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Resumen

La detección de cambios en el estado fisiológico y psicológico de una persona, provocados
por un est́ımulo concreto, es un campo que está siendo ampliamente explorado en los últimos
tiempos, debido a sus posibles aplicaciones en ámbitos como el de la salud o el marketing. Para
ello, se necesitan datos que sean recogidos por sensores biométricos, los cuales cada vez están
haciéndose más ligeros y precisos. Dos de estos biosensores son los llamados GSR (Galvanic
Skin Response), que registra cambios en la conductancia de la piel originados por la activación
y desactivación de las glándulas sudoŕıparas y BVP (Blood Volume Pulse), un detector del
ritmo card́ıaco mediante luz infrarroja. En este proyecto se utilizarán estos dos sensores, con el
objetivo de desarrollar un sistema capaz de detectar anomaĺıas de tipo fisiológico y psicológico
inducidas en un sujeto. Para ello, se creará una base de datos de estos sujetos formada por
medidas normales, donde no se les haya inducido ningún tipo de estrés y, a partir de esa base
de datos se creará un clasificador capaz de dictaminar si una nueva muestra es normal o anómala.

Se comenzará decidiendo si pueden utilizarse unos sensores desarrollados por BitBrain
Technologies implantados en un dispositivo llamado Anillo de Usenns. Para ello serán com-
parados con una tecnoloǵıa similar de la marca TMSI R©, cuyos sensores, de tipo médico, son
ampliamente utilizados en mediciones de laboratorio con un alto rendimiento en la medición
de estas señales biológicas. Una vez realizado este paso se readaptarán los sensores elegidos de
forma que se ajusten a los requisitos del sistema que se quiere crear, creándose para ello un
nuevo hardware y software.

Siguiendo un protocolo de toma de datos periódicas se obtendrá una base de datos de va-
rios sujetos, que serán consideradas como medidas normales. Por otro lado, se realizarán a los
mismos sujetos pruebas de tipo f́ısico y cognitivo en las que se tomará una medida también,
considerada anómala. Una vez recopilados todos los datos, se extraerán varias caracteŕısticas de
las señales, que serán tratadas de diversas formas para dar lugar a varios posibles clasificadores.
Una vez desarrollados los clasificadores, éstos serán comparados y evaluados para determinar
cuáles son los más adecuados dependiendo de la aplicación para la que se vayan a utilizar, y
se seleccionará al más adecuado para el detector de anomaĺıas fisiológicas y psicológicas que se
quiere implementar. También será estudiado el rendimiento del sistema en el caso de no disponer
de una base de datos previa del sujeto cuya muestra se quiere clasificar.

Para finalizar, serán detallados los resultados y conclusiones extráıdos de este trabajo, aśı co-
mo las posibles aplicaciones y mejores futuras.
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3.3. Artefactos de la señal de BVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4. Tareas del experimento realizado . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
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4.1. Prototipo para el detector de anomaĺıas . . . . . . . . . . . . . . . . . . . . . . . 22
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6.5. Puntos óptimos de los clasificadores . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6. Evolución de la AUC según el tiempo de análisis . . . . . . . . . . . . . . . . . . 40

6.7. Evolución de la AUC según el número de muestras normales . . . . . . . . . . . . 41
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1. Introducción

1.1. Contexto

Este proyecto ha sido realizado en la start-up BitBrain Technologies, spin-off de la Uni-
versidad de Zaragoza, cuyos campos de trabajo se centran principalmente en el desarrollo de
dispositivos con sensores biométricos para su aplicación en diversos ámbitos como la neurocien-
cia y el neuromarketing. Eduardo Horna, responsable del departamento de Tratamiento de Señal
de la empresa, ha sido el director del proyecto, con la supervisión de Javier Mı́nguez, CSO de la
empresa y profesor en excedencia de la Universidad de Zaragoza. El ponente ha sido Luis Mon-
tesano, miembro del departamento de Informática e Ingenieŕıa de Sistemas de la Universidad de
Zaragoza. El periodo de estancia en la empresa ha sido de siete meses, desde comienzos de Julio
2014 hasta finales de Enero 2015.

1.2. Estado del arte

Rosalind W. Picard presentó en 1995 a la comunidad cient́ıfica [1] el término Affective
Computing o Informática Emocional, definida como computación relacionada, derivada o in-
fluenciada a partir de las emociones. En este art́ıculo Picard explicó con diversos ejemplos la
necesidad de que en la interfaz humano-computador los segundos sean capaces de identificar las
emociones de los primeros. Dada la gran importancia del componente emotivo en todos los ámbi-
tos de la vida humana, la Informática Emocional no solo permitiŕıa una mejora en esta relación
entre humanos y máquinas, sino que podŕıa llegar a dotar a los ordenadores de emociones que
mejoraŕıan su toma de decisiones. En art́ıculos posteriores como [2], Picard abordó este tema ya
desde un punto de vista más técnico, desarrollando protocolos y técnicas para la identificación
de emociones humanas a partir de diversos sensores biométricos.

Desde entonces han sido muchos los productos desarrollados relacionados con la identificación
de emociones humanas. Además, la aparición de dispositivos wearables (incorporados en alguna
parte del cuerpo o la ropa) que permiten tomar datos de las personas de forma instantánea y
masiva, ha ocasionado un incremento de este tipo de productos en los últimos años. Aunque
sus ámbitos de aplicación son numerosos, dos son principalmente los campos en los que más
aparecen: e-health (cuidados sanitarios apoyados en tecnoloǵıas de la información y las comu-
nicaciones) y neuromarketing, disciplina que busca recoger mediante tecnoloǵıa las reacciones y
emociones que genera un recurso publicitario en un sujeto.
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1. Introducción 1.3 Motivación

Los sensores utilizados para el desarrollo de estos productos vaŕıan según la aplicación,
pero generalmente suelen ser algunos de los que se nombran a continuación: GSR (Respuesta
Galvánica de la Piel), BVP (Volumen de Pulso Sanguineo), AR (Actividad Respiratoria), EEG
(Electroencefalograma), fMRI (Resonancia Magnética Funcional), EMG (Electromiograma) y
Eye-Tracker (rastreador del movimiento ocular).

La empresa BitBrain Technologies ha desarrollado varios productos de este tipo como son
la tecnoloǵıa Brain-Up, que utiliza un casco de EEG con el objetivo de conseguir una mejora
cognitiva del sujeto o el Anillo de Usenns, que cuenta con sensores de GSR y BVP y puede ser
utilizado para la medición de emociones en diversos ámbitos.

1.3. Motivación

BitBrain Technologies ha desarrollado unos sensores de GSR y BVP conjuntamente con
una placa de adquisición de datos cuyas aplicaciones son muy variadas, como las ya nombradas en
la sección 1.2 de e-health y neuromarketing. Otra aplicación que la empresa estaba interesada
en estudiar, y que será la desarrollada en este proyecto, era la de identificar si una persona
está o no por encima de su nivel normal de estrés, con lo que el objetivo seŕıa la creación
de un dispositivo capaz de identificar este estado anómalo en un sujeto. Para ello, se creaŕıan
situaciones generadoras de estrés fisiológico y psicológico, siendo éstas las que el dispositivo
debeŕıa detectar.

En caso de éxito en el desarrollo de este sistema el objetivo a largo plazo, fuera del ámbito
de este proyecto, seŕıa su aplicación en la detección de anomaĺıas más concretas que pudieran
interesar a un cliente, dado que empresas externas ya hab́ıan manifestado su interés por la
aplicación de este dispositivo en ámbitos más espećıficos.

Como punto de partida se planteó la creación de un hardware con sensores de GSR y BVP
con el que pudieran grabarse las señales biológicas captadas por estos sensores de forma fácil
y rápida, solamente apoyando la mano sobre el dispositivo. Los sensores a utilizar debeŕıan ser
evaluados para estudiar si aquellos desarrollados por BitBrain eran adecuados para su utilización
o, por el contrario, era necesario utilizar unos ya contrastados.

1.4. Objetivos

El objetivo de este proyecto fin de carrera es el desarrollo de un sistema capaz de detectar
datos espurios, tratándose éstos de anomaĺıas inducidas de tipo fisiológico y psicológico. Para
ello se recopilarán muestras de varios sujetos en un estado normal, en el que no se introduzca
ningún tipo de estrés. Tras realizar un tratamiento y análisis de estas señales, se generarán va-
rios clasificadores que, ante una nueva muestra, sean capaces de identificarla como normal o
anómala, con el mayor ı́ndice de acierto posible. Por lo tanto se buscará maximizar las dife-
rencias entre muestras normales y anómalas, de forma que estas últimas sean lo más fácilmente
identificables posible para el clasificador.
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1. Introducción 1.4 Objetivos

Figura 1.1: Ejemplo de dato anómalo o espurio: El objetivo es llevar nuestras anomaĺıas a un espacio donde
sean tan fácilmente identificables como el punto con el recuadro rojo. Tomando cualquiera de las dos variables
por separado ese punto no es distinguible del resto de valores, pero utilizando ambas se convierte en un espurio
fácilmente identificable.

