanzadas a ejecución antes de que sus

operandos estén calculados (ver cronograma figura B.1) para conseguir dicho encadenamiento o

back-to-back execution.

Figura B.1: Cronograma en el que se muestra el encadenamiento de instrucciones dependien-
tes cuando hay acierto en la predicción de la latencia de ejecución.

En caso contrario, cuando las instrucciones dependientes no pueden ejecutarse encadenadamente,

las perdidas del rendimiento pueden ser de más de 10 %, [16].

Para aquellas instrucciones cuya latencia de ejecución es conocida en su etapa de lanzamiento,

es sencillo y seguro calcular cuando deben ser lanzadas sus instrucciones dependientes para que

haya encadenamiento.

Por otra parte, hay otras instrucciones, por ejemplo las instrucciones de acceso a memoria, cu-

ya latencia de ejecución no se conoce ya que esta latencia vaŕıa dependiendo de en qué nivel

se encuentra el contenio accedido. En este escenario y para conseguir la ejecución encadenada

de instrucciones, se requiere predecir una latencia de ejecución para la instrucción de acceso a

memoria, t́ıpicamente latencia de acierto en L1, y aśı lanzar las instrucciones dependientes de

manera especulativa. En caso de acierto en la predicción, las instrucciones dependientes lanza-

das especulativamente tendrán su operando fuente disponible a tiempo para la ejecución (ver

figura B.1). En caso de fallo de predicción, aquellas instrucciones que fueron lanzadas especu-

lativamente, deben ser anuladas. Más tarde, cuando el dato esté disponible en la L1, se deberá

relanzar dichas instrucciones dependientes [17], como se muestra en la figura B.2 para conseguir

el encadenamiento.



Apéndice B. Procesadores de altas prestaciones y SPEC CPU 2006 28

Figura B.2: Cronograma en el que se muestra el encadenamiento de instrucciones después de
un fallo en la predicción y relanzamiento.

B.1.2. Configuración del procesador de altas prestaciones

En la figura B.1 se puede ver la configuración del procesador de altas prestaciones simulado en

este Proyecto.

Tabla B.1: Configuración del procesador de altas prestaciones utlizado en este Proyecto para
las simulaciones.
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B.2. Cargas de trabajo

La Standard Performance Evaluation Corporation (SPEC) [2] es una corporación creada para

establecer, mantener y apoyar un conjunto standarizado de puntos de referencia relevantes que

se pueden aplicar a las nuevas generaciones de computadoras de alto rendimiento.

La CPU SPEC 2006 es un conjunto de pruebas intensivo que hace hincapié en el procesador y

la memoria del sistema. Estos programas se llaman benchmark y sirven para evaluar el rendi-

miento de un computador completo o de uno de sus subsistemas. Un conjunto de benchmarks

se denomina suite. Este SPEC CPU 2006 tiene dos suites, una para los enteros y otra para los

float.

Para la realización de nuestro proyecto hemos usado los benchmarks enteros que se muestran en

la tabla B.2, y los benchmars float de la tabla B.3. Para saber más sobre cada benchmark puede

leer las descripciones aqúı [18].

NOMBRE ÁMBITO APLICACION

Perlbench Programming language
Bzip2 Compression

Gcc C Language optimizing compiler
Mcf Combinatorial optimization / single-depot vehicle scheluding

Gobmk Artificial inteligence - game playing
Hmmer Search a gene sequence database

Sjeng Artificial inteligence
Libquantum Physics / Quantum Computing

H264ref Video compression
Omnetpp Descrete event simulation

Astar Computer games. Artificial inteligence. Path finding

Tabla B.2: Benchmarks enteros usados en la ejecución de las simulaciones.

NOMBRE ÁMBITO APLICACION

Bwaves Computacional fluid dynamics
Gamess Quantum chemical computations

Milc Physics / Quantum chromodynamics (QCD)
Zeusmp Physics / Magnetohydrodynamics

Gromacs Chemistry / Molecular dynamics
CactusADM Physics / General relativity

Leslie3d Computational fluid dynamics (CFD)
Namd Scientific structural biology
DealII Solution of partial differentiall equations
Soplex Simplex linear program (LP) solver
Povray Computer visualization

Calculix Structural mechanics
GemsFDTD Computational electromagnetics (CEM)

Tonto Quantum crystallography
Lbm Computational fluid dynamics, lattice Boltzmann method
Wrf Weather forecasting

Sphin3 Speech recognition

Tabla B.3: Benchmarks floats usados en la ejecución de las simulaciones.



Apéndice C

Descripción y funcionamiento de

la memoria ACDC

C.1. Descripción y funcionamiento de la memoria ACDC

Como ya comentamos en el capitulo 1, en la memoria ACDC [1], el contenido de la memoria

es controlado por las instrucciones y no por el flujo de direcciones de accesos generados por el

programa [1]. A continuación mostramos un ejemplo para ver cómo algunas instrucciones pueden

marcar el reuso del programa.

En la figura C.1 se puede ver un fragmento de programa sobre el cual se va a explicar el reuso

Figura C.1: Fragmento de código de un programa.

y cómo la memoria ACDC es capaz de aprovechar ese reuso. Este código tiene un bucle con

100 iteraciones, el cual contiene varias instrucciones. La instrucción de la ĺınea 3 de la figura

C.1 muestra reuso escalar temporal, puesto que estamos accediendo a la misma variable todas

las iteraciones del bucle. En la instrucción de la ĺınea 4 de esa misma figura C.1, tenemos reuso

espacial de stride 1 ya que accedemos a la misma posición del vector para leer y escribir, con

salto 1. En la figura C.2 nos muestra estas instrucciones escritas en código máquina. En la ĺınea

4 de la figura C.2, el store está accediendo a la misma variable “b“ para escribir un dato, tantas

veces como iteraciones del bucle. Si solo los bloques accedidos por estas instrucciones fuesen

mantenidos en cache, se conseguiŕıa aprovechar siempre todo el reuso que presenta el algoritmo.

Por otra parte en la ĺınea 8 de la figura C.2, se lee un dato de un vector en una posición, para

30
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después en la ĺınea 10 de esa misma figura, almacenar en esa misma posición un dato. En estos

dos ejemplos se muestra reuso de datos.

Figura C.2: Código máquina de las instrucciones del bucle del ejemplo de la figura C.1.

Una posible estructura hardware que puede aprovechar la idea que acabamos de ver sobre este

reuso es una memoria muy pequeña y completamente asociativa (DC), con una poĺıtica de

reemplazo basada en instrucciones. Por ejemplo, en aciertos de lectura, se proporcionaŕıa el

dato; en aciertos de escrituras se actualizaŕıa el dato. En fallo de memoria, se comprobará si

la instrucción de acceso al dato tiene permiso para reemplazar. Si lo tuviese, la ĺınea asociada

de la memoria es reemplazada por el dato tráıdo de memoria principal. En caso contrario no se

reemplaza y el dato es proporcionado por la memoria principal.

Esta idea puede ser implementada mediante una tabla que guarda los PC (direcciones de ins-

trucciones) de aquellas instrucciones que pueden reemplazar un ĺınea de memoria y una ĺınea

espećıfica que se quiere sustituir (DC icx). Esta tabla, por ejemplo AC, será una memoria pe-

queña y completamente asociativa donde se guardan dichos PC’s y un puntero o ı́ndice de la

ĺınea de la DC que se quiere reemplazar (figura C.3).

Figura C.3: Estructura que implementa la ACDC.

El funcionamiento es el siguiente. Se accede a la DC con la dirección del dato (addr) para ver

si el dato requerido se encuentra ah́ı (C.3). En caso de fallo (miss), cuando el dato de memoria

principal esté disponible tenemos que saber si lo podemos guardar en una ĺınea de la DC. Para

ello, con esta propuesta de memoria, se accede a la AC con la dirección de la instrucción y

comprobamos que se encuentra ah́ı. Si no se encuentra, el dato no será reemplazado en la DC.

Si hay acierto en AC, el dato tiene permiso de reemplazo en la DC (DRP) y la ĺınea de la DC a

reemplazar viene dada por el ı́ndice asociado a la ĺınea de la AC (DC idx) en que se encuentre

el PC. Entonces el dato es reemplazado. En caso de acierto (hit) tanto de lecturas como de

escrituras, el proceso termina.

Con esta descripción, en nuestro ejemplo de la figura C.2, si en la AC tuviésemos el PC del load

que accede al vector (ĺınea 8 de la figura C.2), la primera vez que se accediese al dato, tendremos
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miss en DC, pero al tener DRP, actualizaremos el contenido de la DC asociado al ı́ndice del

PC load y en el siguiente acceso al dato en la DC (ĺınea 10 de la figura C.2), tendremos un hit.

Hemos aprovechado el reuso espacial de stride 1 para aumentar el rendimiento.



Apéndice D

Implementaciones

En este apéndice se van a mostrar las modificaciones hechas en el simulador usado en este Proyec-

to [3] y las implementaciones de nuevos métodos usados, aśı como los ficheros de automatización

del trabajo (para intentar disminuir el tiempo de trabajo).

D.1. Modificaciones en simulador [3]

En esta sección se muestran los cambios hechos en el código del simulador [3] para adaptarlo

a las distintas organizaciones de la memoria ACDC según lo explicado en el caṕıtulo 2 de este

documento. Para nuestro trabajo partimos del este simulador [3] modificado por Jesús Alastruey

(profesor de la Universidad de Zaragoza) cuyas modificaciones hacen que su funcionamiento se

parezca más a un procesador real. Se pueden leer estas modificaciones en su tesis doctoral [19].

Los cambios se realizan en el archivo “sim-outorder.base.c“. La figura D.1 muestra las etapas del

simulador como el que se ha explicado en el apéndice B de este documento, en el cual se aprecian

las colas usadas en este Proyecto.

Figura D.1: Esquema de las etapas del procesador simulado en este proyecto con las colas
asociadas a las etapas.

Los cambios introducidos en el código del simulador afectan a la etapa de ejecución, en concreto,

a los accesos a memoria (M) y a la etapa de lanzamiento (IQ).

33
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Para entender mejor el simulador, el núcleo principal de funcionamiento se encuentra en la

función sim main(). Aqúı se comienza con una fase de inicialización para posteriormente pasar a

un bucle infinito en el que cada iteración corrersponde a un ciclo del procesador. En cada iteración

se ejecutan las funciones que implementan las distintas etapas del procesador. Se observa que se

recorren al revés estas etapas del pipeline lo que permite que se puedan manejar correctamente

los registros de sincronización entre etapas con una sola pasada a lo largo de cada etapa. Para

terminar la ejecución se hace una llamada al sistema con exit().

Figura D.2: Ejecución de las etapas del simulador que implementa el procesador usado en
este Proyecto.

La figura D.2 se muestran las todas las etapas, señalando las que he modificado en este Proyecto

o las nuevas que he creado.

Los cambios realizados explicados de una forma general, son los siguientes: En la etapa de

lanzamiento, ruu issue(), he cambiado la predicción de acertar en la cache de nivel 1 a que acierte

en la memoria DC. Es decir, lanzamos las instrucciones dependientes pensando que vamos a

acertar en la DC. Se observa en la figura D.1 que en etapa de lanzamiento (IQ), está implementada

con dos funciones. Una es issue, que manda un evento a la cola DESPERTAR, que almacena

aquellas instrucciones que tiene que despertar dependientes. También env́ıa un evento a la cola

LECTURA BR, para aquellas instrucciones que tienen que hacer lectura de registros y finalmente

env́ıa un evento a la cola LECTURA CACHE, que son aquellas instrucciones que tienen que

acceder a memoria. Aqúı, en lectura cache, si el dato no se encuentra en la L1, se env́ıa un

evento a la cola DESPERTARSE, que almacena los loads que esperan su dato de la jerarqúıa

de memoria. En cada ciclo de ejecución se accede a estas colas y si procede, se van sacando

instrucciones de ellas. Y por otra parte está lsq refresh, que lo que hace es comprobar que las

instrucciones tiene las dependencias resueltas.

La función de acceso a memoria, ruu lectura cache, la he modificado para introducir las dos

organizaciones expuestas a lo largo de este documento (ver caṕıtulo 2). Hay tres modos de

funcionamiento, el simulador sin ACDC (acdc == 0), con la organización paralela (acdc ==

1) y con la organización secuencial (acdc == 2), que son opciones que he añadido al fichero de

configuración que se le pasa al simulador. Para el modo solo, no he realizado modificaciones. Para
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el modo paralelo, he modificado el código de acuerdo a la idea de organización paralela explicada

en el caṕıtulo 2.3.2. Es importante recalcar aqúı, que se accede a la vez a ambas memoria (L1

y DC). Y para el modo secuencial, las modificaciones están hechas de acuerdo al caṕıtulo 2.3.1,

matizando que solo accedemos a la cache L1 cuando fallamos en DC.

Además he realizado dos nuevas funciones, ruu missDC hitL1() y ruu actualizar acdc(), con

el uso de otras dos nuevas colas. La cola FALLODC ACIERTOL1, en la que meto aquellas

instrucciones que fallan en DC y aciertan en L1, para despertarlas cuando corresponda. La

función ruu missDC hitL1(void), vaćıa esta cola. Y la cola ACTUALIZAR ACDC, donde meto

aquellas instrucciones que tienen que actualizar la DC, y que la función ruu actualizar acdc(void)

vaćıa esta cola. En la figura D.3 se pueden ver todas las colas que he usado para este Proyecto.

Figura D.3: Segmentado del procesador usado en este Proyecto con todas las colas que he
usado.

También he realizado cambios en algunas funciones para obtener los resultados que necesitaba y

estad́ısticas, aśı como en los ficheros .h. Para saber más sobre SimpleScalar, puede leer el tutorial

aqúı [20].

D.2. Implementaciones

En esta sección se muestra el código de las implementaciones realizadas.

void s im reg op t i on s ( struct opt odb t ∗odb ) {
. . .

o p t r e g i n t ( odb , ”−uso acdc ” , ”0 = j e r a r qu i a convenc iona l ; 1 = pa r a l e l o ; 2 = s e cu en c i a l ” ,

&acdc , /∗ d e f a u l t ∗/ 0 , /∗ p r i n t ∗/TRUE, /∗ f o r m a t ∗/NULL) ;

o p t r e g i n t ( odb , ”−tramos” , ”Son l o s tramo para sacar l o s pc ’ s ” , &tramos , 0 , TRUE, NULL) ;

o p t r e g i n t ( odb , ”−c r e a r f i c h e r o s ” , ”Son l o s tramos para sacar l o s pc ’ s ” , &c r e a r f i c h e r o s ,

0 , TRUE, NULL) ;

o p t r e g s t r i n g ( odb , ”−cache : acdc” , ” bloque : v i a s ” , &cache acdc opt , ”acdc : 4 : 4 ” , TRUE, NULL) ;

o p t r e g i n t ( odb , ”−cache : acdcHitLatency ” , ” l a t e n c i a de l a memoria acdc en a c i e r t o s ” ,

&cache acdc h i t l a t ency , /∗ d e f a u l t ∗/ 1 , /∗ p r i n t ∗/TRUE, /∗ f o r m a t ∗/NULL) ;

o p t r e g i n t ( odb , ”−cache : acdcMissLatency” , ” l a t e n c i a de l a memoria acdc en f a l l o s ” ,

&cache acdc mi s s l a t ency , /∗ d e f a u l t ∗/ 1 , /∗ p r i n t ∗/TRUE, /∗ f o r m a t ∗/NULL) ;

. . .

}
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void s im check opt ions ( struct opt odb t ∗odb , int argc , char ∗∗argv )

{
. . .

i f ( acdc < 0 | | acdc > 2)

f a t a l ( ”El va lo r de ACDC no debe s e r mayor de 2 y ha puesto : %d” , acdc ) ;

/∗ Creamos l a memor ia cache ACDC ∗/

i f ( ! mystricmp ( cache acdc opt , ”none” ) )

cache acdc = NULL;

else

{
i f ( s s c an f ( cache acdc opt , ” %[ˆ:]: %d:%d” ,name,&bloque , &via ) != 3)

f a t a l ( ”Los parametros no estan bien . Son : <name>:<bloque>:<via>” ) ;

cache acdc = newACDC( bloque , v ia ) ;

}

i f ( c a ch e a cd c h i t l a t en cy < 1)

f a t a l ( ”ACDC h i t l a t e n c y debe s e r mayor que cero ” ) ;

i f ( ca che acdc mi s s l a t ency < 1)

f a t a l ( ”ACDC miss latency debe s e r mayor que cero ” ) ;

. . .

}

void s im r e g s t a t s ( struct s t a t s db t ∗sdb )

{
. . .

s t a t r e g c oun t e r ( sdb , ” s im t o t a l i s s u e d l o a d s \ t ” , ”numero de load i suados ” ,

&s im t o t a l i s s u ed l o ad s ,

s im t o t a l i s s u ed l o ad s ,NULL) ;

s t a t r e g c oun t e r ( sdb , ” s im t o t a l i s s u e d s t o r e s \ t ” , ”numero de s t o r e i suados ” ,

&s im t o t a l i s s u e d s t o r e s ,

s im t o t a l i s s u e d s t o r e s , NULL) ;

s t a t r e g c oun t e r ( sdb , ” s im tota l commited loads ” ,

”numero de load jub i l ado s ” ,

&s im tota l commited loads ,

s im tota l commited loads , NULL) ;

s t a t r e g c oun t e r ( sdb , ” s im to ta l commited s to r e s ” ,

”numero de s t o r e j ub i l ado s ” ,

&s im tota l commited s to re s ,

s im tota l commited s to re s , NULL) ;

. . .

}

void s im aux s ta t s (FILE ∗ stream )

{
. . .

f p r i n t f ( stream , ”ESTADISTICAS ACDC\n” ) ;

i f ( acdc != 0)

{
f p r i n t f ( stream , ” a c i e r t o sd c %10d # ac i e r t o s d c ” , a c i e r t o s d c ) ;

f p r i n t f ( stream , ” f a l l o s d c %10d # f a l l o s d c ” , f a l l o s d c ) ;

f p r i n t f ( stream , ” t o t a l a c c e s o s d c %10d # to t a l a c c e s o s d c ” , a c i e r t o s d c+f a l l o s d c ) ;

f p r i n t f ( stream , ” a c i e r t o s a c %10d # a c i e r t o s a c ” , a c i e r t o s a c ) ;

f p r i n t f ( stream , ” f a l l o s a c %10d # f a l l o s a c ” , f a l l o s a c ) ;

f p r i n t f ( stream , ” t o t a l a c c e s o s a c %10d # t o t a l a c c e s o s a c ” , a c i e r t o s a c+f a l l o s a c ) ;

f p r i n t f ( stream , ” a c i e r t o s d c l o a d s %10d # a c i e r t o s d c l o a d s ” , a c i e r t o s d c l o a d s ) ;

f p r i n t f ( stream , ” f a l l o s d c l o a d s %10d # f a l l o s d c l o a d s ” , f a l l o s d c l o a d s ) ;

f p r i n t f ( stream , ” t o t a l d c l o a d s %10d # acce so s t o t a l e s a dc en loads , a c i e r t o s+f a l l o s ” ,

a c i e r t o s d c l o a d s+f a l l o s d c l o a d s ) ;

f p r i n t f ( stream , ” a c i e r t o s a c l o a d s %10d # a c i e r t o s a c l o a d s \n” , a c i e r t o s a c l o a d s ) ;

f p r i n t f ( stream , ” f a l l o s a c l o a d s %10d # f a l l o s a c l o a d s \n” , f a l l o s a c l o a d s ) ;

f p r i n t f ( stream , ” t o t a l a c l o a d s %10d # acce so s t o t a l e s a ac en loads , a c i e r t o s +

f a l l o s ” , a c i e r t o s a c l o a d s + f a l l o s a c l o a d s ) ;

f p r i n t f ( stream , ” a c i e r t o s d c s t o r e s %10d # a c i e r t o s d c s t o r e s \n” , a c i e r t o s d c s t o r e s ) ;

f p r i n t f ( stream , ” f a l l o s d c s t o r e s %10d # f a l l o s d c s t o r e s \n” , f a l l o s d c s t o r e s ) ;

f p r i n t f ( stream , ” t o t a l d c s t o r e s %10d # acce so s t o t a l e s a dc en s to re s , a c i e r t o s +

f a l l o s \n” , a c i e r t o s d c s t o r e s + f a l l o s d c s t o r e s ) ;

f p r i n t f ( stream , ” a c i e r t o s a c s t o r e s %10d # a c i e r t o s a c s t o r e s \n” , a c i e r t o s a c s t o r e s ) ;

f p r i n t f ( stream , ” f a l l o s a c s t o r e s %10d # f a l l o s a c s t o r e s \n” , f a l l o s a c s t o r e s ) ;

f p r i n t f ( stream , ” t o t a l a c s t o r e s %10d # acce so s t o t a l e s a ac en s to re s , a c i e r t o s +

f a l l o s \n” , a c i e r t o s a c s t o r e s + f a l l o s a c s t o r e s ) ;

}
f p r i n t f ( stream , ”FIN ESTADISTICAS ACDC\n” ) ;

. . .

