

## Máster en Ingeniería de Sistemas e Informática 62606 - Sistemas de percepción y robótica

Guía docente para el curso 2013 - 2014

Curso: 1, Semestre: 1, Créditos: 4.0

#### Información básica

#### **Profesores**

- Juan Domingo Tardos Solano tardos@unizar.es

#### Recomendaciones para cursar esta asignatura

Proporciona formación investigadora básica en percepción y robótica. Recomendable para seguir cursos avanzados de navegación, construcción de mapas en robótica o de visión tridimensional.

#### Actividades y fechas clave de la asignatura

Octubre-Enero: Clases magistrales
Enero: Presentaciones orales
Febrero: Entrega de trabajos

#### Inicio

## Resultados de aprendizaje que definen la asignatura

#### El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- Comprende las técnicas de representación de la información espacial en robótica y es capaz de aplicarlas en problemas reales.
- Conoce las técnicas básicas de procesamiento y extracción de características en visión por computador y es capaz de desarrollar aplicaciones prácticas sencillas
- Comprende las técnicas de estimación robusta y estimación recursiva y es capaz de aplicarlas en problemas de percepción o robótica que requieran estimar las variables de interés a partir de información sensorial incierta.
- 4: Sabe utilizar herramientas básicas y librerías de programas de uso común para la investigación en robótica y

percepción.

#### Introducción

#### Breve presentación de la asignatura

La asignatura consta de 4 créditos ECTS y se desarrolla en tres bloques:

- 1. Representación de información espacial en robótica
- 2. Técnicas básicas de visión por computador
- 3. Técnicas de estimación robusta y estimación recursiva

## **Contexto y competencias**

## Sentido, contexto, relevancia y objetivos generales de la asignatura

# La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo principal es que el estudiante comprenda y sepa utilizar en problemas reales las técnicas básicas de representación de la información espacial en robótica y de procesamiento de la información sensorial. El segundo objetivo es que el alumno conozca herramientas básicas y librerías de programas de uso común para la investigación y desarrollo de técnicas de robótica y de percepción, y adquiera experiencia en su uso.

### Contexto y sentido de la asignatura en la titulación

El curso proporciona formación investigadora básica en percepción y robótica. Esta formación permitirá al alumno permitirá seguir los cursos avanzados de navegación, construcción de mapas en robótica o de visión tridimensional.

#### Al superar la asignatura, el estudiante será más competente para...

- Iniciar una carrera investigadora o desarrollar una actividad profesional de I+D+i en la industria, en el ámbito de los sistemas de percepción y la robótica
- 2: Ser original en el desarrollo y aplicación de ideas en un contexto de investigación, desarrollo e innovación
- **3:** Aplicar técnicas novedosas de percepción y robótica a la resolución de problemas reales
- **4:**Comunicar sus conclusiones a públicos especializados y no especializados de un modo claro y sin ambigüedades

#### Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

Las técnicas estudiadas son básicas para comprender el estado del arte de la robótica y los sistemas de percepción. Actualmente el grado de madurez de muchas de ellas es elevado, lo que está dando lugar a la rápida aparición de numerosas aplicaciones prácticas en campos tan diversos como navegación automática de vehículos, seguimiento de personas en secuencias de imágenes, reconocimiento automático de imágenes o realidad aumentada.

#### **Evaluación**

## Actividades de evaluación

# El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Trabajo Individual, en el que el alumno aplique las distintas técnicas estudiadas a la resolución de diversos problemas prácticos habituales en robótica como localizar un robot utilizando un sensor láser, detectar de forma robusta elementos interesantes en una imagen, o seguir a una persona en una secuencia de imágenes. El estudiante elaborará un informe escrito en el que se resuma el análisis del problema, las principales decisiones de diseño tomadas, y se analicen de forma crítica los resultados obtenidos. En la evaluación se tendrá en cuenta el grado de innovación de la solución propuesta, la calidad de los resultados y las conclusiones obtenidas

2:
 Lectura de uno o más artículos de investigación que definan el estado del arte en percepción y robótica, seleccionados por el profesor, y realización de una exposición oral. Se valorará el grado de comprensión de los artículos, y la capacidad del estudiante para analizar el interés práctico de las técnicas estudiadas y comunicar sus conclusiones.

## **Actividades y recursos**

## Presentación metodológica general

#### El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

La asignatura tiene una orientación de iniciación a la investigación, tanto teórica como práctica. Por ello el proceso de aprendizaje se realiza a través de tres tipos de actividades:

- 1. La presentación de los contenidos de la asignatura en clases magistrales por parte de los profesores.
- 2. El estudio personal de la asignatura y de artículo de investigación por parte de los alumnos y la presentación de los resultados en clases o seminarios.
- 3. El desarrollo de trabajos prácticos por parte de los alumnos.

## Actividades de aprendizaje programadas (Se incluye programa)

# El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

- 1: Estudio de técnicas de representación de información espacial
- Estudio de técnicas de visión por computador
- **3:** Estudio de técnicas de estimación robusta y estimación recursiva
- **4:**Lectura de artículos de investigación y realización de una exposición oral.

**5:** Desarrollo de un trabajo individual, en el que el alumno aplique las técnicas estudiadas a la resolución de diversos problemas prácticos de robótica y percepción

# Planificación y calendario

## Calendario de sesiones presenciales y presentación de trabajos

Octubre-Enero: Clases magistrales
Enero: Presentaciones orales
Febrero: Entrega de trabajos

## **Documentos de referencia**

**Documentos de referencia** 

Referencias bibliográficas de la bibliografía recomendada