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Resumen

La deteccién de cambios en el estado fisioldgico y psicoldgico de una persona, provocados
por un estimulo concreto, es un campo que esta siendo ampliamente explorado en los ultimos
tiempos, debido a sus posibles aplicaciones en ambitos como el de la salud o el marketing. Para
ello, se necesitan datos que sean recogidos por sensores biométricos, los cuales cada vez estéan
haciéndose més ligeros y precisos. Dos de estos biosensores son los llamados GSR (Galvanic
Skin Response), que registra cambios en la conductancia de la piel originados por la activacién
y desactivacién de las gldndulas sudoriparas y BVP (Blood Volume Pulse), un detector del
ritmo cardiaco mediante luz infrarroja. En este proyecto se utilizaran estos dos sensores, con el
objetivo de desarrollar un sistema capaz de detectar anomalias de tipo fisiolégico y psicoldgico
inducidas en un sujeto. Para ello, se creard una base de datos de estos sujetos formada por
medidas normales, donde no se les haya inducido ningin tipo de estrés y, a partir de esa base
de datos se creard un clasificador capaz de dictaminar si una nueva muestra es normal o anémala.

Se comenzaréd decidiendo si pueden utilizarse unos sensores desarrollados por BitBrain
Technologies implantados en un dispositivo llamado Anillo de Usenns. Para ello serdn com-
parados con una tecnologia similar de la marca TMSI®), cuyos sensores, de tipo médico, son
ampliamente utilizados en mediciones de laboratorio con un alto rendimiento en la medicién
de estas senales bioldgicas. Una vez realizado este paso se readaptardn los sensores elegidos de
forma que se ajusten a los requisitos del sistema que se quiere crear, creandose para ello un
nuevo hardware y software.

Siguiendo un protocolo de toma de datos periddicas se obtendrd una base de datos de va-
rios sujetos, que seran consideradas como medidas normales. Por otro lado, se realizaran a los
mismos sujetos pruebas de tipo fisico y cognitivo en las que se tomard una medida también,
considerada andémala. Una vez recopilados todos los datos, se extraeran varias caracteristicas de
las senales, que seran tratadas de diversas formas para dar lugar a varios posibles clasificadores.
Una vez desarrollados los clasificadores, éstos serdan comparados y evaluados para determinar
cudles son los méas adecuados dependiendo de la aplicacién para la que se vayan a utilizar, y
se seleccionard al mas adecuado para el detector de anomalias fisiolégicas y psicolégicas que se
quiere implementar. También sera estudiado el rendimiento del sistema en el caso de no disponer
de una base de datos previa del sujeto cuya muestra se quiere clasificar.

Para finalizar, seran detallados los resultados y conclusiones extraidos de este trabajo, asi co-
mo las posibles aplicaciones y mejores futuras.
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1. Introduccién

1.1. Contexto

Este proyecto ha sido realizado en la start-up BitBrain Technologies, spin-off de la Uni-
versidad de Zaragoza, cuyos campos de trabajo se centran principalmente en el desarrollo de
dispositivos con sensores biométricos para su aplicacién en diversos ambitos como la neurocien-
cia y el neuromarketing. Eduardo Horna, responsable del departamento de Tratamiento de Senal
de la empresa, ha sido el director del proyecto, con la supervision de Javier Minguez, CSO de la
empresa y profesor en excedencia de la Universidad de Zaragoza. El ponente ha sido Luis Mon-
tesano, miembro del departamento de Informaética e Ingenieria de Sistemas de la Universidad de
Zaragoza. El periodo de estancia en la empresa ha sido de siete meses, desde comienzos de Julio
2014 hasta finales de Enero 2015.

1.2. Estado del arte

Rosalind W. Picard presenté en 1995 a la comunidad cientifica [1] el término Affective
Computing o Informdtica Emocional, definida como computacion relacionada, derivada o in-
fluenciada a partir de las emociones. En este articulo Picard explicé con diversos ejemplos la
necesidad de que en la interfaz humano-computador los segundos sean capaces de identificar las
emociones de los primeros. Dada la gran importancia del componente emotivo en todos los ambi-
tos de la vida humana, la Informdtica Emocional no solo permitiria una mejora en esta relacion
entre humanos y maquinas, sino que podria llegar a dotar a los ordenadores de emociones que
mejorarian su toma de decisiones. En articulos posteriores como [2], Picard abordé este tema ya
desde un punto de vista mas técnico, desarrollando protocolos y técnicas para la identificacion
de emociones humanas a partir de diversos sensores biométricos.

Desde entonces han sido muchos los productos desarrollados relacionados con la identificacion
de emociones humanas. Ademas, la aparicién de dispositivos wearables (incorporados en alguna
parte del cuerpo o la ropa) que permiten tomar datos de las personas de forma instanténea y
masiva, ha ocasionado un incremento de este tipo de productos en los ultimos anos. Aunque
sus ambitos de aplicaciéon son numerosos, dos son principalmente los campos en los que més
aparecen: e-health (cuidados sanitarios apoyados en tecnologias de la informacién y las comu-
nicaciones) y neuromarketing, disciplina que busca recoger mediante tecnologia las reacciones y
emociones que genera un recurso publicitario en un sujeto.



1. Introduccion 1.3 Motivacién

Los sensores utilizados para el desarrollo de estos productos varian segin la aplicacién,
pero generalmente suelen ser algunos de los que se nombran a continuacién: GSR. (Respuesta
Galvdnica de la Piel), BVP (Volumen de Pulso Sanguineo), AR (Actividad Respiratoria), EEG
(Electroencefalograma), fMRI (Resonancia Magnética Funcional), EMG (Electromiograma) y
Eye-Tracker (rastreador del movimiento ocular).

La empresa BitBrain Technologies ha desarrollado varios productos de este tipo como son
la tecnologia Brain-Up, que utiliza un casco de EEG con el objetivo de conseguir una mejora
cognitiva del sujeto o el Anillo de Usenns, que cuenta con sensores de GSR y BVP y puede ser
utilizado para la medicién de emociones en diversos dmbitos.

1.3. Motivacion

BitBrain Technologies ha desarrollado unos sensores de GSR y BVP conjuntamente con
una placa de adquisicién de datos cuyas aplicaciones son muy variadas, como las ya nombradas en
la seccién 1.2 de e-health y neuromarketing. Otra aplicacién que la empresa estaba interesada
en estudiar, y que serd la desarrollada en este proyecto, era la de identificar si una persona
estd o no por encima de su nivel normal de estrés, con lo que el objetivo seria la creacién
de un dispositivo capaz de identificar este estado anémalo en un sujeto. Para ello, se crearian
situaciones generadoras de estrés fisiolégico y psicolégico, siendo éstas las que el dispositivo
deberia detectar.

En caso de éxito en el desarrollo de este sistema el objetivo a largo plazo, fuera del &mbito
de este proyecto, seria su aplicacién en la detecciéon de anomalias més concretas que pudieran
interesar a un cliente, dado que empresas externas ya habian manifestado su interés por la
aplicacién de este dispositivo en ambitos mas especificos.

Como punto de partida se planteé la creacién de un hardware con sensores de GSR y BVP
con el que pudieran grabarse las senales biolégicas captadas por estos sensores de forma facil
y rapida, solamente apoyando la mano sobre el dispositivo. Los sensores a utilizar deberian ser
evaluados para estudiar si aquellos desarrollados por BitBrain eran adecuados para su utilizacién
0, por el contrario, era necesario utilizar unos ya contrastados.

1.4. Objetivos

El objetivo de este proyecto fin de carrera es el desarrollo de un sistema capaz de detectar
datos espurios, tratandose éstos de anomalias inducidas de tipo fisioldgico y psicoldgico. Para
ello se recopilaran muestras de varios sujetos en un estado normal, en el que no se introduzca
ninguin tipo de estrés. Tras realizar un tratamiento y andlisis de estas senales, se generaran va-
rios clasificadores que, ante una nueva muestra, sean capaces de identificarla como normal o
anémala, con el mayor indice de acierto posible. Por lo tanto se buscard maximizar las dife-
rencias entre muestras normales y anomalas, de forma que estas tltimas sean lo méas facilmente
identificables posible para el clasificador.



1. Introduccion 1.4 Objetivos

Variable 2
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Figura 1.1: Ejemplo de dato anémalo o espurio: El objetivo es llevar nuestras anomalias a un espacio donde
sean tan facilmente identificables como el punto con el recuadro rojo. Tomando cualquiera de las dos variables
por separado ese punto no es distinguible del resto de valores, pero utilizando ambas se convierte en un espurio
facilmente identificable.

Ademsds, dado que se ha planteado como posible objetivo futuro la introduccién de este
dispositivo en un entorno comercial, es imprescindible realizar en primer lugar un estudio de
patentes que refleje la presencia actual en el mercado de algin producto de caracteristicas
similares.

Los objetivos parciales que deben cumplirse par la creacién del sistema detector de anomalias
son:

= Bisqueda de patentes existentes similares al dispositivo que se quiere desarrollar.
= Seleccion de los sensores a utilizar.

» Desarrollo de la instrumentacién (hardware y software) para la toma de medidas.
= Creacién de una base de datos de medidas normales.

= Realizacion de dos tipos de anomalias inducidas en todos los sujetos: estrés fisioldgico y
estrés psicoldgico.