Además, dado que se ha planteado como posible objetivo futuro la introducción de este
dispositivo en un entorno comercial, es imprescindible realizar en primer lugar un estudio de
patentes que refleje la presencia actual en el mercado de algún producto de caracteŕısticas
similares.

Los objetivos parciales que deben cumplirse par la creación del sistema detector de anomaĺıas
son:

Búsqueda de patentes existentes similares al dispositivo que se quiere desarrollar.

Selección de los sensores a utilizar.

Desarrollo de la instrumentación (hardware y software) para la toma de medidas.

Creación de una base de datos de medidas normales.

Realización de dos tipos de anomaĺıas inducidas en todos los sujetos: estrés fisiológico y
estrés psicológico.

Tratamiento de los datos recopilados y extracción de caracteŕısticas.

Creación de varios sistemas de clasificación mediante la combinación de esas caracteŕısticas.

Comparación de los diferentes clasificadores desarrollados.

Evaluación de los resultados.
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1. Introducción 1.5 Organización de la memoria

En la Figura 1.2 se representa un esquema de todas las tareas realizadas para la creación del
sistema detector de anomaĺıas.

Figura 1.2: Fases del proyecto. En verde se representan las tareas realizadas en esta memoria, y en rojo aquellas
que fueron realizadas por otras partes de la empresa.

1.5. Organización de la memoria

La memoria ha sido dividida en siete caṕıtulos, siendo éste el primero donde se introducen
el proyecto y sus contenidos. A continuación se explica el contenido del resto de caṕıtulos:

Caṕıtulo 2: Consideraciones previas de interés, se explicará cómo ha sido realizado
el estudio de patentes y serán presentados los sensores y señales de interés.

Caṕıtulo 3: Comparativa de sensores, los sensores desarrollados por BitBrain serán
comparados con unos ya contrastados para elegir cuáles serán utilizados en el desarrollo
del sistema.

Caṕıtulo 4: Toma de datos, se explicará la implementación del hardware y software
necesario aśı como el protocolo seguido para la toma de datos normales y anómalos.

Caṕıtulo 5: Análisis, los datos recopilados serán tratados y se extraerán caracteŕısticas
de estos datos, que serán combinadas de varias formas para el desarrollo de los clasifica-
dores.

Caṕıtulo 6: Resultados, los distintos clasificadores serán comparados y evaluados, ex-
poniéndose los resultados más importantes.
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1. Introducción 1.6 Herramientas

Para finalizar la memoria en el Caṕıtulo 7: Conclusiones y ĺıneas futuras, se recopilarán
los objetivos conseguidos y se nombrarán posibles mejoras y aplicaciones futuras.

1.6. Herramientas

La toma de medidas se realizó mediante la utilización del programa Neurolab R©, desarro-
llado por BitBrain Technologies. Para el análisis de todos los datos se utilizó la herramienta
matemática MATLAB R©, y el software de interacción con el usuario fue realizado en Python.
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2. Consideraciones previas de interés

2.1. Introducción

Como paso previo al desarrollo de un producto que podŕıa salir al mercado en un futuro,
es necesaria la realización de un estudio de patentes (sección 2.2) para documentarse sobre la
existencia de productos similares al de interés. Por otro lado, es conveniente conocer un poco
más en profundidad tanto las señales (sección 2.3) como los sensores (sección 2.4) que serán
utilizados con posterioridad en el diseño.

2.2. Búsqueda de patentes

Antes de comenzar con el desarrollo de un producto es necesaria una búsqueda de pro-
ductos similares ya existentes en el mercado por diversos motivos, como los que se exponen a
continuación:

Evitar la vulneración de patentes ya existentes, que de no ser tenidas en cuenta podŕıan
impedir la comercialización del dispositivo una vez desarrollado.

Como estudio de mercado, la constatación de un vaćıo de productos similares aumentaŕıa
las posibilidades de lograr un buen impacto comercial.

Utilización de patentes existentes (en el caso de que las hubiera) para la introducción de
mejoras o nuevos elementos en nuestro producto, siempre respetando esas patentes.

Por todas las razones arriba descritas, el primer paso para la creación del dispositivo detector
de anomaĺıas ha sido la realización de un estudio de patentes a nivel tanto nacional como inter-
nacional, que puede ser visto en detalle en el Anexo D. Esta investigación otorgó la conclusión
de que ningún producto con el que se pudiera entrar en conflicto hab́ıa sido desarrollado, lo que
permite avanzar a la fase de desarrollo sin riesgo de vulnerar patentes existentes.

2.3. Señales utilizadas

Los sensores elegidos para la realización del sistema han sido los de GSR y BVP, que permi-
ten medir la respuesta galvánica de la piel y el pulso sangúıneo respectivamente. A continuación
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2. Consideraciones previas de interés 2.3 Señales utilizadas

se realizará una explicación más detallada de cómo se toman y qué son exactamente las señales
que registran estos sensores.

2.3.1. GSR

Varios nombres se utilizan para nombrar a este sensor, tales como EDA (Electrodermal
Activitiy), EDR (Electrodermal Response), o el que será utilizado de aqúı en adelante, GSR
(Galvanic Skin Response, Respuesta Galvánica de la Piel). Su labor es la medición del nivel de
activación de las glándulas sudoŕıparas, el cual ha sido directamente relacionado con variaciones
en el estado f́ısico o ańımico de las personas, lo que ha llevado a su utilización de manera
extendida en el campo de la neurociencia [3].

El sensor consta de dos electrodos que se colocan sobre la piel del sujeto. Su posicionamiento
puede variar, aunque la colocación estándar suele ser en los dedos de la mano, donde los cambios
de actividad en la sudoración son más acusados. Concretamente, suelen ser colocados en las
segundas falanges de los dedos ı́ndice y corazón o corazón y anular.

Se trata de una medición activa, ya que se introduce una pequeña corriente entre los dos
electrodos. De esta forma, se puede calcular el valor de la resistencia eléctrica de la piel, que vaŕıa
según el nivel de activación de las glándulas sudoŕıparas. A partir de ah́ı puede ser extráıdo el
valor de conductancia de la piel (medido en Siemens, S = Ω−1), o lo que es lo mismo, la inversa
de la resistencia de la piel. El rango de esta señal suele estar en torno a los microSiemens (µS).

La señal de GSR puede ser dividida en dos partes:

Parte tónica: Refleja las variaciones lentas producidas en la señal a lo largo del tiempo.

Parte fásica: Muestra cambios rápidos de la señal que suelen ser producidos como res-
puesta a algún est́ımulo. Estas respuestas pueden ser de dos tipos: Relacionadas con
algún evento (ER, Event-Related) cuando se deben a algún est́ımulo concreto que puede
ser identificado, o No Espećıficas (NSR, Non-Specific Responses), cuando ocurren en
ausencia de est́ımulos identificables.

Figura 2.1: A la izquierda se ve una señal t́ıpica de GSR durante un intervalo de 60 segundos. A la derecha esa
señal ha sido descompuesta en su parte tónica (zona sombreada de la gráfica superior) y fásica (gráfica inferior).

Dado que existe una relación entre las respuestas del Sistema Nervioso Simpático (SNS) y
el nivel de activación emocional, el sensor de GSR puede ser utilizado para medir el nivel de
excitación emocional de una persona, aunque no es posible la detección de la emoción concreta.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

Como libro de referencia sobre la activación electrodérmica, su explicación fisiológica, cone-
xión con el sistema nervioso y aplicaciones en diversos campos véase [4].

2.3.2. BVP

El sensor de BVP (Blood Volume Pulse, Volumen de Pulso Sangúıneo), también conocido
como fotopletismograma (PPG, por sus siglas en inglés), en capaz de extraer la onda de pulso
sangúıneo, a partir de la cual se puede medir el ritmo card́ıaco (Heart Rate (HR)) y la variabili-
dad del ritmo card́ıaco (Heart Rate Variability (HRV)), parámetros relacionados directamente
con el sistema nervioso autónomo [5], entre otras caracteŕısticas.

Para ello el sensor es colocado t́ıpicamente en la primera falange del dedo ı́ndice (el lóbulo de
la oreja puede ser otro buen lugar de posicionamiento), y una señal de origen óptico es registrada
por el sensor. Dos componentes son utilizados: un LED que ilumina la piel y un fotodiodo que
capta la luz. Este fotodiodo puede ser colocado al lado del LED, con lo que medirá la cantidad
de luz reflejada, o al otro lado del dedo, captando la luz transmitida a través de todos los
tejidos del dedo. Ambas colocaciones permiten la extracción de la onda card́ıaca mediante los
cambios en la absorción de la luz, que se deben a las variaciones en la cantidad de sangre que
circula por el dedo a lo largo del ciclo card́ıaco. El rango de la señal obtenida se encuentra en
los µV .

Figura 2.2: Señal de BVP.

2.4. Sensores disponibles

La fabricación de dispositivos para la medición de señales biológicas ha venido incrementándo-
se en los últimos tiempos, especialmente unida a la aparición de las tecnoloǵıas wearables. Estos
dispositivos pueden ser clasificados en dos categoŕıas:

Instrumentación de laboratorio o médica: pensada para realizar medidas en un en-
torno estático con alta fiabilidad y precisión. Este es el caso de la tecnoloǵıa de TMSI o
GTec.