}

// Creación de estructuras y colas

stat ic struct RS link ∗ f a l l oDC ac i e r toL1 ; // Para meter en las instrucciones

// que fallan en DC y aciertan en L1

stat ic struct RS link ∗ a c tua l i z a r a cd c ; // Para actualizar la ACDC

#de f i n e FALLODC ACIERTOL1 4 // Cola para meter los loads que fallan en DC y aciertan en L1

#de f i n e ACTUALIZAR ACDC 5 // Cola para meter los loads que tienen DRP
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stat ic void c o l a i n i t ( )

{
. . .

f a l l oDC ac i e r toL1 = NULL;

a c tua l i z a r a cd c = NULL;

. . .

}

stat ic void co la queue ( int t ipo , struct RUU station ∗ rs , t i c k t when)

{
. . .

case FALLODC ACIERTOL1:

ev = fa l l oDC ac i e r toL1 ;

break ;

case ACTUALIZAR ACDC:

ev = ac tua l i z a r a cd c ;

break ;

. . .

case FALLODC ACIERTOL1:

new ev−>next = fa l l oDC ac i e r toL1 ;

f a l l oDC ac i e r toL1 = new ev ;

break ;

case ACTUALIZAR ACDC:

new ev−>next = ac tua l i z a r a cd c ;

a c t ua l i z a r a cd c = new ev ;

break ;

. . .

}

stat ic struct RUU station∗ co l a nex t ( int t ipo )

{
. . .

case FALLODC ACIERTOL1:

ev = fa l l oDC ac i e r toL1 ;

break ;

case ACTUALIZAR ACDC:

ev = ac tua l i z a r a cd c ;

break ;

. . .

case FALLODC ACIERTOL1:

f a l l oDC ac i e r toL1 = fa l loDC ac ie r toL1−>next ;

break ;

case ACTUALIZAR ACDC:

a c tua l i z a r a cd c = ac tua l i z a r a cdc−>next ;

. . .

}

stat ic void l e c tu r a ca che ( struct RUU station ∗ r s )

{
. . .

i f ( acdc == 1) /∗ P a r a l e l o ∗/

{
i f ( rs−>fa l loL1D == TRUE) /∗ R e l a n z a m i e n t o s ∗/

{
i f ( rs−>drp != −1)

{
l o a d l a t = cache acdc mi s s l a t ency ;

}
else

{
l o a d l a t = ca ch e d l 1 l a t ;

}
}
else

{
int va l id addr = MD VALID ADDR( rs−>addr ) ;

i f ( ! spec mode && ! va l id addr )

{
s im inva l i d add r s++;

}
i f ( cache d l1 && cache acdc && va l id addr )

{
l a t 1 = cache ac c e s s ( cache dl1 , Read ,

( rs−>addr & ˜3) ,

NULL, 4 ,

s im cyc l e + s im cyc l e base ,

NULL, NULL) ;

rs−>h i t = i sH i t ( cache acdc , rs−>addr ) ;

i f ( rs−>h i t != −1) /∗ A c i e r t o en DC ∗/
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{
a c i e r t o s d c l o a d s++;

a c i e r t o s d c++;

l a t 2 = ca ch e a cd c h i t l a t en cy ;

l o a d l a t = MIN( lat1 , l a t 2 ) ;

}
else /∗ F a l l o en DC ∗/

{
f a l l o s d c l o a d s++;

f a l l o s d c++;

l a t 2 = cache acdc mi s s l a t ency ;

rs−>drp = hasDRP( cache acdc , rs−>PC) ;

i f ( rs−>drp != −1) // Tengo DRP

{
a c i e r t o s a c l o a d s++;

a c i e r t o s a c++;

co la queue (ACTUALIZAR ACDC, rs , s im cyc l e+la t 1 ) ;

}
else /∗ No t e n g o DRP ∗/

{
f a l l o s a c l o a d s++;

f a l l o s a c++;

}
l o a d l a t = la t 1 ;

}
i f ( l o a d l a t > c a c h e d l 1 l a t )

{
events |= PEV CACHEMISS;

}
}
else

{
l o a d l a t = rs−>l a t e n c i a e x e ;

}
}

} /∗ f i n i f ( a c d c == 1 ) ∗/

i f ( acdc == 2) /∗ S e c u e n c i a l ∗/

{
i f ( rs−>fa l loL1D == TRUE ) /∗ R e l a n z a m i e n t o s d e l o a d s q u e han f a l l a d o en L1 ∗/

{
i f ( rs−>drp != −1)

{
l o a d l a t = cache acdc mi s s l a t ency ;

}
else

{
l o a d l a t = ca ch e d l 1 l a t+cache acdc mi s s l a t ency ;

}
}
else

{
rs−>h i t = i sH i t ( cache acdc , rs−>addr ) ;

i f ( rs−>h i t != −1) // Acierto en DC

{
a c i e r t o s d c l o a d s++;

a c i e r t o s d c++;

l o a d l a t = ca ch e a cd c h i t l a t en cy ;

}
else // Fallo en DC

{
int va l id addr = MD VALID ADDR( rs−>addr ) ;

i f ( ! spec mode && ! va l id addr )

{
s im inva l i d add r s++;

}
i f ( cache d l1 && va l id addr )

{
l a t 1 = cache ac c e s s ( cache dl1 , Read ,

( rs−>addr & ˜3) ,

NULL, 4 ,

s im cyc l e + s im cyc l e base ,

NULL, NULL) ;

l o a d l a t = la t 1 ;

i f ( l o a d l a t > c a c h e d l 1 l a t )

{
events |= PEV CACHEMISS;

}
}
else

{
l o a d l a t = rs−>l a t e n c i a e x e ;

}
f a l l o s d c l o a d s++;

f a l l o s d c++;

rs−>drp = hasDRP( cache acdc , rs−>PC) ;

i f ( rs−>drp != −1) // Tengo DRP
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{
a c i e r t o s a c l o a d s++;

a c i e r t o s a c++;

co la queue (ACTUALIZAR ACDC, rs , s im cyc l e+la t 1 ) ;

}
else // No tengo DRP

{
f a l l o s a c l o a d s++;

f a l l o s a c++;

}
}

}
} // fin if(acdc == 2)

. . .

else // if (acdc == 0)

{
i f ( rs−>fa l loL1D == TRUE) /∗ R e l a n z a m i e n t o s d e l o a d s q u e han f a l l a d o en L1 ∗/

{
i f ( rs−>drp != −1)

{
eventq queue event ( rs , s im cyc l e+ca ch e a cd c h i t l a t en cy ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ]= s im cyc l e+ca ch e a cd c h i t l a t en cy ;

IQ int saca ( r s ) ;

ptrace newstage ( rs−>ptrace seq ,PST EXECUTE, ( ( rs−>ea comp ? PEV AGEN : 0) | events ) ) ;

}
else

{
i f ( acdc == 1) /∗ P a r a l e l o ∗/

{
co la queue (FALLODC ACIERTOL1, rs , s im cyc l e+1) ; /∗ M i s s en DC , d e s p i e r t o s i n

e s p e c u l a r ∗/

anu la depend ientes ( r s ) ;

eventq queue event ( rs , s im cyc l e+c a ch e d l 1 l a t ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ] = s im cyc l e+c a ch e d l 1 l a t ;

IQ int saca ( r s ) ;

ptrace newstage ( rs−>ptrace seq ,PST EXECUTE, ( ( rs−>ea comp ? PEV AGEN : 0) | events ) ) ;

}
i f ( acdc == 2) // Secuencial

{
co la queue (FALLODC ACIERTOL1, rs , s im cyc l e+2) ; /∗ M i s s en DC , d e s p i e r t o s i n

e s p e c u l a r ∗/

anu la depend ientes ( r s ) ;

eventq queue event ( rs , s im cyc l e+c a ch e d l 1 l a t+cache acdc mi s s l a t ency ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ] = s im cyc l e+c a ch e d l 1 l a t+cache acdc mi s s l a t ency ;

IQ int saca ( r s ) ;

ptrace newstage ( rs−>ptrace seq ,PST EXECUTE, ( ( rs−>ea comp ? PEV AGEN : 0) | events ) ) ;

}
}

}
i f ( dt lb && MD VALID ADDR( rs−>addr ) && ( rs−>falloACDC == FALSE) && ( rs−>fa l loL1D == FALSE) )

{
t l b l a t = cache ac c e s s ( dtlb , Read ,

( rs−>addr & ˜3) , NULL, 4 ,

s im cyc l e + s im cyc l e base ,

NULL, NULL) ;

i f ( t l b l a t > 1)

{
events |= PEV TLBMISS ;

}
l o a d l a t = MAX( t l b l a t , l o a d l a t ) ;

}
i f ( rs−>h i t != −1)

{
eventq queue event ( rs , s im cyc l e+ca ch e a cd c h i t l a t en cy ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ] = s im cyc l e+ca ch e a cd c h i t l a t en cy ;

IQint saca ( r s ) ;

ptrace newstage ( rs−>ptrace seq ,PST EXECUTE, ( ( rs−>ea comp ? PEV AGEN : 0) | events ) ) ;

}
else // Fallo en DC

{
i f ( ( l o a d l a t > c a c h e d l 1 l a t ) && ( rs−>fa l loL1D == FALSE) ) // Fallo en L1. Relanzo.

{
rs−>tag++; // Para que el evento de esa cola (DESPERTAR) lo tome como no válido.

rs−>i s sued = FALSE; // Para que la instruccion se vuelva a lanzar

rs−>fa l loL1D = TRUE;

rs−>falloACDC = TRUE;

rs−>dormida = TRUE;

co la queue (DESPERTARSE, rs , s im cyc l e+load l a t −3) ; // Programo el despertar de load dormido

anu la depend ientes ( r s ) ;

}
else // Acierto en l1
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{
rs−>falloACDC = TRUE;

i f ( rs−>fa l loL1D == FALSE) // Para que no entre cuando relanzo.

{
i f ( acdc == 1) // Paralelo

{
anu la depend ientes ( r s ) ;

co la queue (FALLODC ACIERTOL1, rs , s im cyc l e+1) ;

eventq queue event ( rs , s im cyc l e + c a ch e d l 1 l a t ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ] = s im cyc l e+c a ch e d l 1 l a t ;

}
else // Secuencial

{
co la queue (FALLODC ACIERTOL1, rs , s im cyc l e+2) ;

anu la depend ientes ( r s ) ;

eventq queue event ( rs , s im cyc l e + c a ch e d l 1 l a t+cache acdc mi s s l a t ency ) ;

i f ( rs−>o f i s i c o s [ 0 ] != NULO)

c i c l o wb [ rs−>o f i s i c o s [ 0 ] ] =s im cyc l e+c a ch e d l 1 l a t+cache acdc mi s s l a t ency ;

}
IQ int saca ( r s ) ;

ptrace newstage ( rs−>ptrace seq ,PST EXECUTE, ( ( rs−>ea comp ? PEV AGEN : 0) | events ) ) ;

}
}

}
}
} % f i n de l e c tu r a ca che

. . .

}

stat ic void ruu commit (void )

{
. . .

else /∗ i f ( a c d c == 0 ) ∗/

{
i f ( cache acdc )

{
a = i sH i t ( cache acdc , rs−>addr ) ;

i f ( a != −1) /∗ A c i e r t o en DC ∗/

{
cache acdc−>Lineas [ a ] . datatag = rs−>addr ;

a c i e r t o s d c s t o r e s++;

a c i e r t o s d c++;

}
else

{
f a l l o s d c s t o r e s++;

f a l l o s d c++;

b = hasDRP( cache acdc ,LSQ[ LSQ head ] .PC) ;

i f (b != −1) /∗ Tengo DRP ∗/

{
cache acdc−>Lineas [ b ] . datatag = rs−>addr ;

a c i e r t o s a c s t o r e s++;

a c i e r t o s a c++;

}
else

{
f a l l o s a c s t o r e s ++;

f a l l o s a c++;

}
}

}
}
. . .

}

stat ic void r uu i s s u e (void )

{
. . .

s im t o t a l i s s u e d l o a d s++;

else /∗ i f ( a c d c == 0 ) ∗/

{
i s s u e l o ad da t a 1 ( r s ) ;

}
. . .

}

stat ic void ruu decode (void )

{
. . .

i f ( contador == f i c h e r o )

{
nombre = s im eio fname ;

i f ( c r e a r f i c h e r o s == 1)
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{
s t r c a t ( nombref inal , nombre ) ;

s t r c a t ( nombref inal , ” . ” ) ;

char aux [ 1 5 ] ;

s p r i n t f ( aux , ” %d” , tramos ) ;

s t r c a t ( nombref inal , aux ) ;

s t r c a t ( nombref inal , ” . ” ) ;

char aux2 [ 9 9 ] ;

s p r i n t f ( aux2 , ” %d” , numerof ichero ) ;

s p r i n t f ( aux2 , ” %d” , f i c h e r o ) ;

i f ( f i c h e r o == 0)

;

else

{
s t r c a t ( nombref inal , aux2 ) ;

char ∗ d e f i n i t i v o = s t r c a t ( nombref inal , ” . de f ” ) ;

prueba = fopen ( d e f i n i t i v o , ”w” ) ;

perfprintPCCachePFC ( prueba , p e r fda ta t r a c e ) ;

p r i n t f ( ” Fichero : %s creado con ex i t o \n” , d e f i n i t i v o ) ;

f c l o s e ( prueba ) ;

}
∗nombref inal = 0 ;

pe r fda ta t r a c e = NULL;

contador++;

numerof ichero++;

cambio = 0 ;

}
else // No creamos fichero de análisis

{
contador++;

numerof ichero++;

cambio = 0 ;

}
}
else

{
. . .

i f ( c r e a r f i c h e r o s == 1) // Creamos ficheros de análisis

{
i f (MD OP FLAGS( lsq−>op ) & F MEM)

{
i f ( (MD OP FLAGS( lsq−>op ) & (F MEM|F LOAD) ) == (F MEM|F LOAD) )

{
pe r fda ta t r a c e = perfaccessPCCache ( per fdatat race , l sq−>PC, 0 ,

( l sq−>addr & ˜15) , s im num refs ) ;

}
i f ( (MD OP FLAGS( lsq−>op ) & (F MEM|F STORE) ) == (F MEM|F STORE) )

{
pe r fda ta t r a c e = perfaccessPCCache ( per fdatat race , l sq−>PC, 1 ,

( l sq−>addr & ˜15) , s im num refs ) ;

}
}

}
. . .

}
}

void sim main (void )

{
. . .

i f ( acdc > 0)

{
i f ( ( tramos ∗ numerof ichero > sim num commit ) && ( cambio == 0) )

{
s t r c a t ( f i che roca rga , s im e io fname ) ;

s t r c a t ( f i che roca rga , ” . ” ) ;

char aux1 [ 1 5 ] ;

s p r i n t f ( aux1 , ” %d” , tramos ) ;

s t r c a t ( f i che roca rga , aux1 ) ;

s t r c a t ( f i che roca rga , ” . ” ) ;

char aux2 [ 9 9 ] ;

s p r i n t f ( aux2 , ” %d” , numerof ichero ) ;

s t r c a t ( f i che roca rga , aux2 ) ;

s t r c a t ( f i che roca rga , ” . ” ) ;

s t r c a t ( f i che roca rga , ”ana” ) ;

puts ( f i c h e r o c a r g a ) ;

f i l e = fopen ( f i che roca rga , ” r ” ) ;

for ( i = 0 ; i < cache acdc−>dcways ; i++)

{
f s c a n f ( f i l e , ” %p” , &pc ) ;

f s c an f ( f i l e , ” %d” , &repes ) ;

f s c an f ( f i l e , ” %s” , l d s t ) ;

cache acdc−>Lineas [ i ] . pcs . pc = pc ;

}
f c l o s e ( f i l e ) ;

∗ f i c h e r o c a r ga = 0 ;
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cambio = 1 ;

}
}
. . .

r uu a c tua l i z a r a cd c ( ) ;

. . .

ruu missDC hitL1 ( ) ;

. . .

}

D.3. Métodos nuevos

En esta sección se muestran los métodos nuevos que he implementado dentro de “sim-outorder.base.c“.

stat ic void actualizar ACDC ( struct RUU station ∗ r s )

{
updateMiss ( cache acdc , rs−>drp , rs−>PC, rs−>addr , s im cyc l e ) ;

}

stat ic void r uu a c tua l i z a r a cd c (void )

{
struct RUU station ∗ r s ;

while ( r s = co l a nex t (ACTUALIZAR ACDC) )

{
actualizarACDC ( r s ) ;

}
}

stat ic void ruu missDC hitL1 (void )

{
struct RUU station ∗ r s ;

while ( r s = co l a nex t (FALLODC ACIERTOL1) )

{
desp i e r ta dep ( rs , 0) ;

de sp i e r ta dep ( rs , 1) ;

}
}

stat ic void i s s u e l o ad da t a 1 ( struct RUU station ∗ r s )

{
i f ( cache acdc )

{
co la queue (DESPERTAR, rs , s im cyc l e + ca ch e a cd c h i t l a t en cy ) ;

}
else

co la queue (DESPERTAR, rs , s im cyc l e + rs−>l a t e n c i a e x e ) ;

co la queue (LECTURA CACHE, rs , s im cyc l e ) ;

}

D.4. Automatizaciones

En esta sección se muestran algunos scripts de automatización realizados. Estos scripts se han

hecho para agilizar todo el proceso de ejecución de las simulaciones. Son ficheros .sh y se lanzan

desde la ĺınea de comandos del shell. También se muestran scripts en Phython [15] para la

búsqueda de información que nos interesa de los ficheros resultado de la ejecución del simulador.