» Tratamiento de los datos recopilados y extraccion de caracteristicas.
= Creacién de varios sistemas de clasificacion mediante la combinacion de esas caracteristicas.
= Comparacion de los diferentes clasificadores desarrollados.

= FBEvaluacién de los resultados.



1. Introduccién 1.5 Organizacién de la memoria

En la Figura 1.2 se representa un esquema de todas las tareas realizadas para la creacion del
sistema detector de anomalias.

Planteamiento I
X . Eleccién de Desarrollo del
delsistemaa |—— PaSOS PreViOs EE——— —>

sensores prototipo

2 Descripci6 S i6 .
Busquedade escripcion de Sensores Comga}racnony Resiiasd]
atentes los sensores disponibles: eleccion de los o
P utilizados TMSIy Anillo sensores
1
| M |
Disefio del : a2
\seno. © Montaje del Programacion
prototipo
hardware del software
hardware

Evaluacién de
resultados

desarrollar

Comparacién

Tratamiento de
datos

Creacion de ]
Indu e
una base de Preprocesado
anomalias o
datos normales clasificadores

|

caracteristicas

Reduccion de
caracteristicas

Figura 1.2: Fases del proyecto. En verde se representan las tareas realizadas en esta memoria, y en rojo aquellas
que fueron realizadas por otras partes de la empresa.

— >R >
clasificadores

1.5. Organizacién de la memoria

La memoria ha sido dividida en siete capitulos, siendo éste el primero donde se introducen
el proyecto y sus contenidos. A continuacién se explica el contenido del resto de capitulos:

= Capitulo 2: Consideraciones previas de interés, se explicara cémo ha sido realizado
el estudio de patentes y seran presentados los sensores y senales de interés.

= Capitulo 3: Comparativa de sensores, los sensores desarrollados por BitBrain serdn
comparados con unos ya contrastados para elegir cuales seran utilizados en el desarrollo
del sistema.

s Capitulo 4: Toma de datos, se explicard la implementacion del hardware y software
necesario asi como el protocolo seguido para la toma de datos normales y anémalos.

= Capitulo 5: Analisis, los datos recopilados seran tratados y se extraerdn caracteristicas
de estos datos, que seran combinadas de varias formas para el desarrollo de los clasifica-
dores.

= Capitulo 6: Resultados, los distintos clasificadores serdan comparados y evaluados, ex-
poniéndose los resultados més importantes.
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1. Introduccion 1.6 Herramientas

Para finalizar la memoria en el Capitulo 7: Conclusiones y lineas futuras, se recopilaran
los objetivos conseguidos y se nombraran posibles mejoras y aplicaciones futuras.

1.6. Herramientas

La toma de medidas se realiz6 mediante la utilizaciéon del programa Neurolab®), desarro-
llado por BitBrain Technologies. Para el andlisis de todos los datos se utilizé la herramienta
matematica MATLAB®), y el software de interaccién con el usuario fue realizado en Python.






2. Consideraciones previas de interés

2.1. Introduccion

Como paso previo al desarrollo de un producto que podria salir al mercado en un futuro,
es necesaria la realizacién de un estudio de patentes (seccién 2.2) para documentarse sobre la
existencia de productos similares al de interés. Por otro lado, es conveniente conocer un poco
més en profundidad tanto las sefales (seccién 2.3) como los sensores (seccién 2.4) que seran
utilizados con posterioridad en el diseno.

2.2. Btusqueda de patentes

Antes de comenzar con el desarrollo de un producto es necesaria una btusqueda de pro-
ductos similares ya existentes en el mercado por diversos motivos, como los que se exponen a
continuacién:

» Evitar la vulneracién de patentes ya existentes, que de no ser tenidas en cuenta podrian
impedir la comercializacién del dispositivo una vez desarrollado.

= Como estudio de mercado, la constatacién de un vacio de productos similares aumentaria
las posibilidades de lograr un buen impacto comercial.

» Utilizacién de patentes existentes (en el caso de que las hubiera) para la introduccién de
mejoras o nuevos elementos en nuestro producto, siempre respetando esas patentes.

Por todas las razones arriba descritas, el primer paso para la creacién del dispositivo detector
de anomalias ha sido la realizacién de un estudio de patentes a nivel tanto nacional como inter-
nacional, que puede ser visto en detalle en el Anexo D. Esta investigacién otorgd la conclusion
de que ningin producto con el que se pudiera entrar en conflicto habia sido desarrollado, lo que
permite avanzar a la fase de desarrollo sin riesgo de vulnerar patentes existentes.

2.3. Senales utilizadas

Los sensores elegidos para la realizacién del sistema han sido los de GSR y BVP, que permi-
ten medir la respuesta galvéanica de la piel y el pulso sanguineo respectivamente. A continuacion
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2. Consideraciones previas de interés 2.3 Senales utilizadas

se realizara una explicacion mas detallada de como se toman y qué son exactamente las senales
que registran estos sensores.

2.3.1. GSR

Varios nombres se utilizan para nombrar a este sensor, tales como EDA (FElectrodermal
Activitiy), EDR (Electrodermal Response), o el que seréd utilizado de aqui en adelante, GSR
(Galvanic Skin Response, Respuesta Galvanica de la Piel). Su labor es la medicién del nivel de
activacién de las glandulas sudoriparas, el cual ha sido directamente relacionado con variaciones
en el estado fisico o animico de las personas, lo que ha llevado a su utilizacién de manera
extendida en el campo de la neurociencia [3].

El sensor consta de dos electrodos que se colocan sobre la piel del sujeto. Su posicionamiento
puede variar, aunque la colocacién estandar suele ser en los dedos de la mano, donde los cambios
de actividad en la sudoracién son mas acusados. Concretamente, suelen ser colocados en las
segundas falanges de los dedos indice y corazon o corazén y anular.

Se trata de una mediciéon activa, ya que se introduce una pequena corriente entre los dos
electrodos. De esta forma, se puede calcular el valor de la resistencia eléctrica de la piel, que varia
segun el nivel de activacién de las glandulas sudoriparas. A partir de ahi puede ser extraido el
valor de conductancia de la piel (medido en Siemens, S = Q7!), o lo que es lo mismo, la inversa
de la resistencia de la piel. El rango de esta senal suele estar en torno a los microSiemens (uS).

La senal de GSR puede ser dividida en dos partes:

= Parte tonica: Refleja las variaciones lentas producidas en la senal a lo largo del tiempo.

s Parte fasica: Muestra cambios rapidos de la senal que suelen ser producidos como res-
puesta a algun estimulo. Estas respuestas pueden ser de dos tipos: Relacionadas con
algin evento (ER, Event-Related) cuando se deben a algun estimulo concreto que puede
ser identificado, o No Especificas (NSR, Non-Specific Responses), cuando ocurren en
ausencia de estimulos identificables.

o @
Tiempo (segundos) Tiempo (segundos)

Parte Fsica (uS)

Figura 2.1: A la izquierda se ve una sefial tipica de GSR durante un intervalo de 60 segundos. A la derecha esa
sefial ha sido descompuesta en su parte ténica (zona sombreada de la gréfica superior) y fésica (gréfica inferior).

Dado que existe una relacién entre las respuestas del Sistema Nervioso Simpdtico (SNS) y
el nivel de activacion emocional, el sensor de GSR puede ser utilizado para medir el nivel de
excitaciéon emocional de una persona, aunque no es posible la deteccién de la emocién concreta.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

Como libro de referencia sobre la activacién electrodérmica, su explicacién fisiolégica, cone-
xién con el sistema nervioso y aplicaciones en diversos campos véase [4].

2.3.2. BVP

El sensor de BVP (Blood Volume Pulse, Volumen de Pulso Sanguineo), también conocido
como fotopletismograma (PPG, por sus siglas en inglés), en capaz de extraer la onda de pulso
sanguineo, a partir de la cual se puede medir el ritmo cardiaco (Heart Rate (HR)) y la variabili-
dad del ritmo cardiaco (Heart Rate Variability (HRV)), pardmetros relacionados directamente
con el sistema nervioso auténomo [5], entre otras caracteristicas.

Para ello el sensor es colocado tipicamente en la primera falange del dedo indice (el 16bulo de
la oreja puede ser otro buen lugar de posicionamiento), y una senal de origen éptico es registrada
por el sensor. Dos componentes son utilizados: un LED que ilumina la piel y un fotodiodo que
capta la luz. Este fotodiodo puede ser colocado al lado del LED, con lo que medird la cantidad
de luz reflejada, o al otro lado del dedo, captando la luz transmitida a través de todos los
tejidos del dedo. Ambas colocaciones permiten la extracciéon de la onda cardiaca mediante los
cambios en la absorcién de la luz, que se deben a las variaciones en la cantidad de sangre que
circula por el dedo a lo largo del ciclo cardiaco. El rango de la senal obtenida se encuentra en
los uV'.

Senal PPG

amplitude

time (s)

Figura 2.2: Senal de BVP.

2.4. Sensores disponibles

La fabricacion de dispositivos para la medicién de senales biolégicas ha venido incrementando-
se en los ultimos tiempos, especialmente unida a la aparicion de las tecnologias wearables. Estos
dispositivos pueden ser clasificados en dos categorias:

= Instrumentacion de laboratorio o médica: pensada para realizar medidas en un en-
torno estatico con alta fiabilidad y precisién. Este es el caso de la tecnologia de TMSI o
GTec.