Instrumentación portátil: Su gran ventaja radica en que el sujeto puede estar en movi-
miento, permitiendo la toma de medidas en cualquier lugar y situación. Por ello, el tamaño
y peso de este tipo de dispositivos debe ser mucho menor que los de tipo médico, con las
consecuentes limitaciones de diseño que ello implica. Se trata del caso de los ya comentados
wearables, siendo el Anillo de Usenns un ejemplo de este tipo de productos.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

El detector de anomaĺıas que queremos desarrollar deberá llevar los sensores ya descritos de
GSR y BVP. La empresa BitBrain dispone de unos sensores de este tipo de reciente creación.
Aunque lo preferible seŕıa que utilizáramos éstos para el desarrollo de nuestro producto, lo cierto
es que aún no han podido ser comparados contra otros de calidad contrastada para comprobar
su correcto funcionamiento. Por ello, a continuación se describirán más en detalle tanto estos
sensores como los de TMSI, y en el Caṕıtulo 3 serán comparados y evaluados, decidiéndose
cuáles serán usados para el desarrollo del sistema de interés.

2.4.1. TMSI

La empresa TMSI (Twente Medical Systems International) es una compañ́ıa especializada
en el desarrollo de amplificadores y sensores de alta calidad para la adquisición de datos en
aplicaciones fisiológicas. Su tecnoloǵıa es ampliamente utilizada en entornos biomédicos y reco-
nocida como precisa y fiable incluso en ambientes hostiles, con alta presencia de artefactos. La
frecuencia de muestreo es de 256 Hz, y el amplificador va conectado mediante una interfaz USB
a un ordenador para la transmisión de los datos.

En la figura 2.3 vemos el amplificador que se ha utilizado, el cual permite la conexión de
múltiples tipos de sensores. Nosotros utilizaremos los de BVP y GSR aunque podŕıan ser conec-
tados también otros tipos de sensores como EMG y hasta 32 canales de EEG.

2.4.2. BitBrain

La empresa BitBrain ha desarrollado dos sensores de BVP y GSR junto con una placa de
adquisición de datos con frecuencia de muestreo de 32 Hz, pensados para su instalación en ins-
trumentación de medida portátil. Uno de esos dispositivos, el cual se utilizará para la medición
de calidad de los sensores es el Anillo de Usenns. Este dispositivo va sujeto a los dedos ı́ndice
y corazón mediante una correa, permitiendo la adquisición cómoda de esas señales. Además,
dispone de un acelerómetro que registra los movimientos del anillo y de la placa de adquisición
de datos que transmite los datos a un ordenador v́ıa Wi-Fi, lo que hace al aparato totalmente
inalámbrico.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

(a) Amplificador (b) Sensor BVP (c) Sensor GSR

Figura 2.3: Componentes utilizados de TMSI: sensor BVP (2.3b), que es colocado en la primera falange del dedo
ı́ndice y sensor de GSR (2.3c), formado por dos electrodos posicionados en las segundas falanges de los dedos
corazón y anular. Ambos van conectados al amplificador de la figura 2.3a, que a su vez transmite los datos via
USB a un ordenador.

Figura 2.4: Anillo de Usenns. En la figura podemos obervar el sensor de actividad cardiovascular (BVP), que se
sitúa en la primera falange del dedo ı́ndice, el de actividad electrodérmica de la piel (GSR), cuyos electrodos se
posicionan sobre las segundas falanges de los dedos ı́ndice y corazón, y el acelómetro o sensor de movimiento.
Además, incorpora un módulo Wi-Fi para el env́ıo de datos.
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3. Comparativa de sensores

3.1. Introducción

En el caṕıtulo anterior se han presentado los dos tipos de sensores disponibles, unos de tipo
médico de la marca TMSI y otros desarrollados por BitBrain. A lo largo de este apartado
serán comparados con el objetivo de determinar si podemos utilizar los segundos para la im-
plementación del detector de anomaĺıas o, por el contrario, será necesaria la utilización de los
sensores de TMSI.

La comparativa se ha basado en el art́ıculo de referencia [6], donde un sensor portátil de
GSR es comparado con uno de tipo médico. Se seguirá un esquema similar al del art́ıculo citado,
realizándose también una comparación de los sensores de BVP, la cual no tiene lugar en ese
art́ıculo.

Como primer paso se llevará a cabo una calibración de los sensores (sección 3.2) para garan-
tizar su correcto funcionamiento, grabándose posteriormente una medida experimental descrita
en la sección 3.3. Una vez que se hayan adquiridos las señales, éstas serán comparadas (sec-
ción 3.4), y se determinará qué sensores serán utilizados (sección 3.5), en base a los resultados
obtenidos.

3.2. Calibración de los sensores

Antes de que se realice una grabación, es imprescindible comprobar el buen funcionamiento
de los sensores y calibrarlos para que su rendimiento sea el mejor posible.

3.2.1. Calibración del GSR

Tal y como fue descrito en la sección 2.3.1, el GSR es un sensor que mide la resistencia de
la piel. Por lo tanto, es posible realizar una calibración del sensor con resistores fijos cuyo valor
es conocido. Se han realizado mediciones en el rango t́ıpico de la piel humana, que va desde los
100 kΩ hasta los 4 MΩ.

En la Tabla 3.1 puede observarse el error obtenido al medir los distintos valores resistivos
con los sensores de TMSI y el Anillo. Este error se ha calculado con respecto al valor real de los
resistores, medido con un poĺımetro de laboratorio de precisión 0.9 %.
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3. Comparativa de sensores 3.2 Calibración de los sensores

Resist. Resist. Valor Error Valor Error
teórica real TMSI TMSI Anillo Anillo

100 kΩ 99.7 kΩ 100.076 kΩ 0.3780 % 90.995 kΩ 8.7309 %

200 kΩ 199.1 kΩ 199.059 kΩ 0.0204 % 191.033 kΩ 4.0515 %

300 kΩ 298.8 kΩ 298.223 kΩ 0.1931 % 290.924 kΩ 2.6358 %

400 kΩ 398.7 kΩ 397.578 kΩ 0.2814 % 392.011 kΩ 1.6776 %

512 kΩ 511 kΩ 509.151 kΩ 0.3619 % 505.976 kΩ 1.1782 %

1000 kΩ 995 kΩ 990.440 kΩ 0.4583 % 992.049 kΩ 0.2966 %

2000 kΩ 1990 kΩ 1975.736 kΩ 0.7168 % 1995.539 kΩ 0.2784 %

3000 kΩ 2986 kΩ 2957.455 kΩ 0.9560 % 2998.649 kΩ 0.4236 %

4000 kΩ 3986 kΩ 3937.312 kΩ 1.2215 % 4005.343 kΩ 0.4853 %

Tabla 3.1: Valores de los resistores con TMSI y el Anillo.

En la Figura 3.1 se puede observar el error que se obtiene en el art́ıculo de referencia [6], en el
que se realizó la misma prueba, y el obtenido con los sensores de TMSI y el Anillo. Para valores
inferiores a 1 MΩ TMSI obtiene un error menor, mientras que partir de 1 MΩ el Anillo consigue
un error muy por debajo del de TMSI, y bastante similar al del art́ıculo de referencia. Los valores
de resistencia de la piel humana suelen situarse siempre por encima de 1 MΩ, intervalo en el que
el Anillo tiene un error muy pequeño.

(a) (b)

Figura 3.1: Curva de error para: 3.1a el art́ıculo de referencia [6] y para 3.1b el anillo y TMSI.

Como resultado de esta prueba el departamento de electrónica pudo mejorar el funcionamien-
to del sensor ajustando alguno de los componentes del Anillo para minimizar el error, aśı como
plantear futuras mejoras que pudieran minimizarlo aún más.

3.2.1.1. Interfaz Piel-Electrodo

La calibración del sensor de GSR ha sido realizada mediante resistores fijos. Sin embargo,
antes de que estos sensores sean utilizados en una persona, algunas cuestiones de interés deben
ser descritas:
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3. Comparativa de sensores 3.2 Calibración de los sensores

La interfaz Piel-Metal que se da al colocar los electrodos en la mano de una persona es
mucho más compleja que la interfaz Metal-Metal realizada en la calibración con resistores
[7]. Esta interacción es dependiente en gran medida del metal utilizado en el sensor, aśı co-
mo del tipo de piel (un dedo donde la piel es más dura tiene diferente resistencia que otro
con la piel más blanda). De los dos sensores disponibles, el de TMSI utiliza acero como
material de sus electrodos mientras que el del Anillo utiliza plata. Esto provoca diferencias
en la señal obtenida (Figura 3.2), y una normalización de las señales se hace imprescindible
para que éstas puedan ser comparadas.

