

Grado en Ingeniería Mecánica 29722 - Mecánica de sólidos deformables

Guía docente para el curso 2012 - 2013

Curso: 3, Semestre: 1, Créditos: 6.0

Información básica

Profesores

- José Antonio Bea Cascarosa jabea@unizar.es
- José Manuel García Aznar jmgaraz@unizar.es
- David González Ibáñez gonzal@unizar.es
- Clara Valero Lázaro claraval@unizar.es
- José Félix Rodríguez Matas jfrodrig@unizar.es
- Inmaculada Ruiz Vázquez iruiz@unizar.es
- Myriam Cilla Hernandez mcilla@unizar.es
- María José Gómez Benito gomezmj@unizar.es
- Estefanía Peña Baquedano fany@unizar.es
- Belén Hernández Gascon

Recomendaciones para cursar esta asignatura

Profesorado Grado Ingeniería Mecánica

Jose Manuel García Aznar imgraz@unizar.es 876 555111 Mª José Gómez Benito gomezmj@unizar.es 876 555237 Estefanía Peña Baguedano

fany@unizar.es

Recomendaciones para cursar esta asignatura

Aunque no se exige tener aprobadas las asignaturas de Matemáticas y Física de primer curso, es muy recomendable haber adquirido unas determinadas destrezas en las mismas, así como asignaturas de segundo curso. El alumno, antes de comenzar este curso, debería ser capaz de:

876 555233

Cálculo

- Derivar una función y realizar integrales simples y múltiples incluyendo cambios de variables
- Comprender fundamentos básicos de cálculo variacional y análisis de máximos y mínimos.

Algebra

- Poseer cierta soltura en conceptos básicos de espacios vectoriales, dimensiones, base y fundamentos de operaciones matriciales.
- Concepto de tensor e invarianza frente a cambios de coordenadas.
- Notación y operativa indicial.
- Manejo de operadores gradiente, divergencia y laplaciano.

Mecánica

- Comprensión y manejo de resultantes de fuerzas y momentos.
- Dinámica del sólido rígido. Ecuaciones de Newton.

Termodinámica

- Primera y segunda leyes de la termodinámica.
- Balance de energía.

Resistencia de Materiales

- Conocer los conceptos de esfuerzo, tensión y deformación.
- Resolución de problemas de barras.

El seguimiento continuo de la asignatura, tanto en sus clases de teoría y problemas como en las de prácticas, es esencial, así como el estudio personal y la elaboración de los trabajos de la asignatura.

Actividades y fechas clave de la asignatura

En el curso 2012-2013 las fechas de inicio y finalización de la asignatura, las horas concretas de impartición y las fechas de los exámenes de las dos convocatorias oficiales se podrán encontrar en la página web de la Escuela de Ingeniería y Arquitectura: http://eina.unizar.es/

Los trabajos de la asignatura deberá entregarse antes de la fecha del examen de la convocatoria correspondiente.

Por otra parte, desde el inicio del cuatrimestre los alumnos dispondrán del calendario detallado de actividades (conferencias, prácticas de laboratorio y de ordenador...).

Inicio

Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- 1: Saber identificar problemas donde sea necesario aplicar las ecuaciones de la mecánica del sólido deformable.
- 2: Saber manejar los conceptos de tensión, deformación y leyes constitutivas.
- Comprender el significado de los tensores de tensión y deformación y debe ser capaz de expresar dichos tensores en distintos sistemas de referencia, entre ellos el sistema principal, y conocer la importancia de las tensiones y direcciones principales.
- 4: Saber identificar y aplicar los modelos de comportamiento del material (elástico lineal, elástico no-lineal,

inelástico, etc.) a partir de curvas tensión-deformación experimentales.

5:

Saber aplicar las ecuaciones básicas de la Elasticidad. El alumno ha de estar en condiciones de poder plantear las ecuaciones del modelo matemático: equilibrio, comportamiento y compatibilidad a distintos niveles punto, elemento y estructura y resolver analíticamente problemas sencillos.

6:

Identificar las principales tipologías estructurales.

7:

Saber la metodología necesaria para resolver el problema elástico mediante elementos finitos y manejar un software de FF.

8:

Identificar y seleccionar tipos de elementos finitos.

9:

Saber valorar la admisibilidad de los resultados analíticos y numéricos.