= Instrumentacion portatil: Su gran ventaja radica en que el sujeto puede estar en movi-
miento, permitiendo la toma de medidas en cualquier lugar y situacion. Por ello, el tamano
y peso de este tipo de dispositivos debe ser mucho menor que los de tipo médico, con las
consecuentes limitaciones de diseno que ello implica. Se trata del caso de los ya comentados
wearables, siendo el Anillo de Usenns un ejemplo de este tipo de productos.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

El detector de anomalias que queremos desarrollar debera llevar los sensores ya descritos de
GSR y BVP. La empresa BitBrain dispone de unos sensores de este tipo de reciente creacién.
Aunque lo preferible serfa que utilizaramos éstos para el desarrollo de nuestro producto, lo cierto
es que aun no han podido ser comparados contra otros de calidad contrastada para comprobar
su correcto funcionamiento. Por ello, a continuacién se describiran mas en detalle tanto estos
sensores como los de TMSI, y en el Capitulo 3 seran comparados y evaluados, decidiéndose
cudles seran usados para el desarrollo del sistema de interés.

24.1. TMSI

La empresa TMSI ( Twente Medical Systems International) es una compafia especializada
en el desarrollo de amplificadores y sensores de alta calidad para la adquisicion de datos en
aplicaciones fisiolégicas. Su tecnologia es ampliamente utilizada en entornos biomédicos y reco-
nocida como precisa y fiable incluso en ambientes hostiles, con alta presencia de artefactos. La
frecuencia de muestreo es de 256 Hz, y el amplificador va conectado mediante una interfaz USB
a un ordenador para la transmisién de los datos.

En la figura 2.3 vemos el amplificador que se ha utilizado, el cual permite la conexién de
multiples tipos de sensores. Nosotros utilizaremos los de BVP y GSR aunque podrian ser conec-
tados también otros tipos de sensores como EMG y hasta 32 canales de EEG.

2.4.2. BitBrain

La empresa BitBrain ha desarrollado dos sensores de BVP y GSR junto con una placa de
adquisicién de datos con frecuencia de muestreo de 32 Hz, pensados para su instalacion en ins-
trumentacion de medida portéatil. Uno de esos dispositivos, el cual se utilizard para la medicién
de calidad de los sensores es el Anillo de Usenns. Este dispositivo va sujeto a los dedos indice
y corazén mediante una correa, permitiendo la adquisicién cémoda de esas seniales. Ademds,
dispone de un acelerémetro que registra los movimientos del anillo y de la placa de adquisicién
de datos que transmite los datos a un ordenador via Wi-Fi, lo que hace al aparato totalmente
inalambrico.
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2. Consideraciones previas de interés 2.4 Sensores disponibles

——*
-
.

(a) Amplificador (b) Sensor BVP (c) Sensor GSR

Figura 2.3: Componentes utilizados de TMSI: sensor BVP (2.3b), que es colocado en la primera falange del dedo
indice y sensor de GSR (2.3c), formado por dos electrodos posicionados en las segundas falanges de los dedos
corazén y anular. Ambos van conectados al amplificador de la figura 2.3a, que a su vez transmite los datos via
USB a un ordenador.

Actividad
Actividad cardiovascular
electrodérmica

Movimiento

Wi-Fi

Figura 2.4: Anillo de Usenns. En la figura podemos obervar el sensor de actividad cardiovascular (BVP), que se
sitda en la primera falange del dedo indice, el de actividad electrodérmica de la piel (GSR), cuyos electrodos se
posicionan sobre las segundas falanges de los dedos indice y corazén, y el acelémetro o sensor de movimiento.
Ademis, incorpora un médulo Wi-Fi para el envio de datos.
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3. Comparativa de sensores

3.1. Introduccion

En el capitulo anterior se han presentado los dos tipos de sensores disponibles, unos de tipo
médico de la marca TMSI y otros desarrollados por BitBrain. A lo largo de este apartado
seran comparados con el objetivo de determinar si podemos utilizar los segundos para la im-
plementacion del detector de anomalias o, por el contrario, serd necesaria la utilizacién de los
sensores de TMSI.

La comparativa se ha basado en el articulo de referencia [6], donde un sensor portétil de
GSR es comparado con uno de tipo médico. Se seguird un esquema similar al del articulo citado,
realizdndose también una comparacién de los sensores de BVP, la cual no tiene lugar en ese
articulo.

Como primer paso se llevard a cabo una calibracién de los sensores (seccién 3.2) para garan-
tizar su correcto funcionamiento, grabandose posteriormente una medida experimental descrita
en la seccién 3.3. Una vez que se hayan adquiridos las senales, éstas seran comparadas (sec-
cién 3.4), y se determinard qué sensores seran utilizados (seccién 3.5), en base a los resultados
obtenidos.

3.2. Calibracion de los sensores

Antes de que se realice una grabacién, es imprescindible comprobar el buen funcionamiento
de los sensores y calibrarlos para que su rendimiento sea el mejor posible.

3.2.1. Calibracion del GSR

Tal y como fue descrito en la seccién 2.3.1, el GSR es un sensor que mide la resistencia de
la piel. Por lo tanto, es posible realizar una calibracion del sensor con resistores fijos cuyo valor
es conocido. Se han realizado mediciones en el rango tipico de la piel humana, que va desde los
100 k€2 hasta los 4 M.

En la Tabla 3.1 puede observarse el error obtenido al medir los distintos valores resistivos
con los sensores de TMSI y el Anillo. Este error se ha calculado con respecto al valor real de los
resistores, medido con un polimetro de laboratorio de precisién 0.9 %.
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3. Comparativa de sensores 3.2 Calibracién de los sensores

Resist. | Resist. Valor Error Valor Error

tedrica real TMSI TMSI Anillo Anillo
100 k2 | 99.7 kQ | 100.076 kQ | 0.3780% | 90.995 k2 | 8.7309 %
200 kQ | 199.1 k2 | 199.059 kQ | 0.0204% | 191.033 k2 | 4.0515%
300 k2 | 298.8 k2 | 298.223 k2 | 0.1931% | 290.924 kQ | 2.6358 %
400 kQ | 398.7 kQ | 397.578 k2 | 0.2814% | 392.011 kQ | 1.6776 %
512 k2 511 kQ2 509.151 kQ | 0.3619% | 505.976 kQ | 1.1782%
1000 k2 | 995 k2 990.440 k2 | 0.4583% | 992.049 k2 | 0.2966 %
2000 k€ | 1990 k2 | 1975.736 k2 | 0.7168 % | 1995.539 k2 | 0.2784 %
3000 kQ | 2986 kQ | 2957.455 kO | 0.9560 % | 2998.649 kQ | 0.4236 %
4000 k€2 | 3986 k) | 3937.312 kO | 1.2215% | 4005.343 k2 | 0.4853 %

Tabla 3.1: Valores de los resistores con TMSI y el Anillo.

En la Figura 3.1 se puede observar el error que se obtiene en el articulo de referencia [6], en el
que se realiz6 la misma prueba, y el obtenido con los sensores de TMSI y el Anillo. Para valores
inferiores a 1 M2 TMSI obtiene un error menor, mientras que partir de 1 M€ el Anillo consigue
un error muy por debajo del de TMSI, y bastante similar al del articulo de referencia. Los valores
de resistencia de la piel humana suelen situarse siempre por encima de 1 MS2, intervalo en el que
el Anillo tiene un error muy pequeno.

Error respecto al valor Resistencia

9
2 —TMSI
18 8l —Anillo
1.6 7
1.4 L
<’ \
oy 1.2 é 5
T 5 =
Q
B S,
0.8 i
3
3
0.6
0.4 2r
0.2 1
I
0 - : : : o i
0 1000 . 2000 3000 4000 1000 2000 3000 4000
Resistance (k&) Resistencias (kQ)

(a) (b)

Figura 3.1: Curva de error para: 3.1a el articulo de referencia [6] y para 3.1b el anillo y TMSL.

Como resultado de esta prueba el departamento de electrénica pudo mejorar el funcionamien-
to del sensor ajustando alguno de los componentes del Anillo para minimizar el error, asi como
plantear futuras mejoras que pudieran minimizarlo ain mas.

3.2.1.1. Interfaz Piel-Electrodo

La calibracién del sensor de GSR ha sido realizada mediante resistores fijos. Sin embargo,
antes de que estos sensores sean utilizados en una persona, algunas cuestiones de interés deben
ser descritas:
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3. Comparativa de sensores 3.2 Calibracién de los sensores

= La interfaz Piel-Metal que se da al colocar los electrodos en la mano de una persona es
mucho mas compleja que la interfaz Metal-Metal realizada en la calibracién con resistores
[7]. Esta interaccién es dependiente en gran medida del metal utilizado en el sensor, asi co-
mo del tipo de piel (un dedo donde la piel es mas dura tiene diferente resistencia que otro
con la piel més blanda). De los dos sensores disponibles, el de TMSI utiliza acero como
material de sus electrodos mientras que el del Anillo utiliza plata. Esto provoca diferencias
en la senal obtenida (Figura 3.2), y una normalizacién de las senales se hace imprescindible
para que éstas puedan ser comparadas.