Son los archivos .py. También se muestra los cambios hechos en el archivo que se le pasa como

entrada al simulador (antonio.conf).

automat i za r t raza sente ro s . sh

. / sim−outorder . base −con f i g antonio . conf t r a za s /400. perlbench−r e f . e i o 2>400. perlbench−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /401. bzip2−r e f . e i o 2>401. bzip2−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /403. gcc−r e f . e i o 2>403. gcc−r e f . e i o . r e s u l
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. / sim−outorder . base −con f i g antonio . conf t r a za s /429.mcf−r e f . e i o 2>429.mcf−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /445. gobmk−r e f . e i o 2>445.gobmk−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /456.hmmer−r e f . e i o 2>456.hmmer−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /458. s jeng−r e f . e i o 2>458. s jeng−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /462. libquantum−r e f . e i o 2>462. libquantum−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /464. h264ref−r e f . e i o 2>464. h264ref−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /471. omnetpp−r e f . e i o 2>471.omnetpp−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /473. astar−r e f . e i o 2>473. astar−r e f . e i o . r e s u l

au tomat i z a r t r a za s f l o a t . sh

. / sim−outorder . base −con f i g antonio . conf t r a za s /410. bwaves−r e f . e i o 2>410.bwaves−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /416. gamess−r e f . e i o 2>416.gamess−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /433. milc−r e f . e i o 2>433.milc−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /434. zeusmp−r e f . e i o 2>434.zeusmp−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /435. gromacs−r e f . e i o 2>435. gromacs−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /436. cactusADM−r e f . e i o 2>436.cactusADM−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /437. l e s l i e 3 d−r e f . e i o 2>437. l e s l i e 3 d−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /444.namd−r e f . e i o 2>444.namd−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /447. dea l I I−r e f . e i o 2>447. dea l I I−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /450. soplex−r e f . e i o 2>450. soplex−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /453. povray−r e f . e i o 2>453.povray−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /454. c a l cu l i x−r e f . e i o 2>454. c a l cu l i x−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /459.GemsFDTD−r e f . e i o 2>459.GemsFDTD−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /465. tonto−r e f . e i o 2>465. tonto−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /470. lbm−r e f . e i o 2>470.lbm−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /481. wrf−r e f . e i o 2>481.wrf−r e f . e i o . r e s u l

. / sim−outorder . base −con f i g antonio . conf t r a za s /482. sphinx3−r e f . e i o 2>482. sphin3−r e f . e i o . r e s u l

antonio . conf

// Archivo de configuración que se le pasa al simulador con la configuración deseada

# cache acdc

−uso acdc 1 # 0 s in acdc , 1 para l e l o , 2 s e cu en c i a l

−c r e a r f i c h e r o s 0 # 1 creamos f i c h e r o s de a n a l i s i s , 0 no l o s creamos

−tramos 100 .000 .000 # num. i n s t r u c c i o n e s

−cache : acdc ACDC: 4 : 4 # nombre , bloques , v i a s

# l a t e n c i a de l a acdc

−cache : acdcHitLatency 1 # l a t e n c i a en caso de a c i e r t o

−cache : acdcMissLatency 1 # l a t e n c i a en caso de f a l l o

l e e r a r c h i v o s . py

# Con este archivo tomamos los ficheros que hemos creado con la extension resul resultantes de la ejecución de la simulación.

#!/usr/bin/python

def l e e r a r c h i v o s ( ) :

import os

camino = ” ./ ”

d i r e c t o r i o s = os . l i s t d i r ( camino )

# Me creo una lista para guardar todos los archivos que me interesen.

l i s t a = [ ]

# Hacemos un listado con listdir()

d i r e c t o r i o s = os . l i s t d i r ( camino )

# Elegimos que extension vamos a elegir de archivo.

palabra = ” . r e s u l ”

for i in d i r e c t o r i o s :

i f palabra in i :

l i s t a . append ( i )

return l i s t a # Devuelvo la lista

l e e r a r c h i v o s ( )

l e e r f i c h e r o e n t e r o s . py

# Con este archivo, cogemos de cada fichero de resultados la información que necesitamos (ipc,...).

# En este caso es para los resultados de la suite enteros.

# Análogo a este fichero he hecho otro para recoger los resultados de la suite float.

# Los cambios afectan solamente al fichero donde se guardan los datos (datosFLOAT.txt) y al nombre de fichero (leerficherofloat.py).

# No se incluye el fichero ”leerficherofloat.py.en este documento.

#!/usr/bin/python

# Importamos lo que nos hace falta.

from l e e r a r c h i v o s import l e e r a r c h i v o s

# Le paso como argumento la lista obtenida en leerarchivos.py

def l e e rF i che roEnte ro s ( l i s t a ) :
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# Aqui guardamos los datos que nos interesan.

datos = open ( ” . /datosENTEROS . txt ” , ”a” )

datos . wr i te ( ”\nNOMBRE, ” + ”Modo , ” + ”tramos , ” + ”bloque−vias , ” + ” s im t o t a l i s s u ed l o ad s , ” + ”

s im t o t a l i s s u e d s t o r e s , ” + ” s im tota l commited loads , ” + ” s im tota l commited s to re s , ” + ”

sim num refs , ” + ” sim num loads , ” + ” sim num stores , ” + ” s im e lapsed t ime , ” + ” s im t o t a l r e f s , ” +

” s im to t a l l o ad s , ” + ” s im t o t a l s t o r e s , ” + ” s im cyc le , ”+ ”sim IPC , ” +”dl1 . acce s se s , ” + ”dl1 . h i t s

, ” + ”dl1 . misses , ” + ”dl1 . replacements , ” + ”dl1 . writebacks , ” + ”ul2 . acce s s e s , ” + ”ul2 . h i t s , ” + ”

ul2 . misses , ” + ”ul2 . replacements , ” + ”ul2 . writebacks , ” + ”ul3 . acce s se s , ” + ”ul3 . h i t s , ” + ”ul3 .

misses , ” + ”ul3 . replacements , ” + ”ul3 . writebacks , ” + ” dt lb . acce s se s , ” + ” dt lb . h i t s , ” + ” dt lb .

misses , ” + ” dt lb . replacements , ” + ” ac i e r t o s d c , ” + ” f a l l o s d c , ” + ” t o t a l a c c e s o s d c , ” + ”

a c i e r t o s a c , ” + ” f a l l o s a c , ” + ” t o t a l a c c e s o s a c , ” + ” a c i e r t o s d c l o ad s , ” + ” f a l l o s d c l o a d s , ” +

” t o t a l d c l o ad s , ” + ” a c i e r t o s a c l o ad s , ” + ” f a l l o s a c l o a d s , ” + ” t o t a l a c l o ad s , ” + ”

a c i e r t o s d c s t o r e s , ” + ” f a l l o s d c s t o r e s , ” + ” t o t a l d c s t o r e s , ” +” a c i e r t o s a c s t o r e s , ” + ”

f a l l o s a c s t o r e s , ” + ” t o t a l a c s t o r e s ,\n” )

# Recorro la lista pasada como argumento.

for arch ivo in l i s t a :

# Le damos el camino (path) + el nombre para abrir el archivo.

camino = ” ./ ”

nombre = camino + ”/” + arch ivo

# Abrimos el archivo

fh = open ( nombre )

# Leemos linea a linea

l i n e a = fh . r e ad l i n e s ( )

# Recorremos cada linea y buscamos lo que nos interese

for l in l i n e a :

i f ” load ing ” in l : # Para cargar el nombre del fichero de prueba

x = arch ivo [ : 2 3 ]# Tomo los 23 primeros caracteres del nombre del archivo

datos . wr i te ( ”\n” + x)

i f ” uso acdc ” in l :

x = l [ l . f i nd ( ” uso acdc ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ] # Eliminamos los comentarios

w = w. l s t r i p ( ) # Con lstrip(), alineamos a la izquierda.

datos . wr i te ( ” , ” + w )

i f ” tramos” in l :

x = l [ l . f i nd ( ” tramos” ) +6: ]

w = x [ : x . f i nd ( ”#” ) ] # Eliminamos los comentarios

w = w. l s t r i p ( ) # Con lstrip(), alineamos a la izquierda.

datos . wr i te ( ” , ” + w )

i f ”ACDC: ” in l :

x = l [ l . f i nd ( ”ACDC: ” ) +5: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im cyc l e ” in l :

x = l [ l . f i nd ( ” s im cyc l e ” ) +9: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im e lapsed t ime ” in l :

x = l [ l . f i nd ( ” s im e lapsed t ime ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ”sim IPC” in l :

x = l [ l . f i nd ( ”sim IPC” ) +7: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” sim num loads ” in l :

x = l [ l . f i nd ( ” sim num loads ” ) +13: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im num stores ” in l :

x = l [ l . f i nd ( ” s im num stores ” ) +14: ]

w = x [ : x . f i nd ( ” . ” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im num refs ” in l :

x = l [ l . f i nd ( ” s im num refs ” ) +12: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im t o t a l l o a d s ” in l :

x = l [ l . f i nd ( ” s im t o t a l l o a d s ” ) +15: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im t o t a l s t o r e s ” in l :

x = l [ l . f i nd ( ” s im t o t a l s t o r e s ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]
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w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” s im t o t a l r e f s ” in l :

x = l [ l . f i nd ( ” s im t o t a l r e f s ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” dl1 . a c c e s s e s ” in l :

x = l [ l . f i nd ( ” dl1 . a c c e s s e s ” ) +12: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” dl1 . h i t s ” in l :

x = l [ l . f i nd ( ” dl1 . h i t s ” ) +8: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” dl1 . misses ” in l :

x = l [ l . f i nd ( ” dl1 . misses ” ) +10: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” dl1 . replacements ” in l :

x = l [ l . f i nd ( ” dl1 . replacements ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” dl1 . wr i tebacks ” in l :

x = l [ l . f i nd ( ” dl1 . wr i tebacks ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” ul2 . a c c e s s e s ” in l :

x = l [ l . f i nd ( ” ul2 . a c c e s s e s ” ) +12: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” ul2 . h i t s ” in l :

x = l [ l . f i nd ( ” ul2 . h i t s ” ) +8: ]

w = x [ : x . f i nd ( ”#” ) ]

#w = w.lstrip()

datos . wr i te ( ” , ” + w)

i f ” ul2 . misses ” in l :

x = l [ l . f i nd ( ” ul2 . misses ” ) +10: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” ul2 . replacements ” in l :

x = l [ l . f i nd ( ” ul2 . replacements ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” ul2 . wr i tebacks ” in l :

x = l [ l . f i nd ( ” ul2 . wr i tebacks ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” ul3 . a c c e s s e s ” in l :

x = l [ l . f i nd ( ” ul3 . a c c e s s e s ” ) +12: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )

i f ” ul3 . h i t s ” in l :

x = l [ l . f i nd ( ” ul3 . h i t s ” ) +8: ]

w = x [ : x . f i nd ( ”#” ) ]

#w = w.lstrip()

datos . wr i te ( ” , ” + w)

i f ” ul3 . misses ” in l :

x = l [ l . f i nd ( ” ul3 . misses ” ) +10: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” ul3 . replacements ” in l :

x = l [ l . f i nd ( ” ul3 . replacements ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” ul3 . wr i tebacks ” in l :

x = l [ l . f i nd ( ” ul3 . wr i tebacks ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” dt lb . a c c e s s e s ” in l :

x = l [ l . f i nd ( ” dt lb . a c c e s s e s ” ) +13: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w )
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i f ” dt lb . h i t s ” in l :

x = l [ l . f i nd ( ” dt lb . h i t s ” ) +9: ]

w = x [ : x . f i nd ( ”#” ) ]

#w = w.lstrip()

datos . wr i te ( ” , ” + w)

i f ” dt lb . misses ” in l :

x = l [ l . f i nd ( ” dt lb . misses ” ) +11: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” dt lb . replacements ” in l :

x = l [ l . f i nd ( ” dt lb . replacements ” ) +17: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ”+ w)

i f ” a c i e r t o sd c ” in l :

x = l [ l . f i nd ( ” a c i e r t o sd c ” ) +10: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s d c ” in l :

x = l [ l . f i nd ( ” f a l l o s d c ” ) +8: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l a c c e s o s d c ” in l :

x = l [ l . f i nd ( ” t o t a l a c c e s o s d c ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” a c i e r t o s a c ” in l :

x = l [ l . f i nd ( ” a c i e r t o s a c ” ) +10: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s a c ” in l :

x = l [ l . f i nd ( ” f a l l o s a c ” ) +8: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l a c c e s o s a c ” in l :

x = l [ l . f i nd ( ” t o t a l a c c e s o s a c ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” a c i e r t o s d c l o a d s ” in l :

x = l [ l . f i nd ( ” a c i e r t o s d c l o a d s ” ) +17: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. r s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s d c l o a d s ” in l :

x = l [ l . f i nd ( ” f a l l o s d c l o a d s ” ) +15: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l d c l o a d s ” in l :

x = l [ l . f i nd ( ” t o t a l d c l o a d s ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” a c i e r t o s a c l o a d s ” in l :

x = l [ l . f i nd ( ” a c i e r t o s a c l o a d s ” ) +17: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s a c l o a d s ” in l :

x = l [ l . f i nd ( ” f a l l o s a c l o a d s ” ) +15: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l a c l o a d s ” in l :

x = l [ l . f i nd ( ” t o t a l a c l o a d s ” ) +14: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” a c i e r t o s d c s t o r e s ” in l :

x = l [ l . f i nd ( ” a c i e r t o s d c s t o r e s ” ) +18: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s d c s t o r e s ” in l :

x = l [ l . f i nd ( ” f a l l o s d c s t o r e s ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l d c s t o r e s ” in l :

x = l [ l . f i nd ( ” t o t a l d c s t o r e s ” ) +15: ]
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w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” a c i e r t o s a c s t o r e s ” in l :

x = l [ l . f i nd ( ” a c i e r t o s a c s t o r e s ” ) +18: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” f a l l o s a c s t o r e s ” in l :

x = l [ l . f i nd ( ” f a l l o s a c s t o r e s ” ) +16: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” t o t a l a c s t o r e s ” in l :

x = l [ l . f i nd ( ” t o t a l a c s t o r e s ” ) +15: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” s im t o t a l i s s u e d l o a d s ” in l :

x = l [ l . f i nd ( ” s im t o t a l i s s u e d l o a d s ” ) +22: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” s im t o t a l i s s u e d s t o r e s ” in l :

x = l [ l . f i nd ( ” s im t o t a l i s s u e d s t o r e s ” ) +23: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” s im tota l commited loads ” in l :

x = l [ l . f i nd ( ” s im tota l commited loads ” ) +24: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

i f ” s im to ta l commited s to r e s ” in l :

x = l [ l . f i nd ( ” s im to ta l commited s to r e s ” ) +25: ]

w = x [ : x . f i nd ( ”#” ) ]

w = w. l s t r i p ( )

datos . wr i te ( ” , ” + w)

fh . c l o s e ( )

# Fin def leerFicheroEnteros(lista)

# Comienzo

l i s t a = l e e r a r c h i v o s ( )

l e e rF i che roEnte ro s ( l i s t a )

# Fin



Apéndice E

Resultados, costes, métricas y

análisis previo.

Este apéndice está dedicado a mostrar los costes de enerǵıa relacionados con el Proyecto. También

se explica la fase de análisis previo o profiling que es indispensable para este Proyecto (ver seccion

E.2). Se muestran también las métricas que hemos utilizado para valorar los resultados obtenidos

y finalmente se muestran los resultados mediante las tablas que hemos obtenidos aśı como sus

gráficas.

E.1. Costes energéticos

Para obtener los costes de enerǵıa que hemos usado en este Proyecto, hemos usado la herramiente

Cacti en su versión 6.5 [12]. Esta herramienta sirve para modelar memorias caches. Tiene varias

versiones y la elegida para mi trabajo ha sido la última versión que se usa mediante compilación

y ejecución en la ĺınea de comandos del shell.

El gasto de enerǵıa que experimenta un procesador de altas prestaciones está ligado al uso de

la jerarqúıa de memoria. Por una parte está el consumo estático que es aquel que tienen los

transistores que forman los módulos de la memoria cuando no hay transiciones, es decir, cuando

su salida no cambia (consumo estático de enerǵıa). Cuando hay transiciones en estos transistores,

hay consumo de enerǵıa y se conoce como consumo dinámico de enerǵıa.

La tabla E.1 nos muestra los costes estáticos, que son aquellos que están relacionados con la falta

de transición en los transistores que forman los módulos de la jerarqúıa de memoria. En la tabla

E.2 se muestran los valores de los costes de enerǵıa dinámicos, que son los que están relacionados

con los cambios de estado de los transistores, es decir, cuando hay transiciones hay consumo de

enerǵıa dinámica.

Para la realización de algunos cálculos hemos supuesto que la frecuencia del procesador es de

2.5GHz.

48
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Coste
Memoria L1 0.047432
Memoria L2 0.150232
Memoria L3 2.457176

Memoria principal 0.866304
Memoria ACDC 0.004

Tabla E.1: Coste de enerǵıa estática para las distintas memorias expresado en nJ.

Coste leer Coste escribir
Memoria L1 0.0892139 0.0678675
Memoria L2 0.226472 0.21833
Memoria L3 0.916666 0.964853

Memoria Principal 0.672907 0.693852
Memoria AC 0.0098815628 0.0098815628
Memoria DC 0.0098815628 0.0098815628

Tabla E.2: Coste de enerǵıa dinámica para las distintas memorias expresado en nJ.

Figura E.1: Fórmula que muestra cómo se obtiene el coste de enerǵıa dinámica en la organi-
zación secuencial.

Figura E.2: Fórmula que muestra cómo se obtiene el coste de enerǵıa dinámica en la organi-
zación paralela.

Para la obtención de los consumos de enerǵıa dinámica para el caso de la organización secuencial,

se ha aplicado la fórmula de la figura E.1. Para obtener el coste energético de la organización

paralela, se ha aplicado la fórmula de la figura E.2. La diferencia entre ambas radica en que

en el coste de enerǵıa en la organización secuencial, los accesos al módulo de memoria L1 de la

jerarqúıa de memoria son los fallos en la DC.

E.2. Análisis

En esta sección se explica cómo se han obtenido las instrucciones que se cargan en la AC.

Este proceso es el que hemos llamado “la fase de análisis previo“ o profiling y consiste en buscar

aquellas instrucciones que aprovechan más el reuso de los datos dentro del programa (SPEC CPU

2006 [2]). Estas instrucciones son las que más veces acceden a los datos, tanto ellas, como amigas,
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entendiendo amigas como aquellas instrucciones que acceden al mismo dato (ver ejemplo C.1 y

[1]). Una vez que hemos obtenidos las instrucciones que maś aprovechan el reuso, las ordenamos

por el número de aciertos al dato al que acceden y aśı se podrán cargar en la AC cuando se

lance la ejecución de la simulación usando la ACDC. La AC tendrá 16 ĺıneas, que cada ĺınea

corresponde con un PC.

Los programas de prueba [2] están preparados para simulaciones con 100.000.000 de instrucciones

de fastfwd, es decir, para el calentamiento de las caches y 100.000.000 de instrucciones para la

simulación en śı.

Inicialmente, este análisis previo se ha hecho sobre el total de las instrucciones, obteniendo un

solo fichero con los PC’s que más reuso aprovechan. Posteriormente y para hacer otras pruebas,

hicimos un análisis de 100 ficheros con 1.000.000 de instrucciones cada uno, para intentar buscar

con más profundidad el reuso. Es decir, dividimos el programa en tramos más pequeños y aśı

intentar localizar las partes del programa donde más reuso hay.

