

Grado en Ingeniería de Tecnologías Industriales 30041 - Análisis estructural de instalaciones industriales

Guía docente para el curso 2013 - 2014

Curso: 4, Semestre: 1, Créditos: 6.0

Información básica

Profesores

- María Begoña Calvo Calzada bcalvo@unizar.es
- Luis Gracia Villa lugravi@unizar.es
- Estefanía Peña Baquedano fany@unizar.es

Recomendaciones para cursar esta asignatura

Es recomendable tener conocimientos básicos de química a nivel de los adquiridos en la asignatura obligatoria de Química impartida en primer semestre de la titulación.

Actividades y fechas clave de la asignatura

Para cursar la materia con aprovechamiento, es fundamental haber superado las materias de resistencia de materiales, mecánica de sólidos deformables y se recomienda haber cursado teoría de estructuras y construcciones industriales.

El seguimiento continuo de la asignatura, tanto en sus clases de teoría y problemas como en las de prácticas, es esencial, así como el estudio personal y la elaboración de los trabajos de la asignatura.

Inicio

Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- Es capaz de diseñar, calcular y proyectar elementos estructurales superficiales (depósitos, silos, cubiertas).
- **2:**Conoce la tecnología de la construcción de elementos superficiales y la normativa que la regula.
- Es capaz de diseñar, calcular y proyectar estructuras sometidas a acciones dinámicas (vibraciones inducidas por maquinaria y equipos, efectos dinámicos del viento, acciones sísmicas).

- 4: Conoce la normativa vigente referente al diseño sísmico, tanto a nivel nacional como en el ámbito europeo.
- 5: Es capaz de diseñar, calcular y proyectar cimentaciones superficiales y profundas
- Conoce la tecnología de la construcción de cimentaciones y la normativa que la regula.

Introducción

Breve presentación de la asignatura

Esta asignatura introduce al alumno en el diseño mecánico y resistente de las instalaciones más comunes, sus componentes y sus estructuras subsidiarias, incluidas las cimentaciones, en al ámbito industrial, permitiéndole alcanzar los resultados de aprendizaje comentados anteriormente. Además, se plantea el uso de normativa vigente para el diseño de este tipo de instalaciones, así como para el cálculo de elemtos de contención o cimentaciones.

Para la resolución de los problemas es imprescindible tener destreza en mecánica del sólido deformable y resistencia de materiales y análisis de estructuras, adquiridos en los cursos previos de la titulación.

En la asignatura se va a potenciar la evaluación continuada y el trabajo tanto individual como en equipo. Las competencias adquiridas en este curso permitirán al futuro egresado trabajar en equipo con ingenieros en el diseño y cálculo de instalaciones industriales

Contexto y competencias

Sentido, contexto, relevancia y objetivos generales de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo de la asignatura es capacitar al alumno para analizar y diseñar estructuras e instalaciones industriales. Para ello se plantean los siguientes objetivos específicos.

- Ampliar los conocimientos de los alumnos con el estudio de dos tipologías estructurales que no habían sido consideradas con anterioridad como son la placa y la lámina.
- Aplicación de estos conocimientos teóricos al cálculo estructural de depósitos de líquidos, depósitos de gases, silos para almacenamiento de grano y chimeneas. Estudio de la Normativa aplicable
- Ampliar los conocimientos de análisis estructural al ámbito de las acciones dinámicas, de gran importancia en determinadas instalaciones industriales, y esenciales cuando se requiere un diseño antisísmico.
- Aplicación de los conocimientos anteriores al diseño estructural de instalaciones y estructuras subsidiarias según la normativa vigente.
- Conocer las diferentes tipologías de cimentaciones, así como sus recomendaciones de uso en función de los resultados del estudio geotécnico de la zona de implantación.
- Aplicación de los conocimientos anteriores al diseño de cimentaciones en el ámbito industrial de acuerdo a la normativa vigente.

Las diferentes actividades que se proponen durante el desarrollo de esta asignatura (prácticas, trabajos y clases de problemas) no sólo buscan la asimilación de los distintos conceptos expuestos a lo largo del curso, sino que también pretenden la potenciación del razonamiento, síntesis, resolución y posterior análisis de los resultados de diferentes problemas.