= Ambos sensores no pueden ser colocados en los mismo dedos ya que se originarian interfe-
rencias que afectarian a las sefiales. La repeticién del experimento con diferentes sensores
tampoco es posible, debido a que la intensidad de la respuesta a los estimulos disminuye
con el numero de repeticiones, por lo que las senales no serian comparables. La solucién
radica en la colocacién de los sensores en manos diferentes. Sin embargo, existen diferen-
cias entre la mano izquierda y derecha [8], [9] a la hora de registrar una senal de GSR.
Por lo tanto, no deben esperarse sefiales idénticas al grabar en manos distintas, incluso
aunque los sensores fueran los mismos. Esto también puede visualizarse de forma grafica
en la Figura 3.2.
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1 -0.5[
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(a) Senales sin normalizar (b) Senales normalizadas

Figura 3.2: Una normalizacién de las sehales de ambos sensores es necesaria debido al diferente metal utilizado
por sus electrodos.

En definitiva, tanto el material del que estan fabricados los sensores como la zona de colo-
cacién de éstos aportan una variabilidad a las senales que debera ser tenida en cuenta a la hora
de interpretar la comparacién entre ellas.

3.2.2. Calibracién del BVP

Debido a que el sensor de BVP realiza medidas 6pticas, no es posible la realizacién de una
calibracion similar a la del GSR, donde la comparacion se realizaba con un parametro fijo cono-
cido como eran los resistores. En este caso, la calibracion se ha realizado en dos pasos: en primer
lugar, se comprueba que el sensor estd correctamente conectado y funcionando. Posteriormente,
una vez colocado en el dedo del sujeto y con la ayuda de un visor que permita observar la senal
en tiempo real, el sensor es ajustado hasta la obtencién de una senal correcta. En la Figura 3.3
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3. Comparativa de sensores 3.3 Medicién experimental

se muestra la forma que debe de tener la senal cuando el sensor esta bien colocado asi como
alguno de los artefactos més comunes provocados por su mal posicionamiento.

/6280000 [pz00000 [p200000
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2 2
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(a) Senal correcta (b) Sensor demasiado suelto (c) Sensor demasiado ajustado
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(d) Artefacto por movimiento del dedo (e) Artefacto por movimiento de la mano

Figura 3.3: Senial de BVP correcta y afectada por algunos de los artefactos més comunes.

Desgraciadamente, aunque el sensor se haya ajustado correctamente al principio de la gra-
bacién, la aparicién de artefactos por movimientos del dedo y mano del sujeto (Figura 3.3d y
3.3e) es muy comun, especialmente en grabaciones largas como la que ser4 realizada. Como con-
secuencia, una inspeccion visual de la senal grabada serd necesaria con el objetivo de identificar
y eliminar artefactos de las senales, lo cual implica que la longitud de éstas se verd reducida y no
serd exactamente la misma para todos los sujetos, ya que dependera del niimero de artefactos
encontrados.

3.3. Medicion experimental

A continuacion se describe el protocolo seguido para la grabacién de una medida experimen-
tal:

= Numero de sujetos: 5.

= Colocacion de los dispositivos: Sensores de TMSI en la mano derecha tal y como se
describe en la Figura 2.3 y anillo de Usenns en la mano izquierda (Figura 2.4). También
se ha utilizado un fotodiodo de TMSI para la posterior sincronizacién de las senales, y dos
ordenadores para la adquisicién de datos de cada dispositivo.

» Experimento: se realizaron 3 tareas de 9 minutos cada una, formadas cada una por 3
minutos de relajacién, 3 de una tarea fisica (pedalear en una pedalina), cognitiva (test de
Stroop, una prueba generadora de estrés cognitivo que explicaremos mas en detalle en el
capitulo 4) o emocional (ver una serie de videos), seguidos de otros 3 minutos de relajacion.
Un esquema general puede ser observado en la Figura 3.4.
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3. Comparativa de sensores 3.4 Comparativa de sefiales
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Figura 3.4: Tareas del experimento realizado.

3.4. Comparativa de senales

Para la comparacién de las senales ha sido utilizada la misma métrica que en [6], el Coe-
ficiente de correlacién de Pearson, parametro que refleja el grado de relacién entre dos
variables cuantitativas. Como test estadistico ha sido calculado el p-valor, teniendo en cuenta
que una correlacion serd significativa si su p-valor es menor a 0.05. En el caso de todas las
correlaciones que serdn mostradas en los siguientes apartados, su p-valor ha sido < 0.001.

Una explicacién mas detallada del coeficiente de correlacion de Pearson y del p-valor puede
ser encontrada en el Anexo C.

Cabe senalar que, dado que la frecuencia de muestreo de ambos dispositivos es distinta tal
y como se detalld en la seccién 2.4, ha sido necesario realizar un diezmado de la senal de TMSI
para reducir la frecuencia de muestro a 32 Hz antes de poder practicar cualquier comparacién
entre las seniales.

3.4.1. Correlacion

En la Figura 3.5 se presenta la correlacién total de las senales recogidas para cada sujeto
por ambos tipos de sensores. Sin embargo, la correlacion de seniales de larga duracién y baja
frecuencia puede dar como resultado un valor muy alto, pero pasar por alto zonas de peor
correlacion. Por ello, en la Figura 3.6 se han dividido las senales en tramos més pequenos, con el
fin de comprobar si la correlacién desciende excesivamente en algin punto concreto de la senal.
Dado que después de la eliminacién de artefactos la duracion de las senales para cada sujeto no
es idéntica, esta divisién se ha realizado en fragmentos de duracién 20 % de la longitud total de
cada senal.
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3. Comparativa de sensores 3.4 Comparativa de sefiales
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Figura 3.5: Correlacién total de las senales de BVP y GSR por sujeto.
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Figura 3.6: Correlacién por tramos de las sefiales de BVP y GSR por sujeto, p-valor < 0.001.

3.4.2. RMSE

Otro pardmetro de comparacién de senales que suele ser utilizado es el RMSE (root-mean
square error) o raiz del error cuadratico medio, que representa el error residual medio entre una
senal y otra:

Se quiere calcular el error de la sefial de n puntos recogida por el anillo respecto a la senal
de referencia, que sera la de TMSI. En este caso la ecuacién para calcular el RMSE queda:

n L 2
RMSE — Zt:l(yt,Amll:L Y+, TMST) (3.1)

Si realizamos una normalizacién de este valor respecto al rango de valores observados en la
variable de referencia obtenemos el NRMSE:

MSE
NRMSE = RMS (3.2)

Ymax, TMSI — Ymin, TMSI
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3. Comparativa de sensores 3.5 Eleccién de sensores

Para ambos sensores el valor del NRMSE es muy bajo (Figura 3.7), siempre menor al 4 %,
siendo atin mds pequeno en la senal PPG donde como méximo llega al 0.1 %. El hecho de que el
error sea mas grande en la senal de GSR se debe a que ambas seniales pueden tener diferencias
debido al lugar de posicionamiento y material de los sensores tal y como se describié en la seccién
3.2.1.1, y este pardmetro castiga més a pequenas diferencias puntuales entre las senales que otros
como la correlacién. Aun asi pueden considerarse valores bastante pequenos que reflejan la gran
similitud de las seniales.

NRMSE GSR NRMSE PPG
T T

T T

T

Error(Porcentaje)
T

NRMSE PPG (porcentaje)

3
Sujetos

3
Sujetos

(a) (b)

Figura 3.7: NRMSE de las senales de GSR y PPG.

3.5. Eleccion de sensores

Después de realizar las comparaciones anteriores entre las senales del anillo y de TMSI, se
han extraido las siguientes conclusiones:

= Los altos indices de correlacién apuntan que ambas senales son equivalentes a nivel global
con un gran nivel de similitud, lo cual nos indica que estamos registrando los mismos
procesos fisiolégicos.

= Se observan porcentajes muy bajos en el NRMSE, con lo que podemos constatar que
tampoco existen diferencias puntuales muy grandes entre las senales. En el PPG esto es
muy importante ya que provocaria grandes desigualdades en el calculo del ritmo cardiaco
y otras caracteristicas. Respecto al GSR estas diferencias puntuales son més asumibles,
incluso normales, al tratarse de sensores fabricados con materiales distintos y colocados en
manos diferentes, con lo que las senales diferirdn ligeramente.

Considerando lo arriba comentado, las dos pruebas que hemos realizado nos confirman que
los sensores del anillo y TMSI son equivalentes, habiéndose comprobado a nivel global y puntual.
Por lo tanto, podemos afirmar que los sensores de BitBrain pueden ser utilizados en cualquier
ambito de aplicaciéon con total garantia de que el registro de senal es comparable al de un
dispositivo médico ya contrastado como TMSI.
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4. Toma de datos

4.1. Introducciéon

Una vez que los sensores han sido elegidos, es posible comenzar con el desarrollo del detector
de anomalias. A lo largo de este capitulo describe en primer lugar los requisitos de disefio que
debe tener el dispositivo (seccién 4.2), para posteriormente detallar como se han cumplido cada
uno de estos requisitos, a nivel de hardware (seccién 4.3) y de software (4.4). Para finalizar el
capitulo se detalla el protocolo seguido para la medicion de datos normales y anémalos en la
seccion 4.5.

4.2. Requisitos del sistema

El sistema detector de anomalias contaba con unos requisitos a nivel de hardware y software
impuestos por la empresa que se debfan cumplir. Ademas, también fueron fijados el nimero de
sujetos y muestras que debian tomarse. Todos estos requisitos se resumen en la tabla 4.1, y serédn
descritos mas detalladamente en las secciones posteriores.