Los resultados del análisis de la suite enteros y de la suite float se pueden ver, tanto para 1

fichero como para 100 en la sección E.8.3.
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E.3. Métricas

Las métricas que se han usado para valorar la memoria ACDC [1] en SPEC CPU 2006 [2] son

las siguientes:

IPC, instrucciones por ciclo (rendimiento).

Energy Delay. Este indicador tiene en cuenta el tiempo de ejecución y el gasto de enerǵıa.

Con ello tenemos una métrica más real del ratio rendimiento-consumo.

Aciertos obtenidos y aciertos esperados en DC. Los aciertos obtenidos son aquellos que

han acertado en la memoria DC cuando estamos usando o la organización secuencial (ver

sección 2.3.1) o la organización paralela (ver sección 2.3.2) y los aciertos esperados son los

que se han obtenido de la fase de análisis previo (ver sección E.2).

E.4. Graficas suite enteros y suite float

En esta sección se muestran las gráficas y las tablas que hemos obtenido con la ejecución de

las simulaciones en este Proyecto. En primer lugar se mostrarán las gráficas tanto para la suite

enteros como para la suite float. Se comienza por las gráficas de rendimiento y posteriormente

siguen las gráficas del consumo (estático, dinámico, total y con la métrica Energy Delay). Primero

se muestran las gráficas con sus valores y luego en porcentajes.

Después de las gráficas se muestran las tablas correspondientes a los datos extráıdos de las

simulaciones. En primer lugar se muestran los datos correspondientes a la suite enteros en el modo

solo. Le siguen el modo secuencial y el modo paralelo. Los datos que se muestran hacen referencia

al nombre de benchmark, al modo de ejecución (solo, paralelo o secuencial), las instrucciones que

se han lanzado (IQ), las instrucciones que han hecho el commit (CT), el tiempo en ciclos de la

simulación (sim cycle), IPC, accesos a los distintos módulos de memoria (contando los aciertos

y los fallos) y accesos a la DC y AC (con fallos y aciertos).

Figura E.3: Valores de IPC para la suite enteros.
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Figura E.4: Valores de IPC en porcentajes para la suite enteros.

Figura E.5: Consumo estático para la suite enteros expresado en nJ.

Figura E.6: Porcentaje de consumo estático para la suite enteros.
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Figura E.7: Consumo de enerǵıa dinámica expresado en nJ para la suite enteros.

Figura E.8: Porcentaje de consumo dinámico para la suite enteros.

Figura E.9: Consumo total expresado en nJ para la suite enteros.
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Figura E.10: Consumo total en porcentajes para la suite enteros.

Figura E.11: Indicador Energy Delay del consumo de enerǵıa para la suite enteros.

Figura E.12: Indicador del consumo Energy Delay expresado en porcentajes de la suite en-
teros.
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Figura E.13: Valores de IPC para la suite float.

Figura E.14: Valores de IPC en porcentajes para la suite float.

Figura E.15: Consumo estático para la suite float expresado en nJ.
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Figura E.16: Porcentaje de consumo estático de la suite float.

Figura E.17: Consumo de enerǵıa dinámica expresado en nJ para la suite float.

Figura E.18: Porcentaje de consumo dinámico para la suite float.
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Figura E.19: Consumo total expresado en nJ para la suite float.

Figura E.20: Consumo total en porcentajes de la suite float.

Figura E.21: Indicador Energy Delay del consumo de enerǵıa para la suite float.
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Figura E.22: Indicador del consumo Energy Delay expresado en porcentajes de la suite float.
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E.5. Resultados suite enteros

E.5.1. Resultados sin el uso de la memoria ACDC, suite enteros.

Tabla E.3: Resultados para la suite Enteros sin memoria ACDC.

Nombre total issued ld total issued st total commited ld
Perlbench 36,533,844 14,727,176 32,075,587
Bzip2 58,695,597 17,391,281 54,347,500
Gcc 33,181,516 10,982,480 28,515,273
Mcf 27,222,739 9,539,306 25,780,211
Gobmk 33,864,570 11,957,115 27,076,634
Hmmer 39,993,654 9,008,185 32,198,719
Sjeng 30,046,310 6,864,883 24,750,238
Libquantum 29,278,586 6,977,940 18,570,642
H264ref 49,365,710 16,326,366 48,203,947
Omnetpp 24,200,813 6,734,346 21,880,320
Astar 46,148,122 7,263,300 23,853,370

Nombre total commited st sim num refs sim num ld sim num st
Perlbench 12,600,176 44,675,773 32,075,593 12,600,180
Bzip2 17,391,239 71,738,830 54,347,567 17,391,263
Gcc 9,681,488 38,196,768 28,515,279 9,681,489
Mcf 9,083,897 34,864,123 25,780,220 9,083,903
Gobmk 10,450,938 37,527,589 27,076,645 10,450,944
Hmmer 7,310,067 39,508,799 32,198,731 7,310,068
Sjeng 6,208,686 30,958,932 24,750,246 6,208,686
Libquantum 6,977,899 25,548,548 18,570,646 6,977,902
H264ref 16,097,809 64,301,844 48,204,012 16,097,832
Omnetpp 6,468,517 28,348,853 21,880,328 6,468,525
Astar 3,518,020 27,371,393 23,853,373 3,518,020

Nombre elapsed time total refs total ld total st simcycle
Perlbench 246 58,436,869 42,079,106 16,357,763 56,977,368
Bzip2 510 71,739,160 54,347,830 17,391,330 123,915,380
Gcc 232 49,511,424 36,890,640 12,620,784 55,773,994
Mcf 200 37,732,986 28,014,650 9,718,336 41,129,611
Gobmk 252 55,522,511 41,036,898 14,485,613 61,219,900
Hmmer 238 57,978,208 46,057,066 11,921,142 53,757,656
Sjeng 227 43,374,779 35,552,229 7,822,550 55,118,350
Libquantum 612 25,548,812 18,570,829 6,977,983 263,817,483
H264ref 202 68,216,509 51,175,055 17,041,454 28,678,481
Omnetpp 182 33,686,705 26,522,056 7,164,649 39,851,402
Astar 400 70,226,593 61,002,063 9,224,530 109,455,503

Nombre IPC dl1.accesses dl1.hits dl1.misses dl1.replace
Perlbench 1.755083 44,913,372 44,330,831 582,541 582,541
Bzip2 0.807002 71,738,806 63,043,175 8,695,631 8,695,631
Gcc 1.792950 38,051,871 37,895,190 156,681 156,681
Mcf 2.431338 33,810,379 33,768,043 42,336 42,336
Gobmk 1.633456 40,496,916 40,388,830 108,086 108,086
Hmmer 1.860200 39,965,790 39,459,110 506,680 506,680
Sjeng 1.814278 33,509,077 33,450,437 58,640 58,640
Libquantum 0.379050 25,548,565 20,033,655 5,514,910 5,514,910
H264ref 3.486935 64,479,040 64,369,908 109,132 109,033
Omnetpp 2.509322 26,210,984 26,128,443 82,541 82,541
Astar 0.913613 44,269,220 42,697,704 1,571,516 1,571,516
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Nombre dl1.writebacks ul2.accesses ul2.hits ul2.misses
Perlbench 127,159 948,537 874,675 73,862
Bzip2 4,347,812 13,043,447 10,869,513 2,173,934
Gcc 119,556 668,634 618,176 50,458
Mcf 42,335 84,674 66,827 17,847
Gobmk 74,553 380,402 339,289 41,113
Hmmer 443,477 950,172 838,567 111,605
Sjeng 40,998 109,565 79,900 29,665
Libquantum 4,878,548 10,393,631 9,014,799 1,378,832
H264ref 65,451 186,374 185,078 1,296
Omnetpp 45,358 161,642 126,296 35,346
Astar 631,882 2,203,399 2,005,132 198,267

Nombre ul2.replacements ul2.writebacks ul3.accesses ul3.hits
Perlbench 582,541 16,396 90,258 83,769
Bzip2 8,695,631 1,087,032 3,260,966 1,087,032
Gcc 156,681 26,154 76,612 52,178
Mcf 42,336 15,895 33,742 23,758
obmk 108,086 21,535 62,648 46,459
Hmmer 506,680 105,464 217,069 216,339
Sjeng 58,640 17,241 46,906 26,110
Libquantum 5,514,910 1,218,118 2,596,950 1,218,118
H264ref 109,033 248 1,544 1,236
Omnetpp 82,541 13,222 48,568 38,161
Astar 1,571,516 110,218 308,485 308,424

Nombre ul3.misses ul3.replacements ul3.writebacks
Perlbench 6,489 582,541 4,805
Bzip2 2,173,934 8,695,631 1,086,589
Gcc 24,434 156,681 20,668
Mcf 9,984 42,336 8,982
Gobmk 16,189 108,086 15,454
Hmmer 730 506,680 0
Sjeng 20,796 58,640 13,974
Libquantum 1,378,832 5,514,910 1,203,782
H264ref 308 109,033 0
Omnetpp 10,407 82,541 5,062
Astar 61 1,571,516 0
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E.5.2. Resultados con la organización secuencial, suite enteros.

Tabla E.4: Resultados para la suite Enteros con la organización Secuencial.

Nombre Modo total issued ld total issued st
Perlbench Secuencial 36,063,440 14,621,797

Bzip2 Secuencial 58,695,561 17,391,281
Gcc Secuencial 32,166,608 10,761,066
Mcf Secuencial 26,795,751 9,475,726

Gobmk Secuencial 32,944,010 11,772,486
Hmmer Secuencial 39,464,351 9,306,874

Sjeng Secuencial 29,085,729 6,745,863
Libquantum Secuencial 29,278,543 6,977,939

H264ref Secuencial 49,339,898 16,392,440
Omnetpp Secuencial 23,957,653 6,730,453

Astar Secuencial 43,981,094 7,099,406

Nombre total commited ld total commited st num refs
Perlbench 32,075,588 12,600,176 44,675,773

Bzip2 54,347,500 17,391,239 71,738,830
Gcc 28,515,273 9,681,488 38,196,768
Mcf 25,780,211 9,083,897 34,864,123

Gobmk 27,076,634 10,450,938 37,527,589
Hmmer 32,198,719 7,310,067 39,508,799

Sjeng 24,750,238 6,208,686 30,958,933
Libquantum 18,570,642 6,977,899 25,548,547

H264ref 48,203,947 16,097,809 64,301,844
Omnetpp 21,880,320 6,468,517 28,348,853

Astar 23,853,369 3,518,019 27,371,393

Nombre num ld num st elapsed time
Perlbench 32,075,593 12,600,180 253

Bzip2 54,347,567 17,391,263 586
Gcc 28,515,279 9,681,489 236
Mcf 25,780,220 9,083,903 204

Gobmk 27,076,645 10,450,944 243
Hmmer 32,198,731 7,310,068 230

Sjeng 24,750,246 6,208,687 217
Libquantum 18,570,646 6,977,901 622

H264ref 48,204,012 16,097,832 216
Omnetpp 21,880,328 6,468,525 171

Astar 23,853,373 3,518,020 372

Nombre total refs total ld total st simcycle
Perlbench 57,423,642 41,380,671 16,042,971 44,962,448

Bzip2 71,739,022 54,347,714 17,391,308 122,284,866
Gcc 48,823,287 36,364,761 12,458,526 45,486,503
Mcf 37,554,117 27,813,132 9,740,985 30,982,167

Gobmk 54,804,257 40,495,075 14,309,182 51,455,987
Hmmer 58,555,881 46,615,487 11,940,394 45,334,142

Sjeng 43,042,547 35,258,506 7,784,041 46,151,444
Libquantum 25,548,806 18,570,827 6,977,979 258,063,091

H264ref 68,342,710 51,252,008 17,090,702 26,563,269
Omnetpp 33,467,038 26,342,515 7,124,523 29,632,289

Astar 69,054,880 59,943,456 9,111,424 91,578,623
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Nombre IPC dl1.access dl1.hits dl1.misses dl1.replaces
Perlbench 2.224078 37,774,068 37,189,952 584,116 584,116

Bzip2 0.817763 39,130,447 30,434,813 8,695,634 8,695,634
Gcc 2.198454 30,437,556 30,279,922 157,634 157,634
Mcf 3.227663 23,184,320 23,141,998 42,322 42,322

Gobmk 1.943408 37,497,456 37,389,143 108,313 108,313
Hmmer 2.205843 34,866,467 34,359,770 506,697 506,697

Sjeng 2.166780 29,136,566 29,077,430 59,136 59,136
Libquantum 0.387502 20,474,671 14,959,760 5,514,911 5,514,911

H264ref 3.764597 64,364,605 64,253,885 110,720 110,621
Omnetpp 3.374697 23,738,468 23,655,316 83,152 83,152

Astar 1.091958 31,588,356 30,016,978 1,571,378 1,571,378

Nombre dl1.wb ul2.access ul2.hits ul2.misses ul2.replaces
Perlbench 127,698 944,531 871,195 73,336 584,116

Bzip2 4,347,813 13,043,451 10,869,517 2,173,934 8,695,634
Gcc 119,630 670,148 619,588 50,560 157,634
Mcf 42,315 84,639 66,773 17,866 42,322

Gobmk 74,567 378,235 337,540 40,695 108,313
Hmmer 443,501 950,211 838,580 111,631 506,697

Sjeng 41,259 110,257 80,590 29,667 59,136
Libquantum 4,878,547 10,393,629 9,014,799 1,378,830 5,514,911

H264ref 66,185 188,690 187,368 1,322 110,621
Omnetpp 45,466 161,856 126,468 35,388 83,152

Astar 631,815 2,203,194 2,004,912 198,282 1,571,378

Nombre ul2.wb ul3.access ul3.hits ul3.misses ul3.replaces
Perlbench 16,279 89,615 83,898 5,717 584,116

Bzip2 1,087,032 3,260,966 1,087,032 2,173,934 8,695,634
Gcc 26,161 76,721 52,867 23,854 157,634
Mcf 15,895 33,761 24,707 9,054 42,322

Gobmk 21,466 62,161 48,398 13,763 108,313
Hmmer 105,469 217,100 216,369 731 506,697

Sjeng 17,247 46,914 26,760 20,154 59,136
Libquantum 1,218,117 2,596,947 1,218,117 1,378,830 5,514,911

H264ref 248 1,570 1,255 315 110,621
Omnetpp 13,241 48,629 38,299 10,330 83,152

Astar 110,237 308,519 308,458 61 1,571,378

Nombre ul3.wb dtlb.access dtlb.hits dtlb.misses hitsDC
Perlbench 5,629 12,600,554 12,599,467 1,087 18,876,151

Bzip2 1,086,589 17,391,703 17,374,713 16,990 49,999,619
Gcc 22,301 9,681,790 9,681,402 388 16,275,515
Mcf 105 9,084,408 9,079,116 5,292 19,084,513

Gobmk 13,698 10,451,222 10,444,460 6,762 13,301,315
Hmmer 0 7,310,453 7,310,443 10 12,132,845

Sjeng 6,724 6,208,972 6,194,034 14,938 10,510,199
Libquantum 1,187,397 6,978,400 6,959,319 19,081 12,051,828

H264ref 0 16,098,081 16,098,079 2 16,420,582
Omnetpp 0 6,468,856 6,468,671 185 9,073,932

Astar 0 3,518,400 3,518,392 8 16,143,500

Nombre missDC totAccesosDC hitsAC missAC totAccesosAC
Perlbench 25,182,954 44,059,105 11,939 25,171,015 25,182,954

Bzip2 21,739,208 71,738,827 8,695,565 13,043,643 21,739,208
Gcc 20,820,881 37,096,396 76,639 20,744,242 20,820,881
Mcf 14,100,423 33,184,936 14 14,100,409 14,100,423

Gobmk 27,055,545 40,356,860 107,766 26,947,779 27,055,545
Hmmer 27,556,412 39,689,257 13,324,869 14,231,543 27,556,412

Sjeng 22,927,979 33,438,178 11,334 22,916,645 22,927,979
Libquantum 13,496,775 25,548,603 3,365,643 10,131,132 13,496,775

H264ref 48,267,621 64,688,203 4,864,193 43,403,428 48,267,621
Omnetpp 17,271,352 26,345,284 1,272,405 15,998,947 17,271,352

Astar 28,070,337 44,213,837 8,084,037 19,986,300 28,070,337

Nombre hitsDC ld missDC ld totDC ld hitsAC ld missAC ld
Perlbench 6,275,975 25,182,954 31,458,929 11,939 25,171,015

Bzip2 32,608,380 21,739,208 54,347,588 8,695,565 13,043,643
Gcc 6,594,027 20,820,881 27,414,908 76,639 20,744,242
Mcf 10,000,616 14,100,423 24,101,039 14 14,100,409

Gobmk 2,850,377 27,055,545 29,905,922 107,766 26,947,779
Hmmer 4,822,778 27,556,412 32,379,190 13,324,869 14,231,543

Sjeng 4,301,513 22,927,979 27,229,492 11,334 22,916,645
Libquantum 5,073,929 13,496,775 18,570,704 3,365,643 10,131,132

H264ref 322,773 48,267,621 48,590,394 4,864,193 43,403,428
Omnetpp 2,605,415 17,271,352 19,876,767 1,272,405 15,998,947

Astar 12,625,481 28,070,337 40,695,818 8,084,037 19,986,300
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Nombre totAC ld hitsDC st missDC st totDC st
Perlbench 25,182,954 12,600,176 0 12,600,176

Bzip2 21,739,208 17,391,239 0 17,391,239
Gcc 20,820,881 9,681,488 0 9,681,488
Mcf 14,100,423 9,083,897 0 9,083,897

Gobmk 27,055,545 10,450,938 0 10,450,938
Hmmer 27,556,412 7,310,067 0 7,310,067

Sjeng 22,927,979 6,208,686 0 6,208,686
Libquantum 13,496,775 6,977,899 0 6,977,899

H264ref 48,267,621 16,097,809 0 16,097,809
Omnetpp 17,271,352 6,468,517 0 6,468,517

Astar 28,070,337 3,518,019 0 3,518,019



Apéndice E. Resultados, costes, métricas y análisis previo. 64

E.5.3. Resultados con la organización paralela, suite enteros.

Tabla E.5: Resultados para la suite Enteros con la organización paralela.