Ambos sensores no pueden ser colocados en los mismo dedos ya que se originaŕıan interfe-
rencias que afectaŕıan a las señales. La repetición del experimento con diferentes sensores
tampoco es posible, debido a que la intensidad de la respuesta a los est́ımulos disminuye
con el número de repeticiones, por lo que las señales no seŕıan comparables. La solución
radica en la colocación de los sensores en manos diferentes. Sin embargo, existen diferen-
cias entre la mano izquierda y derecha [8], [9] a la hora de registrar una señal de GSR.
Por lo tanto, no deben esperarse señales idénticas al grabar en manos distintas, incluso
aunque los sensores fueran los mismos. Esto también puede visualizarse de forma gráfica
en la Figura 3.2.

(a) Señales sin normalizar (b) Señales normalizadas

Figura 3.2: Una normalización de las señales de ambos sensores es necesaria debido al diferente metal utilizado
por sus electrodos.

En definitiva, tanto el material del que están fabricados los sensores como la zona de colo-
cación de éstos aportan una variabilidad a las señales que deberá ser tenida en cuenta a la hora
de interpretar la comparación entre ellas.

3.2.2. Calibración del BVP

Debido a que el sensor de BVP realiza medidas ópticas, no es posible la realización de una
calibración similar a la del GSR, donde la comparación se realizaba con un parámetro fijo cono-
cido como eran los resistores. En este caso, la calibración se ha realizado en dos pasos: en primer
lugar, se comprueba que el sensor está correctamente conectado y funcionando. Posteriormente,
una vez colocado en el dedo del sujeto y con la ayuda de un visor que permita observar la señal
en tiempo real, el sensor es ajustado hasta la obtención de una señal correcta. En la Figura 3.3
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3. Comparativa de sensores 3.3 Medición experimental

se muestra la forma que debe de tener la señal cuando el sensor está bien colocado aśı como
alguno de los artefactos más comunes provocados por su mal posicionamiento.

(a) Señal correcta (b) Sensor demasiado suelto (c) Sensor demasiado ajustado

(d) Artefacto por movimiento del dedo (e) Artefacto por movimiento de la mano

Figura 3.3: Señal de BVP correcta y afectada por algunos de los artefactos más comunes.

Desgraciadamente, aunque el sensor se haya ajustado correctamente al principio de la gra-
bación, la aparición de artefactos por movimientos del dedo y mano del sujeto (Figura 3.3d y
3.3e) es muy común, especialmente en grabaciones largas como la que será realizada. Como con-
secuencia, una inspección visual de la señal grabada será necesaria con el objetivo de identificar
y eliminar artefactos de las señales, lo cual implica que la longitud de éstas se verá reducida y no
será exactamente la misma para todos los sujetos, ya que dependerá del número de artefactos
encontrados.

3.3. Medición experimental

A continuación se describe el protocolo seguido para la grabación de una medida experimen-
tal:

Número de sujetos: 5.

Colocación de los dispositivos: Sensores de TMSI en la mano derecha tal y como se
describe en la Figura 2.3 y anillo de Usenns en la mano izquierda (Figura 2.4). También
se ha utilizado un fotodiodo de TMSI para la posterior sincronización de las señales, y dos
ordenadores para la adquisición de datos de cada dispositivo.

Experimento: se realizaron 3 tareas de 9 minutos cada una, formadas cada una por 3
minutos de relajación, 3 de una tarea f́ısica (pedalear en una pedalina), cognitiva (test de
Stroop, una prueba generadora de estrés cognitivo que explicaremos más en detalle en el
caṕıtulo 4) o emocional (ver una serie de v́ıdeos), seguidos de otros 3 minutos de relajación.
Un esquema general puede ser observado en la Figura 3.4.
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Figura 3.4: Tareas del experimento realizado.

3.4. Comparativa de señales

Para la comparación de las señales ha sido utilizada la misma métrica que en [6], el Coe-
ficiente de correlación de Pearson, parámetro que refleja el grado de relación entre dos
variables cuantitativas. Como test estad́ıstico ha sido calculado el p-valor, teniendo en cuenta
que una correlación será significativa si su p-valor es menor a 0.05. En el caso de todas las
correlaciones que serán mostradas en los siguientes apartados, su p-valor ha sido < 0.001.

Una explicación más detallada del coeficiente de correlación de Pearson y del p-valor puede
ser encontrada en el Anexo C.

Cabe señalar que, dado que la frecuencia de muestreo de ambos dispositivos es distinta tal
y como se detalló en la sección 2.4, ha sido necesario realizar un diezmado de la señal de TMSI
para reducir la frecuencia de muestro a 32 Hz antes de poder practicar cualquier comparación
entre las señales.

3.4.1. Correlación

En la Figura 3.5 se presenta la correlación total de las señales recogidas para cada sujeto
por ambos tipos de sensores. Sin embargo, la correlación de señales de larga duración y baja
frecuencia puede dar como resultado un valor muy alto, pero pasar por alto zonas de peor
correlación. Por ello, en la Figura 3.6 se han dividido las señales en tramos más pequeños, con el
fin de comprobar si la correlación desciende excesivamente en algún punto concreto de la señal.
Dado que después de la eliminación de artefactos la duración de las señales para cada sujeto no
es idéntica, esta división se ha realizado en fragmentos de duración 20 % de la longitud total de
cada señal.
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3. Comparativa de sensores 3.4 Comparativa de señales

(a) (b)

Figura 3.5: Correlación total de las señales de BVP y GSR por sujeto.

(a) (b)

Figura 3.6: Correlación por tramos de las señales de BVP y GSR por sujeto, p-valor < 0.001.

3.4.2. RMSE

Otro parámetro de comparación de señales que suele ser utilizado es el RMSE (root-mean
square error) o ráız del error cuadrático medio, que representa el error residual medio entre una
señal y otra:

Se quiere calcular el error de la señal de n puntos recogida por el anillo respecto a la señal
de referencia, que será la de TMSI. En este caso la ecuación para calcular el RMSE queda:

RMSE =

√∑n
t=1(yt,Anillo − yt,TMSI)2

n
(3.1)

Si realizamos una normalización de este valor respecto al rango de valores observados en la
variable de referencia obtenemos el NRMSE:

NRMSE =
RMSE

ymax,TMSI − ymin,TMSI
(3.2)
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3. Comparativa de sensores 3.5 Elección de sensores

Para ambos sensores el valor del NRMSE es muy bajo (Figura 3.7), siempre menor al 4 %,
siendo aún más pequeño en la señal PPG donde como máximo llega al 0.1 %. El hecho de que el
error sea más grande en la señal de GSR se debe a que ambas señales pueden tener diferencias
debido al lugar de posicionamiento y material de los sensores tal y como se describió en la sección
3.2.1.1, y este parámetro castiga más a pequeñas diferencias puntuales entre las señales que otros
como la correlación. Aun aśı pueden considerarse valores bastante pequeños que reflejan la gran
similitud de las señales.

(a) (b)

Figura 3.7: NRMSE de las señales de GSR y PPG.

3.5. Elección de sensores

Después de realizar las comparaciones anteriores entre las señales del anillo y de TMSI, se
han extráıdo las siguientes conclusiones:

Los altos ı́ndices de correlación apuntan que ambas señales son equivalentes a nivel global
con un gran nivel de similitud, lo cual nos indica que estamos registrando los mismos
procesos fisiológicos.

Se observan porcentajes muy bajos en el NRMSE, con lo que podemos constatar que
tampoco existen diferencias puntuales muy grandes entre las señales. En el PPG esto es
muy importante ya que provocaŕıa grandes desigualdades en el cálculo del ritmo card́ıaco
y otras caracteŕısticas. Respecto al GSR estas diferencias puntuales son más asumibles,
incluso normales, al tratarse de sensores fabricados con materiales distintos y colocados en
manos diferentes, con lo que las señales diferirán ligeramente.

Considerando lo arriba comentado, las dos pruebas que hemos realizado nos confirman que
los sensores del anillo y TMSI son equivalentes, habiéndose comprobado a nivel global y puntual.
Por lo tanto, podemos afirmar que los sensores de BitBrain pueden ser utilizados en cualquier
ámbito de aplicación con total garant́ıa de que el registro de señal es comparable al de un
dispositivo médico ya contrastado como TMSI.
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4. Toma de datos

4.1. Introducción

Una vez que los sensores han sido elegidos, es posible comenzar con el desarrollo del detector
de anomaĺıas. A lo largo de este caṕıtulo describe en primer lugar los requisitos de diseño que
debe tener el dispositivo (sección 4.2), para posteriormente detallar como se han cumplido cada
uno de estos requisitos, a nivel de hardware (sección 4.3) y de software (4.4). Para finalizar el
caṕıtulo se detalla el protocolo seguido para la medición de datos normales y anómalos en la
sección 4.5.

4.2. Requisitos del sistema

El sistema detector de anomaĺıas contaba con unos requisitos a nivel de hardware y software
impuestos por la empresa que se deb́ıan cumplir. Además, también fueron fijados el número de
sujetos y muestras que deb́ıan tomarse. Todos estos requisitos se resumen en la tabla 4.1, y serán
descritos más detalladamente en las secciones posteriores.