Contexto y sentido de la asignatura en la titulación

La asignatura de Análisis Estructural de Instalaciones forma parte del bloque optativo de Instalaciones y Construcciones

Industriales del plan de estudios del Grado en Ingeniería de Tecnologías Industriales. Se trata de una asignatura optativa de 6 créditos ECTS que se imparte en el primer cuatrimestre del cuarto curso de la titulación.

La asignatura supone un complemento a todas las asignaturas anteriores relacionadas con el diseño y análisis estructural, y representa la aplicación práctica de los conocimientos adquiridos en dicho campo al diseño, análisis y detallado constructivo de las instalaciones más habituales en el ámbito industrial, familiarizándose además con la normativa vigente que regula el diseño de dichas instalaciones.

Al superar la asignatura, el estudiante será más competente para...

1:

Competencias genéricas:

- 1. Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico (C4)
- 2. Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma (C6)
- 3. Capacidad de gestión de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería (C9)
- 4. Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo (C10).

2:

Competencias específicas:

- 1. Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales (C38).
- 2. Conocimientos y capacidad para el cálculo y diseño de estructuras y construcciones industriales (C39).

Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

Los resultados de aprendizaje obtenidos en la asignatura capacitan al alumno para la aplicación práctica de los conocimientos adquiridos al diseño, análisis y detallado constructivo de las instalaciones más habituales en el ámbito industrial, además de manejar con soltura la normativa vigente que regula el diseño de este tipo de instalaciones.

Evaluación

Actividades de evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

1:

Para permitir la evaluación continuada del estudiante que vaya estudiando la asignatura a medida que se imparte, se plantean las siguientes pruebas con su correspondiente ponderación en la calificación final. Se requerirá un mínimo de puntuación de 4 sobre 10 en cada una de las partes.

Actividades por bloque (Ponderación: 35 %)

- Se realizarán tres actividades teórico-prácticas correspondientes a cada una de las partes de la asignatura.
- Se fijarán fechas para la entrega de las mismas durante el curso.
- Su evaluación se basará en el informe escrito presentado.

Trabajo de asignatura (Ponderación: 35%)

• Se planteará el diseño mecánico y resistente de una instalación industrial, sus componentes y sus

estructuras subsidiarias, incluidas las cimentaciones, permitiéndole aplicar y reforzar los resultados de aprendizaje comentados anteriormente mediante un caso práctico real.

- Se fijarán fechas para las revisiones parciales y la entrega definitiva, antes de la convocatoria oficial de examen.
- Su evaluación se basará en el informe escrito presentado y una exposición oral.

Examen (Ponderación: 30 %)

- Examen final en el que se evaluará el contenido teórico de la asignatura.
- Tendrá una duración estimada de tres horas.

2:

Para permitir una evaluación global de la asignatura, se plantean las siguientes pruebas con su ponderación en la calificación final. Se requerirá un mínimo de puntuación de 5 sobre 10 en cada una de las partes.

Examen (Ponderación: 40 %)

- Examen final en el que se evaluará el contenido completo de la asignatura.
- Constará de una parte teórica y otra de problemas (ejercicios)
- Tendrá una duración estimada de tres horas.

Trabajo de asignatura (Ponderación: 60%)

- Se planteará el diseño mecánico y resistente de una instalación industrial, sus componentes y sus estructuras subsidiarias, incluidas las cimentaciones, permitiéndole aplicar y reforzar los resultados de aprendizaje comentados anteriormente mediante un caso práctico real.
- Su evaluación se basará en el informe escrito presentado y una exposición oral.

Actividades y recursos

Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

La evaluación continuada con hitos evaluables intermedios, y el trabajo individual y en equipo.