Nombre Organización total issued ld total issued st
Perlbench Paralela 36,138,911 14,649,682

Bzip2 Paralela 58,695,571 17,391,278
Gcc Paralela 32,362,570 10,688,680
Mcf Paralela 26,880,949 9,474,315

Gobmk Paralela 33,091,062 11,836,970
Hmmer Paralela 39,002,977 9,201,474

Sjeng Paralela 29,268,328 6,760,013
Libquantum Paralela 29,278,541 6,977,941

H264ref Paralela 49,406,362 16,396,949
Omnetpp Paralela 24,055,791 6,741,887

Astar Paralela 44,406,262 7,148,681

Nombre total commited ld total commited st num refs
Perlbench 32,075,588 12,600,176 44,675,773

Bzip2 54,347,500 17,391,239 71,738,830
Gcc 28,515,273 9,681,488 38,196,768
Mcf 25,780,211 9,083,896 34,864,125

Gobmk 27,076,634 10,450,937 37,527,588
Hmmer 32,198,719 7,310,067 39,508,800

Sjeng 24,750,238 6,208,686 30,958,933
Libquantum 18,570,642 6,977,899 25,548,548

H264ref 48,203,947 16,097,809 64,301,844
Omnetpp 21,880,320 6,468,517 28,348,853

Astar 23,853,369 3,518,019 27,371,393

Nombre num ld num st elapsed time
Perlbench 32,075,593 12,600,180 235

Bzip2 54,347,567 17,391,263 501
Gcc 28,515,279 9,681,489 208
Mcf 25,780,222 9,083,903 170

Gobmk 27,076,644 10,450,944 230
Hmmer 32,198,731 7,310,069 218

Sjeng 24,750,246 6,208,687 204
Libquantum 18,570,646 6,977,902 596

H264ref 48,204,012 16,097,832 207
Omnetpp 21,880,328 6,468,525 162

Astar 23,853,373 3,518,020 358

Nombre total refs total ld total st simcycle
Perlbench 58,162,860 41,928,160 16,234,700 43,836,085

Bzip2 71,739,050 54,347,732 17,391,318 121,197,901
Gcc 49,120,300 36,585,172 12,535,128 44,424,141
Mcf 37,594,200 27,866,769 9,727,431 29,969,716

Gobmk 55,344,803 40,907,674 14,437,129 50,258,443
Hmmer 59,060,906 47,091,880 11,969,026 44,676,855

Sjeng 43,517,279 35,675,719 7,841,560 44,637,907
Libquantum 25,548,810 18,570,827 6,977,983 254,755,438

H264ref 68,606,115 51,474,836 17,131,279 26,340,662
Omnetpp 33,682,897 26,514,237 7,168,660 29,041,978

Astar 69,914,134 60,713,140 9,200,994 90,815,335
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Nombre IPC dl1.access dl1.hits dl1.misses dl1.replaces
Perlbench 2.281226 44,346,800 43,763,511 583,289 583,289

Bzip2 0.825097 71,738,831 63,043,198 8,695,633 8,695,633
Gcc 2.251028 37,206,785 37,049,698 157,087 157,087
Mcf 3.336702 33,330,471 33,288,137 42,334 42,334

Gobmk 1.989715 40,505,627 40,397,212 108,415 108,415
Hmmer 2.238295 39,919,064 39,412,388 506,676 506,676

Sjeng 2.240248 33,690,541 33,631,048 59,493 59,493
Libquantum 0.392533 25,548,601 20,033,690 5,514,911 5,514,911

H264ref 3.796412 64,732,808 64,621,972 110,836 110,737
Omnetpp 3.443292 26,366,227 26,283,568 82,659 82,659

Astar 1.101136 44,480,868 42,908,523 1,572,345 1,572,345

Nombre dl1.wb ul2.access ul2.hits ul2.misses ul2.replaces
Perlbench 127,446 945,832 872,402 73,430 583,289

Bzip2 4,347,812 13,043,449 10,869,515 2,173,934 8,695,633
Gcc 119,611 667,031 616,545 50,486 157,087
Mcf 42,333 84,669 66,822 17,847 42,334

Gobmk 74,602 379,073 338,294 40,779 108,415
Hmmer 443,480 950,169 838,527 111,642 506,676

Sjeng 41,481 110,789 81,123 29,666 59,493
Libquantum 4,878,548 10,393,630 9,014,799 1,378,831 5,514,911

H264ref 66,281 188,908 187,592 1,316 110,737
Omnetpp 45,374 161,547 126,260 35,287 82,659

Astar 631,940 2,204,286 2,006,060 198,226 1,572,345

Nombre ul2.wb ul3.access ul3.hits ul3.misses ul3.replaces
Perlbench 16,359 89,789 84,069 5,720 583,289

Bzip2 1,087,032 3,260,966 1,087,032 2,173,934 8,695,633
Gcc 26,145 76,631 52,773 23,858 157,087
Mcf 15,892 33,739 24,685 9,054 42,334

Gobmk 21,467 62,246 48,404 13,842 108,415
Hmmer 105,474 217,116 216,386 730 506,676

Sjeng 17,251 46,917 26,763 20,154 59,493
Libquantum 1,218,118 2,596,949 1,218,118 1,378,831 5,514,911

H264ref 248 1,564 1,250 314 110,737
Omnetpp 13,225 48,512 38,180 10,332 82,659

Astar 110,202 308,428 308,367 61 1,572,345

Nombre ul3.wb dtlb.access dtlb.hits dtlb.misses aciertosDC
Perlbench 5,632 12,600,551 12,599,464 1,087 18,247,964

Bzip2 1,086,589 17,391,703 17,374,713 16,990 49,999,619
Gcc 22,304 9,681,788 9,681,400 388 15,623,194
Mcf 105 9,084,362 9,079,070 5,292 18,270,092

Gobmk 13,779 10,451,218 10,444,456 6,762 13,158,271
Hmmer 0 7,310,453 7,310,443 10 12,069,335

Sjeng 6,724 6,208,964 6,194,026 14,938 9,512,894
Libquantum 1,187,398 6,978,400 6,959,319 19,081 12,051,828

H264ref 0 16,098,081 16,098,079 2 16,405,225
Omnetpp 0 6,468,857 6,468,672 185 8,764,830

Astar 0 3,518,403 3,518,395 8 15,949,764

Nombre missDC totAccesosDC hitsAC missAC totAccesosAC
Perlbench 26,098,836 44,346,800 18,290 26,080,546 26,098,836

Bzip2 21,739,212 71,738,831 8,695,565 13,043,647 21,739,212
Gcc 21,583,591 37,206,785 64,564 21,519,027 21,583,591
Mcf 15,060,379 33,330,471 50,525 15,009,854 15,060,379

Gobmk 27,347,356 40,505,627 128,218 27,219,138 27,347,356
Hmmer 27,849,729 39,919,064 13,218,866 14,630,863 27,849,729

Sjeng 24,177,647 33,690,541 14,112 24,163,535 24,177,647
Libquantum 13,496,773 25,548,601 3,365,643 10,131,130 13,496,773

H264ref 48,327,583 64,732,808 4,867,141 43,460,442 48,327,583
Omnetpp 17,601,397 26,366,227 1,309,733 16,291,664 17,601,397

Astar 28,531,104 44,480,868 8,317,713 20,213,391 28,531,104

Nombre hitsDC ld missDC ld totDC ld hitsAC ld missAC ld
Perlbench 5,647,788 26,098,836 31,746,624 18,290 26,080,546

Bzip2 32,608,380 21,739,212 54,347,592 8,695,565 13,043,647
Gcc 5,941,706 21,583,591 27,525,297 64,564 21,519,027
Mcf 9,186,196 15,060,379 24,246,575 50,525 15,009,854

Gobmk 2,707,334 27,347,356 30,054,690 128,218 27,219,138
Hmmer 4,759,268 27,849,729 32,608,997 13,218,866 14,630,863

Sjeng 3,304,208 24,177,647 27,481,855 14,112 24,163,535
Libquantum 5,073,929 13,496,773 18,570,702 3,365,643 10,131,130

H264ref 307,416 48,327,583 48,634,999 4,867,141 43,460,442
Omnetpp 2,296,313 17,601,397 19,897,710 1,309,733 16,291,664

Astar 12,431,745 28,531,104 40,962,849 8,317,713 20,213,391
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Nombre totAC ld hitsDC st missDC st totDC st
Perlbench 26,098,836 12,600,176 0 12,600,176

Bzip2 21,739,212 17,391,239 0 17,391,239
Gcc 21,583,591 9,681,488 0 9,681,488
Mcf 15,060,379 9,083,896 0 9,083,896

Gobmk 27,347,356 10,450,937 0 10,450,937
Hmmer 27,849,729 7,310,067 0 7,310,067

Sjeng 24,177,647 6,208,686 0 6,208,686
Libquantum 13,496,773 6,977,899 0 6,977,899

H264ref 48,327,583 16,097,809 0 16,097,809
Omnetpp 17,601,397 6,468,517 0 6,468,517

Astar 28,531,104 3,518,019 0 3,518,019
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E.6. Resultados suite float

E.6.1. Resultados sin el uso de la memoria ACDC, suite float.

Tabla E.6: Resultados para la suite Float sin memoria ACDC.

Nombre total issued ld total issued st total commited ld
Bwaves 30,944,798 6,965,494 29,923,965
Gamess 25,319,343 13,063,955 24,345,014

Milc 35,923,940 18,754,328 35,913,822
Zeusmp 29,631,475 11,763,219 28,070,343

Gromacs 44,835,144 9,037,666 36,938,169
CactusADM 38,314,366 7,744,184 36,129,566

Leslie3d 27,216,538 2,603,275 26,234,970
Namd 29,060,723 9,438,455 27,218,280
DealII 18,166,447 2,993,322 16,337,412
Soplex 19,597,625 105,525 15,800,342
Povray 39,063,949 11,617,954 35,534,327

Calculix 26,053,320 14,887,899 24,496,664
GemsFDTD 22,975,413 11,570,977 22,330,291

Tonto 21,760,633 8,676,269 21,063,627
Lbm 34,188,518 5,375,783 28,757,967
Wrf 27,283,832 10,634,638 26,309,667

Sphin3 28,623,333 10,572,972 26,846,836

Nombre total commited st num refs num ld num st
Bwaves 6,965,171 36,889,164 29,923,990 6,965,174
Gamess 12,332,225 36,677,263 24,345,030 12,332,233

Milc 18,754,080 54,668,036 35,913,909 18,754,127
Zeusmp 11,760,980 39,831,329 28,070,347 11,760,982

Gromacs 8,654,623 45,592,814 36,938,183 8,654,631
CactusADM 7,738,762 43,868,356 36,129,588 7,738,768

Leslie3d 2,603,273 28,838,274 26,234,997 2,603,277
Namd 8,884,583 36,102,879 27,218,289 8,884,590
DealII 2,955,000 19,292,420 16,337,420 2,955,000
Soplex 102,375 15,902,720 15,800,345 102,375
Povray 10,392,424 45,926,784 35,534,350 10,392,434

Calculix 13,723,752 38,220,426 24,496,668 13,723,758
GemsFDTD 11,197,269 33,527,566 22,330,297 11,197,269

Tonto 8,463,067 29,526,701 21,063,634 8,463,067
Lbm 5,375,259 34,133,239 28,757,980 5,375,259
Wrfo 10,299,486 36,609,173 26,309,677 10,299,496

Sphin3 9,871,312 36,718,173 26,846,842 9,871,331

Nombre elapsed time total refs total ld total st simcycle
Bwaves 305 36,948,622 29,963,130 6,985,492 88,428,627
Gamess 190 40,561,116 26,707,916 13,853,200 38,173,252

Milc 246 54,703,362 35,948,457 18,754,905 47,495,539
Zeusmp 300 39,940,363 28,174,538 11,765,825 99,618,466

Gromacs 281 57,149,815 47,580,305 9,569,510 69,881,323
CactusADM 603 44,020,043 36,248,761 7,771,282 196,892,878

Leslie3d 279 29,018,573 26,414,922 2,603,651 92,778,148
Namd 292 39,539,354 29,942,586 9,596,768 41,879,602
DealII 413 21,294,196 18,104,436 3,189,760 60,188,848
Soplex 373 17,980,799 17,871,755 109,044 130,643,708
Povray 257 56,934,714 44,011,139 12,923,575 50,874,121

Calculix 210 44,253,239 28,160,014 16,093,225 40,515,597
GemsFDTD 192 35,821,408 23,785,254 12,036,154 35,528,758

Tonto 185 32,107,487 22,814,509 9,292,978 34,312,635
Lbm 605 34,208,632 28,832,157 5,376,475 99,906,761
Wrf 220 38,323,768 27,385,293 10,938,475 50,275,529

Sphin3 202 40,925,588 29,822,959 11,102,629 40,313,223
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Nombre IPC dl1.access dl1.hits dl1.misses dl1.replaces
Bwaves 1.130856 33,568,079 32,886,160 681,919 681,919
Gamess 2.619635 31,707,172 31,707,111 61 60

Milc 2.105461 54,667,514 50,022,901 4,644,613 4,644,613
Zeusmp 1.003830 39,829,079 38,218,213 1,610,866 1,610,866

Gromacs 1.430998 48,276,234 47,220,559 1,055,675 1,055,675
CactusADM 0.507890 30,363,738 27,731,075 2,632,663 2,632,663

Leslie3d 1.077840 28,839,092 27,417,962 1,421,130 1,421,130
Namd 2.387797 35,108,249 35,094,118 14,131 14,131
DealII 1.661437 18,810,793 17,479,584 1,331,209 1,331,209
Soplex 0.765441 16,018,216 13,481,640 2,536,576 2,536,573
Povray 1.965636 44,524,283 44,411,366 112,917 112,731

Calculix 2.468185 36,193,512 36,193,151 361 358
GemsFDTD 2.814621 31,462,245 31,462,237 8 0

Tonto 2.914378 28,208,488 28,207,672 816 816
Lbm 1.000933 34,195,983 28,818,481 5,377,502 5,377,502
Wrf 1.989039 32,266,333 31,060,748 1,205,585 1,205,585

Sphin3 2.480576 35,843,363 35,821,428 21,935 21,935

Nombre dl1.wb ul2.access ul2.hits ul2.misses
Bwaves 323,065 1,005,161 834,657 170,504
Gamess 40 177 151 26

Milc 4,644,299 9,288,972 8,127,582 1,161,390
Zeusmp 87,787 1,700,020 1,306,245 393,775

Gromacs 210,221 1,266,173 1,178,010 88,163
CactusADM 2,579,534 5,212,197 2,344,075 2,868,122

Leslie3d 560,534 1,981,714 1,621,680 360,034
Namd 14,131 28,272 24,731 3,541
DealII 37,045 1,368,254 1,359,246 9,008
Soplex 10,670 2,547,248 238,860 2,308,388
Povray 18,492 137,597 137,544 53

Calculix 152 611 573 38
GemsFDTD 0 46,140 46,131 9

Tonto 267 30,565 30,542 23
Lbm 3,962,904 9,340,406 7,925,807 1,414,599
Wrf 1,143,473 2,351,042 1,859,007 492,035

Sphin3 10,462 32,429 26,946 5,483

Nombre ul2.replaces ul2.wb ul3.access ul3.hits ul3.misses
Bwaves 170,504 79,298 249,802 79,346 170,456
Gamess 8 1 27 1 26

Milc 1,161,390 1,161,177 2,322,567 1,161,515 1,161,052
Zeusmp 393,775 22,798 416,573 102,857 313,716

Gromacs 88,163 29,715 117,878 95,316 22,562
CactusADM 2,868,122 2,579,492 5,447,614 2,864,858 2,582,756

Leslie3d 360,034 143,126 503,160 143,194 359,966
Namd 3,541 3,532 7,073 3,537 3,536
DealII 9,008 7,803 16,811 16,811 0
Soplex 2,308,388 5,471 2,313,859 2,313,649 1,930
Povray 0 0 53 0 53

Calculix 9 0 38 0 38
GemsFDTD 0 0 9 0 9

Tonto 16 5 28 11 17
Lbm 1,414,599 1,060,908 2,475,507 1,060,908 1,414,599
Wrf 492,035 392,715 884,750 534,116 350,634

Sphin3 5,483 2,722 8,205 2,827 5,378

Nombre ul3.replaces ul3.wb dtlb.access dtlb.hits dtlb.misses
Bwaves 170,456 78,978 36,889,780 36,887,113 2,667
Gamess 0 0 37,319,028 37,319,028 0

Milc 1,161,052 1,161,002 54,676,682 54,621,010 55,672
Zeusmp 313,716 26,230 39,836,380 39,831,209 5,171

Gromacs 13,352 6,556 50,526,649 50,524,435 2,214
CactusADM 2,582,756 2,579,481 43,911,648 41,485,058 2,426,590

Leslie3d 359,966 147,844 28,839,110 28,833,283 5,827
Namd 0 0 37,459,227 37,459,172 55
DealII 0 0 19,383,732 19,383,730 2
Soplex 1,765 51 16,046,657 16,019,275 27,382
Povray 0 0 48,629,824 48,629,821 3

Calculix 0 0 39,151,970 39,151,970 0
GemsFDTD 0 0 33,819,623 33,819,623 0

Tonto 0 0 29,824,402 29,824,402 0
Lbm 1,414,599 1,060,907 34,195,983 34,173,882 22,101
Wrf 350,634 338,295 37,260,887 37,252,688 8,199

Sphin3 8 0 38,010,782 38,010,697 85
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E.6.2. Resultados con la organización secuencial, suite float.

Tabla E.7: Resultados para la suite float con la organización Secuencial.

NOMBRE Modo total issued ld total issued st total commited ld
Bwaves Secuencial 30,944,332 6,965,314 29,923,965
Gamess Secuencial 25,204,354 12,938,941 24,345,014

Milc Secuencial 35,923,578 18,754,345 35,913,822
Zeusmp Secuencial 29,627,113 11,762,794 28,070,343

Gromacs Secuencial 44,557,242 9,080,031 36,938,169
CactusADM Secuencial 38,266,599 7,744,186 36,129,566

Leslie3d Secuencial 27,216,449 2,603,279 26,234,970
Namd Secuencial 28,518,241 9,302,840 27,218,279
DealII Secuencial 18,131,708 2,998,183 16,337,412
Soplex Secuencial 19,588,781 105,225 15,800,342
Povray Secuencial 38,439,834 11,488,788 35,534,327

Calculix Secuencial 25,606,071 14,504,747 24,496,664
GemsFDTD Secuencial 22,979,116 11,531,290 22,330,291

Tonto Secuencial 21,678,396 8,651,850 21,063,627
Lbm Secuencial 34,188,852 5,375,918 28,757,967
Wrf Secuencial 27,283,914 10,637,762 26,309,667

Sphin3 Secuencial 28,636,127 10,553,354 26,846,836

NOMBRE total commited st num refs num ld num st elapsed time
Bwaves 6,965,171 36,889,164 29,923,990 6,965,174 312
Gamess 12,332,225 36,677,263 24,345,030 12,332,233 173

Milc 18,754,080 54,668,036 35,913,909 18,754,127 263
Zeusmp 11,760,980 39,831,329 28,070,347 11,760,982 306

Gromacs 8,654,623 45,592,814 36,938,183 8,654,631 272
CactusADM 7,738,762 43,868,356 36,129,588 7,738,768 584

Leslie3d 2,603,273 28,838,274 26,234,997 2,603,277 269
Namd 8,884,581 36,102,879 27,218,289 8,884,590 179
DealII 2,955,000 19,292,420 16,337,420 2,955,000 201
Soplex 102,375 15,902,720 15,800,345 102,375 357
Povray 10,392,424 45,926,784 35,534,350 10,392,434 239

Calculix 13,723,752 38,220,426 24,496,668 13,723,758 188
GemsFDTD 11,197,269 33,527,566 22,330,297 11,197,269 177

Tonto 8,463,067 29,526,701 21,063,634 8,463,067 171
Lbm 5,375,259 34,133,239 28,757,980 5,375,259 327
Wrf 10,299,486 36,609,171 26,309,676 10,299,495 215

Sphin3 9,871,314 36,718,177 26,846,845 9,871,332 186

NOMBRE total refs total ld total st simcycle IPC
Bwaves 36,947,825 29,963,134 6,984,691 86,719,993 1.153137
Gamess 40,464,290 26,555,967 13,908,323 27,487,470 3.638021

Milc 54,703,306 35,948,417 18,754,889 47,001,904 2.127574
Zeusmp 39,938,892 28,173,474 11,765,418 96,572,388 1.035493

Gromacs 56,464,617 46,926,614 9,538,003 62,145,903 1.609117
CactusADM 43,993,173 36,227,265 7,765,908 187,794,222 0.532498

