

Grado en Química 27208 - Química inorgánica I

Guía docente para el curso 2012 - 2013

Curso: 2, Semestre: 0, Créditos: 9.0

Información básica

Profesores

- José María Casas Del Pozo casas@unizar.es
- Josefina Jiménez Villar jjimvil@unizar.es
- María Dolores Villacampa Pérez dvilla@unizar.es
- Beatriz Eva Villarroya Aparicio bvilla@unizar.es
- Juan Octavio Forniés Gracia forniesj@unizar.es

Recomendaciones para cursar esta asignatura

Véase el apartado de requisitos.

Actividades y fechas clave de la asignatura

Las fechas de los exámenes parciales y las pruebas globales serán anunciados de acuerdo con el calendario académico del centro, y podrán consultarse en el tablón de anunción y en la dirección web de la Facultad: http://ciencias.unizar.es/web/horarios.do

Requisitos

Requisitos para cursar esta asignatura

1:
Para cursar esta asignatura es necesario haber superado 27 créditos del módulo básico. También es necesario haber cursado las asignaturas Química General e Introducción al Laboratorio de Química.

Inicio

Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- 1: Comprende y utiliza la bibliografía básica de la Química Inorgánica.
- Conoce los fundamentos y características de las principales reacciones de la Química Inorgánica.
- **3:** Clasifica moléculas inorgánicas sencillas en función de su simetría.
- **4:**Usa los modelos y teorías de enlace para explicar las propiedades químicas de los compuestos inorgánicos y predecirlas razonadamente.
- 5:
 Tiene conocimiento de la química de los elementos representativos y sus compuestos, de su síntesis, aplicaciones y reactividad.
- Analiza el comportamiento químico de los elementos representativos y sus compuestos en función de sus propiedades periódicas.
- 7:
 Predice el resultado de distintas reacciones químicas en función de los productos de partida y condiciones de reacción.
- **8:**Conoce las características de los compuestos de coordinación y relaciona sus propiedades con su estereoquímica y enlace.
- **8:**Resuelve y discute de forma crítica problemas y cuestiones sobre estructura y reactividad de compuestos inorgánicos sencillos.

Introducción

Breve presentación de la asignatura

La asignatura Química Inorgánica I se encuadra en el módulo fundamental del Grado en Química. Tiene carácter obligatorio, es anual y tiene una carga lectiva de 9 ECTS: 7 teóricos, dedicados a clases magistrales con participación de los alumnos y 2 prácticos, dedicados a seminarios y problemas.

En Química Inorgánica I se estudian los fundamentos de la Química Inorgánica para relacionarlos con el comportamiento de los elementos y sus compuestos, centrándose de un modo exhaustivo en los elementos representativos y los compuestos de coordinación

Contexto y competencias

Sentido, contexto, relevancia y objetivos generales de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

En esta asignatura se pretende que el alumno conozca los fundamentos de la Química Inorgánica de modo que pueda relacionar enlace, estructura y propiedades de los compuestos inorgánicos y que adquiera una visión general del estado de conocimiento actual de la Química Inorgánica, centrándose en los elementos representativos y sus compuestos y en los compuestos de coordinación.

Contexto y sentido de la asignatura en la titulación

La Química Inorgánica es una de las cuatro áreas fundamentales en que se divide el estudio de la Química. La materia Química Inorgánica se ha dividido en 2 asignaturas: Química Inorgánica I que se encuadra en el módulo fundamental y se imparte en el 2º curso del Grado y Química Inorgánica II, que se encuadra en el módulo avanzado y se imparte en el 3er curso del Grado.

En Química Inorgánica I se estudian los fundamentos de la Química Inorgánica, los elementos representativos y sus compuestos y los compuestos de coordinación. En Química Inorgánica II se estudian los elementos de transición y sus compuestos, el estado sólido y se introducen temas avanzados de Química Inorgánica.

Para cursar Química Inorgánica II es necesario haber cursado Química Inorgánica I.

Al superar la asignatura, el estudiante será más competente para...

- Manejar la bibliografía y otras fuentes de información de Química Inorgánica.
- Comprender los fundamentos de la química de los elementos basada en las propiedades periódicas.
- **3:** Clasificar moléculas en función de su simetría.
- Conocer los principales tipos de compuestos de elementos representativos, como se obtienen, su estructura y reactividad.
- **4:** Establecer relaciones entre la estructura y enlace de los compuestos inorgánicos con su reactividad.
- 5: Predecir el resultado de reacciones sencillas en función de los productos de partida y condiciones.
- **6:**Conocer las propiedades, estructura y enlace de los compuestos de coordinación.

Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

La Química se dedica al estudio de la materia y sus transformaciones. Se puede relacionar el avance científico con el bienestar social, por lo que su impacto en nuestra vida diaria es muy notorio: medicinas, fertilizantes, nuevos materiales, etc. Dentro de la Química, la Química Inorgánica ocupa una posición central, ya que se ocupa del estudio de todos los elementos y sus compuestos, salvo los derivados orgánicos del carbono. Una buena formación en Química Inorgánica de un graduado en Química es fundamental para que pueda desarrollar su labor profesional en el futuro.