Requisitos

Hardware

Apoyo cómodo de la mano derecha
Misma placa y sensores que los del Anillo de Usenns
Sensor de BVP en la primera falange del dedo ı́ndice
Electrodos de GSR en segundas falanges de dedos ı́ndice y corazón
Tapa sobre los dedos que proporcione oscuridad al sensor de BVP
Material y diseño que imposibilite movimientos indeseados

Software
Creación de un programa para la adquisición de datos
Fácil e intuitivo de usar para un usuario estándar
Etiquetado de las medidas por sujeto, momento del d́ıa y tipo

Toma de medidas

Dos tipos de medidas: normales y anómalas
Toma de medidas normales dos veces al d́ıa: mañana y tarde
70 medidas normales por sujeto
6 anomaĺıas por sujeto: 3 f́ısicas y 3 anómalas

Tabla 4.1: Requisitos del sistema detector de anomaĺıas.
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4.3. Hardware

Para la creación de un prototipo que cumpliera con las especificaciones descritas de la Tabla
4.1, el departamento de diseño de la empresa generó un esquema que recogiera estos requerimien-
tos. A partir de ese esquema se procedió al montaje del hardware, contándose con la colaboración
del departamento de electrónica para el soldado y ensamblado de los cables y sensores. Se pueden
ver el plano y el resultado final en la Figura 4.1, y una explicación más detallada del montaje
del prototipo puede encontrarse en el Anexo B.

Figura 4.1: Prototipo para el detector de anomaĺıas.
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4.4. Software

Complementando al hardware descrito en la sección anterior, fue creado un programa en
Python que cumpliera con lo descrito en la Tabla 4.1. El programa se encarga de la grabación
y etiquetado de las señales para su posterior almacenamiento, lo que permite tomar las medidas
a cualquier persona, incluso al propio sujeto cuyas señales se van a grabar si aśı se desea. En el
Anexo B se detalla como ha sido desarrollado este programa, cuya interfaz puede ser observada
en la Figura 4.2.

Figura 4.2: Instantánea de la interfaz del programa creado.

23
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4.5. Protocolo de toma de datos

Durante el intervalo de tiempo en el que se llevó a cabo el proceso de toma de medidas
se realizaron dos tipos de grabaciones: normales, en las que no se realizaba ninguna actividad
especial y anómalas, dónde el sujeto llevaba a cabo alguna tarea que le generara estrés f́ısico o
cognitivo.

4.5.1. Tamaño de la muestra

Número de sujetos: 13.

Número de muestras normales por sujeto: 70.

Número de muestras anómalas por sujeto: 6, 3 de estrés f́ısico y 3 de estrés cognitivo.

4.5.2. Toma de muestras normales

Uno de los objetivos detallados en la sección 1.4 era la creación de una base datos con
muestras normales de cada sujeto, durante las cuales no se estuviera realizando ningún tipo de
actividad estresante. Para ello, se tomaban medidas de los sujetos dos veces al d́ıa, en el momento
de comenzar y terminar la jornada laboral respectivamente. Este proceso se repitió durante los
tres meses que duró aproximadamente completar la base de datos. Cada vez que se tomaba
una medida se realizaba una grabación de duración 60 segundos, aunque ésto no quiere decir
necesariamente que el tiempo utilizado para el análisis posterior sea ese, como se verá en el
caṕıtulo 5.

4.5.3. Toma de anomaĺıas

Durante los meses en los que se estaban recopilando las muestras normales, ocasionalmente
se realizaba la grabación de alguna de las anomaĺıas que queŕıamos detectar. En concreto, han
sido 6 el número de anomaĺıas tomadas por sujeto, tres de estrés f́ısico o fisiológico y tres de
estrés cognitivo o psicológico. Las anomaĺıas de tipo f́ısico tienen un impacto claro en el ritmo
card́ıaco del sujeto, acelerándolo, con lo que a priori debeŕıan ser relativamente sencillas de
detectar. Por otro lado, las originadas por estrés cognitivo no parecen tan fáciles de detectar,
dado que no se puede decir que afecten a un parámetro corporal de forma tan evidente como
las f́ısicas. Por lo tanto, resultará de interés realizar ambos tipos de anomaĺıas y comparar la
dificultad de detectar cada una de ellas. A continuación se explica más detalladamente como se
han inducido estos datos anómalos:
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Anomaĺıas f́ısicas: el sujeto sub́ıa y bajaba 5 veces un tramo de escaleras. La medida, de
60 segundos de duración, se realizaba justo después de que se hubiera realizado esta tarea.
Estudios como [10] hablan de la alteración de parámetros biométricos como la Variabilidad
del Ritmo Card́ıaco debido a pequeños esfuerzos f́ısicos.

Anomaĺıas cognitivas: todos los sujetos han realizado tres pruebas diferentes que se
describirán a continuación. En todos los casos las medidas de 1 minuto se han tomado
durante la realización de la prueba pertinente.

• Test de Stroop [11], utiliza el conocido como efecto Stroop, o interferencia cognitiva
que se produce en un sujeto cuando lee el color del que está pintada una palabra,
pero el significado de esa palabra indica un color distinto. Por ejemplo, leyendo el
color de la siguiente palabra: VERDE. La prueba consiste en leer el color del mayor
número posible de palabras en un minuto.

• Prueba de sustracción [12], el sujeto debe restar en voz alta un número primo a
un número grande de forma continua. Por ejemplo, 17 a 1431 (1414, 1397, 1380...)
durante el minuto que dura la medida. Para incrementar la dificultad se cambian los
números cuando el sujeto se ha acostumbrado.

• Prueba matemática [13], consistente en la resolución del mayor número de pequeños
problemas matemáticos en un minuto, relacionados con cálculo de porcentajes, divi-
siones, etc. Los problemas usados fueron los mismos para todos los sujetos.
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5. Análisis

5.1. Introducción

A lo largo de este caṕıtulo se explicará el análisis realizado a los datos obtenidos, y su
tratamiento para la creación de los distintos clasificadores. Como primer paso se aplicará un
preprocesado a los datos grabados (sección 5.2) antes de proceder en el apartado siguiente a la
descripción de todas las caracteŕısticas extráıdas. Sin embargo, estas caracteŕısticas pueden ser
reducidas o combinadas para la creación de distintos clasificadores, por lo que en la sección 5.4
se detallan los métodos de reducción de caracteŕısticas empleados.

Para acabar el caṕıtulo, en la sección 5.5 se define el criterio de clasificación utilizado y se
enumeran todos los clasificadores generados, que serán comparados en el caṕıtulo 6.

5.2. Preprocesado

La realización de una serie de tratamientos previos sobre las señales recogidas por los dos
sensores resulta indispensable para la obtención de unos resultados fiables. Estas operaciones
serán descritas a continuación:

5.2.1. BVP

Reducción de la señal: De los 60 segundos grabados solo será utilizado un intervalo de
30 para el análisis posterior. El criterio de selección de este intervalo es la ausencia en la
medida de lo posible de artefactos como los descritos en la sección 3.2.2.

Filtrado: Se aplica un filtro paso banda entre 0.5 y 2 Hz.

Detector de picos: La señal es introducida a un algoritmo de detección de picos desa-
rrollado por BitBrain, quedando tras el paso por ese algoritmo tal y como se observa en la
Figura 5.1. El intervalo entre dos picos se denomina IBI (inter-beat-interval), y expresa el
ritmo card́ıaco instantáneo. Sirva como ejemplo, si entre dos picos el IBI es de 0.5 segundos
el ritmo card́ıaco en pulsaciones vendŕıa dado por 60/IBI(segundos) = 120 pulsaciones por
minuto.
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Figura 5.1: Señal de BVP tras el preprocesado. Los ćırculos rojos señalan los puntos identificados como picos por
el algoritmo.

5.2.2. GSR

Reducción de la señal: Con igual criterio de ausencia de artefactos, se selecciona un
intervalo de 30 segundos de señal.

Filtrado: Se aplica a la señal un filtro paso bajo con frecuencia de corte en 2 Hz.

Conversión: Para la transformación de la señal de Voltios a Siemens, debe aplicarse una
fórmula de conversión propia del hardware utilizado.

5.3. Extracción de caracteŕısticas

En total han sido extráıdas 16 caracteŕısticas diferentes, 6 de la señal BVP y 10 de GSR, que
se describen a continuación. Su selección ha sido el resultado de la búsqueda de las caracteŕısticas
usadas más comunes en varios art́ıculos de referencia como [2], [14] o [15].

5.3.1. BVP

Ritmo card́ıaco medio, o media de todos los intervalos (IBI). Indica el ritmo card́ıaco
medio a lo largo de la grabación.

Mediana del ritmo card́ıaco, misma medida que la anterior, pero utilizando la mediana
en vez de la media.

Desviación estándar del ritmo card́ıaco.

NN50, parámetro que indica el número de intervalos IBI que han diferido en 50 o más ms
respecto al intervalo anterior (indicador de cambios rápidos de pulso).

pNN50, proporción de NN50 respecto al número total de intervalos IBI.