Actividades de aprendizaje programadas (Se incluye programa)

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

1:

Bloque I: Estructuras superficiales (15h)

- El modelo de placa (3h)
- El modelo de lámina (3h)
- Depósitos para almacenamiento de líquidos (3h)
- Silos para almacenamiento de grano (3h)
- Depósitos para almacenamiento de gases (3h)

2:

Bloque II: Dinámica estructural (15 h)

- Fundamentos de la Dinámica Estructural. Ecuaciones y métodos de cálculo (2 h)
- Sistemas de 1 grado de libertad. Vibraciones libres y forzadas (2 h)
- Sistemas de N grados de libertad (3 h)
- Cálculo de frecuencias y modos de vibración (3 h)
- Métodos de resolución de las ecuaciones dinámicas (3 h)

Cálculo sísmico (2 h)

3:

Bloque III: Cálculo de elementos de contención y cimentaciones

- Clasificación y caracterización del comportamiento de los suelos (3h)
- Evaluaciones de tensiones y deformaciones (3h)
- Cálculo de elementos de contención (4 h)
- Cálculo de cimentaciones (5 h)

4:

La asignatura se desarrollará a partir de las siguientes metodologías:

- Clases Teóricas (T1). Constituyen el núcleo docente central. En ellas, se desarrolla el cuerpo del contenido en el programa y se presentan ejemplos de su aplicación. La técnica que se sigue en estas clases es fundamentalmente expositiva.
- Clases Prácticas de Problemas (T2). Las clases de problemas complementan a las teóricas permitiendo al estudiante la aplicación de los conceptos a la resolución de problemas de la práctica ingenieril. Estas clases también pueden emplearse para desarrollar competencias tales como la aplicación de fórmulas empíricas de uso específico, el uso de tablas, normativas, etc.
- Prácticas de Simulación Informática (T3). Se pretende de esta forma familiarizar a los alumnos con las herramientas básicas del cálculo de estructuras superficiales, análisis dinámico y de cimentaciones. El objetivo fundamental de estas prácticas es que el alumno sea capaz de interpretar los resultados obtenidos mediante el ordenador y adaptar los conocimientos para el cálculo de la estructura que le sea asignada.
- Actividades individuales (T6). Pretende desarrollar la fórmula de aprendizaje basado en proyectos, para reforzar el contenido teórico práctica del resto de actividades docentes.
- Trabajo de Asignatura (T6). Pretende desarrollar la fórmula de aprendizaje basado en proyectos, para reforzar el resto de actividades docentes permitiendo que el estudiante adquiera competencias de trabajo en equipo.
- Tutorías. Permiten de forma más individualizada, que los alumnos integren los diversos contenidos y consoliden el objeto de su aprendizaje.

Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

Las clases magistrales y de problemas y las sesiones de se imparten según el calendario y los horarios establecidos por la Escuela, que son publicados con anterioridad a la fecha de comienzo del curso.

Las Actividades individuales deberán presentarse en el plazo que el profesor anuncie con suficiente anterioridad.

El Trabajo de Asignatura deberá presentarse con anterioridad a la fecha de convocatoria oficial de examen establecida por la Escuela.

Cada profesor informará de su horario de atención de tutorías.

Referencias bibliográficas de la bibliografía recomendada

- [Bloque I: Estructuras superficiales] ASME Boiler and Pressure Vessel Code : an American National Standard. Section VIII, Rules for Construction of Pressure Vessels. Division 2, Alternative Rules / ASME Boiler and Pressure Vessel Committee, Subcommittee on Pressure Vessels . New York : The American Society of Mechanical Engineers, 1977
- [Bloque I: Estructuras superficiales] Megyesy, Eugene F.. Manual de recipientes a presión : Diseño y cálculo / Eugene F. Megyesy ; bversión española Rafael García Díaz ; revisión Rubén ávila espinoza . 1a. ed. México : Noriega, 1989
- [Bloque I: Estructuras superficiales] Peña Baquedano, Estefanía. Problemas de análisis estructural de instalaciones industriales / Estefanía Peña Baquedano, Miguel Ángel Martínez Barca, Manuel Doblaré Castelano [i.e. Castellano]. 2ª ed. [Zaragoza] : Grupo de Estructuras y Modelado de Materiales, Universidad de Zaragoza, D.L. 2005
- [Bloque I: Estructuras superficiales] Ravenet Catalán, Juan. Silos. T. 1, Teoría, investigación, construcción / Juan Ravenet Catalán . Barcelona : Editores Técnicos Asociados, 1977
- [Bloque I: Estructuras superficiales] Timoshenko, Stephen P.. Teoría de placas y láminas / S. Timoshenko, S. Woinowsky-Krieger . [1a. ed. en español] Bilbao : Urmo, D.L. 1975
- [Bloque II: Dinámica estructural] Clough, Ray W.. Dynamics of structures / Ray W. Clough, Joseph Penzien . 2nd ed. New