Evaluación

Actividades de evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

1: Los alumnos serán evaluados de la siguiente manera:

- 1. Resolución de problemas y cuestiones teórico-prácticas (10 %). Se realizarán varios controles a lo largo del
- 2. Examen parcial al final del primer cuatrimestre (45 %).

3. Examen parcial al final del segundo cuatrimestre (45 %).

La calificación final de la asignatura será la media ponderada de las calificaciones obtenidas en cada uno de estos apartados, siempre y cuando se haya obtenido una calificación mínima de 5 puntos sobre 10 en cada uno de los exámenes parciales.

- Los alumnos que no hayan superado la asignatura o deseen subir nota deberán presentarse al examen global que se realizará en las convocatorias de junio y septiembre y que supondrá el 100 % de la calificación. No obstante, en la convocatoria de junio, los alumnos que no hayan superado la asignatura y tengan un mínimo de 6 puntos en alguno de los exámenes parciales podrán optar a que en el examen global sean evaluados únicamente del parcial no superado (en el que deberán alcanzar una calificación mínima de 5), manteniéndose las calificaciones del resto de apartados para el cálculo de la media ponderada final.
- 2:
 El número de convocatorias oficiales de examen a las que la matrícula da derecho (2 por matrícula) así como el consumo de dichas convocatorias se ajustará a la Normativa de Permanencia en Estudios de Grado (
 http://www.unizar.es/sg/doc/BOUZ10-10_001.pdf) y Reglamento de Normas de Evaluación del Aprendizaje. A este último reglamento, también se ajustará el sistema de calificación, y de acuerdo a la misma se hará público el horario, lugar y fecha en que se celebrará la revisión al publicar las calificaciones. Dicha normativa puede consultarse en:

http://wzar.unizar.es/servicios/coord/norma/evalu/evalu.html

Actividades y recursos

Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

La metodología docente de la asignatura se basa en clases de teoría en las que el profesor expone la materia, facilitando el aprendizaje de la misma y fomentando la participación activa de los alumnos. Esta actividad ocupa 7 ECTS. La docencia se complementa con 2 ECTS dedicados a clases prácticas de planteamiento y resolución de problemas y cuestiones.

Actividades de aprendizaje programadas (Se incluye programa)

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

- Clases de teoría (7 ECTS: 70 sesiones de 1 hora)
- **2:** Resolución de problemas y cuestiones (2 ECTS: 20 sesiones de 1 hora).
- **3:** Contenido de la asignatura:
 - 1. **Simetría molecular.** Operaciones y elementos de simetría. Grupos puntuales. Tablas de caracteres. Espectroscopia infrarroja.
 - 2. **Estructura de los sólidos.** Redes cristalinas. Estructura de los metales. Aleaciones. Enlace en metales y semiconductores. Sólidos iónicos. Energía de red. Defectos de las redes en estado sólido.
 - 3. **Reacciones ácido-base.** Propiedades ácido base de cationes hidratados, oxoácidos y óxidos anhidros. Comportamiento ácido-base en disolventes no acuosos: amoniaco líquido y ácido sulfúrico. Ácidos y bases de Lewis.
 - 4. **Reacciones redox.** Celdas galvánicas y energía de Gibbs. Potenciales de reducción. Ecuación de Nernst. Efectos en los potenciales de reducción M²⁺/M. Estabilidad relativa de los distintos estados de oxidación. Diagramas de Latimer y de Frost-Ebsworth. Aplicaciones de las reacciones redox a procesos industriales.

- 5. **Hidrógeno.** Hidrógeno y sus iones. Isótopos del hidrógeno. Dihidrógeno. Enlaces E-H polares y no polares. Enlace de hidrógeno. Compuestos binarios de hidrógeno.
- 6. Metales alcalinos y alcalinotérreos. Propiedades generales. Abundancia, obtención y usos. Propiedades físicas. Halogenuros. Compuestos oxigenados. Iones complejos en disolución acuosa. Metales alcalinos y alcalinotérreos en amoniaco líquido
- 7. **Metales del grupo 12.** Propiedades generales. Abundancia, obtención y usos. Propiedades físicas. Estados de oxidación. Compuestos oxigenados.
- 8. *Elementos del grupo 13*. Introducción. Abundancia, obtención y usos. Propiedades físicas. Hidruros, halogenuros y complejos halógeno. Compuestos oxigenados. Boruros. Clusters boranos y carboranos deficientes en electrones.
- 9. **Elementos del grupo 14.** Abundancia, estado natural, alótropos. Propiedades físicas. Obtención y usos. Hidruros, aniones, halogenuros y combinaciones oxigenadas de estos elementos. Carburos y siliciuros. Compuestos de intercalación de grafito. CO₂ como disolvente.
- 10. **Elementos del grupo 15.** Abundancia, estado natural, alótropos. Propiedades físicas. Obtención y usos. Hidruros, aniones, halogenuros y combinaciones oxigenadas de estos elementos. Ácido nítrico y ácido fosfórico
- 11. **Elementos del grupo 16.** Abundancia, estado natural, alótropos. Propiedades físicas. Obtención y usos. Hidruros, aniones, halogenuros y combinaciones oxigenadas de estos elementos. Preparación y usos del ácido sulfúrico.
- 12. **Halógenos.** Introducción. Abundancia, obtención y usos. Propiedades físicas. Hidruros. Compuestos interhalogenados. Estabilidad de los halógenos en medio acuoso y en medio alcalino. Combinaciones oxigenadas. Oxoácidos del cloro.
- 13. **Gases nobles.** Introducción. Abundancia, obtención y usos. Propiedades físicas. Compuestos de xenón. Compuestos de criptón y radón.
- 14. Compuestos de coordinación. Metales de transición. Configuraciones electrónicas en el estado fundamental, números de coordinación y estructuras. Isomería en los compuestos de coordinación. Teorías de enlace. Energía de estabilización del campo cristalino. Serie espectroquímica. Propiedades magnéticas.

Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

Los horarios de la asignatura se publican en el tablón de anuncios y página web de la Facultad de Ciencias. (http://ciencias.unizar.es/web/horarios.do)

Bibliografía

La bibliografía recomendada es la siguiente:

1:

En reprografía y/o a través del Anillo Digital Docente se proporcionará al alumno diverso material (ejercicios, cuestiones, presentaciones, etc.) preparados por los profesores de la asignatura.

BIBLOGRAFIA BASICA

- 1. Título: Química Inorgánica. Autores: C. E. Housecroft y A. G. Sharpe. Editorial: Prentice Hall (Pearson) 2006.
- 2. Título: Shriver & Atkins Química Inorgánica. Autores: P. W. Atkins, T. Overton, J. Rourke, M. Weller y F. Armstrong. Editorial: McGraw Hill Interamericana 2008.

BIBLIOGRAFIA COMPLEMENTARIA

- 1. Título: Química Inorgánica Básica (1ª edición). Autores: F. A. Cotton y G. Wilkinson. Editorial: Limusa 1999.
- 2. Título: Advanced Inorganic Chemistry (6ª edición). Autores: F. A. Cotton, G. Wilkinson, C. A. Murillo y M. Bochmann. Editorial: Wiley-Interscience 1999.
- 3. Título: Chemistry of the Elements (2ª edición). Autores: N. N. Greenwood y A. Earnshaw. Editorial: Butterworth-Heineman 1997.
- 4. Título: Inorganic Chemistry (3ª edición). Autores: G. L. Miessler y D. A. Tarr. Editorial: Pearson Education 2003.
- 5. Título: Descriptive Inorganic Chemistry (4ª edición). Autor: G. W. Rayner-Canham. Editorial: Palgrave

Macmillan 2006.

6. Título: Inorganic Chemistry (34ª edición). Autor: A. F. Holleman y E. Wiberg. Editorial: Academia Press 2001.

SITIOS WEB

http://www.educaplus.org/sp2002/tests/test1.html

Referencias bibliográficas de la bibliografía recomendada

- Advanced inorganic chemistry / F. Albert Cotton, Geoffrey Wilkinson, Carlos A. Murillo, Manfred Bochmann, [with a chapter on boron by Rusell Grimes] . 6th ed. New York [etc] : John Wiley and Sons, cop.1999
- Cotton, Frank Albert. Química inorgánica básica / F. Albert Cotton, Geoffrey Wilkinson ; versión española Francisco González Vilchez ; revisión Francisco González García . 1a. ed., 4a. reimp. México [etc] : Limusa, 1989
- Greenwood, Norman Neill. Chemistry of the elements / N.N. Greenwood and A. Earnshaw . 2nd ed. Oxford : Butterworth-Heinemann, 1997
- Housecroft, Catherine E.. Química inorgánica / Catherine E. Housecroft, Alan G. Sharpe ; traducción, Pilar Gil Ruiz ; revisión técnica, José Ignacio Álvarez Galindo ... [et al.] . 2ª ed. Madrid [etc.] : Pearson Prentice Hall, D.L. 2006
- Miessler, Gary L.. Inorganic chemistry / Gary L. Miessler, Donald A. Tarr . 2nd ed. Upper Sadle River, New Jersey : Prentice Hall, cop.1999
- Rayner-Canham, Geoff. Descriptive inorganic chemistry / Geoff Rayner-Canham, Tina Overton . 3rd ed., 2nd print. New York : W. H. Freeman, 2003
- Shriver & Atkins Química inorgánica / Peter Atkins ... [et al.] ; traducción técnica, Emilio Sorde Zabay ; revisión técnica, Rodolfo Álvarez Manzo, Oralia Orduño Fragoza. 4ª ed., 1ª ed. en español México D. F. : McGraw-Hill/Interamericana, cop. 2008
- Wiberg, Egon. Inorganic chemistry/ founded by A. Holleman; continued by Egon Wilberg; first english edition by Nils Wilberg; translated by Mary Eagleson, William Brewer; revised by Bernhard J. Aylett. 1st english ed. San Diego [etc.]: Academic Press; Berlin; New York: De Gruyter, cop. 2001