10:

Establecer los estados límites del comportamiento elástico: grandes deformaciones, plasticidad, inestabilidad, etc.

Introducción

Breve presentación de la asignatura

Esta asignatura introduce al alumno en el diseño mecánico y resistente de componentes mecánicos y estructuras permitiéndole alcanzar los resultados de aprendizaje comentados anteriormente. Para la resolución de los problemas es imprescindible tener destreza en matemáticas y conocimientos de mecánica y resistencia de materiales, como los adquiridos en los primeros cursos de la titulación.

En la asignatura se va a potenciar la evaluación continuada y el trabajo tanto individual como en equipo. Las competencias adquiridas en este curso permitirán al futuro egresado trabajar en equipo con ingenieros en el diseño mecánico y resistente utilizando software de elementos finitos.

Ejemplo

Ejemplo del tipo de problema que será capaz de resolver el alumno

Enunciado: Determinar el estado tensional en la pared de una tubería (infinita, es decir con una longitud muy superior al diámetro) de pared gruesa solicitada a presión interna.

Solución: El problema puede ser resuelto de forma analítica utilizando el planteamiento de Navier. Para ello es necesario trabajar en coordenadas cilíndricas y proponer una solución en desplazamientos simplificada (ur=f(r)) al tener en cuenta la simetría de revolución del problema y ser infinito el problema en dirección longitudinal. El problema también puede ser resuelto numéricamente mediante elementos finitos.

- Es necesario establecer las condiciones de contorno del problema para poder resolver la ecuación diferencial que permite calcular ur.
- Conocida la solución en desplazamientos, aplicando las ecuaciones cinemáticas se obtendrán la solución en deformaciones. También es posible evaluar el cambio de volumen.
- Aplicando las ecuaciones de comportamiento determinaríamos las tensiones en la tubería.
- Podríamos evaluar si el espesor de la tubería garantiza la no plastificación de la misma.

Contexto y competencias

Sentido, contexto, relevancia y objetivos generales de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo de la asignatura es capacitar al alumno para analizar y diseñar cualquier elemento deformable, como por ejemplo, estructuras de edificación, instalaciones industriales, así como innumerables elementos de máquinas.

Se introduce al alumno al Método de los Elementos Finitos como método numérico para la resolución del problema elástico general que permite el análisis y diseño de elementos más complejos.

La asignatura abarca tanto los fundamentos de la Mecánica de Sólidos Deformables como del Método de los Elementos Finitos y sus aspectos más aplicados.

La realización de sesiones de prácticas permite comprobar la validez de las hipótesis básicas y las distintas simplificaciones propuestas a lo largo de la exposición teórica de los distintos conceptos desarrollados. En esta misma línea se encuentran las clases de problemas, que permiten la aplicación de la teoría y la continuación en la comprensión y asimilación de los conceptos tratados a lo largo del curso.

Las diferentes actividades que se proponen durante el desarrollo de esta asignatura (prácticas, trabajos y clases de problemas) no sólo buscan la asimilación de los distintos conceptos expuestos a lo largo del curso, sino que también pretenden la potenciación del razonamiento, síntesis, resolución y posterior análisis de los resultados de diferentes problemas.

Contexto y sentido de la asignatura en la titulación

La asignatura de Mecánica de Sólidos Deformables forma parte del bloque de asignaturas de la Rama Mecánica del Plan de estudios del Grado de Ingeniería Mecánica. Se trata de una asignatura de 6 créditos ECTS que se imparte en el primer cuatrimestre del tercer curso de la titulación.

La asignatura aplica y desarrolla algunos conceptos presentados en asignaturas de semestres anteriores como Mecánica o Resistencia de Materiales – utilizando muchas de las herramientas proporcionadas por Matemáticas I, II y III – y presenta otros nuevos: tensión, deformación, comportamiento, formulación débil, resolución numérica, etc. que serán utilizados profusamente en asignaturas posteriores, tanto de carácter obligatorio: Teoría de Estructuras y Construcciones Industriales, Criterios de diseño de máquinas así como en los bloques optativos de Diseño y cálculo de estructuras y Máquinas y vehículos.

Al superar la asignatura, el estudiante será más competente para...