Leslie3d 29,021,628 26,417,731 2,603,897 85,915,223 1.163938
Namd 39,516,675 29,919,896 9,596,779 31,130,367 3.212298
DealII 20,915,512 17,767,114 3,148,398 51,648,405 1.936168
Soplex 17,941,832 17,833,195 108,637 120,048,707 0.832995
Povray 55,200,236 42,415,988 12,784,248 43,193,685 2.315153

Calculix 43,725,270 27,814,836 15,910,434 30,140,362 3.317810
GemsFDTD 35,842,123 23,795,172 12,046,951 28,717,489 3.482199

Tonto 32,065,279 22,808,158 9,257,121 27,898,224 3.584458
Lbm 34,208,755 28,832,242 5,376,513 97,969,987 1.020721
Wrf 38,108,783 27,277,995 10,830,788 47,652,360 2.098532

Sphin3 41,600,419 30,452,905 11,147,514 31,634,418 3.161114
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NOMBRE dl1.access dl1.hits dl1.miss dl1.replaces dl1.wb
Bwaves 29,571,285 28,889,365 681,920 681,920 323,065
Gamess 28,197,306 28,197,243 63 62 42

Milc 23,358,801 18,714,169 4,644,632 4,644,632 4,644,315
Zeusmp 37,546,317 35,935,669 1,610,648 1,610,648 87,787

Gromacs 41,849,924 40,748,825 1,101,099 1,101,099 211,403
CactusADM 22,565,292 19,932,790 2,632,502 2,632,502 2,579,533

Leslie3d 12,240,087 10,818,959 1,421,128 1,421,128 560,532
Namd 22,934,945 22,920,814 14,131 14,131 14,128
DealII 17,523,726 16,192,514 1,331,212 1,331,212 37,046
Soplex 10,252,824 7,704,820 2,548,004 2,548,004 10,971
Povray 38,964,479 38,851,561 112,918 112,733 18,493

Calculix 25,919,460 25,919,100 360 358 152
GemsFDTD 24,060,756 24,060,748 8 0 0

Tonto 26,036,575 26,035,755 820 820 269
Lbm 15,970,948 10,595,685 5,375,263 5,375,263 3,960,719
Wrf 29,368,049 28,162,298 1,205,751 1,205,751 1,143,473

Sphin3 31,477,891 31,455,978 21,913 21,913 10,459

NOMBRE ul2.access ul2.hits ul2.miss ul2.replaces ul2.wb
Bwaves 1,005,162 834,658 170,504 170,504 79,298
Gamess 169 145 24 8 2

Milc 9,289,006 8,127,616 1,161,390 1,161,390 1,161,177
Zeusmp 1,699,796 1,306,020 393,776 393,776 22,798

Gromacs 1,312,778 1,218,547 94,231 94,231 29,985
CactusADM 5,212,035 2,342,723 2,869,312 2,869,312 2,579,491

Leslie3d 1,981,710 1,621,677 360,033 360,033 143,126
Namd 28,268 24,728 3,540 3,540 3,532
DealII 1,368,258 1,359,249 9,009 9,009 7,800
Soplex 2,558,977 248,136 2,310,841 2,310,841 5,330
Povray 137,600 137,546 54 0 0

Calculix 603 567 36 8 0
GemsFDTD 46,136 46,128 8 0 0

Tonto 30,050 30,034 16 12 3
Lbm 9,335,982 7,921,439 1,414,543 1,414,543 1,060,907
Wrf 2,351,200 1,859,052 492,148 492,148 392,760

Sphin3 32,400 26,917 5,483 5,483 2,724

NOMBRE ul3.access ul3.hits ul3.miss ul3.replaces ul3.wb
Bwaves 249,802 79,563 170,239 170,239 80,510
Gamess 26 2 24 0 0

Milc 2,322,567 1,161,516 1,161,051 1,161,051 1,161,002
Zeusmp 416,574 103,260 313,314 313,314 30,635

Gromacs 124,216 106,473 17,743 4 4
CactusADM 5,448,803 2,866,399 2,582,404 2,582,404 2,579,481

Leslie3d 503,159 143,226 359,933 359,933 153,496
Namd 7,072 3,536 3,536 0 0
DealII 16,809 16,809 0 0 0
Soplex 2,316,171 2,315,830 341 0 0
Povray 54 0 54 0 0

Calculix 36 0 36 0 0
GemsFDTD 8 0 8 0 0

Tonto 19 10 9 0 0
Lbm 2,475,450 1,060,907 1,414,543 1,414,543 1,060,907
Wrf 884,908 534,559 350,349 350,349 338,174

Sphin3 8,207 2,831 5,376 0 0

NOMBRE dtlb.access dtlb.hits dtlb.miss hitDC missDC
Bwaves 6,965,530 6,964,260 1,270 10,650,914 22,606,114
Gamess 12,332,542 12,332,542 0 15,737,229 15,865,095

Milc 34,651,009 34,595,356 55,653 50,062,861 4,604,722
Zeusmp 11,761,252 11,760,876 376 14,034,911 25,785,402

Gromacs 8,654,901 8,654,590 311 15,003,076 33,195,311
CactusADM 7,751,449 5,371,331 2,380,118 16,176,765 14,826,530

Leslie3d 2,606,792 2,604,489 2,303 19,203,339 9,636,814
Namd 8,885,095 8,885,040 55 20,549,272 14,050,364
DealII 2,955,375 2,955,373 2 4,498,737 14,568,798
Soplex 102,746 102,720 26 5,939,540 10,150,512
Povray 10,392,785 10,392,784 1 15,039,162 28,653,612

Calculix 13,724,117 13,724,117 0 23,771,689 12,195,718
GemsFDTD 11,197,631 11,197,631 0 18,865,581 12,868,612

Tonto 8,463,420 8,463,420 0 10,691,152 17,573,569
Lbm 5,375,735 5,359,159 16,576 18,226,247 15,969,788
Wrf 10,300,063 10,292,424 7,639 12,713,966 19,068,580

Sphin3 9,871,674 9,871,633 41 14,421,731 21,612,600
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NOMBRE totAcceDC hitAC missAC totAccAC hitDC ld
Bwaves 33,257,028 17 22,606,097 22,606,114 3,685,743
Gamess 31,602,324 58,370 15,806,725 15,865,095 3,405,004

Milc 54,667,583 32 4,604,690 4,604,722 31,308,781
Zeusmp 39,820,313 57 25,785,345 25,785,402 2,273,931

Gromacs 48,198,387 12 33,195,299 33,195,311 6,348,453
CactusADM 31,003,295 622,718 14,203,812 14,826,530 8,438,003

Leslie3d 28,840,153 1,599,051 8,037,763 9,636,814 16,600,066
Namd 34,599,636 12 14,050,352 14,050,364 11,664,691
DealII 19,067,535 9 14,568,789 14,568,798 1,543,737
Soplex 16,090,052 551,644 9,598,868 10,150,512 5,837,165
Povray 43,692,774 58,549 28,595,063 28,653,612 4,646,738

Calculix 35,967,407 81,999 12,113,719 12,195,718 10,047,937
GemsFDTD 31,734,193 25,625 12,842,987 12,868,612 7,668,312

Tonto 28,264,721 18,932 17,554,637 17,573,569 2,228,085
Lbm 34,196,035 3,317,181 12,652,607 15,969,788 18,225,087
Wrf 31,782,546 6 19,068,574 19,068,580 2,414,480

Sphin3 36,034,331 23,998 21,588,602 21,612,600 4,550,417

NOMBRE missDC ld totDC ld hitAC ld missAC ld totAC ld
Bwaves 22,606,114 26,291,857 17 22,606,097 22,606,114
Gamess 15,865,095 19,270,099 58,370 15,806,725 15,865,095

Milc 4,604,722 35,913,503 32 4,604,690 4,604,722
Zeusmp 25,785,402 28,059,333 57 25,785,345 25,785,402

Gromacs 33,195,311 39,543,764 12 33,195,299 33,195,311
CactusADM 14,826,530 23,264,533 622,718 14,203,812 14,826,530

Leslie3d 9,636,814 26,236,880 1,599,051 8,037,763 9,636,814
Namd 14,050,364 25,715,055 12 14,050,352 14,050,364
DealII 14,568,798 16,112,535 9 14,568,789 14,568,798
Soplex 10,150,512 15,987,677 551,644 9,598,868 10,150,512
Povray 28,653,612 33,300,350 58,549 28,595,063 28,653,612

Calculix 12,195,718 22,243,655 81,999 12,113,719 12,195,718
GemsFDTD 12,868,612 20,536,924 25,625 12,842,987 12,868,612

Tonto 17,573,569 19,801,654 18,932 17,554,637 17,573,569
Lbm 10,595,689 28,820,776 3,317,181 7,278,508 10,595,689
Wrf 19,068,580 21,483,060 6 19,068,574 19,068,580

Sphin3 21,612,600 26,163,017 23,998 21,588,602 21,612,600

NOMBRE hitDC st missDC st totDC st
Bwaves 6,965,171 0 6,965,171
Gamess 12,332,225 0 12,332,225

Milc 18,754,080 0 18,754,080
Zeusmp 11,760,980 0 11,760,980

Gromacs 8,654,623 0 8,654,623
CactusADM 7,738,762 0 7,738,762

Leslie3d 2,603,273 0 2,603,273
Namd 8,884,581 0 8,884,581
DealII 2,955,000 0 2,955,000
Soplex 102,375 0 102,375
Povray 10,392,424 0 10,392,424

Calculix 13,723,752 0 13,723,752
GemsFDTD 11,197,269 0 11,197,269

Tonto 8,463,067 0 8,463,067
Lbm 1,160 5,374,099 5,375,259
Wrf 10,299,486 0 10,299,486

Sphin3 9,871,314 0 9,871,314
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E.6.3. Resultados con la organización paralela, suite float.

Tabla E.8: Resultados para la suite float con la organización Paralela.

NOMBRE Modo total issued ld total issued st total commited ld
Bwaves Paralelo 30,944,343 6,965,314 29,923,965
Gamess Paralelo 25,233,153 12,996,461 24,345,014

Milc Paralelo 35,923,468 18,754,314 35,913,820
Zeusmp Paralelo 29,627,222 11,762,865 28,070,343

Gromacs Paralelo 44,686,974 9,087,555 36,938,169
CactusADM Paralelo 38,267,133 7,744,186 36,129,566

Leslie3d Paralelo 27,216,449 2,603,279 26,234,970
Namd Paralelo 28,642,538 9,314,123 27,218,280
DealII Paralelo 18,107,651 2,998,062 16,337,412
Soplex Paralelo 19,599,241 105,525 15,800,342
Povray Paralelo 38,481,386 11,503,461 35,534,327

Calculix Paralelo 25,704,151 14,513,601 24,496,664
GemsFDTD Paralelo 22,968,295 11,525,310 22,330,291

Tonto Paralelo 21,736,011 8,670,452 21,063,627
Lbm Paralelo 34,188,638 5,375,895 28,757,967
Wrf Paralelo 27,290,106 10,637,724 26,309,667

Sphin3 Paralelo 28,698,196 10,657,819 26,846,836

NOMBRE total commited st num refs num ld num st elapsed time
Bwaves 6,965,171 36,889,164 29,923,990 6,965,174 298
Gamess 12,332,225 36,677,262 24,345,029 12,332,233 162

Milc 18,754,079 54,668,038 35,913,910 18,754,128 253
Zeusmp 11,760,980 39,831,329 28,070,347 11,760,982 289

Gromacs 8,654,623 45,592,814 36,938,183 8,654,631 259
CactusADM 7,738,762 43,868,356 36,129,588 7,738,768 557

Leslie3d 2,603,273 28,838,274 26,234,997 2,603,277 257
Namd 8,884,583 36,102,879 27,218,289 8,884,590 168
DealII 2,955,000 19,292,420 16,337,420 2,955,000 194
Soplex 102,375 15,902,720 15,800,345 102,375 337
Povray 10,392,424 45,926,784 35,534,350 10,392,434 224

Calculix 13,723,752 38,220,426 24,496,668 13,723,758 177
GemsFDTD 11,197,269 33,527,566 22,330,297 11,197,269 167

Tonto 8,463,067 29,526,700 21,063,633 8,463,067 163
Lbm 5,375,259 34,133,239 28,757,980 5,375,259 312
Wrf 10,299,486 36,609,171 26,309,676 10,299,495 206

Sphin3 9,871,312 36,718,169 26,846,839 9,871,330 175

NOMBRE total refs total ld total st simcycle IPC
Bwaves 36,947,827 29,963,136 6,984,691 86,700,811 1.153392
Gamess 40,444,103 26,537,879 13,906,224 26,291,278 3.803543

Milc 54,703,457 35,948,503 18,754,954 47,001,590 2.127588
Zeusmp 39,938,876 28,173,424 11,765,452 95,980,739 1.041876

Gromacs 57,176,272 47,614,409 9,561,863 61,439,855 1.627608
CactusADM 43,993,173 36,227,265 7,765,908 187,793,984 0.532498

Leslie3d 29,021,438 26,417,910 2,603,528 85,877,021 1.164456
Namd 39,471,411 29,863,373 9,608,038 30,327,680 3.297318
DealII 20,860,588 17,725,531 3,135,057 51,558,609 1.939540
Soplex 17,982,147 17,872,795 109,352 118,454,035 0.844209
Povray 55,452,946 42,575,670 12,877,276 42,969,733 2.327220

Calculix 43,709,981 27,816,223 15,893,758 29,312,176 3.411552
GemsFDTD 35,707,168 23,712,389 11,994,779 27,873,035 3.587697

Tonto 32,227,028 22,914,567 9,312,461 26,839,654 3.725830
Lbm 34,208,652 28,832,177 5,376,475 97,967,439 1.020747
Wrf 38,308,328 27,377,769 10,930,559 46,477,229 2.151591

Sphin3 42,158,087 30,656,549 11,501,538 30,884,736 3.237845
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NOMBRE dl1.access dl1.hits dl1.miss dl1.replaces dl1.wb
Bwaves 33,257,045 32,575,126 681,919 681,919 323,065
Gamess 31,681,780 31,681,717 63 62 41

Milc 54,667,558 50,022,943 4,644,615 4,644,615 4,644,298
Zeusmp 39,820,700 38,209,976 1,610,724 1,610,724 87,787

Gromacs 48,307,926 47,204,046 1,103,880 1,103,880 211,463
CactusADM 31,003,295 28,370,615 2,632,680 2,632,680 2,579,534

Leslie3d 28,840,153 27,419,023 1,421,130 1,421,130 560,534
Namd 34,825,726 34,811,595 14,131 14,131 14,131
DealII 18,965,798 17,634,577 1,331,221 1,331,221 37,045
Soplex 16,089,083 13,541,463 2,547,620 2,547,620 10,678
Povray 43,805,709 43,692,791 112,918 112,733 18,493

Calculix 36,187,638 36,187,277 361 358 152
GemsFDTD 31,495,966 31,495,956 10 0 0

Tonto 28,301,334 28,300,514 820 820 269
Lbm 34,195,868 28,818,366 5,377,502 5,377,502 3,962,904
Wrf 31,782,461 30,576,711 1,205,750 1,205,750 1,143,473

Sphin3 36,071,633 36,049,698 21,935 21,935 10,462

NOMBRE ul2.access ul2.hits ul2.miss ul2.replaces ul2.wb ul3.access
Bwaves 1,005,161 834,657 170,504 170,504 79,298 249,802
Gamess 169 145 24 8 2 26

Milc 9,288,972 8,127,581 1,161,391 1,161,391 1,161,177 2,322,568
Zeusmp 1,699,867 1,306,091 393,776 393,776 22,798 416,574

Gromacs 1,315,619 1,222,033 93,586 93,586 29,974 123,560
CactusADM 5,212,214 2,344,085 2,868,129 2,868,129 2,579,492 5,447,621

Leslie3d 1,981,714 1,621,680 360,034 360,034 143,126 503,160
Namd 28,271 24,731 3,540 3,540 3,532 7,072
DealII 1,368,266 1,359,245 9,021 9,021 7,808 16,829
Soplex 2,558,301 247,336 2,310,965 2,310,965 5,470 2,316,435
Povray 137,599 137,545 54 0 0 54

Calculix 604 567 37 8 0 37
GemsFDTD 46,140 46,131 9 0 0 9

Tonto 30,671 30,647 24 18 5 29
Lbm 9,340,406 7,925,807 1,414,599 1,414,599 1,060,908 2,475,507
Wrf 2,351,198 1,859,051 492,147 492,147 392,760 884,907

Sphin3 32,425 26,942 5,483 5,483 2,722 8,205

NOMBRE ul3.hits ul3.miss ul3.replaces ul3.wb dtlb.access dtlb.hits
Bwaves 79,563 170,239 170,239 80,510 6,965,530 6,964,260
Gamess 2 24 0 0 12,332,531 12,332,531

Milc 1,161,517 1,161,051 1,161,051 1,161,002 34,654,318 34,598,665
Zeusmp 103,260 313,314 313,314 30,635 11,761,252 11,760,876

Gromacs 105,819 17,741 4 4 8,654,900 8,654,589
CactusADM 2,865,218 2,582,403 2,582,403 2,579,482 7,751,449 5,371,331

Leslie3d 143,226 359,934 359,934 153,496 2,606,223 2,603,920
Namd 3,536 3,536 0 0 8,884,944 8,884,889
DealII 16,829 0 0 0 2,955,378 2,955,376
Soplex 2,316,094 341 0 0 102,746 102,720
Povray 0 54 0 0 10,392,776 10,392,775

Calculix 0 37 0 0 13,724,086 13,724,086
GemsFDTD 0 9 0 0 11,197,621 11,197,621

Tonto 11 18 0 0 8,463,357 8,463,357
Lbm 1,060,909 1,414,598 1,414,598 1,060,907 5,375,735 5,359,159
Wrf 534,559 350,348 350,348 338,174 10,300,059 10,292,420

Sphin3 2,826 5,379 0 0 9,871,639 9,871,598

NOMBRE dtlb.miss hitsDC missDC totAccesosDC hitsAC missAC
Bwaves 1,270 10,650,914 22,606,131 33,257,045 17 22,606,114
Gamess 0 15,739,807 15,941,973 31,681,780 70,077 15,871,896

Milc 55,653 50,054,800 4,612,758 54,667,558 34 4,612,724
Zeusmp 376 13,123,247 26,697,453 39,820,700 53 26,697,400

Gromacs 311 15,027,392 33,280,534 48,307,926 81 33,280,453
CactusADM 2,380,118 16,176,765 14,826,530 31,003,295 622,718 14,203,812

Leslie3d 2,303 17,635,760 11,204,393 28,840,153 2,537,499 8,666,894
Namd 55 19,441,486 15,384,240 34,825,726 203,474 15,180,766
DealII 2 4,490,948 14,474,850 18,965,798 11 14,474,839
Soplex 26 7,987,094 8,101,989 16,089,083 552,379 7,549,610
Povray 1 14,117,946 29,687,763 43,805,709 85,097 29,602,666

Calculix 0 23,583,937 12,603,701 36,187,638 86,184 12,517,517
GemsFDTD 0 19,214,286 12,281,680 31,495,966 58,068 12,223,612

Tonto 0 10,228,690 18,072,644 28,301,334 20,647 18,051,997
Lbm 16,576 18,227,861 15,968,007 34,195,868 3,317,176 12,650,831
Wrf 7,639 12,713,962 19,068,499 31,782,461 7 19,068,492