Requisitos

Apoyo comodo de la mano derecha

Misma placa y sensores que los del Anillo de Usenns

Hardware Sensor de BVP en la primera falange del dedo indice

Electrodos de GSR en segundas falanges de dedos indice y corazon

Tapa sobre los dedos que proporcione oscuridad al sensor de BVP

Material y diseno que imposibilite movimientos indeseados

Creacion de un programa para la adquisiciéon de datos

Software Faécil e intuitivo de usar para un usuario estandar

FEtiquetado de las medidas por sujeto, momento del dia y tipo

Dos tipos de medidas: normales y andémalas

. Toma de medidas normales dos veces al dia: manana y tarde
Toma de medidas

70 medidas normales por sujeto

6 anomalias por sujeto: 3 fisicas y 3 andémalas

Tabla 4.1: Requisitos del sistema detector de anomalias.
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4. Toma de datos 4.3 Hardware

4.3. Hardware

Para la creacién de un prototipo que cumpliera con las especificaciones descritas de la Tabla
4.1, el departamento de diseno de la empresa gener6 un esquema que recogiera estos requerimien-
tos. A partir de ese esquema se procedi6 al montaje del hardware, contandose con la colaboracion
del departamento de electrénica para el soldado y ensamblado de los cables y sensores. Se pueden
ver el plano y el resultado final en la Figura 4.1, y una explicacién mas detallada del montaje
del prototipo puede encontrarse en el Anexo B.

BVP

GSR

R

PLACA Y BATERIA

Figura 4.1: Prototipo para el detector de anomalias.
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4.4. Software

Complementando al hardware descrito en la seccién anterior, fue creado un programa en
Python que cumpliera con lo descrito en la Tabla 4.1. El programa se encarga de la grabacion
y etiquetado de las senales para su posterior almacenamiento, lo que permite tomar las medidas
a cualquier persona, incluso al propio sujeto cuyas senales se van a grabar si asi se desea. En el
Anexo B se detalla como ha sido desarrollado este programa, cuya interfaz puede ser observada
en la Figura 4.2.

=101]

Select your name from the list Select the moment of the day Select the type of measurement
™ Sujetol " Morning * Normal
Sujeto2 ' Afternoon ¢ Anomaly
Sujeto3

Sujeto4

Sujetos

Sujetod

Sujeto?

Sujetod

Sujetod

Sujetold

Sujetoll

Sujetol2

Sujetold

Sujeto14

" Sujetols

oM e e e B e e e e e

i’

MName: Sujeto13 Moment: Afternoon Type: Mormal

Save Parameters | Finish |

Please put your hand now into the device and keep it as still as possible

The measurement will start in 6

Figura 4.2: Instantdnea de la interfaz del programa creado.
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4.5. Protocolo de toma de datos

Durante el intervalo de tiempo en el que se llevd a cabo el proceso de toma de medidas
se realizaron dos tipos de grabaciones: normales, en las que no se realizaba ninguna actividad
especial y anomalas, dénde el sujeto llevaba a cabo alguna tarea que le generara estrés fisico o
cognitivo.

4.5.1. Tamano de la muestra

= Numero de sujetos: 13.
= Nimero de muestras normales por sujeto: 70.

= Nimero de muestras andémalas por sujeto: 6, 3 de estrés fisico y 3 de estrés cognitivo.

4.5.2. Toma de muestras normales

Uno de los objetivos detallados en la seccién 1.4 era la creacion de una base datos con
muestras normales de cada sujeto, durante las cuales no se estuviera realizando ningin tipo de
actividad estresante. Para ello, se tomaban medidas de los sujetos dos veces al dia, en el momento
de comenzar y terminar la jornada laboral respectivamente. Este proceso se repitié durante los
tres meses que duré aproximadamente completar la base de datos. Cada vez que se tomaba
una medida se realizaba una grabacion de duracién 60 segundos, aunque ésto no quiere decir
necesariamente que el tiempo utilizado para el andlisis posterior sea ese, como se verd en el
capitulo 5.

4.5.3. Toma de anomalias

Durante los meses en los que se estaban recopilando las muestras normales, ocasionalmente
se realizaba la grabacion de alguna de las anomalias que queriamos detectar. En concreto, han
sido 6 el nimero de anomalias tomadas por sujeto, tres de estrés fisico o fisiolégico y tres de
estrés cognitivo o psicoldgico. Las anomalias de tipo fisico tienen un impacto claro en el ritmo
cardiaco del sujeto, acelerdndolo, con lo que a priori deberian ser relativamente sencillas de
detectar. Por otro lado, las originadas por estrés cognitivo no parecen tan faciles de detectar,
dado que no se puede decir que afecten a un parametro corporal de forma tan evidente como
las fisicas. Por lo tanto, resultard de interés realizar ambos tipos de anomalias y comparar la
dificultad de detectar cada una de ellas. A continuacién se explica més detalladamente como se
han inducido estos datos anémalos:
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= Anomalias fisicas: el sujeto subia y bajaba 5 veces un tramo de escaleras. La medida, de
60 segundos de duracién, se realizaba justo después de que se hubiera realizado esta tarea.
Estudios como [10] hablan de la alteracién de pardmetros biométricos como la Variabilidad
del Ritmo Cardiaco debido a pequenos esfuerzos fisicos.

= Anomalias cognitivas: todos los sujetos han realizado tres pruebas diferentes que se
describirdn a continuaciéon. En todos los casos las medidas de 1 minuto se han tomado
durante la realizacion de la prueba pertinente.

e Test de Stroop [11], utiliza el conocido como efecto Stroop, o interferencia cognitiva
que se produce en un sujeto cuando lee el color del que estd pintada una palabra,
pero el significado de esa palabra indica un color distinto. Por ejemplo, leyendo el
color de la siguiente palabra: VERDE. La prueba consiste en leer el color del mayor
numero posible de palabras en un minuto.

e Prueba de sustraccion [12], el sujeto debe restar en voz alta un nimero primo a
un nimero grande de forma continua. Por ejemplo, 17 a 1431 (1414, 1397, 1380...)
durante el minuto que dura la medida. Para incrementar la dificultad se cambian los
numeros cuando el sujeto se ha acostumbrado.

e Prueba matemdtica [13], consistente en la resolucién del mayor niimero de pequenios
problemas matemadticos en un minuto, relacionados con calculo de porcentajes, divi-
siones, etc. Los problemas usados fueron los mismos para todos los sujetos.
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5. Andlisis

5.1. Introduccion

A lo largo de este capitulo se explicard el andlisis realizado a los datos obtenidos, y su
tratamiento para la creacién de los distintos clasificadores. Como primer paso se aplicard un
preprocesado a los datos grabados (seccién 5.2) antes de proceder en el apartado siguiente a la
descripcién de todas las caracteristicas extraidas. Sin embargo, estas caracteristicas pueden ser
reducidas o combinadas para la creaciéon de distintos clasificadores, por lo que en la seccion 5.4
se detallan los métodos de reduccion de caracteristicas empleados.

Para acabar el capitulo, en la seccién 5.5 se define el criterio de clasificacion utilizado y se
enumeran todos los clasificadores generados, que serdn comparados en el capitulo 6.

5.2. Preprocesado

La realizacién de una serie de tratamientos previos sobre las senales recogidas por los dos
sensores resulta indispensable para la obtencién de unos resultados fiables. Estas operaciones
seran descritas a continuacién:

5.2.1. BVP

= Reduccién de la senal: De los 60 segundos grabados solo serd utilizado un intervalo de
30 para el analisis posterior. El criterio de selecciéon de este intervalo es la ausencia en la
medida de lo posible de artefactos como los descritos en la seccién 3.2.2.

= Filtrado: Se aplica un filtro paso banda entre 0.5 y 2 Hz.

= Detector de picos: La senal es introducida a un algoritmo de deteccién de picos desa-
rrollado por BitBrain, quedando tras el paso por ese algoritmo tal y como se observa en la
Figura 5.1. El intervalo entre dos picos se denomina IBI (inter-beat-interval), y expresa el
ritmo cardiaco instantaneo. Sirva como ejemplo, si entre dos picos el IBI es de 0.5 segundos
el ritmo cardiaco en pulsaciones vendria dado por 60/IBI(segundos) = 120 pulsaciones por
minuto.
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=

Seiial BVP

1 i
12 14 16

18 20 22 24
tiempo(s)

Figura 5.1: Senial de BVP tras el preprocesado. Los circulos rojos senalan los puntos identificados como picos por
el algoritmo.

5.2.2. GSR
= Reduccién de la senal: Con igual criterio de ausencia de artefactos, se selecciona un
intervalo de 30 segundos de senal.
= Filtrado: Se aplica a la senial un filtro paso bajo con frecuencia de corte en 2 Hz.

= Conversién: Para la transformacién de la senial de Voltios a Siemens, debe aplicarse una
férmula de conversién propia del hardware utilizado.

5.3. Extraccion de caracteristicas

En total han sido extraidas 16 caracteristicas diferentes, 6 de la senial BVP y 10 de GSR, que
se describen a continuacion. Su seleccién ha sido el resultado de la bisqueda de las caracteristicas
usadas mds comunes en varios articulos de referencia como [2], [14] o [15].