- 1: Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico (C4).
- 2: Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma (C6).
- **3:**Capacidad de gestión de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería (C9).
- 3: Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo (C10).
- **3:**Conocimientos y capacidades para aplicar los fundamentos de la elasticidad y resistencia de materiales al comportamiento de sólidos reales (C38).

Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

Los resultados de aprendizaje obtenidos en la asignatura capacitan al alumno para poder abordar los problemas relacionados con la mecánica estructural que se presentan en el ámbito de la Ingeniería Mecánica: diseño y comprobación de componentes mecánicos, estructuras industriales y de edificación, análisis resistente de elementos de todo tipo de máquinas e instalaciones, diseño de vehículos, etc.

Evaluación

Actividades de evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación

A continuación se presentan las dos modalidades de evaluación ofertadas a los estudiantes para superar la asignatura: continuada y global.

Para permitir la **evaluación continuada** del estudiante que vaya estudiando la asignatura a medida que se imparte, se plantean las siguientes pruebas con su correspondiente ponderación en la calificación final:

Trabajos de asignatura (Ponderación: 25 %)

- Se planteará el análisis por elementos finitos del diseño mecánico de un elemento estructural, trabajando en grupos reducidos de dos personas. Asimismo, se planteará la formulación e implementación numérica de un elemento finito.
- Se fijarán fechas para las revisiones parciales y la entrega definitiva
- Su evaluación se basará en el informe escrito presentado.

Prácticas (Ponderación: 15 %)

- Se realizarán seis sesiones de prácticas de ordenador y laboratorio en grupos de menos de veinte alumnos divididos en equipos de entre dos y cuatro personas.
- Su evaluación se basará en cuestionarios rellenados por los alumnos durante las mismas y podrá requerir de la obtención de algún resultado teórico previo relacionado con el contenido de la práctica.

Examen (Ponderación: 60 %)

- Examen final en el que se evaluará el contenido completo de la asignatura.
- Constará de una parte teórica y otra de problemas (ejercicios)
- Tendrá una duración estimada de tres horas.

Para permitir una evaluación global de la asignatura, se plantea la realización de un prueba global:

- Examen final en el gue se evaluará el contenido completo de la asignatura.
- Podrá constar de partes teórica, problemas (ejercicios) y prácticas.
- La parte de prácticas estará relacionada directamente con las prácticas de laboratorio y las de simulación informática.

Actividades y recursos

Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

La evaluación continuada con hitos evaluables intermedios, y el trabajo individual y en equipo.

Actividades de aprendizaje programadas (Se incluye programa)

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

- 1:
 Clases Teóricas (T1). En ellas, se desarrolla el cuerpo científico contenido en el programa y se presentan ejemplos de su aplicación.
- Clases Prácticas de Problemas (T2). Las clases de problemas complementan a las teóricas permitiendo al estudiante la aplicación de los conceptos a la resolución de problemas de la práctica ingenieril.
- **3:**Prácticas de Laboratorio (T3). Estas servirán para acercar al alumno a la realidad experimental, pudiendo comprobar la veracidad y exactitud de los resultados explicados en las lecciones teóricas.
- 4:
 Prácticas de Simulación Informática (T3). Se pretende de esta forma familiarizar a los alumnos con otra de las herramientas básicas de la asignatura, como es el cálculo y la simulación numérica. El objetivo fundamental de estas prácticas ser capaces de interpretar los resultados obtenidos mediante el ordenador, pudiendo discernir si los éstos obtenidos son adecuados o no.
- 5:
 Trabajo de Asignatura (T6). Pretende desarrollar la fórmula de aprendizaje basado en proyectos, para reforzar el resto de actividades docentes y, junto con las prácticas de laboratorio y simulación, permitir que el estudiante adquiera competencias de trabajo en equipo.
- **6:**Tutorías. Permiten de forma más individualizada o mediante grupos pequeños, que los alumnos integren los diversos contenidos y consoliden el objeto de su aprendizaje.

Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

Las clases magistrales y de problemas y las sesiones de se imparten según el calendario y los horarios establecidos por la Escuela, que son publicados con anterioridad a la fecha de comienzo del curso.

El Trabajo de Asignatura deberá presentarse con anterioridad a la fecha de convocatoria oficial de examen establecida por la Escuela.

Cada profesor informará de su horario de atención de tutorías.

Referencias bibliográficas de la bibliografía recomendada