Sphin3 41 14,400,650 21,670,983 36,071,633 24,707 21,646,276
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NOMBRE totAccAC hitDC ld missDC ld totDC ld hitAC ld missAC ld
Bwaves 22,606,131 3,685,743 22,606,131 26,291,874 17 22,606,114
Gamess 15,941,973 3,407,582 15,941,973 19,349,555 70,077 15,871,896

Milc 4,612,758 31,300,721 4,612,758 35,913,479 34 4,612,724
Zeusmp 26,697,453 1,362,267 26,697,453 28,059,720 53 26,697,400

Gromacs 33,280,534 6,372,769 33,280,534 39,653,303 81 33,280,453
CactusADM 14,826,530 8,438,003 14,826,530 23,264,533 622,718 14,203,812

Leslie3d 11,204,393 15,032,487 11,204,393 26,236,880 2,537,499 8,666,894
Namd 15,384,240 10,556,903 15,384,240 25,941,143 203,474 15,180,766
DealII 14,474,850 1,535,948 14,474,850 16,010,798 11 14,474,839
Soplex 8,101,989 7,884,719 8,101,989 15,986,708 552,379 7,549,610
Povray 29,687,763 3,725,522 29,687,763 33,413,285 85,097 29,602,666

Calculix 12,603,701 9,860,185 12,603,701 22,463,886 86,184 12,517,517
GemsFDTD 12,281,680 8,017,017 12,281,680 20,298,697 58,068 12,223,612

Tonto 18,072,644 1,765,623 18,072,644 19,838,267 20,647 18,051,997
Lbm 15,968,007 18,224,814 10,595,795 28,820,609 3,317,176 7,278,619
Wrf 19,068,499 2,414,476 19,068,499 21,482,975 7 19,068,492

Sphin3 21,670,983 4,529,338 21,670,983 26,200,321 24,707 21,646,276

NOMBRE totAC ld hitDC st missDC st totDC st
Bwaves 22,606,131 6,965,171 0 6,965,171
Gamess 15,941,973 12,332,225 0 12,332,225

Milc 4,612,758 18,754,079 0 18,754,079
Zeusmp 26,697,453 11,760,980 0 11,760,980

Gromacs 33,280,534 8,654,623 0 8,654,623
CactusADM 14,826,530 7,738,762 0 7,738,762

Leslie3d 11,204,393 2,603,273 0 2,603,273
Namd 15,384,240 8,884,583 0 8,884,583
DealII 14,474,850 2,955,000 0 2,955,000
Soplex 8,101,989 102,375 0 102,375
Povray 29,687,763 10,392,424 0 10,392,424

Calculix 12,603,701 13,723,752 0 13,723,752
GemsFDTD 12,281,680 11,197,269 0 11,197,269

Tonto 18,072,644 8,463,067 0 8,463,067
Lbm 10,595,795 3,047 5,372,212 5,375,259
Wrf 19,068,499 10,299,486 0 10,299,486

Sphin3 21,670,983 9,871,312 0 9,871,312
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E.7. Resultados con 100 ficheros de análisis. Suite enteros.

En esta sección se muestran los resultados obtenidos de las simulaciones con 100 ficheros de

análisis previo. En primer lugar se muestran la suite enteros en los modos paralelo y secuencial.

Después se muestran la suite float, también en los dos modos paralelo y secuencial.

E.7.1. Paralelo, 100 tramos.

Tabla E.9: Tabla con resultados de la suite entera y con 100 ficheros de análisis previo.

NOMBRE Modo sim total issued loads sim total issued stores
Perlbench Paralelo 36,139,529 14,650,152

Bzip2 Paralelo 58,695,571 17,391,278
Gcc Paralelo 32,363,095 10,690,593
Mcf Paralelo 26,881,008 9,523,322

Gobmk Paralelo 33,094,987 11,837,007
Hmmer Paralelo 39,002,937 9,201,961
Sjeng Paralelo 29,269,515 6,760,976

Libquantum Paralelo 29,278,525 6,977,941
H264ref Paralelo 49,411,963 16,396,711

Omnetpp Paralelo 24,055,618 6,741,925
Astar Paralelo 44,431,447 7,152,459

NOMBRE sim total commited loads sim total commited stores sim num refs
Perlbench 32,075,588 12,600,176 44,675,773

Bzip2 54,347,500 17,391,239 71,738,830
Gcc 28,515,273 9,681,488 38,196,768
Mcf 25,780,211 9,083,896 34,864,125

Gobmk 27,076,634 10,450,937 37,527,588
Hmmer 32,198,719 7,310,067 39,508,800
Sjeng 24,750,238 6,208,686 30,958,933

Libquantum 18,570,642 6,977,899 25,548,548
H264ref 48,203,947 16,097,809 64,301,844

Omnetpp 21,880,320 6,468,517 28,348,853
Astar 23,853,369 3,518,019 27,371,393

NOMBRE sim num loads sim num stores sim elapsed time
Perlbench 32,075,593 12,600,180 212

Bzip2 54,347,567 17,391,263 482
Gcc 28,515,279 9,681,489 199
Mcf 25,780,222 9,083,903 164

Gobmk 27,076,644 10,450,944 220
Hmmer 32,198,731 7,310,069 213
Sjeng 24,750,246 6,208,687 196

Libquantum 18,570,646 6,977,902 571
H264ref 48,204,012 16,097,832 200

Omnetpp 21,880,328 6,468,525 158
Astar 23,853,373 3,518,020 343



Apéndice E. Resultados, costes, métricas y análisis previo. 76

NOMBRE sim total refs sim total loads sim total stores sim cycle
Perlbench 58,163,179 41,928,628 16,234,551 43,836,458

Bzip2 71,739,050 54,347,732 17,391,318 121,197,896
Gcc 49,123,074 36,587,633 12,535,441 44,423,434
Mcf 37,594,199 27,866,768 9,727,431 29,969,724

Gobmk 55,352,406 40,913,037 14,439,369 50,260,912
Hmmer 59,062,329 47,092,940 11,969,389 44,672,560
Sjeng 43,516,036 35,672,167 7,843,869 44,635,374

Libquantum 25,548,810 18,570,827 6,977,983 252,352,879
H264ref 68,617,689 51,478,655 17,139,034 26,310,865

Omnetpp 33,682,931 26,514,540 7,168,391 29,040,286
Astar 69,972,835 60,763,530 9,209,305 90,799,135

NOMBRE sim IPC dl1.accesses dl1.hits dl1.misses dl1.replacements
Perlbench 2.281206 44,347,833 43,764,537 583,296 583,296

Bzip2 0.825097 71,738,831 63,043,198 8,695,633 8,695,633
Gcc 2.251064 37,218,007 37,060,919 157,088 157,088
Mcf 3.336701 33,330,472 33,288,138 42,334 42,334

Gobmk 1.989618 40,507,523 40,399,099 108,424 108,424
Hmmer 2.238511 39,919,052 39,412,376 506,676 506,676
Sjeng 2.240376 33,692,200 33,632,730 59,470 59,470

Libquantum 0.39627 25,548,603 20,033,691 5,514,912 5,514,912
H264ref 3.800711 64,734,562 64,623,708 110,854 110,755

Omnetpp 3.443492 26,366,276 26,283,617 82,659 82,659
Astar 1.101332 44,523,105 42,950,790 1,572,315 1,572,315

NOMBRE dl1.writebacks ul2.accesses ul2.hits ul2.misses ul2.replacements
Perlbench 127,446 945,826 872,389 73,437 73,437

Bzip2 4,347,812 13,043,449 10,869,515 2,173,934 2,173,934
Gcc 119,611 667,044 616,542 50,502 50,502
Mcf 42,333 84,669 66,822 17,847 17,847

Gobmk 74,607 378,984 338,209 40,775 40,775
Hmmer 443,480 950,169 838,527 111,642 111,642
Sjeng 41,473 110,758 81,101 29,657 29,657

Libquantum 4,878,549 10,393,632 9,014,801 1,378,831 1,378,831
H264ref 66,285 188,921 187,603 1,318 1,155

Omnetpp 45,374 161,546 126,257 35,289 35,289
Astar 631,928 2,204,244 2,006,038 198,206 198,206

NOMBRE ul2.writebacks ul3.accesses ul3.hits ul3.misses ul3.replacements
Perlbench 16,358 89,795 84,075 5,720 5,715

Bzip2 1,087,032 3,260,966 1,087,032 2,173,934 2,173,934
Gcc 26,148 76,650 52,792 23,858 23,858
Mcf 15,892 33,739 24,685 9,054 121

Gobmk 21,465 62,240 48,401 13,839 13,839
Hmmer 105,474 217,116 216,386 730 0
Sjeng 17,251 46,908 26,754 20,154 11,028

Libquantum 1,218,118 2,596,949 1,218,118 1,378,831 1,378,831
H264ref 249 1,567 1,253 314 0

Omnetpp 13,225 48,514 38,182 10,332 0
Astar 110,189 308,395 308,332 63 0
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NOMBRE ul3.writebacks aciertos dc fallos dc total accesos dc
Perlbench 5,632 20,285,884 24,061,949 44,347,833

Bzip2 1,086,589 49,999,619 21,739,212 71,738,831
Gcc 22,304 16,548,143 20,669,864 37,218,007
Mcf 105 20,187,231 13,143,241 33,330,472

Gobmk 13,776 13,902,534 26,604,989 40,507,523
Hmmer 0 13,249,594 26,669,458 39,919,052
Sjeng 6,724 12,016,603 21,675,597 33,692,200

Libquantum 1,187,398 12,051,843 13,496,760 25,548,603
H264ref 0 42,337,923 22,396,639 64,734,562

Omnetpp 0 9,120,981 17,245,295 26,366,276
Astar 0 21,252,655 23,270,450 44,523,105

NOMBRE aciertos ac fallos ac total accesos ac
Perlbench 22,556 24,039,393 24,061,949

Bzip2 8,695,565 13,043,647 21,739,212
Gcc 106,681 20,563,183 20,669,864
Mcf 22,136 13,121,105 13,143,241

Gobmk 587,285 26,017,704 26,604,989
Hmmer 15,633,966 11,035,492 26,669,458
Sjeng 37,138 21,638,459 21,675,597

Libquantum 10,267,726 3,229,034 13,496,760
H264ref 6,216,449 16,180,190 22,396,639

Omnetpp 1,847,476 15,397,819 17,245,295
Astar 10,761,183 12,509,267 23,270,450
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E.7.2. Secuencial, 100 tramos.

Tabla E.10: Tabla que muestra los resultados correspondientes a la suite float, en modo
secuencial y con 100 tramos de ficheros de análisis.

NOMBRE Modo sim total issued loads sim total issued stores
Perlbench Secuencial 36,062,348 14,620,282

Bzip2 Secuencial 58,695,561 17,391,281
Gcc Secuencial 32,133,691 10,736,938
Mcf Secuencial 26,809,435 9,489,531

Gobmk Secuencial 32,944,660 11,773,585
Hmmer Secuencial 39,469,486 9,310,333
Sjeng Secuencial 29,081,646 6,745,081

Libquantum Secuencial 29,278,530 6,977,941
H264ref Secuencial 49,339,691 16,390,765

Omnetpp Secuencial 23,954,618 6,727,273
Astar Secuencial 44,158,152 7,126,296

NOMBRE sim total commited loads sim total commited stores sim num refs
Perlbench 32,075,588 12,600,176 44,675,773

Bzip2 54,347,500 17,391,239 71,738,830
Gcc 28,515,273 9,681,488 38,196,768
Mcf 25,780,211 9,083,897 34,864,123

Gobmk 27,076,634 10,450,938 37,527,589
Hmmer 32,198,719 7,310,067 39,508,799
Sjeng 24,750,238 6,208,686 30,958,933

Libquantum 18,570,642 6,977,899 25,548,548
H264ref 48,203,947 16,097,809 64,301,844

Omnetpp 21,880,320 6,468,517 28,348,853
Astar 23,853,369 3,518,019 27,371,393

NOMBRE sim num loads sim num stores sim elapsed time
Perlbench 32,075,593 12,600,180 214

Bzip2 54,347,567 17,391,263 485
Gcc 28,515,279 9,681,489 200
Mcf 25,780,220 9,083,903 165

Gobmk 27,076,645 10,450,944 221
Hmmer 32,198,731 7,310,068 212
Sjeng 24,750,246 6,208,687 198

Libquantum 18,570,646 6,977,902 565
H264ref 48,204,012 16,097,832 198

Omnetpp 21,880,328 6,468,525 155
Astar 23,853,373 3,518,020 339
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NOMBRE sim total refs sim total loads sim total stores sim cycle
Perlbench 57,466,108 41,412,883 16,053,225 44,975,271

Bzip2 71,739,022 54,347,714 17,391,308 122,284,861
Gcc 48,744,701 36,347,802 12,396,899 45,490,895
Mcf 37,561,769 27,817,245 9,744,524 31,017,969

Gobmk 54,813,865 40,500,741 14,313,124 51,450,303
Hmmer 58,551,670 46,631,132 11,920,538 45,309,241
Sjeng 43,043,544 35,259,346 7,784,198 46,123,141

Libquantum 25,548,807 18,570,827 6,977,980 253,258,110
H264ref 68,356,147 51,262,177 17,093,970 26,564,298

Omnetpp 33,472,135 26,347,039 7,125,096 29,642,386
Astar 69,152,811 60,029,822 9,122,989 91,444,168

NOMBRE sim IPC dl1.accesses dl1.hits dl1.misses dl1.replacements
Perlbench 2.22344 36,614,152 36,029,887 584,265 584,265

Bzip2 0.81776 39,130,447 30,434,813 8,695,634 8,695,634
Gcc 2.19824 29,690,547 29,532,952 157,595 157,595
Mcf 3.22394 21,683,454 21,641,130 42,324 42,324

Gobmk 1.94362 36,113,838 36,005,531 108,307 108,307
Hmmer 2.20706 33,316,629 32,809,939 506,690 506,690
Sjeng 2.16811 27,172,522 27,113,454 59,068 59,068

Libquantum 0.39485 20,474,660 14,959,747 5,514,913 5,514,913
H264ref 3.76445 38,340,746 38,230,830 109,916 109,817

Omnetpp 3.37355 23,403,569 23,320,400 83,169 83,169
Astar 1.09356 26,046,093 24,474,546 1,571,547 1,571,547

NOMBRE dl1.writebacks ul2.accesses ul2.hits ul2.misses ul2.replacements
Perlbench 127,712 944,631 871,276 73,355 73,355

Bzip2 4,347,813 13,043,451 10,869,517 2,173,934 2,173,934
Gcc 119,630 670,331 619,764 50,567 50,567
Mcf 42,316 84,642 66,770 17,872 17,872

Gobmk 74,578 378,386 337,717 40,669 40,669
Hmmer 443,502 950,205 838,566 111,639 111,639
Sjeng 41,228 110,172 80,517 29,655 29,655

Libquantum 4,878,549 10,393,633 9,014,802 1,378,831 1,378,831
H264ref 65,399 187,101 185,780 1,321 1,158

Omnetpp 45,472 161,890 126,485 35,405 35,405
Astar 631,745 2,203,293 2,004,902 198,391 198,391

NOMBRE ul2.writebacks ul3.accesses ul3.hits ul3.misses ul3.replacements
Perlbench 16,276 89,631 83,914 5,717 5,712

Bzip2 1,087,032 3,260,966 1,087,032 2,173,934 2,173,934
Gcc 26,169 76,736 52,882 23,854 23,854
Mcf 15,896 33,768 24,714 9,054 121

Gobmk 21,467 62,136 48,377 13,759 13,759
Hmmer 105,469 217,108 216,377 731 0
Sjeng 17,242 46,897 26,744 20,153 11,028

Libquantum 1,218,118 2,596,949 1,218,118 1,378,831 1,378,831
H264ref 249 1,570 1,256 314 0

Omnetpp 13,249 48,654 38,324 10,330 0
Astar 110,243 308,634 308,573 61 0
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NOMBRE ul3.writebacks aciertos dc fallos dc total accesos dc
Perlbench 5,629 20,055,129 24,026,402 44,081,531

Bzip2 1,086,589 49,999,619 21,739,208 71,738,827
Gcc 22,301 17,028,352 20,075,056 37,103,408
Mcf 105 19,869,771 13,326,886 33,196,657

Gobmk 13,694 14,121,953 26,229,613 40,351,566
Hmmer 0 13,337,123 26,355,590 39,692,713
Sjeng 6,723 12,471,200 20,967,085 33,438,285

Libquantum 1,187,398 12,051,842 13,496,764 25,548,606
H264ref 0 42,434,714 22,256,488 64,691,202

Omnetpp 0 9,410,268 16,937,451 26,347,719
Astar 0 21,839,837 22,564,396 44,404,233

NOMBRE aciertos ac fallos ac total accesos ac
Perlbench 22,372 24,004,030 24,026,402

Bzip2 8,695,565 13,043,643 21,739,208
Gcc 107,412 19,967,644 20,075,056
Mcf 295 13,326,591 13,326,886

Gobmk 555,602 25,674,011 26,229,613
Hmmer 15,743,068 10,612,522 26,355,590
Sjeng 30,652 20,936,433 20,967,085

Libquantum 10,267,727 3,229,037 13,496,764
H264ref 6,211,764 16,044,724 22,256,488

Omnetpp 1,827,344 15,110,107 16,937,451
Astar 10,412,392 12,152,004 22,564,396
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E.8. Resultados con 100 ficheros de análisis. Suite float.

E.8.1. Paralelo, 100 tramos.

Tabla E.11: Tabla que muestra los resultados de la suite float para el modo paralelo y con
100 tramos de fichero de análisis.