5.3.1. BVP
» Ritmo cardiaco medio, o media de todos los intervalos (IBI). Indica el ritmo cardiaco
medio a lo largo de la grabacion.

= Mediana del ritmo cardiaco, misma medida que la anterior, pero utilizando la mediana
en vez de la media.

s Desviacion estandar del ritmo cardiaco.

= NIN50, parametro que indica el niimero de intervalos IBI que han diferido en 50 o més ms
respecto al intervalo anterior (indicador de cambios répidos de pulso).

= pNN50, proporciéon de NN50 respecto al nimero total de intervalos IBI.
» RMSSD (root mean square of successive differences), raiz cuadrada de la media de los

cuadrados de las sucesivas diferencias entre intervalos IBI adyacentes.
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5.3.2. GSR

= Media del GSR, media de la senal total, parte ténica mas fasica.
= Desviacién estandar del GSR, de la senal total.
= Media de la primera derivada del GSR.

= Media de la primera derivada del GSR normalizada por la desviacion estandar
del GSR.

= Media de la segunda derivada del GSR.

= Media de la segunda derivada del GSR normalizada por la desviaciéon estandar
del GSR.

= Media de la parte ténica, solo de esa parte de la senal.
= Desviacién estandar de la parte ténica.

» Numero de respuestas, cantidad de estimulos (tanto especificos como no-especificos) en
la parte fésica.

= Area fasica, o area bajo la senal fasica.

5.4. Reduccidén de caracteristicas

En muchas aplicaciones, como la que estamos desarrollando, un alto ntmero de posibles
caracteristicas pueden ser utilizadas. Sin embargo, ésto no implica que el mejor resultado vaya
a ser obtenido necesariamente mediante la utilizacién de todas ellas. Algunas pueden ser re-
dundantes entre si, no aportando nada de informacion al clasificador o incluso empeorando su
funcionamiento. También puede darse el caso de que una caracteristica no sea de ninguna ayuda
por si sola y sin embargo, al combinarse con otras, resulte de alta utilidad (algunos ejemplos
pueden verse en [16]). Por otro lado, el cdlculo de més caracteristicas siempre conllevara un ma-
yor coste computacional. Solo con el objetivo de reducir ese tiempo de computacién, merece
la pena estudiar distintas posibilidades de reduccién del niimero de dimensiones. Dentro de este
campo podemos distinguir dos tipos de algoritmos:

= Algoritmos de transformacién: las caracteristicas existentes se transforman a un es-
pacio dimensional méas bajo, combindndose de forma que las nuevas variables contengan el
maximo posible de la informacién original. El método utilizado en esta categoria sera PCA
[17], Principal Component Analysis, o Andlisis de Componentes Principales.

= Algoritmos de seleccion: Parte de los datos disponibles se suministraran a un algoritmo
que, sabiendo las observaciones que pertenecen a cada clase, selecciona las caracteristicas
que mas separan estas dos clases. Un 30% de los datos recogidos (tanto normales co-
mo anémalos) se destinaran a estos algoritmos, y ya no podrdn ser empleados para la
clasificaciéon. Se utilizaran dos métodos: Busqueda exhaustiva, que evalia todas las
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combinaciones posibles (alto coste computacional) y SFS (Sequential Forward Search),
con un coste de computacién inferior.

Una explicacién mas detallada de estos algoritmos puede encontrarse en el Anexo C.

5.5. Clasificadores

La deteccién precisa de espurios es una de las tareas més importantes dentro del analisis de
datos, debido a que su no consideracién puede llevar a unos resultados, como minimo, enganosos.
Ademsds, en numerosos ambitos los propios espurios pueden resultar ser los puntos buscados ya
que describen un comportamiento anémalo que muchas veces es de alto interés, como en el
caso de la deteccién de intrusos o anomalias en el trifico de una red (més ejemplos y una
explicacién mas amplia pueden verse en [18]). Este es también el caso que se da en el sistema
que se estd desarrollando en esta memoria.

La principal pregunta que surge es: jqué debe considerarse como espurio?. Aunque no existe
una tdnica definicién generalmente aceptada, Hawkins [19] lo define como: Un espurio es una
observacion que se desvia tanto de otras observaciones que levanta sospechas de que puede estar
generada por otros mecanismos diferentes. A partir de esta definicién son varias las metodo-
logias desarrolladas para la deteccién de espurios. En este trabajo se usara la llamada deteccion
basada en la distancia, que computa un tipo de distancia para todos los puntos de la distri-
bucién y, dependiendo de lo grande que sea esta distancia, el punto es clasificado como normal
o anémalo. Este método ha sido el elegido debido a que es adecuado para conjuntos de datos
multidimensionales y es independiente de la distribucién de los datos [20].

5.5.1. Distancias

El parametro mas importante a la hora de desarrollar el clasificador es la seleccién del tipo
de distancia. La eleccién estandar en este tipo de métodos suele ser la de Mahalanobis [21]. La
distancia de Mahalanobis de un punto con coordenadas en P dimensiones x = (z1, z2, 3, ..., T p)T
a un grupo de observaciones con media p = (u1, 2, 43, ..., up)’ y matriz de covarianzas ¥ se
define como:

MD(@) = /(x — TS (@ - p) (5.1)

Sin embargo, la distancia de Mahalanobis cuenta con una desventaja muy grande si es aplica-
da tal y como se ha definido previamente. La media y la matriz de covarianzas de la distribucion,
necesarias para el calculo de la distancia, son altamente sensibles a valores espurios, de forma
que la distancia obtenida no resulta fiable. Por ello, han sido desarrollados varios algoritmos
robustos, basados en esta distancia de Mahalanobis, que se definen como:

RD(z) = \/ (& — 1)TS1(z — ) (5.2)
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donde /i es la media y ¥ la matriz de covarianzas, ambas calculadas de manera robusta
por un algoritmo, siendo algunos de los méds comunes discutidos en [22]. De todos ellos, el que
serd utilizaremos es el denominado MCD, Minimum Covariance Determinant (concretamente,
el método y libreria utilizados son aquellos descritos en [23]) que busca, de entre el conjunto de
datos de tamano total n, el subconjunto de tamano h, con h > n/2, cuya matriz de covarianzas
clasica tenga el menor determinante posible. De esta forma, i = pprop serd la media de esos
h puntos, y S = Saep serd su matriz de covarianzas. El algoritmo MCD puede resistir (n —
h) datos espurios y, por lo tanto, ese valor h (o equivalentemente la proporciéon o = h/n)
determinaré la robustez del algoritmo. Cuando se espera un alto nivel de contaminaciéon por
espurios « deberia ser elegido con un valor cercano a 0.5. Sin embargo, para situaciones en las
que no se espera una presencia excesiva de datos anémalos, un valor intermedio de o = 0.75 es el
recomendado, y el que ha sido elegido en esta memoria, ya que proporciona resultados precisos
si el set de datos contiene hasta un méaximo del 25 % de datos espurios, lo que es una condicién
bastante razonable para el sistema que se estd desarrollando. Una explicacion més profunda del
algoritmo puede verse en [24].

5.5.2. Objetivo del clasificador

Los datos introducidos a nuestro sistema pueden ser normales o andmalos. El objetivo de los
clasificadores es el de detectar si una muestra es anémala o no. Esta estimacién dependera de
las caracteristicas elegidas, asi como del criterio utilizado para la clasificacion de los datos. Al
clasificar una muestra pueden darse cuatro posibles casos:

» Verdadero Positivo (VP): la nueva entrada se clasifica como dato anémalo y, efectiva-
mente, lo es.

» Verdadero Negativo (VIN): la nueva entrada es un dato normal y se clasifica correcta-
mente como tal.

» Falso Positivo (FP): la nueva entrada es un dato normal, pero el clasificador dictamina
que es anémalo.

» Falso Negativo (FN): la nueva entrada es un dato anémalo pero se clasifica como un
dato normal.

Un clasificador perfecto conseguiria porcentajes del 100% en VN y VP y del 0% en FP y
FN. En la Figura 5.2a se observa un clasificador formado por dos variables, que debe clasificar
los datos que se muestran. Puede verse una nube de puntos azules (normales) que se agrupan
formando un cluster, y unos pocos de color rojo y verde (andmalos). Las anomalias fisicas (rojas)
parecen bastante lejos del centro de esa distribucién y consecuentemente faciles de detectar. Sin
embargo, las cognitivas (verdes) se sitian mucho mas préximas, tanto que algunas se encuen-
tran dentro del cluster de muestras normales. Para que se clasifiquen correctamente todas las
anomalias (es decir, FN = 0%), el umbral deberia ser colocado como se ve en la Figura 5.2b,
clasificando todas las muestras que caen dentro del elipsoide como normales y todas las que
hay fuera como andémalas, lo que implicaria tener un porcentaje de Falsos Positivos altisimo.
Aumentar el umbral (Figura 5.2¢) disminuirfa el porcentaje de FP, pero también provocaria que
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muestras anémalas se clasificaran como normales. Este es un ejemplo de un mal clasificador, con
el que es imposible obtener valores bajos de ambos FN y FP.
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Figura 5.2: Ejemplo de mal clasificador.

El clasificador perfecto se pareceria més al representado en la Figura 5.3a donde la distancia
de las anomalias con el centro de la distribuciéon es muy grande y es posible establecer una
separacion clara entre datos normales y anémalos. Por ejemplo, estableciendo el umbral como
en la Figura 5.3b, quedan porcentajes de FN = 0% y FP < 2%.