RMSSD (root mean square of successive differences), ráız cuadrada de la media de los
cuadrados de las sucesivas diferencias entre intervalos IBI adyacentes.
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5.3.2. GSR

Media del GSR, media de la señal total, parte tónica más fásica.

Desviación estándar del GSR, de la señal total.

Media de la primera derivada del GSR.

Media de la primera derivada del GSR normalizada por la desviación estándar
del GSR.

Media de la segunda derivada del GSR.

Media de la segunda derivada del GSR normalizada por la desviación estándar
del GSR.

Media de la parte tónica, solo de esa parte de la señal.

Desviación estándar de la parte tónica.

Número de respuestas, cantidad de est́ımulos (tanto espećıficos como no-espećıficos) en
la parte fásica.

Área fásica, o área bajo la señal fásica.

5.4. Reducción de caracteŕısticas

En muchas aplicaciones, como la que estamos desarrollando, un alto número de posibles
caracteŕısticas pueden ser utilizadas. Sin embargo, ésto no implica que el mejor resultado vaya
a ser obtenido necesariamente mediante la utilización de todas ellas. Algunas pueden ser re-
dundantes entre śı, no aportando nada de información al clasificador o incluso empeorando su
funcionamiento. También puede darse el caso de que una caracteŕıstica no sea de ninguna ayuda
por śı sola y sin embargo, al combinarse con otras, resulte de alta utilidad (algunos ejemplos
pueden verse en [16]). Por otro lado, el cálculo de más caracteŕısticas siempre conllevará un ma-
yor coste computacional. Solo con el objetivo de reducir ese tiempo de computación, merece
la pena estudiar distintas posibilidades de reducción del número de dimensiones. Dentro de este
campo podemos distinguir dos tipos de algoritmos:

Algoritmos de transformación: las caracteŕısticas existentes se transforman a un es-
pacio dimensional más bajo, combinándose de forma que las nuevas variables contengan el
máximo posible de la información original. El método utilizado en esta categoŕıa será PCA
[17], Principal Component Analysis, o Análisis de Componentes Principales.

Algoritmos de selección: Parte de los datos disponibles se suministrarán a un algoritmo
que, sabiendo las observaciones que pertenecen a cada clase, selecciona las caracteŕısticas
que más separan estas dos clases. Un 30 % de los datos recogidos (tanto normales co-
mo anómalos) se destinarán a estos algoritmos, y ya no podrán ser empleados para la
clasificación. Se utilizarán dos métodos: Búsqueda exhaustiva, que evalúa todas las
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combinaciones posibles (alto coste computacional) y SFS (Sequential Forward Search),
con un coste de computación inferior.

Una explicación más detallada de estos algoritmos puede encontrarse en el Anexo C.

5.5. Clasificadores

La detección precisa de espurios es una de las tareas más importantes dentro del análisis de
datos, debido a que su no consideración puede llevar a unos resultados, como mı́nimo, engañosos.
Además, en numerosos ámbitos los propios espurios pueden resultar ser los puntos buscados ya
que describen un comportamiento anómalo que muchas veces es de alto interés, como en el
caso de la detección de intrusos o anomaĺıas en el tráfico de una red (más ejemplos y una
explicación más amplia pueden verse en [18]). Éste es también el caso que se da en el sistema
que se está desarrollando en esta memoria.

La principal pregunta que surge es: ¿qué debe considerarse como espurio?. Aunque no existe
una única definición generalmente aceptada, Hawkins [19] lo define como: Un espurio es una
observación que se desv́ıa tanto de otras observaciones que levanta sospechas de que puede estar
generada por otros mecanismos diferentes. A partir de esta definición son varias las metodo-
loǵıas desarrolladas para la detección de espurios. En este trabajo se usará la llamada detección
basada en la distancia, que computa un tipo de distancia para todos los puntos de la distri-
bución y, dependiendo de lo grande que sea esta distancia, el punto es clasificado como normal
o anómalo. Este método ha sido el elegido debido a que es adecuado para conjuntos de datos
multidimensionales y es independiente de la distribución de los datos [20].

5.5.1. Distancias

El parámetro más importante a la hora de desarrollar el clasificador es la selección del tipo
de distancia. La elección estándar en este tipo de métodos suele ser la de Mahalanobis [21]. La
distancia de Mahalanobis de un punto con coordenadas en P dimensiones x = (x1, x2, x3, ..., xP )T

a un grupo de observaciones con media µ = (µ1, µ2, µ3, ..., µP )T y matriz de covarianzas Σ se
define como:

MD(x) =
√

(x− µ)TΣ−1(x− µ) (5.1)

Sin embargo, la distancia de Mahalanobis cuenta con una desventaja muy grande si es aplica-
da tal y como se ha definido previamente. La media y la matriz de covarianzas de la distribución,
necesarias para el cálculo de la distancia, son altamente sensibles a valores espurios, de forma
que la distancia obtenida no resulta fiable. Por ello, han sido desarrollados varios algoritmos
robustos, basados en esta distancia de Mahalanobis, que se definen como:

RD(x) =

√
(x− µ̂)T Σ̂−1(x− µ̂) (5.2)
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donde µ̂ es la media y Σ̂ la matriz de covarianzas, ambas calculadas de manera robusta
por un algoritmo, siendo algunos de los más comunes discutidos en [22]. De todos ellos, el que
será utilizaremos es el denominado MCD, Minimum Covariance Determinant (concretamente,
el método y libreŕıa utilizados son aquellos descritos en [23]) que busca, de entre el conjunto de
datos de tamaño total n, el subconjunto de tamaño h, con h > n/2, cuya matriz de covarianzas
clásica tenga el menor determinante posible. De esta forma, µ̂ = µMCD será la media de esos
h puntos, y Σ̂ = ΣMCD será su matriz de covarianzas. El algoritmo MCD puede resistir (n −
h) datos espurios y, por lo tanto, ese valor h (o equivalentemente la proporción α = h/n)
determinará la robustez del algoritmo. Cuando se espera un alto nivel de contaminación por
espurios α debeŕıa ser elegido con un valor cercano a 0.5. Sin embargo, para situaciones en las
que no se espera una presencia excesiva de datos anómalos, un valor intermedio de α = 0.75 es el
recomendado, y el que ha sido elegido en esta memoria, ya que proporciona resultados precisos
si el set de datos contiene hasta un máximo del 25 % de datos espurios, lo que es una condición
bastante razonable para el sistema que se está desarrollando. Una explicación más profunda del
algoritmo puede verse en [24].

5.5.2. Objetivo del clasificador

Los datos introducidos a nuestro sistema pueden ser normales o anómalos. El objetivo de los
clasificadores es el de detectar si una muestra es anómala o no. Esta estimación dependerá de
las caracteŕısticas elegidas, aśı como del criterio utilizado para la clasificación de los datos. Al
clasificar una muestra pueden darse cuatro posibles casos:

Verdadero Positivo (VP): la nueva entrada se clasifica como dato anómalo y, efectiva-
mente, lo es.

Verdadero Negativo (VN): la nueva entrada es un dato normal y se clasifica correcta-
mente como tal.

Falso Positivo (FP): la nueva entrada es un dato normal, pero el clasificador dictamina
que es anómalo.

Falso Negativo (FN): la nueva entrada es un dato anómalo pero se clasifica como un
dato normal.

Un clasificador perfecto conseguiŕıa porcentajes del 100 % en VN y VP y del 0 % en FP y
FN. En la Figura 5.2a se observa un clasificador formado por dos variables, que debe clasificar
los datos que se muestran. Puede verse una nube de puntos azules (normales) que se agrupan
formando un cluster, y unos pocos de color rojo y verde (anómalos). Las anomaĺıas f́ısicas (rojas)
parecen bastante lejos del centro de esa distribución y consecuentemente fáciles de detectar. Sin
embargo, las cognitivas (verdes) se sitúan mucho más próximas, tanto que algunas se encuen-
tran dentro del cluster de muestras normales. Para que se clasifiquen correctamente todas las
anomaĺıas (es decir, FN = 0 %), el umbral debeŕıa ser colocado como se ve en la Figura 5.2b,
clasificando todas las muestras que caen dentro del elipsoide como normales y todas las que
hay fuera como anómalas, lo que implicaŕıa tener un porcentaje de Falsos Positivos alt́ısimo.
Aumentar el umbral (Figura 5.2c) disminuiŕıa el porcentaje de FP, pero también provocaŕıa que
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muestras anómalas se clasificaran como normales. Este es un ejemplo de un mal clasificador, con
el que es imposible obtener valores bajos de ambos FN y FP.

(a) (b)

(c)

Figura 5.2: Ejemplo de mal clasificador.

El clasificador perfecto se pareceŕıa más al representado en la Figura 5.3a donde la distancia
de las anomaĺıas con el centro de la distribución es muy grande y es posible establecer una
separación clara entre datos normales y anómalos. Por ejemplo, estableciendo el umbral como
en la Figura 5.3b, quedan porcentajes de FN = 0 % y FP < 2 %.

(a) (b)

Figura 5.3: Ejemplo de buen clasificador.
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Este será el objetivo de nuestro clasificador, establecer de la forma más precisa posible donde
se sitúan los datos normales y dónde los anómalos. De esta forma, ante una nueva entrada,
será capaz de clasificar correctamente esa muestra.