Nombre Modo total issued loads total issued stores total commited loads
Bwaves Paralelo 30,944,343 6,965,314 29,923,965
Gamess Paralelo 25,233,153 12,996,461 24,345,014

Milc Paralelo 35,923,441 18,754,312 35,913,822
Zeusmp Paralelo 29,627,444 11,762,865 28,070,343
Gromacs Paralelo 44,689,403 9,087,487 36,938,169

CactusADM Paralelo 38,266,936 7,744,186 36,129,566
Leslie3d Paralelo 27,216,449 2,603,279 26,234,970
Namd Paralelo 28,642,538 9,379,226 27,218,280
DealII Paralelo 18,107,665 2,998,063 16,337,412
Soplex Paralelo 19,599,529 105,524 15,800,342
Povray Paralelo 38,481,383 11,503,461 35,534,327
Calculix Paralelo 25,710,696 14,513,593 24,496,664

GemsFDTD Paralelo 22,969,694 11,525,313 22,330,291
Tonto Paralelo 21,737,353 8,671,290 21,063,627
Lbm Paralelo 34,188,448 5,375,895 28,757,967
Wrf Paralelo 27,290,071 10,637,614 26,309,667

Sphin3 Paralelo 28,698,221 10,657,829 26,846,836

Nombre total commited stores num refs num loads num stores
Bwaves 6,965,171 36,889,164 29,923,990 6,965,174
Gamess 12,332,225 36,677,262 24,345,029 12,332,233

Milc 18,754,080 54,668,038 35,913,910 18,754,128
Zeusmp 11,760,980 39,831,329 28,070,347 11,760,982
Gromacs 8,654,623 45,592,814 36,938,183 8,654,631

CactusADM 7,738,762 43,868,356 36,129,588 7,738,768
Leslie3d 2,603,273 28,838,274 26,234,997 2,603,277
Namd 8,884,583 36,102,879 27,218,289 8,884,590
DealII 2,955,000 19,292,420 16,337,420 2,955,000
Soplex 102,375 15,902,720 15,800,345 102,375
Povray 10,392,424 45,926,784 35,534,350 10,392,434
Calculix 13,723,752 38,220,425 24,496,667 13,723,758

GemsFDTD 11,197,269 33,527,566 22,330,297 11,197,269
Tonto 8,463,067 29,526,700 21,063,633 8,463,067
Lbm 5,375,259 34,133,239 28,757,980 5,375,259
Wrf 10,299,486 36,609,171 26,309,676 10,299,495

Sphin3 9,871,312 36,718,169 26,846,839 9,871,330
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Nombre elapsed time total refs total loads total stores
Bwaves 284 36,947,826 29,963,135 6,984,691
Gamess 154 40,444,103 26,537,881 13,906,222

Milc 242 54,703,421 35,948,480 18,754,941
Zeusmp 276 39,938,876 28,173,424 11,765,452
Gromacs 246 57,176,311 47,612,380 9,563,931

CactusADM 530 43,993,173 36,227,265 7,765,908
Leslie3d 247 29,022,536 26,419,008 2,603,528
Namd 161 39,471,411 29,863,373 9,608,038
DealII 182 20,860,617 17,725,548 3,135,069
Soplex 318 17,990,332 17,880,976 109,356
Povray 213 55,452,934 42,575,661 12,877,273
Calculix 170 43,707,487 27,814,023 15,893,464

GemsFDTD 160 35,707,177 23,712,402 11,994,775
Tonto 154 32,223,172 22,911,521 9,311,651
Lbm 309 34,208,652 28,832,177 5,376,475
Wrf 193 38,309,755 27,376,857 10,932,898

Sphin3 167 42,158,111 30,656,574 11,501,537

Nombre sim cycle IPC dl1.accesses dl1.hits
Bwaves 86,700,811 1.1534 33,257,046 32,575,127
Gamess 26,291,309 3.8035 31,681,780 31,681,717

Milc 46,985,707 2.1283 54,667,547 50,022,930
Zeusmp 95,979,498 1.0419 39,820,610 38,209,886
Gromacs 61,396,757 1.6288 48,290,231 47,191,353

CactusADM 187,793,984 0.5325 31,003,295 28,370,615
Leslie3d 85,877,158 1.1645 28,840,153 27,419,023
Namd 30,327,688 3.2973 34,825,725 34,811,594
DealII 51,538,480 1.9403 18,965,810 17,634,589
Soplex 117,730,671 0.8494 16,089,207 13,541,579
Povray 42,969,735 2.3272 43,805,716 43,692,798
Calculix 29,327,984 3.4097 36,187,919 36,187,558

GemsFDTD 27,873,050 3.5877 31,495,808 31,495,798
Tonto 26,841,677 3.7256 28,300,503 28,299,683
Lbm 97,970,594 1.0207 34,195,868 28,818,366
Wrf 46,461,733 2.1523 31,780,708 30,574,947

Sphin3 30,884,764 3.2378 36,071,649 36,049,714
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Nombre dl1.misses dl1.replacements dl1.writebacks ul2.accesses
Bwaves 681,919 681,919 323,065 1,005,161
Gamess 63 62 41 169

Milc 4,644,617 4,644,617 4,644,299 9,288,975
Zeusmp 1,610,724 1,610,724 87,787 1,699,867
Gromacs 1,098,878 1,098,878 211,319 1,310,473

CactusADM 2,632,680 2,632,680 2,579,534 5,212,214
Leslie3d 1,421,130 1,421,130 560,534 1,981,714
Namd 14,131 14,131 14,131 28,271
DealII 1,331,221 1,331,221 37,045 1,368,266
Soplex 2,547,628 2,547,628 10,678 2,558,309
Povray 112,918 112,733 18,493 137,599
Calculix 361 358 152 604

GemsFDTD 10 0 0 46,140
Tonto 820 820 269 30,669
Lbm 5,377,502 5,377,502 3,962,904 9,340,406
Wrf 1,205,761 1,205,761 1,143,473 2,351,209

Sphin3 21,935 21,935 10,462 32,425

Nombre ul2.hits ul2.misses ul2.replacements ul2.writebacks
Bwaves 834,657 170,504 170,504 79,298
Gamess 145 24 8 2

Milc 8,127,584 1,161,391 1,161,391 1,161,177
Zeusmp 1,306,091 393,776 393,776 22,798
Gromacs 1,217,345 93,128 93,128 29,969

CactusADM 2,344,085 2,868,129 2,868,129 2,579,492
Leslie3d 1,621,680 360,034 360,034 143,126
Namd 24,731 3,540 3,540 3,532
DealII 1,359,245 9,021 9,021 7,808
Soplex 247,342 2,310,967 2,310,967 5,470
Povray 137,545 54 0 0
Calculix 567 37 8 0

GemsFDTD 46,131 9 0 0
Tonto 30,645 24 18 5
Lbm 7,925,807 1,414,599 1,414,599 1,060,908
Wrf 1,859,024 492,185 492,185 392,735

Sphin3 26,942 5,483 5,483 2,722
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Nombre ul3.accesses ul3.hits ul3.misses ul3.replacements ul3.writebacks
Bwaves 249,802 79,563 170,239 170,239 80,510
Gamess 26 2 24 0 0

Milc 2,322,568 1,161,517 1,161,051 1,161,051 1,161,002
Zeusmp 416,574 103,260 313,314 313,314 30,635
Gromacs 123,097 105,354 17,743 4 4

CactusADM 5,447,621 2,865,218 2,582,403 2,582,403 2,579,482
Leslie3d 503,160 143,226 359,934 359,934 153,496
Namd 7,072 3,536 3,536 0 0
DealII 16,829 16,829 0 0 0
Soplex 2,316,437 2,316,096 341 0 0
Povray 54 0 54 0 0
Calculix 37 0 37 0 0

GemsFDTD 9 0 9 0 0
Tonto 29 11 18 0 0
Lbm 2,475,507 1,060,909 1,414,598 1,414,598 1,060,907
Wrf 884,920 534,574 350,346 350,346 338,174

Sphin3 8,205 2,826 5,379 0 0

Nombre aciertos dc fallos dc total accesos dc aciertos ac fallos ac total accesos ac
Bwaves 19,377,489 13,879,557 33,257,046 198 13,879,359 13,879,557
Gamess 22,854,454 8,827,326 31,681,780 569,534 8,257,792 8,827,326

Milc 52,933,879 1,733,668 54,667,547 315,445 1,418,223 1,733,668
Zeusmp 16,922,239 22,898,371 39,820,610 1,680,859 21,217,512 22,898,371
Gromacs 20,638,535 27,651,696 48,290,231 863,346 26,788,350 27,651,696

CactusADM 18,067,756 12,935,539 31,003,295 852,349 12,083,190 12,935,539
Leslie3d 20,316,646 8,523,507 28,840,153 4,049,278 4,474,229 8,523,507
Namd 22,208,303 12,617,422 34,825,725 53,420 12,564,002 12,617,422
DealII 4,767,859 14,197,951 18,965,810 5,044,640 9,153,311 14,197,951
Soplex 8,617,641 7,471,566 16,089,207 1,384,385 6,087,181 7,471,566
Povray 14,511,437 29,294,279 43,805,716 68,603 29,225,676 29,294,279
Calculix 23,684,050 12,503,869 36,187,919 230,774 12,273,095 12,503,869

GemsFDTD 19,197,651 12,298,157 31,495,808 28,337 12,269,820 12,298,157
Tonto 12,781,726 15,518,777 28,300,503 76,800 15,441,977 15,518,777
Lbm 18,040,772 16,155,096 34,195,868 3,877,742 12,277,354 16,155,096
Wrf 25,119,321 6,661,387 31,780,708 466,353 6,195,034 6,661,387

Sphin3 14,413,742 21,657,907 36,071,649 13,962 21,643,945 21,657,907
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E.8.2. Secuencial, 100 tramos.

Tabla E.12: Tabla que muestra los resultados de la suite float, en el modo secuencial y con
100 ficheros de análisis.

Nombre Modo total issued loads total issued stores total commited loads
Bwaves Secuencial 30,944,355 6,965,314 29,923,965
Gamess Secuencial 25,210,880 12,962,599 24,345,014

Milc Secuencial 35,923,530 18,754,325 35,913,822
Zeusmp Secuencial 29,627,375 11,762,792 28,070,343
Gromacs Secuencial 44,602,956 9,080,001 36,938,169

CactusADM Secuencial 38,266,404 7,744,186 36,129,566
Leslie3d Secuencial 27,216,697 2,603,279 26,234,970
Namd Secuencial 28,529,301 9,310,977 27,218,279
DealII Secuencial 18,136,468 2,998,291 16,337,412
Soplex Secuencial 19,593,722 105,219 15,800,342
Povray Secuencial 38,439,829 11,488,788 35,534,327
Calculix Secuencial 25,606,492 14,504,350 24,496,664

GemsFDTD Secuencial 22,976,186 11,515,180 22,330,291
Tonto Secuencial 21,682,693 8,653,675 21,063,627
Lbm Secuencial 34,188,773 5,375,918 28,757,967
Wrf Secuencial 27,283,718 10,637,598 26,309,667

Sphin3 Secuencial 28,650,021 10,553,476 26,846,836

Nombre total commited stores num refs num loads num stores
Bwaves 6,965,171 36,889,164 29,923,990 6,965,174
Gamess 12,332,225 36,677,260 24,345,027 12,332,233

Milc 18,754,080 54,668,038 35,913,910 18,754,128
Zeusmp 11,760,980 39,831,329 28,070,347 11,760,982
Gromacs 8,654,623 45,592,814 36,938,183 8,654,631

CactusADM 7,738,762 43,868,356 36,129,588 7,738,768
Leslie3d 2,603,273 28,838,274 26,234,997 2,603,277
Namd 8,884,581 36,102,879 27,218,289 8,884,590
DealII 2,955,000 19,292,420 16,337,420 2,955,000
Soplex 102,375 15,902,720 15,800,345 102,375
Povray 10,392,424 45,926,784 35,534,350 10,392,434
Calculix 13,723,752 38,220,425 24,496,667 13,723,758

GemsFDTD 11,197,269 33,527,566 22,330,297 11,197,269
Tonto 8,463,067 29,526,701 21,063,634 8,463,067
Lbm 5,375,259 34,133,239 28,757,980 5,375,259
Wrf 10,299,486 36,609,171 26,309,676 10,299,495

Sphin3 9,871,314 36,718,177 26,846,845 9,871,332
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Nombre elapsed time total refs total loads total stores
Bwaves 286 36,947,824 29,963,133 6,984,691
Gamess 154 40,483,366 26,574,886 13,908,480

Milc 241 54,703,328 35,948,427 18,754,901
Zeusmp 277 39,938,935 28,173,474 11,765,461
Gromacs 246 56,648,481 47,108,585 9,539,896

CactusADM 531 43,993,173 36,227,265 7,765,908
Leslie3d 246 29,023,782 26,419,885 2,603,897
Namd 162 39,516,660 29,919,886 9,596,774
DealII 185 20,924,570 17,774,713 3,149,857
Soplex 319 17,967,578 17,858,944 108,634
Povray 215 55,208,374 42,422,494 12,785,880
Calculix 171 43,741,079 27,830,655 15,910,424

GemsFDTD 162 35,819,405 23,778,747 12,040,658
Tonto 156 32,051,683 22,799,337 9,252,346
Lbm 310 34,208,755 28,832,242 5,376,513
Wrf 193 38,281,643 27,362,067 10,919,576

Sphin3 169 41,600,431 30,452,917 11,147,514

Nombre sim cycle IPC dl1.accesses dl1.hits
Bwaves 86,720,409 1.1531 20,844,721 20,162,787
Gamess 26,676,515 3.7486 20,291,705 20,291,642

Milc 46,983,743 2.1284 20,349,087 15,704,454
Zeusmp 96,550,087 1.0357 32,378,202 30,767,471
Gromacs 62,015,431 1.6125 35,983,743 34,884,973

CactusADM 187,794,374 0.5325 19,560,954 16,928,450
Leslie3d 85,917,194 1.1639 9,707,311 8,285,966
Namd 31,119,527 3.2134 21,116,430 21,102,299
DealII 51,591,120 1.9383 17,246,424 15,914,887
Soplex 118,513,587 0.8438 7,677,338 5,129,138
Povray 43,190,432 2.3153 38,633,214 38,520,296
Calculix 30,178,943 3.3136 26,170,122 26,169,762

GemsFDTD 28,705,879 3.4836 22,308,246 22,308,238
Tonto 27,706,756 3.6092 22,858,636 22,857,816
Lbm 97,973,478 1.0207 16,158,090 10,782,014
Wrf 46,615,073 2.1452 16,912,836 15,707,086

Sphin3 31,610,970 3.1635 31,465,724 31,443,811
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Nombre dl1.misses dl1.replacements dl1.writebacks ul2.accesses
Bwaves 681,934 323,065 1,005,176 834,662
Gamess 63 42 171 146

Milc 4,644,633 4,644,315 9,289,007 8,127,616
Zeusmp 1,610,731 87,793 1,699,885 1,306,102
Gromacs 1,098,770 211,474 1,310,520 1,216,476

CactusADM 2,632,504 2,579,532 5,212,036 2,342,049
Leslie3d 1,421,345 560,553 1,981,948 1,621,767
Namd 14,131 14,128 28,268 24,728
DealII 1,331,537 37,047 1,368,584 1,359,570
Soplex 2,548,200 10,954 2,559,156 248,290
Povray 112,918 18,493 137,600 137,546
Calculix 360 152 603 567

GemsFDTD 8 0 46,136 46,128
Tonto 820 269 30,050 30,034
Lbm 5,376,076 3,961,484 9,337,560 7,922,968
Wrf 1,205,750 1,143,483 2,351,209 1,859,026

Sphin3 21,913 10,459 32,400 26,917

Nombre ul2.hits ul2.misses ul2.replacements ul2.writebacks
Bwaves 834,657 170,514 79,298 249,812
Gamess 145 8 2 27

Milc 8,127,584 1,161,391 1,161,178 2,322,569
Zeusmp 1,306,091 393,783 22,805 416,588
Gromacs 1,217,345 94,044 29,988 124,032

CactusADM 2,344,085 2,869,987 2,579,493 5,449,480
Leslie3d 1,621,680 360,181 143,145 503,326
Namd 24,731 3,540 3,532 7,072
DealII 1,359,245 9,014 7,802 16,816
Soplex 247,342 2,310,866 5,324 2,316,190
Povray 137,545 0 0 54
Calculix 567 8 0 36

GemsFDTD 46,131 0 0 8
Tonto 30,645 12 3 19
Lbm 7,925,807 1,414,592 1,060,908 2,475,500
Wrf 1,859,024 492,183 392,743 884,926

Sphin3 26,942 5,483 2,724 8,207
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Nombre ul3.accesses ul3.hits ul3.misses ul3.replacements
Bwaves 79,571 170,241 170,241 80,510
Gamess 2 25 0 0

Milc 1,161,518 1,161,051 1,161,051 1,161,002
Zeusmp 103,274 313,314 313,314 30,635
Gromacs 106,288 17,744 4 4

CactusADM 2,867,074 2,582,406 2,582,406 2,579,486
Leslie3d 143,387 359,939 359,939 153,496
Namd 3,536 3,536 0 0
DealII 16,816 0 0 0
Soplex 2,315,849 341 0 0
Povray 0 54 0 0
Calculix 0 36 0 0

GemsFDTD 0 8 0 0
Tonto 10 9 0 0
Lbm 1,060,938 1,414,562 1,414,562 1,060,907
Wrf 534,579 350,347 350,347 338,174

Sphin3 2,831 5,376 0 0

Nombre aciertos dc fallos dc total accesos dc aciertos ac fallos ac total accesos ac
Bwaves 19,377,478 13,879,550 33,257,028 207 13,879,343 13,879,550
Gamess 23,649,721 7,959,494 31,609,215 112,198 7,847,296 7,959,494

Milc 53,072,565 1,595,008 54,667,573 87 1,594,921 1,595,008
Zeusmp 16,927,156 22,893,322 39,820,478 1,680,833 21,212,489 22,893,322
Gromacs 20,716,230 27,474,584 48,190,814 852,552 26,622,032 27,474,584

CactusADM 19,181,103 11,822,192 31,003,295 620,320 11,201,872 11,822,192
Leslie3d 21,671,604 7,168,550 28,840,154 3,433,498 3,735,052 7,168,550
Namd 21,424,384 13,298,451 34,722,835 299 13,298,152 13,298,451
DealII 4,779,963 14,291,498 19,071,461 5,044,028 9,247,470 14,291,498
Soplex 8,515,597 7,575,025 16,090,622 1,384,585 6,190,440 7,575,025
Povray 15,370,434 28,322,347 43,692,781 49,677 28,272,670 28,322,347
Calculix 23,523,844 12,447,542 35,971,386 223,374 12,224,168 12,447,542

GemsFDTD 20,544,971 11,116,102 31,661,073 16,649 11,099,453 11,116,102
Tonto 13,871,652 14,395,646 28,267,298 9,493 14,386,153 14,395,646
Lbm 18,039,105 16,156,930 34,196,035 3,877,735 12,279,195 16,156,930
Wrf 25,167,281 6,613,369 31,780,650 422,371 6,190,998 6,613,369

Sphin3 14,434,589 21,600,433 36,035,022 13,249 21,587,184 21,600,433
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E.8.3. Comparativas 1 vs 100 tramos

En esta sección se muestran las tablas comparativas con las simulaciones hechas con 1 tramo vs

100 tramos de análisis. También se muestran las comparación de los ciclos de ejecución de cada

benchmark.

Tabla E.13: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite enteros.

Tabla E.14: Tabla que muestra la comparativa de los datos de rendimiento, tasas de aciertos
en DC y consumo de 1 tramos vs 100 tramos para la suite float.

Las columnas “F“ y “G“ de estas tablas muestran las tasas de aciertos esperados en la memoria

DC. Estas tasa son el resultado del cociente entre los aciertos esperados en la DC obtenidos

de la fase de análisis previo y el número de instrucciones lanzadas (para 1 tramo y para 100

tramos). Las columnas “H“, “I“, “J“ y “K“ muestran las tasas de aciertos que hemos obtenido

en la memoria DC tanto en el modo secuencial como en el modo paralelo y para 1 fichero de

análisis y 100 ficheros. Este valor es el cociente entre los aciertos obtenidos en la DC y el número

de accesos a la memoria DC.
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Tabla E.15: Tabla que muestra los ciclos de ejecución de la suite enteros en los tres modos
de funcionamiento y con 1 vs 100 ficheros de análisis.

Tabla E.16: Tabla que muestra los ciclos de ejecución de la suite float en los tres modos de
funcionamiento y con 1 vs 100 ficheros de análisis.

E.8.4. Tablas con otros resultados

En esta sección se muestran las tablas con los resultados obtenidos de las simulaciones con otras

entradas (benchmarks modificados).

Tabla E.17: Tabla que muestra la diferencia de rendimiento para la suite enteros con una
entrada distinta para los tres modos de funcionamiento.

Tabla E.18: Tabla que muestra la diferencia de rendimiento para la suite float con una entrada
distinta para los tres modos de funcionamiento.
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Las columnas de las tablas E.17 y E.18 que terminan en M muestra los valores que hemos

obtenido en las simulaciones con distinta entrada.
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