« Medidas normales « Medidas normales
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Figura 5.3: Ejemplo de buen clasificador.

32



5. Analisis

5.5 Clasificadores

Este serd el objetivo de nuestro clasificador, establecer de la forma mas precisa posible donde
se situan los datos normales y donde los anémalos. De esta forma, ante una nueva entrada,

serd capaz de clasificar correctamente esa muestra.

5.5.3.

Durante las secciones anteriores se han descrito varios métodos que pueden ser utilizados
para la creacién de los clasificadores. Con distintas combinaciones de ellos se han generado
12 métodos diferentes agrupados en 4 tipos segin el algoritmo usado que seran descritos a

Seleccion de clasificadores

continuacién, asi como resumidos en la Tabla 5.1:

= Clasificador 1: Sin utilizar ningiin algoritmo de reduccidn, se calcula la distancia robusta

utilizando las 16 caracteristicas totales.

» Clasificadores 2-5: se utiliza el algoritmo Busqueda FEzhaustiva de seleccién de carac-

teristicas, escogiéndose las 4, 6, 8 y 10 mejores para cada sujeto.

= Clasificadores 6-9: Utilizacion del algoritmo SFS de seleccién de caracteristicas, esco-

giéndose las 4, 6, 8 y 10 mejores para cada sujeto.

= Clasificadores 10-12: Se emplea el algoritmo PCA de transformacion de caracteristicas,

escogiendo las 2, 4, y 6 componentes principales por sujeto.

Reduccién de Algoritmo N° de componentes

caracteristicas
Clasificador 1 No Ninguno 16
Clasificador 2 Si Busqueda exhaustiva 4
Clasificador 3 Si Busqueda exhaustiva 6
Clasificador 4 Si Busqueda exhaustiva 8
Clasificador 5 Si Busqueda exhaustiva 10
Clasificador 6 Si SFS 4
Clasificador 7 Si SFS 6
Clasificador 8 Si SFS 8
Clasificador 9 Si SFS 10
Clasificador 10 Si PCA 2
Clasificador 11 Si PCA 4
Clasificador 12 Si PCA 6

Tabla 5.1: Clasificadores desarrollados.
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6. Resultados

6.1. Introduccion

En este apartado se compararan los resultados obtenidos para todos los clasificadores gene-
rados en el capitulo anterior. Comenzaremos (seccién 6.2) explicando el método de evaluacién
utilizado para después proceder a la comparacién entre clasificadores en la seccién 6.3, donde
también se determinara cual es el mejor clasificador dependiendo de las circunstancias. Poste-
riormente se realizard un analisis mas profundo de los resultados obtenidos con uno de ellos,
buscando los valores 6ptimos de tiempo de andlisis y de muestras normales necesarias (seccién
6.4), y comparando los resultados segtin el tipo de anomalia (seccién 6.5). Ademas, se presenta-
ran los resultados para el caso de un nuevo sujeto del cual no tengamos ninguna muestra previa
(seccién 6.6) y para finalizar se resumirdn los resultados extraidos en la seccién 6.7.

6.2. Meétodo de evaluacion

6.2.1. Curva ROC

Como criterio de evaluacién se ha elegido la Curva ROC (acrénimo de Receiver Opera-
ting Characteristic, Caracteristica Operdtiva del Receptor), una representacién grafica de dos
parametros que definiremos a continuacién: sensibilidad y especificidad.

- VP
Sensibilidad = VPLFN VPR (6.1)

e VN
ESpeCZf’lCZdad = W =1- FPR (62)

La sensibilidad indica la capacidad de nuestro estimador para clasificar como positivos los
casos que lo son realmente, o lo que es lo mismo, el Ratio de Verdaderos Positivos (TPR). La
especificidad indica la habilidad del clasificador para detectar la normalidad en medidas norma-
les, indicando la proporcion de medidas normales correctamente identificadas. Es equivalente a
1 — FPR (Ratio de Falsos Positivos).
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La curva ROC representa la sensibilidad frente a (1 — especi ficidad) o, lo que es lo mismo,
el ratio de Falsos Positivos frente al de Verdaderos Positivos. Para cada umbral se dibujara un
punto en la grafica, quedando una curva como resultado.
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Figura 6.1: Curva ROC: la linea discontinua marca la curva obtenida por un clasificador aleatorio. Por encima de
ella cualquier valor serd mejor que la estimacioén aleatoria, situdndose la clasificacién perfecta en (0, 1).

El mejor método posible de predicciéon se situaria en la esquina superior izquierda, o coorde-
nada (0,1) del espacio ROC, representando un 100 % de sensibilidad (ningtn falso negativo) y un
100 % también de especificidad (ningun falso positivo). Dado que la esquina superior izquierda
es el punto 6ptimo, un evaluador directo del clasificador es el Area Bajo la Curva (AUCQC).
El clasificador ideal formarfa un dngulo recto con el punto (0,1) y tendria una AUC de 1. De
esta forma, cuanto mas préximo a 1 sea el valor de la AUC, mejor seréd el clasificador.

La eleccion del umbral del clasificador serd equivalente a la seleccién del punto 6ptimo de
la curva. El emplazamiento de este punto vendra dado por el coste asignado a los dos tipos de
clasificacién errénea (FN y FP), lo que dependerd del contexto de aplicacién.

6.2.2. Cross-validation

Para que los resultados sean fiables, no pueden ser utilizadas las mismas muestras para la
generacién del clasificador y su evaluacién, ya que correriamos el riesgo de cometer lo que se
denomina owverfitting o sobreajuste, que es el efecto de sobreentrenar un algoritmo de aprendizaje
con unos ciertos datos para los que se conoce el resultado deseado.

Para solventar este problema se utiliza una técnica denominada cross-validation o valida-
cién cruzada, utilizada para evaluar los resultados de un analisis estadistico y garantizar que
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6.3 Evaluacién y comparacion de clasificadores

no se produce ese sobreajuste. El método que se ha utilizado se denomina validacion cruzada de
K-iteraciones o K-fold cross validation, donde los datos de muestra se dividen en K subconjuntos
o folds (elegidos de forma aleatoria en nuestro sistema) de igual o similar tamafnio. Uno de los
subconjuntos se utiliza como datos de prueba y el resto (K-1) como datos de entrenamiento.
Finalmente se realiza la media aritmética de los resultados de cada iteracién para obtener un
Unico resultado. Este método es muy preciso puesto que evaluamos a partir de K combinaciones
de datos de entrenamiento y de prueba, aunque tiene la desventaja de que es lento desde el
punto de vista computacional. En la préctica, la eleccién del nimero de iteraciones depende de
la medida del conjunto de datos, para este sistema se ha determinado un valor de K = 5.

[teracion 1} -[0 000 V0090000000000 00
9000000 1010000000000
00000000000000700000

00000000000000000007)

Figura 6.2: Validacién cruzada de K-iteraciones, con K = 4. Tras las 4 repeticiones se hace una media de los
resultados obtenidos con los datos de prueba. En el ejemplo de esta figura los folds se han elegido de forma
consecutiva, mientras que en el nuestro se han elegido de forma aleatoria.

6.3. Evaluacién y comparacion de clasificadores

En la Figura 6.3 se representa la curva ROC media de todos los sujetos obtenida con cada
clasificador, junto con los valores de AUC para cada curva.
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Figura 6.3: Curvas ROC para todos los clasificadores. Cada curva representa la media de todos los sujetos con
cada clasificador.
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6. Resultados 6.3 Evaluacién y comparacion de clasificadores

En la seccién 5.5.3 se describieron los 12 clasificadores, divididos en 4 grupos segun el al-
goritmo usado. Cabe destacar que para cada grupo se estudiaron también clasificadores con un
nimero mayor de caracteristicas, pero no fueron incluidos ya que no mejoraban los resultados o
incluso los empeoraban respecto a los mejores métodos de cada grupo. Observando las curvas de
la Figura 6.3 pueden observarse los clasificadores de cada grupo que obtienen mejores resultados,
siendo éstos el 1, 4, 9 y 12. Sus curvas ROC se vuelven a exponer en la Figura 6.4, esta vez
representando tanto la media de todos los sujetos como la desviacion tipica obtenida.
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Figura 6.4: Curvas ROC para los mejores clasificadores. La linea continua representa la media de todos los sujetos
y la zona sombreada la desviaciéon tipica, para cada clasificador.

Cabe destacar que la seleccién del mejor clasificador no es inmediata. Existe un compromiso
entre el porcentaje de Falsos Positivos permitidos y el de Verdaderos Positivos obtenidos. Por
lo tanto, la eleccion de un clasificador u otro dependerd del coste que asignemos a estimar
erréneamente un dato normal o una anomalia. Se pueden considerar tres situaciones:

1. Coste de un FP >> Coste de un FN. El objetivo es tener el menor nimero de FP
posible sin considerar tan importantes los FN, es decir, se le da mucha importancia a que
ningin dato normal sea detectado andémalo. En este caso, el mejor clasificador seria el
numero 12, y el punto éptimo de la curva podria ser el de coordenadas (FPR = 0.02, TPR
= 0.5) (Figura 6.5a).

2. Coste de un FP = Coste de un FN. Ambos errores de clasificacién tienen el mismo
coste. El clasificador elegido seria el 1 en este caso, con un punto éptimo situado en (FPR
= 0.07, TPR = 0.93), donde el porcentaje de FN y FP serfa el mismo (Figura 6.5b).