- York [etc.]: McGraw-Hill, cop.1993
- [Bloque II: Dinámica estructural] España. Ministerio de Fomento. Norma de construcción sismorresistente : parte general y edificación [NCSE-02] : con comentarios de la Subcomisión Permanente de Normas Sismorresistentes / Ministerio de Fomento, Dirección General del Instituto Geográfico Nacional. 1ª ed., 2ªreimp. Madrid : Centro de Publicaciones, Ministerio de Fomento, 2004
- [Bloque II: Dinámica estructural] España. Ministerio de Fomento. Norma de Construcción Sismorresistente : Puentes (NCSP- 07) : con comentarios de la Subcomisión Permanente de Normas Sismorresistentes / Ministerio de Fomento, Dirección General del Instituto Geográfico Nacional. 1ª ed. Madrid : Centro de Publicaciones, Ministerio de Fomento, 2008
- [Bloque II: Dinámica estructural] Gracia Villa, Luis. Análisis estructural avanzado / Luis Gracia Villa, Elena Ibarz Montaner . Zaragoza : Copy Center Digital, D.L. 2011
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Berry, Peter L. Mecánica de suelos / Peter L. Berry, David Reid . Madrid [etc.] : McGraw-Hill, 1993
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Calavera Ruiz, José. Muros de contención y muros de sótano / J. Calavera . 3ª. ed. Madrid : INTEMAC (Instituto Técnico de Materiales y Construcciones), D.L.2001
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Calvo Calzada, Begoña. Mecánica del suelo / Begoña Calvo Calzada . 1ª ed. [Zaragoza] : Grupo de Mecánica Estructural y Modelado de Materiales, Dpto. Ingeniería Mecánica, Universidad de Zaragoza, 2005
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Calvo, Begoña. Mecánica del suelo. Ejercicios Resueltos / Calvo B.- Doblaré M..
- [Bloque III: Cálculo de elementos de contención y cimentaciones] CTE-SE-C : seguridad estructural, cimientos : aplicación a edificios de uso residencial vivienda-DAV . [Madrid] : Consejo Superior de los Colegios de Arquitectos de España, D.L. 2007
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Geotécnia y cimientos. V. 1, Propiedades de los suelos y de las rocas / J.A. Jiménez Salas, J.L. de Justo Alpañes . 2a. ed. Madrid : Rueda, D.L. 1975
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Geotécnia y cimientos. V. 2, Mecánica del suelo y de las rocas / J.A. Jiménez Salas, J.L. de Justo Alpañes, Alcibíades A. Serrano González . 2a ed Madrid : Rueda, D.L. 1981
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Geotécnia y cimientos. V. 3, Cimentaciones, excavaciones y aplicaciones de la geotecnia / coordinador y director edición, José Antonio Jiménez Salas ; Luis del Cañizo Perate...[et al.] . Madrid : Rueda, D.L. 1980
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Iglesias Pérez, Celso. Mecánica del suelo / Celso Iglesias Pérez . Madrid : Síntesis, D.L. 1997
- [Bloque III: Cálculo de elementos de contención y cimentaciones] Rodríguez Ortiz, Jose María. Curso aplicado de cimentaciones / José María Rodríguez Ortíz, Jesús Serra Gesta, Carlos Oteo Mazo . [7a. ed.] Madrid : Colegio Oficial de Arquitectos de Madrid, Servicio de Publicaciones, 1996