5.5.3. Selección de clasificadores

Durante las secciones anteriores se han descrito varios métodos que pueden ser utilizados
para la creación de los clasificadores. Con distintas combinaciones de ellos se han generado
12 métodos diferentes agrupados en 4 tipos según el algoritmo usado que serán descritos a
continuación, aśı como resumidos en la Tabla 5.1:

Clasificador 1: Sin utilizar ningún algoritmo de reducción, se calcula la distancia robusta
utilizando las 16 caracteŕısticas totales.

Clasificadores 2-5: se utiliza el algoritmo Búsqueda Exhaustiva de selección de carac-
teŕısticas, escogiéndose las 4, 6, 8 y 10 mejores para cada sujeto.

Clasificadores 6-9: Utilización del algoritmo SFS de selección de caracteŕısticas, esco-
giéndose las 4, 6, 8 y 10 mejores para cada sujeto.

Clasificadores 10-12: Se emplea el algoritmo PCA de transformación de caracteŕısticas,
escogiendo las 2, 4, y 6 componentes principales por sujeto.

Reducción de Algoritmo No de componentes
caracteŕısticas

Clasificador 1 No Ninguno 16

Clasificador 2 Śı Búsqueda exhaustiva 4

Clasificador 3 Śı Búsqueda exhaustiva 6

Clasificador 4 Śı Búsqueda exhaustiva 8

Clasificador 5 Śı Búsqueda exhaustiva 10

Clasificador 6 Śı SFS 4

Clasificador 7 Śı SFS 6

Clasificador 8 Śı SFS 8

Clasificador 9 Śı SFS 10

Clasificador 10 Śı PCA 2

Clasificador 11 Śı PCA 4

Clasificador 12 Śı PCA 6

Tabla 5.1: Clasificadores desarrollados.
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6. Resultados

6.1. Introducción

En este apartado se compararán los resultados obtenidos para todos los clasificadores gene-
rados en el caṕıtulo anterior. Comenzaremos (sección 6.2) explicando el método de evaluación
utilizado para después proceder a la comparación entre clasificadores en la sección 6.3, donde
también se determinará cual es el mejor clasificador dependiendo de las circunstancias. Poste-
riormente se realizará un análisis más profundo de los resultados obtenidos con uno de ellos,
buscando los valores óptimos de tiempo de análisis y de muestras normales necesarias (sección
6.4), y comparando los resultados según el tipo de anomaĺıa (sección 6.5). Además, se presenta-
ran los resultados para el caso de un nuevo sujeto del cual no tengamos ninguna muestra previa
(sección 6.6) y para finalizar se resumirán los resultados extráıdos en la sección 6.7.

6.2. Método de evaluación

6.2.1. Curva ROC

Como criterio de evaluación se ha elegido la Curva ROC (acrónimo de Receiver Opera-
ting Characteristic, Caracteŕıstica Operátiva del Receptor), una representación gráfica de dos
parámetros que definiremos a continuación: sensibilidad y especificidad.

Sensibilidad =
V P

V P + FN
= V PR (6.1)

Especificidad =
V N

V N + FP
= 1− FPR (6.2)

La sensibilidad indica la capacidad de nuestro estimador para clasificar como positivos los
casos que lo son realmente, o lo que es lo mismo, el Ratio de Verdaderos Positivos (TPR). La
especificidad indica la habilidad del clasificador para detectar la normalidad en medidas norma-
les, indicando la proporción de medidas normales correctamente identificadas. Es equivalente a
1− FPR (Ratio de Falsos Positivos).
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6. Resultados 6.2 Método de evaluación

La curva ROC representa la sensibilidad frente a (1− especificidad) o, lo que es lo mismo,
el ratio de Falsos Positivos frente al de Verdaderos Positivos. Para cada umbral se dibujará un
punto en la gráfica, quedando una curva como resultado.

Figura 6.1: Curva ROC: la linea discontinua marca la curva obtenida por un clasificador aleatorio. Por encima de
ella cualquier valor será mejor que la estimación aleatoria, situándose la clasificación perfecta en (0, 1).

El mejor método posible de predicción se situaŕıa en la esquina superior izquierda, o coorde-
nada (0,1) del espacio ROC, representando un 100 % de sensibilidad (ningún falso negativo) y un
100 % también de especificidad (ningún falso positivo). Dado que la esquina superior izquierda
es el punto óptimo, un evaluador directo del clasificador es el Área Bajo la Curva (AUC).
El clasificador ideal formaŕıa un ángulo recto con el punto (0,1) y tendŕıa una AUC de 1. De
esta forma, cuanto más próximo a 1 sea el valor de la AUC, mejor será el clasificador.

La elección del umbral del clasificador será equivalente a la selección del punto óptimo de
la curva. El emplazamiento de este punto vendrá dado por el coste asignado a los dos tipos de
clasificación errónea (FN y FP), lo que dependerá del contexto de aplicación.

6.2.2. Cross-validation

Para que los resultados sean fiables, no pueden ser utilizadas las mismas muestras para la
generación del clasificador y su evaluación, ya que correŕıamos el riesgo de cometer lo que se
denomina overfitting o sobreajuste, que es el efecto de sobreentrenar un algoritmo de aprendizaje
con unos ciertos datos para los que se conoce el resultado deseado.

Para solventar este problema se utiliza una técnica denominada cross-validation o valida-
ción cruzada, utilizada para evaluar los resultados de un análisis estad́ıstico y garantizar que
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6. Resultados 6.3 Evaluación y comparación de clasificadores

no se produce ese sobreajuste. El método que se ha utilizado se denomina validación cruzada de
K-iteraciones o K-fold cross validation, donde los datos de muestra se dividen en K subconjuntos
o folds (elegidos de forma aleatoria en nuestro sistema) de igual o similar tamaño. Uno de los
subconjuntos se utiliza como datos de prueba y el resto (K-1) como datos de entrenamiento.
Finalmente se realiza la media aritmética de los resultados de cada iteración para obtener un
único resultado. Este método es muy preciso puesto que evaluamos a partir de K combinaciones
de datos de entrenamiento y de prueba, aunque tiene la desventaja de que es lento desde el
punto de vista computacional. En la práctica, la elección del número de iteraciones depende de
la medida del conjunto de datos, para este sistema se ha determinado un valor de K = 5.

Figura 6.2: Validación cruzada de K-iteraciones, con K = 4. Tras las 4 repeticiones se hace una media de los
resultados obtenidos con los datos de prueba. En el ejemplo de esta figura los folds se han elegido de forma
consecutiva, mientras que en el nuestro se han elegido de forma aleatoria.

6.3. Evaluación y comparación de clasificadores

En la Figura 6.3 se representa la curva ROC media de todos los sujetos obtenida con cada
clasificador, junto con los valores de AUC para cada curva.

(a) (b)

Figura 6.3: Curvas ROC para todos los clasificadores. Cada curva representa la media de todos los sujetos con
cada clasificador.
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6. Resultados 6.3 Evaluación y comparación de clasificadores

En la sección 5.5.3 se describieron los 12 clasificadores, divididos en 4 grupos según el al-
goritmo usado. Cabe destacar que para cada grupo se estudiaron también clasificadores con un
número mayor de caracteŕısticas, pero no fueron incluidos ya que no mejoraban los resultados o
incluso los empeoraban respecto a los mejores métodos de cada grupo. Observando las curvas de
la Figura 6.3 pueden observarse los clasificadores de cada grupo que obtienen mejores resultados,
siendo éstos el 1, 4, 9 y 12. Sus curvas ROC se vuelven a exponer en la Figura 6.4, esta vez
representando tanto la media de todos los sujetos como la desviación t́ıpica obtenida.

Figura 6.4: Curvas ROC para los mejores clasificadores. La ĺınea continua representa la media de todos los sujetos
y la zona sombreada la desviación t́ıpica, para cada clasificador.

Cabe destacar que la selección del mejor clasificador no es inmediata. Existe un compromiso
entre el porcentaje de Falsos Positivos permitidos y el de Verdaderos Positivos obtenidos. Por
lo tanto, la elección de un clasificador u otro dependerá del coste que asignemos a estimar
erróneamente un dato normal o una anomaĺıa. Se pueden considerar tres situaciones:

1. Coste de un FP >> Coste de un FN. El objetivo es tener el menor número de FP
posible sin considerar tan importantes los FN, es decir, se le da mucha importancia a que
ningún dato normal sea detectado anómalo. En este caso, el mejor clasificador seŕıa el
número 12, y el punto óptimo de la curva podŕıa ser el de coordenadas (FPR = 0.02, TPR
= 0.5) (Figura 6.5a).

2. Coste de un FP = Coste de un FN. Ambos errores de clasificación tienen el mismo
coste. El clasificador elegido seŕıa el 1 en este caso, con un punto óptimo situado en (FPR
= 0.07, TPR = 0.93), donde el porcentaje de FN y FP seŕıa el mismo (Figura 6.5b).