3. Coste de un FP << Coste de un FN. En este caso el sistema se ve penalizado en
mayor medida por la incorrecta clasificacién de un dato anémalo. El mejor clasificador
serfa el 4, con punto éptimo en (FPR = 0.6, TPR = 1), donde se clasifican correctamente
todas las anomalias (Figura 6.5¢).
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Dado que el sistema de este proyecto tiene como objeto detectar las anomalias, se considera
la situacién 3 como la que més se adapta a estos objetivos, y por lo tanto, se seleccionara el
clasificador 4 para realizar un analisis mas detallado en los siguientes apartados.
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Figura 6.5: Clasificadores y puntos 6ptimos segun el coste de FN y FP. 6.5a: Coste de un FP >> Coste de un
FN, 6.5b: Coste de un FP = Coste de un FN y 6.5¢: Coste de un FP << Coste de un FN.
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6.4. Mejoras

Durante el desarrollo de los clasificadores hubo dos pardmetros que se establecieron, pero
no era posible en ese momento saber si se trataban de los valores 6ptimos o no. Se trata del
tiempo de grabacién analizado, que se tomé de 30 segundos y del nimero de muestras normales
usadas para la creacién del clasificador. Después de la toma de datos se tenian a disposicién 70
muestras normales. Sin embargo, tras su paso por los algoritmos de reduccién de caracteristicas
y la validacién cruzada, solo 40 pueden ser utilizadas como méximo para la generaciéon de los
clasificadores. Resulta interesante estudiar ahora si estos valores son 6ptimos o no.

6.4.1. Tiempo de grabacion

AUC segun el tiempo de analisis
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Figura 6.6: Valor del drea bajo la curva dependiendo del tiempo de andlisis utilizado. La linea continua representa
la media de todos los sujetos y la zona sombreada la desviacion tipica.

En la Figura 6.6 se observa el valor de la AUC obtenido segin el tiempo de anélisis tomado,
en un intervalo que va de 6 a 30 segundos. Se puede observar como el funcionamiento del sistema
va mejorando segin aumenta el tiempo de andlisis, y se estabiliza a partir de 25 segundos mas
o menos. Cabe destacar que con tiempos pequenos de andlisis el valor de la AUC empeora pero
sigue siendo bastante alto, lo que significa que el tiempo de grabacién podria ser reducido en
aplicaciones futuras si fuera necesario, sin acusarse excesivamente en los resultados.

6.4.2. Numero de muestras normales

En la Figura 6.7 se representa la AUC obtenida segin el nimero de muestras normales
utilizadas para el andlisis, estableciéndose un minimo de 10 y un méaximo de 40. Se observa un
empeoramiento acusado de los resultados para un nimero de muestras inferior a 20, y a partir
de 30 apenas se observan mejoras. Esto nos lleva a concluir que el nimero de muestras normales
a utilizar deberia ser como minimo de 30 para obtener los mejores resultados posibles. Cabe
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destacar que sin embargo no existe una cota superior para el nimero de muestras normales,
dado que cuantas méas tengamos mejor funcionara el clasificador.

AUC seqgun el n® muestras normales utilizadas
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Figura 6.7: Valor del 4rea bajo la curva dependiendo del nimero de muestras normales utilizado.

6.5. Comparacion por tipo de anomalia

Dado que las anomalias que se han intentado detectar han sido de dos tipos, fisicas y cogniti-
vas, resulta de interés estudiar si ambas se han detectado con eficacia similar o, por el contrario,
un tipo resulta maés dificil de detectar que el otro.

ROC de ambos tipos de anomalias
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Figura 6.8: Media y desviaciéon estandar de los sujetos para los dos tipos de anomalias.
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En la Figura 6.8 se representa la media y desviacién tipica de los dos tipos de anomalias.
No se observan grandes diferencias entre la clasificacién de los dos tipos, ni se puede asegurar
que uno sea mucho mas facil de clasificar que el otro. Cabe destacar que las anomalias fisicas
alcanzan el valor de TPR = 1 para un valor bastante menor de FPR, en concreto para FPR =
0.5 todas las anomalias fisicas han sido ya detectadas mientras que esa situacién no se alcanza
para las cognitivas hasta FPR = 0.85 aproximadamente.

6.6. Resultados para un nuevo sujeto

Los clasificadores desarrollados hasta ahora se han basado en los datos previos del sujeto
para clasificar una nueva entrada como normal o anémala. Sin embargo, ahora se busca estudiar
que resultados se obtendrian en el caso de que no hubiera ninguna muestra previa del sujeto
cuya medida se intenta clasificar. Para ello se intentan clasificar los datos de cada sujeto a partir
de los demsds sujetos, excluyendo los suyos propios. En la Figura 6.9 se representa la media y
desviacion tipica obtenida.
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Figura 6.9: ROC para un nuevo sujeto.

Se observa un gran aumento de la variabilidad, lo cual es légico teniendo en cuenta que no
tenemos datos previos de ese sujeto. Estos resultados remarcan la necesidad de tener muestras
previas del sujeto cuya medida se pretende clasificar para poder realizar una clasificacién en la
que se pueda confiar.
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6.7.

Resumen de resultados

A continuacién se recapitulan los resultados més importantes obtenidos durante este capitulo:

De los doce clasificadores desarrollados, cuatro obtienen mejores resultados que los demas
al observar las curvas ROC de cada uno.

La eleccion del mejor clasificador entre esos cuatro dependera del coste que asignemos a
tener un Falso Positivo y un Falso Negativo.

El tiempo de grabacién podria ser reducido a 20 segundos sin pérdida de rendimiento. Si
fuera necesario, podria bajar hasta 6 segundos con un ligero detrimento de los resultados,
pero con un funcionamiento todavia bueno.

El niimero de muestras normales utilizadas deberia ser como minimo de 25-30 para obtener
los mejores resultados posibles. En este aspecto, cuantas mas muestras normales se tengan
mas precisa serd la clasificacién.

No existen grandes diferencias entre la clasificacién de los dos tipos de anomalias.

La utilizacion del sistema en un nuevo sujeto del que no se tengan muestras normales
previas no es fiable, ya que la variabilidad aumenta drésticamente.
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f. Conclusiones y lineas futuras

En el presente proyecto se ha desarrollado un sistema de deteccién de datos espurios, siendo
estos datos anomalias fisiolégicas y psicoldgicas inducidas en sujetos de los que se habia creado
una base de datos de medidas sin estrés inducido. El estudio de patentes presentado en la seccién
2.2 y ampliado en el Anexo D deja constancia de la escasez de dispositivos de este tipo en la
actualidad, lo que dificulta su comparacién con sistemas de similares caracteristicas.

Dentro de la realizacién de este proyecto, y considerando los objetivos descritos en el capitulo
1, cabe destacar dos hitos principales conseguidos a partir del trabajo realizado: (a) la compro-
bacién de que los sensores desarrollados por BitBrain pueden utilizarse con las mismas garantias
que unos de tipo médico, lo cual resulta de gran utilidad para la empresa en su trabajo presente y
futuro con estos sensores y (b) la creacién de un sistema completo de deteccién de espurios. Los
resultados obtenidos en la deteccion de anomalias fisiolégicas y psicoldgicas son esperanzadores
en cuanto a su utilizacién en ambitos de aplicacion mas especificos. Ademas, el desarrollo de
varios clasificadores diferentes dentro de este sistema permite que pueda ser adaptado segin los
requisitos y objetivos de la aplicacion, ampliando asi sus posibilidades futuras.

Todo lo expuesto anteriormente deja abiertos varios campos de aplicacién futuros, asi como
alguna mejora posible a realizar si el producto se llevara al &mbito comercial, como son:

» Realizacién de un articulo cientifico similar a [6] presentando los resultados obtenidos en la
comparacién de sensores de BitBrain y TMSI. La propia empresa ya ha mostrado interés
en el desarrollo de este articulo.

» Utilizacion del sistema de deteccién de espurios desarrollado en ambitos de aplicacién méas
concretos, como podrian ser: deteccién de picos de estrés en los trabajadores de una fabrica,
identificacién de infractores en el transporte publico, etc. Cabe destacar que una empresa
externa ya se ha puesto en contacto con BitBrain para estudiar la implantacién de este
sistema en alguna de sus fabricas, lo que empezara a realizarse en los préximos meses.

= Aumento de la base de datos de sujetos, asi como del nimero de muestras tomadas por
sujeto.

= Creacién de un filtro para la deteccién automaética de artefactos para las senales de GSR
y BVP.

= Desarrollo de un nuevo prototipo con los mismos requisitos que el creado en este proyecto
pero con un diseno mas adecuado para su aplicacion en el A&mbito comercial.
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7. Conclusiones y lineas futuras

A nivel personal, cabe destacar mi satisfacciéon por la posibilidad de desarrollar este PFC
dentro de una empresa, lo que me ha permitido tener una primera toma de contacto con el
mundo y ritmo laboral, a la vez que obtener una ganancia bastante importante en cuanto a
conocimientos précticos y experiencia profesional se refiere. Asi mismo, considero altamente
gratificante el hecho de que el trabajo expuesto en esta memoria pueda ser continuado en el
futuro por parte de la empresa en la que he realizado el proyecto.
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