3. Coste de un FP << Coste de un FN. En este caso el sistema se ve penalizado en
mayor medida por la incorrecta clasificación de un dato anómalo. El mejor clasificador
seŕıa el 4, con punto óptimo en (FPR = 0.6, TPR = 1), donde se clasifican correctamente
todas las anomaĺıas (Figura 6.5c).
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Dado que el sistema de este proyecto tiene como objeto detectar las anomaĺıas, se considera
la situación 3 como la que más se adapta a estos objetivos, y por lo tanto, se seleccionará el
clasificador 4 para realizar un análisis más detallado en los siguientes apartados.

(a) (b)

(c)

Figura 6.5: Clasificadores y puntos óptimos según el coste de FN y FP. 6.5a: Coste de un FP >> Coste de un
FN, 6.5b: Coste de un FP = Coste de un FN y 6.5c: Coste de un FP << Coste de un FN.
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6.4. Mejoras

Durante el desarrollo de los clasificadores hubo dos parámetros que se establecieron, pero
no era posible en ese momento saber si se trataban de los valores óptimos o no. Se trata del
tiempo de grabación analizado, que se tomó de 30 segundos y del número de muestras normales
usadas para la creación del clasificador. Después de la toma de datos se teńıan a disposición 70
muestras normales. Sin embargo, tras su paso por los algoritmos de reducción de caracteŕısticas
y la validación cruzada, solo 40 pueden ser utilizadas como máximo para la generación de los
clasificadores. Resulta interesante estudiar ahora si estos valores son óptimos o no.

6.4.1. Tiempo de grabación

Figura 6.6: Valor del área bajo la curva dependiendo del tiempo de análisis utilizado. La ĺınea continua representa
la media de todos los sujetos y la zona sombreada la desviación t́ıpica.

En la Figura 6.6 se observa el valor de la AUC obtenido según el tiempo de análisis tomado,
en un intervalo que va de 6 a 30 segundos. Se puede observar como el funcionamiento del sistema
va mejorando según aumenta el tiempo de análisis, y se estabiliza a partir de 25 segundos más
o menos. Cabe destacar que con tiempos pequeños de análisis el valor de la AUC empeora pero
sigue siendo bastante alto, lo que significa que el tiempo de grabación podŕıa ser reducido en
aplicaciones futuras si fuera necesario, sin acusarse excesivamente en los resultados.

6.4.2. Número de muestras normales

En la Figura 6.7 se representa la AUC obtenida según el número de muestras normales
utilizadas para el análisis, estableciéndose un mı́nimo de 10 y un máximo de 40. Se observa un
empeoramiento acusado de los resultados para un número de muestras inferior a 20, y a partir
de 30 apenas se observan mejoras. Esto nos lleva a concluir que el número de muestras normales
a utilizar debeŕıa ser como mı́nimo de 30 para obtener los mejores resultados posibles. Cabe
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destacar que sin embargo no existe una cota superior para el número de muestras normales,
dado que cuantas más tengamos mejor funcionará el clasificador.

Figura 6.7: Valor del área bajo la curva dependiendo del número de muestras normales utilizado.

6.5. Comparación por tipo de anomaĺıa

Dado que las anomaĺıas que se han intentado detectar han sido de dos tipos, f́ısicas y cogniti-
vas, resulta de interés estudiar si ambas se han detectado con eficacia similar o, por el contrario,
un tipo resulta más dif́ıcil de detectar que el otro.

Figura 6.8: Media y desviación estándar de los sujetos para los dos tipos de anomaĺıas.
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En la Figura 6.8 se representa la media y desviación t́ıpica de los dos tipos de anomaĺıas.
No se observan grandes diferencias entre la clasificación de los dos tipos, ni se puede asegurar
que uno sea mucho más fácil de clasificar que el otro. Cabe destacar que las anomaĺıas f́ısicas
alcanzan el valor de TPR = 1 para un valor bastante menor de FPR, en concreto para FPR =
0.5 todas las anomaĺıas f́ısicas han sido ya detectadas mientras que esa situación no se alcanza
para las cognitivas hasta FPR = 0.85 aproximadamente.

6.6. Resultados para un nuevo sujeto

Los clasificadores desarrollados hasta ahora se han basado en los datos previos del sujeto
para clasificar una nueva entrada como normal o anómala. Sin embargo, ahora se busca estudiar
que resultados se obtendŕıan en el caso de que no hubiera ninguna muestra previa del sujeto
cuya medida se intenta clasificar. Para ello se intentan clasificar los datos de cada sujeto a partir
de los demás sujetos, excluyendo los suyos propios. En la Figura 6.9 se representa la media y
desviación t́ıpica obtenida.

Figura 6.9: ROC para un nuevo sujeto.

Se observa un gran aumento de la variabilidad, lo cual es lógico teniendo en cuenta que no
tenemos datos previos de ese sujeto. Estos resultados remarcan la necesidad de tener muestras
previas del sujeto cuya medida se pretende clasificar para poder realizar una clasificación en la
que se pueda confiar.
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6. Resultados 6.7 Resumen de resultados

6.7. Resumen de resultados

A continuación se recapitulan los resultados más importantes obtenidos durante este caṕıtulo:

De los doce clasificadores desarrollados, cuatro obtienen mejores resultados que los demás
al observar las curvas ROC de cada uno.

La elección del mejor clasificador entre esos cuatro dependerá del coste que asignemos a
tener un Falso Positivo y un Falso Negativo.

El tiempo de grabación podŕıa ser reducido a 20 segundos sin pérdida de rendimiento. Si
fuera necesario, podŕıa bajar hasta 6 segundos con un ligero detrimento de los resultados,
pero con un funcionamiento todav́ıa bueno.

El número de muestras normales utilizadas debeŕıa ser como mı́nimo de 25-30 para obtener
los mejores resultados posibles. En este aspecto, cuantas más muestras normales se tengan
más precisa será la clasificación.

No existen grandes diferencias entre la clasificación de los dos tipos de anomaĺıas.

La utilización del sistema en un nuevo sujeto del que no se tengan muestras normales
previas no es fiable, ya que la variabilidad aumenta drásticamente.
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7. Conclusiones y ĺıneas futuras

En el presente proyecto se ha desarrollado un sistema de detección de datos espurios, siendo
estos datos anomaĺıas fisiológicas y psicológicas inducidas en sujetos de los que se hab́ıa creado
una base de datos de medidas sin estrés inducido. El estudio de patentes presentado en la sección
2.2 y ampliado en el Anexo D deja constancia de la escasez de dispositivos de este tipo en la
actualidad, lo que dificulta su comparación con sistemas de similares caracteŕısticas.

Dentro de la realización de este proyecto, y considerando los objetivos descritos en el caṕıtulo
1, cabe destacar dos hitos principales conseguidos a partir del trabajo realizado: (a) la compro-
bación de que los sensores desarrollados por BitBrain pueden utilizarse con las mismas garant́ıas
que unos de tipo médico, lo cual resulta de gran utilidad para la empresa en su trabajo presente y
futuro con estos sensores y (b) la creación de un sistema completo de detección de espurios. Los
resultados obtenidos en la detección de anomaĺıas fisiológicas y psicológicas son esperanzadores
en cuanto a su utilización en ámbitos de aplicación más espećıficos. Además, el desarrollo de
varios clasificadores diferentes dentro de este sistema permite que pueda ser adaptado según los
requisitos y objetivos de la aplicación, ampliando aśı sus posibilidades futuras.

Todo lo expuesto anteriormente deja abiertos varios campos de aplicación futuros, aśı como
alguna mejora posible a realizar si el producto se llevará al ámbito comercial, como son:

Realización de un art́ıculo cient́ıfico similar a [6] presentando los resultados obtenidos en la
comparación de sensores de BitBrain y TMSI. La propia empresa ya ha mostrado interés
en el desarrollo de este art́ıculo.

Utilización del sistema de detección de espurios desarrollado en ámbitos de aplicación más
concretos, como podŕıan ser: detección de picos de estrés en los trabajadores de una fábrica,
identificación de infractores en el transporte público, etc. Cabe destacar que una empresa
externa ya se ha puesto en contacto con BitBrain para estudiar la implantación de este
sistema en alguna de sus fábricas, lo que empezará a realizarse en los próximos meses.

Aumento de la base de datos de sujetos, aśı como del número de muestras tomadas por
sujeto.

Creación de un filtro para la detección automática de artefactos para las señales de GSR
y BVP.

Desarrollo de un nuevo prototipo con los mismos requisitos que el creado en este proyecto
pero con un diseño más adecuado para su aplicación en el ámbito comercial.
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A nivel personal, cabe destacar mi satisfacción por la posibilidad de desarrollar este PFC
dentro de una empresa, lo que me ha permitido tener una primera toma de contacto con el
mundo y ritmo laboral, a la vez que obtener una ganancia bastante importante en cuanto a
conocimientos prácticos y experiencia profesional se refiere. Aśı mismo, considero altamente
gratificante el hecho de que el trabajo expuesto en esta memoria pueda ser continuado en el
futuro por parte de la empresa en la que he realizado el proyecto.
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